<|lI!

Interactive System Productivity Facility (ISPF)

Dialog Developer’s Guide and Reference

z/OS Version 1 Release 90

SC34-4821-06

<|lI!

Interactive System Productivity Facility (ISPF)

Dialog Developer’s Guide and Reference

z/OS Version 1 Release 90

SC34-4821-06

Note
FBefore using this document, read the general information under ["Notices” on page 419)

Seventh Edition (September 2007)

This edition applies to ISPF for Version 1 Release 9.0 of the licensed program z/OS (program number 5694-A01)
and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. A form for comments appears at the back of this publication. If the form has been
removed and you have ISPF-specific comments, address your comments to:

IBM Corporation

Reader Comments
DTX/E269

555 Bailey Avenue

San Jose, CA 95141-1003
U.S.A.

Internet: comments@us.ibm.com

If you would like a reply, be sure to include your name and your address, telephone number, e-mail address, or
FAX number.

Make sure to include the following in your comment or note:
¢ Title and order number of this document
¢ Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

The ISPF development team maintains a site on the World Wide Web. The URL for the site is:
|Ettp: / /www.ibm.com/software/awdtools/ispf/! |
© Copyright International Business Machines Corporation 1980, 2007. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/software/awdtools/ispf/

Contents
Figures

Preface.

About this document ..

Who should use this document .

What is in this document?

Notation conventions .

Using LookAt to look up message explanatlons
Using IBM Health Checker for z/OS .

Summary of changes .
Product function changes for z/OS V1R9 0 ISPF
ISPF product changes.
ISPF Dialog Manager component changes
ISPF PDF component changes .
ISPF SCLM component changes
ISPF Client/Server component changes .
Migration considerations .
Changes to this document for z/OS V1R9 0 ISPF

What’s in the z/0S V1R9.0 ISPF
library? .

Chapter 1. Introduction to ISPF.
What is ISPF? .
What is a dialog? .
Functions
Variables.
Command tables .
Panel definitions .
Message definitions .
File-tailoring skeletons .
Tables .
What does a dialog do7
Developing a dialog .
How dialog elements interact.
Dialog variables .

Chapter 2. Controlling ISPF sessions .

Dialog control and data flow .

Processing a dialog .

Starting a dialog.

Syntax for issuing the ISPSTART command
Using the ISPSTART command .

Invoking a dialog from a selection panel
Invoking a dialog from a master application
menu .

Controlling ISPF sessions . . .
Using the SHRPROF system command .
SHRPROF command syntax and parameter
descriptions .

What the SELECT service does
Invoking the SELECT service
Terminating a dialog

© Copyright IBM Corp. 1980, 2007

. Vil

. ix
. ix
. ix

. xi
. Xi

. Xiii

xiii

. xiii
. xiil

. Xiv
. XV
. XV
. XV

. XVii

N O B WWWWNNNR - -,

[
© w o oo w O

. 19
. 20
. 20

. 20
.22
.23
.24

Return Codes from Terminating Dialogs.
An example using the ZISPFRC return code

ISPF test and trace modes e
Test modes
ISPF trace modes .

Invoking authorized programs .

Invoking TSO commands.

Compiled REXX requirements .

CLIST requirements .

Attention exits

Using APL2

Invoking APL2 .

Executing APL2 functions

Invoking ISPF dialog services in the APL2
environment . .

APL2 workspace as the ISPF functlon pool
Interface between ISPF and APL2 .

Subtasking support.

ESTAE restrictions .

ISPF services in batch mode . .
Command processors in the TSO batch
environment .

Batch display fac1hty for background panel
processing .
ISPF graphical user 1nterface in batch mode

Chapter 3. Introduction to writing

dialogs.

Using the display services
Example: creating a display w1th TBDISPL
Processing selected rows .
Adding table rows dynamlcally durmg table
display scrolling .
Example: dynamic table expansmn

Using the variable services
Searching variable pools .
SELECT service and variable access
Function pools and dialog functions .

Command procedures, program functions, and

function pools

Use a variable service to create or delete defmed

variables

Creating implicit Varlables .
Naming defined and implicit Varlables .
Sharing variables among dialogs

Saving variables across ISPF sessions .
Removing variables from the shared or proflle
pool . .o .
Read-only profile pool exten51on Varlables .
Variables owned by ISPF .

Variable formats .

System variables communlcate between dlalogs

and ISPF

Using VDEFINE, VDELETE VRESET VCOPY

VMASK, and VREPLACE

.24
. 26
.27
.27
. 28
. 28
. 28
.29
.29
. 30
.31
. 31
. 33

. 34
. 34
. 35
. 35
. 36
. 36

. 36

. 37
. 40

. 43
.43
.44
. 46

. 47
. 51
. 61
. 62
. 62
. 63

. 63

. 65
. 65
. 65
. 66
. 66

. 67
. 67
. 68
. 69
. 69

. 70

iii

Using the VGET, VPUT, and VERASE services. . 70

Summary of variable services71
Using the table services71
Where tables reside.71
Accessing data . . . N)
Services that affect an entrre table N)
Services that affect tablerows73
Protecting table resources.73
Example: create and update a srmple table .. .74
Determining table size. . . .75
Example: function using the DISPLAY TBGET
and TBADD services75
Specifying dbcs search argument format for table
services.83
Using the file- tallormg services.83
Skeleton files. . . . S
Example of using file- tarlormg services85
Using the PDF services86
BROWSE, EDIT, and EDREC86
BRIF, EDIF, and EDIREC87
Library access services.87
Using the miscellaneous services88
CONTROL service88
GDDM services (GRINIT, GRTERM and
GRERROR)88
GETMSG service89
LIBDEF service8
LIST service89
LOG Service8
PQUERY Service.89

Chapter 4. Common User Access

(CUA) guidelines91
Using the dialog tag language to defme dralog
elements . . . 2 |
Keylists. . . .) |
Action bars and pull downs e 092
Pop-up windows9
Movable pop-ups93
WINDOW command93
Manual movement R L
Pop-up movement consmleratrons T
Field-levelhelp9
Extended help9
Keys help . . . TS
Reference phrase help)
START service97

Chapter 5. Graphical User Interface

(GUI) guidelines.99
How to display an apphcatlon in GUI mode .. .99
Other considerations . . . PR (0|
Some general GUI restrrctlons103

Chapter 6. Panel definition statement

guide.« . . . 105
Introduction to panel defmltlon sections 106
Guidelines for formatting panels 107
Requirements for specifying message and
command line placement 108

iV z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Factors that affect a panel’s size . .
Syntax rules and restrictions for panel defmrtron
Using blanks and comments
Formatting items in lists. .
Using variables and literal expressrons in text
fields .
Validating DBCS strmgs . .
Special requirements for defining certam panels
Defining menus . .
Defining table display panels . .
Formatting panels that contain dynamic areas
Formatting panels that contain a graphic area
Using DBCS-related variables in panels.
Using preprocessed panels . .
Restrictions for using ISPPREP .
Using ISPPREP with the SELECT service .
Handling error conditions and return codes .

Chapter 7. Panel definition statement

reference .

Defining panel sections . .
Defining the action bar choice sectlon .
Defining the action bar choice initialization
section .
Defining the actron bar chorce processmg
section .

Defining the area sectlon

Defining the attribute section .
Defining the body section .
Defining the CCSID section.
Defining the END section

Defining the FIELD section.
Defining the HELP section .
Defining the initialization section.
Defining the LIST section

Defining the model section .

Defining the panel section .
Defining the point-and-shoot sectlon
Defining the processing section
Defining the reinitialization section .

Formatting panel definition statements .
The assignment statement .

The ELSE statement .

EXIT and GOTO statements
The IF statement

The PANEXIT statement
The REFRESH statement
The *REXX statement.
The TOG statement

The VEDIT statement.
The VER statement

The VGET statement .
The VPUT statement .
The VSYM statement .

Using ISPF control variables
.ALARM . .

ATTR and ATTRCHAR
.AUTOSEL
.CSRPOS .
.CSRROW
.CURSOR.

112

113

. 114
. 114

. 115
. 116

116

. 117
. 133

145
150

. 152
. 152
. 154
. 154
. 156

. 159
. 159
. 159

. 165

. 166
. 166
. 172
. 209
. 214
. 215
. 215
. 222
. 223
. 223
. 224
. 225
. 228
. 232
. 233
. 235
. 235
. 242
. 244
. 246
. 250
. 257
. 258
. 266
. 267
. 268
. 280
. 282
. 283
. 283
. 285
. 286
. 289
. 289
. 290
. 290

.HELP.
HHELP .
MSG .
.NRET.
.PFKEY
.RESP .
.TRAIL
.ZVARS

Chapter 8. ISPF help and tutorial

panels

Processing help.
Help requests from an apphcatron panel
Help available from a help panel.
Ending help . .o .
ISPF default keylist for help panels .

The ISPF tutorial panels . .

Chapter 9. Defining messages .

How to define a message

Message display variations .

Messages tagged with CCSID .

Modeless message pop-ups.

Message pop-up text formatting . .
English rules for message text formattlng
Asian rules for message text formatting
Substitutable parameters in messages

Syntax rules for consistent message definition

DBCS-related variables in messages .

Chapter 10. Defmlng file-tailoring
skeletons .
Control characters .
Considerations for data records
Control characters for data records .
Considerations for control statements
Control statements
Built-in functions .
Sample skeleton file .
DBCS-related variables in file skeletons

Chapter 11. Extended code page

support . . .

Translating common characters
Z variables . .

Panels tagged with CCSID
Messages tagged with CCSID .

GETMSG service . .

TRANS service . . .
ISPccsid translate load modules .
ISPccsid translate load module generation
macro . .

ISPCCSID macro . .

Description of parameters . .
ISPccsid translate load module deﬁnltron
examples .

KANA and NOKANA keywords
Character translation .

Supported CCSIDs

. 292
. 292
. 292
. 293
. 294
. 294
. 295
. 295

. 297
. 298
. 298
. 300
. 300
. 300
. 301

. 307
. 308
. 312
. 313
. 314
. 314
. 315
. 315
. 316
. 316
. 317

. 319
. 319
. 320
. 321
. 322
. 322
. 334
. 345
. 345

. 347
. 347
. 347
. 348
. 348
. 348
. 348
. 348

. 349
. 349
. 349

. 350
. 350
. 350
. 351

Base code pages for terminals 353
Adding translate tables for extended code page

support35
Base CCSIDs 355
Extended code page translate tables provrded by

ISPF 356

Example of user—modlflable ISPF translate table 357

Appendix A. Character translations for
APL, TEXT, and Katakana 361

Appendix B. ISPTTDEF specify
translate tableset 365

Appendix C. Diagnostic Tools and
Information 367

ISPF debug tools . . . B (74
Panel trace command (ISPDPTRC) G Y4
Trace format.370
File tailoring trace command (ISPFTTRC) .. . 374
Trace format.377
Diagnostic information380
Using the ENVIRON system command .. .380
ENVIRON command syntax and parameter
descriptions 381
Abend panels provrde d1agnost1c 1nformat10n 386
ISPF statistics entry in a PDS directory 389
Common problems using ISPF 389
Messages. . . N 123
Unexpected output G X |
Abend codes and information. 391
Terminal I/O errorcodes39%
Register linkage conventions39
Obtaining messageIDs39

Appendix D. Dialog variables 397
PDF non-modifiable variables. 403

Appendix E. System variables 405

Configuration utility406
Timeand date406
General . . o407

ZSCRNAME examples B S 0]
Terminal and function keys. 411
Scrolling . . . T Y
PRINTG command ey K¢
Table display service414
LIST service. . . e Y
LOG and LIST data sets e oo 414
Dialog error.414
Tutorial panels415
Selection panels . . . 415

DTL panels or panels contarnmg a)PANEL sectlon 415

Appendix F. Accessibility 417

Using assistive technologies 417
Keyboard navigation of the user 1nterface ... 417
z/0OS information417

Contents V

Notices.49 Index.423
Programming Interface Information 420
Trademarks421

vi z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Figures

N

O 0N O W

11.
12.
13.
14.
15.
16.
17.
18.

19.

20.

21.

22.
23.
24.
25.
26.

27.
28.

29.

30.
31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

Using ISPF .

Typical dialog organlzatlon startlng w1th a
menu .

Typical dialog startmg w1th a functlon
Control and data flow

Application dialog running under ISPF
Sample selection panel .

ISPF master application menu (ISP@MSTR)
Multi-logon profile sharing settings (ISPISSA)
SELECT service used to invoke and process a
dialog .

Sample background ISPF]ob

Sample dialog using system variable ZISPFRC

MVS batch job

Invoking client/server in batch mode
TBDISPL panel definition .

TBDISPL display .

Panel definition dynamic table expansmn
PL/I dialog function example program
Initial display for dynamic table expansion
example. .

Second display for dynam1c table expansmn
example. .
Third display for dynamlc table expansmn
example. . .
Fourth display for dynamlc table expans10n
example. . .

Control and data flow in a dlalog .
CLIST to create a read-only extension table
Panel definition SER

Panel display SER

Panel display SER with an ISPF—pr0V1ded
message superimposed on line 1 .
Message EMPX21 .
Panel display SER—short form of message
EMPX210 superimpose line 1 .
Panel display SER—long form of message
EMPX210 superimposed on line 3 .

Panel definition DATA .

Panel display DATA

Sample skeleton file. .

Example panel displaying three pop up
windows . .
Reference phrase help example .

Sample panel definition format

CUA panel definition .

Sample CUA panel (SAMPAN on ISPKLUP)
Example of a menu (ISP@MSTR) .

Master application menu definition .
Master application menu DTL source

ISPF primary option menu definition

ISPF primary option menu DTL source
Parts of a TBDISPL display .

Table display panel definition .

Table as displayed .

© Copyright IBM Corp. 1980, 2007

.5

. 6
.7
.9
10

.19

19
20

.23

. 26
27

. 37
.41
. 44
. 45

52
53

. 58

. 59

. 60

. 61
. 63

68

.77
.77

.78
.79

. 80

. 80
. 81
. 82
. 85

.93
.97
. 107
. 110

112

. 117
. 122

123
128
129

. 134
. 143
. 143

46.

47.
48.

49.
50.

51.
52.
53.
54.
55.
56.
57.
58.

59.
60.
61.
62.
63.
64.
65.
66.

67.

68.
69.
70.

71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

85.

86.

87.

88.

89.

Table display panel definition with several
model lines .

Table as displayed w1th several model hnes
Panel definition illustrating SCROLL and
EXTEND . .
Dynamic area with Character attrlbutes
Panel for specifying preprocessed panel data
sets (ISPPREPA).

Action bar section example .

Invalid scrollable area definition .

Valid scrollable area definition . .
Scrollable area screen display (part 1 of 2)
Scrollable area screen display (part 2 of 2)
Panel definition illustrating a graphic area
Panel definition with graphic area
Definition of panel graphic area with
overlapping text field . .

Example of CKBOX keyword .

Attribute section in a panel deflnltlon
Group box definition .

Sample panel definition . .

Sample panel—when displayed

Sample point-and-shoot definition

Panel processing . .
Sample panel definition w1th TRANS and
TRUNC .
Sample panel defmltlon w1th IF and ELSE
statement . .

Standard parameter hst format

Panel REXX example . .

Sample member VALUSER to 1nvoke panel
REXX . e
TOG statement example

VEDIT example. .

Sample panel definition w1th ver1f1cat10n
Sample panel definition with control variables
Example of Z variable place-holders .

Help panel flow

Sample tutorial hierarchy .o .
Sample tutorial panel definition (panel B)
Sample tutorial panel definition (panel F2)
Sample messages .o
Example syntax for deflnlng messages
Sample skeleton file

Basic ISP00111 translate module .
ISP00222 translate module with two direct
CCSID entries

Translation to CCSID 00500 from CCSID
XXXXX .
Translation to CCSID XXXXX from CCSID
00500 . .
Internal character representatrons for APL
keyboards. .

Internal character representatlons for text
keyboards. . .

Sample Panel Trace header .

. 144

145

. 147

150

. 153
. 165
. 170
. 170

172
172
179

. 179

. 180
. 182

202

. 207
. 214
. 214
. 232
. 234

. 239

. 244
. 254
. 262

. 265
. 267
. 268

280
285

. 296
. 299
. 303

304
305

. 308

308

. 345
. 350

. 350

. 354

. 355

. 362

. 363
. 370

vii

90.
91.
92.
93.

viii

Sample DISPLAY trace373
Sample PROCESS trace374
Sample file tailoring trace header 377
Sample file tailoring process trace. 380

z/0OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

94.
95.
96.

ENVIRON Settings Panel (ISPENVA)
Error Recovery Panel (ISPPRS1)
Additional Diagnostic Information panel
(ISPPRS3) .

381
. 387

. 388

Preface

This document describes how to use the ISPF Dialog Manager elements from
programs or command procedures.

About this document

The /OS ISPF Dialog Developer’s Guide and Reference|is a guide for learning and
using the Dialog Manager component of the ISPF product. It provides:
* An introduction to ISPF basics
* Information on running ISPF sessions
* Guidelines for:
— Writing panel definitions
— Defining messages
— Defining file-tailoring skeletons
* Tables of dialog variables and system variables.

Who should use this document

This document is for programmers who develop ISPF application dialogs, and for
system analysts and system programmers.

Users should be familiar with the MVS operating system and are expected to know
at least one of the ISPF-supported programming or command procedure languages:
Assembler, PL/I, COBOL, VS FORTRAN, C, APL2%, Pascal, CLIST, and REXX.

What is in this document?

[Chapter 1, “Introduction to ISPF,”| describes what ISPF is and what it does for you.

[Chapter 2, “Controlling ISPF sessions,”| describes how to start and stop an ISPF
session and how to use many of the ISPF facilities.

[Chapter 3, “Introduction to writing dialogs,”| describes how to write dialogs using
the ISPF services for display, variable, table, file tailoring, and PDF.

(Chapter 4, “Common User Access (CUA) guidelines,”| describes how ISPF supports
the Common User Access” (CUA®) guidelines.

(Chapter 5, “Graphical User Interface (GUI) guidelines,”| provides information for
dialog developers who need to write or adapt dialogs to run in GUI mode on a
workstation.

IChapter 6, “Panel definition statement guide,”| provides guide-type information for
sections, panel definition statements, and control variables. It explains how to
create panels using the panel definition statements.

(Chapter 7, “Panel definition statement reference,”| provides reference information
on how to create ISPF panels using Dialog Tag Language (DTL) and the ISPF DTL
conversion utility, DTL and panel definition statements, or panel definition
statements.

© Copyright IBM Corp. 1980, 2007 ix

[Chapter 8, “ISPF help and tutorial panels,”| describes online help and tutorial
panels that a developer can include to provide online information for an
application user.

[Chapter 9, “Defining messages,”| describes how to create and change ISPF messages
using an existing message definition or the DTL tags MSG and MSGMBR.

(Chapter 10, “Defining file-tailoring skeletons,”| describes ISPF skeleton definitions
and how to create or change skeletons.

(Chapter 11, “Extended code page support,”| describes how extended code page
support allows panels, messages, and variable application data to be displayed
correctly on terminals using any of the supported code pages.

[Appendix A, “Character translations for APL, TEXT, and Katakana,”|contains the
character translation tables for APL, TEXT, and Katakana.

[Appendix B, “ISPTTDEF specify translate table set,”|describes a program,
ISPTTDEE, that can be used to specify the set of terminal translation tables.

[Appendix C, “Diagnostic Tools and Information,”| contains information to help you
diagnose ISPF problems.

[Appendix D, “Dialog variables,”| describes the ISPF dialog function pool variables
that are both read from and written to by ISPF library access services.

|[Appendix E, “System variables,”| describes system variables with type and pool
information.

Notation conventions

X

This document notation conventions:
* Uppercase commands and their uppercase parameters to show required entry
* Lowercase characters to show parameters that can be specified by the user

* Brackets [] to show optional parameters (required parameters do not have
brackets)
* An OR (I) symbol to show two or more parameters you must select from

* Stacked parameters to show two or more parameters you can select from

Note: You can choose one or none. If you choose none, ISPF uses the
underscored parameter.

* Braces {} with stacked parameters to show that you must select one. For
example:
{KEYWORD1(variable) [OPTPAR1(variable)]}
KEYWORD2 (variable)}

{
{KEYWORD3 (variable) [OPTPAR2(variable)]}
{KEYWORD4 (variable) [OPTPAR3(variable)]}

indicates that you must select either KEYWORD1, KEYWORD2, KEYWORD3, or
KEYWORDA.

e Underscores to show defaults

* An ellipsis (...) to show that the parameter can be repeated, specifying additional
items of the same category.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the
IBM® messages you encounter, as well as for some system abends and codes.
Using LookAt to find information is faster than a conventional search because in
most cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for
z/0S® elements and features, z/VM®, z/VSE"™, and Clusters for AIX® and Linux'":

e The Internet. You can access IBM message explanations directly from the LookAt
Web site at [www.ibm.com /servers/eserver/zseries /zos /bkserv /lookat/ |

* Your z/OS TSO/E host system. You can install code on your z/OS systems to
access IBM message explanations using LookAt from a TSO/E command line
(for example: TSO/E prompt, ISPF, or z/OS UNIX® System Services).

* Your Microsoft® Windows® workstation. You can install LookAt directly from
the z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T-4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS > command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

* Your wireless handheld device. You can use the LookAt Mobile Edition from
[www.ibm.com /servers /eserver/zseries/zos /bkserv /lookat/lookatm.html| with a
handheld device that has wireless access and an Internet browser (for example:
Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for
Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from:

* A CD in the z/OS Collection (SK3T-4269).
* The z/OS and Software Products DVD Collection (SK3T-4271).

* The LookAt Web site (click Download and then select the platform, release,
collection, and location that suit your needs). More information is available in
the LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to
gather information about their system environment and system parameters to help
identify potential configuration problems before they impact availability or cause
outages. Individual products, z/OS components, or ISV software can provide
checks that take advantage of the IBM Health Checker for z/OS framework. This
book might refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,
see [[BM Health Checker for z/OS: User’s Guide

SDSF also provides functions to simplify the management of checks. See
ISDSF Operation and Customization| for additional information.

Preface X1

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

xil z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Summary of changes

This summary lists changes and enhancements for z/OS V1R9.0 ISPF. It has two
parts:

Product function changes
Describes the functional changes to z/OS V1R9.0 ISPF, listed by each ISPF
component. This part appears in most of the ISPF documents.

Changes to this document
Lists the changes and enhancements for z/OS V1R9.0 ISPF which affect
this document, including cross-references to the new or changed sections.

Product function changes for z/OS V1R9.0 ISPF

z/0S V1R9.0 ISPF contains the following changes and enhancements:
« |ISPF product changes|

+ [ISPF Dialog Manager component changes| (including DTL changes)
« [ISPF PDF component changes|

« |ISPEF SCLM component changes|

« [ISPF Client/Server component changes|

For details of migration actions relating to ISPF and other z/OS elements, see

ISPF product changes

Support for the ISPF plug-in for Managed System Infrastructure (msys) for Setup
has been withdrawn in z/OS V1.8.

Changes to the ZENVIR variable. Characters 1 through 8 contain the product name
and sequence number, in the format ISPF x.y, where x.y indicates the version
number and release. Note that the x.y value is not the same as the operating
system version. For example, a value of "ISPF 5.9” represents ISPF for z/OS
Version 1 Release 9.0.

The ZOS390RL variable contains the level of the z/OS release running on your
system.

The ZISPFOS system variable contains the level of ISPF that is running as part of
the operating system release on your system. This might or might not match
ZOS390RL. For this release of ISPF, the variable contains ISPF for z/0S 01.09.00.

ISPF Dialog Manager component changes

The DM component of ISPF includes the following new functions and
enhancements:

* Users are able to share ISPF profiles across different systems in the same sysplex.

* File tailoring and panel REXX support is enhanced to allow REXX to change the
lengths of the values of variables passed from ISPF.

* Lowercase characters can now be specified in the Action field for Command
Table entries, allowing lowercase characters to be passed in parameters to
commands.

© Copyright IBM Corp. 1980, 2007 xiii

e The ISPSTART command supports a new NESTMACS parameter which, when
specified, causes all REXX and CLIST edit macros to run as nested commands.
* ISPF Configuration Utility changes:
— New keywords to manage Profile Sharing:
PROFILE_APPPROF_CONFLICT
PROFILE_BATCH_CONFLICT
PROFILE_EDIT_CONFLICT
PROFILE_ ENQLOCK_PROMPT
PROFILE_ENQLOCK_RETRY_COUNT
PROFILE_ENQLOCK_WAIT
PROFILE_ISPPROF_CONFLICT
PROFILE_OTHER_CONEFLICT
PROFILE_REFLIST_CONFLICT
PROFILE_SHARING
PROFILE_SYSPROF_CONEFLICT
RESET_PROFILE_SHARING_SETTINGS
— New keyword RESET_LIST_LRECL_AND_RECFM to permit the ISPF list
data set Irecl and recfm profile values to be reset.
* Dialog Tag Language (DTL) changes:
— There are no changes to Dialog Tag Language (DTL) for this release.

ISPF PDF component changes
The ISPF PDF component contains the following new functions and enhancements:

* The ISPF Primary Option Menu (ISR@PRIM) has been modified to always
include option 12 ("z/OS system programmer applications”) and option 13
("z/OS user applications”). Previously, by default, these two options were not
shown on the ISPF Primary Option Menu.

* The ISPF Edit, Browse, and View functions have been enhanced to support the
processing of z/OS UNIX files.
* The following enhancements have been made to the z/OS UNIX Directory List:

— The ISPF Edit and Browse functions, rather than OEDIT and OBROWSE, are
now used to edit and browse a z/0OS UNIX file.

— A View function is now available to display the data in a z/OS UNIX file.
— Eligible users can switch to super-user (UID 0) mode.

* The ISPF Editor is enhanced to support the display and modification of ASCII
data.

* The Edit UNDO command is enhanced to allow the reversal of changes made
before a previous SAVE command.

* System symbols can be specified within data set names entered on ISPF panels.

* The ISPF data set list (DSLIST) utility provides a new option to display the total
tracks used by all the data sets in the list.

* The "IGWFAMS failed” message displayed in the ISPF data set list (DSLIST)
utility is changed to "Error msg logged” and the FAMS RC and RSN code
values, and any FAMS formatted messages, are written to the ISPF log.

* The ISPF Table Utility now provides users with the option of processing a
temporary copy of a table when the specified table is currently in use.

* The ISRDDN utility is enhanced to allow a user to display a disassembly of a
load module while browsing the load module in storage.

* The VIIF service is enhanced to support a dialog-supplied write routine which
allows the dialog to handle the write processing for CREATE and REPLACE
primary commands.

Xiv z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

ISPF SCLM component changes

The ISPF SCLM component contains the following new functions and
enhancements:

¢ The new NOPROM function allows you to leave behind (not promote) a
specified member, such as a copybook, during an SCLM promote function. For
example, you can use the NOPROM function when you need to promote a fix to
a DB2 program but you do not want to promote the DCLGEN for a DB2 table
that has been changed in the development system but not in the test system.
You can use the NOPROM function to specify that the DCLGEN for the table in
the DEV group is left behind and that, when the program is promoted from
DEV to TEST, it is rebuilt with the DCLGEN in the TEST group.

* From z/0OS 1.8 onward, it is no longer necessary to reassemble project
definitions if there is a change to the SCLM macros.

¢ The SCLM sample project has been enhanced to include sample COBOL
programs as well as PL/I and Assembler programs. Also, the latest Enterprise
translators are used and a Fault Analyzer sample is provided.

* A new API is provided that allows access to the build and promote functions to
be managed as SAF resources. In addition, the API allows for authorized build
and promote functions to be run under a surrogate TSO userid. The new API
can be called from BUILD and COPY translators.

* The GETBLDMP service in enhanced to provide a new ISPF variable that
identifies the group where the build map was found.

e The new CCEXITS service allows users to invoke the CCVFY and VERCC exits
without invoking Edit.

ISPF Client/Server component changes

There are no new functions or enhancements for the Client/Server component of
ISPE.

Migration considerations

Customers with a modified version of ISRPXASM (Edit HILITE keyword table)
migrating from z/OS 1.6 or earlier, must check the IBM-supplied sample for
changes. Two new address constants have been added.

Changes to this document for z/OS V1R9.0 ISPF

Note
This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical
line to the left of the change.

Increase to panel statement limit
For changes to this document relating to the increase to the panel
statement limit, see:
* [“Syntax rules and restrictions for panel definition” on page 113|
* |"Defining the area section” on page 166
* |“The *REXX statement” on page 25§

Shared profiles
For changes to this document relating to shared profiles, see:
* "SHRPROF" on pagem
« |“Controlling ISPF sessions” on page 20|

Summary of changes XV

xvi

Nested REXX/CLIST edit macro support
For changes to this document relating to nested REXX/CLIST edit macro
support, see:
+ "NESTMACS" on page[17

System symbolics in data set names
For changes to this document relating to system symbolics in data set
names, see:

* [“The TRUNC built-in function” on page 236|

* [“The VSYM built-in function” on page 242

* [“The IF statement” on page 246

» |“IF statement with VSYM built-in function” on page 249|

* [“The VER statement” on page 268

* ["The VSYM statement” on page 283

+ "&VSYMY()" on page [343|

Variable REXX variables
For changes to this document relating to variable REXX variables, see:

* |“Parameters passed from ISPF to the panel user exit routine” on page|
25

+ [“ISPREXPX syntax” on page 256|

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

What’s in the z/0S V1R9.0 ISPF library?

You can order the ISPF books using the numbers provided below.

Title Order Number
k/OS ISPF Dialog Developer’s Guide and Referencd SC34-4821-06
k/OS ISPF Dialog Tug Language Guide and Referencd SC34-4824-06
k/OS ISPF Edit and Edit Macros| SC34-4820-06
k/OS ISPF Messages and Codes| SC34-4815-06
k/OS ISPF Planning and Customizing] GC34-4814-06
k/OS ISPF Reference Summary) SC34-4816-06
kz/OS ISPF Software Confiquration and Library Manager Guide and Referencd — SC34-4817-07
k/OS ISPF Services Guidd SC34-4819-06
k/OS ISPF User's Guide Vol]| SC34-4822-06
k/OS ISPF User’s Guide Vol Il SC34-4823-06

© Copyright IBM Corp. 1980, 2007 xvii

xviil z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 1. Introduction to ISPF

This topic describes ISPF at an introductory level. It explains what ISPF is and
what it does for you.

What is ISPF?

Consider the Interactive System Productivity Facility (ISPF) program product an
extension of the MVS Time Sharing Option (TSO) host system on which it runs.
ISPF services complement those of the host system to provide interactive
processing. ISPF is similar to a control program or access method in that it
provides services to dialogs (applications) during their execution. The types of
services provided by ISPF are:
* Display services
* File-tailoring services
* Variable services
* Table services
* Miscellaneous services
* Dialog test facility, including:

— Setting breakpoints

— Tracing usage of dialog services and dialog variables

— Browsing trace output in the ISPF log data set

— Examining and updating ISPF tables

— Interactively invoking most dialog services.

A dialog receives requests and data from a user at a terminal. The dialog responds
by using ISPF services to obtain information from, or enter information into, a
computer system.

What is a dialog?

To understand the dialog interface, you must first understand what a dialog is. A
dialog is the interaction between a person and a computer. It helps a person who is
using an interactive display terminal to exchange information with a computer.

The user starts an interactive application through an interface that the system
provides. The dialog with the user begins with the computer displaying a panel
and asking for user interaction. It ends when the task for which the interactions
were initiated is completed.

A dialog developer creates the parts of a dialog, called dialog elements. Each
dialog application is made up of a command procedure or program, together with
dialog elements that allow an orderly interaction between the computer and the
application user.

The elements that make up a dialog application are:
 Functions

* Variables

¢ Command tables

* Panel definitions

* Message definitions

* File-tailoring skeletons

* Tables

© Copyright IBM Corp. 1980, 2007 1

2

A dialog does not necessarily include all types of elements. For example, certain
kinds of applications do not use tables and skeletons.

Functions

A function is a command procedure or a program that performs processing
requested by the user. It can invoke ISPF dialog services to display panels and
messages, build and maintain tables, generate output data sets, and control
operational modes.

A function can be coded in a command procedure language using CLIST or REXX
or in a programming language, such as PL/I, COBOL, FORTRAN, APL2, Pascal, or
C.

You can use more than one language in a dialog application. For example, within a
single application containing three functions, each function could be written using
a different language, such as PL/I, COBOL, or FORTRAN. One or more of the
functions can be written using a command procedure language instead of a
programming language.

Notes:
1. ISPF functions written in PL/I should not be linked with the PL/I multitasking
libraries.

2. ISPF functions written in FORTRAN should be linked in FORTRAN link mode.
That is, include the VLNKMLIB library ahead of the VFORTLIB library in the
SYSLIB concatenation. See the VS FORTRAN Programming Guide for additional
information.

3. ISPF functions written in the C language should be linked with the C$START
load module. For more information, see the C Compiler User’s Guide.

4. A function coded in a programming language can be designed for cross-system
use, to be processed by equivalent levels of ISPF running under VM and z/OS.
Such a function would need to use equivalent ISPF services available on both
VM and z/0S.

Variables

ISPF services use variables to communicate information among the various
elements of a dialog application. ISPF provides a group of services for variable
management. Variables can vary in length from zero to 32K bytes and are stored in
variable pools according to how they are to be used. A set of variables whose
names begin with the character Z are system variables. Z variables are reserved for
ISPF system-related uses.

Command tables

A system command table (ISPCMDS) is distributed with ISPF in the table input
library. An application can provide an application command table by including a
table named xxxxCMDS in its table input library, where xxxx is a 1- to 4-character
application ID. In addition, you can specify up to three User command tables and
up to three Site command tables. The application IDs for the User and Site
command tables are specified in the ISPF Configuration table. You can also specify
if the Site command tables are to be searched before or after the system command
table.

You can define an application command table either by using the Dialog Tag
Language (DTL) and ISPF conversion utility, or by using ISPF option 3.9.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

When a user enters a command, the dialog manager searches the application
command table, if any, and then the system command table. If it finds the
command, action is taken immediately. If it does not find the command in the
application or system tables, the command is passed to the dialog, unaltered, in
the command field. The dialog then takes appropriate action.

Note: You can use the TSO ISPCMDTB command to convert existing command
tables to DTL. To use ISPCMDTB, ensure the command table is in your table
concatenation (ISPTLIB), then type TSO ISPCMDTB applid (where applid is the
application id of the command table). This will begin an edit session
containing the DTL version of the command table. Use the editor CREATE
or REPLACE command to save the table to your DTL source data set.

Panel definitions

A panel definition is a programmed description of the panel. It defines both the
content and format of a panel.

Most panels prompt the user for input. The user’s response can identify which
path is to be taken through the dialog, as on a selection panel. The response can be
interpreted as data, as on a data-entry panel.

Panels can invoke REXX statements, enabling the dialog developer to use the
powers of the REXX language to perform operations such as arithmetic, formatting
of dialog variables, and verification, transformation, and translation of data.

Message definitions

Message definitions specify the format and text of messages to users. A message
can confirm that a user-requested action is in progress or completed, or it can
report an error in the user’s input. Messages can be superimposed on the display
to which they apply, directed to a hardcopy log, or both.

File-tailoring skeletons

A file-tailoring skeleton, or simply a skeleton, is a generalized representation of
sequential data. It can be customized during dialog execution to produce an output
data set. After a skeleton is processed, the output data set can be used to drive
other processes. File skeletons are frequently used to produce job data sets for
batch execution.

Tables

Tables are two-dimensional arrays that contain data and are created by dialog
processing. They can be created as a temporary data repository, or they can be
retained across sessions. A retained table can also be shared among several
applications. The type and amount of data stored in a table depends on the nature
of the application.

Tables are generated and updated during dialog execution. The organization of
each table is specified to ISPF using ISPF table services.

Chapter 1. Introduction to ISPF 3

What does a dialog do?

You can use ISPF to simplify the programming that provides interactive
application operations. Operations performed during dialog execution include:

¢ Identifying to the user choices of available processing routines

* Invoking a requested routine, based on the user’s choice

e Prompting the user to enter data

* Reading the data into a work area

* Checking the data to verify that it is appropriate for the application

If the data is not appropriate for the application:
— Identifying the error to the user
— Prompting the user to enter new data and verifying that data

If the entered data is in the proper form:

- Displaying any information requested by the user

— Processing or storing the user’s data, then advising the user of its disposition
* Creating sequential output data sets or reports

* Providing online messages, help, and tutorial displays to help users understand
application processing.

Developing a dialog

4

A developer, using an editor such as the PDF editor in Option 2 of ISPF, develops
a dialog by creating its various elements at a terminal and storing them in
libraries. You can use any available editor when creating dialog elements.

However, in addition to an editor, ISPF provides special facilities to aid dialog
development. Examples of these facilities are:

* A VIEW facility for displaying source data or output listings

» Utilities to simplify data handling

* Programming-language processing facilities

 Edit models for messages, file-tailoring skeletons, panels, and DTL source
 Library access services for accessing both ISPF libraries and other data sets.

[Figure 1 on page 5 shows a developer using ISPF to create and test dialog
elements. As shown in the figure, panel definitions, message definitions, and
file-tailoring skeletons are created before running the dialog. These dialog elements
are saved in libraries. The developer stores the program (after compilation) or
command procedure in an appropriate system program library. During dialog
testing, tables of data, log entries, and file-tailoring output data sets can be created
by dialog processing. ISPF creates the log data set the first time the user performs
some action that results in a log message, such as saving edited data or submitting
a job to the batch machine. ISPF creates the list data set the first time a user
requests a print function or runs a dialog that issues a LIST service request.

When the developer completes the functions, panel definitions, and any other
dialog elements required by the application being developed, the dialog is ready to
be processed under ISPF.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Dialog
Developer

Figure 1. Using ISPF

MVS

ISPF

PDF

ISPF Libraries

Table
library

* Log and

List library

~

Message
library

File-Tailoring
Skeleton
library

File-Tailoring
Output
library

Operating system
Program or
Command Procedure
Data sets

* As well as being an output data set, the log data set can be browsed
and is an input data set when Dialog Test option 7.5 is in effect.

How dialog elements interact

A dialog can be organized in a variety of ways to suit the requirements of the
application and the needs of the application user.

A typical dialog organization, shown in [Figure 2 on page 6} starts with display of
the highest menu, called the primary option menu. User options selected from the

primary option menu can result in the call of a function or the display of a
lower-level menu. Each lower-level menu can also cause functions to receive

control or still other menus to be displayed.

Eventually, a function receives control. The function can use any of the dialog
services provided by ISPE. Typically, the function can continue the interaction with
the user by means of the DISPLAY service. The function might also display

data-entry panels to prompt the user for information. When the function ends, the

menu from which it was invoked is redisplayed.

Chapter 1. Introduction to ISPF

5

6

START

-

A 4

Primary
Option Menu

! !

Dialog Lower-Level Lower-Level
Function Menu Menu

vy

Dialog
Function

Data Entry
Panels

Figure 2. Typical dialog organization starting with a menu

[Figure 3 on page 7 shows another type of dialog organization in which a dialog
function receives control first, before the display of a menu. The function performs
application-dependent initialization and displays data-entry panels to prompt the
user for basic information. It then starts the selection process by using the SELECT
service to display the primary option menu for the application.

Figure 3|also shows how a dialog function can invoke another function without
displaying a menu. It uses the SELECT service to do this, which provides a
convenient way to pass control from a program-coded function to a
command-coded function, or vice versa. The invoked function then starts a
lower-level menu process, again by using the SELECT service.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

START

A

Dialog
Function Data Entry
Panels

N I }

Dialog
Menu Menu Function

Dialog
Function

| Dialog
"I Function Menu

v ov oy

Figure 3. Typical dialog starting with a function

To relate your application design to CUA design models and principles, refer to the
IBM Common User Access Guidelines. It is recommended that you use DTL to design
CUA-based panels. See the [z/OS ISPF Dialog Tag Language Guide and Reference for
more information.

Dialog variables

ISPF uses dialog variables to communicate data between the dialog management
services and the dialog elements. A dialog variable’s value is a character string that
can vary in length from 0 to 32K bytes. Some services restrict the length of dialog
variable data.

Dialog variables are referred to symbolically. The name is composed of 1 to 8
characters (6 for FORTRAN). Alphanumeric characters A-Z, 0-9, #, §, or @ can be
used in the name, but the first character cannot be numeric. APL variable names
cannot contain #, $, or @.

Dialog variables can be used with panels, messages, and skeleton definitions, as
well as within dialog functions. For example, a dialog variable name can be
defined in a panel definition, and then referred to in a function of the same dialog.
Or, the variable can be defined in a function, then used in a panel definition to
initialize information on a display panel, then later used to store data entered by
the user on the display panel.

Chapter 1. Introduction to ISPF 7

For functions coded in a programming language other than APL2, the internal
program variables that are to be used as dialog variables can be identified to ISPF
and accessed using the ISPF variable services. The use of STEM or COMPOUND
variables within a REXX procedure is not supported by ISPF. For a function coded
as CLIST or REXX command procedures or as an APL2 procedure, variables used
in the procedure are automatically treated as dialog variables. In this case, no
special action is required to define them to ISPFE.

8 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 2. Controlling ISPF sessions

This topic is intended to help you understand how to control ISPF sessions. It
describes how to start and stop an ISPF session and how to use many of the ISPF
facilities.

Dialog control and data flow

illustrates dialog control and data flow. At the start of an ISPF session,
you can use the ISPSTART command either to request a selection panel from
which to choose the first task or to call a dialog function. The figure also illustrates
how the ISPF services interact with the various dialog elements.

ISPSTART
command

v
ISPF
initialization

Dialog Manager

N
N

Panel

DISPLAY (brany

services TN
SELECT N

services < Message
library

4

h 4

N
N

. < Skeleton
File library

v Tailoring

. i SN

Dialog | 1 services D
function < Output

data sets

4

Y

Variable |, mle/

services pool

------------ » Control flow

— Data flow P
Table o

services Data
tables

Figure 4. Control and data flow

© Copyright IBM Corp. 1980, 2007 9

Processing a dialog
shows a dialog being processed under ISPFE. The figure shows that ISPF

dialog services are available only to command procedures or programs running
under ISPE. During dialog processing, the dialog requests specific ISPF services
and identifies the panel and message definitions, skeletons, and tables to use. The
figure also shows that entries in the log and list data sets, as well as the
file-tailoring output data sets, can be generated during dialog processing.

MVS
ISPF Libraries
A
v
Panel Message
ISPF library library
~_
/\
v
Application L . o
Uztra)r Application Table File-Tailoring
Dialog library Skeleton
library
N
m
N
Log and File-Tailoring
List library Output

__ library

Operating system
Program or
Command Procedure
Data sets

Figure 5. Application dialog running under ISPF

Dialog processing begins either with the display of a selection panel or with a

function. In either case, you can invoke a dialog from a terminal running under
control of TSO.

Starting a dialog

You can use the ISPF, PDF, or ISPSTART command, with the CMD, PGM, or
PANEL keyword, to start ISPF or other dialogs. ISPF is a command procedure that
runs under TSO. For example, it can be run from a terminal running under TSO,
or from a CLIST or REXX command procedure.

Before a dialog starts, data sets referred to by that dialog must be defined to ISPE.

Syntax for issuing the ISPSTART command

You invoke ISPF by using the ISPSTART command. ISPSTART command
parameters specify the first menu to be displayed or the first function to receive
control before the display of a menu.

10 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

If no parameters are specified, the ISPSTART command displays the default
primary panel specified in the DEFAULT_PRIMARY_PANEL keyword in the ISPF
configuration table. This keyword is typically set to ISP@MSTR.

The PDF and ISPF commands are aliases for ISPSTART that can be used to start
ISPE. If you enter ISPF or PDF with no parameters, the command ISPSTART
PANEL(panel) NEWAPPL(ISR) is run, where panel is determined by these rules:

* If the default primary panel is ISP@MSTR or is not set, panel=ISR@PRIM

e If the default primary panel is set to any other panel,
panel=DEFAULT_PRIMARY_PANEL

Parameters

All the parameters described here apply to the PDF and ISPF commands as well as
ISPSTART. For more information about the GUI parameters, see
[“Graphical User Interface (GUI) guidelines,” on page 99.|For more information
about running in GUI mode, refer to the topic on the ISPF user interface in the
£/OS ISPF User’s Guide Vol 1}

ISPSTART
{PANEL (panel-name) [OPT(option)] [ADDPOP]}
{CMD (command parml parm2) [LANG(APL|CREX)]}
{PGM(program-name) [PARM(parameters)]}
{WSCMD (workstation-command)
[MODAL | MODELESS]
[WSDIR(dir)]
[MAX‘MIN]
[VIS|INVIS]}
{WSCMDV (var_name)
[MODAL | MODELESS]
[WSDIR(dir)]
[MAX |MIN]
[VIS|INVIS]}
[GUI(LU:address:tpname | IP:address:port |,FI:) |,NOGUIDSP)] [TITLE(title)]
[GUISCRW(screen-width)]
[GUISCRD(screen-depth)]
[FRAME (STD | FIX|DLG)]
[CODEPAGE (codepage)] [CHARSET(character set)]
[BKGRND (STD|DLG)]
[NEWAPPL[(application-id)]]
[SHRPROF | EXCLPROF]
[SCRNAME (screen-name)]
[TEST|TESTX| TRACE | TRACEX]
[NOLOGO| LOGO (Logo-panel-name)]
[BATSCRW (screen-width)]
[BATSCRD (screen-depth)]
[BDISPMAX (max-number-of-displays)]
[BREDIMAX (max-number-of-redisplays)]
[BDBCS]
[DANISH|ENGLISH|GERMAN | JAPANESE | PORTUGUE | SPANISH | KOREAN |
FRENCH| ITALIAN|CHINESET | CHINESES | SGERMAN | UPPERENG]
[NESTMACS]

where:

panel-name
Specifies the name of the first menu (that is, the primary option menu) to be
displayed.

option
Specifies an initial option, which should be a valid option on the first menu.

Chapter 2. Controlling ISPF sessions 11

This causes direct entry to that option without displaying the primary option
menu. (The primary option menu is processed in nondisplay mode, as though
the user had entered the option.) If you specify an option that is not valid, the
primary option menu displays an appropriate error message.

ADDPOP
Specifies that the panel displayed from a SELECT service appears in a pop-up
window. An explicit REMPOP is performed when the SELECT PANEL has
ended.

command
Specifies a command procedure (CLIST or REXX), an APL2 command, or a
TSO command processor that is to be invoked as the first dialog function. For
more information about invoking APL2 dialogs, refer to the [z/OS ISPF Services|

CLIST or REXX command parameters can be included within the parentheses.
For example, the call format would be:
ISPSTART CMD(MYCLIST parml parm2 ...)

These parameters are passed to the command procedure. For information
about specifying CLIST parameters, see £/OS TSO/E CLISTY, For information
about specifying REXX parameters, see [z/0S TSO/E REXX User’s Guidel

You can type a percent sign (%) preceding the CLIST or REXX procedure name
to:

* Improve performance

* Prevent ISPF from entering line-display mode when the procedure is started.

Note: When starting a CLIST or REXX procedure or a program through the
SELECT service, a MODE(LINE | FSCR) parameter is available for
specifying either line mode or full-screen mode. If you do not specify
the mode parameter or do not use the % prefix, ISPF enters
line-display mode.

* Ensure that the command procedure is invoked if ISPF has access to a
program function that has the same name as the procedure. If you use the
percent sign prefix, ISPF searches only for a procedure with the specified
name. However, without the percent sign prefix, ISPF searches first for a
program, then for a CLIST or REXX procedure.

On extended data stream terminals, using the percent sign causes the keyboard
to remain in a locked condition. To avoid this condition, the CLIST or REXX
procedure can issue output line I/O before issuing a READ.

LANG(APL | CREX)
Specifies special language invocations. LANG(APL) specifies to start the
command specified by the CMD keyword, and to start an APL2 environment.
LANG(CREX) specifies that the command specified by the CMD keyword is a
REXX exec that has been compiled and link-edited into a LOAD module and
that a CLIST/REXX function pool is to be used. LANG(CREX) is optional if the
compiled REXX has been link-edited to include any of the stubs EAGSTCE,
EAGSTCPP, or EAGSTMP.

program-name
Specifies the name of a program that is to be invoked as the first dialog
function. In PL/I, it must be a MAIN procedure. This parameter must specify
the name of a load module that is accessible by use of the LINK macro.

12 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

However, if the program dialog consists of multiple tasks and if any of the
subtasks use ISPF services, the CMD keyword, not the PGM keyword, must be
used. Dialog developers should avoid using prefixes ISP and ISR, the ISPF
component codes, in naming dialog functions. Special linkage conventions,
intended only for internal ISPF use, are used to invoke programs named
ISPxxxxx and ISRxxxxx.

parameters
Specifies input parameters to be passed to the program. The program should
not attempt to modify these parameters.

The parameters within the parentheses are passed as a single character string,
preceded by a half-word containing the length of the character string, in
binary. (The length value does not include itself.) This convention is the same
as that for passing parameters by use of the PARM= keyword on a JCL EXEC
statement.

Parameters on the ISPSTART command to be passed to a PL/I program are
coded in the standard way:

XXX: PROC (PARM) OPTIONS(MAIN);
DCL PARM CHAR (nnn) VAR;

If the value of the PARM field is to be used as an ISPF dialog variable, it must
be assigned to a fixed character string because the VDEFINE service cannot
handle varying length PL/I strings. In PL/I the first character of the PARM
field must be a slash (/), as PL/I assumes that any value before the slash is a
runtime option.

workstation-command
Specifies a fully qualified workstation program including any parameters. To
issue a command that is not a program (.exe, .com, .bat) DOS allows it to be
prefaced with COMMAND. For example:

SELECT WSCMD(COMMAND /C DIR C:)

MODAL
The MODAL parameter invokes the workstation command modally. It waits
until the workstation command has completed and then returns to ISPF.

MODELESS
The MODELESS parameter invokes the command modelessly. It is only valid
when running in GUI mode. It is the default. It does not wait until the
workstation command has completed. It always returns a return code of zero if
the command was started, even if the command does not exist at the
workstation.

WSDIR(dir)
The WSDIR parameter specifies the variable name containing the workstation
current working directory. This directory is the directory from which the
workstation command should be invoked.

MAX
The MAX parameter attempts to start the workstation command in a
maximized window. The workstation command may override this request.
MAX and MIN are mutually exclusive.

MIN
The MIN parameter attempts to start the workstation command in a
minimized window. The workstation command may override this request.
MAX and MIN are mutually exclusive.

Chapter 2. Controlling ISPF sessions 13

VIS
The VIS parameter attempts to start the workstation command as a visible
window. The workstation command may override this request. This is the
default. VIS and INVIS are mutually exclusive.

INVIS
The INVIS parameter attempts to start the workstation command in an
invisible (hidden) window. The workstation command may override this
request. VIS and INVIS are mutually exclusive.

var_name
Specifies a variable name that contains the text string of a command and its
parameters. Use this when the command path or parameters, or both, contain
embedded blanks, quotation marks, or special characters that might not parse
properly with the WSCMD service.

LU:address:tpname
Specifies the workstation’s Advanced Program-to-Program Communication
(APPC) network name.

Note: The variable ZGUI will be set to the workstation address (in character
format) if ISPSTART is issued with the GUI parameter; ZGUI will be set
to blank if ISPSTART is issued without the GUI parameter.

IP:address:port
Specifies the workstation’s TCP/IP hardware-level IP address: a fully qualified
machine name.

Notes:

1. The variable ZGUI will be set to the workstation address (in character
format) if ISPSTART is issued with the GUI parameter; ZGUI will be set to
blank if ISPSTART is issued without the GUI parameter.

2. If address is set to an asterisk (*) the value of the system variable ZIPADDR
is used. ZIPADDR contains the TCP/IP address of the currently connected
TN3270 workstation.

FI: Specifies that you want to search a file allocated to DD ISPDTPREF for the
user’s network protocol and workstation address to be used when initiating a
workstation connection or GUI display. For more information, refer to the
information about workstation connections in the Settings topic of the
[[SPF User’s Guide Vol 11|

NOGUIDSP
Specifies that you want to make a connection to the workstation, but DO NOT
want ISPF to display in GUI mode.

Note: This parameter is only valid if you have specified an LU, IP, or FI
parameter. In other words, you can have any of these situations:
* you specify LU:address:tpname, IP:address:port, or FI: without the
NOGUIDSP parameter
* or you specify LU:address:tpname, NOGUIDSP
* or you specify IP:address:port, NOGUIDSP
* or you specify FI;, NOGUIDSP

TITLE(title)
Specifies the text displayed in the title bar unless a dialog has assigned a
nonblank value to ZWINTTL or ZAPPTTL. The default value for the title bar is

14 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

the user ID. This value has a maximum length of 255 characters and will be
truncated without notice to the user at display time if it does not fit on the
panel.

GUISCRW (screen-width)
Allows you to specify a screen width different than that of the emulator or real
device from which you enter the ISPSTART command. If you do not specify
GUISCRD, the depth will be that of the emulator or real device.

If GUISCRW is different than the emulator or real device, and GUI
initialization fails, ISPF will not initialize. Dialogs started with dimensions
other than those of the emulator or real device that use the GRINIT service
will not display GDDM® screens.

Note: This parameter is usually only used with the GUI parameter. If you do
specify a value for this parameter without using the GUI parameter,
ISPF ignores it. If you specify a value that is not valid for this
parameter, ISPF might return an error condition.

GUISCRD(screen-depth)
Allows you to specify a screen depth different than that of the emulator or real
device from which you enter the ISPSTART command. If you do not specify
GUISCRW, the width will be that of the emulator or real device.

If GUISCRD is different than the emulator or real device and GUI initialization
fails, ISPF will not initialize. Dialogs started with dimensions other than those
of the emulator or real device that use the GRINIT service will not display
GDDM screens.

Note: This parameter is usually only used with the GUI parameter. If you do
specify a value for this parameter without using the GUI parameter,
ISPF ignores it. If you specify a value that is not valid for this
parameter, ISPF might return an error condition.

CODEPAGE(codepage) CHARSET (character_set)

When running in GUI mode or connecting to the workstation, these values are
used as the host code page and character set in translating data from the host
to the workstation, regardless of the values returned from the terminal query
response.

When running in 3270 mode, if your terminal or emulator does not support
code pages, these values are used as the host code page and character set.
Otherwise, these values are ignored.

FRAME(STD I FIX | DLG)
Specifies that the first window frame displayed will be a standard (STD), fixed
(FIX), or dialog (DLG) window frame, where:

Standard A GUI window frame that can be resized and has max/min
buttons. This is the default value.

Fixed A GUI window frame that has max/min buttons but cannot be
resized.
Dialog A GUI window frame that cannot be resized and does not have

max/min buttons.

Notes:
1. Pop-up panels are displayed in dialog frames by default.

Chapter 2. Controlling ISPF sessions 15

16

2. This parameter is usually only used with the GUI parameter. If you do
specify a value for this parameter without using the GUI parameter, ISPF
ignores it. If you specify a value that is not valid for this parameter, ISPF
might return an error condition.

BKGRND(STD I DLG)
Specifies that the first window frame displayed will be a standard (STD) or

dialog (DLG) background color. These colors are defined by the workstation.
The default is DLG.

Note: This parameter is usually only used with the GUI parameter. If you do
specify a value for this parameter without using the GUI parameter,
ISPF ignores it. If you specify a value that is not valid for this
parameter, ISPF might return an error condition.

NEWAPPL(application-id)
Specifies a 1- to 4-character code that identifies the application that is being
invoked. The code is to be prefixed to the user and edit profile names or to the
command table associated with the application, as follows:

User Profile - xxxxPROF
Edit Profile - xxxxEDIT
Command Table - xxxxCMDS

where xxxx is the application-id. If the application-id is omitted, or if the
NEWAPPL keyword is omitted, the application-id defaults to ISP.

SHRPROF
Specifies that ISPF is to enable the multi-logon profile sharing support. The
parameter is optional.

EXCLPROF
Specifies that ISPF is to disable the multi-logon profile sharing support. The
parameter is optional

SCRNAME(screen-name)
Specifies a screen name to be used with the SWAP command and the ISPF task
list. The name can be from 2 to 8 characters in length, must satisfy the rules for
a member name, but cannot be LIST, PREV, or NEXT.

TEST
Specifies that ISPF is to be operated in TEST mode, described under |“ISPF tesfj
land trace modes” on page 27|

TESTX
Specifies that ISPF is to be operated in extended TEST mode, described under
[“ISPF test and trace modes” on page 27

TRACE
Specifies that ISPF is to be operated in TRACE mode, described under|“ISPF
ltrace modes” on page 28 |

TRACEX
Specifies that ISPF is to be operated in extended TRACE mode, described
under [“ISPF trace modes” on page 28

LOGO(logo-panel-name)
Specifies that ISPF displays the named panel before invoking the specified
dialog object. Subsequent SELECT service requests that identify a LOGO panel
will not result in the indicated panel being displayed. This includes a repeat of
the first SELECT as a result of a split-screen request or a logical screen restart
following a severe dialog error.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Applications can choose to display their own LOGO panel directly. These
applications can determine whether the user specified the NOLOGO keyword
on ISPSTART by retrieving the ISPF system variable ZLOGO. Applications that
choose to display their own LOGO panel are responsible for controlling that
display operation during split-screen operations and logical-screen restart
situations.

NOLOGO
Specifies that ISPF is to bypass the display of the message pop-up window
containing the product title and copyright statement.

screen-width
For batch mode, specifies screen width in character positions. The default value
is 80. This parameter is ignored when not running in batch mode.

All screen sizes from 24 x 80 to 62 x 160 are valid.

screen-depth
For batch mode, specifies screen depth in lines. The default value is 32. This
parameter is ignored when not running in batch mode.

max-number-of-displays
For batch mode, specifies the maximum number of displays that can occur
during a session. This number includes the total of all SELECT PANEL calls,
plus all DISPLAY and TBDISPL calls (with or without panel name). This
number does not include redisplays related to the .MSG control variable. The
largest number that can be specified is 999999999. The batch default value is
100. This parameter is ignored when not running in batch mode.

max-number-of-redisplays
For batch mode, specifies the maximum number of redisplays allowed for a
.MSG-redisplay loop. The largest number that can be specified is 255. The
batch default value is 2. This parameter is ignored when not running in batch
mode.

BDBCS
For batch mode, specifies that Double-Byte Character Set (DBCS) terminal
support is required. This parameter is ignored when not running in batch
mode.

DANISH, ENGLISH, GERMAN, JAPANESE, PORTUGUE, SPANISH, KOREAN,

FRENCH, ITALIAN, CHINESET, CHINESES, SGERMAN, UPPERENG
Specifies the national language that is to override the default language for this
session. The JAPANESE keyword specifies that the KANJI character set is to be
used. The CHINESET keyword stands for Traditional Chinese, CHINESES
stands for Simplified Chinese, and SGERMAN stands for Swiss-German. The
UPPERENG keyword specifies that the uppercase English character set is to be
used. For information about establishing the default session language, refer to
2/0OS ISPF Planning and Customizingl

Notes:

1. Attempting to run a dialog under a session language other than that for
which it was intended may produce unexpected results.

2. When the Korean, French, Italian, Traditional Chinese, Simplified Chinese,
Spanish, Brazilian-Portuguese, or Danish session language is specified, its
respective literal module is used. However, the ISPF product panels and
messages are displayed in English.

NESTMACS
Specifies that all REXX and CLIST edit macros invoked during the ISPF session

Chapter 2. Controlling ISPF sessions 17

18

are to run as nested commands, allowing output from these macros to be
trapped using either the REXX OUTTRAP function or the CLIST
&SYSOUTTRAP control variable.

Using the ISPSTART command

ISPSTART command parameters specify the first menu to be displayed or the first
function to receive control. For example, this command invokes ISPF and specifies
that dialog processing is to begin by displaying a selection panel named ABC,
which must be stored in the panel library:

ISPSTART PANEL (ABC)

The next example invokes ISPF and specifies that dialog processing is to begin
with a CLIST command procedure function named DEF:

ISPSTART CMD(%DEF)

The final example invokes ISPF and specifies that dialog processing is to begin
with a program function named GHI:

ISPSTART PGM(GHI)

Note: If you specify the CMD (command) or PANEL (panel) keyword more than
once on an ISPSTART command line, ISPF uses the last value specified. For
example:

ISPSTART PANEL (PANELA) PANEL (PANELX)

ISPF interprets this command as:
ISPSTART PANEL (PANELX)

The ISPSTART command is typically entered during logon or from a command
procedure. For example, suppose you begin an application from a terminal by
invoking a command procedure named ABC. Procedure ABC allocates the libraries
for the application, and then issues an ISPSTART command to begin ISPF
processing. The ABC procedure cannot use ISPF dialog services, because it does
not run under ISPE.

ISPF is a command processor that can be attached by another command processor
as a subtask. You should always specify SZERO=NO in the MVS ATTACH macro,
as ISPF does when it attaches a subtask, to ensure that at ISPF termination the
storage that was acquired by ISPF will be released. For more information on the
ATTACH macro, refer to [z/OS MVS Programming: Assembler Services Reference]
ABE—HSPI For more information on using MVS macros, refer to Ig/OS MVS|
Programming: Assembler Services Guidd,

Invoking a dialog from a selection panel

[Figure 6 on page 19 shows a selection panel on which the user has selected option
3. When the user presses Enter, option 3, the INVENTORY application, is given
control.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

4 N
——————————————————————————————— BUILDING 661 -=======-=mmmmmmmmmmmmmm oo
SELECT OPTION ===> 3_
1 PAYROLL - Add, update, or delete employee records
2 MAILING - Add, delete, or change address of employee

3 INVENTORY - Status of stock
4 SCHEDULE - Building maintenance

ENTER END COMMAND TO TERMINATE.

N J
Figure 6. Sample selection panel

Invoking a dialog from a master application menu

If your installation provides an ISPF master application menu, you can invoke a
dialog from that menu. A master application menu is one from which any of the
installation’s applications can be invoked. It generally is displayed at the beginning
of each ISPF session. is an illustration of the sample master application
menu that is included with ISPFE.

4 . N
ISPF Master Application Menu
1 Sample 1 Sample application 1 Userid . : LSACKV
2 . (Description for option 2) Time . . : 11:12
3. (Description for option 3) Terminal : 3278
4 (Description for option 4) Pf keys : 24
5. (Description for option 5) Screen . : 1
X Exit Terminate ISPF using list/log defaults Language : ENGLISH

App1 ID : ISP
Release : ISPF 5.6

Enter END command to terminate application

5694-A01 (C) COPYRIGHT IBM CORP 1982, 2003

Licensed Materials - Property of IBM
5637-A01 (C) Copyright IBM Corp. 1980, 2004.
A11 rights reserved.

US Government Users Restricted Rights -

Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Option ===>
Fl=Help F2=Split F3=Exit F9=Swap F10=Actions F12=Cancel

Figure 7. ISPF master application menu (ISP@MSTR)
You usually invoke the master menu by using the ISPSTART command with no

operands. ISPSTART can be issued automatically as part of a user’s logon
procedure or from a CLIST or REXX command procedure.

Chapter 2. Controlling ISPF sessions 19

Controlling ISPF sessions

| Controlling ISPF sessions

I This topic describes how you can control ISPF sessions with the SHRPROF system

| command.

| Using the SHRPROF system command

[The SHRPROF command allows you to modify settings for shared ISPF profiles.

You can display a panel for selecting command options by entering the
SHRPROF command with no parameters, or by selecting the Shared Profile
settings... choice from the Environ pull-down on the ISPF Settings panel. This
panel includes the current values of the SHRPROF command parameters. You can
change these values by entering new values directly on the panel.

Log/List Function keys Colors

T
e ISPISSA
e Command ===>

Multi-Logon Profile

Environ
ISPF Settings

Workstation Identifier Help

Sharing Settings

e
e Profile Enqueue settings

Enter "/" to select option

/ Prompt for Profile ENQ Lockout

Profile conflicts
System Profile conflicts

ENQ Lock Wait 1000
ENQ Lock Retry Count . . 1

Reference List conflicts

“® ®®®®®®®®M®M®Dm®CM®M®D®M®TM®D®M®D®M®®D®®TDDCMD®®DMD D D —

F10=Actions
-

e

e

e

e

e

e 1 1. Keep 1 1. Keep

e 2. Discard 2. Discard

e 3. Prompt 3. Prompt

e

e ISPF Profile conflicts Edit Profile conflicts

e 1 1. Keep 1 1. Keep

e 2. Discard ~ 2. Discard

e 3. Prompt 3. Prompt

e

e Application Profile conflicts Batch Profile conflicts

e 1 1. Keep 1 1. Keep

e 2. Discard " 2. Discard

e 3. Prompt

e

e Other Profile conflicts

e 1 1. Keep

e 2. Discard

e 3. Prompt

e Fl=Help F2=Split F3=Exit F7=Backward F8=Forward

tle F9=Swap F12=Cancel

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F12=Cancel

Figure 8. Multi-logon profile sharing settings (ISPISSA)

You can issue the SHRPROF command at any time during an ISPF session.

| SHRPROF command syntax and parameter descriptions
[The general syntax for the SHRPROF command is:

20 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

SHRPROF [RESET]
[WAIT [n]]
[RETRY [n]]
[PROMPT | NOPROMPT]
[CONFLICT
SYSTEM | ISPF | APPLID | REFLIST | EDIT | OTHER
[KEEP | DISCARD | PROMPT]]
[CONFLICT BATCH [KEEP | DISCARD]]

The parameter descriptions for the SHRPROF command are as follows:

RESET
Resets all the Shared Profile settings to the values specified in the ISPF
Configuration options.

WAIT
The wait time in milliseconds that ISPF is to wait before retrying when it is
unable to obtain an enqueue on a member of the ISPF profile data set. If
specified, n must an integer in the range 0 to 9999. A value of 0 indicates that
no wait is to occur. The ISPF default is 1000.

RETRY
The number of times that ISPF is to retry to obtain an enqueue on a member of
the ISPF profile data set when it is unable to obtain the enqueue. If specified, n
must an integer in the range 0 to 99. The ISPF default is 1.

PROMPT
ISPF prompts you when it is unable to enqueue on a member of the ISPF
profile data set, and the retry count has been reached. You are then given the
option to either retry again, or cancel the request.

NOPROMPT
ISPF fails the enqueue request when it is unable to obtain the enqueue on a
member of the ISPF profile data set and the retry count has been reached.

CONFLICT
The required action to be taken when a conflict is found updating a member of
the profile data set, where the last updated information has changed. You can
specify a different actions for different types of profile members. When you
specify the CONFLICT parameter, you must also specify a conflict type (see
following list). The conflict action parameter (see following list) is optional; if
you do not specify a conflict action, ISPF use the value specified in the ISPF
configuration settings.

The supported conflict types are:

SYSTEM
The ISPF System profile member, ISPSPROF.

ISPF The ISPF profile, normally ISPPROFE.

APPLID
An application profile member, being a member with "PROF" as the
suffix, other than the SYSTEM and ISPF profiles.

REFLIST
Any of the ISPF Reference lists: ISRLLIST, ISRPLIST, or ISRSLIST.

EDIT An ISPF Edit profile member, being a member with "EDIT” as the
suffix.

Chapter 2. Controlling ISPF sessions 21

Controlling ISPF sessions

BATCH
Any batch ISPF job.

OTHER
Any other ISPF table in the ISPF profile data set.

The supported conflict actions are:

KEEP The current changes are kept, replacing any other changes previously
saved by another ISPF session sharing the profile.

DISCARD
The current changes are discarded, retaining those already updated in
the profile data set.

PROMPT
A panel is displayed prompting you to either KEEP or DISCARD the
changes.

What the SELECT service does

The SELECT service initiates dialog execution. Selection keywords, passed to the
SELECT service, specify whether the dialog begins with the display of a menu
(PANEL keyword) or the execution of a dialog function (CMD or PGM keyword).
The dialog terminates when the selected menu or function terminates. The action
at termination depends on how the SELECT service was originally invoked.

SELECT is both a control facility and a dialog service. ISPF uses SELECT during its
initialization to invoke the function or selection panel that begins a dialog. During
dialog processing, SELECT displays selection panels and invokes program
functions or command procedure functions.

The principal SELECT parameters are:
PANEL(panel-name)
CMD(command)
PGM(program-name)

See [z/OS ISPF Services Guide for a full description of the SELECT service syntax.

The panel-name parameter specifies the name of the next selection panel to be
displayed. You must use the ISPF panel definition statements (described in
[Chapter 6, “Panel definition statement guide,” on page 105) to define the panel.

The command and program-name parameters specify a function, coded as a CLIST
command procedure or program, respectively, to receive control. Input parameters
can be passed to the function as part of the command specification or, for
programs, by the use of the PARM parameter.

[Figure 9 on page 23| shows how the SELECT service is used when invoking or
processing a dialog. After SELECT starts a dialog, the dialog uses it as a service to
invoke a function or to display a selection panel. In turn, that function or menu
can use SELECT to invoke another function or to display another menu. This
function or menu can, in turn, using SELECT, invoke still another function or
menu. This process can continue for many levels and establishes a hierarchy of
invoked functions and menus. There is no restriction on the number of levels
allowed in this hierarchy.

22 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

Subtasks attached by the SELECT service do not share subpools. ISPF specifies
SZERO=NO when issuing the ATTACH macro to ensure that at SELECT
termination the storage that was acquired by ISPF is released.

ISPSTART

Begin
ISPF

A4

A4

SELECT Display menu

service
Select lower-
level menu

< DISPLAY
service

Select lower-
level menu y Display data-entry
or function Dialog « panel or TBDISPL

function

Figure 9. SELECT service used to invoke and process a dialog

When a lower-level function or menu in the hierarchy completes its processing,
control returns to the higher-level function or menu from which it was invoked.
The higher-level function resumes its processing, or the higher-level menu is
redisplayed for the user to make another selection. Thus, SELECT is used in a
dialog to establish a hierarchy of functions and menus. This hierarchy determines
the sequence in which functions and menus are processed, including the sequence
in which they are terminated.

Dialog functions written as command procedures can directly invoke other
functions written as command procedures without using the SELECT service. They
are not treated as new functions by ISPE.

Dialog functions written as programs can invoke another function only through
using the SELECT service. Thus, when a program-coded function calls another
program directly, without using the SELECT service, the called program is treated
as part of the function that called it. It is not treated as a new function by ISPF.

Invoking the SELECT service
The SELECT service can be invoked in these ways:

* During initialization, the dialog manager automatically invokes the SELECT
service to start the first dialog. The selection keywords originally specified on
the ISPSTART command are passed to the SELECT service.

Chapter 2. Controlling ISPF sessions 23

Controlling ISPF sessions

24

For dialogs invoked by ISPSTART, ISPF error processing is not put into effect
until ISPF is fully initialized. ISPF is considered to be fully initialized when the
Enter key on the primary option menu has been processed without a severe
error occurring.

If you enter split-screen mode, the dialog manager again invokes the SELECT
service and again passes the selection keywords from the ISPSTART command.
This causes the first dialog, specified in the ISPSTART command, to be initiated
on the new logical screen.

The SELECT service recursively invokes itself when you select an option from a
menu displayed by the SELECT service. In this case, the selection keywords are
specified in the panel definition for the menu.

The SELECT service can be invoked from a dialog function. In this case, the
selection keywords are passed as calling sequence parameters.

Terminating a dialog

The action taken at dialog termination is as follows:

If a dialog function invoked the SELECT service, control returns to that function
and the function continues execution.

If a menu invoked the SELECT service, that menu is redisplayed, including
execution of the INIT section in the panel definition.

If you are terminating split-screen mode, the original dialog ends on that logical
screen, and the other logical screen expands to the full size of the viewing area.
If you are terminating ISPF, which can be done only in single-screen mode,
either the ISPF termination panel is displayed or the ISPF SETTINGS defaults for
list/log processing are used.

ISPF displays the termination panel if:

The dialog started with the display of a menu and you entered the END
command on that menu.

The dialog started with the execution of a function, and the function ended with
a return code of 0.

The list/log defaults are used if:

The dialog started with the display of a menu and you entered the RETURN
command or selected the EXIT option.

The dialog started with the execution of a function and the function ended with
a return code of 4 or higher. A return code other than 0 or 4 causes an error
message to be displayed.

If you have not specified valid list/log defaults, the ISPF termination panel is
displayed in all cases.

Return Codes from Terminating Dialogs

The return code from ISPSTART for a successful dialog completion is either 0 or a
value returned by the executing dialog in the system variable ZISPFRC. ZISPFRC
is a shared-pool input variable of length 8. The dialog can set ZISPFRC to any
value in the range of 0 to 16777215, except the values reserved for ISPF use (900
through 999, and 9000 through 9100). This value must be left-justified and padded
with blanks.

At termination, ISPF copies the value from ZISPFRC and passes it to the invoking
application (or Terminal Monitor Program) in register 15. If the value in ZISPFRC

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

is not within the valid range or is otherwise not valid, such as a value that is not
numeric, ISPF issues an appropriate line message and passes a return code of 908.
If the dialog has not set ZISPFRC to a value, ISPF returns a value of 0.

Notes:

1. CLIST procedures that invoke ISPSTART can check the CLIST variable LASTCC
for the ISPF return code. In REXX, check the variable rc after an ISPF function.

2. Even though ISPF restricts the return code value to the range 0 to 16777215,
other products or subsystems, such as JES when processing JCL condition
codes, can be more restrictive on return code values. See documentation for the
affected product for more information.

3. ZISPFRC should not be confused with the normal dialog return code set by the
function; it has no effect on ISPF log/list termination processing.

ZISPFRC is intended to be used by applications that invoke a dialog dedicated to a
single task or function. However, it is valid to set ZISPFRC from a selection panel
invoked by the ISPSTART command.

ISPF checks for the existence of ZISPFRC only at ISPF termination. If ZISPFRC is
set by any dialog other than the one invoked by the ISPSTART command, ISPF
ignores the value.

Return Codes from Termination Dialogs
Error codes that ISPF can return in register 15 to an application are:

908 ZISPFRC value not valid.
920 ISPSTART command syntax not valid.

985 An attempt was made to start a GUI in batch mode, but no workstation
connection was made.

987 An attempt was made to start GUI with GUISCRW or GUISCRD and the
GUI initialization failed.

988 An error occurred initializing IKJ[SATTN.

989 The ISPF C/S component window was closed while still running ISPF in
GUI mode.

990 An error occurred running in batch mode. If ZISPFRC has not been set
previously, and ISPF encounters a severe error that terminates the product,
then 990 is set.

997 Uncorrectable TPUT error.

998 ISPF initialization error. A 998 error code can result from:
* Required ISPF data element library not preallocated
* Error opening ISPF data element library
* ISPF data element library has invalid data set characteristics
¢ Error loading literals module
* Recursive ISPF call

ISPF issues a line message that indicates which of these errors caused the
998 return code.

999 ISPF environment not valid. A 999 error code can result from:
* TSO/MVS environment not valid
* Unsupported screen size

ISPF issues a line message that indicates which of these errors caused the
999 return code.

Chapter 2. Controlling ISPF sessions 25

Controlling ISPF sessions

26

When running in batch, ISPF can also return the following return codes:
9008 Abend termination.
9012 Attach error.

9014 Authorized command invocation error, or TSO CMD START exit routine
rejected the command.

9016 Command not found, or was otherwise unable to execute, or an exit
routine returned an invalid return code.

9018 Invalid command: LOGOFF, ISPF, etc.
9020 TSO RTN IKJTBLS (called from CAU) abended.

An example using the ZISPFRC return code

shows a portion of a background job that invokes ISPF. The final job step
runs only if the job step that invoked the ISPF dialog terminates with a return code
of 8 or less.

R R R R T
/1%

//* INVOKE ISPF TO EXECUTE DIALOG "DIALOG1".
//* DIALOG1 PASSES BACK A RETURN CODE OF
//* 20 IF IT DID NOT PROCESS SUCCESSFULLY.
/1%
R R S e T T T T
//ISPFSTEP EXEC PGM=IKJEFTO1,DYNAMNBR=30,REGION=2048K
/1%

//* ALLOCATE DIALOG AND ISPF PRODUCT LIBRARIES,
//* ISPF LOG DATA SET, AND TSO OUTPUT DATA SET.
//* *
//ISPPROF DD DSN=USER1.ISPF.TABLES,DISP=SHR

* %k ok X X

* ok

//* ALLOCATE TSO INPUT DATA SET. *
//* *
//SYSTSIN DD =*
PROFILE PREFIX(USERL) /* ESTABLISH PREFIX x/
ISPSTART CMD(%DIALOG1) /* INVOKE DIALOG1 */
/*
//**
/1%
//* EXECUTE NEXT JOB STEP ONLY IF THE ISPF STEP
//* ENDED WITH A RETURN CODE LESS THAN OR EQUAL
//* TO 8. THAT IS, BYPASS THE STEP IF 8 IS
//* LESS THAN THE ISPF RETURN CODE.
/1%
//**
//NEXTSTEP EXEC PGM=IKJEFTO1,DYNAMNBR=30,REGION=2048K,
// COND=(8,LT,ISPFSTEP)

L

Figure 10. Sample background ISPF job

The portion of the invoked dialog, DIALOGI, that establishes the value in system
variable ZISPFRC is shown in [Figure 11 on page 27}

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

PROC 0

IF &MAXCC > 8 THEN +
DO
SET &ZISPFRC = 20
VPUT (ZISPFRC) SHARED
END
EXIT CODE(0)

Figure 11. Sample dialog using system variable ZISPFRC

ISPF test and trace modes

The testing modes of ISPF provide special processing actions to help debug a
dialog. Consider using the Dialog Test (option 7) facility.

You can specify any one of four mutually exclusive keyword parameters on the
ISPSTART command to control the operational mode when testing a dialog:

TEST Test mode

TESTX Extended test mode; logged messages are displayed

TRACE Trace mode; ISPF service calls are logged

TRACEX Extended trace mode; ISPF service calls are logged and displayed
Test modes

In TEST mode, ISPF operates differently from normal mode in these ways:

¢ Panel and message definitions are fetched again from the panel and message
files when a panel name or message ID is specified in an ISPF service. In normal
mode, the most recently accessed panel definitions are retained in virtual
storage. If you have modified the panel or message file, use of TEST mode
ensures that the latest version of each panel or message is accessed during a test
run.

Using an editor to modify a panel, message, or skeleton can result in an
additional DASD extent being required for the associated data set. DASD rarely
(if ever) gains new extents as the result of the execution of software (with the
possible exception of DASD formatting software). It can also be caused by
link-editing a module. When a new extent is allocated, you can access the
modification only by first terminating and then invoking ISPF again.

¢ Tutorial panels are displayed with current panel name, previous panel name,
and previous message ID on the bottom line of the display screen. This assists
you in identifying the position of the panel in the tutorial hierarchy.

* Screen printouts, obtained through use of the PRINT or PRINT-HI commands,
include line numbers, current panel name, and message ID.

* In PDF, the index listing (option 3.1) for a partitioned data set includes TTR data
for each member of the data set.

* If a dialog function is operating in the CANCEL error mode (the default), the
panel that is displayed on an error allows you to force the dialog to continue in
spite of the error. Results from that point on, however, are unpredictable and
ISPF can abend.

If a dialog function is operating in any other error mode, and a command run
from the SELECT service abends, any ISPF-detected error, abend, or program
interrupt forces an abend of ISPE. You can also force an abend by entering

Chapter 2. Controlling ISPF sessions 27

Controlling ISPF sessions

ABEND or CRASH in the command line of any panel. For more information
about the SELECT service, refer to the |z/OS ISPF Services Guided,

* The PA1 key causes an immediate exit from ISPFE.

The ISPF controller task attaches one ISPF subtask for each logical screen. Any
additional logical screens are created by the SPLIT command and there can be up
to four screens on a 3290 terminal.

If an ISPF subtask abends, pressing Enter after the abend message appears
generates a dump, provided that a SYSUDUMP, SYSMDUMP, or SYSABEND data
set has been allocated.

Dialogs invoked with the SELECT CMD(XXX) cause an attach of a new subtask
under the ISPF subtask. If an abend occurs under the new subtask, an immediate
dump is taken.

In TESTX mode, ISPF operates the same as it does in TEST mode, except that all
messages written to the ISPF log file are also displayed at the terminal.

ISPF provides the ENVIRON command, which allows you to cause a dump
following an abend condition, even if ISPF is not running in TEST mode. See
[“Using the ENVIRON system command” on page 38()| for a description of using
the ENVIRON command.

ISPF trace modes

In TRACE mode, ISPF operates as it does in TEST mode, except that a message is
written to the ISPF log file when any ISPF service is invoked, even if CONTROL
ERRORS RETURN has been issued, and when any error is detected by an ISPF
service. Note that only CLIST, APL2, and CALL ISPEXEC service requests are
recorded. This does not include service requests issued under Dialog Test option
7.6. CALL ISPLINK requests for service are not recorded in the log file.

In TRACEX (extended trace) mode, ISPF operates the same as it does in TRACE
mode except that all messages written to the ISPF log file, including the trace
messages, are also displayed at the terminal. If the length of the message text
exceeds the width of the terminal screen, the message will be truncated.

Invoking authorized programs

You can invoke authorized programs by using the SELECT service, a selection
panel, a command table, or by using the TSO CALL command under ISPE. ISPF
uses the TSO Service Facility IKJEFTSR to invoke authorized commands and
programs. Authorized programs are invoked under the TSO TMP (Terminal

Monitor Program) and therefore should not reside in the ISPLLIB library.
Authorized programs cannot issue dialog service requests. See |z/OS TSO/E
for information about adding authorized programs and commands to

the list maintained by your installation.

Invoking TSO commands

28

TSO commands can be initiated by use of the SELECT dialog service (with the
CMD keyword), from a selection panel, from a command table, by entering the
ISPF TSO system command in the command field of any panel, or be contained in
a CLIST or REXX command procedure that is invoked under ISPE.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

You can invoke authorized TSO commands by using the SELECT service, a
selection panel, or a command table. Authorized commands are attached under the
TSO TMP (Terminal Monitor Program) and, therefore, should not reside in the
ISPLLIB library. Authorized commands cannot issue dialog service requests.

You can run most TSO commands under ISPF. These commands are not allowed:
* LOGON

* LOGOFF

e SPF

» ISPF

 PDF

e ISPSTART

e TEST

» Commands that are restricted by TSO

Note: The LOGON, LOGOFF, and TEST commands can be run within ISPF if the
TSOEXEC interface is used (for example, TSO TSOEXEC LOGOFF). In that case,
the LOGON and LOGOFF commands are processed upon ISPF termination,
instead of returning to TSO READY. When the TEST command is being run,
TSO TEST is entered immediately. However, because TSOEXEC runs
commands in a parallel TMP structure, ISPF dialogs cannot be run under
TSO TEST in this situation.

Compiled REXX requirements

ISPF supports compiled REXX load modules through ISPSTART and the SELECT
service. The REXX program must be compiled with the OBJECT option of the IBM
Compiler for REXX/370. This OBJECT output needs to be link-edited with the
CPPL stub that is a part of the IBM Library for REXX/370.

The SELECT service and ISPSTART command contain a value, CREX, for the
LANG parameter on the CMD keyword. Specifying LANG(CREX) on the CMD
keyword indicates that it is a Compiled REXX load module and that a REXX
function pool is to be used for variable manipulation. LANG(CREX) is optional if
the compiled REXX has been link-edited to include any of the stubs EAGSTCE,
EAGSTCPP, or EAGSTMP.

The CPPL stub takes the parameters that are passed by the SELECT CMD service
or the ISPSTART invocation, and converts them into arguments for the REXX
program. For complete details on how to create a REXX load module, see IBM
Compiler and Library for REXX on zSeries User’s Guide and Reference.

Compiled REXX programs that were compiled with the CEXEC option must be
started using the CMD option of the SELECT service or ISPSTART command, and
must NOT use the LANG(CREX) parameter.

CLIST requirements

A CLIST cannot invoke any of the restricted TSO commands. TERMIN command
procedure statements can cause unpredictable results.

Note: If a CLIST contains CONTROL MAIN, the TSO input stack is not flushed
after an ISPF severe error.

Chapter 2. Controlling ISPF sessions 29

Controlling ISPF sessions

30

Attention exits

When a CLIST command procedure is executing under ISPF, the ATTN statement
in the procedure defines how attention interrupts are to be handled. You can find
information about using attention exits in [z/0S TSO/E CLIST§ and [z/OS TSO/E|

[Programming Services,

Restrictions on using attention exits from CLISTs
Restrictions that apply to using attention exits from a CLIST dialog are:

CLIST attention exits are not supported when running in ISPF TEST or TRACE
modes. This is because the ISPF attention exit routine is not established in TEST
or TRACE modes.

The CLIST must issue a null command to return from an attention exit. If the
dialog issues a TSO command to terminate the exit routine, ISPF discards the
command. The ISPF dialog then resumes execution as if CONTROL MAIN
NOFLUSH were in effect for this CLIST.

You can stack CLIST attention exits only within one SELECT CMD level. An exit
applies only to the logical screen from which the CLIST owning the attention
exit was invoked. Therefore, when you are operating in split-screen mode,
invoking a CLIST attention exit from one logical screen has no effect on the
other logical screens.

Do not invoke an ISPF dialog service from a CLIST attention exit routine. If you
do, results are unpredictable.

Attention interrupts initiated while an exit routine is executing are not honored.

Examples of CLIST attention exit process flow
See:

“Single CLIST with one attention exit”]

“Nested CLISTs with two attention exits (one SELECT level)”|

“Nested CLISTs with one attention exit” on page 31|

“Nested CLISTs and SELECT levels with one attention exit” on page 31

Single CLIST with one attention exit:

1.

2.
3.
4.

From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has
one attention exit routine, named ATTNI1.

CLIST1 displays PANELL.
Press the attention key.
Exit routine ATTN1 runs and PANEL1 redisplays.

Nested CLISTs with two attention exits (one SELECT level):

1.

o 0k w

© N

From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has
one attention exit routine, named ATTNI1.

CLIST1 invokes procedure CLIST2 by using the TSO EXEC command. CLIST2
has one attention exit routine, named ATTN2.

CLIST2 displays PANEL2.
Press the attention key.
Exit routine ATTN2 runs and PANEL2 redisplays.

Press Enter to return control to CLIST2. CLIST2 then terminates processing and
control returns to CLIST1.

CLIST1 displays PANEL1.
Press the attention key.
Exit routine ATTN1 runs and PANELI1 redisplays.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

Nested CLISTs with one attention exit:

1.

o 0k w

© N

From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has
one attention exit routine, named ATTNI1.

CLIST1 invokes procedure CLIST2 by using the TSO EXEC command. CLIST2
has no attention exit routine.

CLIST2 displays PANEL2.
Press the attention key.
Exit routine ATTN1 runs and PANEL2 redisplays.

Press Enter to return control to CLIST2. CLIST2 then terminates processing and
control returns to CLIST1.

CLIST1 displays PANELL1.
Press the attention key.
Exit routine ATTN1 runs and PANEL1 redisplays.

Nested CLISTs and SELECT levels with one attention exit:

1.

From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has
one attention exit routine, named ATTNTI.

CLIST1 invokes procedure CLIST2 by using the ISPEXEC SELECT
CMD(CLIST2) command. CLIST2 has no attention exit routine.

Press the attention key.

Because CLIST2 has no attention exit routine, and ISPF does not propagate
attention exits across SELECT levels:

¢ An error message indicates that a CLIST was interrupted by an attention
condition.

* The logical screen terminates and restarts, causing the primary option menu
to redisplay.

Using APL2

ISPF permits the use of APL2, as follows:

ISPF dialogs can be written in an APL2 workspace.
APL2 can be selected as a command, initializing an ISPF-APL2 environment.
APL2 functions can be selected as options (from a selection panel), as ISPF

commands (from an application command table), or from another dialog
function, once the ISPF-APL2 environment has been established.

All dialog manager services available to the command language dialog writer
are executable from the APL2 workspace after the ISPF-APL2 environment has
been established.

ISPF views the APL2 workspace variables as the dialog function pool whenever
an ISPF dialog service is executing.

ISPF supports APL on a DBCS device with an APL keyboard.

The ISPF/GDDM interface is not available to an APL2 dialog. However, the APL2
dialog can interface directly with GDDM and interleave the ISPF and GDDM
services.

Invoking APL2

You can invoke APL2 by specifying the APL2 command and its appropriate
keywords as the value of the CMD keyword of the SELECT service. You must also
code the SELECT keyword and the value LANG(APL) on the SELECT statement.

Chapter 2. Controlling ISPF sessions 31

Controlling ISPF sessions

The LANG(APL) parameter provides the basis for establishing an ISPF-APL2
environment. It is required if any ISPF dialog services are to be used.

You can code any of the APL2 command keywords. However, be aware of:

APNAMES
ISPF and APL2 communicate through an APL2 Auxiliary Processor (AP),
ISPAPAUX, which is released with the ISPF product. This AP, number 317,
must be made available to APL2 when APL2 is invoked, as follows:

* The dialog writer can specify ISPAPAUX in the APNAMES list of
auxiliary processors to be dynamically loaded.

When APL2 is invoked, ISPAPAUX must exist as a load module in a
system library, or in a private library named by the LOADLIB keyword.

LOADLIB
Keep in mind that if this keyword is used, the dialog must be changed or
accept this keyword’s value dynamically (for example, through a variable),
if the name of the private library containing the AP is changed.

TERMCODE (code)
The user is prompted to enter an appropriate character if this keyword is
not coded. This allows APL2 to identify the terminal type that is currently
being used.

Typically, a dialog ensures that the user does not have to perform this extra
step by identifying the terminal type through the TERMCODE keyword.

ISPF system variable ZTERM contains this information. However, ISPF
terminal types are different from those of APL2. For those dialog writers
who wish to make use of currently available ISPF information, program
dialog ISPAPTT can be selected before the call of APL2. ISPAPTT expects
one parameter, which is the ISPF variable name into which the
corresponding APL2 terminal type is returned. The variable is created in
the shared variable pool.

For a CLIST, the use of ISPAPTT can look as follows:

ISPEXEC SELECT PGM(ISPAPTT) PARM(APLTT)
ISPEXEC VGET APLTT
ISPEXEC SELECT CMD(APL2..... TERMCODE (8APLTT)) LANG(APL)

These ISPF to APL2 mappings are supported:

ISPF APL2
(ZTERM)

3277 3277
3278 3279
3277A 32771
3278A 32791
3278T 32791
3278CF 3279
3277KN 3277
3278KN 3279

If ISPF is executing in the background, then ISPAPTT will return a terminal
code of 1.

32 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

If ZTERM contains a value other than those previously listed, the specified
variable is set to a value of 3277 in the shared variable pool.

FREESIZE, WSSIZE
Some combination of these keywords should be coded to accommodate the
user’s storage requirements; however, remember that ISPF and the
ISPF-APL2 AP require storage (beyond that currently allocated) to run,
especially if ISPF split-screen facilities are to be used.

INPUT
A user dialog can specify the INPUT keyword to load a given workspace,
start an APL2 dialog function, and terminate APL2. This allows a user to
enter APL2, use APL2 dialog capabilities, and leave APL2 without needing
special APL2 expertise.

For example, to start a dialog named EMPLOY in workspace MYWS:
...... INPUT(')LOAD MYWS' 'EMPLOY' ')OFF HOLD')......

Note that a dialog function can also be started through the latent function
definition in the workspace. In addition, the Alternate Input Auxiliary
Processor, AP101, can be used to stack commands for execution.

If INPUT is coded and QUIET and PROFILE are not coded, the first ISPF
panel can be refreshed before the keyboard is unlocked.

QUIET
A dialog can specify the QUIET keyword to suppress the APL2 entry and
exit information, so that the user does not see non-dialog APL2 messages.

PROFILE
A dialog can specify the PROFILE keyword with a value of null to
suppress any entry and exit APL2 session manager screens, so that the user
does not see any non-dialog panels.

Executing APL2 functions

It is possible to start an APL2 function dialog by using the INPUT keyword, as
described in [“Invoking APL2” on page 31.|However, for many applications it is
necessary to invoke additional APL2 functions as options (from a selection panel),
as commands (from an application command table), or from other dialog functions.

Such functions are selected by specifying the function request as the value of the
SELECT CMD keyword, and once again, specifying LANG(APL). Because APL2
has already been started, and the APL2 environment established, the string is
passed back to the APL2 workspace, and an APL2 EXECUTE function is
performed on the string. For example, option 5 on a selection panel can be defined
to APL2 function AVG (assuming that APL2 has already been started) as follows:

§,'CMD(/-\VG 12 3 4 5) LANG(APL)'

The return code for the selected function is passed back as a fullword of 0 (zero) if
no terminating (to a quad-EA) APL2 errors have occurred. Otherwise, a fullword
consisting of the quad-ET values in the two halfwords is returned.

APL2 cannot be invoked more than once, either within the same screen or on more
than one screen. ISPF does nothing to prevent the second call. If APL2 is invoked a

Chapter 2. Controlling ISPF sessions 33

Controlling ISPF sessions

34

second time while running under ISPFE, the results are unpredictable. Note that
ISPF’s split-screen capabilities can be used as long as APL2 is not invoked on a
second screen.

Invoking ISPF dialog services in the APL2 environment

A dialog service can be invoked by using the function form of ISPEXEC:
[n] Tastrc«ISPEXEC character-vector

lastrc
Specifies the name of an APL2 variable in which the return code from the
service is to be stored.

character-vector
Specifies a vector of characters that contains parameters to be passed to the
dialog service. The format of the vector is the same as that for dialog service
statements for command procedures written in CLIST.

A workspace containing the ISPEXEC function is provided with ISPE. All dialog
writers must use this ISPEXEC function, as it contains the interface to ISPF and
handles the implementation of commands (through the APL2 EXECUTE function);
otherwise, results are unpredictable.

For example:

[1] POPEN THE TABLE

[2] LASTCC<ISPEXEC 'TBOPEN TABLE NOWRITE'
[3] -(LASTCC = 0)/NORMALCONT

[4] PPROCESS FRRORS HERE

(151 NORMALCONT:.........

APL2 workspace as the ISPF function pool

When an APL2 function invokes an ISPF dialog service, the APL2 workspace is
considered to be the ISPF function pool. The dialog writer need not do anything
special to make use of this mechanism. However, these restrictions apply:

* Any variable retrieved or set is the most local to the currently executing APL2
function.

* The dialog writer should not use variables whose names begin with the three
characters ISP; these names are reserved for ISPF. All variables used in the
ISPEXEC function have names that start with these three characters.

* Only those variables whose names and formats fit both ISPF and APL2 protocols
can be used for ISPF entities such as panels or tables:

— All variable names must be 1 to 8 characters in length, composed of
alphanumeric characters (A-Z, 0-9), of which the first must not be numeric.
Note that #, $, and @ are not allowed.

— All variable values must be simple character strings; APL2 general data types
are not allowed. Note that the only acceptable null vector is that for character
strings ().

If an attempt is made to use a name or format incompatible with ISPF for an
ISPF entity, a severe error occurs. Any APL2 name or format can be used within
a dialog function, as long as that variable is not used for an ISPF entity.

* Whenever an APL2 function is selected after APL2 is started, the original APL2

function pool (the APL2 workspace) is used. This implies that information can

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

remain in the function pool from previous SELECTs, and the dialog writer must
handle any such cases. Moreover, this rule is unaffected by SELECTs where new
shared or profile pools are created; it is the responsibility of the dialog writer to
ensure that the integrity of the workspace is maintained.

* If the PDF component is installed, and the Dialog Test Variables option is
requested, only those variables that have the correct name and format are
displayed; if an attempt is made to enter a variable with a name that is not valid
(to ISPF or APL2), an error occurs. The variables displayed are the most local to
the currently executing function.

* A maximum of 64K bytes can be retrieved from the APL2 workspace during the
execution of a DM service.

Interface between ISPF and APL2

The interface between ISPF and APL2 is like a telephone call. If one side of the
communication is broken, any attempt to use the interface causes error messages to
be generated. The link between the two products can be broken by:

* The APL2 user “hanging up”. For example, if a new workspace is loaded and
there are still ISPF service requests that have not completed (for example,
options in the selection panel process), the ISPF Auxiliary Processor (ISPAPAUX)
issues an error message, informs ISPF and waits for the process to begin again
(by “hanging up” until another ISPF request is made). ISPF issues a severe error
message telling the user that the link has been damaged.

If the user is in ISPF TEST mode, then, on user request, ISPF attempts to reshow
all panels traversed in an effort to unnest all service requests. When all requests
have been unnested, ISPF will again wait for the ISPF Auxiliary Processor to
make a request. During the unnesting process, any attempts to invoke APL2
functions are rejected, severe error messages are issued, and any requests for
APL2 variables are logged.

¢ The APL2 user “cutting the line”. For example, if the user terminates APL2
while there are still outstanding APL2 function requests from ISPF (for example,
options in the selection panel process), the ISPF Auxiliary Processor (ISPAPAUX)
issues an error message, informs ISPF, and terminates. ISPF issues a severe error
message telling the user that the link has been damaged, and if in TEST mode,
proceeds to unnest as previously described. When all requests have been
unnested, APL2 will be terminated. During the unnesting process, any attempts
to invoke APL2 functions are rejected, severe error messages are issued, and any
requests for APL2 variables are logged.

* An APL2 failure. This is handled as if the line were cut, assuming APL2
performs recovery and returns to ISPF.

e An ISPF failure. In this case, ISPF or the logical screen can fail, causing APL2
termination.

Subtasking support

A dialog attached by ISPF, as described in [“Invoking TSO commands” on page 28|
can invoke a dialog service. It does this by a call to either the ISPLINK or ISPEXEC
interfaces from any subtask level. For subtasks to issue ISPF services, the program
that attaches these subtasks must be invoked with the SELECT(cmd) service.

In addition, ISPF allows a task to detach its subtask at any time, even if an ISPF
service invoked by that subtask is processing. The SUBTASK keyword of the
CONTROL service, described in [z/OS ISPF Services Guide} provides additional
information. Multiple dialog services issued from multiple tasks executing
asynchronously are not supported, and results will be unpredictable.

Chapter 2. Controlling ISPF sessions 35

Controlling ISPF sessions

ESTAE restrictions

Programs that code their own ESTAE routines should not issue ISPF services
within the MVS ESTAE routine. Unpredictable results can occur. For more
information on ESTAE, refer to|z/OS MVS Programming: Assembler Services Reference|
ABE—HSPI For more information on using MVS macros, refer to Ig/OS MVS|
Programming: Assembler Services Guidd,

ISPF services in batch mode

36

When initiated in a batch environment, ISPF services run as a background
command. Background calls are generally used to invoke ISPF table and file
tailoring services. However, access to other dialog services is also available.

Command processors in the TSO batch environment

TSO provides facilities for executing command processors in the batch
environment. The JCL stream provides for data sets to be preallocated before the
call of any command. Invoke the Terminal Monitor Program (TMP) using the
EXEC statement to establish the necessary control blocks for the TSO environment.
The command input stream is accessed from the SYSTSIN DD statement. All
terminal line I/O outputs issued by the TSO I/O service routines are directed to
the SYSTSPRT DD statement definition. Allocate ISPF libraries by using DD
statements. Panel, message, skeleton, table, and profile data sets must be
preallocated. While not required, it is recommended that the log data set also be
preallocated. If a log data set is dynamically allocated, it is always kept at ISPF
termination.

To invoke ISPF, place the ISPSTART command in the SYSTSIN input stream with
the PANEL, CMD, or PGM keywords that name the dialog to be invoked.

Note: When running on MVS with TSO/E Version 2 Release 1, ISPF does not read
and run the CLIST statements that follow the ISPSTART command. With
ISPF running in batch (background) mode in the MVS environment with
TSO/E Version 2 Release 1, you can select a CLIST procedure.

A user ID is selected for the background job as follows:
1. If available, the user ID supplied during RACF® authorization checking is used.

2. If a user ID is not available from RACE, the prefix supplied with the TSO
PROFILE command is used.

3. If neither of these is available, the default is BATCH.

Although the user ID defaults to BATCH, the prefix used by ISPF when
dynamically allocating a data set has no default. Therefore, a prefix should always
be supplied on the TSO PROFILE command. At various times, ISPF attempts
dynamic allocation and if no prefix has been supplied, allocation will fail and the
job will abend. Multiple jobs executing concurrently must have unique prefixes.

The contents of positions 17-24 in system variable ZENVIR indicate whether ISPF
is running interactively (TSO followed by five blanks) or background (BATCH
followed by three blanks).

Sample batch job

[Figure 12 on page 37 shows a sample batch job. This job invokes the MVS/TSO
Terminal Monitor Program (TMP) which, in MVS, establishes the environment
necessary to attach command processors. The ISPSTART command is specified in

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

the TSO background input stream (SYSTSIN) with the name of a CLIST
(TBUPDATE) that contains the ISPF services to be run.

//USERAA JOB (AAG4,BIN1,000000),'I. M. USERAA',
// CLASS=L,MSGCLASS=A,NOTIFY=USERAA,MSGLEVEL=(1,1)

S */
//* EXECUTE ISPF COMMAND IN THE BACKGROUND */
S */
/1%

//ISPFBACK EXEC PGM=IKJEFTO1,DYNAMNBR=25,REGION=1024K

//*- - ALLOCATE PROFILE, PANELS, MSGS, PROCS, AND TABLES -/
//ISPPROF DD DSN=USERAA.ISPF.PROFILE,DISP=0LD

//ISPPLIB DD DSN=ISP.SISPPENU,DISP=SHR

//ISPMLIB DD DSN=ISP.SISPMENU,DISP=SHR

//ISPSLIB DD DSN=ISP.SISPSENU,DISP=SHR

// DD DSN=ISP.SISPSLIB,DISP=SHR

//ISPTLIB DD DSN=USERAA.ISPF.TABLES,DISP=SHR

// DD DSN=ISP.SISPTENU,DISP=SHR

// DD DSN=ISP.SISPTLIB,DISP=SHR

//ISPTABL DD DSN=USERAA.ISPF.TABLES,DISP=SHR

/1%

//*- - ALLOCATE ISPF LOG DATA SET - - - - - - - - - - - - */
//ISPLOG DD DSN=USERAA.ISPF.LOG,DISP=SHR

/1%

//*- - ALLOCATE DIALOG PROGRAM AND TSO COMMAND LIBRARIES -/
//ISPLLIB DD DSN=USERAA.ISPF.LOAD,DISP=SHR

//SYSEXEC DD DSN=ISP.SISPEXEC,DISP=SHR

//SYSPROC DD DSN=ISP.SISPCLIB,DISP=SHR

/1%

//*- - ALLOCATE TSO BACKGROUND OQUTPUT AND INPUT DS - - - -*/
//SYSTSPRT DD DSNAME=USERAA.ISPF.ISPFPRNT,DISP=SHR

//SYSTSIN DD *

PROFILE PREFIX(USERAA) /* ESTABLISH PREFIX */
ISPSTART CMD(%TBUPDATE) /* INVOKE CLIST DIALOG */
/*

Figure 12. MVS batch job

Processing errors

ISPF terminates with an error message if a required library is not available. The
ISPSTART command must also be invoked naming either a CLIST, PGM function,
or selection panel. If no dialog is specified, a message is issued. These messages
are directed to the data set defined by the SYSTSPRT DD statement.

Errors encountered during background dialog execution are handled in the same
manner as errors encountered during foreground execution. Messages normally
written to the ISPF log data set for severe errors are also written to the SYSTSPRT
file. This is useful when executing a CLIST dialog because any error messages are
listed immediately after the ISPEXEC service in which the error occurred.

If a function encounters an abend, the entire ISPF batch job stream terminates. A
message is issued to the SYSTSPRT file indicating the type of abend.

Batch display facility for background panel processing

The Batch Display Facility allows applications to simulate full-screen write
operations while ISPF is executing in the background. This requires that dialogs
provide the input to ISPF that would normally be supplied by the user or by
information associated with the type of terminal being used. Much of this is done
by having the dialog assign values to panel input variables, and by supplying
screen size information through keywords on the ISPSTART command.

Chapter 2. Controlling ISPF sessions 37

Controlling ISPF sessions

38

Batch execution has traditionally not allowed the use of services that require user
interaction. Any full-screen write operation would result in an error condition.

The Batch Display Facility overcomes these limitations. Although there is no user
interaction during execution; the Batch Display Facility does allow background
execution of interactive services. These services include:

* DISPLAY

« TBDISPL

* SELECT PANEL

e SETMSG

* PQUERY

These services are issued for batch just as they are issued for dialogs running in
interactive mode. ISPF GDDM services do not run in the background, and thus,
cannot be requested in a batch environment.

All ISPF commands except SPLIT and SPLITV can be executed in dialogs running
in batch mode.

Installations can easily convert current interactive applications that use these
services so they run in a batch environment. When you are running in a batch
environment, you cannot direct your display to a workstation; that is, the GUI
parameter on the ISPSTART command is not supported in a batch environment.

Supplying input in lieu of interactive users

When an application is running in batch, there is no user to respond to panel input
operations. Therefore, the primary requirement for running interactive applications
in batch is to supply expected input data by an alternate means. For example,
panel variables can be given values by dialog function statements or by the
processing specified in the panel’s executable sections. This processing is begun in
the batch environment as though a user had pressed Enter. In the absence of an
alternative action on the dialog’s part, ISPF assumes an ENTER condition
following a panel display.

A dialog can override the ENTER condition and establish an END condition by
performing any of these actions:

* Using the .RESP control variable

* Setting the panel command field to END

¢ Issuing a CONTROL NONDISPL END before the display operation

Supplying batch terminal characteristics

In a batch environment there is no terminal from which ISPF can get screen width
and screen depth values, so you must supply to ISPF data related to terminal type.
You can include two optional keywords, BATSCRW and BATSCRD, on the
ISPSTART command line to specify, respectively, screen width and screen depth
values. The default values, if you do not include these keywords, are a screen
width of 80 characters and a screen depth of 32 lines. The width and depth values,
whether specified on the ISPSTART command or through the default values,
establish the values in system variables ZSCREENW, ZSCREEND, ZSCRMAXW,
and ZSCRMAXD.

In addition to the display services, use of the PQUERY service requires that the
screen width and depth values be supplied to ISPF, either through default values
or as defined on the ISPSTART command.

When running batch, terminal characteristics cannot be changed during a session,
although some characteristics can be changed during an interactive session. For

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

example, when ISPF is running interactively you can specify 3278 Model 5 and
3290 screen formatting. In batch mode, a dialog does not interact with a physical
screen. Therefore, screen size, specified by including the BATSCRW and BATSCRD
keywords on the ISPSTART command, is fixed for the duration of the batch
session.

When running in batch mode, you can include the BDBCS keyword on the
ISPSTART command. ISPF then processes the dialog as though it were running on
a DBCS terminal.

The value in system variable ZCOLORS defines the number of colors (either 1 or
7) that a terminal can display. In batch mode, ISPF sets ZCOLORS to 1.

The value in system variable ZHILITE (YES or NO) determines if a terminal is to
have extended highlighting capability, including underscore, blinking, and reverse
video. In batch mode, ISPF sets ZHILITE to NO.

Message processing in the batch environment
In an interactive environment ISPF displays two types of messages:

¢ Informational messages, normally those resulting from the MSG keyword
specified on the SETMSG, DISPLAY, or TBDISPL service

* Error messages, including those resulting from the .MSG control variable in an
executable panel section.

When running in a batch environment, ISPF writes any informational or error
messages to the ISPF log data set at the processing point that the messages would
normally be displayed to a user. The information logged includes the name of the
panel associated with the message, followed by the short message and the long
message.

A MSG-initiated error message plus an ENTER condition causes a panel redisplay.
In a batch environment, there is no interactive user to correct the error, so it must
be handled by statements in the panel’s)REINIT or)PROC sections. This leads to
the possibility of a .MSG-redisplay loop if the error condition is not corrected.
Some panel language functions that can lead to this problem are VER, TRANS,
ADDSOSI, DELSOSI, .MSG, and PANEXIT. To prevent this loop, a BREDIMAX
keyword on the ISPSTART command is available to specify the maximum number
(default 2) of redisplays. If this number of redisplays is exceeded, a severe error
condition (return code 20) results and the related error message is written to
SYSTSPRT.

Command processing in the batch environment

ISPF processes most commands when running in the batch environment in the
same way it processes them when running interactively, except that:

e The SPLIT and SPLITV commands are disabled.

* The ENVIRON, LOG, LIST, ISPPREP, KEYS, ZKEYS, and PFSHOW TAILOR
commands can result in display loops.

Display error processing in the batch environment

When ISPF is running interactively with CONTROL ERRORS CANCEL in effect, a
return code of 12 or higher causes the ISPF error panel to display. These same
conditions in the batch environment cause the error panel message to be written to
the SYSTSPRT data set, after which ISPF terminates. In the interactive or batch
environment with CONTROL ERRORS RETURN in effect, control returns to the
dialog for error processing following a return code of 12 or higher.

Chapter 2. Controlling ISPF sessions 39

Controlling ISPF sessions

40

How ISPF handles log and list data sets in the batch
environment

If ISPF allocates a log or list data set in the batch environment, it is always kept at
termination, regardless of the disposition specified on SETTINGS Option 0.

Avoiding panel loop conditions in the batch environment

When writing new dialogs or altering existing dialogs to run in the batch
environment, dialog developers must be very careful not to create functions that
result in a processing loop where user input is expected and none is supplied. See
[“Supplying input in lieu of interactive users” on page 38| for more information. For
example, running the ISPPREP command causes ISPF to call an interactive
ISPPREP dialog, which will cause a loop condition in a batch environment. Instead,
you should invoke the non-interactive ISPPREP facility directly by using the
SELECT PGM(SPPREP) service request as described for batch mode under

[Figure 50 on page 153

The KEYS command can cause a loop condition because its processing termination
depends on an END or RETURN command. An ENTER condition, which ISPF
assumes in absence of an END or RETURN being forced, results only in another
panel display, which leads to a loop condition.

To help deal with possible looping situations, the BDISPMAX keyword on the
ISPSTART command is available to specify the maximum number of panel
displays that can occur during a session. The default value is 100. You can test the
current number of displays in a batch mode session by reading the ZBDMXCNT
system variable. The value of BDISPMAX is stored in the ZBDMAX system
variable.

If the number specified in BDISPMAX is exceeded, a severe error condition (return
code 20) results and an error message, stating that the maximum number of
displays has been exceeded, is written to the SYSTSPRT data set.

ISPF graphical user interface in batch mode

ISPF provides the capability to run the ISPF Client/Server (C/S) component in a
batch environment. You can start ISPF using the GUI parameter to enable a C/S
session to run on a specific workstation without tying up the invoking session.

This function also enables you to capture REXX trace output (in SYSTSPRT), and to
invoke ISPF without a 3270 terminal, such as through an icon on the workstation
through APPC or TCP/IP, or through a Telnet line mode session.

Restrictions
When using the batch mode capabilities of the C/S, be sure to consider these
restrictions:

* The number of initiators on the batch machine. Because the JCL remains resident
for the duration of the session, be aware that you have reduced the number of
available initiators for other uses.

* The limitation of the C/S Server to 30 sessions.

* Each batch session must have a unique profile (just like each user ID).
* The PA1 key is not available within the GUI environment.

* Full-screen TPUT function is not supported.

* Because you are in batch mode, and therefore you are not using a TSO emulator,
GDDM is disabled and TSO line-mode output is not available.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Controlling ISPF sessions

¢ Other TSO batch limitations. Some commands might not be supported in GUI
Batch mode because of the inability to provide terminal input to them (such as
RECEIVE). See the [z/0S TSO/E User’s Guide| for more information about running
TSO in batch mode.

Example JCL: invoking client/server in batch mode

The JCL job that follows can be run from your MVS session to invoke ISPF

running the Client/Server in batch mode. Before submitting this JCL job, you must

update it with this information:

* The jobcard information in line 1 must be furnished, and a unique jobname must
be used.

* Update "userid. PRIVATE" with your private libraries, if needed. If you do not
use private libraries, remove those data sets from the concatenation.

* If your ISPF product data sets are not named "ISP.SISxxxx", update the data set
names.

* Update the TSO profile.
* Update the ISPSTART invocation with the session title.

* Update the GUI() keyword for either TCPIP (your_ip_address) or APPC
(your_lu_name), and remove the other keyword.

//userid0 your jobcard information here

//* JCL TO RUN ISPF IN BATCH

//WSGUI EXEC PGM=IKJEFTO1,REGION=4096K,TIME=1439,DYNAMNBR=200
//STEPLIB DD DSN=ISP.SISPLPA,DISP=SHR

// DD DSN=ISP.SISPLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

// DD DSN=userid.PRIVATE.LOAD,DISP=SHR
//ISPLLIB DD DSN=ISP.SISPLPA,DISP=SHR

// DD DSN=ISP.SISPLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

// DD DSN=userid.PRIVATE.LOAD,DISP=SHR
//SYSEXEC DD DSN=userid.PRIVATE.EXEC,DISP=SHR
// DD DSN=ISP.SISPEXEC,DISP=SHR
//SYSPROC DD DSN=userid.PRIVATE.CLIST,DISP=SHR
// DD DSN=ISP.SISPCLIB,DISP=SHR
//ISPMLIB DD DSN=userid.PRIVATE.MSGS,DISP=SHR
// DD DSN=ISP.SISPMENU,DISP=SHR
//ISPPLIB DD DSN=userid.PRIVATE.PANELS,DISP=SHR
// DD DSN=ISP.SISPPENU,DISP=SHR
//ISPSLIB DD DSN=userid.PRIVATE.SKELS,DISP=SHR
// DD DSN=ISP.SISPSLIB,DISP=SHR

// DD DSN=ISP.SISPSENU,DISP=SHR

//SYSIN DD DUMMY,DCB=(LRECL=120,BLKSIZE=2400,DSORG=PS,RECFM=FB)
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSHELP DD DSN=SYS1.HELP,DISP=SHR

Figure 13. Invoking client/server in batch mode (Part 1 of 2)

Chapter 2. Controlling ISPF sessions 41

Controlling ISPF sessions

//ISPCTLO DD UNIT=SYSDA,

/1 SPACE=(TRK, (5,5)),

/! DCB=(RECFM=FB, LRECL=80,BLKSIZE=6160),
/1 DISP=(,DELETE,DELETE)

//ISPCTLL DD UNIT=SYSDA,

/1l SPACE=(TRK, (5,5)),

/! DCB= (RECFM=FB, LRECL=80,BLKSIZE=6160),
/] DISP=(,DELETE,DELETE)

//ISPCTL2 DD UNIT=SYSDA,

/! SPACE=(TRK, (5,5)),

/! DCB= (RECFM=FB, LRECL=80,BLKSIZE=6160),
/! DISP=(,DELETE,DELETE)

//ISPWRKO DD UNIT=SYSDA,

/1 SPACE=(TRK, (5,5)),

/] DCB= (RECFM=FB, LRECL=256,BLKSIZE=2560),
/! DISP=(,DELETE,DELETE)

//ISPWRKL DD UNIT=SYSDA,

/! SPACE=(TRK, (5,5)),

/! DCB=(RECFM=FB, LRECL=256,BLKSIZE=2560),
/1l DISP=(,DELETE,DELETE)

//ISPWRK2 DD UNIT=SYSDA,

/! SPACE=(TRK, (5,5)),

/! DCB= (RECFM=FB, LRECL=256,BLKSIZE=2560),
/! DISP=(,DELETE,DELETE)

//ISPLSTO DD UNIT=SYSDA,

/! SPACE=(TRK, (5,5)),

/! DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210),
/1 DISP=(,DELETE,DELETE)

//ISPLSTL DD UNIT=SYSDA,

/1 SPACE=(TRK, (5,5)),

/! DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210),
/1l DISP=(,DELETE,DELETE)

//ISPLST2 DD UNIT=SYSDA,

/! SPACE=(TRK, (5,5)),

/! DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210),
/! DISP=(,DELETE,DELETE)

//ISPTABL DD DSN=userid.PRIVATE.TABLES,DISP=SHR
//ISPTLIB DD DSN=userid.PRIVATE.TABLES,DISP=SHR
// DD DSN=ISP.SISPTENU,DISP=SHR
//SYSUDUMP DD DUMMY
//1SPLOG DD SYSOUT=T,
// DCB=(RECFM=VA, LRECL=125,BLKSIZE=129)
//ISPPROF DD DSN=userid.PRIVATE.TABLES,DISP=SHR
//SYSTSPRT DD DSN=userid.PRIVATE.TSOOUT,DISP=SHR
//*SYSTSPRT DD SYSOUT=(*)
//SYSPRINT DD SYSOUT=(%*)
//SYSOUT DD SYSOUT=(x)
//SYSTSIN DD =

PROFILE PREFIX(profile)

PROFILE NOPROMPT

ISPSTART PANEL(ISRGPRIM) NEWAPPL(ISR) TITLE(your_session_tit]e) +

GUI(IP:your_ip_address) or GUI(LU:your_lu_name)

Figure 13. Invoking client/server in batch mode (Part 2 of 2)

42 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 3. Introduction to writing dialogs

This topic introduces you to how to write dialogs using the ISPF display, variable,
table, file-tailoring, PDF, and other miscellaneous services. For more detailed
information on using these services, refer to the [z/0S ISPF Services Guide,

You can use the ISPDPTRC command to trace both the execution of panel service
calls (DISPLAY, TBDISPL, and TBQUERY) and the processing that occurs within
the Dialog Manager panel code. For more information, refer to

lcommand (ISPDPTRC)” on page 367/

Using the display services

The display services allow a dialog to display information and interpret responses
from users. The display services are:

ADDPOP

DISPLAY

LIBDEF

REMPOP

SELECT

SETMSG

© Copyright IBM Corp. 1980, 2007

Start pop-up window mode. The ADDPOP service specifies that
the listed panel displays are to be in a pop-up window. It also
identifies the location of the pop-up window on the screen in
relation to the underlying panel or window.

Display a panel. The DISPLAY service reads a panel definition
from the panel files, initializes variable information in the panel
from the corresponding dialog variables in the function, shared, or
profile variable pools, and displays the panel on the screen.
Optionally, the DISPLAY service might superimpose a message on
the display.

After the user has entered information on the panel, the
information is stored in the corresponding dialog variables in the
function, shared, or profile variable pools, and the DISPLAY service
returns control to the calling function.

The COMMAND option on the DISPLAY service allows a dialog to
pass a chain of commands to ISPF for execution. This option is
explained fully in the[z/OS ISPF Services Guidel Use of the DISPLAY
service is illustrated in a function example later.

Define optional search libraries. The LIBDEF service allows users
to define an optional, application-level set of libraries containing,
for example, messages or panels, to be searched before the
IBM-supplied ISPF libraries. See the [z/OS ISPF Services Guide| for
more information.

Remove a pop-up window. The REMPOP service call removes a
pop-up window from the screen.

Select a panel or function. The SELECT service is used to display a
hierarchy of selection panels or invoke a function.

Display a message on the next panel. The SETMSG service
constructs a specified message from the message file in an ISPF
system save area. The message will be superimposed on the next
panel displayed by any DM service. The optional COND
parameter allows you to specify that the message is to be
displayed on the next panel only if there is no SETMSG request
pending.

43

Display Services

TBDISPL Display a table. The TBDISPL service combines information from
panel definitions with information stored in ISPF tables. It displays
selected rows from a table, and allows the user to identify rows for
processing.

Panel definitions used by the TBDISPL service contain
nonscrollable text, including column headings, followed by one or
more “model lines” that specify how each row from the table is to
be formatted in the scrollable area of the display. For more
information about TBDISPL, see [‘Defining table display panels” on|

age 133)and the description of the TBDISPL service in [z/OS ISPH
Services Guid,

Example: creating a display with TBDISPL

The TBDISPL service displays information from an ISPF table on a panel formatted
by information on a panel definition. illustrates an ISPF table named TABI.

Table 1. TBDISPL — ISPF table

RANK ID CITY STATE POPCH ROW
1 FLO621 Fort Myers fl +95.1 rl
2 NV1235 Las Vegas nv +69.0 12
3 FL1972 Sarasota fl +68.0 r3
4 CO0649 Fort Collins co +66.0 r4
5 FL2337 West Palm Beach fl +64.3 r5
6 FLO608 Fort Lauderdale fl +63.6 r6
7 TX0231 Bryan tx +61.5 17
8 NV1833 Reno nv +60.0 r8
9 UT1656 Provo ut +58.4 9
10 TX1321 McAllen tx +56.1 r10

illustrates a panel definition named PANT1.

B R R R e R T R T T T e L Lt L

*)Attr *

* @ Type(output) Intens(low) Just(asis) Caps(off) *

*)Body *

LR L PP P Population Change --------=-------- * —m o

* +Command ==>Cmdf1d +Scroll ==>_samt+ =

* + *

* This table shows selected metropolitan areas which had a * --—> (AJFigure 15
* *

* Targe relative increase in population from 1970 to 1980. *

* *

* +Metro area State Change *

* + (Percent) % —od

*)Model *

* OCity @State @popchg+ * mmmmmee > (B,JFigure 15|
* *

x)Init *

* &samt=page *

*)Proc -

*)End *

B R e e S S S S e S e e e e L e st s

Figure 14. TBDISPL panel definition

44 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Display Services

The)BODY section of PAN1 defines the fixed portion of the display, area “A” in
[Figure 14 on page 441 The)MODEL section of PAN1 produces the scrollable
portion of the display, area “B” in [Figure 14 on page 44}

There can be up to eight model lines. Panel PAN1 has only one. The scrollable
portion of the display is formed by replicating the model lines to fill the screen.
Each of these replications, as well as the original, is known as a model set. Each
model set corresponds to a table row. Table rows are then read to fill in the
appropriate fields in the model set replications.

PAN1 displays only three (city, state, and popchg) of the five columns of table
TAB1. The model lines can include any number of the KEYS, NAMES, and
extension variables of the table. They can also include fields that are not variables
in the table. shows the effect of displaying information from TAB1 on
panel PAN1.

4 N
PSSR S S S +
B e e L L e T Population Change ------ ROW 4 OF 10
Command ==> Scroll ==> Page
--(A) This table shows selected metropolitan areas which had a
large relative increase in population from 1970 to 1980.
Metro area State Change
———————— (Percent)
+--rd-- Fort Collins co +66.0
r5-- West Palm Beach f1 +64.3
r6-- Fort Lauderdale f1 +63.6
--(B)| r7-- Bryan tx +61.5
r8-- Reno nv +60.0
r9-- Provo ut +58.4
rlo- McAllen tx +56.1
Fommm e BOTTOM OF DATA #***xkxkkkkkkhkkhkkk
F e e +
o J

Figure 15. TBDISPL display

When the TBDISPL service is invoked with the panel name specified, the scrollable
portion begins with the current row. That is, the current row is the top row
displayed. In this example, the current row pointer (CRP) for table TAB1 has been
set to row 4. Table rows are read starting with row 4 to fill in the appropriate fields
in the model set replications. If there were any non-table variables in the model
line, they would be filled in with their current values. Because there aren’t enough
rows in the table to fill the screen, the bottom-of-data marker is placed in the
display after the last row. The “empty” model sets beyond this marker are not
displayed.

In[Table 1 on page 44} the symbols r1 through r10 label the 10 rows in the table
TAB1. The highlighted rows, r4 through r10, indicate that these rows provide the
information for the scrollable portion of the display (marked as area B in

Figure 15)

|[-:igure 15| is the result of using the TBDISPL service with panel definition PAN1
(Figure 14 on page 44) and ISPF table TAB1 (Table 1 on page 44). Portion A is the
fixed portion defined by the)BODY section of PAN1. Portion B is the scrollable
portion defined by the)MODEL section of PAN1. The table information in the
display is the specified columns from row 4 to row 10.

Chapter 3. Introduction to writing dialogs 45

Display Services

Processing selected rows

When a user changes data in a model set, the corresponding table row is said to be
selected for processing. More than one row can be selected in a single interaction.
Before the TBDISPL service returns control to the dialog function, the CRP is
positioned to the first of the selected rows. First means the row closest to the top of
the table, not the row that was selected first. The other selected rows are called
pending selected rows.

Note: System command ZCLRSFLD causes a row to be selected if it is used on a
scrollable input field.

When the CRP is positioned at a selected row, the row is retrieved, meaning the
values from that row are stored in the appropriate dialog variables. Then, all input
fields in the selected model set on the display are stored in the corresponding
dialog variables. The dialog function can then process the row in any manner it
chooses. For example, the function can invoke the TBPUT service to update the
row, or it can invoke the BROWSE service to examine a file specified in that row.

A call of the TBDISPL service is required to position the CRP to each pending
selected row. For these calls, neither the PANEL nor MSG parameter should be
specified.

The system variable ZTDSELS contains the number of selected rows. It can be
tested by the dialog function or in the)PROC section of the table display panel to
determine if any rows were selected. For example:
)PROC

e /* Process fixed portion fields =*/

IF (&ZTDSELS -= 0000) /* Any selected rows? */

.. /* Process scrollable portion flds*/

)END

The interpretation of this variable is as follows:
0000 No selected rows
0001 One selected row (now the current row)

0002 Two selected rows, consisting of the current row and a pending selected
row

0003 Three selected rows, consisting of the current row and two pending
selected rows

“"_ 1

n n” selected rows, consisting of the current row and “n-1” pending
selected rows.

As TBDISPL is reinvoked without the PANEL and MSG parameters (to process any
pending selected rows), ZTDSELS is decremented by one. An example is shown in

Table 2. ZTDSELS decrementation

DM Service User Action Value of ZTDSELS

TBDISPL TAB1 Selects 3 rows 0003 (current row plus two pending selected rows)
PANEL(PANT1)

TBDISPL TAB1 None 0002 (current row plus one pending selected row)

46 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Display Services

Table 2. ZTDSELS decrementation (continued)
DM Service User Action Value of ZTDSELS
TBDISPL TAB1 None 0001 (current row; no pending selected rows)

Adding table rows dynamically during table display scrolling

Assume that you have access to a large amount of related data that might be built
into a single table. However, you need to interface with only a subset of that data
during an ISPF session, but you are not sure just how extensive that subset is.
Normally, you would have to initially construct a table that included all possible
data that you might wish to access during a session before you began scrolling and
update activity on the table. This could lead to a great deal of unnecessary
overhead because you might include a lot of data in your table that you never
access.

By interacting with a set of function system variables, an ISPF function can
dynamically expand the table as you scroll through it during a session. The
function can specify that the table is to be expanded upward when the user has
scrolled past the top, expanded downward when the user has scrolled past the
bottom, or both. In this way, the function adds only the table rows that satisfy
your needs as you need them.

System variables are the ISPF-function interface

Eight system variables in the function pool are the vehicle for passing, between
ISPF and the function, values that control table expansion. These variables and the
functions they perform are:

ZTDRET (input; length 8)
The function sets variable ZTDRET in the function pool to a value (UP,
DOWN, or VERTICAL) that indicates to ISPF when control is to return to
the function so that more rows can be added to the table being processed.

ZTDADD (output; length 3)
ISPF sets this variable to either YES or NO before returning control to the
function. A value of YES indicates that the function needs to add more
rows to the table being processed. ZTDADD is normally set to NO,
indicating that no more rows need to be added to the table.

ZTDSCRP (input/output; length 6)
This variable is set to the row pointer (number of the row relative to the
top of the table) of the row that is to be at the top of the panel’s scrollable
area after the scroll request is processed. If ISPF cannot determine this
value, this variable is set to zero.

ZTDSRID (output; length 6)
ISPF sets this variable to the row ID of the row pointed to by the value in
variable ZTDSCRP. During table processing, the row pointer value for a
given row can change. However, the row ID of that row does not change.

ZTDAMT (output; length 4)
When ISPF returns control to the function with the value of variable
ZTDADD set to YES, the value that ISPF has set in variable ZTDAMT tells
the function how many rows, based on the information available, ISPF
calculates should be added to the table to satisfy the current scroll request.

ZTDSIZE (output; length 4)
ISPF sets the value of ZTDSIZE to the total number of model sets; that is,

Chapter 3. Introduction to writing dialogs 47

Display Services

the number of table rows that fill the scrollable area of the panel. This is
not necessarily the same as the number of lines displayed in the panel’s
scrollable area.

ZTDLTOP (input; length 6)
The function can optionally set this variable to a value for ISPF to use in
calculating the value x (top-row-displayed) in the indicator 'ROW x OF y’,
which ISPF displays on a TBDISPL screen.

ZTDLROWS (input; length 6)
The function can optionally set this variable to a value for ISPF to use as
the value y (total rows in the logical table) in the indicator '/ROW x OF y’.

You can define variables ZTDAMT, ZTDSCRP, ZTDSRID, ZTDSIZE, ZTDLTOP, and
ZTDLROWS as fullword fixed binary in a program function. If you do not, the
default for each of these variables is character with lengths as specified in the
system variable charts in the [Appendix E, “System variables,” on page 405

Dynamic table building: To put the dynamic table building concept into practice,
a function first builds a basic table structure. The initial size of this table is
determined by balancing the minimum amount of table data that would satisfy
most anticipated user needs against the overhead of including a large amount of
table data to cover more contingencies. As more table rows are needed to satisfy
scroll requests, ISPF returns control to the function so that it can add those rows.

When a user issues a scroll request, there might be input fields in a panel that
have been typed into (selected for processing). In that case, the dialog first
processes all selected rows and then issues a TBDISPL request, without panel
name, to cause the panel to redisplay. If no table rows are needed to fill the scroll
request, ISPF completes the scroll and redisplays the panel. If more table rows are
needed to fill the scroll request, ISPF returns control to the function to add table
rows. Keep in mind that each time control returns to the function, the)PROC
section of the panel from which the table display was requested is executed. After
adding the table rows, the function issues a TBDISPL without a panel name to
complete the scroll and redisplay. Remember, specifying a panel name on a
TBDISPL request nullifies any pending selected rows or request for scrolling.

The values of a set of system variables in the function pool are the parameters
used in the interchange between ISPF and a function when dynamically increasing
the table size.

Using variable ZTDRET

The need for expanding a table occurs when a user scrolls beyond the top or
bottom of the table while using the TBDISPL service. The function must set
variable ZTDRET to a value that tells ISPF when to return control so the function
can expand the table. The function sets ZTDRET to one of three possible values:

8) g Control returns to the function when the top of the scrollable data
is reached. This applies when you are building the table upward
from the bottom. The value UP has no effect when the bottom of
the scrollable data is reached.

DOWN Control returns to the function when the bottom of scrollable data
is reached. This applies when you are building the table
downward from the top. The value DOWN has no effect when the
top of the scrollable data is reached.

VERTICAL Control returns to the function when the top or bottom of the
scrollable data is reached.

48 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Display Services

The value in ZTDRET must be left-justified (no leading blanks). ISPF evaluates the
value of ZTDRET only when the function issues a TBDISPL request with a panel
name specified. This is true, even though in the interim, the function might change
the value of ZTDRET and issue TBDISPL requests without a panel name specified.
A TBDISPL request with a panel name specified also nullifies processing of any
pending selected table rows and any pending scroll request.

When a scroll request is pending, a TBDISPL request with a message ID specified
(but without a panel name specified) causes the panel to be redisplayed with the
message, but the scroll request is nullified.

Using variable ZTDADD

Before returning control to a function from a TBDISPL request, ISPF sets function
variable ZTDADD to YES or NO, indicating to the function whether rows are to be
added to the table. The function normally receives a return code of 0 from the
TBDISPL service. It can then interrogate variable ZTDADD. If its value is "YES’,
then ZTDSCRP, ZTDSRID, ZTDAMT, and ZTDSIZE contain valid values.

ISPF normally returns control to the function for reasons other than to add table
rows. In those cases, ISPF sets the value of ZTDADD to NO. For example, the
function might need to interact with table rows that have been selected for
processing during a table display.

Using variable ZTDAMT

When ISPF returns control to a function with variable ZTDADD set to YES, the
function must add rows to the table. If rows must be added to the table to satisfy a
scroll request, ISPF calculates, when possible, the number of rows that need to be
added to the table and returns that value to the function in variable ZTDAMT. The
function should use this value for determining the number of rows to add.

For some scroll requests, such as UP MAX or DOWN MAX, ISPF cannot determine
the number of rows to be added to the table. In those cases, ISPF returns a value of
0 to the function in ZTDAMT.

Using variables ZTDSCRP and ZTDSRID

When ZTDSCRP contains a value other than 0, that value is the number of the
table row that is to be at the top of the panel’s scrollable area when the panel is
redisplayed. ISPF sets ZTDSCRP to a nonzero value if a user has requested a
downward scroll such that, when ISPF redisplays the panel following the scroll,
the top row displayed in the scrollable area existed in the table at the time of the
scroll request.

When the user requests an UP MAX or DOWN MAX, ISPF does not require the
ZTDSCRP value to position the table when it is redisplayed following the scroll. It
simply positions the table in the scrollable display area relative to the top table row
(UP MAX) or the bottom-of-data marker (DOWN MAX).

For other scroll requests that require that rows be added to the table, ISPF may not
be able to determine what the value of ZTDSCRP should be. In other words, one
of the table rows to be added by the function will be the new top row displayed.
ISPF has no way of knowing what the number of that row will be. In those cases,
ISPF returns a value of 0 to the function.

If a function receives a value of 0 in ZTDSCRP (other than for UP MAX or DOWN

MAX), it must set the variable’s value to the number of the new table row that
should display at the top of the panel’s scrollable area. When the function sets the

Chapter 3. Introduction to writing dialogs 49

Display Services

value of ZTDSCRP, the developer must take into account that the number specified
is the number of the top displayed table row relative to the top of the table as the
user who issued the scroll requests will see it. The developer must also take into
account any processing that takes place from the time the user requests a scroll to
the time the scroll is processed. For example, assume that variable ZTDRET is set
to UP. A user issues:

UP 10

but there are only eight table rows above the top one currently displayed. ISPF
returns control to the function with variable ZTDAMT having a value of 2,
indicating that two lines must be added to the table to satisfy the current scroll
request. ISPF has set variable ZTDSCRP to 0 because the new top displayed row
did not exist in the table when the scroll was requested. Assume that, instead of
adding only the two required table rows at the top of the table to satisfy this scroll
request, the function adds 20 rows as a cushion against additional scrolling.
Therefore, the function must set ZTDSCRP to 19 so that ISPF will redisplay the
panel with the table positioned as the user wants it.

In addition to the row pointer in variable ZTDSCRP, ISPF returns to the function in
variable ZTDSRID the identification (rowid) of the row that is to be displayed at
the top of the scrollable area. As just described for ZTDSCRP, if ISPF cannot
determine which is to be the top row displayed, it returns a value of 0 in
ZTDSRID.

Using variable ZTDSIZE

When ISPF returns control to the function to add more rows to a table, variable
ZTDSIZE contains the total number of table rows that can fit into the entire panel
scrollable area. Changes made to the panel structure, such as by PESHOW ON or
split-screen mode, do not affect this value. The value is the total number of
scrollable area rows.

Using variables ZTDLTOP and ZTDLROWS

ISPF displays in the upper-right corner of a TBDISPL panel a default
top-row-displayed indicator, ' ROW x OF y’, where x is the current row pointer of
the top row displayed, and y is the total number of rows in the physical table
being displayed. By assigning a message ID to system variable ZTDMSG, a
function can specify a message whose short message text is to replace the
top-row-displayed indicator. However, keep in mind that in the text shown, all
references to the top-row-displayed indicator refer to the default supplied by ISPF,
not an alternate indicator specified by the application.

Because the dimensions of only the physical table are available, ISPF has no way of
assuring what the x and y values for the top-row-displayed indicator should be.
Therefore, it is the application’s responsibility to pass to ISPF the logical table
positioning in variables ZTDLTOP and ZTDLROWS, respectively, any time control
returns to the function to add table rows. If the function does not set these
variables to a value, ISPF calculates the x and y values according to the size and
position of the table being displayed.

For example, assume that, to satisfy scroll requests, an application adds records
dynamically to a table from a 1000-record file. The application initially builds the
table with records 500 through 520. To pass these values to ISPF for use as the x
and y values in the top-row-displayed indicator, the application function sets
ZTDLTOP to 500 and sets ZTDLROWS to 1000. This causes the indicator text
"ROW 500 OF 1000 to be displayed initially on the TBDISPL panel. Then assume

50 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Display Services

that the user scrolls down 10 rows. ISPE, using the value in ZTDLTOP plus the 10
rows scrolled, changes the indicator to '/ROW 510 OF 1000’

In the example just described, assume that the user first scrolled up 10 rows
instead of down 10 rows. Because the top row displayed was the top table row,
control returns to the application function to add rows to the top of the table so
the scroll request can be completed. As mentioned, it is the application’s
responsibility to change the values of ZTDLTOP and ZTDLROWS as needed to
provide ISPF an accurate base for generating the top-row-displayed indicator.
Therefore, after adding rows to the top of the table, the function sets variable
ZTDLTOP to 490 before issuing the TBDISPL request to redisplay the table. The
text of the top-row-displayed indicator on the displayed panel is now "'ROW 490
OF 1000°.

Example: dynamic table expansion

This example illustrates how you can use dynamic expansion to reduce the initial
overhead of creating a large table for display.

Assume that you are given the task of creating an ISPF dialog that allows a user to
browse through a list of invoices for a given year. The list is maintained in a
sequential file. It contains information (such as invoice number, transaction date,
part number, quantity, and customer name) for each transaction made during the
year.

The file is fixed-block with a logical record length of 80 and a block size of 6160.
The first record in the file contains the year and the number of invoices that follow
in the file.

The format of this record is as follows:

Positions Format

1-4 Year

5-10 Number of invoices
11-80 Reserved

The format of each of the invoice records is as follows:

Positions Format

1-6 Invoice number

7-14 Transaction date (format mm/dd/yy)
15-18 Part number

19-21 Quantity (right justified)

22-46 Customer name (left justified)

47-80 Reserved

For example, the file might look something like this:

1986010000

00000101/06/867071100Acme Auto
00000201/06/860015 15Parts City
00000301/07/861023340Cary Auto Center
00000401/08/860231 1Parts Unlimited
00000501/08/863423805Bosworth's Parts
00000601/08/862341165Acme Parts
00000701/08/867653 20Acme Parts
00000801/08/863353100Bosworth's Parts
00000901/08/860003325Bosworth's Parts
00001001/08/863322 1Bosworth's Parts

Chapter 3. Introduction to writing dialogs 51

Display Services

00999912/15/860325 43ABC Parts
01000012/18/864234340ACME Parts

As you can see, the file is in no form to be browsed as it is. One way to implement
the dialog is to transfer the invoice file to a temporary ISPF table, and then display
the table with the TBDISPL service. However, since the number of invoices can be
relatively high (in this example, there are 10 000 invoices), the initial overhead of
reading every record and adding it to the table is unacceptable. As an alternative,
the dialog uses dynamic table expansion instead. Using this method, it adds only
the first 60 invoices to the table initially. Other invoices are added on an as-needed
basis as the user scrolls through the table. The user sees no evidence that only a
portion of the invoices are in the table.

shows the definition for panel INVPANEL, which the dialog uses to
display table rows.

)Attr
@ Type(Output) Intens(Low)
)Body Expand(//)
+-/-/-%8&year TRANSACTIONS+-/-/-
%Command ====>_cmd %Scroll ===> amt +
+
+
%Invoice Transaction Part
%Number Date Number Quantity Customer

)Init
&amt = PAGE
)End

Figure 16. Panel definition dynamic table expansion

The PL/I dialog function, INVOICE (shown in [Figure 17 on page 53), requires that
the invoice file be allocated to ddname INVFILE before the dialog is executed. The
intent of this example is to illustrate the dynamic expansion function. Normal error
checking and error processing is not shown, but should be included in all dialogs.

52 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Display Services

INVOICE: PROC OPTIONS(MAIN);
/***/
/* THIS PROGRAM ILLUSTRATES THE USE OF DYNAMIC EXPANSION WITH
/* THE TABLE DISPLAY SERVICE. THE PROGRAM READS RECORDS FROM A
/* SEQUENTIAL FILE CONTAINING A LIST OF INVOICES AND ADDS THE
/* INVOICE INFORMATION TO A TEMPORARY ISPF TABLE (INVTABLE).

/* THE TABLE IS THEN DISPLAYED SO THAT THE USER CAN BROWSE
/* THROUGH THE INVOICES. THE FOLLOWING STEPS ARE PERFORMED BY
/* THE PROGRAM:

/*

/* 1.

/*
/*
/*

/* 2.

/*
/*

/= 3.

/*
/*

[+ 4.

/*
/*
/*

/* 5.

/*

/* 6.

/*
/*

/= 7.

/*

/* 8.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/* 9.

/*
/*
/*
/*
/*
/*

DEFINE THE FUNCTION POOL VARIABLES FOR THE TEMPORARY
TABLE, THE TBDISPL SYSTEM VARIABLES, AND MISCELLANEOUS
VARIABLES.

ISSUE A TBCREATE SERVICE CALL FOR TEMPORARY TABLE,
INVTABLE.

OPEN FILE INVFILE AND READ THE HEADER RECORD INTO THE
HEADER_RECORD STRUCTURE.

READ EACH OF THE FIRST 60 INVOICE RECORDS FROM INVFILE
INTO THE INVOICE_RECORD STRUCTURE AND ADD THEM TO TABLE
INVTABLE. USE THE TBADD MULT PARAMETER TO OPTIMIZE
TBADD ROW STORAGE MANAGEMENT.

ISSUE A TBTOP SERVICE CALL TO POSITION THE CRP AT THE
TOP OF INVTABLE.

INITIALIZE SYSTEM VARIABLE ZTDRET TO "DOWN"

AND SYSTEM VARIABLE ZTDLROWS TO THE NUMBER OF INVOICES
IN THE FILE.

ISSUE A TBDISPL SERVICE CALL THAT REFERS TO TABLE
INVTABLE AND PANEL INVPANEL.

LOOP WHILE THE TBDISPL SERVICE RETURN CODE IS LESS THAN
8 (WHILE THE USER HAS NOT ISSUED THE END COMMAND AND
WHILE THERE HAVE BEEN NO SEVERE ERRORS). ON RETURN
FROM THE TBDISPL SERVICE, DO THE FOLLOWING:

- CHECK TO SEE IF ADDITIONAL ROWS ARE NEEDED TO
SATISFY A SCROLL REQUEST.

- IF ADDITIONAL ROWS ARE NEEDED, READ THE APPROPRIATE
NUMBER OF INVOICES FROM INVFILE AND ADD THEM TO
INVTABLE AGAIN USING THE TBADD MULT PARAMETER.

- IF NECESSARY, SET THE SYSTEM VARIABLE ZTDSCRP TO
THE CRP OF THE NEW TOP ROW.

- FINALLY, ISSUE A TBDISPL SERVICE CALL (WITHOUT A
PANEL NAME) TO REDISPLAY INVTABLE.

PERFORM SOME FINAL CLEANUP BEFORE EXITING THE DIALOG:

- ISSUE A TBEND SERVICE CALL TO CLOSE AND DELETE
INVTABLE.

- CLOSE INVFILE.

- ISSUE A VDELETE SERVICE CALL TO DELETE ALL FUNCTION
POOL VARIABLES CREATED BY THE DIALOG.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

Figure 17. PL/I dialog function example program (Part 1 of 5)

Chapter 3. Introduction to writing dialogs

53

Display Services

DECLARE
1 HEADER_RECORD,
3 YEAR CHAR(4),

3 NUM_RECS CHAR(6),
3 FILLER CHAR(70);

DECLARE
1 INVOICE_RECORD,
3 INV CHAR(6),
3 DATE CHAR(8),
3 PART CHAR(4),
3 QTY CHAR(3),
3 CUST CHAR(25),

3 FILLER CHAR(34),
INVOICE_FORMAT (5) CHAR(8)
INIT((5) (1)'CHAR '),
INVOICE_LENGTH (5) FIXED BIN(31,0)
INIT(6,8,4,3,25);
DECLARE
1 SCROLL_VARS,
3 ZSCROLLA CHAR(4),
ZTDRET CHAR(8),
ZTDSCRP FIXED BIN(31,0),
ZTDAMT FIXED BIN(31,0),
ZTDSIZE FIXED BIN(31,0),
ZTDLROWS FIXED BIN(31,0),
3 ZTDADD CHAR(3),
SCROLL_FORMAT (7) CHAR(8)
INIT((2) (1)'CHAR ',
(4) (1)'FIXED ',
'CHAR '),
SCROLL_LENGTH (7) FIXED BIN(31,0)
INIT(4,8,4,4,4,4,3);

W wwww

DECLARE
I FIXED BIN(31,0),
L4 FIXED BIN(31,0),
TBDISPL RC FIXED BIN(31,0),
BOTTOM FIXED BIN(31,0),

NEW_BOTTOM FIXED BIN(31,0),
REQUESTED _TOP FIXED BIN(31,0),

ADD_NUMBER FIXED BIN(31,0);

DECLARE
MIN BUILTIN,
PLIRETV BUILTIN,
ISPLINK EXTERNAL ENTRY
OPTIONS(ASM INTER RETCODE);

DECLARE
INVFILE FILE INPUT RECORD SEQUENTIAL
ENV(FB BLKSIZE(6160) RECSIZE(80));

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

HEADER RECORD FIELDS =*/
YEAR OF INVOICES */
NUMBER OF INVOICES =/

#% RESERVED #* x/
*/

*/

INVOICE RECORD FIELDS =/
INVOICE NUMBER */
TRANSACTION DATE +/
PART NUMBER */
QUANTITY */
CUSTOMER NAME */
#% RESERVED #* %/
FORMAT ARRAY FOR */
INVOICE_RECORD VDEF +/
LENGTH ARRAY FOR */
INVOICE_RECORD VDEF +/
*

/

TBDISPL SCROLL FIELDS */
SCROLL AMOUNT */
RETURN ON EOD */
TOP ROW CRP */
#ROWS TO ADD */

SCROLLABLE AREA SIZE*/
#ROWS IN LOGICAL TBL*/
NEED TO ADD ROWS? =/

FORMAT ARRAY FOR */
SCROLL_VARS VDEFINE =/

*/

*/

LENGTH ARRAY FOR */
SCROLL_VARS VDEFINE =/

*/

*/

WORK INDEX */

VDEFINE LENGTH PARM =/
TBDISPL RETURN CODE */
CRP OF BOTTOM ROW */
CRP OF NEW BOTTOM ROW */
TOP ROW REQUESTED BY =*/

END USER SCROLL */
#ROWS TO ADD */
*/

*/

PL/I BUILTIN */
FUNCTIONS */
ISPF SERVICE */
INTERFACE */
*/

*/

INVOICE FILE */
*/

*/

Figure 17. PL/I dialog function example program (Part 2 of 5)

54 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Display Services

[Hkdkkdkkdk ko kkkkkkk ko k ko k ok k ko k ok ko k ko k ko k ko kkkkkhkkhkkhkkhkkhkk
/* */
/+ ISSUE VDEFINE SERVICE CALLS TO DEFINE THE TABLE VARIABLES, */
/* SCROLL SYSTEM VARIABLES, AND OTHER MISCELLANEOUS FIELDS TO */

/* ISPF. */
/* */
/***/
/* */

CALL ISPLINK('VDEFINE ', /* DEFINE TABLE VARS */
"(INV DATE PART QTY CUST)', /= */
INVOICE_RECORD, /* */
INVOICE_FORMAT, /* */
INVOICE_LENGTH, /* */

'LIST s /% */

/* */

CALL ISPLINK('VDEFINE ', /* DEFINE SCROLL VARS */
" (ZSCROLLA ZTDRET ZTDSCRP ZTDAMT ZTDSIZE ZTDLROWS ZTDADD)',
SCROLL_VARS, /* */
SCROLL_FORMAT, /* */
SCROLL_LENGTH, /* */

'LIST s /* */

L4 = 4; /* */
CALL ISPLINK('VDEFINE ', /* DEFINE BOTTOM ROW CRP =/
"(BOTTOM) ', /% %/

BOTTOM, /* */

'"FIXED ', /* */

L4); /* */

/* */

CALL ISPLINK('VDEFINE ', /* DEFINE PANEL VAR YEAR */
"(YEAR) ', /% %/

YEAR, /% */

'CHAR ', /* */

L4); /* */

/* */
/***/
/* */
/* ISSUE TBCREATE SERVICE CALL TO CREATE TEMPORARY TABLE */
/* INVTABLE. MAKE EACH OF THE TABLE VARIABLES NAME VARIABLES. */
/* */
/***/
/* */

CALL ISPLINK('TBCREATE', /* */
"INVTABLE', /* */

1 1 s /* */

"(INV DATE PART QTY CUST)'); /* */

/* */
/***/
/* */
/* OPEN FILE INVFILE AND READ THE HEADER RECORD. */
/* */
/******* """"""""" KX KX Kk Kk hhkhkhhhhhhhhhhkhhkhk*k *******************/
/* */

OPEN FILE(INVFILE); /* OPEN INVOICE FILE */
READ FILE(INVFILE) /* READ HEADER RECORD */
INTO(HEADER_RECORD) ; /* */
/* */

Figure 17. PL/I dialog function example program (Part 3 of 5)

Chapter 3. Introduction to writing dialogs 55

Display Services

/***/

/* */
/* READ THE FIRST 60 RECORDS FROM INVFILE, ADDING EACH TO THE */
/* TABLE. «/
/* */
/***/
/* */

ADD_NUMBER = 60; /* */
DO I = 1 TO ADD_NUMBER; /* */
READ FILE(INVFILE) /* READ NEXT RECORD */
INTO(INVOICE_RECORD); /* */
CALL ISPLINK('TBADD ', /* ADD INVOICE TO TABLE =/
"INVTABLE', /* */

v, /* */

1 1 s /* */

ADD_NUMBER) ; /* */

END; /% */
/* */
/***/
/* */
/* SKIP BACK TO THE TABLE TOP, INITIALIZE THE ZTDRET AND */
/* ZTDLROWS SYSTEM VARIABLES, AND ISSUE A TBDISPL SERVICE CALL */
/* TO DISPLAY THE TABLE. */
/* */
/***/
/* */

CALL ISPLINK('TBTOP ', /* SKIP TO TABLE TOP */
"INVTABLE'); /* */

ZTDRET = 'DOWN ' /* RETURN ON BOTTOM OF */
/* DATA */

ZTDLROWS = NUM RECS; /* SET LOGICAL #ROWS */
CALL ISPLINK('TBDISPL ', /* PUT UP TABLE */
"INVTABLE', /* */

"INVPANEL'); /* */

TBDISPL_RC = PLIRETV(); /% */
/* */

YR T I B R L R L R e o B R R R R R N L L /
/* */
/* LOOP WHILE USER HAS NOT ISSUED THE END COMMAND, CHECK TO */
/* SEE IF ADDITIONAL ROWS ARE NEEDED TO SATISFY SCROLL, ADD ROWS =/
/* IF APPROPRIATE, AND THEN REDISPLAY TABLE. */
/* */
/***/
/* */

DO WHILE(TBDISPL RC < 8); /* LOOP WHILE NOT END */
IF ZTDADD = 'YES' THEN /* NEED TO ADD ROWS? */
DO; /* */

/* */

CALL ISPLINK('VGET Y, /* CHECK TO SEE IF MAX */
"(ZSCROLLA) ', /* SCROLL */

"SHARED '); /* */

IF ZSCROLLA = 'MAX' THEN /* IF SO, ADD ALL */
ZTDAMT = 999999; /* REMAINING INVOICES =/

ELSE; /* ELSE, ADD ZTDAMT ROWS#/

/* */

CALL ISPLINK('TBBOTTOM', /* SKIP TO TABLE BOTTOM */
"INVTABLE', /* TO ADD ROWS */

1 I, /* */

SN /* */

1 I, /* */

'BOTTOM ') /* SAVE CRP OF BOTTOM */

/* */

Figure 17. PL/I dialog function example program (Part 4 of 5)

56 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Display Services

ADD_NUMBER = MIN(ZTDAMT, /% ADD ZTDAMT ROWS OR */
ZTDLROWS-BOTTOM); /% UNTIL INVFILE EOF %/

DO I = 1 TO ADD_NUMBER; [*/
/* */

READ FILE(INVFILE) /* READ RECORD x/
INTO(INVOICE_RECORD) /* */

/* */

CALL ISPLINK('TBADD ', /% ADD IT TO TABLE */
'INVTABLE', [*/

b, /* */

1 1 s /* */

ADD_NUMBER) ; [x/

END; /* */
IF ZSCROLLA -= 'MAX' THEN /* TF NOT MAX SCROLL, */
IF ZTDSCRP = © THEN /* MAY NEED TO SET */
DO; /* ZTDSCRP */

/* */

NEW_BOTTOM = BOTTOM + /* CALCULATE NEW BOTTOM */
ADD_NUMBER; / */
REQUESTED_TOP = BOTTOM + /* CALCULATE TOP ROW */
ZTDAMT - ZTDSIZE + 1; /* REQUESTED BY SCROLL */

/* */

IF NEW_BOTTOM < /* IF REACH EOF BEFORE */
REQUESTED_TOP THEN /* REACHING TOP ROW */

/* REQUESTED, DISPLAY =/

ZTDSCRP = NEW_BOTTOM + 1; /* ONLY BOTTOM OF */

/* DATA MARKER */

ELSE /* ELSE */

ZTDSCRP = REQUESTED_TOP; /* ADDED REQUESTED */

/* TOP, SET ZTDSCRP */

/* TO NEW TOP ROW */

END; /* */

ELSE; /* NO NEED TO SET */

ELSE; /* ZTDSCRP */

/* */

END; /* «/
ELSE; /* DON'T NEED TO ADD ROWS+*/
/* */

CALL ISPLINK('TBDISPL ', /* REDISPLAY TABLE */
"INVTABLE'); /* */

TBDISPL_RC = PLIRETV(); /* */
END; /* */
/* */

[F gk Kk kk ok kk ko k ok kR ok ko k ok ok k ko k ko k ko k ok ko k ok Kkkkkkkkkkkkkkkkkkk [
/* */
/* PERFORM FINAL CLEANUP. */
/* */
YRR R R T Ty
/* */

CALL ISPLINK('TBEND ', /* CLOSE AND DELETE */
"INVTABLE'); /* TABLE */

CLOSE FILE(INVFILE); /* CLOSE INVOICE FILE */
CALL ISPLINK('VDELETE ', /* DELETE FUNCTION POOL =/
t* s /* VARIABLES */

/* */

RETURN (0); /* */
END INVOICE; /* */

Figure 17. PL/I dialog function example program (Part 5 of 5)

Now, assume that a user is running the invoice dialog on a terminal with 24 lines.
The initial display of the table is shown in [Figure 18 on page 58|

Chapter 3. Introduction to writing dialogs 57

Display Services

4 ™\
—————————————————————————————— 1986 TRANSACTIONS ------ ROW 1 OF 10000
Command ====> Scroll ===> PAGE
Invoice Transaction Part Quantity Customer

Number Date Number

0000001 01/06/86 7071 100 Acme Parts

0000002 01/06/86 0015 15 Parts City

0000003 01/07/86 1023 340 Cary Auto Center

0000004 01/08/86 0231 1 Parts Unlimited

0000005 01/08/86 3423 805 Bosworth's Parts

0000006 01/08/86 2341 165 Acme Parts

0000007 01/08/86 7653 20 Acme Parts

0000008 01/08/86 3353 100 Bosworth's Parts

0000009 01/08/86 0003 325 Bosworth's Parts

0000010 01/08/86 3322 1 Bosworth's Parts

0000011 01/10/86 2344 23 Parts Unlimited

0000012 01/10/86 4333 55 Cary Auto Center

0000013 01/10/86 3079 65 Parts Company of NC

0000014 01/10/86 4763 340 Cary Auto Center

0000015 01/10/86 0956 70 Cary Auto Center

0000016 01/10/86 4536 52 ABC Parts
\\0000017 01/10/86 0973 330 ABC Parts)

Figure 18. Initial display for dynamic table expansion example

Notice that even though the table actually contains only 60 rows, the top row
displayed indicator shows “ROW 1 OF 10000”. This was accomplished by setting
the ZTDLROWS variable in the function pool to a value of 10 000. TBDISPL will
pick up this value and use it when ZTDRET has been properly set.

Assume that the user enters the command “DOWN 50” on the command line. This
should result in rows 51-67 being displayed. Remember though that only rows 1-60
are currently in the table. Because there are not enough rows in the table to fill the
screen, control will return to function INVOICE. Upon return from TBDISPL, the
system variables used by the dialog have these values:

ZSCROLLA 0050
ZTDADD YES
ZTDSCRP 51
ZTDAMT 7
ZTDSIZE 17

ZTDAMT contains the number of rows that must be added to satisfy the scroll
request and fill a full screen. ZTDSCRP has the CRP of the row that will be at the
top of the screen after the scroll. Because it is nonzero, function INVOICE does not
need to set it. In fact, all that the function has to do is skip to the table bottom,
read and add the next 7 invoices to the table, and then issue a TBDISPL service
request to redisplay the table. When the table is displayed again, it appears as
shown in [Figure 19 on page 59

58 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Display Services

4 N
—————————————————————————————— 1986 TRANSACTIONS ------ ROW 51 OF 10000
Command ====> Scroll ===> PAGE
Invoice Transaction Part Quantity Customer
Number Date Number
0000051 01/15/86 7536 6 Parts Unlimited
0000052 01/15/86 0546 54 ABC Parts
0000053 01/15/86 3349 65 Parts Company of NC
0000054 01/15/86 4234 340 Cary Auto Center
0000055 01/15/86 0342 70 Cary Auto Center
0000056 01/18/86 4544 52 ABC Parts
0000057 01/19/86 0763 330 Cary Auto Parts
0000058 01/19/86 0841 540 Bosworth's Parts
0000059 01/19/86 0445 560 ABC Parts
0000060 01/19/86 4542 450 ACME Parts
0000061 01/25/86 7071 100 Acme Parts
0000062 01/25/86 0015 15 Parts City
0000063 02/27/86 1023 340 Cary Auto Center
0000064 02/04/86 0231 1 Parts Unlimited
0000065 02/04/86 3423 805 Bosworth's Parts
0000066 02/04/86 2341 165 Acme Parts

\\0000067 02/04/86 7653 20 Acme Parts Y

Figure 19. Second display for dynamic table expansion example

Now assume that the user runs the command DOWN 5000:

This should result in rows 5051-5067 being displayed. As before, there are not
enough rows in the table to handle the scroll request, so control returns to function
INVOICE with this information in the system variables:

ZSCROLLA 5000
ZTDADD YES
ZTDSCRP 0
ZTDAMT 5000
ZTDSIZE 17

Notice that this time ZTDSCRP has a value of 0. This indicates that the new top
row, as requested by the user scroll, is not in the physical table. After adding the
5000 rows indicated by the ZTDAMT system variable, function INVOICE must set
ZTDSCRP to the CRP of the row that should be displayed at the top after the scroll
(row 5051). This is accomplished in the dialog by adding ZTDAMT to the number
of rows in the current table, and then subtracting out the size of the scrollable area

ZTDSIZE). When the table is redisplayed, it appears as shown in
|- ge 60

Chapter 3. Introduction to writing dialogs 59

Display Services

R 1986 TRANSACTIONS ------ ROW 5051 OF 10000 h
Command ====> Scroll ===> PAGE
Invoice Transaction Part Quantity Customer
Number Date Number
0005051 07/12/86 7326 436 Parts Unlimited
0005052 07/12/86 0516 54 ABC Parts
0005053 07/21/86 3549 5 Parts Company of NC
0005054 07/24/86 4243 350 Cary Auto Center
0005055 07/25/86 0342 540 Cary Auto Center
0005056 07/31/86 4544 444 ABC Parts
0005057 07/11/86 0653 30 Cary Auto Parts
0005058 08/29/86 0821 450 Bosworth's Parts
0005059 08/01/86 6445 460 ABC Parts
0005060 08/01/86 4942 850 ACME Parts
0005061 08/01/86 7021 180 Acme Parts
0005062 08/01/86 6026 945 Parts City
0005063 08/07/86 1523 30 Cary Auto Center
0005064 08/07/86 0531 451 Parts Unlimited
0000065 08/07/86 3263 455 Bosworth's Parts
0005066 08/07/86 2771 5 Acme Parts

\\0005067 08/07/86 7453 576 Acme Parts Y

Figure 20. Third display for dynamic table expansion example

Finally, assume that the user runs the command DOWN 5000: A scroll of 5000 would
display rows 10051-10067, if there were that many invoices in the file. However,
because there are only 10 000 invoices, function INVOICE can add only rows
5068-10000 to the table and then redisplay the table. On return from TBDISPL, the
system variables again contain this information:

ZSCROLLA 5000
ZTDADD YES
ZTDSCRP 0
ZTDAMT 5000
ZTDSIZE 17

After adding all of the invoices to the table (end of file is reached), the dialog must
set system variable ZTDSCRP. Because the scroll amount has caused the user to
scroll past the end of data, the dialog sets ZTDSCRP to a value that will cause only
the bottom of data marker to be displayed. That is, ZTDSCRP is set to a value
greater than the number of rows in the table. When the table is redisplayed it
appears as shown in [Figure 21 on page 61}

60 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Display Services

4 N
—————————————————————————————— 1986 TRANSACTIONS --------==--ccmmemmoo
Command ====> Scroll ===> PAGE
Invoice Transaction Part Quantity Customer
Number Date Number

BOTTOM OF DATA

- J
Figure 21. Fourth display for dynamic table expansion example

One case not illustrated is that of the user issuing a DOWN MAX scroll request. In
this case ZTDAMT and ZTDSCRP would each have a value of 0 when control
returns to the dialog. ZSCROLLA would have a value of MAX. The dialog would
add all remaining invoices to the table and then redisplay the table. It is not
necessary in a MAX scroll case to set ZTDSCRP before redisplaying the table
because ISPF automatically positions the table so that a full screen plus the bottom
of data marker are displayed.

In this example the program has been written so that control continues to return to
the dialog after all of the invoice file records have been added to the table. To
further improve performance, it may be desirable for the dialog to disable the
return after the end of file has been reached. This can be done by setting the
ZTDRET function pool variable to some value other than DOWN, UP, or
VERTICAL, and then issuing a TBDISPL service request with the panel name
specified. Be aware that when a panel name is specified, ISPF clears any pending
scroll requests. So it is up to the dialog to position the table CRP to the appropriate
row to simulate the scroll. For example, assume that a DOWN MAX scroll request
has been issued and the dialog has added all remaining invoices to the table. The
dialog then sets ZTDRET to blank and prepares to issue the TBDISPL service
request, with a panel name, to display the table. To simulate the user scroll the
dialog issues a TBSKIP service request to position the CRP to the row that will
cause a full screen plus the bottom of data marker to be displayed. When the
TBDISPL request is subsequently issued, ISPF will position the table based on the
CRP, thereby simulating the scroll.

Using the variable services

Dialog variables are the main communication vehicle between the components of a
dialog and ISPF services. Program modules, command procedures, panels,
messages, tables, and skeletons can all refer to the same data through the use of
dialog variables. Variable services allow you to define and use dialog variables.

Some variable services require that ISPF search through the variable pools to locate
requested variables. ISPF searches the pools in this order:

Chapter 3. Introduction to writing dialogs 61

Variable Services

Function pool (defined variables)
Function pool (implicit variables)
Shared pool

Application profile pool (profile pool).

PR

Searching variable pools

Dialog variables are organized into groups, or pools, according to the dialog and
application with which they are associated. An application is one or more dialogs,
each of which has been started using the same application ID.

A pool can be thought of as a list of variable names that enables ISPF to access the
associated values. When a DM service encounters a dialog variable name in a
panel, message, table, or skeleton, it searches these pools to access the dialog
variable’s value. The pools and the types of dialog variables that reside in them
are:

Function pool Contains variables accessible only by that function. A variable that
resides in the function pool of the function currently in control is
called a function variable.

Shared pool Contains variables accessible only by dialogs belonging to the same
application. A variable that resides in the shared pool of the
current application is called a shared variable.

Profile pool Contains variables that are automatically retained for the user from
one session to another. A variable that resides in the profile pool is
called an application profile variable or profile variable. Profile
variables are automatically available when an application begins
and are automatically saved when it ends.

The number of shared, function, and profile variables that can exist at any one
time depends on the amount of storage available.

SELECT service and variable access

[Figure 22 on page 63| shows how the SELECT service can be used to pass control
within a dialog and illustrates the resulting pool structures. Menus A and B access
variables from the shared and profile pools, because menus are not part of any
function. The dialog invokes Function X, which uses the VPUT service to copy one
of the variables from its function pool into the shared pool. Next, the dialog
invokes Function Y, which uses the VGET service to copy a dialog variable from
the shared pool to its function pool. Then it uses the SELECT service for further
menu processing.

[Figure 22 on page 63 also shows how the SELECT service controls access to dialog
variable pools from both functions and menus.

When you define a variable as an input variable on a selection panel, these actions
occur during processing of the menu:

* If the variable does not exist in either the shared pool or the profile pool, it is
created in the shared pool.

* If the variable exists in the shared pool, it is accessed from, and is updated in,
the shared pool.

* If the variable exists in the profile pool and not in the shared pool, it is accessed
from, and is updated in, the profile pool.

62 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

ISPSTART PANEL(A)

Menu B)

SELECT PGM(X)

Variable data flow

A 4

Variable data flow Function
FUNCTION X |« » ool for X
VPUT
SELECT PGM(Y) Shared Application
pool profile
v VGET pool

Variable data flow Function

FUNCTION Y > ool for

A

»

it |

SELECT PGM(C)

A 4

Menu C Variable data flow

A
A\ 4

Menu D

Figure 22. Control and data flow in a dialog

Function pools and dialog functions

Each function has its own unique pool of dialog variables. This is illustrated in
These function pools are maintained by ISPF on behalf of each respective
function. A function uses these dialog variables to communicate with the various
DM services. A function pool’s variables can be accessed only by the function for
which the pool was created. To make these variables available to other functions,
you must use variable services to copy any variables to be shared into the shared
pool.

Dialog variables associated with one function can have the same names as dialog
variables associated with another function, but they reside in different function
pools, and therefore, are not the same variables.

When a new function begins, ISPF creates a function pool for it. Variables can then
be created in the function pool and accessed from it. When the function ends, its
function pool, along with any variables in it, is deleted.

Command procedures, program functions, and function pools

When the function in control is a command procedure, the list of variable names
kept by the command language processor and the list of function variables kept by
ISPF is the same list. Thus, a variable created by the command procedure during
its execution is automatically a dialog variable. Likewise, the command procedure

Chapter 3. Introduction to writing dialogs 63

Variable Services

can automatically access a dialog variable entered in the function pool by ISPFE.
However, ISPF variable names cannot exceed 8 characters.

Any CLIST or REXX variable such as SYSDATE and SYSTIME, which are
dynamically evaluated when referred to, can be used in a CLIST or REXX exec
running under ISPF; however, it cannot be used in panels, messages, skeletons, or
tables. For SYSDATE and SYSTIME, use ISPF system variables ZDATE and ZTIME,
respectively, which contain similar information.

ISPF makes available two other system variables, ZDATEF and ZDATEFD, to
support date representation in various national languages. ZDATEF contains the
date represented by the characters YY, MM, and DD plus delimiters. These
characters are never translated; however, they can be in any order. For example,
the date could be expressed MM/DD/YY, YY/MM/DD, and so on, depending on
how a date is expressed in a given national language. ZDATEFD contains the same
date format, translated into the session national language.

TSO global variables, in effect when ISPF is started, are not available to CLISTs
running under ISPE. These global variables are restored when ISPF terminates. Any
global variables put into effect from within ISPF are lost when ISPF terminates.

This CLIST command procedure example illustrates that ISPF treats command
procedure variables as dialog variables.

Assume that the definition for panel XYZ contains two dialog variable input fields,
AAA and BBB. In the panel definition, they might appear as follows:

+ INITIAL VALUE %===>_AAA +
+ INCREMENT %===>_BBB +

where the underscore indicates the start of an input field, followed by the name of
the variable.

When the procedure:

SET &AAA =1
ISPEXEC DISPLAY PANEL(XYZ)
SET &CCC = &AAA + &BBB

is executed, variable AAA is set to the value 1. The procedure then invokes the
DISPLAY service to display panel XYZ. The value of AAA is 1 on the displayed
panel. ISPF creates the variable BBB in the function pool and displays it as a blank.

Now, in response to the panel display, you type 100 in the first field (AAA) and 20
in the second field (BBB). When you press Enter, the value 100 is automatically
stored in AAA and the value of 20 is automatically stored into BBB. The DISPLAY
service then returns control to the command procedure. When the next statement
executes, it creates variable CCC and sets it to 120, the sum of AAA and BBB.

When the function in control is a program, the associated function pool is not
shared with ISPFE. This is because a program is compiled, not interpreted as
command procedures are. ISPF maintains a list of variables that belong to the
function so that DM services can use dialog variables for communication of data.

ISPF makes two types of entries in the program function pool, defined and
implicit.

64 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

Use a variable service to create or delete defined variables

Use the VDEFINE service to create a defined dialog variable name in the function
pool and associate it with the corresponding program variable. This association
enables ISPF to directly access and modify that program variable. Otherwise, the
program’s variables are not available to ISPF. Use the VDELETE service to end this
association and remove ISPF’s ability to access that program variable.

The program shown, coded in PL/I, specifies that field PA of the program can be
accessed by ISPF by using a dialog variable named FA. Then, the DISPLAY service
is called to display panel XYZ.

DECLARE PA CHAR(8);

DECLARE LENGTHPA FIXED BIN(31) INIT(LENGTH(PA));

PA = 'OLD DATA';

CALL ISPLINK ('VDEFINE ', 'FA ', PA, 'CHAR ', LENGTHPA);

CALL ISPLINK ('DISPLAY ', 'XYZ ');

PA is declared as a program variable (character string, length 8). The program calls
the VDEFINE service to make PA accessible to ISPF through dialog variable FA. If
dialog variable FA is specified as an input field on panel XYZ, then “OLD DATA”
displays in field FA, and ISPF stores any data entered in that field into the
program variable PA.

Creating implicit variables
ISPF places implicit variables in the function pool when an ISPF service:

* Refers to a dialog variable name that is not found in the standard search
reference

* Must store data in a dialog variable that does not already exist in the function
pool.

Here is an illustration of how ISPF creates an implicit variable. Assume that panel
XYZ, in the preceding example, allows the user to enter a second value and that
this value is to be stored in dialog variable IA. This is the first reference to IA;
therefore, it does not yet exist in the function pool. Because variable IA does not
exist when it is referred to, ISPF creates it in the function pool. ISPF then stores
into IA the value entered on the panel. Thus, IA is an implicit dialog variable.

Any DM service invoked by a program function can access an implicit variable
directly by referencing the variable name. However, implicit variables cannot be
accessed directly from a program function. Programs access implicit variables only
through the use of the VCOPY and VREPLACE services.

When you are using APL2, variables in the current APL2 workspace that follow
APL2 and ISPF naming rules become function pool variables. ISPF treats these as
implicit variables. The VDEFINE service is not used with APL2 dialogs.

Naming defined and implicit variables

A defined variable and an implicit variable can have the same name. This occurs
when, using the VDEFINE service, a defined variable is created that uses the same
name as an existing implicit variable. When the same name exists in both the
defined and the implicit areas of a function pool, only the defined entry can be
accessed. You can make the implicit entry accessible by using the VDELETE service
to remove any defined entries for that variable name made through the VDEFINE
service. The implicit entries are not affected.

Chapter 3. Introduction to writing dialogs 65

Variable Services

You can define a given dialog variable name many times within a given function.
Each definition can associate a different program variable with the dialog variable
name. This is referred to as stacking. Only the most recent definition of that dialog
variable is accessible. A previous definition of that variable can be made accessible
by using the VDELETE service to delete the more recent definitions of that name.

For example, the main routine of a program can define a dialog variable to be
associated with one program variable. A subroutine is called and can define the
same dialog variable name to be associated with a different program variable. Any
ISPF services invoked after the second VDEFINE would have access to only the
subroutine’s program variable. The subroutine would use the VDELETE service to
delete that dialog variable before returning, thereby uncovering the earlier
definition set up in the main routine. To avoid a possible program error, each
VDEFINE processed within a function for a given dialog variable name should
have a VDELETE using the same name or an asterisk (*) as the operand. When an
asterisk is used as the operand, the VDELETE service removes all dialog variable
names previously defined by the program module from the function pool.

The VRESET service allows a program to remove its function pool variables as
though VDELETEs had been done. Any implicit variables are also deleted.

Sharing variables among dialogs

The shared pool allows dialog functions and selection panels to share access to
dialog variables.

The SELECT service creates shared pools when it processes the ISPSTART or ISPF
command, and when you specify the NEWAPPL or NEWPOOL keywords with the
SELECT service. When SELECT returns, it deletes the shared pool and reinstates
any previous shared pool.

A function can copy dialog variables from its function pool to the shared pool by
using the VPUT service. In addition, another function can directly copy these
variables to its function pool by means of the VGET service. Because a panel
displayed by the SELECT service does not belong to any function, any dialog
variables used in the panel are read from and stored into the shared or profile
pool.

Saving variables across ISPF sessions

Like the shared pool, the application profile pool contains variables that are
accessible to dialogs within an application. But, unlike the shared pool, the profile
variables are saved across sessions.

When a new application is started, it has access to a profile pool. If an application
is restarted by split screen, for example, both calls of the application access exactly
the same profile pool. The profile pool is maintained as an ISPF table whose name
is xxxxPROF, where xxxx is the application ID. If the application is already active,

then the current profile pool is used.

When accessing an application profile pool that is not currently active, ISPF first
searches the user’s profile files for a profile named xxxxPROF. ISPF finds the
profile if the user previously ran the application, and thus, had a copy of the
profile pool.

66 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

If ISPF cannot find the profile, it searches the table input file. The application
developer can provide a profile pool with the table files. A profile pool contains
variable names and values initialized for the application.

If ISPF cannot find the member in either the user’s profile pool or table input
library, it initializes the application profile pool with the contents of the default
profile pool, ISPPROF, which is read from the table input library. If the dialog
manager application ID “ISP” is active, the currently active copy of ISPPROF is
used as the default, rather than reading ISPPROF from ISPTLIB. ISPPROF is
distributed with ISPFE. It contains a set of default Function key values. An
installation can modify this table to change these settings or to include other
variables that will be copied to initialize new profile pools.

Upon completion of the application, ISPF saves the contents of the application
profile pool, under the name xxxxPROF, in the user’s profile library. ISPF deletes
the profile pool from storage when the last call of the application terminates.

You must use the VPUT service to enter variables in the profile pool. Functions can
copy variables from the profile pool into function pools by using the VGET
variable services. Selection panels automatically update existing profile variables.

Removing variables from the shared or profile pool

You can use the VDELETE or VRESET service to remove variables only from the
function pool. However, if you wish to do some housekeeping in the other variable
pools, you can use the VERASE service. The VERASE service allows you to
remove variable names and values from the shared pool, the profile pool, or both.
You can specify on the VERASE service request a list of one or more variable
names to be removed from the shared pools or both. For example:

ISPEXEC VERASE (AGE ADDRESS SOCSEC) PROFILE

might be used to remove variable values for age, address, and social security
number from the profile pool.

For detailed information about VERASE and other services, refer to the|z/OS ISP

Read-only profile pool extension variables

ISPF provides for a read-only extension of the application profile variable pool.
This allows installations to maintain better control over application default profile
variables. It also results in conservation of disk storage because a copy of these
variables need not exist in the application profile of every application user.

To use the read-only extension, you do two things:

1. First you must define the read-only extension. The read-only extension is
actually a table, which you can create by using the ISPF TBCREATE table
service. You add variables to this table as extension variables; that is, variables
not specified when the table is created. This is illustrated in the CLIST
procedure shown, using the SAVE keyword on the TBADD table service.

You need to create the extension table only once. After the table is saved, you
must define it to ISPF by using an ALLOCATE command or a LIBDEF service
request.

2. You then use DM variable services to put the name of the read-only extension
table into system variable ZPROFAPP in the profile variable pool.

Chapter 3. Introduction to writing dialogs 67

Variable Services

An example of a CLIST to create a read-only extension table named ROTABLE is
shown in The table is to contain variables RDONLY1, RDONLY2, and
RDONLYS3 set to values of LKHFC, FLIST, and SPOOLFUL, respectively. After the
procedure closes the table, it sets system variable ZPROFAPP to the table name,
ROTABLE. The procedure then puts ZPROFAPP into the profile variable pool.

/* Example of creating a read-only extension table */
SET ROV1 = LKHFC
SET ROV2 FLIST
SET ROV3 = SPOOLFUL
SET ROVLIST = &STR(ROV1 ROV2 ROV3)
ISPEXEC TBCREATE ROTABLE
ISPEXEC TBADD ROTABLE SAVE(&ROVLIST)
ISPEXEC TBCLOSE ROTABLE
SET &RC = &LASTCC
IF &RC = O THEN -
DO
/* Put extension table name into system variable ZPROFAPP. */
SET ZPROFAPP = ROTABLE
ISPEXEC VPUT ZPROFAPP PROFILE
END

Figure 23. CLIST to create a read-only extension table

When a new application that uses the NEWAPPL keyword on the SELECT service
is specified, ISPF interrogates variable ZPROFAPP in the new application’s profile
pool. If the variable value is not null, it is assumed to be the name of the profile
extension table. ISPF searches the table input files for a table with the name
specified by ZPROFAPP. The set of variables in this table becomes the read-only
extension for the profile pool of the application just selected.

Although variable services are not effective for updating the read-only extension,
you can create or update the table used as the extension by using DM table
services. Updating the extension may be done only when the application is not
active, because the table is open in nowrite mode while the application is active.

If a variable name is referred to and exists in both the profile pool and the
read-only extension table, ISPF uses the variable from the user’s profile pool. In
other words, the search order is: first the profile pool, and then the read-only
extension.

If a VPUT PROFILE is issued for a variable in the read-only extension, the update
for that variable is made to the user area of the profile pool, not to the read-only
extension. Only the profile pool variable update is saved and accessed, not the
extension variable value.

Variables owned by ISPF

A second level of profile pool, the system profile pool (ISPSPROF), is always
active. The dialog manager owns the dialog variables within the system profile
pool, and the variables cannot be modified by an application. They can be read,
however, because the system profile pool is included in the standard search
sequence after the profile pool. All system variable names begin with “Z”, such as
ZTERM, and supply information such as terminal type and list and log defaults.

If a system profile pool variable is used on a selection panel, a corresponding field
is created in the profile pool (ISPPROF). Subsequently, when that variable is

68 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

referred to by the dialog, the profile pool value is used rather than the system
profile pool value. The dialog can use the VERASE service to delete variables from
the profile (ISPPROF) pool.

Variable formats

Information entered on a panel is in character string format. All dialog variables
remain in character string format when stored:

* As implicit variables in a function pool

* In the shared pool

* In the profile pool

* In ISPF tables.

Defined variables, however, can be translated to a fixed binary, bit, hexadecimal,
float, packed, or binary string, or to a user-defined format when stored internally
in a program module. The translation occurs automatically when the variable is
stored by an ISPF service. A translation back to character string format occurs
automatically when the variable is accessed.

The VMASK service is used to validate input into a VDEFINEd dialog variable.
See the [z/0S ISPF Services Guidd for more information.

When a defined variable is stored, either of two errors can occur:

Truncation If the current length of the variable is greater than the defined
length within the module, the remaining data is lost.

Translation If the variable is defined as something other than a character
string, and the external representation has invalid characters, the
contents of the defined variable are lost.

In either case, the ISPF service issues a return code of 16.

System variables communicate between dialogs and ISPF

System variables are used to communicate special information between the dialog
and the dialog manager (ISPF). System variable names are reserved for use by the
system. They begin with the letter “Z”. Therefore, avoid names that begin with “Z”
when choosing dialog variable names.

The types of system variables are input, output, non-modifiable, and input-output.
Their type depends on their usage.

To access and update system variables, use variable services according to which
pool the variables are in. System variables in the function pool can be accessed and
updated directly from a command procedure. Those in the shared or profile pools
can be accessed by using the VGET service, and updated by using the VPUT
service.

A program function can access and update system variables in the function pool
using the VDEFINE service. Dialog variables can be accessed by using the VCOPY
service and updated by using the VREPLACE service.

The system variables in the shared or profile pools can be accessed by using the
VCOPY service. They can be updated by first updating the variable in the function
pool by using the VDEFINE or VREPLACE service and then moving that value to
the shared or profile pool by using the VPUT service.

Chapter 3. Introduction to writing dialogs 69

Variable Services

Using VDEFINE, VDELETE, VRESET, VCOPY, VMASK, and
VREPLACE

For functions coded in a programming language other than APL2, you can manage
the availability to ISPF of the internal program variables that are to be used as
dialog variables through the ISPF VDEFINE, VDELETE, and VRESET services.

Variables used in a program function are not automatically put into that function’s
variable pool. Therefore, those variables are not initially available to ISPF for
processing function requests. A function can use the VDEFINE service to make
function variable names available to ISPF through the function pool.

The VDELETE and VRESET services are used to cancel the effect of using
VDEFINE service requests. VDELETE can be used to delete access by ISPF to
selected defined variables by removing them from the function pool. VRESET
removes all defined and implicit variables from the function pool.

A program function can obtain a copy of dialog variables by using the VCOPY
service. The service request can specify that either the variable data address or the
data itself be returned.

The VMAGSK service is used to validate the data of a variable defined with the
VDEFINE service. VMASK associates a specified user or predefined mask with a
variable previously defined with VDEFINE. The VEDIT statement must be used to
indicate VMASKed variables on a panel.

A program function can update the contents of dialog-defined or implicit variables
in the function pool by using the VREPLACE service. The names of the variables
to be updated and the new contents are specified with the VREPLACE service
request.

The VDEFINE, VDELETE, VRESET, VCOPY, VMASK, and VREPLACE variable
services are not used with functions coded as procedures. For a function coded as
a CLIST or APL2 procedure, variables used in the procedure are automatically
treated as dialog variables. No special action is required to define them to ISPE
Any trailing blanks in CLIST variables are not truncated; they remain as part of the
variables.

Using the VGET, VPUT, and VERASE services

The VGET, VPUT, and VERASE services can be used by both program and
procedure functions. Functions use the VGET and VPUT services to control
movement of variables between function pools and shared or profile pools.

Functions can also obtain the values of system symbolic variables by using the
SYMDEF parameter on the VGET service.

Each function has its own function variable pool. The variables in a given
function’s pool are not available to other functions, and vice versa. To overcome
this, a function can use the VGET service to copy into its function pool variables
from the shared or profile pools. The function can make variables in its function
pool available to other functions in the same application by copying them to the
shared or profile pool by using the VPUT service.

You can use the VERASE service to remove variable names and values from the
shared pool and profile pool. The VDELETE and VRESET services are available for
removing function pool variables.

70 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

Summary of variable services

The variable services are:

All Functions

VERASE Remove variables from the shared pool or profile pool

VGET Retrieve variables from the shared pool or profile pool or retrieve
the value of a system symbolic variable

VPUT Update variables in the shared pool or profile pool

Program Functions Only

VCOPY Copy data from a dialog variable to the program
VDEFINE Define function program variables to ISPF
VDELETE Remove definition of function variables
VMASK Associate a mask with a dialog variable

VREPLACE Update a dialog variable with program data specified in the
service request

VRESET Reset function variables

Using the table services

Table services let you use and maintain sets of dialog variables. A table is a
two-dimensional array of information in which each column corresponds to a
dialog variable, and each row contains a set of values for those variables.

Contents for a table are shown in[Table 3 on page 77] In that example, the variables
that define the columns are as follows:

EMPSER Employee Serial Number
LNAME Last Name

FNAME First Name

I Middle Initial

PHA Home Phone: Area Code
PHNUM Home Phone: Local Number

Where tables reside

A table can be either temporary or permanent. A temporary table exists only in
virtual storage. It cannot be written to disk storage.

Permanent tables are maintained in one or more table libraries. A permanent table,
while created in virtual storage, can be saved on direct access storage. It can be
opened for update or for read-only access, at which time the entire table is read
into virtual storage. When a table is being updated in virtual storage, the copy of
the table on direct access storage cannot be accessed until the update is complete.

For both temporary and permanent tables, rows are accessed and updated from
the in-storage copy. A permanent table that has been accessed as read-only can be
modified in virtual storage, but cannot be written back to disk storage.

When a permanent table is opened for processing, it is read from a table input
library. A table to be saved can be written to a table output library that is different
from the input library. The input and output libraries should be the same if the
updated version of the table is to be reopened for further processing by the same
dialog.

Chapter 3. Introduction to writing dialogs 71

Table Services

Accessing data

You specify the variable names that define table columns when the table is created.
Specify each variable as either a KEY field or a NAME (non-key) field. You can
specify one or more columns (variable names) as keys for accessing the table. For
the table shown in [Table 3 on page 77, EMPSER might be defined as the key
variable. Or EMPSER and LNAME might both be defined as keys, in which case, a
row would be found only if EMPSER and LNAME both match the current values
of those variables. A table can also be accessed by one or more “argument”
variables that need not be key variables. You can define the variables that
constitute the search argument dynamically by using the TBSARG and TBSCAN
services.

In addition, a table can be accessed by use of the current row pointer (CRP). The
table can be scanned by moving the CRP forward or backward. A row can be
retrieved each time the CRP is moved. When a table is opened, the CRP is
automatically positioned at TOP, ahead of the first row. Table services, such as
TBTOP, TBBOTTOM, and TBSKIP are available for positioning the CRP.

When a row is retrieved from a table, the contents of the row are stored in the
corresponding dialog variables. When a row is updated or added, the contents of
the dialog variables are saved in that row.

When a row is stored, a list of “extension” variables can be specified by name.
These extension variables, and their values, are added to the row. Thus, variables
that were not specified when the table was created can be stored in the row. A list
of extension variable names for a row can be obtained when the row is read. If the
list of extension variables is not specified again when the row is rewritten, the
extensions are deleted.

ISPF Table Services treat blank data and NULL (zero-length) data as equal. For
example, these VDEFINES are executed:

“ISPLINK('VDEFINE ','(V1)',VALL,'CHAR ',L8,' NOBSCAN ')"
"ISPLINK('VDEFINE ','(V2)',VAL2, 'CHAR ',L8)"

If L8 = 8, VAL1 = "ABCD "and VAL2 = "ABCD ’, V1 will have a length of 8
and a value of "ABCD ’, and V2 will have a length of 4 and a value of "ABCD’.
To ISPE, V1 and V2 will be equal because before ISPF compares two values, it pads
the shorter value with blanks so that the lengths are equal.

If the same VDEFINES are done with VAL1 =" “and VAL2 =~ !
V1 will have a length of 8 and a value of ” (8 blanks), and V2 will have a
length of 0 (NULL value). To ISPF, V1 is EQUAL to V2, because ISPF will pad V2
with 8 blanks before doing the comparison to V1.

Services that affect an entire table

These services operate on an entire table:
TBCLOSE Closes a table and saves a permanent copy if the table was opened
TBCREATE Creates a new table and opens it for processing

TBEND Closes a table without saving

TBERASE Deletes a permanent table from the table output file
TBOPEN Opens an existing permanent table for processing
TBQUERY Obtains information about a table

TBSAVE Saves a permanent copy of a table without closing
TBSORT Sorts a table

TBSTATS Provides access to statistics for a table

72 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table Services

Temporary tables are created by the TBCREATE service (NOWRITE mode) and
deleted by either the TBEND or TBCLOSE service. A new permanent table is
created in virtual storage by the TBCREATE service (write mode). The table does
not become permanent until it is stored on direct access storage by either the
TBSAVE or TBCLOSE service.

An existing permanent table is opened and read into virtual storage by the
TBOPEN service. If the table is to be updated (WRITE mode), the new copy is
saved by either the TBSAVE or TBCLOSE service. If it is not to be updated
(NOWRITE mode), the virtual storage copy is deleted by either the TBEND or
TBCLOSE service.

Services that affect table rows

These services operate on a row of the table:
TBADD Adds a new row to the table.
TBBOTTOM Sets CRP to the last row and retrieves the row.
TBDELETE Deletes a row from the table.

TBEXIST Tests for the existence of a row (by key).

TBGET Retrieves a row from the table.

TBMOD Updates an existing row in the table. Otherwise, adds a new row
to the table.

TBPUT Updates a row in the table if it exists and if the keys match.

TBSARG Establishes a search argument for use with TBSCAN. Can also be
used in conjunction with TBDISPL.

TBSCAN Searches a table for a row that matches a list of “argument”
variables, and retrieves the row.

TBSKIP Moves the CRP forward or back by a specified number of rows,
and then retrieves the row at which the CRP is positioned.

TBTOP Sets CRP to TOP, ahead of the first row.

TBVCLEAR Sets to null dialog variables that correspond to variables in the
table.

Protecting table resources

Table services provide a resource protection mechanism designed to prevent
concurrent updating of the same table by more than one user. This protection
mechanism assumes that for all users having update access to a given table, the
same library name is used in the first statement defining the table for the table
library. This can be ISPTLIB or another specified library. Other libraries can be
specified by the use of the LIBRARY keyword or the LIBDEF service.

When a table is opened or created in write mode, an exclusive enqueue is
requested for a resource name consisting of the first library name defined in the
ISPTLIB, or the first library name defined in the LIBRARY DD or the top file
specified in the LIBDEF Service stack, concatenated with the table name. The
TBOPEN or TBCREATE service fails with a return code of 12 if this enqueue or
lock is unsuccessful. A successful enqueue or lock stays in effect until the
completion of a TBEND or TBCLOSE service for the table. If the NAME parameter
is specified on the TBSAVE or TBCLOSE service, an additional exclusive enqueue
or lock is issued. The resource name consists of the first library name defined in
the ISPTLIB, or the first library name defined in the LIBRARY DD or the top file
specified in the LIBDEF Service stack, concatenated with the name specified in the
NAME parameter. If this enqueue or lock fails, the service terminates with a return
code of 12 and the table is not written.

Chapter 3. Introduction to writing dialogs 73

Table Services

The table output library represented by the ISPTABL definition or specified library
name is protected from concurrent output operations from any ISPF function
through a separate mechanism not specific to table services.

The first data set in the ISPTLIB concatenation should be the same as the data set
used for ISPTABL. This ensures predictable behavior of dialogs that use table
services without specifying the LIBRARY keyword.

Example: create and update a simple table

These series of commands demonstrates the use of table services:
1. Create a permanent table, named DALPHA, to consist of dialog variables AA,

BB, and CC. AA is the key field. BB and CC are name fields.
ISPEXEC TBCREATE DALPHA KEYS(AA) NAMES(BB CC) WRITE

AA BB CC

. Display a panel named XYZ. This panel prompts a user to enter values for

dialog variables AA, BB, and CC, which are used in the steps of this example.
ISPEXEC DISPLAY PANEL (XYZ)

. Assume the user enters these values on panel XYZ:

AA = Pauly John
BB = W590
CC = Jones Beach

ISPF automatically updates dialog variables AA, BB, and CC, in the function
variable pool, with the user-entered values.

Record these values in the table DALPHA.
ISPEXEC TBADD DALPHA

AA BB CC

Pauly John W590 Jones Beach

. Assume these values for dialog variables AA, BB, and CC are entered by a user,

as in step EI through a panel display operation:

AA = Clark Joan
BB = Y200
CC = Bar Harbor

Record these values in the table DALPHA.
ISPEXEC TBADD DALPHA

AA BB CcC
Pauly John W590 Jones Beach
Clark Joan Y200 Bar Harbour

Table services adds a row to table DALPHA immediately following the row
added by the previous TBADD. Following the TBADD, the current row pointer
(CRP) is positioned at the newly added row. Before a row is added by the
TBADD service, table service scans the table to determine if the KEY field of
the new row to be added duplicates the KEY field of an existing row. If it does,
the TBADD is not performed.

. Save table DALPHA for later use by writing it to the table output library.

ISPEXEC TBCLOSE DALPHA

74 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table Services

The table DALPHA is written from virtual storage to the file specified by
ISPTABL.

Determining table size

The length of any row in a table cannot exceed 65 536 bytes. The length can be
computed as follows:

Row size = 22 + 4a + b + 9c

where:

a = total number of variables in the row, including extensions
b = total length of variable data in the row

¢ = total number of extension variables in the row

The maximum number of rows allowed in a table is 16 777 215. However, dialog
variables later used in processing can only keep a value of 999 999 as the
maximum number of table rows. The total table size is the sum of the row lengths,
plus the length of the data table control block (DTCB), plus the sort information
record for sorted tables. The length of the DTCB can be computed as follows:

DTCB length = 152 + 16d

where:
d = total number of columns in the table, not including extension variables

The length of the sort information record can be computed as follows:
sort-information length = 12 + 8e

where:
e = number of sort fields

The number of tables that can be processed at one time is limited only by the
amount of available virtual storage.

Example: function using the DISPLAY, TBGET, and TBADD
services

This topic describes the use of the DISPLAY, TBGET, and TBADD services in a
dialog function that allows a user to add data to a table. A user can start the
function by using the ISPSTART command. If the user has already started ISPF, the
function can be started from:

* A menu

* The command field in any display with an application command that is defined
in the current command table to have the SELECT action

* Another function by using the SELECT service

During function processing, the DISPLAY service controls displays requesting the
user to enter data about new employees. The data consists of:

* Employee serial number, entered on panel SER

* Name and phone number, entered on panel DATA.

Entered information is added to the table, as a row, through the TBADD service.

If the user enters an employee serial number for which an employee record already
exists in the table, a DUPLICATE NUMBER short message displays on line 1 of

Chapter 3. Introduction to writing dialogs 75

Table Services

76

panel SER. If the user enters the HELP command or presses the HELP Function
key to get further explanation of this short message, this long message is displayed
on line 3 of the panel:

EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER

When the user successfully enters data for an employee, the short message NEW
RECORD INSERTED is displayed on line 1 of panel SER. Then the user can enter
the serial number of the next employee for which table data is to be added.

The user ends function processing by entering the END or RETURN command on
any displayed panel or by pressing the END Function key or RETURN Function
key.

[“Command procedure function”| lists the complete function, followed by each
statement with supporting text and figures.

Command procedure function

1. CONTROL ERRORS CANCEL
2. TBOPEN TAB1 WRITE
3. DISPLAY PANEL(SER)
4. if return code = 0, go to 6
5. if return code = §, go to 21
6. TBGET TAB1
7. if return code = 0, go to 9
8. if return code = 8, go to 12
9. DISPLAY PANEL(SER) MSG(EMPX210)
10. if return code = 0, go to 6
11. if return code = 8, go to 21
12. Set dialog variables to blanks
13. DISPLAY PANEL(DATA)
14. if return code = 0, go to 16
15. if return code = 8§, go to 21
16. TBADD TABI
17. if return code = 0, go to 18
18. DISPLAY PANEL(SER) MSG(EMPX211)
19. if return code = 0, go to 6
20. if return code = 8, go to 21
21. TBCLOSE TAB1

22. End the function

Description of function steps
1. CONTROL ERRORS CANCEL
This DM service request specifies that the function is to be terminated for a
return code of 12 or higher from a DM service request.
2. TBOPEN TAB1 WRITE
Open table TAB1 in update (WRITE) mode. Read table contents, shown in

[Table 3 on page 77, into virtual storage. TABI is referred to by Steps 2, 6, 16,
and 21.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Table Services

Table 3. Five rows in table TAB1

EMPSER LNAME FNAME I PHA PHNUM
598304 Robertson Richard p 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Richard L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Kelvey Ann A 914 555-4156

3. DISPLAY PANEL(SER)

This DISPLAY operation uses the panel definition SER, shown in to
control the format and content of the panel display, shown in

%ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL%===> EMPSER+ (MUST BE 6 NUMERIC DIGITS)

+ 4+ + + + +

+PRESS%ENTER+TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.
+
+PRESS%END KEY+(PF3) TO END THIS SESSION.

)PROC
VER (&EMPSER,NONBLANK,PICT,NNNNNN)

)END

Figure 24. Panel definition SER

COMMAND ===>

ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL ===> (MUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

PRESS END KEY (PF3) TO END THIS SESSION.

- J
Figure 25. Panel display SER

Both the panel definition and the display are referred to in Steps 3, 9, and 18.
The display requests that a serial number be entered for an employee. The

Chapter 3. Introduction to writing dialogs 77

Table Services

user enters the serial number in the field labeled EMPLOYEE SERIAL
NUMBER. The DISPLAY service then stores it in function pool variable
EMPSER, and verifies it as specified on the panel definition. The verification is
specified in a VER statement in the)PROC section of the panel definition, as
shown in [Figure 24 on page 77

VER (&EMPSER,NONBLANK,PICT,NNNNNN)

This statement specifies that EMPSER must be nonblank and must consist of
six digits, each in the range of 0-9.

When the input passes the verification, the DISPLAY service returns control to
the function.

If the input fails the verification, the panel is automatically displayed again,
but with an appropriate ISPF-supplied message displayed, right-justified, on
line 1. For example, if the user fails to enter the required employee serial
number, the ENTER REQUIRED FIELD message is displayed, as shown in

and referred to in Steps 3 and 18.

4 N\
------------------- EMPLOYEE SERIAL =-------------ENTER REQUIRED FIELD
COMMAND ===>
ENTER EMPLOYEE SERIAL BELOW:
EMPLOYEE SERIAL ===> (MUST BE 6 NUMERIC DIGITS)
PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.
PRESS END KEY (PF3) TO END THIS SESSION.
o J

Figure 26. Panel display SER with an ISPF-provided message superimposed on line 1

7.

After the user re-enters the information, it is stored again in function pool
variable EMPSER and reverified. The process is repeated until the information
passes the verification tests.

if return code = 0, go to 6

If the return code is 0, the display operation is successfully completed. Go to
step 6 to verify that no record exists for this employee number.

if return code = 8, go to 21

If the return code is 8, the END or RETURN command was entered on the
display by the user. Go to step 21 to end processing.

TBGET TAB1

This TBGET uses the employee serial number, stored in EMPSER in step 3 or

18, to attempt retrieval of an employee record from the TAB1 table. The table
is a keyed table and has been created in another dialog by the service request:

TBCREATE TAB1 KEYS(EMPSER) NAMES(LNAME FNAME I PHA PHNUM)
if return code = 0, go to 9

78 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table Services

A return code of 0 means that the record is found. Therefore, a record already
exists for the employee serial number entered by the user. Go to step 9 to
display the DUPLICATE NUMBER message.

8. if return code =8, go to 12
A return code of 8 means that no record is found. Go to step 12 to request the
user to enter employee data.

9. DISPLAY PANEL(SER) MSG(EMPX210)

This DISPLAY operation uses panel definition SER (Figure 24 on page 77) and
message EMPX210, shown in to control the format and content of

the display. is referred to by steps 9, 13, and 18.

EMPX210 'DUPLICATE NUMBER' .ALARM=YES
"EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.'

EMPX211 'NEW RECORD INSERTED'
"ENTER SERIAL NUMBER FOR NEXT EMPLOYEE RECORD TO BE INSERTED.'

EMPX212 'ENTER PHONE NUMBER'
'"IF THE EMPLOYEE HAS NO PHONE, ENTER 000-000'

EMPX213 'ENTER FIRST NAME'
"A FIRST NAME OR FIRST INITIAL IS REQUIRED.'

EMPX214 'ENTER LAST NAME'
"A LAST NAME IS REQUIRED.'

Figure 27. Message EMPX21

This DISPLAY request, omitting the PANEL(SER) parameter, could have been
used in this step:

DISPLAY MSG(EMPX210)

When the PANEL parameter is omitted, the specified message is
superimposed on the panel currently being displayed, which, in this case, is
the panel SER.

The short form of the message EMPX210, DUPLICATE NUMBER, is
superimposed on line 1 of the panel display, shown in|Figure 28 on page 80}

Chapter 3. Introduction to writing dialogs 79

Table Services

--------------------- EMPLOYEE SERIAL =-------------DUPLICATE NUMBER
COMMAND ===>

ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL ===> 598304 (MUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

PRESS END KEY (PF3) TO END THIS SESSION.

- J
Figure 28. Panel display SER—short form of message EMPX210 superimpose line 1

While viewing this message, the user can request the long form of the
message by pressing the HELP Function key. The long form of the message

EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.

is superimposed on line 3 of the display. See .

--------------------- EMPLOYEE SERIAL -------------DUPLICATE NUMBER
COMMAND ===>

EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.

ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL ===> 598304 (MUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

PRESS END KEY (PF3) TO END THIS SESSION.

- J
Figure 29. Panel display SER—Iong form of message EMPX210 superimposed on line 3

After the user enters the requested serial number, the DISPLAY service stores
it in function pool variable EMPSER and verifies it as described for step 3.
After the input passes verification, the DISPLAY service returns control to the
function.

10. if return code = 0, go to 6

If the return code is 0, the display operation is successfully completed. Go to
step 6 to verify that no record already exists for this employee number.

11. if return code = §, go to 21

80 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

If the return code is 8, the END or RETURN command was entered on the
display by the user. Go to step 21 to end processing.

12. Set dialog variables to blanks

Table Services

These function pool variables are set to blank to prepare to receive data for a

new employee record.
13. DISPLAY PANEL(DATA)

The DISPLAY operation uses panel definition DATA, shown in |[Figure 30, to

control the format and content of the display shown in [Figure 31 on page 82|

%COMMAND ===>_7CMD

+

N

EMPLOYEE SERIAL: &EMPSER

+

+ EMPLOYEE NAME:

+ LAST %===>_LNAME +
+ FIRST %===>_FNAME +
+ INITIAL%===>_I+

+

+ HOME PHONE:

+ AREA CODE %===>_PHA+

+ LOCAL NUMBER%===>_PHNUM +

+

+

+PRESS%ENTER+TO STORE EMPLOYEE DATA AS ENTERED ABOVE.

+
+PRESS%END KEY+(PF3) TO END THIS SESSION.

)INIT
.CURSOR = LNAME
IF (PHA = ' ')
&PHA = 914
)PROC

VER (8LNAME,ALPHA)

VER (&FNAME,ALPHA)

VER (&I,ALPHA)

VER (&PHA,NONBLANK,PICT,NNN)

VER (&PHNUM,PICT, 'NNN-NNNN')

VER (&LNAME,NONBLANK,MSG=EMPX214)
VER (&FNAME,NONBLANK,MSG=EMPX213)
VER (&PHNUM,NONBLANK,MSG=EMPX212)

)END

Figure 30. Panel definition DATA

Chapter 3. Introduction to writing dialogs

81

Table Services

-

COMMAND ===>

EMPLOYEE SERIAL: 106085

EMPLOYEE NAME:
LAST ===>
FIRST ==>
INITIAL ===

>

HOME PHONE:
AREA CODE
LOCAL NUMBER

===

>

PRESS ENTER TO STORE EMPLOYEE DATA AS ENTERED ABOVE.

PRESS END KEY (PF3) TO END THIS SESSION.

Figure 31. Panel display DATA

The variables set to blank in step 12 are displayed, along with the new
employee serial number entered in step 3 or 18. The user is asked to enter, in
the blank fields displayed on the screen, the name and phone number for the
employee.

After the user enters these fields, the DISPLAY service stores the input in
function pool variables LNAME, FNAME, I, PHA, and PHNUM. Then,
verification of the input is performed as specified in VER statements in the
)PROC section of the panel definition (Figure 30 on page 81).

If the input fields pass the verification tests, the DISPLAY service returns
control to the function.

If the input fields fail the verification tests, a short-form message is displayed
on line 1.

The message can be provided by ISPE, or the number of the message
displayed may have been specified in the VER statement that defined the
verification test. See VER statements containing message IDs EMPX212,
EMPX213, and EMPX214 in [Figure 30 on page 81} When a message ID is
specified, this message is displayed instead of an ISPF-provided message. In
either case, if the user enters the HELP command, the long form of the
message is displayed on line 3.

The messages request that information be re-entered. When this information is
re-entered, it is stored again in function pool variables and reverified. The
process is repeated until the verification tests are passed.

14. if return code = 0, go to 16

If the return code is 0, the display operation is successfully completed. Go to
step 16 to add the record to the table.

15. if return code = 8, go to 21

If the return code is 8, the END or RETURN command was entered on the
display by the user. Go to step 21 to end processing.

16. TBADD TAB1

This TBADD adds a row to table TAB1 by copying values from function pool
variables to the table row. The values copied are employee serial number,
stored in the function pool variable EMPSER by step 3 or 18, and employee
name and phone number, stored in function pool variables LNAME, FNAME,

82 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table Services

I, PHA, and PHNUM by step 13. Function pool variables must have the same
names as the table variables to which they are to be copied by the TBADD
operation. Therefore, the names used in the TBCREATE request are the same
as the names used in the definitions for panels on which the DISPLAY service
accepts user input.

17. if return code = 0, go to 18

If the return code is 0, the TBADD operation is successfully completed. Go to
step 18 to display the NEW RECORD INSERTED message.

18. DISPLAY PANEL(SER) MSG(EMPX211)

This DISPLAY operation uses panel definition SER (Figure 24 on page 77) and
message EMPX211 (Figure 27 on page 79) to control the format and content of
the display. The short form of message EMPX211, NEW RECORD INSERTED,
is displayed on line 1. If the user enters the HELP command while this
message is being displayed, the long form of the message (Figure 27 on page|

Fo):

ENTER SERIAL NUMBER FOR NEXT EMPLOYEE RECORD TO BE INSERTED

is displayed on line 3.

The user enters another serial number. The DISPLAY service verifies it as
described in step 3. When the serial number passes the verification tests, the
DISPLAY service returns control to the function.

19. if return code =0, go to 6
If the return code is 0, the display operation is successfully completed. Go to
step 6 to verify that no record already exists for this employee number.

20. if return code = 8, go to 21
If the return code is 8, the END or RETURN command was entered on the
display by the user. Go to step 21 to end processing.

21. TBCLOSE TAB1
Close the table TAB1. Write it from virtual storage to permanent storage.

22. End the function.

Specifying dbcs search argument format for table services

For table services, you can specify either a DBCS or MIX (DBCS and EBCDIC)
format string as a search argument. If either is used as a generic search argument,
such as xxx* (any argument whose first three characters are ‘xxx’), the argument
must be specified as follows:
* DBCS format string

DBDBDBDB**

where DBDBDBDB represents a 4-character DBCS string and ** is a single DBCS
character representing the asterisk (*).

* MIX (DBCS and EBCDIC) format string
eeee[DBDBDBDBDB] *

where eeee represents a 4-character EBCDIC string, DBDBDBDBDB represents a
5-character DBCS string, [and] represent shift-out and shift-in characters, and *
is an asterisk in single-byte EBCDIC format.

Using the file-tailoring services

The file-tailoring services, listed in the order they are normally invoked, are:

Chapter 3. Introduction to writing dialogs 83

File—Tailoring Services

84

FTOPEN Prepares the file-tailoring process and specifies whether the
temporary file is to be used for output

FTINCL Specifies the skeleton to be used and starts the tailoring process

FTCLOSE Ends the file-tailoring process

FTERASE Erases an output file created by file tailoring.

File-tailoring services read skeleton files and write tailored output that can be used
to drive other functions. Frequently, file tailoring is used to generate job files for
batch execution.

The file-tailoring output can be directed to a file specified by the function, or it can
be directed to a temporary sequential file provided by ISPE. The file name of the
temporary file is available in system variable ZTEMPF. In MVS, ZTEMPF contains
a data set name. The ddname of the temporary file is available in system variable
ZTEMPN.

You can use the ISPFTTRC command to trace both the execution of file tailoring
service calls (FTOPEN, FTINCL, FTCLOSE, and FTERASE) and the processing that
occurs within the file tailoring code and processing of each statement. For more
information, refer to [“File tailoring trace command (ISPFTTRC)” on page 374.

Skeleton files

Each skeleton file is read record-by-record. Each record is scanned to find any
dialog variable names, which are names preceded by an ampersand. When a
variable name is found, its current value is substituted from a variable pool.

Skeleton file records can also contain statements that control processing. These

statements provide the ability to:

 Set dialog variables

* Imbed other skeleton files

* Conditionally include records

* Iteratively process records in which variables from each row of a table are
substituted.

When iteratively processing records, file-tailoring services read each row from a
specified table. If the table was already open before processing the skeleton, it
remains open with the CRP positioned at TOP. If the table was not already open,
file tailoring opens it automatically and closes it upon completion of processing.

Problems can occur when using file-tailoring services in conjunction with other
services (EDIT, COPY, ...) that result in modifying the data set members in the
ISPSLIB concatenation. ISPSLIB is the input skeleton library, and it is assumed to
be a static library. FTINCL obtains existing DCB/DEB information based on the
last OPEN done against ISPSLIB by ISPFE. It is recommended that applications that
use file tailoring and modify members of ISPSLIB, use the LIBDEF service for
ISPSLIB to point to the application’s skeleton library.

The application should also check for any changes to the data set information
DCB/DEB before invoking file-tailoring services. If there has been a change, then
the application should issue a NULL LIBDEF for ISPSLIB and then reissue the
original LIBDEF for ISPSLIB. This will force a close and re-open of the ISPSLIB
library.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

File—Tailoring Services

Example of a skeleton file

A sample skeleton file is shown in It contains job control language (JCL)
for an assembly and optional load-and-go. The tailored output could be submitted
to the background for submission.

//ASM EXEC PGM=IFOX00,REGION=128K

/! PARM= (&ASMPARMS)

//SYSIN DD DSN=&ASMIN: (8MEMBER) ,DISP=SHR
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
)SEL &ASMMAC1 ~=87

/! DD DSN=&ASMMAC1,DISP=SHR

)SEL ZASMMAC2 ~=87

// DD DSN=&ASMMAC2,DISP=SHR

) ENDSEL

YENDSEL

//SYSUT1 DD UNIT=SYSDA, SPACE=(CYL, (5,2))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL, (2,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL, (2,1))
//SYSPRINT DD SYSOUT= (8ASMPRT)

)CM IF USER SPECIFIED "GO", WRITE OUTPUT IN TEMP DATA SET
)CM THEN IMBED "LINK AND GO" SKELETON

)SEL &GOSTEP=YES

//SYSGO DD DSN=8&&&0BJSET,UNIT=SYSDA,SPACE=(CYL,(2,1)),
/] DISP=(MOD,PASS)

)IM LINKGO

) ENDSEL

)CM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET

)SEL &GOSTEP=NO

//SYSGO DD DSN=8ASMOUT (&MEMBER) ,DISP=0LD

) ENDSEL

/1*

Figure 32. Sample skeleton file

The sample skeleton refers to several dialog variables (ASMPARMS, ASMIN,
MEMBER, and so on) highlighted in the figure. It also illustrates use of select
statements “)SEL” and “)ENDSEL” to conditionally include records. The first part
of the example has nested selects to include concatenated macro libraries if the
library names have been specified by the user (that is, if variables ASMMAC1 and
ASMMAC?2 are not equal to the null variable Z).

In the second part of the example, select statements are used to conditionally
execute a load-and-go step. An imbed statement, “)IM”, is used to bring in a
separate skeleton for the load-and-go step.

Example of using file-tailoring services
The example shown illustrates file-tailoring services. For this example, assume that:
* LABLSKEL is a member in the file tailoring library. It contains these statements:
)DOT DALPHA

NAME: &AA
APARTMENT: &BB

CITY: &CC

YEAR: &ZYEAR
)ENDDOT

ZYEAR is the name of an ISPF system variable that contains the current year.
¢ DALPHA is a member of the table library. It contains these records:

AA BB CC
Pauly John W590 Jones Beach
Clark Joan Y200 Bar Harbour

Chapter 3. Introduction to writing dialogs 85

File—Tailoring Services

This example creates a name and address list. The file-tailoring service requests
are:

* ISPEXEC FTOPEN
ISPEXEC FTINCL LABLSKEL

Issue ISPF commands to process skeleton LABLSKEL. Obtain values for dialog
variables AA, BB, and CC from table DALPHA. The resulting file-tailoring
output consists of one address label for each row of information in table
DALPHA.

FTOPEN opens both the file-tailoring skeleton and file-tailoring output files.
These files must be defined to ISPF before starting the ISPF session.

FTINCL performs the file-tailoring process by using the file-tailoring skeleton
named LABLSKEL. LABLSKEL contains the file-tailoring controls,)DOT and
J)ENDDOT, which specify the use of table DALPHA.

You can issue multiple FTINCL commands to pull in more than one skeleton.
* ISPEXEC FTCLOSE NAME (LABLOUT)

Write the resulting file-tailoring output to a member named LABLOUT
SKELETON.

After the previous commands have been processed, the file-tailoring output file
LABLOUT SKELETON contains these records:

NAME: Pauly John
APARTMENT: W590

CITY: Jones Beach

YEAR: 84

NAME : Clark Joan
APARTMENT: Y200

CITY: Bar Harbour

YEAR: 84

Using the PDF services

86

PDF services consist of the BRIF (Browse Interface), BROWSE, EDIF (Edit
Interface), EDIREC (edit recovery for EDIF), EDIT, and EDREC (edit recovery for
EDIT) services and a set of library access services.

BROWSE, EDIT, and EDREC

The BROWSE and EDIT services allow you to create, read, or change MVS data
sets or members of an ISPF library. An ISPF library is a cataloged partitioned data
set with a three-level name made up of a project, a group, and type. The ISPF
library can be private (available only to you) or can be shared by a group of users.
The BROWSE and EDIT services provide direct access to the Browse and Edit
options of PDF, bypassing the Browse mode on the View Entry panel and Edit
Entry panels.

The EDREC service, which you usually invoke before calling EDIT, helps you

recover work that would otherwise be lost if ISPF ended abnormally, such as after
a power loss.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

PDF Services

See the [z/OS ISPF Services Guidd for complete descriptions, including examples, of
the BROWSE, EDIT, and EDREC services.

BRIF, EDIF, and EDIREC

Two services, the Browse Interface (BRIF) service and the Edit Interface (EDIF)
service, allow dialogs to provide their own 1/O for PDF Browse and Edit. These
services provide edit and browse functions for data accessed through
dialog-supplied I/O routines. BRIF and EDIF require that the invoking dialog
perform all environment-dependent functions (such as allocating, opening, reading,
writing, closing, and freeing files).

Use of the BRIF and EDIF services allows the type of data and data access
methods being employed by a dialog to be transparent to Browse and Edit. The
Edit Interface Recovery (EDIREC) service performs edit recovery for EDIE.

These services make it possible to implement functions such as:

+ Edit/browse of data other than partitioned data sets or sequential files
+ Edit/browse of in-storage data

* Pre- and post-processing of edited or browsed data.

See the [z/0S ISPF Services Guidd for descriptions and examples of BRIF, EDIF, and
EDIREC.

Library access services

The library access services can interact with the BROWSE and EDIT services and
can also give you access to ISPF libraries and to certain system data sets. These
services carry out functions such as opening a library, copying a library or library
member, and displaying a library’s members.

You can use the library access services with four types of libraries or data sets:
* An ISPF library known by project, group, and type

* A concatenated set of up to four ISPF libraries

* A single existing TSO or MVS partitioned or sequential data set

* A concatenated set of up to four MVS partitioned data sets.

The library access services only support data sets with these attributes:
* The data set is stored on a single DASD volume
e The record format is F, FB, V, VB, or U

¢ The data set organization is either partitioned or sequential

k/OS ISPF User’s Guide Vol I| contains an explanation of the ISPF library structure.

See the [z/0S ISPF Services Guidd for complete descriptions, including examples, of
the library access services.

Another way you can maintain different levels or versions of a library member is
to use the software configuration and library manager (SCLM) utilities. SCLM is a
software tool that helps you develop complex software applications. Throughout
the development cycle, SCLM automatically controls, maintains, and tracks all of
the software components of the application. And, you can lock the version being
edited in a private library and then promote it to another group within the library
for further development or testing. See |z/OS ISPF Software Configuration and Librari
IManager Guide and Reference| for more information about SCLM.

Chapter 3. Introduction to writing dialogs 87

Miscellaneous Services

Using the miscellaneous services

88

ISPF provides the CONTROL, GRINIT, GRTERM, GRERROR, GETMSG, LIBDEE,
LIST, LOG, and PQUERY services. You can find more information about these
services in the [z/OS ISPF Services Guide|

CONTROL service

The CONTROL service allows a function to condition ISPF to expect certain kinds
of display output, or to control the disposition of errors encountered by DM
services. For example, some display conditions are:

LINE Expect line output to be generated by the dialog or by execution of
a TSO command. Optionally, the starting line can be specified.

LOCK Allow the next display without unlocking the terminal keyboard.
LOCK is generally used with the DISPLAY service to overlay a
currently displayed panel with an “in-process” message; for
example:

DISPLAY PANEL (panel-name)

CONTROL DISPLAY LOCK
I?ISPLAY MSG (message-id)

NONDISPL Do not display the next panel. Process the panel without actually
displaying it, and simulate the Enter key or END command.

REFRESH Refresh the entire screen on the next display. Typically used before
or after invoking some other full-screen application that is not
using DM display services.

SPLIT Enable or disable split-screen operation by a user as required by
the application.

The disposition of errors can be controlled as follows:

CANCEL Terminate the function on an error with a return code 12 or higher
from any service. A message is displayed and logged before
termination.

RETURN Return control to the function on all errors, with appropriate return

code. A message ID is stored in system variable ZERRMSG, which
can be used by the function to display or log a message.

The default disposition is CANCEL. If a function sets the disposition to RETURN,
the change affects only the current function. It does not affect lower-level functions
invoked by using the SELECT service, nor a higher-level function when the current
function completes.

GDDM services (GRINIT, GRTERM, and GRERROR)

The graphics initialization (GRINIT) service initializes the ISPF/GDDM interface
and optionally requests that ISPF define a panel’s graphic area as a GDDM
graphics field. The graphics termination (GRTERM) service terminates a previously
established GDDM interface. The graphics error block (GRERROR) service
provides access to the address of the GDDM error record and the address of the
GDDM call format descriptor module.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Miscellaneous Services

GETMSG service

The GETMSG service obtains a message and related information and stores them
in variables specified in the service request.

LIBDEF service

The LIBDEF service provides applications with a method of dynamically defining
application data element files while in an active ISPF session.

LIST service

The LIST service allows a dialog to write data lines directly (without using print
commands or utilities) to the ISPF list data set. You specify the name of the dialog
variable containing the data to be written on the LIST service request.

LOG Service

The LOG service allows a function to write a message to the ISPF log file. The user
can specify whether the log is to be printed, kept, or deleted when ISPF is
terminated.

PQUERY Service

The PQUERY service returns information for a specific area on a specific panel.
The type, size, and position characteristics associated with the area are returned in
variables.

Chapter 3. Introduction to writing dialogs 89

Miscellaneous Services

90 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 4. Common User Access (CUA) guidelines

This topic briefly describes how ISPF supports the Common User Access (CUA)
guidelines. The CUA guidelines define a user interface in terms of common
elements, such as the way information appears on a screen, and interaction
techniques, such as the way users respond to what appears on a screen. See the
SAA CUA Basic Interface Design Guide.

ISPF supports the CUA guidelines in several ways. You can:

* Define a list of function keys to be associated with each panel.
* Define an action bar and pull-downs on a panel.

* Define and display pop-up windows.

* Define and display help panels for field-level help, extended help, and keys
help. See [Chapter 8, “ISPF help and tutorial panels,” on page 297 for more
information about CUA help panels.

With ISPF, the panel ID is displayed according to CUA defaults and the PANELID
command acts as a toggle.

ISPF also lets you indicate, for an application session, if you want to use CUA

defaults. If selected, the Panel display CUA mode option on the ISPF Settings

panel controls:

* The location of the function keys on the panel in relation to the command and
message lines.

¢ The appearance and display format of the keys.

Using the dialog tag language to define dialog elements

The Dialog Tag Language (DTL) is a set of markup language tags that you can use
to define dialog elements. You can use DTL tags in addition to or instead of ISPF
methods for defining panels, messages, and command tables. In addition, when
you define a panel using DTL tags, you can assign a specific keylist to be
associated with and displayed on that panel, if requested by the user.

The DTL defines the source information for the dialog elements, and the ISPF
dialog tag language conversion utility converts the source file to a format ISPF
understands. The /OS ISPF Dialog Tug Language Guide and Reference] explains in
detail how to create the various elements using the DTL and ISPF conversion
utility.

Keylists

The key assignments active for an application panel are defined and stored within
keylists. These key assignments allow the user to request commands and other
actions through the use of function keys. Key assignments for your application are
displayed in the function key area of application panels. Keylists can be shared
across all users by defining them using DTL. This creates an xxxxKEYS table that is
placed in the ISPTLIB concatenation. Users can modify keylists using the KEYS
and KEYLIST commands. Both commands invoke the Keylist utility. Modifications
to keylists are stored in the user’s application profile, thus they are called private.

© Copyright IBM Corp. 1980, 2007 91

You can view or modify keylists either through the KEYLIST command or the
Keylist settings choice from the Function keys pull-down on the ISPF Settings
panel. You can control whether your application uses keylists or not with the
KEYLIST command or the Keylist settings choice from the Function keys
pull-down on the ISPF Settings panel. You can also control whether you use
keylists as provided with the application or with user modifications. You assign the
keylist to a particular panel by using the keylist keyword on the)PANEL statement
or by using the keylist attribute on the PANEL tag. For a description of the panel
section, see|“Defining the panel section” on page 225)

Action bars and pull-downs

An action bar is the panel element located at the top of an application panel that
contains action bar choices for the panel. Each action bar choice represents a group
of related choices that appear in the pull-down associated with the action bar
choice. When the user selects an action bar choice, the associated pull-down
appears directly below the action bar choice. Pull-downs contain choices that,
when selected by the user, perform actions that apply to the contents of the panel.

For complete details on coding action bars and pull-downs, refer to the |z/OS ISPﬂ
Dialog Tag Language Guide and Reference|or the [“Defining the action bar choice]
section” on page 159)

Pop-up windows

92

Pop-up windows display information that extends the user’s interaction with the
underlying panel. When a pop-up is displayed, the user must finish interacting
with that pop-up window before continuing with the dialog in the underlying
panel.

The ADDPOP service allows your application to use pop-up windows. After you
issue the ADDPOP service, subsequent DISPLAY, TBDISPL, or SELECT service
calls display panels in that pop-up window until your application issues a
corresponding REMPOP service or issues another ADDPOP service.

You specify the location of the pop-up window using the ADDPOP service call.

Note: When you are running in GUI mode, this pop-up window location
specification is ignored. Default positioning is used.

You can specify the size of the window (width and depth) on the panel definition
BODY statement or use the WIDTH and DEPTH attributes on the DTL PANEL tag.
If you do not specify the size, the Dialog Manager displays the pop-up window in
a 76 X 22 window with a border.

Each pop-up window created as a result of a successful ADDPOP service call can
also have a window title. The title is embedded in the top of the window frame
border and can be only one line in length. If the title is longer than the window
frame, the dialog manager truncates it. To define the window title, set system
variable ZWINTTL to the desired window title text.

Note: If you are running in GUI mode, the value in ZWINTTL has a maximum
length of 255 characters and will be truncated without notice to the user at
display time if it does not fit on the panel.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

This example will display three pop-up windows, as shown in . The
window that panel B is displayed within will have the titte POPUP WINDOW
TITLE.

PROC 0

ISPEXEC ADDPOP

ISPEXEC DISPLAY PANEL(A)

ISPEXEC ADDPOP POPLOC(F1)

SET ZWINTTL = POPUP WINDOW TITLE
ISPEXEC DISPLAY PANEL(B)

SET ZWINTTL =

ISPEXEC ADDPOP

ISPEXEC DISPLAY PANEL(C)

4 N
Menu Utilities Compilers Options Status Help
———————— Panel A -----mememm- ption Menu
0 Field 1 ters User ID . : USERID
1 Field 2 istings Time. . . : 14:27
2 Field 3 . . . ———— POPUP WINDOW TITLE .1 3278
3 Field 4 . . . | -====---- Panel B ------------ > 8 il
4 .+ ENGLISH
5 This is Panel B . ¢ ISR
6 0C
7 | COMMAND ===> Fiel | ---==---- Panel C ------------ D
8 F1=HELP F2=S Fiel
9 F4=RETURN F5=R Fiel This is Panel C 6,B
1 Fiel 4.1
Field E
Enter X to Terminate |COMMAN Field F
F1=HE Field G
F4=RE Field H

COMMAND ===>
Option ===> TSO ADDP F1=HELP F2=SPLIT F3=END
Fl=Help F2=Split F3 F4=RETURN F5=RFIND F6=RCHANGE

F10=Actions F12=Cancel
-

Figure 33. Example panel displaying three pop-up windows

The REMPOP service removes the current pop-up window. After you call the
REMPOP service, a subsequent DISPLAY service will either display a panel in the
full panel area of the screen or in a lower-level pop-up window, if it is active.

See |z/OS ISPF Services Guidel for a complete description of the ADDPOP and
REMPOP services.

Movable pop-ups

ISPF provides two ways for you to move the currently active pop-up window: the
WINDOW command, and manual movement using two terminal interactions and

no specific ISPF command. You can also move the window with any other method
you normally use to move windows on your workstation.

Note: The WINDOW command is disabled if you are running in GUI mode.

WINDOW command

The WINDOW command can be associated with a function key or can be typed on
the command line. The cursor placement specifies the new location for the
upper-left corner of the pop-up window frame. If the pop-up window does not fit

Chapter 4. Common User Access (CUA) guidelines 93

94

on the physical screen at the specified location, it is repositioned to fit following
the current pop-up window positioning rules. The cursor is placed in the same
relative position it occupied before a dialog or help pop-up window was moved.

If the cursor location would be covered as a result of moving a modeless message
window, the cursor is repositioned to the first input field on the active panel. If an
input field does not exist, the cursor is positioned in the upper-left corner of the
active panel. The cursor is returned to its intended location if the modeless
message window is moved to a location that no longer conflicts with cursor
display. Cursor positioning is not affected by an input field that becomes protected
as a result of a modeless message window position unless the cursor itself would
be covered. In other words, the cursor can be positioned on a protected input field.

The WINDOW command is an immediate action command. Panel processing is not
performed when this command is used.

If the WINDOW command is typed in the command line, the cursor should be
moved to the desired window position before pressing Enter.

If the WINDOW command is included in the keylist associated with the currently
active application panel, the user can move the cursor to any position on the
screen, press the function key assigned to the WINDOW command, and the
pop-up is repositioned to the user’s cursor position. The WINDOW command can
be included in the keylist by the application developer, or the user can use the
KEYLIST utility to add it to the keylist.

For panels that do not include the KEYLIST keyword in the)PANEL statement, the
application can assign the WINDOW command to a ZPFnn system variable. The
user can also associate WINDOW with a function key by using the ZKEYS
command to access the function key assignment utility.

If the split screen is used, the pop-up cannot be moved to a different logical screen.
The new pop-up window location must be in the same logical screen in which the
pop-up was originally located. A pop-up is not displayed over the split line. The
split line cuts off the pop-up at the split line location; the pop-up is not
automatically repositioned to fit above the split line.

Note: Pull Down Choice (PDC), Action Bar is also a pop-up window, so the split
screen line cuts off the Action Bar location, too. The pop-up is not
automatically repositioned to fit above the split line.

If the WINDOW command is requested when pop-up windows are not active, a
message is displayed to the user. A pop-up window containing an Action Bar
panel cannot be moved while a pull-down is actively displayed. A message is
displayed to the user if the WINDOW command is requested during this
condition.

Manual movement

The second method for moving pop-up windows involves two terminal
interactions but does not require a unique ISPF command. A user can request
window movement by placing the cursor anywhere on the active window frame
and pressing Enter. ISPF acknowledges the window move request by displaying
WINDOW MOVE PENDING message. The alarm will sound if the terminal is so

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

equipped. The message text will be yellow /high intensity if the Panel display CUA
mode option on the ISPF Settings panel has been selected. Otherwise, the message
text will be white/low intensity.

Place the cursor where you want the upper-left corner of the window frame to be,
and press Enter a second time. The window is moved to the new location as
though the WINDOW command had been issued. The rules for cursor placement
inside the window, and window placement on the physical display, are the same as
those described for the WINDOW command.

Pop-up movement considerations

Modeless and modal message pop-up windows can be moved in the same manner
as dialog pop-up windows.

Only the active pop-up window can be moved. If a modal or modeless message
pop-up is displayed over a dialog pop-up window, only the message pop-up
window can be moved. The underlying dialog pop-up window cannot be moved
while a message pop-up window is displayed over it.

Input fields that are partially or totally covered by a pop-up window become
protected fields (data cannot be entered into the field). If a field becomes totally
uncovered as a result of moving the pop-up window, the field is restored to an
unprotected field (data can be entered into the field).

Field-level help

Field-level help provides help panels for fields defined on an application panel.
When the cursor is on a field and you request HELD, ISPF displays the help panel
defined for that field. See [“Defining the HELP section” on page 222

Extended help

Extended help provides general information about the contents of a panel. The
information in extended help can be an overall explanation of items on the panel,
an explanation of the panel’s purpose in the application, or instructions for the
user to interact with the panel. The user invokes extended help by issuing the
command EXHELP. EXHELP requests ISPF to display help text for the entire panel.

For more information about help, see [HELP” on page 292| and [Chapter 8, “ISPH
lhelp and tutorial panels,” on page 297 .|

Keys help

Keys help provides the user with a brief description of each key defined for a
panel. You define the contents of this help panel. The user invokes keys help by
issuing the command KEYSHELP.

KEYSHELP requests ISPF to display the help panel for the current keylist. The help
panel name can be provided as part of the keylist definition. If the keys help panel
is not identified in the keylist definition, it can be supplied in the ZKEYHELP
system variable. Use separate ZKEYHELP variable values for each keys help panel
to be displayed.

Chapter 4. Common User Access (CUA) guidelines 95

Reference phrase help

96

Reference phrase (RP) help is available on all panels. Place the cursor on a
highlighted reference phrase within a panel, request help, and you receive the help
panel defined for that reference phrase.

When a panel with reference phrases is displayed for the first time, the cursor is
positioned in the upper-left corner. After a reference phrase is selected and control
is returned to the original panel, the panel scrolls automatically to put the cursor
on the reference phrase from which the reference phrase help was invoked. The
exact scroll position might not be the same as when the reference phrase help was
invoked. ISPF positions the reference phrase at the top of the display is scrolling is
necessary to display the reference phrase help field. The reference phrase is an
input-capable field that allows tabbing. Therefore, the reference phrase text is
refreshed whenever the panel is redisplayed.

Reference phrase help panels themselves can also contain reference phrases. When
a reference phrase help panel is canceled, the panel from which reference phrase
help was requested is redisplayed. All other help facilities are available from a
reference phrase help panel.

The TYPE(RP) attribute in the panel attribute section is used to identify a reference
phrase in a panel. See|“Defining the attribute section” on page 172.|An entry is
then placed in the)HELP section of the panel for each reference phrase attribute
coded in the)BODY or optional JAREA panel sections. This example is a)HELP
section reference phrase definition:

)HELP
FIELD(ZRPxxyyy) PANEL(panel-name)

XX 00 for a reference phrase defined in)BODY section and 01 to 99 for the
number of the scrollable area in which the reference phrase is defined.

Each scrollable area is assigned a sequential number based on its relative
position within the panel body. The scrollable area closest to the upper-left
corner of the panel body is assigned number 01 with each additional
scrollable area, scanning left to right, top to bottom, assigned the next
sequential number. A maximum of 99 scrollable areas in any given panel
may contain reference phrases.

yyy 001 to 999 for the relative number of the reference phrase within the panel
body or within a particular scrollable area.

panel-name
Name of the help panel to be displayed when HELP for this reference
phrase is requested.

A reference phrase can wrap around multiple terminal lines in panels that are not
displayed in a window. A reference phrase that logically wraps in a pop-up
window requires the beginning of each wrapped line to contain a RP field
attribute, and there must be an entry in the)HELP section for each wrapped line.
This is also true for panels containing the WINDOW() keyword that are not
displayed in a pop-up window. The additional)HELP section entries would
normally be pointing to the same panel.

The example in |Figure 34 on page 97| illustrates both single and multiple line
reference phrases.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

) PANEL
)ATTR
TYPE(RP)
§ AREA(SCRL) EXTEND(OFF)
)BODY
+This is sample text. This is a #Reference Phrase+.
+This is an example of a #Reference Phrase being
physically continued to the next Tine.+

B s

+ *$SAREAL §* ok ok ok ok ok ok ok ke ok ke ke ok ok ok ok
+ *$ $x *$SAREA2 §=
+ *§ §* *$ $x
F kkkkkkokkokkkkkkk ko kokokok *$ §
+ kkkkkkkkkkkkkkkkkkkkk *$ $*
+ *$SAREA3 $x *$ §=
+ *§ §* ook ok ok ok ok ok ok ok ke ko ok ok ok
+ *§ §*

+ *hkhkkhhkkhhkhhhkhhhhkrhkx

+This is an example of a #Reference Phrase being+
#logically continued to the next Tine.+
+

)AREA SAREA1

+ +

#Area 01 Ref Phrase+

+ +

)AREA SAREA2

+ +

+ #Area 02+ +

+ #Reference++

+ #Phrase+ +

)AREA SAREA3

+ +

#Area 03 Ref Phrase+

+ +

YHELP

FIELD(ZRPOO0O1)
FIELD(ZRPOO0O?2)
FIELD(ZRPOO0O3)
FIELD(ZRPOOO04)
FIELD(ZRPO1001)
FIELD(ZRPO2001)
FIELD(ZRPO2002)
FIELD(ZRPO2003)
FIELD(ZRP03001)

PANEL (BODY0001)
PANEL (BODY0002)
PANEL (BODY0003)
PANEL (BODY0003)
PANEL (AREA0101)
PANEL (AREA0201)
PANEL (AREA0201)
PANEL (AREA0201)
PANEL (AREAO301)

)END

Figure 34. Reference phrase help example

START service

You can use the START service to start a dialog in a new logical screen. This
function is similar to the function nesting made available with action bars except
that the “nesting” occurs in a new logical screen.

You can invoke the START service in any of these ways:
¢ From any command line, you can enter a command in this form:
START some_dialog

some_dialog can be:
— A command from the command table; for example, MYCMD1

Chapter 4. Common User Access (CUA) guidelines 97

98

— A command with parameters (must be in quotes); for example,
'MYCMD1 PARML'
- A dialog invocation; for example, PANEL (MYPAN1), or
"PGM(MYPGM1) PARM(MYPARM1,MYPARM2)'
* You can code a pull-down choice,
ACTION RUN(START) PARM(some_dialog)

where some_dialog is the same as previously outlined.
* You can code a selection panel option,
"PGM(ISPSTRT) PARM(some_dialog)'

For example,

&ZSEL = TRANS (&XX
0, 'PGM(ISPSTRT) PARM(PGM(MYPGMO))"
1,'PGM(ISPSTRT) PARM(PGM(MYPGM1) PARM(MYPARML))"
2,'PGM(ISPSTRT) PARM(MYCMD1 MYPARM2)'
3, 'PGM(ISPSTRT) PARM(PANEL(MYPANEL1))"

e From a dialog, you can invoke,
ISPEXEC SELECT PGM(ISPSTRT) PARM(some_dialog)

where some_dialog is the same as previously described.

Notes:

1. The some_dialog must not exceed 249 characters. It will be truncated at 249
without warning.

2. Do not use either WSCMD or WSCMDYV in your specification of some_dialog.

3. For ISPF functions that have service interfaces, such as EDIT and BROWSE,
you should use the service invocations. Using ISPSTRT passing the selection
strings from panel ISR@PRIM does not work in all situations and is not
supported.

If the maximum number of logical screens do not exist when the START command
is invoked and:

* some_dialog is a command from the command table, the new screen is invoked
with the default initial command (in non-display mode) and the command is
run. When the user ends the dialog this new screen still exists.

* if some_dialog is specified as PGM(xxx), CMD(xxx), or PANEL(xxx), the new
screen is invoked with PGM(xxx), CMD(xxx), or PANEL(xxx) as the initial
command, program, or panel. The result is that when you end the xxx dialog,
this new screen is terminated.

If the maximum number of logical screens has already been reached when the
START command is invoked, the specified some_dialog is executed on top of the
currently displayed screen. The result is that when you end the dialog, ISPF
returns to the previously displayed screen.

On 3270 displays, if ISPF is not in split screen mode the START command and
ISPSTRT program split the screen at the top or bottom line of the display. If ISPF is
already in split screen mode, ISPF starts the new screen in the opposite screen,
using the existing split line location.

z/0OS VIR9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 5. Graphical User Interface (GUI) guidelines

This topic provides information that dialog developers need to write or adapt
dialogs to run in GUI mode on a workstation.

How to display an application in GUI mode

Use the GUI parameter on the ISPSTART command to invoke an application in
GUI mode. For example, this command starts ISPF in GUI mode on a workstation
at the specified IP address:

ISPSTART GUI(IP:9.67.229.115)

For more information about ISPSTART, see [“Syntax for issuing the ISPSTART]|
ffommand” on page 10| For more information about running in GUI mode, refer to
the topic on the ISPF user interface in [z/0S ISPF User’s Guide Vol 1|

GUI(LU:address:tpname|IP:address:port |FI:|,NOGUIDSP)
TITLE(title) FRAME(STD|FIX|DLG)
GUISCRW(screen-width) GUISCRD(screen-depth)
CODEPAGE (codepage) CHARSET(character_set)

where:

LU:address:tpname
The workstation’s Advanced Program-to-Program Communication (APPC)
network address and tpname.

An APPC address can be in fully-qualified LU name format or in symbolic
destination name format. A fully-qualified LU name format consists of a
network identifier and an LU name, separated by a period. For example,
USIBMNR.NRI98X00 is a fully-qualified LU name.

An APPC address in symbolic destination name format consists of a 1- to
8-character name such as JSMITH. The symbolic destination name must be
defined as a DESTNAME and the corresponding fully-qualified LU name must
be defined as the associated PARTNER_LU in the APPC/MVS side information.

If specified, the tpname is used to construct the names of the two transaction
programs required to support an ISPF Client/Server connection. The ISPF
Client/Server function appends different single alphabetic characters to the
supplied name to form the actual names of the two APPC transaction
programs.

If the tpname is used, the same tpname must be specified from the Options
action bar choice on the WSA.

IP:address:port
The workstation’s Internet Protocol (IP) address and TCP/IP port.

A TCP/IP address can be in dotted decimal format or in domain name format.
Dotted decimal format is a sequence of decimal numbers separated by periods,
for example, 9.87.654.321.

A TCP/IP address in domain name format consists of one or more domain
qualifiers separated by periods. The minimum specification for addresses

© Copyright IBM Corp. 1980, 2007 99

within the same domain is a TCP/IP host name, for example, jsmith. The
fully-qualified domain name for jsmith is formed by appending the appropriate
subdomain name and root domain name to jsmith, such as
jsmith.raleigh.ibm.com. To use domain naming, a domain name server must
be active and providing domain name resolution for domain names within
your TCP/IP network. The domain name server address is determined by the
value of the NSINTERADDR statement in the TCP/IP configuration data set.
ISPF must be able to locate the TCP/IP configuration data set as described in
the section on configuring TCP/IP connections in the |z/OS ISPF User’s Guide|

Note: If address is set to an asterisk (*) the value of the system variable
ZIPADDR is used. ZIPADDR contains the TCP/IP address of the
currently connected TN3270 workstation.

FI: Specifies that you want to search a file allocated to DD ISPDTPREF for the
user’s network protocol and workstation address to be used when initiating a
workstation connection or GUI display. For example, the system programmer
could maintain a file containing all of the user’s workstation addresses so all

users would be able to use the same logon procedure or startup CLIST to run
ISPF GUI.

The file itself can be sequential or a member of a PDS. It can be fixed block
(FB) or variable blocked (VB). Each line of the file should be formatted as
follows:

userid WORKSTAT protocol_id:network_address

Where:
userid user’s TSO userid
protocol_id network protocol identifier: ip for TCP/IP or lu for APPC.

network_address
workstation address

For example, KRAUSS WORKSTAT ip:7.30.200.94 might be one line of your file.
EXAMPLES OF ISPSTART SYNTAX USING FI: OPTION:

To specify that you want ISPF to search the file allocated to ISPDTPRF DD for
your network address when connecting to the workstation from ISPSTART,
and to run ISPF in GUI mode, enter ISPSTART GUI(FI:).

To specify that you want to search the file, but to run ISPF in 3270 mode, enter
ISPSTART GUI(FI:,NOGUIDSP).

NOGUIDSP
Specifies that you want to make a connection to the workstation, but DO NOT
want ISPF to display in GUI mode. For more information about the
NOGUIDSP parameter, refer to page

TITLE(title)
The default value for the title bar variable. This value has a maximum length
of 255 characters and can be truncated without notice to the user at display
time.

FRAME(STD I FIX| DLG)
Specifies that the first window frame displayed be a standard (STD), fixed
(FIX), or dialog (DLG) window frame.

100 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Note: Pop-up panels are always displayed in dialog window frames.

GUISCRW (screen-width)
Enables you to specify a screen width different than that of the emulator or
real device from which you enter the ISPSTART command. If you do not
specify GUISCRD, the depth is that of the emulator or real device.

If GUISCRW is different than the emulator or real device and GUI initialization
fails, ISPF does not initialize. Dialogs started with dimensions other than those
of the emulator or real device that use the GRINIT service cannot display
GDDM screens.

GUISCRD(screen-depth)
Enables you to specify a screen depth different than that of the emulator or
real device from which you enter the ISPSTART command. If you do not
specify GUISCRW, the width is that of the emulator or real device.

If GUISCRD is different than the emulator or real device and GUI initialization
fails, ISPF does not initialize. Dialogs started with dimensions other than those
of the emulator or real device that use the GRINIT service cannot display
GDDM screens.

The variable ZGUI is set to the workstation address (in character format) if
ISPSTART is issued with the GUI parameter; ZGUI is set to blank if ISPSTART
is issued without the GUI parameter.

Note: Users can force the application into GUI mode using the ISPF Settings
panel (option 0). The display address specified on this panel is saved
across ISPF sessions.

CODEPAGE(codepage) CHARSET (character_set)
When running in GUI mode or connecting to the workstation, these values are
used as the host code page and character set in translating data from the host
to the workstation, regardless of the values returned from the terminal query
response.

Other considerations

Action Bars and Pull-Down Menus
Action bars are responsive entities at the workstation and do not require
an interrupt to the host to display a pull-down menu. All JABCINIT
sections run before sending the panel to the workstation. The JABCPROC
section runs after the pull-down has been selected at the workstation.

Title Bars
Various types of data can appear in the title bar, depending on these values
for which ISPF finds data is displayed in the title bar:

¢ The value defined in the application dialog variable ZWINTTL is used if
the panel is displayed in a pop-up
* The value defined in the application dialog variable ZAPPTTL.

* The value specified in the title variable on the TITLE parameter of the
ISPSTART command.

* The value specified in the GUI Title field on the Initiate GUI Session
panel available in option 0.

¢ The value specified in the title variable on the TITLE parameter of the
WSCON service.

* Your user ID.

Chapter 5. Graphical User Interface (GUI) guidelines 101

ZWINTTL and the title variable on ISPSTART have a maximum length of
255 characters and can be truncated without notice to the user at display
time if they do not fit on the panel.

Messages
A short or long message that would appear in a pop-up window in
non-GUI mode is displayed in a message box in GUI mode. The message
box includes the appropriate icon as defined by CUA guidelines:

* .TYPE=NOTIFY produces a question mark (?).
¢ .TYPE=WARNING produces an exclamation point (!).

¢ .TYPE=ACTION or .TYPE=CRITICAL produces a red circle with a
diagonal line across it.

Closing a Window
If a user closes a window (that is, selects Close from the system menu),
ISPF returns the CANCEL, END, EXIT, or RETURN command to the
dialog, as specified on the GUI Settings panel (option 0).

Function Keys
You cannot give a function key the default focus.

Check Boxes
Check boxes are supported at the workstation if CKBOX(ON) is set for a
1-character entry field that is followed by an output field. See
[Keyword” on page 181| for more information.

List Boxes
List boxes are supported at the workstation. See [“LISTBOX Keyword” on|
for more information.

Drop-down Lists
Drop-down lists are supported at the workstation. See [“DDLIST Keyword”]
for more information.

Group Boxes

Group boxes are supported at the workstation. See [“Group box” on pagé
for more information.

Combination Boxes
Combination boxes are supported at the workstation. See ["COMBO
[Keyword” on page 183| for more information.

Unavailable Choices
Unavailable choices for check boxes, radio buttons, and push buttons are
supported at the workstation. See["UNAVAIL Keyword” on page 200| for
more information.

Mnemonics
Mnemonics are supported at the workstation in action bar and pull-down
menu choices using the MNEM keyword on the ABC and PDC statements.

Separator Bars
Separator bars group logically related choices in pull-down menus. Use the
PDC keyword PDSEP to display separator bars.

Accelerators
Accelerators are assigned to menu choices so those choices can be initiated
quickly, even when the menu that the choice appears on is not currently
displayed. Use the PDC keyword ACC to implement accelerators.

102 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Radio Buttons
Radio buttons provide a way to select mutually exclusive choices. Use the
JATTR keyword RADIO to set radio buttons.

Enter Key
An Enter key push button appears, by default, on all panels. You can
change the text on the push button using the ZENTKTXT variable.

Note: If a dialog sets ZENTKTXT to blanks, the Enter push button is not
displayed even if you select the Display Enter Key option on the
GUI Settings panel available from option 0.

APL/TEXT Character Sets
The ZGE variable is set to NO when you are running in GUI mode. Any
character defined with GE(ON) displays as a blank.

Cursor Placement
.CURSOR can be set only to an input or push button (point-and-shoot)
field. If the application attempts to set the cursor to any other field, ISPF
ignores the placement and uses the default cursor placement. The up and
down cursor keys move vertically through a group of input fields,
point-and-shoot fields, and pull-down choices.

Images
ISPF supports image files in the Graphics Interchange Format (GIF) when
running in GUI mode.

ISPF ships sample files in the sample library SISPSAMP. The panel
ISR@PRIM uses three of the images (ISPFGIFL, ISPFGIFS, and ISPEXIT).

To use images, store the image files on the host in a partitioned data set
and allocate this image data set to ddname ISPILIB before starting ISPF.
For more information about allocating this image library, refer to the topic
"Getting Ready to Run on MVS" in the|z/OS ISPF User’s Guide Vol 1}

Some general GUI restrictions

This topic describes some restrictions that apply when you run ISPF in GUI mode.

Cursor Placement
.CURSOR can be set only to an input or push button (point-and-shoot)
field. If the application attempts to set the cursor to any other field, ISPF
ignores the placement and uses the default cursor placement.

Character-Level Color, Intensity, and Highlighting
Character-level color, intensity, and highlighting are not supported when
you are running in GUI mode.

Field-Level Intensity and Highlighting
Field-level intensity and highlighting are not supported when you are
running in GUI mode.

Graphic Areas
Graphic areas are not supported. When a GRINIT statement is
encountered, the user receives a message that panels with graphics cannot
be displayed. The user may choose to continue. When a panel with
graphics is encountered, a pop-up is displayed that enables you to specify
that the panel be displayed on the host emulator session or on the
workstation without the graphic.

Chapter 5. Graphical User Interface (GUI) guidelines 103

Notes:

1. If you are in split-screen mode, the graphic area panel cannot be
displayed on the host session.

2. 1If you specified GUISCRD or GUISCRW values on the ISPSTART
invocation that are different from the actual host screen size, GDDM
cannot be initialized, and the GRINIT service ends with a return code
of 20.

Pop-Up Windows and Message Pop-Up Positioning
Dialog-specific pop-up positioning is not supported if you are running in
GUI mode; that is, the POPLOC, ROW, and COLUMN parameters on the
ADDPOP service are ignored. The MSGLOC parameter on the DISPLAY,
SETMSG, and TBDISPL services is ignored.

SKIP Attribute
The panel attribute SKIP(ON) is ignored on the GUI display.

OUTLINE Attribute
The OUTLINE attribute is ignored on the GUI display.

3290 Partition Mode
You cannot invoke ISPF in GUI mode if you are configured to run ISPF in
3290 partition mode.

104 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 6. Panel definition statement guide

You can create ISPF panels in one of three ways:
1. Use the Dialog Tag Language (DTL) and ISPF DTL conversion utility only. With

DTL, you create a source file containing DTL tags that define what information
you want for each panel. This source file is then processed through the ISPF
conversion utility to produce a preprocessed ISPF panel library member ready
for display.

Use DTL and panel definition statements. This option allows you to stop the
conversion process at the ISPF panel definition source level. You can then edit
the resulting panel definition source file using any of the panel definition
statements available in this document.

Use panel definition statements only. Using panel definition statements, you
define panels closely resembling the finished panel. Each character position in
the panel definition corresponds to the same relative position on the display
screen.

To create panels with DTL or to learn how to capture the panel definition source
file, refer to the |z/OS ISPF Dialog Tag Language Guide and Referencd.

This topic explains how to create panels using the panel definition statements.
(This information applies to the second and third options described above.) Both
general overview information on panel definition and specific information on each
panel section is included. The topics are arranged as follows:

An introduction to the panel definition sections
General tips and guidelines for formatting panels
Syntax rules and restrictions for panel definition
A discussion of each panel section

Using Z variables as field name placeholders
Panel processing considerations

Support for panel user exit routines

Special requirements for defining menus, table display panels, and panels with
dynamic or graphic areas.

[Figure 36 on page 110|shows an example panel definition which uses CUA

panel-element attributes. See [Figure 62 on page 214] for an example panel definition
that does not use CUA panel-element attributes.

Notes:
1. You can use the ISPDPTRC command to trace both the execution of panel

service calls (DISPLAY, TBDISPL, and TBQUERY) and the processing that
occurs within the Dialog Manager panel code. For more information, refer to
[“Panel trace command (ISPDPTRC)” on page 367

2. When not in TEST mode, the most recently accessed panel definitions are

retained in virtual storage for performance reasons. If you have modified a
panel, use TEST mode to ensure that the updated version of the panel is picked
up by ISPF services. See[“ISPF test and trace modes” on page 27|for more
information.

© Copyright IBM Corp. 1980, 2007 105

Introduction to panel definition sections

Each panel definition consists of a combination of the sections described in
The sections)CCSID to)PROC, if used, must be in the order listed in this table.

The sections)FIELD,)HELP,)LIST, and)PNTS, if used, can be in any order as long
as they appear after the sections)CCSID to)PROC).)END must be the last section.

106

Table 4. Panel definition sections

Section

Required

Description

)CCSID

)PANEL

)ATTR

)ABC

)ABCINIT

)JABCPROC

)BODY

)MODEL

JAREA

)INIT

)REINIT

)PROC

No

No

No

No

Yes, if)ABC is
specified

No

Yes

Yes, for table
display

No

No

No

CCSID section. Specifies the Coded Character Set Identifier
(CCSID) used in the panel definition. If used, panel text
characters are translated to the terminal code page for
display.

Panel section. Specifies a keylist to be used during the
display of the panel, and identifies where to find the keylist.
Specifies that the panel is to be displayed in CUA mode.
Attribute section. Defines the special characters in the body of
the panel definition that represent attribute (start of field)
bytes. You can override the default ISPF attribute characters.
Action bar choice section. Defines a choice in the action bar,
its associated pull-down choices, and the actions to be taken
for each pull-down choice.

Action bar choice initialization section. Specifies processing
that is to occur for an action bar choice before the panel is
displayed.

Action bar choice processing section. Specifies processing that
is to occur for an action bar when the panel is submitted for
processing.

Body section. Defines the format of the panel as seen by the
user and defines the name of each variable field on the panel.
Model section. Defines the format of each row of scrollable
data. This section is required for table display panels. Only
one)MODEL section is allowed per panel.

Scrollable area definition section. Defines a scrollable section
of the panel.

Initialization section. Specifies the initial processing that is to
occur before the panel is displayed. This section is typically
used to define how variables are to be initialized.
Reinitialization section. Specifies processing that is to occur
before a panel is redisplayed.

Processing section. Specifies processing that is to occur after
the panel has been displayed or redisplayed. This section is
typically used to define how variables are to be verified and
translated.

)FIELD

)HELP

)LIST
)PNTS

No

Scrollable field section. Defines a field as scrollable, giving it
the ability to display and input a variable that is larger than
the display area that the dialog variable occupies.

Field help section. Specifies the help panels to display when
help is requested for a field, list column, action bar choice, or
pull-down choice defined in the panel or reference phrase.
List section. Specifies a list to build on the panel.
Point-and-shoot section. Contains an entry for each field on a
panel that has been designated as a point-and-shoot field.

)END

End section. Specifies the end of the panel definition, and
consists only of the)END statement. ISPF ignores any data
that appears on lines following the)END statement.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Guidelines for formatting panels

Consider using the ISPF edit model facilities to help you create panel definitions.

When using Edit to create a panel definition, specify NUMBER OFF to prevent
numbers from appearing in the file. Numbers cause a panel syntax error when you
attempt to process the panel definition.

ISPF panel definitions are stored in a panel library and are displayed by means of
the SELECT, DISPLAY, or TBDISPL service. Each panel definition is referred to by
its name, which is the same as the member name in the library.

You can create or change panel definitions by editing directly into the panel library.
No compilation or preprocessing step is required. Use the name of this panel
library member as the panel-name parameter when requesting dialog services,
such as DISPLAY and SELECT.

As shown in the first three displayable lines below the action bar, if
present, in a panel definition include:

* Panel ID and title area

¢ System-defined (default) areas for message display

* A command/option field

* A scroll field, if applicable.

You can override the location of the long message area and command field from
the ISPF Settings panel.

Action Bar Line or Lines
Separator Line

Panel ID Title Short Message

Command/Option Scroll

Long Message

Figure 35. Sample panel definition format

Action Bar Line
The action bar line displays the action bar choice-description-text. You can
define multiple action bars for a panel. A separator line should follow the
last action bar line. ISPF considers the panel line following the last action
bar choice as part of the action bar area. See ['Defining the action bar
Ichoice section” on page 159

Title Line
The title line should contain a centered title indicating the function being
performed or, where appropriate, information critical to that function. If
not running in GUI mode, up to 17 characters at the start of this line can
be overlaid by the system commands SYSNAME, USERID, SCRNAME, or
PANELID. Do not use the last 26 characters of this line to display critical
information if messages are to be shown in the default short message area.

Short Messages
If short messages are used, they should provide a brief indication of either:
* Successful completion of a processing function
* Error conditions, accompanied by audible alarm.

Chapter 6. Panel definition statement guide 107

108

Short messages temporarily overlay information currently displayed at the
end of the first line, and are removed from display on the next interaction.
The original information is redisplayed when the message is removed.

Use short messages consistently throughout the application, or not at all.

For table display, the short message area contains a top-row-displayed
indicator, except when overlaid by a function-requested message. Attribute
bytes in the short message The TBDISPL service automatically generates
this indicator, and replaces data that was in the panel definition in that
area. Attribute bytes in the short message area can cause the top-row
displayed indicator to be unreadable.

Command/Option Line

The command/option line generally contains the command field. This
same field should be used for option entry on menus. The command field,
when the first input field on the panel or when identified by using the
keyword CMD on the header of the panel body section, can be named
using any valid variable name. However, the name ZCMD is generally
used.

Cursor placement for viewing a panel differs, depending on the use of the
name ZCMD or other names. When you use ZCMD and cursor placement
is not explicitly specified, ISPF skips over a blank command field to place
the cursor on a following input field. When you use a name other than
ZCMD, ISPF does not skip over a blank command field when placing the
cursor during display.

Scroll Amount

For table display, Edit, and Browse panels, as well as panels with scrollable
dynamic areas, the scroll amount field should be on the right side of the
command line. The scroll amount field must be the first input field
following the command field and must be exactly 4 characters in length. A
scroll amount field is not meaningful for other types of panels and should
be omitted from them.

Long Messages

The long message line should generally be left blank, so that long
messages do not overlay any significant information. An exception to this
rule might be made in the case of table display panels, to allow as much
scrollable data as possible to fit on the screen. An input field, such as the
command field, should not be located on the same line on which long
messages are displayed. The display of long messages will be
superimposed on the input field, and results are unpredictable.

Requirements for specifying message and command line
placement

The placement of the command line and long message field at the bottom of a
logical screen is a user-definable option. Placement is controlled by the system
variable ZPLACE. You can select or deselect Command line at bottom on the ISPF
Settings panel, and the setting changes the value of ZPLACE. ZPLACE can also be
changed in a dialog.

The value of ZPLACE is stored in the application profile pool. To change the value,
use the VPUT statement in a panel definition, the VPUT service in a dialog
function, or the ISPF Settings panel options. None of these settings takes priority
over the others. For example, an ISPF Settings panel selection can change what a
dialog set, and vice versa.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

If the panel specifies ASIS on the)BODY statement for a panel, the command and
message lines are not repositioned, even if you specify placement at the BOTTOM.
The command line moves only if all of these are true:

* For primary windows:

1. If the WINDOW(w,d) keyword is specified on the header statement where w
is less than the screen width, then:
a. The keyword ASIS must not be specified on the) BODY header statement.
b. The first character of the command line must be an attribute character.

2. If the WINDOW(w,d) keyword is specified on the header statement where w
is equal to the screen width or the WINDOW keyword is not specified, then:

a. The keyword ASIS must not be specified on the) BODY header statement.

b. The first and last character of the command line must be an attribute
character, and one of these is true:

1) There is an attribute byte in the first column of the line following the
command line.

2) There is an attribute byte in the last column of the line preceding the
command line.

3. For pop-up windows, the keyword ASIS is not specified on the)BODY
header statement.

Command lines that move in panels designed for primary windows will continue
to move if these panels are displayed in pop-up windows. In addition, command
lines in panels created using the DTL and converted using the ISPF conversion
utility will move in both primary and pop-up windows.

If requirement 2b1 is false, but 2b2 is true, ISPF changes the attribute byte in the
last column of the line preceding the command line to match the attribute byte in
the last column of the command line. This gives the same result as 2b1.

For the long message line to be moved, the panel must be designed so that the
system default is used to position the long message. That is, an alternate long
message field cannot be specified by the panel designer using the keyword 'LMSG’
on the) BODY header statement.

The long message line is not moved unless the command line is moved, but the
command line is moved regardless of whether the long message field is moved.

Additional L/title>

* Avoid cluttered panels. Split “busy” panels into two or more simpler panels that
have less information and are easier to read. Use scrollable areas where
appropriate.

* Do not use the last available line in a panel body. For example, if the dialog can
be used on 24-line terminals, limit the body to 23 lines, or less. This is because in
split-screen mode the maximum length of a logical screen is one less than the
length of the physical screen.

The PFSHOW I FKA command usually requires a minimum of two lines of a
panel for displaying function key status. Therefore, you should leave the bottom
two panel lines blank.

* Place important input fields near the top of the panel and less important fields,
especially optional input fields, further down. In split-screen mode, the bottom
of the panel might not be visible unless you reposition the split line.

* Place important input fields near the top of a scrollable area to minimize the
need for scrolling.

Chapter 6. Panel definition statement guide 109

* Place the command line near the top of the panel. If the command line is near
the bottom and you enter split-screen mode, the command line cannot be visible
on the screen. Therefore, if you do not have function keys, you might not be
able to continue processing the dialog. If, for a particular session, you will not be
entering the split-screen mode, you can use the option 0 (Settings) to specify that
the command line be placed at the bottom of the screen. However, if you want
to place the command line at the bottom, use the ZPLACE system variable.

* Where practical, align fields vertically on a panel, especially input fields. Group
related input fields under a common heading. Minimize the use of multiple
input fields on the same line, so that the NEW LINE key can be used to skip
from one input field to the next.

* Use visual indicators for particular field types, such as arrows to indicate input
fields, and colons to indicate variable information that is protected. Examples:

FILE NAME ===> (arrow signals an input field)

EMPLOYEE SERIAL: 123456 (colon signals a protected field)

To conform to the CUA guidelines, use leader dots and an ending colon for all
protected fields, use leader dots for all input fields, and use ===> for all
command areas. For example:

EMPLOYEE NUMBER . : 015723

ADDRESS 6510 Main Street
CITY, STATE Imperial, PA
Command ===>

In any case, be consistent. Arrows, colons, and other visual signals are very
confusing if used inconsistently.

 Use highlighting sparingly. Too many intensified fields result in visual
confusion. Do highlight the same type of information on all panels.

* Use DTL to design CUA-based panels. The conversion process can be stopped at
the ISPF panel definition source level if you need to add additional processing.

Example of a CUA panel definition
illustrates many of the panel sections and panel-element attributes that
are available to support CUA panel definitions.

)PANEL KEYLIST(ISPSAB,ISP)
JATTR FORMAT (MIX)
! TYPE(AB)
TYPE (ABSL)
TYPE(PT)
TYPE(CH)
TYPE(FP)
TYPE(NT)
TYPE(NEF) PADC()
TYPE(NEF) PADC(_) CAPS(ON)
TYPE(LEF) PADC()
TYPE(LI)
TYPE(LI) CAPS(ON)
)ABC
DESC('Options"')
PDC DESC('Create ')
PDC DESC('Change ')
")
")

1 AN a3

2 N — |

PDC DESC('Delete
PDC DESC('Browse
PDC DESC('Exit Keylist Utility ')

Figure 36. CUA panel definition (Part 1 of 3)

110 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)JABCINIT
.ZVARS=ZPDC
&ZPDC=" '
IF (&COPTIONS=CREATE)
&ZPDC=1
IF (&COPTIONS=CHANGE)
&ZPDC=2
IF (&COPTIONS=DELETE)
&ZPDC=3
IF (&COPTIONS=BROWSE)
&ZPDC=4
IF (&COPTIONS=EXIT)
&ZPDC=5
)ABCPROC
VER (&zZPDC,LIST,1,2,3,4,5)
IF (&ZPDC=1)
&COPTIONS=CREATE
IF (&ZPDC=2)
&COPTIONS=CHANGE
IF (&ZPDC=3)
&COPTIONS=DELETE
IF (&ZPDC=4)
&COPTIONS=BROWSE
IF (&ZPDC=5)
&COPTIONS=EXIT
)ABC
DESC('Change Keylists')
PDC DESC('Current panel keylist ')
PDC DESC('Current dialog keylist ')
PDC DESC('Specify keylist ')
)ABCINIT
.ZVARS=ZPDC
&ZPDC=" '
IF (&CCHANGE=PANEL)
&ZPDC=1
IF (&CCHANGE=DIALOG)
&ZPDC=2
IF (&CCHANGE=ANY)
&ZPDC=3
)ABCPROC
VER (&zPDC,LIST,1,2,3)
IF (&ZPDC=1)
&CCHANGE=PANEL
IF (&ZPDC=2)
&CCHANGE=DIALOG
IF (&ZPDC=3)
&CCHANGE=ANY
)BODY WINDOW(62,22) CMD(ZCMD)
~1 Options! Change Keylists™

Keylist Utility for &kTuappl
~Command ===> 7

N~

<Enter keylist name?Z ~<0R 7

~Select one keylist name from the Tist below:
$Select Keylist T -

Figure 36. CUA panel definition (Part 2 of 3)

Chapter 6. Panel definition statement guide

111

112

)MODEL

|z~ ~Z ~G7%17

JINIT

.ZVARS = '(ZCMD KEYLISTN S KLUKLNFT SOURCET CURKEYL)'
.HELP = ISP05800

&ZCMD = ' !
.ATTR(S)="JUST(LEFT) '
ATTR(KLUKLNFT)="JUST (LEFT)
.ATTR(SOURCET)="JUST(LEFT) '
.ATTR(CURKEYL)="JUST (LEFT)
.CURSOR = 'KEYLISTN'

) PROC

VER (&KEYLISTN NAME)

HELP

FIELD(ZABCO1) PANEL(ISPKH2)
FIELD(ZPDCO101) PANEL(ISPKH2A)
FIELD(ZPDCO102) PANEL(ISPKH2B)
FIELD(ZPDCO103) PANEL(ISPKH2C)
FIELD(ZPDCO104) PANEL(ISPKH2D)
FIELD(ZABCO2) PANEL(ISPKH3)
FIELD(ZPDCO201) PANEL(ISPKH3A)
FIELD(ZPDC0202) PANEL (ISPKH3B)
FIELD(ZPDC0203) PANEL(ISPKH3C)
FIELD(KEYLISTN) PANEL(ISPKH1)
JEND ~

Figure 36. CUA panel definition (Part 3 of 3)

This i anel definition will display the keylist utility panel, SAMPAN, shown in

Figure 37

4 }
ISPF Settings
- Functions Change Keylists | —memmemmem
SAMPAN Keylist Utility for ISP Row 1 to 10 of 16| ore: +
S
Enter keylist name OR
Select one keylist name from the Tist below:
Select Keylist T -
_ ISPHELP P
_ ISPHLP2 P
_ ISPKYLST P
B ISPNAB P
_ ISPSAB P *xx Currently active keylist *x=
T _ ISPSNAB P
_ ISPTEST P
_ ISRHELP P
B ISRNAB P
_ ISRNSAB P
Command ===>
C| Fl=Help F2=Split F3=Exit F7=Backward
F8=Forward F9=Swap F10=Actions F12=Cancel =Swap
F
Ao

Figure 37. Sample CUA panel (SAMPAN on ISPKLUP)

Factors that affect a panel’s size

The total number of lines allowed in a panel definition depends on the storage size
available. Panel definitions can be 80-160 characters wide. However, the width
cannot be greater than that of the physical screen of the terminal used for the
display. The WIDTH keyword in the panel definition determines the width of a
display. If you are defining a panel to be displayed in a pop-up window, use the

WINDOW keyword on the)BODY statement.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Two shared pool system variables, ZSCRMAXD and ZSCRMAXW, contain physical
terminal screen depth and width. These variables cannot be modified. When using
terminals for which an alternate size is available, these variables reflect the
configuration that produces the largest screen buffer.

For example, in the case of a 3278-5 (or 3290 set up as a 3278-5), the available
screen sizes are 24 x 80 and 27 x 132. Therefore, the values in ZSCRMAXD and
ZSCRMAXW are 27 and 132, respectively. For the 3290, these variables contain the
sizes of the hardware partition in which ISPF is operating.

When running in GUI mode, if the panel exceeds the width or depth of the
physical display, scroll bars are automatically added to allow viewing of the
hidden portion of the screen.

Vertically scrollable panels

You can also define more information than can fit on the panel display by defining
an AREA(SCRL) attribute in the panel attribute section and by defining a panel
)JAREA section. You can scroll each area to see and interact with the total content
defined for the area. See|“Defining the area section” on page 166| for further
discussion of the JAREA section and scrollable panel areas.

Syntax rules and restrictions for panel definition

For panel definitions:

 All statements, variable names, keywords, and keyword values can be entered in
either uppercase or lowercase. ISPF translates variable names within the panel
body or within panel statements to uppercase before processing them. Values
assigned to dialog variables in the panel body or in the executable sections are
stored as entered, in uppercase or lowercase. When symbolic substitution using
a double ampersand is attempted, the variable will not be updated because ISPF
makes only one pass when scanning for variable replacement.

* The command field cannot be longer than 255 characters. This is the first input
field on the panel, unless otherwise specified by using the CMD keyword on the
)BODY statement. Fields other than the command field can exceed 255
characters.

Fields are ended by the attribute character of a following field or by the end of
the panel body. A panel with a large number of variables can cause the literal
table to exceed 64K bytes. ISPF issues a message when this occurs. To proceed,
the panel containing the variables must be divided into two or more panels.
 All header statements, such as)JATTR and)BODY, must be coded starting in
column 1. Statements following the header need not begin in column 1.

* At least one attribute must be defined within the panel) BODY section. If the
entire) BODY section is defined as an AREA, (DYNAMIC, SCRL, ...), then that
AREA variable must contain at least one attribute. For example, if the panel
)BODY is defined as a char AREA(DYNAMIC), there must be at least one
attribute variable defined within the Dynamic Area variable char.

* If a section is omitted, the corresponding header statement is also omitted. The
)BODY header can be omitted if all previous sections are omitted, and there is
no need to override the default attribute bytes by using a keyword on the
)BODY statement.

* An)END statement is required as the last line of each panel definition. ISPF
ignores any data that appears on lines following the)END statement.

Chapter 6. Panel definition statement guide 113

Using blanks and comments
These rules apply to the use of blanks and comment statements:

¢ In the attribute section, the attribute character and all keywords that follow must
be separated by one or more blanks. At least one keyword must follow the
attribute character on the same line. Keywords can be continued on succeeding
lines.

* In the action bar choice, initialization, reinitialization, processing, and help
sections, several statements can occur on the same line, separated by one or
more blanks. Statements cannot be split between lines, except that listed items
within parentheses and long strings within quotes can be continued on
succeeding lines (see [‘Formatting items in lists”).

* One or more blanks can occur on either side of operators such as an equal sign
(=), a not-equal operator (-=), greater-than symbol (>), and not-greater-than
operator (—>). Embedded blanks cannot occur in double-character operators such
as the not-equal operator.

For example: - = is invalid.

* One or more blanks can occur on either side of parentheses, except that a blank
cannot follow the right parenthesis that begins a header statement. These
statements are all equivalent:

INTENS (LOW)

INTENS (LOW)

INTENS (LOW)

One or more blanks must follow the closing parenthesis to separate it from the
next statement or keyword.

*« Comments can be coded in the action bar choice, attribute, initialization,
reinitialization, processing, ccsid, panel, point-and-shoot, list, and help sections.
Comments must be enclosed with the comment delimiters, /* and */. The
comment must be the last item on the line. Additional keywords or statements
that follow the comment on the same line are ignored. A comment cannot be
continued on the next line. For multi-line comments, the comment delimiters
must be used on each line.

* Blank lines can occur anywhere within the action bar choice, attribute,
initialization, reinitialization, processing, and help sections.

Formatting items in lists
These rules apply to items in lists:
* Listed items within parentheses can be separated by commas or one or more
blanks. This rule also applies to paired values within a TRANS statement. For
example, these are equivalent:

TRANS (&XYZ 1,A 2,B 3,C MSG=xxxx)
TRANS (&XYZ 1 A 2 B 3 C MSG=xxxx)
TRANS (&XYZ, 1 , A, 2 , B, 3, C, MSG=xxxx)
* Null items within a list are treated as blank items. For example, these are
equivalent:
TRANS (&XXX N,' ', Y,YES, =*,' ')
TRANS (&XXX N,, Y,YES, *,)
* Listed items within parentheses can be continued on one or more lines. For
example:

TRANS (&CASE 1,'THIS IS THE VALUE FOR CASE 1'
2,'THIS IS THE VALUE FOR CASE 2')

114 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Literal values within a list can be split between lines by coding a plus sign (+) as
the last character on each line that is to be continued. That is, the plus sign is
used as a continuation character. For example:

TRANS (&CASE 1,' THIS IS THE VALUE +

FOR CASE 1' 2,'THIS IS THE +
VALUE FOR CASE 2')

Using variables and literal expressions in text fields
These rules apply to literals and variables in text fields:

A literal is a character string not beginning with an ampersand or period. A
literal value can be enclosed in single quotes (”'). It must be enclosed in single
quotes if it begins with a single ampersand or a period, or if it contains any of
these special characters:

Blank < (+) 3 ~-,>: =

A literal can contain substitutable variables, consisting of a dialog variable name
preceded by an ampersand (&). The name and ampersand are replaced with the
value of the variable, with trailing blanks stripped, before the statement is
processed. Trailing blanks are stripped from the variable before the replacement
is done. A double ampersand can be used to specify a literal character string
starting with, or containing, an ampersand.

In the DBCS environment, a mixed EBCDIC/DBCS literal can be specified as
follows:

eeee[DBDBDBDB] eeeeee [DBDBDBDBDBDB]

In this example, e represents an EBCDIC character and DB represents a
double-byte character. The brackets [and] represent shift-out and shift-in
characters, in which DBCS subfields must be enclosed. These appear as blanks
when displayed.

If a mixed literal contains two DBCS subfields, and

— The last character of the first subfield is a shift-in that terminates a DBCS
subfield, and

— The first character of the second subfield is a shift-out that begins a DBCS
subfield,

the shift-in and shift-out character pair is eliminated.

* In the panel)BODY or)AREA section, a variable can appear within a text field.
In the action bar choice, initialization, reinitialization, processing, and help
sections, a variable can appear within a literal value. In all three sections, the
variable name and the preceding ampersand are replaced with the value of the
corresponding dialog variable. Trailing blanks are stripped from the variable
before the replacement is done. For example, if variable V has the value ABC
then:

'F &Y G' yields 'F ABC G'
'F,&V,G' yields 'F,ABC,G'

* A period (.) at the end of a variable name causes concatenation with the
character string following the variable. For example, if &V has the value ABC,
then:

"&V.LMN' yields 'ABCLMN'

* A single ampersand followed by a blank or by a line-end is interpreted as a
literal ampersand character, not the beginning of a substitutable variable. An
ampersand followed by a nonblank is interpreted as the beginning of a
substitutable variable.

Chapter 6. Panel definition statement guide 115

* A double ampersand can be used to produce a character string starting with, or

containing, an ampersand. The double-character rule also applies to single
quotes within literal values, if the literal is enclosed within delimiting single
quotes, and to a period if it immediately follows a variable name. That is:

&& yields &
"' yields ' within delimiting single quotes
yields . immediately following a variable name

Note: To add another layer of quotes, you must double the number of quotes
used in the previous layer. For example:

'one o''ne' yields one o'ne

"two t''"'wo' yields two t''wo
When variable substitution occurs within a text field in the panel body, left or
right shifting extends to the end of the field, defined by the occurrence of the
next attribute byte. For left shifting, the right-most character in the field is
replicated (shifted in), provided it is a special (non-alphanumeric) character. For

example:
%DATA SET NAME: &DSNAME === --mmmmmmmmemmme e 5

Assuming that the value of variable DSNAME is greater than 7 characters, the
dashes are pushed to the right, up to the next start of field (the next % in this
example). If the value of DSNAME is fewer than 7 characters, additional dashes
are pulled in from the right. Fields defined in a scrollable area end at the end of
the line where their definition starts. They will not wrap to the next line.

Validating DBCS strings
ISPF validates DBCS data as follows:

All DBCS output values are checked to determine whether they contain valid
16-bit DBCS codes. If an invalid code is found, it is replaced with the
hexadecimal value 4195.

The lengths of DBCS subfields in FORMAT(MIX) fields, and all FORMAT(DBCS)
fields, are checked for an even number of bytes. If an exception occurs, the data
is displayed in EBCDIC format.

Split-screen or a floating command line can result in a DBCS field or subfield
being divided. If this occurs in the middle of a DBCS character, the remainder of
the byte is displayed as a blank and is protected.

If the division of a DBCS subfield results in no divided DBCS characters, but the
shift-in character is separated, the subfield is displayed as a DBCS field and is
protected. However, if a divided DBCS character results, the remainder of the
byte is displayed as a blank and is protected, and the remainder of the subfield
is displayed as a DBCS field and is protected.

If a DBCS field split results in the division of a DBCS character, the remainder of
the byte is displayed as a blank and is protected.

In all of the previous cases, no message is issued to the user.

Special requirements for defining certain panels

116

Special requirements exist for defining these types of panels:

Menus

Help tutorials. See [Chapter 8, “ISPF help and tutorial panels,” on page 297]

Table displays
Panels containing dynamic areas

Panels containing a graphic area.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Defining menus
A menu, also called a selection panel (Figure 38), is a special type of panel.

- . N
ISPF Master Application Menu

1 Sample 1 Sample application 1 Userid . : LSACKV
2 . (Description for option 2) Time . . : 11:12
3. (Description for option 3) Terminal : 3278
4, (Description for option 4) Pf keys : 24

5. (Description for option 5) Screen . : 1

X Exit Terminate ISPF using list/log defaults Language : ENGLISH

Appl ID : ISP
Release : ISPF 5.6

Enter END command to terminate application

5694-A01 (C) COPYRIGHT IBM CORP 1982, 2003

Licensed Materials - Property of IBM
5637-A01 (C) Copyright IBM Corp. 1980, 2004.
A1l rights reserved.

US Government Users Restricted Rights -

Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Option ===>
F1=Help F2=Split F3=Exit F9=Swap F10=Actions F12=Cancel

Figure 38. Example of a menu (ISP@MSTR)

The sections that can be used in a menu definition are the same as those that can
be used in other panel definitions. However, a menu requires a processing section
in addition to the body section. The processing section must be in a special format.

Menu definitions are processed by the SELECT service. A menu must have an
input field to allow users to enter selection options. Generally, this is the command
field, and is the first input field on the panel. This field should be named ZCMD to
be consistent with the field name used in this guide.

Besides ZCMD, a menu can have input fields to set up dialog variables needed by
that application. Any variables other than ZCMD and ZSEL (or OPT and SEL) that
are set from a menu are automatically stored in the shared variable pool.

Variables from the shared pool, including system variables, can also be displayed
on a menu to provide information to users.

The required processing section must provide for the variable ZCMD to be
truncated at the first period and then translated to a character string. The results
must be stored in a variable named ZSEL.

The processing section of a menu is in this general format:

)PROC
&ZSEL = TRANS(TRUNC(&ZCMD,'.")
value, 'string'
value, 'string'

value, 'string'

*, 17)

Chapter 6. Panel definition statement guide 117

The maximum length for ZSEL is 80 characters. If ZSEL is assigned a string longer
than 80 characters, the string is truncated.

The ZCMD variable is truncated before translation to allow users to bypass one or
more intermediate menus. For example, 1.2 means primary option 1, suboption 2.
This is generally called a nested option. ZCMD is automatically stored, untranslated,
as entered. When the SELECT service discovers that variable ZCMD contains a
period, it causes the next lower-level menu to be selected with an initial option of
everything following the first period. As long as the initial option is nonblank, the
lower-level menu is processed in the normal fashion but is not displayed to the
user.

Each value is one of the options that can be entered on the menu. Each string
contains selection keywords indicating the action to occur. The selection keywords
are:

"PANEL (pn1-name) [NEWAPPL [(appl-id)]

[PASSLIB]] | [NEWPOOL] [ADDPOP] [SUSPEND] [SCRNAME]'
' CMD (command) [NEWAPPL [(appl-id)] [PASSLIB]]|[NEWPOOL] [SUSPEND]

[NOCHECK] [LANG(APL|CREX)]

[MODE (LINE | FSCR)]

[BARRIER]

[NEST]

[SCRNAME] '

'PGM(prog-name) [PARM(parameters)]
[NEWAPPL [(appl-id)] [PASSLIB]]|[NEWPOOL] [SUSPEND]
[NOCHECK]
[MODE (LINE|FSCR)]
[SCRNAME] '
"WSCMD (workstation-command)
[MODAL |MODELESS]
[WSDIR(DIR)]
UmxiMIN]
[VIS|INVIS]'

'"WSCMDV (var_name)
[MODAL |MODELESS]
[WSDIR(DIR)]
[MAX |MIN]

[VIS|INVIS]®
EXIT

Except for EXIT, each string of keywords must be enclosed in single quotes
because it contains parentheses, and sometimes blanks.

These selection keywords are the same as those that can be specified for the
SELECT service:

PANEL (panel-name)

CMD (command) [LANG(APL|CREX)] [MODE(LINE|FSCR)] [BARRIER] [NEST]
PGM(program-name) [MODE(LINE|FSCR)] PARM(parameters)

[NEWAPPL[(application-id)] [PASSLIB]]|[NEWPOOL] [SUSPEND] [SCRNAME(screen name)]
WSCMD (workstation-command) [MODAL|MODELESS] [WSDIR(DIR)] [MAX|MIN] [VIS|INVIS]

WSCMDV (var_name) [MODAL|MODELESS] [WSDIR(DIR)] [MAX|MIN] [VIS|INVIS]

The PANEL keyword, for example, is used to specify the name of a lower-level
menu to be displayed. The CMD and PGM keywords are used to invoke a dialog

118 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

function coded in a command procedure or programming language, respectively.
NOCHECK, MODE, and EXIT are described following.

NOCHECK keyword

Normally, nested options are allowed only when each component of the option (up
to, but not including the last component) specifies a lower-level menu. For
example, given these ZSEL keywords on a selection panel definition:

&ZSEL = TRANS (TRUNC(&ZCMD,'.")
1, 'PANEL(DEF)'

8, 'PGM(ABC)"
9, 'PGM(XYZ)"

A user can enter 1.x as a selection. This selection would be accepted by ISPE.
However, if the developer wants to allow a user to enter a nested option that
selects a dialog function, in this case 8.x or 9.x, the developer specifies the
NOCHECK keyword as in this example:

&ZSEL = TRANS (TRUNC(&ZCMD,'.")
1, 'PANEL(DEF)"

8, 'PGM(ABC) NOCHECK'
9, 'PGM(XYZ) NOCHECK'

The NOCHECK keyword specifies that normal checking for validity is suspended.
It is the responsibility of the dialog function to interpret the meaning of the
lower-level options. To allow this, the remaining options, those to the right of the
first period, are usually passed to the dialog function through any appropriate
variable that has been set equal to the .TRAIL panel control variable in the menu
definition.

Example:

&ZSEL = TRANS (TRUNC (&zCMD, '.')
1, 'PANEL(DEF)"
8, 'PGM(ABC) NOCHECK'
9, 'PGM(XYZ) NOCHECK'

&NEXTOPT = .TRAIL

In this example, variable NEXTOPT contains the remainder of the TRUNC
operation. If the user enters 8.5.2, program ABC is invoked and NEXTOPT is set
to 5.2. If the user enters 9.7, program XYZ is invoked and NEXTOPT is set to 7.
Since variable NEXTOPT is unknown to the SELECT service, it is automatically
stored in the shared variable pool, where it can be accessed by the dialog function.

When the NOCHECK keyword is specified, a return code of 20 from the dialog
function indicates that the remaining options are invalid. If return code 20 is
passed back from the function, ISPF displays an invalid option.

MODE keyword

You can use the MODE keyword, with either the LINE or the FSCR option, on a
SELECT service request to control whether ISPF enters line mode or full-screen
mode when a TSO command or dialog program is invoked. This eliminates the
need to control line mode by prefixing TSO commands with a percent sign.

Chapter 6. Panel definition statement guide 119

120

EXIT keyword

The EXIT keyword, if used, applies only to a primary option menu. It terminates
ISPE, using defaults for list/log data set processing. EXIT need not be enclosed in
single quotes.

Blank or invalid options (or *,?’)

If you use a blank * ” for the value (ZCMD variable is blank), use a blank as the
string. This causes the SELECT service to redisplay the menu. For primary option
menus, the menu is redisplayed without a message. For lower-level menus, an
enter option message is displayed if the option field was left blank.

If you use an asterisk (*) for the value, indicating an invalid option was entered,
use a question mark (?) as the string. This causes the SELECT service to redisplay
the menu with an invalid option message.

Defining primary option menus

A primary option menu is a selection panel that has special significance in terms
of the way the RETURN command operates, and in terms of the way a jump
function, an option number preceded by an equal sign, works. One type of primary
option menu is the master application menu.

The first menu displayed when ISPF is invoked is usually treated as a primary
option menu. For example, if ISPF is invoked with:

ISPSTART PANEL(XYZTOP)
panel XYZTOP is treated as a primary option menu.

Similarly, if ISPF is invoked with:

ISPSTART CMD(XYZ) or
ISPSTART PGM(XYZ)

and dialog XYZ subsequently issues:
SELECT PANEL(XYZTOP)

panel XYZTOP is treated as a primary option menu because it is the first invoked
menu.

It is possible to write a dialog with no primary option menu by setting the variable
ZPRIM to NO on the first selection panel, panel XYZTOP in this example:

)INIT
&ZPRIM = NO

In general, this approach is not recommended because the RETURN command
then causes an immediate exit from the dialog, which can be confusing to the user.

A dialog can have lower-level (nested) primary option menus. This technique is
implemented by setting variable ZPRIM to YES on a lower-level selection panel:

)INIT
&ZPRIM = YES

Nested primary option menus should be used sparingly, since they can confuse the
user. It is recommended that there be only one primary option menu per major
application.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Specifying the next menu to display

ISPF allows the display of menus that are arranged in a hierarchy. The path
through the hierarchy is automatically preserved as the user selects options from
the various menus. As the user moves back up through the hierarchy, the menus
are redisplayed in reverse sequence from which they were selected. While this is
the standard mode of operation, it can be overridden. A developer can specify an
alternative mode of menu processing called explicit chain mode. In this mode, the
parent menu is specified explicitly in a system variable named ZPARENT. This
variable can be set in a panel definition or in a dialog function:

¢ From a menu, ZPARENT specifies the name of the next menu to be displayed
when the user enters the END command. A menu that specifies itself as the
parent is interpreted as a primary option menu. The RETURN command stops at
that menu.

e From a function, ZPARENT specifies the name of the next menu to be displayed
when the function completes execution. If a function is invoked from another
function by the SELECT service, the lower-level function can set ZPARENT.
Upon completion of the lower-level function, the higher-level function resumes
execution. The setting of ZPARENT does not take effect until the higher-level
function, the one originally invoked from a menu, completes execution.

Notes:

1. A value can be stored in ZPARENT in a function, or it can be stored in the
)INIT,)REINIT,)PROC, or)BODY section of a panel.

2. The value in ZPARENT takes effect only after display of a selection panel when
the user enters the END command.

3. When the ZPARENT variable is set from a dialog function, it must be explicitly
copied to the shared pool, using VPUT, to ensure that ISPF still has access to it
after the function completes.

4. Once the ZPARENT variable is set:
* The hierarchy of menus traversed by the user is not preserved by ISPE.

¢ The NEWAPPL and NEWPOOL selection keywords are inoperable (ignored)
while the dialog is in explicit chain mode.

5. The ZPARENT variable is automatically reset to blank by ISPF each time it is
used. If the dialog does not continue to set ZPARENT, ISPF resumes normal
mode. The hierarchy of menus, if any, up to the point at which explicit chain
mode was started is then restored.

6. Generally, a dialog should use either explicit chain mode or hierarchical
chaining, the standard mode. Chaining should #nof be mixed. If they are mixed,
a function that sets ZPARENT should do so only after completion of any
hierarchical dialog that it invokes. For example, the setting of ZPARENT should
be the last thing the function does before returning control. Otherwise, results
are unpredictable.

7. The ZPRIM variable is not applicable and is ignored when operating in explicit
chain mode.

Example of a master application menu

A master application menu, named ISP@MSTR (See [Figure 38 on page 117), is
distributed with ISPF as part of the panel library. This menu can be used, if
desired, to allow selection of the various applications available at an installation.

If used, the master menu should be the first menu displayed when the user logs
on. It can be displayed automatically by including this command in the user’s TSO
LOGON procedure:

Chapter 6. Panel definition statement guide 121

ISPSTART [PANEL(ISP@MSTR)]

When no keywords are specified on the ISPSTART command, PANEL (ISP@MSTR)
is assumed.

The master application menu is generated from a DTL source file l
. The menu selections are enabled for point-and-shoot selection.

The master application menu)INIT,)PROC, and)PNTS sections are included in
to illustrate some of the special menu statement formats already
discussed.

JINIT
.ZVARS = '(ZCMD ZUSER ZTIME ZTERM ZKEYS ZSCREEN ZLANG ZAPPLID ZENVIR)'
.HELP = ISP00005

&ZPRIM = YES /* This is a primary option menu */
IF (&ZLOGO = 'YES') /* CTEMJC*/
IF (&ZSPLIT = 'NO") /* Not in split screen @L5A*/
IF (&ZCMD = &Z) /* No command pending OL5A*/
IF (&ZLOGOPAN —= 'DONE') /* No logo displayed yet OL5A*/
.MSG = ISPL0999 /* Set logo information OL5A*/
.RESP = ENTER /* Simulate enter @L5A*/
&ZLOGOPAN = 'DONE' /= @L5A*/
&ZCLEAN = 'NO' /* OL5A*/
IF (&ZCMD -= &Z) /* Command pending OL5A*/
&ZLOGOPAN = 'DONE' /* OL5A*/
VPUT (ZLOGOPAN) SHARED /= OL5A*/
IF (&ZSPLIT = 'YES') /* In split screen @V5A*/
&ZLOGOPAN = 'DONE'
)PROC
/* This in a GML based panel generated by ISPDTLC. */
/* */
/* Make changes by updating the GML source file */
/* and reconverting ISP@MSTR. */

&ZCMDWRK = TRUNC(&ZCMD,".")
&ZTRAIL=.TRAIL
&ZSEL = TRANS (TRUNC (&ZCMD,'."')
1, 'PANEL (ISP@PRIM) SCRNAME (PRIM)'
X,EXIT

*,'7")
)PNTS
FIELD(ZPSO1001) VAR(ZCMD) VAL(1)
FIELD(ZPS01002) VAR(ZCMD) VAL(2)
FIELD(ZPS01003) VAR(ZCMD) VAL(3)
FIELD(ZPS01004) VAR(ZCMD) VAL(4)
FIELD(ZPS01005) VAR(ZCMD) VAL(5)
FIELD(ZPSO1006) VAR(ZCMD) VAL(X)
FIELD(ZPS00001) VAR(ZCMD) VAL (END)
)END
/* 5655-042 (C) COPYRIGHT IBM CORP 1982, 2003 */

Figure 39. Master application menu definition

[Figure 40 on page 123| shows the DTL source for panel ISP@MSTR. All of the
translatable text is defined with ENTITY tags and is placed at the beginning of the
file. Special comments bordered by a DTL comment line:

<\-- ###########FF RS S H A A SR A AR A A A A H A A A A A A A -

identify the places where the source file can be modified and provide an
explanation for including additional options.

122 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

<:-- ISRGMSTR selection menu -->

<:doctype dm system(
<:ENTITY ispzmstr system -- common logic file imbed -->

<:-- Start of translatable panel text section -->
<:-- text delimited by " is to be translated -->
<:-- text should end with '">' as shown. -->
<:-- the '">' can be moved to the right for text expansion -->
<:-- panel title text follows - maximum length = 74 bytes -->

<:ENTITY panel_title
"ISPF Master Application Menu">

<:-- choice selection text entries follow -->
<:-- choice text for this panel consists of 2 parts: -->
<:-- part 1 - point and shoot - primary description -->
<:-- part 2 - additional descriptive text -->
<:-- if combined Tength of text for part 1 plus part 2 exceeds -->
<:-- b4 bytes, the part 2 text will be folded into multiple Tines -->
<:-- part 1 - point and shoot - primary description follows -->
<:-- pad short text with blanks, aligning the ending quote mark -->
<:-- all text strings must be the same length, including blanks -->
<:-- #F#H#FHEEAA AR AR AR AR AR AR A AR A AR AR A A AR A - >
<:-- To add options 2, 3, 4, or 5 to this panel: -
<:-- - Replace the text below for "choice_n_pnts" -->
<s-- (where "n" is the option number) -
<:-- with the point-and-shoot key identifying option text. -->
<i-- -
<:-- To add new options to this panel: -->
<:-- - repeat the text below for "choice_n_pnts" -->
<:-- (where "n" is the option number) -—>
<:i-- for the new option number and add it to the list -->
<:-- with the point-and-shoot key identifying option text. -->
<:i-- for example: -->
<:-- <:ENTITY choice_6_pnts "New option 6"> -->
<:-- #H###EAHEAAAR AR AR AR AR A AR A AR AR AR A - >

<:ENTITY choice_1 pnts "Sample 1 ">

<:ENTITY choice_2 pnts ". >

<:ENTITY choice_3 pnts ". ">

<:ENTITY choice_4 pnts ". >

<:ENTITY choice_5 pnts ". ">

<:ENTITY choice_X_pnts "Exit ">

Figure 40. Master application menu DTL source (Part 1 of 4)

Chapter 6. Panel definition statement guide

123

124

A A ANNANNANNNANNMNNANANNNA

<.ENTIT
S
<:ENTIT
II(D
:ENTIT
"(D
:ENTIT
II(D
:ENTIT
II(D
:ENTIT

A

A

A

A

"Terminate ISPF using Tist/log defaults">

<:-- Stat
<:ENTITY
<:ENTITY
<:ENTITY
<:ENTITY
<:ENTITY
<:ENTITY
<:ENTITY
<:ENTITY

<:-- Gene
<:ENTITY

<:ENTITY

<:ENTITY

<:ENTITY

<:-- panel instruction text line - maximum text length =
<:-- panel instruction entities will be concatenated

<:ENTITY

"Enter <ps var=zcmd value=END csrgrp=99>END</ps>

<:ENTITY

(where "n" is the option number)

:-- part 2 - additional descriptive text
t-- HEEER R A A A A A - >
:-- To add options 2, 3, 4, or 5 to this panel:

:-- - Replace the text below for "choice_n_text"

with the additional option description text.

(where "n" is the option number)

:-- To add new options to this panel:
:-- - repeat the text below for "choice_n_text"

for the new option number and add it to the list
with the additional option description text.

for example:

<:ENTITY choice_6_text "(Description for option 6)

Y choice_1_text

mple application 1

Y choice_2_text
escription for option 2)
Y choice_3_text
escription for option 3)
Y choice_4 text
escription for option 4)
Y choice 5 text
escription for option 5)
Y choice_X_text

us area labels - maximum text length =
status_userid "Userid . :">
status_time "Time . . :">
status_term "Terminal :">
status_pfkeys "Pf keys :">
status_scrnum "Screen . :">
status_lang "Language :">
status_appl "Appl ID :">
status_rel "Release :">
rated panel comments - maximum text length =

panel_cmntl

"

II>

s

ns

ns

10 bytes

66 bytes

"This in a GML based panel generated by ISPDTLC.">

panel_cmnt2

panel_cmnt3

"Make changes by updating the GML source file

panel_cmnt4

"and reconverting ISP@GMSTR.

panel_instruct_1

panel_instruct_2

"command to terminate application">

<:-- End of translatable panel text section
<:-- DO NOT DELETE THIS LINE -->

)>

ns

Figure 40. Master application menu DTL source (Part 2 of 4)

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

ns
ns
ns

78 bytes

-

-——>

-
Is__>

- HEFHAHE AR A A >

-——>

-

-
-=>

-

<varclass name=vcc type='char 80'>
<xTatl format=upper>
</xlatl>

<varclass name=vco type='char 7'>

<varlist>
<vardcl name=zcmd varclass=vcc>
<vardcl name=zuser varclass=vco>
<vardcl name=ztime varclass=vco>
</varlist>

<copyr>5694-A01 (C) COPYRIGHT IBM CORP 1982, 2004
<panel name=isp@mstr help=isp00005 padc=user keylist=isrnsab applid=isr
width=80 depth=24 menu prime window=no>&panel title;

<cmdarea noinit>
<area depth=8 extend=force width=59 dir=horiz>

<:-- selection options follow - Teft side of panel -->
<selfld type=menu selwidth=+ trail=ztrail fchoice=1 entwidth=1
tsize=12 selcheck=yes>
<choice> <ps var=zcmd value=1 csrgrp=99>
&choice_1 pnts;</ps>
&choice_1_text;
<action run=isp@prim type=panel scrname=prim>

<:-- ####EEEEAR AR AR AR AR AR AR AR AR R AR AR AR A AR A - >
<:-- To add options 2, 3, 4, or 5 to this panel: -=>
<:i-- add a <ACTION> tag provide the selection -->
<:-- information for the generated ZSEL statement. -->
<t=-=- -—>
<:-- <action run=newoptn2 type=panel scrname=opt2> -->
<:-- where: -->
<:i-- run=newoptn2 - provides the name of the panel, -->
<i-- pgm, cmd, wscmd, wscmdv -=>
<:i-- type=panel - provides the selection choice: -->
<:-- panel, pgm, cmd, wscmd, wscmdv -->
<:-- scrname=opt2 - provides an optional screen name -->
<:-- #HHHEEHEER AR AR AR AR R A AR A AR AR A AR - >

<choice> <ps var=zcmd value=2 csrgrp=99>
&choice_2 pnts;</ps>
&choice_2_text;

<choice> <ps var=zcmd value=3 csrgrp=99>
&choice_3 pnts;</ps>
&choice_3_text;

<choice> <ps var=zcmd value=4 csrgrp=99>
&choice_4 pnts;</ps>
&choice_4 text;

<choice> <ps var=zcmd value=5 csrgrp=99>
&choice 5 pnts;</ps>
&choice_b5_text;

Figure 40. Master application menu DTL source (Part 3 of 4)

Chapter 6. Panel definition statement guide 125

<:-- #H###EEEEAAER AR AR AR AR R AR AR A AR AR AR AR A - >
<:-- To add new options to this panel: -->
<:-- - add a new <choice> tag to this Tist following the -->
<:i-- pattern of the <choice> tags above. -->
<:i-- a new <ACTION> tag is required to provide the selection -->
<:-- information for the generated ZSEL statement. -->
<:=-=- -
<:i-- <choice> <ps var=zcmd value=6 csrgrp=99> -->
<i-- &choice_6_pnts;</ps> -->
<:-- &choice 6_text; -->
<:-- <action run=newoptn6 type=panel scrname=opt6> -—>
<:-- where: -->
<:i-- run=newoptn6 - provides the name of the panel, -->
<i-- pgm, cmd, wscmd, wscmdv -->
<:-- type=panel - provides the selection choice: -->
<:-- panel, pgm, cmd, wscmd, wscmdv -->
<:-- scrname=opt6 - provides an optional screen name -->
e fiidtssddsaddtaddtaddtaddssdddadataadtsadatadadaadadaaiassiles

<choice selchar=X> <ps var=zcmd value=X csrgrp=99>
&choice_X_pnts;</ps>
&choice_X_text;

<action run=exit type=exit>

<comment type=proc>&panel_cmntl;

<comment type=proc>&panel_cmnt2;

<comment type=proc>&panel_cmnt3;

<comment type=proc>&panel_cmnté4;

</selfld>
</area>

<:-- right side of option menu panel follows, status area -->
<area dir=horiz>
<region dir = vert>
<divider>
<dtacol pmtwidth=10 entwidth=8>
<dtafld datavar=ZUSER usage=out> &status_userid;
<dtafld datavar=ZTIME usage=out> &status_time;
<dtafld datavar=ZTERM usage=out> &status_term;
<dtafld datavar=ZKEYS usage=out> &status_pfkeys;
<dtafld datavar=ZSCREEN usage=out>&status_scrnum;
<dtafld datavar=ZLANG usage=out> &status_lang;
<dtafld datavar=ZAPPLID usage=out>&status_appl;
<dtafld datavar=ZENVIR usage=out> &status_rel;
</dtacol>
</region

<:-- panel logic file imbed -->
&ispzmstr;
</area>
<region>
<info width=78>
<lines>
&panel_instruct_l;&panel_instruct_2;
</Tines>
<p>5694-A01 (C) COPYRIGHT IBM CORP 1982, 2003
</info>
</region>
</panel>

Figure 40. Master application menu DTL source (Part 4 of 4)

To add a new application to the master menu, copy the ISP@MSTR DTL source file
from the GML library to a private data set. Locate the sections of code within the
DTL comment lines:

<l-- ####### #4444 FHA A A A A A A A A A A A AR A A A A A A A A A A A A AR >

and modify the DTL source code to:

126 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

1. Define the point-and-shoot option text
2. Define the option description text
3. Add an <ACTION> tag for each additional option.

See the [z/OS ISPF Dialog Tag Language Guide and Reference|for a description of
Dialog Tag Language syntax and information about compiling DTL panels.

Compile the modified DTL source file using the ISPDTLC command, and review
the generated panel to confirm that your changes have been processed.

Example of a primary option menu

[Figure 42 on page 129/ shows a primary option menu panel DTL source file
definition. This is the sample primary option menu ISP@PRIM, distributed with
ISPF. &ZPRIM=YES specifies that this panel is a primary option menu.

The primary option menu)INIT,)PROC, and)PNTS sections are included in
[Figure 41 on page 128 to illustrate some of the special menu statement formats
already discussed.

The initialization section sets the control variable .HELP to the name of a tutorial
page to be displayed if a user enters the HELP command from this menu. It also
initializes two system variables that specify the tutorial table of contents and first
index page.

The processing section specifies the action to be taken for each option entered by
the user. If option 0 is selected, program ISPISM is invoked. If option 1 is selected,
panel ISPUCMA is displayed; and so on.

For the tutorial, program ISPTUTOR is invoked and passed a parameter, ISP00000,
which ISPTUTOR interprets as the name of the first panel to be displayed. Panel
ISP00000 is the first panel in the tutorial for ISPF. Other applications should pass
the name of the first tutorial page for that application.

Chapter 6. Panel definition statement guide 127

128

YINIT

.ZVARS = '(ZCMD ZUSER ZTIME ZTERM ZKEYS ZSCREEN ZLANG ZAPPLID ZENVIR)'
.HELP = ISP00003

&ZPRIM = YES

&ZHTOP = ISPOO003 /* Tutorial table of contents for this appl=*/
&ZHINDEX = ISP91000 /* Tutorial index - 1st page for this appl */
VPUT (ZHTOP,ZHINDEX) PROFILE

) PROC

/* This in a GML based panel generated by ISPDTLC. */
/* */
/* Make changes by updating the GML source file */
/* and reconverting ISP@PRIM. */

&ZSEL = TRANS (TRUNC (&ZCMD,'."')
0, 'PGM(ISPISM) SCRNAME (SETTINGS)'
1, 'PANEL(ISPUCMA) SCRNAME (CMDS) "
2,'PGM(ISPPREP) NEWAPPL SCRNAME (PREP)"
3,'CMD(ISPDTLC) SCRNAME (DTLC)"
7,'PGM(ISPYXDR) PARM(&ZTAPPLID) SCRNAME(DTEST) NOCHECK'
T,'PGM(ISPTUTOR) PARM(ISP0000O) SCRNAME(TUTOR)'
X,EXIT

*, 7))
&ZTRAIL=TRAIL
)PNTS
FIELD(ZPSO1001) VAR(ZCMD) VAL(0)
FIELD(ZPS01002) VAR(ZCMD) VAL(1)
FIELD(ZPS01003) VAR(ZCMD) VAL(2)
FIELD(ZPS01004) VAR(ZCMD) VAL(3)
FIELD(ZPS01005) VAR(ZCMD) VAL(4)
FIELD(ZPS01006) VAR(ZCMD) VAL(5)
FIELD(ZPS01007) VAR(ZCMD) VAL(7)
FIELD(ZPSO1008) VAR(ZCMD) VAL(T)
FIELD(ZPS01009) VAR(ZCMD) VAL(X)
FIELD(ZPS00001) VAR(ZCMD) VAL (END)
)END

Figure 41. ISPF primary option menu definition

[Figure 42 on page 129 shows the DTL source for panel ISP@PRIM. All of the
translatable text is defined with ENTITY tags and is placed at the beginning of the
file. Special comments bordered by a DTL comment line:

<\-- ########FHHH R A A AR A A -->

identify the places where the source file can be modified and provide an
explanation for including additional options.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

<!'-- ISR@PRIM selection menu -->

<!'doctype dm system(
<I'ENTITY ispzprim system -- common Togic file embed -->

<I'-- Start of translatable panel text section -->
<I'-- text delimited by " is to be translated -->
<!'-- text should end with '">' as shown. -->
<I'-- the '">' can be moved to the right for text expansion -->
<!'-- panel title text follows - maximum Tength = 74 bytes -->

<!I'ENTITY panel_title

<I'--
<|'--
<I'--
<I'--
<!'--
<I'--

<!'--
<!'--
<I'--
<!'--
<!'--
<I'--
<!'--
<!'--
<I'--
<I'--
<|'--
<I'--
<I'--
<!'--
<!'--
<I'--
<!'--

"Sample Primary Option Menu">

choice selection text entries follow -->
choice text for this panel consists of 2 parts: -->
part 1 - point and shoot - primary description -->
part 2 - additional descriptive text -->
if combined Tength of text for part 1 plus part 2 exceeds -->

54 bytes, the part 2 text will be folded into multiple lines -->

part 1 - point and shoot - primary description follows -->
pad short text with blanks, aligning the ending quote mark -->

all text strings must be the same length, including blanks -->
#H#### A AR A AR AR AR AR AR AR AR A AR AR AS -->

To add options 4, or 5 to this panel: -->
- Replace the text below for "choice_n_pnts" -->
(where "n" is the option number) -->

with the point-and-shoot key identifying option text. -->
-—>

To add new options to this panel: -->
- repeat the text below for "choice n_pnts" -->
(where "n" is the option number) -->

for the new option number and add it to the 1list -->
with the point-and-shoot key identifying option text. -->
for example: -->
<I'ENTITY choice_8 pnts "New option 8"> -->

FHHH R >

<I'ENTITY choice_0_pnts "Settings ">
<!I'ENTITY choice_1_pnts "Commands ">
<!'ENTITY choice_2_pnts "ISPPREP ">
<!'ENTITY choice_3_pnts "ISPDTLC ">

<!'ENTITY choice_4 pnts ". ">
<!'ENTITY choice 5 pnts ". >
<!'ENTITY choice_6_pnts " ">

<I'ENTITY choice_7_pnts "Dialog Test">
<I'ENTITY choice_T_pnts "Tutorial ">
<!'ENTITY choice_X_pnts "Exit ">

Figure 42. ISPF primary option menu DTL source (Part 1 of 4)

Chapter 6. Panel definition statement guide

129

<!'-- part 2 - additional descriptive text -->
NS 2223 i ddddddddssddddssdddsddddasadddaadddaaaddaadadss iy

<!'-- To add options 4, or 5 to this panel: -=>
<I'-- - Replace the text below for "choice_n_text" -=>
<I'-- (where "n" is the option number) -
<I'-- with the additional option description text. -->
<I'-- _——
<!'-- To add new options to this panel: -->
<I'-- - repeat the text below for "choice n_text" -==
<I'- (where "n" is the option number) -->
<I'-- for the new option number and add it to the Tist -->
<I'-- with the additional option description text. -->
<I'-- for example: -->
<I'-- <I'ENTITY choice_8 text "(Description for option 8) ">-->

<U' oo AR A R A A4 - >
<!I'ENTITY choice_0_text
"Terminal and user parameters'>
<I'ENTITY choice_1 text
"Create/change command table ">
<I'ENTITY choice_2_text
"Preprocessed panel utility ">
<!'ENTITY choice_3_text
"ISPF DTL Conversion Utility ">
<I'ENTITY choice_4 text
"(Description for option 4) ">
<I'ENTITY choice_5_text
"(Description for option 5) ">
<I'ENTITY choice 6_text
"(Description for option 6) ">
<I'ENTITY choice_7_text
"Perform dialog testing">
<I'ENTITY choice_T_text
"Display information about this application">
<I'ENTITY choice_X_text
"Terminate ISPF using Tist/log defaults">

<!'-- Status area labels - maximum text Tength = 10 bytes -->
<I'ENTITY status_userid "Userid . :">
<I'ENTITY status_time "Time . . :">

<!I'ENTITY status_term "Terminal :">
<I'ENTITY status_pfkeys "Pf keys :">
<!I'ENTITY status_scrnum "Screen . :">
<I'ENTITY status_lang "Language :">
<I'ENTITY status_appl "Appl ID :">
<I'ENTITY status_rel "Release :">

<!'-- Generated panel comments - maximum text length = 66 bytes -->
<I'ENTITY panel_cmntl
"This in a GML based panel generated by ISPDTLC.">
<!I'ENTITY panel_cmnt2
n II>
<!I'ENTITY panel_cmnt3
"Make changes by updating the GML source file ">
<!'ENTITY panel_cmnt4

"and reconverting ISP@PRIM. >
<!'-- panel instruction text Tine - maximum text length = 78 bytes -->
<!'-- panel instruction entities will be concatenated -->

<!I'ENTITY panel_instruct_1

"Enter <ps var=zcmd value=END csrgrp=99>END</ps> ">
<I'ENTITY panel_instruct_2

"command to terminate application">

<!'-- End of translatable panel text section -->
)> <!'-- DO NOT DELETE THIS LINE -->

Figure 42. ISPF primary option menu DTL source (Part 2 of 4)

130 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

<varclass name=vcc type='char 80'>
<xlatl format=upper>
</xlatl1>

<varclass name=vco type='char 7'>

<varlist>
<vardcl name=zcmd varclass=vcc>
<vardcl name=zuser varclass=vco>
<vardcl name=ztime varclass=vco>
</varlist>

<copyr>5655-042 (C) COPYRIGHT IBM CORP 1982, 1996
<panel name=isp@prim help=isp00003 padc=user keylist=isrnsab applid=isr
width=80 depth=24 menu prime window=no>&panel _title;

<cmdarea noinit>
<area depth=11 extend=force width=59 dir=horiz>

<!'-- selection options follow - left side of panel -—>
<selfld type=menu selwidth=* trail=ztrail fchoice=0 entwidth=1
tsize=12>

<choice> <ps var=zcmd value=0 csrgrp=99>
&choice_0_pnts;</ps>
&choice 0 text;
<action run=ispism type=pgm scrname=settings>
<choice> <ps var=zcmd value=1 csrgrp=99>
&choice_1 pnts;</ps>
&choice_1_text;
<action run=ispucma type=panel scrname=cmds>
<choice> <ps var=zcmd value=2 csrgrp=99>
&choice_2_pnts;</ps>
&choice_2_text;
<action run=ispprep type=pgm newappl scrname=prep>
<choice> <ps var=zcmd value=3 csrgrp=99>
&choice_3_pnts;</ps>
&choice_3_text;
<action run=ispdtic type=cmd scrname=dtlc>
<U'-- #HEf##FHH AR AR AR A AR A AR AR A A A AR A A >

<!'-- To add options 4, or 5 to this panel: -->
<I'-- add a <ACTION> tag provide the selection -->
<I'-- information for the generated ZSEL statement. -=>
<!|__ -
<I'-- <action run=newoptn4 type=panel scrname=opt4> -->
<I'-- where:run= -->
<I'-- run=newoptn4 - provides the name of the panel, -->
<l'-- pgm, cmd, wscmd, wscmdv -->
<I'-- type=panel - provides the selection choice: -->
<l'-- panel, pgm, cmd, wscmd, wscmdv -=>
<l'-- scrname=opt4 - provides an optional screen name -->

<U'-— #EEHHERRREAAAAFFHHHR AR AR AR AR AR A A >
<choice> <ps var=zcmd value=4 csrgrp=99>
&choice_4 pnts;</ps>
&choice 4 text;
<choice> <ps var=zcmd value=5 csrgrp=99>
&choice 5 pnts;</ps>
&choice 5 text;
<choice hide> <ps var=zcmd value=6 csrgrp=99>
&choice_6_pnts;</ps>
&choice 6 text;
<choice> <ps var=zcmd value=7 csrgrp=99>
&choice_7_pnts;</ps>
&choice_7_text;
<action run=ispyxdr type=pgm parm=&ZTAPPLID nocheck scrname=dtest>

Figure 42. ISPF primary option menu DTL source (Part 3 of 4)

Chapter 6. Panel definition statement guide

131

<U'-- HHHHHHHER AR AR A A A A AR R R R A A A AR R R A - >

<!'-- To add new options to this panel: -->
<!'-- - add a new <choice> tag to this 1ist following the -->
<!'-- pattern of the <choice> tags above. -=>
<I'-- a new <ACTION> tag is required to provide the selection -->
<I'-- information for the generated ZSEL statement. -->
<I'-- _——
<!'-- <choice> <ps var=zcmd value=8 csrgrp=99> -->
<I'-- &choice 8 pnts;</ps> -->
<I'-- &choice_8 text; -->
<!'-- <action run=newoptn8 type=panel scrname=opt8> -->
<I'-- where:run= -=>
<I'-- run=newoptn8 - provides the name of the panel, -->
<I'__ pgm, cmd, wscmd, wscmdv -=>
<l'a- type=panel - provides the selection choice: -->
<l'-- panel, pgm, cmd, wscmd, wscmdv -->
<I'-- scrname=opt8 - provides an optional screen name -->

<U'-- #HHH#EFEE AR AR AR R A R A R AR >
<choice selchar=T> <ps var=zcmd value=T csrgrp=99>
&choice_T_pnts;</ps>
&choice _T_text;
<action run=isptutor type=pgm parm=ISP00000 scrname=tutor>
<choice selchar=X> <ps var=zcmd value=X csrgrp=99>
&choice_X_pnts;</ps>
&choice X text;
<action run=exit type=exit>
<comment type=proc>&panel_cmntl;
<comment type=proc>&panel_cmnt2;
<comment type=proc>&panel_cmnt3;
<comment type=proc>&panel_cmnt4;
</selfld>
</area>

<!'-- right side of option menu panel follows, status area -->
<area dir=horiz>
<region dir = vert>
<divider>
<dtacol pmtwidth=10 entwidth=8>
<dtafld datavar=ZUSER usage=out> &status_userid;
<dtafld datavar=ZTIME usage=out> &status_time;
<dtafld datavar=ZTERM usage=out> &status_term;
<dtafld datavar=ZKEYS usage=out> &status_pfkeys;
<dtafld datavar=ZSCREEN usage=out>&status_scrnum;
<dtafld datavar=ZLANG usage=out> &status_lang;
<dtafld datavar=ZAPPLID usage=out>&status_appl;
<dtafld datavar=ZENVIR usage=out> &status_rel;
</dtacol>
</region

<!'-- panel logic file embed -->
&ispzprim;
</area>
<region>
<info width=78>
<lines>
&panel_instruct_l;&panel_instruct_2;
</Tines>
<p>5655-042 (C) COPYRIGHT IBM CORP 1982, 1996
</info>
</region>
</panel>

Figure 42. ISPF primary option menu DTL source (Part 4 of 4)

To add a new application to the primary option menu, copy the ISP@PRIM DTL
source file from the GML library to a private data set. Locate the sections of code
within the DTL comment lines:

<\-- ###########HFH A A A A A A A A A A A A AR A AR A A AR A A A A A A A A A A A A A A AR >

132 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

and modify the DTL source code to:

1. Define the point-and-shoot option text

2. Define the option description text

3. Add an <ACTION> tag for each additional option.

See the [z/OS ISPF Dialog Tag Language Guide and Reference|for a description of
Dialog Tag Language syntax and information about compiling DTL panels.

Compile the modified DTL source file using the ISPDTLC command, and review
the generated panel to confirm that your changes have been processed.

The required input field, ZCMD, appears in the second line of the panel body. It is
followed by a description of the various options.

This menu also has eight variables within text fields at the upper-right corner of
the screen. These reference system variables from the shared variable pool that
display user ID, time, terminal type, number of function keys, screen number,
language, application ID, and ISPF release number.

Defining table display panels

A table display panel is a special panel that is processed by the TBDISPL service.
When it is displayed, it has a fixed (nonscrollable) portion followed by a scrollable
table portion. The fixed portion is defined by the)BODY section in the panel
definition. The scrollable portion is defined by the)MODEL section.

The fixed portion contains the command field and usually the scroll amount field.
It can also include other input fields as well as output fields, action bars, text,
dynamic areas, scrollable areas, and a graphic area.

The scrollable portion is defined by up to eight model lines. These lines describe
how each table row is to be formatted within the scrollable data area. Attribute
characters in the model lines indicate whether each field is protected or
user-modifiable.

If a single model line is specified in the panel definition, each row from the table
corresponds to the format of that line. This results in scrollable data that is in
tabular format. For many applications, it may be useful to define the left-most
column in each line as an input field. The application user can enter a code to be
used by the dialog function to determine the particular processing for that row.

If multiple model lines are specified in the panel definition, each row from the
table corresponds to multiple lines on the screen. If desired, a separator line,
consisting of blanks or dashes, for example, can be specified as the first or last
model line. This format may be useful for address lists or other repetitive data in
which each unit will not fit on a single line.

Each definition using the model lines on the display is known as a model set.

Table display vocabulary
This topic defines some terms related to table display. [Figure 43 on page 134|
illustrates those terms that refer to parts of a TBDISPL display. The two main parts
of a TBDISPL display are the fixed portion and the scrollable portion. The fixed
portion contains the command field and commonly a scroll amount field and a

Chapter 6. Panel definition statement guide 133

top-row-displayed indicator. The scrollable portion contains the table information
and usually, if the screen is not filled, a bottom-of-data marker.

4 ™\
Command Field Top-Row-Displayed Indicator
I I
[T Ve e Vommmmmee e +
------------------- Population Change ------ ROW 4 OF 10 | ----* Scroll
Command ==> Scroll ==> PAGE| <----- Amount
Field
This table shows selected metropolitan areas which had a
large relative increase in population from 1970 to 1980. Fixed
Portion
Metro area State Change
(Percent) ————
Fort Collins co +66.0 ————k
West Palm Beach f1 +64.3 Scrollable
Fort Lauderdale f1 +63.6 Portion
Bryan tx +61.5
Reno nv +60.0
Provo ut +58.4
McAlTlen tx +56.1 Bottom-
BOTTOM OF DATA Smmmmmme- of-Data
----% Marker
T S +
o J

Figure 43. Parts of a TBDISPL display

auto-selection
The process by which the row specified in the CSRROW parameter or
.CSRROW control variable is selected, even if the user did not explicitly
select that row by modifying the corresponding model set displayed on the
screen.

Relevant concepts include: selected row, user-selection, CSRROW
parameter, . CSRROW control variable, AUTOSEL parameter, and
AUTOSEL control variable.

bottom-of-data marker
The low-intensity text that appears after the last displayed row in the last
page of data in a TBDISPL display. If there are no displayed rows, this
marker will be the only information displayed in the scrollable portion.
The text BOTTOM OF DATA, with asterisks on each side, appears after the last
row on a table display. The dialog can define an alternate marker by
assigning text to ZTDMARK.

ISPF uses the + default attribute character for the bottom-of-data marker.
The default attribute characters are %, +, and . For a description of the
default attribute characters see [“Using default attribute characters” on page|
You can change the default attribute characters by using the DEFAULT
keyword on either the JATTR or)BODY head statement. For example:
DEFAULT (abc) where a, b, and c are the 3 characters that take the place of
%, +, and _, respectively. The default attribute characters are
position-sensitive. Thus, if you change the default character "b” in the
second position of the DEFAULT keyword parameter (ISPF’s default
character is +), it must maintain the characteristics of TYPE(TEXT),
INTENS(LOW), COLOR(BLUE) for the bottom-of-data marker to display
correctly.

Relevant concepts include: system variable ZTDMARK.

command field
A required field in the fixed portion of a TBDISPL display where

134 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

commands are entered. The command field can be identified in the panel
definition through use of the CMD parameter on the)BODY statement. If
the CMD parameter is not specified, the first input field is assumed to be
the command field.

Relevant concepts include: system commands, application commands, and
function commands.

dynamic expansion
The process by which a table being displayed is expanded as needed if a
user scrolls beyond the top or bottom of data contained in the table at the
time of the scroll request.

Relevant concepts include: scrolling and TBDISPL.

fixed portion
The nonscrollable portion of a TBDISPL display. That is, the part of the
display that is not affected by the UP or DOWN commands. Note that
both the fixed and scrollable portions are unaffected by the LEFT and
RIGHT commands. The fixed portion is defined by the) BODY section of
the panel definition.

Relevant concepts include: scrollable portion,) BODY section.

model lines
The lines in the)MODEL section of a TBDISPL panel definition, which
form a template, or model, for the scrollable portion of a TBDISPL display.

Relevant concepts include:)MODEL section, model set, scrollable portion.

model set
The lines in the scrollable portion of a TBDISPL display that correspond to
a particular table row. Model sets are created by ISPF by replicating the
model lines in the panel definition and then filling in the fields with
variable and table row information. Each model set on the display
corresponds to a table row. If there are n model lines, where n can be from
1 to 8, then each model set is made up of n lines on the display.

Relevant concepts include: model lines, and scrollable portion.

pending END request

The situation that exists when a user has selected more than one row and
has entered the END or RETURN command. The dialog can choose to
ignore the selected rows, or it can process the selected rows in a TBDISPL
series. In the latter case, each call of TBDISPL results in a return code of 8.
When all the selected rows have been processed, the dialog commonly
honors the pending END request by not invoking the TBDISPL service
again.

Relevant concepts include: TBDISPL series, pending scroll request, and
pending selected row.

pending scroll request
The situation that exists when a user has selected one or more rows, and
has entered the UP or DOWN command. After the dialog has processed all
the selected rows, it can invoke TBDISPL without the PANEL and MSG
parameters to display the table and panel and have the pending scroll
request honored. A pending scroll request can also exist when a user has
issued the UP or DOWN command and the dialog is dynamically building
the table. After adding the rows needed to satisfy the scroll request, the
dialog can invoke TBDISPL without the PANEL or MSG parameters and
ISPF will honor the pending scroll request.

Chapter 6. Panel definition statement guide 135

136

Relevant concepts include: TBDISPL series, pending END request, pending
selected row, and controlling the top-row-displayed.

pending selected rows

Occurs when a user has selected more than one row in a single interaction.
Upon return from the TBDISPL display, the CRP is positioned to the first
of the selected rows. The other rows, which remain to be processed, are the
pending selected rows.

Relevant concepts include: selected row, TBDISPL series, pending END
request, pending scroll request, system variable ZTDSELS.

scroll amount field

An optional field in the fixed portion of a TBDISPL display where scroll
amounts, for example, PAGE, HALF, or 10, are entered. If the input field
immediately following the command field is exactly 4 characters long, it is
assumed to be the scroll amount field.

Relevant concepts include: scrolling, and system variables ZSCROLLA and
ZSCROLLN.

scrollable portion

The part of a TBDISPL display defined by the)MODEL section of the
panel definition and made up of model sets. It contains the ISPF table
information. It is affected by the UP and DOWN commands.

Relevant concepts include: fixed portion,)MODEL section, model lines,
and model sets.

select field

A field in the scrollable portion where line commands are entered. For
example, a d entered into the select field of a model set can indicate that
the corresponding table row is to be deleted. TBDISPL does not officially
identify any field as a select field. It is up to the dialog to determine the
characteristics or meaning of a select field.

Relevant concepts include: line commands, scrollable portion, model set,
selected row, and user-selection.

selected row

A row in an ISPF table that has been auto-selected or user-selected.

Relevant concepts include: auto-selection, user-selection, model set,
pending selected row, system variable ZTDSELS, POSITION parameter,
and ROWID parameter.

TBDISPL series

A call of the TBDISPL service that results in a display where the user
selects more than one row, followed by calls of the TBDISPL service
without the PANEL and MSG parameters to process the pending selected
rows.

Relevant concepts include: pending selected rows, pending END request,
pending scroll request, and system variable ZTDSELS.

top-row-displayed indicator

There are three possible texts for the top-row-displayed indicator:
* ROW x OF y

x is the current row pointer of the top row displayed. y is the total
number of rows in the table.

* ROWxTO z OF y

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

x is the current row pointer of the top row displayed. z is the row
pointer of the last visible table row. z is calculated as the current row
pointer of the top row displayed plus the number of lines displayed
minus one. y is the total number of rows in the table.

e ROW x FROM y

x is the row pointer of the table row that has met the criteria of the
SCAN. y is the total number of rows in the table.

The text used for the top-row-displayed indicator is determined by the
CUA mode selected and by whether ROWS is set to ALL or SCAN in the
panel model section. is a summary of the CUA mode and
ROWS(ALL) or ROWS(SCAN) combinations and the resulting
top-row-displayed messages. CUA mode of YES is determined by the
presence of a panel statement or by specifying CUA MODE=YES on
Option 0.

Table 5. Text for top-row-displayed indicator

CUA Mode ROWS Top-Row-Displayed Message Message ID
YES ALL ROW x TO z OF y ISPZ7102
YES SCAN ROW x FROM y ISPZ7103
NO ALL ROW x OF y ISPZZ100
NO SCAN ROW x OF y ISPZZ7100

The message text appears right-justified on the top line of the display, or
just below the action bar separator line if an action bar is defined. Your
dialog can define an alternate indicator if you assign a message ID to
ZTDMSG. TBDISPL invokes the GETMSG to get the short and long
message text. If a short message is found, it is used as the
top-row-displayed indicator; if not, the long message text is used. In either
case, any variables in the messages are substituted with their current
values. If ZTDMSG does not exist, the long form of message ISPZZ100,
ISPZZ102, or ISPZZ103 is used.

If the model section for a table contains more than one line, it is possible
that the entire model section will not fit on the screen. In this case, the last
rows of the table area are left blank. A partial model section is not
displayed. The only way to display a partial model section is if you
request your function keys to appear over your table display, or if you split
your screen over your table display.

When you specify ROWS(SCAN) in your panel model section, ISPF finds
only enough rows to fill the display, thus providing a performance boost.
Therefore, you cannot know the entire number of table rows that meet
your search criteria without scrolling through the complete table.

When a table is being built dynamically to satisfy scroll requests, you can
make the top-row-displayed indicator reflect the positioning in the logical
table instead of the physical table. See the description of ZTDLTOP and
ZTDLROWS in |z/OS ISPF Services Guide}

Relevant concepts include: system variables ZTDMSG, ZTDTOP, ZTDLTOP,
ZTDROWS, and ZTDLROWS; messages ISPZZ100, ISPZZ101, ISPZZ102,
and ISPZZ103; and controlling the top-row-displayed.

user-selection
The process by which ISPF table rows are chosen or selected for processing
by the user modifying the corresponding model sets on the display. A user

Chapter 6. Panel definition statement guide 137

138

modifies a model set by entering data into that model set. Overtyping a
model set with the same data does not cause the row to be selected.

Relevant concepts include: auto-selection, selected row, model set, and
system variable ZTDSELS.

Requirements for attribute section

Attribute characters can be defined for use in the panel body and the model lines.
In the)BODY section, any attribute except EXTEND(ON) and SCROLL(ON) can be
associated with any field or area. In the)MODEL section, any attribute except
those associated with dynamic and graphic areas can be used with any field. That
is, the attributes AREA, EXTEND, SCROLL, USERMOD, and DATAMOD are not
allowed in model lines.

Input and output fields default to CAPS(ON) and JUST(LEFT), in the)BODY
section, but they default to CAPS(OFF) and JUST(ASIS) in the)MODEL section.

An attribute section is required if the model line contains output fields. There is no
default attribute character for output fields.

Requirements for body section

The panel body section is required. It contains the nonscrollable data, which is the
command field and, commonly, the scroll amount field. The rules for their
definition are:

Command field (required)
This field must not be longer than 255 characters.

The command field can have any desired name. The position of the
command field can be specified through use of the CMD parameter on the
)BODY statement. If the CMD parameter is not specified, the first input
field is assumed to be the command field.

The command field is used, as on other types of panels, to enter ISPF
commands and application-defined commands, if any. Any commands
entered in this field that are not recognized by ISPF are automatically
stored in the corresponding dialog variable. Upon return from TBDISPL,
the dialog function can interpret this field and take appropriate action. The
ZCMD field is cleared each time a TBDISPL request is received with the
MSG or PANEL parameter. If the TBDISPL request contains a table name
and no other parameters, the ZCMD field contains what was entered on
the previous TBDISPL.

The ISPF commands are system commands, while the application-defined
commands are application commands. The commands processed by the
dialog function are function commands.

Scroll amount field (optional)
If the input field immediately following the command field is exactly 4
characters long, it is assumed to be the scroll amount field.

The field can have any desired name. Its initial value can be set in the
)INIT section of the panel definition to any valid scroll amount.

If no scroll amount field is specified, the system variable ZSCROLLD,
which can be set by a dialog, is used to determine the default scroll
amount. If there is no scroll amount field and ZSCROLLD has not been set,
PAGE is assumed.

When a user enters a scroll request, variables ZSCROLLA and ZSCROLLN
are set. ZSCROLLA contains the value of the scroll amount field (MAX,

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

CSR, for example). ZSCROLLN contains the number of lines or columns to
scroll, computed from the value in the scroll amount field. For example, if
a dialog is in split-screen mode and if 12 lines are currently visible and a
user requests DOWN HALF, ZSCROLLN contains a ‘6’. The system
variable ZVERB contains the scroll direction, DOWN in this case. If
ZSCROLLA has a value of MAX, the value of ZSCROLLN is not
meaningful.

These can appear in the) BODY section:

* Action bars

e Text

* Variables within text; for example, &XYZ
* Input fields

* Output fields

* Dynamic areas

* Scrollable areas

* Graphic areas.

Notes:

1. Only one extendable area is allowed on a panel. This includes dynamic,
scrollable, and graphic areas.

2. Graphic areas are not supported when you are running in GUI mode. When
a GRINIT statement is encountered, you will receive a message that panels
with graphics will not be displayed. You may choose to continue. When a
panel with graphics is encountered, you will receive an error message that
the panel cannot be displayed.

If you are running in split-screen mode, the graphic area panel cannot be
displayed on the host session.

If you specified GUISCRD or GUISCRW values on the ISPSTRT invocation
which are different from the actual host screen size, GDDM cannot be
initialized and the GRINIT service will end with a return code of 20.

Requirements for model section

The panel body must be followed by a model section. This section begins with a
JMODEL header statement and is immediately followed by one or more model
lines.

The)MODEL header statement must begin in column 1. These optional keywords
can be specified on this header:

* CLEAR(var-name,var-name ...)

* ROWS(ALL|SCAN).

* SFIHDR

The CLEAR keyword identifies the dialog variable names within the model lines
that are to be cleared to blank before each row in the table is read. For example,
you can use this to clear the values of extension variables. Because extension
variables might not exist in all the rows that are displayed, clearing them ensures
that previous values are not repeated in other lines to which they do not apply.

CLEAR is not processed when the EXIT panel statement is actioned. Use a GOTO
to jump to a label before the next panel section to bypass panel code and have
CLEAR processing occur.

The ROWS keyword indicates whether all rows from the table are to be displayed,

or whether the table is to be scanned for certain rows to be displayed. The default
is ROWS(ALL), which causes all rows to be displayed. If ROWS(SCAN) is

Chapter 6. Panel definition statement guide 139

140

specified, the dialog must invoke the TBSARG service before invoking TBDISPL.
The search argument set up by the TBSARG service is used to scan the table. Only
rows that match the search argument are displayed.

The SFIHDR keyword is used when a variable model line defines scrollable fields
and scroll indicators are required for the scrollable fields. SFIHDR indicates that
the first variable model line defines scroll indicator fields for scrollable fields that
are defined on subsequent variable model lines.

One or more model lines must appear following the)MODEL header statement. A
maximum of eight model lines is allowed. Any attribute except those associated
with dynamic, graphic, or scrollable areas (AREA, EXTEND, SCROLL, USERMOD,
and DATAMOD) can be used with any fields in the model lines. These can appear
in the)MODEL section:

e Text

* Variable model lines

¢ Input fields

* Output fields.

These cannot appear in the)MODEL section:
* Action bars

* Variables within text

* Dynamic areas

* Graphic areas

* Scrollable areas.

Typically, the first field within the model lines specifies the dialog variable into
which a selection code, entered by a user, will be stored. All remaining names
correspond to columns in the table. However, this arrangement is not required.
Any name may or may not correspond to a column in the table, and a selection
code field need not be specified.

Text fields can be specified in the model line. A text attribute character can appear
by itself to terminate the preceding input or output field. Any characters that
appear within a text field in the model line are repeated in each line of the
scrollable data. This includes the letter Z. It is not treated as a variable name if it
occurs in a text field.

Variable model lines can be specified in the panel definition. If a variable, a name
preceded by an ampersand, begins in column 1 of any model line, the value of that
variable defines the model line.

These rules apply to variable model lines:

* The variable must be the only information on the model line. If any other data is
present, an error results.

e If the value of the variable is greater than the screen width, an error results.

* The variable can contain any character string that is a valid panel definition
model line, except that the variable cannot define a variable model line. A
variable whose value is all blanks is acceptable.

* If the variable contains the character string OMIT starting in column 1, that
variable model line will not be used in the model definition.

* All model line variables must be initialized before the table display service is
called with a nonblank panel name. Changes to the variables that occur within
the panel or the dialog function are not honored until table display is called
again with a nonblank panel name.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

e If variable model lines are being used, the panel is retrieved from disk every
time that table display is called with a nonblank panel name and the value of
the variable model line has changed.

* If the SFIHDR keyword is specified on the)]MODEL header statement, the first
variable model line is assumed to define scroll indicator fields for scrollable
fields that are defined on subsequent variable model lines.

Requirements for initialization section
An initialization section, if present, is processed when the TBDISPL service is
invoked with the panel name specified.

If Z variables occur as name placeholders within the model lines or the fixed
portion, an)INIT section is needed. The real names of these fields are defined by
assigning a name list, enclosed in parentheses if more than one name is given, to
the control variable, .ZVARS. For example:

JINIT
.ZVARS = '(NAME1,NAME2,NAME3)'

where NAME1, NAME?2, and NAMES3 are the actual variable names corresponding
to the first, second, and third Z variables in the body or model sections. For
example, if one Z variable occurs as a placeholder within the panel body and two
Z variables occur as placeholders within the model lines, then NAMEL1
corresponds to the field in the body and NAME2 and NAMES3 correspond to the
two fields in the model lines.

The)INIT section of a TBDISPL panel definition can contain any statement that is
valid in an)INIT section of a DISPLAY panel definition.

Requirements for reinitialization section

If a)REINIT section is included, it is executed when TBDISPL is reinvoked without
a panel name or when a redisplay occurs automatically because of the . MSG
control variable being nonblank.

The)REINIT section of a TBDISPL panel definition can contain any statement that
is valid in a)REINIT section of a DISPLAY panel definition.

Any control variable except .ZVARS can be set within the)REINIT section. If table
variables that are in the model lines are referenced within the)REINIT section,
then the values for the current row, as specified by the CRP, are used. For example,
if the .ATTR control variable is set for fields that are in the)MODEL section, then
only fields in the model set on the display that corresponds to the current selected
row will have their attributes changed.

Requirements for processing section
If a)PROC section is included, it is executed before control returns to the dialog
function. It is not executed while the user is scrolling.

The)PROC section of a TBDISPL panel definition can contain any statement that is
valid in a)PROC section of a DISPLAY panel definition.

Any control variable except . AUTOSEL and .ZVARS can be used in the)PROC
section. If table variables that are in the model lines are referenced within the
)PROC section, then the values for the current row, as specified by the CRP, are
used. For example, if the .ATTR control variable is set for fields that are in the
)JMODEL section, only fields in the model set on the display that corresponds to
the current selected row will have their attributes changed.

Chapter 6. Panel definition statement guide 141

142

The)PROC section can check the value of ZTDSELS to determine if any rows were
selected. This value and its interpretation are:

0000 No selected rows
0001 One selected row (now the current row)

0002 Two selected rows, consisting of the current row and a pending selected
row

0003 Three selected rows, consisting of the current row and two pending
selected rows

And so forth.

Using control variables

Two control variables, . AUTOSEL and .CSRROW, can be used in the
executable—)INIT,)REINIT, and)PROC—sections of a TBDISPL panel definition.
They are ignored in a DISPLAY panel definition.

The .AUTOSEL and .CSRROW control variables can be used to control the
selection (and preselection) of a row in a table display. For more information about
these variables, see [“. AUTOSEL” on page 289 and [*.CSRROW” on page 290,

Processing panels by using the TBDISPL service

When a panel is displayed by the TBDISPL service, the model lines in the)MODEL
section are duplicated at the end of the logical screen. When the scrollable portion
of the screen is being formatted, only full units or duplications of these model lines
are usually displayed. Two exceptions are:

* When the command line is repositioned to the bottom of the screen, the line
above it, which can be a model line, may be overlaid with a blank line and used
as the long message line. This prevents table display data from being overlaid
with long message data.

* When the PFSHOW command is in effect, up to four additional lines can be
overlaid.

Each input or output field that has a corresponding column in the table is
initialized with data from succeeding rows from the table. The first row displayed
is the row pointed to by the CRP when TBDISPL was issued.

Input or output fields in a model line that do not correspond to columns in the
table are initialized, in all rows, with the current contents of the corresponding
dialog variables. If these fields are to be blank, the corresponding variables must
be set to blanks or null before each call of TBDISPL. The CLEAR keyword can be
used to specify that they are to be blanked.

A user can scroll the data up and down. Scroll commands, such as DOWN 5, apply
to the number of table entries to scroll up or down. For example, if three model
lines are specified, DOWN 5 would scroll by 5 table entries, which corresponds to 15
lines on the display.

A user can enter information in any of the input fields within the fixed or
scrollable portion of the panel.

[Figure 44 on page 143 shows a sample panel definition for table display.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR
@ TYPE(OUTPUT) INTENS(LOW)

)BODY
A EMPLOYEE LIST =mmmmmmmmmmmmmmmmmmm e
%COMMAND INPUT ===> ZCMD %SCROLL ===> AMT +
+
%EMPLOYEES IN DEPARTMENT@Z +
+
+SELECT =mmme- EMPLOYEE NAME ------- -~ PHONE --- EMPLOYEE
+ CODE LAST FIRST MI AREA NUMBER SERIAL
)MODEL
7+ @LNAME @FNAME eI @PHA @PHNUM @EMPSER
YINIT
.ZVARS = ' (DEPT SELECT)'
&AMT = PAGE
.HELP = PERS123
YREINIT
IF (MSG = ' ')
&SELECT = '
REFRESH (SELECT)
)PROC

IF (&ZTDSELS —= 0000)
VER (&SELECT, LIST, A, D, U)
)END
Figure 44. Table display panel definition
Assuming that the current contents of the table are as shown in and that
dialog variable DEPT contains "27’, the resulting display is shown in

Table 6. Table display data

EMPSER LNAME FNAME I PHA PHNUM
598304 Robertson Richard P 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Charles L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Kelvey Ann A 914 555-4156
4 N
---------------------------- EMPLOYEE LIST ==--===============—= ROW 1 OF 5
COMMAND INPUT ===> _ SCROLL ===> PAGE
EMPLOYEES IN DEPARTMENT 27
SELECT ------ EMPLOYEE NAME ------- --- PHONE --- EMPLOYEE
CODE LAST FIRST MI AREA NUMBER SERIAL
Robertson Richard P 301 840-1224 598304
Smith Susan A 301 547-8465 172397
Russell Charles L 202 338-9557 813058
Adams John Q 202 477-1776 395733
Caruso Vincent A 914 294-1168 502774
BOTTOM OF DATA
- J

Figure 45. Table as displayed

In this example, the select field (left-most column) does not correspond to a
column in the table. It is used to return a selection code, entered by the user and
placed in a variable named SELECT. The other variables in the model line
correspond to variables in the table. The example also illustrates the use of two Z

Chapter 6. Panel definition statement guide 143

variables as placeholders in the body of the panel and in the model line, the
initialization of the scroll amount field to PAGE, and the specification of a
corresponding help panel.

definition shown in

The same table might be displayed by using several model lines with the panel

)ATTR
@ TYPE(OUTPUT) INTENS(LOW)
TYPE(INPUT) PAD('_"')

) BODY
R — EMPLOYEE LIST =----oooooomoeoooeomoooocoocos
%COMMAND INPUT ===>_ZCMD %SCROLL ===>_AMT +
+
%EMPLOYEES IN DEPARTMENTGZ +
+
+ENTER CHANGES ON THE LINES BELOW.
+
)MODEL
#2 + SERIAL: GEMPSER + LAST NAME: GLNAME +
PHONE: G@PHAGPHNUM + FIRST NAME: @FNAME +
INITIAL: @I +
)INIT
.ZVARS = '(DEPT SELECT)'
RAMT = PAGE
.HELP = PERS123
)END

Figure 46. Table display panel definition with several model lines

The resulting display is shown in [Figure 47 on page 145| An entry separator,
consisting of a dashed line, is also included as the last model line. In this example,
the SELECT field has been increased to 4 characters, with underscores used as pad
characters.

144 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

———————————————————————————— EMPLOYEE LIST -------------------- ROW 1 OF 5
COMMAND INPUT ===> _ SCROLL ===> PAGE
EMPLOYEES IN DEPARTMENT 27
ENTER CHANGES ON THE LINES BELOW.
o SERIAL: 598304 LAST NAME: Robertson
PHONE: 301 840-1224 FIRST NAME: Richard
INITIAL: P
_ SERIAL: 172397 LAST NAME: Smith
PHONE: 301 547-8465 FIRST NAME: Susan
INITIAL: A
- SERIAL: 813058 LAST NAME: Russell
PHONE: 202 338-9557 FIRST NAME: Charles
INITIAL: L
_ SERIAL: 395733 LAST NAME: Adams
PHONE: 202 477-1776 FIRST NAME: John
INITIAL: Q
_ SERIAL: 502774 LAST NAME: Caruso
PHONE: 914 294-1168 FIRST NAME: Vincent
INITIAL: J
i * *% BOTTOM OF DATA * *k

. %
Figure 47. Table as displayed with several model lines

Formatting panels that contain dynamic areas

ISPF facilities permit the format and content of a display to be determined in the
same dialog in which it is displayed. This is called dynamic formatting. See
[“Specifying dynamic areas” on page 202|for information about how to specify a
dynamic area in the)ATTR section header.

Areas are reserved for this purpose in a panel definition and are called dynamic
areas. A dynamic area can encompass all or part of a panel display.

The format of a dynamic area is specified by a string of control and data
characters, stored in a dialog variable. This variable may have been produced
either in the current dialog or, earlier, in another dialog or program. The string
usually contains a mixture of nondisplayable attribute characters and data to be
displayed. The name of the dialog variable is chosen by the panel designer. This
name is placed in the panel definition within the dynamic area.

A dialog uses the DISPLAY, TBDISPL, or SELECT service to display a panel
containing a dynamic area. After the display and after entry of any input by the
user, data from within the dynamic area is stored in the variable, associated with
the area, and is available for processing by the dialog function.

When a panel is displayed, the number of lines in a dynamic area can be increased
automatically to accommodate the number of lines available on the terminal being
used for the display.

145

Chapter 6. Panel definition statement guide

Panel processing considerations

When you are defining a dynamic area and generating a dynamic character string
that defines the format of the data to be placed within that area on the panel, a
number of rules apply:

* The area cannot be specified by using a Z-variable place-holder within the panel
body.

* Within the dynamic area, all nonattribute characters are treated as data to be
displayed. Unlike other parts of the panel body, a variable name does not follow
an attribute character.

* The dialog is responsible for ensuring data integrity, validity of attribute codes,
and so on, for the dynamic character string.

* If the dynamic area has a width that is less than the screen size, the panel
designer must place the appropriate attribute characters around this box so that
the data within the area is not inadvertently affected. For example, the panel
designer can place fields with SKIP attributes following the right-most
boundaries so that the cursor is properly placed to the next or continued input
field within the area.

* If the dialog must know the dimensions of the dynamic area before the data is
formatted, this information is available by invoking the PQUERY dialog service.
All dialog services are described in [z/OS ISPF Services Guidd

* The scroll amount field is optional. On a panel with a scrollable area, if the input
field following the command field in the panel body is exactly 4 characters long,
it is assumed to be the scroll amount field. Otherwise, the system variable
ZSCROLLD, which can be set by the dialog, is used to determine the default
scroll amount. If there is no scroll amount field and ZSCROLLD has not been
set, PAGE is assumed. ZSCROLLA contains the value of the scroll amount field,
such as MAX or CSR. ZSCROLLN contains the scroll number computed from
the value in the scroll amount field (number of lines or columns to scroll). For
example, if a user is in split-screen mode, 12 lines are currently visible, and the
user requests DOWN HALF, ZSCROLLN contains a '6’. The system variable
ZVERB contains the scroll direction, DOWN in this case. If ZSCROLLA has a
value of MAX, the value of ZSCROLLN is not meaningful.

* A nonblank input or output field preceding a dynamic area must be terminated
by an attribute character.

* When variable substitution occurs within a text field in the panel body, the field
must be terminated by an attribute character, before a special character defining

a dynamic area. See [“Using variables and literal expressions in text fields” on|
ﬁ

for additional information about text field variable substitution.

Although panel display processing cannot provide point-and-shoot support for
dynamic areas, it does provide the PAS(ON) keyword for TYPE(DATAOUT). The
PAS(ON) keyword reflects the CUA point-and-shoot color. It is up to application
developers to provide the point-and-shoot function in programs they develop.

Similarly, while the panel display service does not perform the scrolling for
dynamic or graphic areas, it does provide an interpretation of the user’s scroll
request.

The value for the SCROLL keyword cannot be specified as a dialog variable.

A panel cannot have more than one scrollable area or more than one extended
area. The scrollable area can be a panel with a scrollable area or a table display.

146 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

These rules are applied in

/)ATTR)
AREA(DYNAMIC) SCROLL(ON) EXTEND(ON)

)BODY

e e (11T S S S

%COMMAND ===>_7CMD +SCROLL ===> AMT +

+

+ (Instructions for this panel ...)

+

FSAREA == == mmm e e e e #

+

+ (More instructions for this panel ...)

+

- J

Figure 48. Panel definition illustrating SCROLL and EXTEND

In this example, there are:
* 5 lines in the panel body before the extended area
* 3 more lines after the extended area.

This makes a total of 8 lines that are outside the dynamic area. Therefore, if the
panel were displayed on a 3278 Model 4, which has 43 lines, the depth or extent of
the dynamic area would be 43 minus 8, or 35 lines. In split-screen mode, the panel
is still considered to have a 35-line scrollable area, even though part of it is not
visible.

In this example, the dynamically generated data string to be placed in the area is
taken from the dialog variable SAREA. If, for example, the dynamic area is 60
characters wide and 10 lines deep, the first 60 characters of the string are placed in
the first line of the area, the next 60 characters are placed in the second line of the
area, and so on, until the last 60 characters are placed in the tenth line of the area.
Following a user interaction, the contents of the area are stored in the same
variable.

The width of the dynamic area includes the special characters that designate the
vertical sides. These delimiter characters do not represent attribute characters.

A number of the capabilities described in the previous sections have implications
for panel areas as well as panel fields. These include:

* A REFRESH statement can be used to reset an area when reinitializing or
redisplaying a panel. The variable value is again read and placed in the area.
Since the value also contains attribute information that may have changed, the
characteristics for each field are again analyzed.

¢ The cursor placement capability applies to dynamic areas. That is, . CURSOR can
be assigned to a dynamic area name and .CSRPOS can be assigned to a position
within the dynamic area. The position within an area applies within the
rectangular bounds of that area.

* The .ATTRCHAR control variable can be used to override attribute characters
that are used within dynamic areas. In addition, . ATTRCHAR can be used to
define a new attribute character that has not been previously listed within the
panel)ATTR section. Using .ATTRCHAR as a vehicle for defining new attribute
characters can be done only within the)INIT section and only for fields within
dynamic areas (TYPE(DATAIN) or TYPE(DATAOUT)).

e The PQUERY service can be invoked by the dialog function to determine the
characteristics of the dynamic area before the dialog function constructs the
dynamic character string.

Chapter 6. Panel definition statement guide 147

148

Character-level attribute support for dynamic areas

ISPF allows you to associate character-level attributes with individual characters
within a dynamic area. Each character in the dynamic area can be assigned
characteristics of color and extended highlighting, which override these attribute
values identified in the field attribute. You can also specify that a graphic escape
(GE) order be used to display a graphic character from an alternate character set.
See [“Defining the attribute section” on page 172|for more information.

Note: Character-level color and extended highlighting will be ignored when
running in GUI mode.

These attributes are treated as character attributes only if they are used in the
shadow variable for the dynamic area; otherwise, they are treated as text. See
[“Specifying character attributes in a dynamic area”| for more information on
shadow variables.

Dialog variables can be substituted for the values of the COLOR, HILITE, and GE
keywords in the same way they are substituted for field attributes.

The .ATTRCHAR control variable may be used to override the COLOR, HILITE,
and GE keywords for character attributes in the same way it is used to override
field attributes. The TYPE keyword cannot be overridden from TYPE(CHAR) to
any other type, nor can a different type value be overridden as TYPE(CHAR). See
[“Relationship to Control variables .ATTR and .ATTRCHAR” on page 207

See the [z/OS ISPF Dialog Tag Language Guide and Reference|for details on defining
character attributes within dynamic areas in panels created using DTL.

Specifying character attributes in a dynamic area

If a dynamic area is to contain character attributes, a shadow variable must be
defined. The TYPE(CHAR) attributes must be placed in this variable such that they
map to the characters in the dynamic area affected by the attribute. ISPF ignores
any other characters or field attributes that are placed in this shadow variable, but
it is recommended that blanks be used as filler characters.

Note: If consecutive characters have the same character attributes (an entire word,
for example), the attribute character must be repeated in the shadow
variable for EACH character affected. For panels to be displayed on DBCS
terminals, a TYPE(CHAR) attribute should only map to the first byte of a
double-byte character.

The shadow variable is associated with the dynamic area by placing the shadow
variable name after the dynamic area name in the panel definition. The two
variable names must be separated by a comma only, and the shadow variable
name must be followed by a blank.

Note: The dynamic area and shadow variables cannot be Z variables in the panel
source.

See the [z/OS ISPF Dialog Tag Language Guide and Reference| for details on specifying
a shadow variable using Dialog Tag Language.

Conflict resolution between attributes
If the terminal does not support the specified TYPE(CHAR) attribute of color or
extended highlighting, this attribute is ignored and defaults to the field attribute.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

If the terminal does not support the graphic escape order, or if the character
defined by TYPE(CHAR) GE(ON) is not in the range "40’X through 'FE’X, ISPF
does not place a GE order in the order stream before this character and displays
this character as a blank.

* The dialog can check the system variable ZGE to determine if the terminal
supports the graphic escape order. If it does not, the dialog can substitute
different characters in the dynamic area.

Table 7. Characteristics of the ZGE system variable

Name Pool |[Type |Len Description

ZGE shr non 3 Terminal support for graphic escape order:
* YES — graphic escape is supported
* NO — graphic escape is not supported

Note: When running in GUI mode, ZGE is set to
NO. Any character defined with GE(ON) will
display as a blank.

If a TYPE(CHAR) attribute is defined with other keywords such as INTENS, CAPS,
JUST, or PAD in addition to COLOR, HILITE, or GE, only the COLOR, HILITE,
and GE keywords are recognized. If the GE keyword is specified for any type
other than TYPE(CHAR), TYPE(ABSL), TYPE(WASL), or TYPE(CH)), it is ignored. If
a TYPE(CHAR) attribute is specified in the shadow variable that contains neither
the COLOR nor the HILITE keywords, the character defaults to the field attribute.

Any character attribute specified in the shadow variable that maps to the location
of a field attribute character in the dynamic area variable is ignored. (For instance,
see [Figure 49 on page 150} A $ in the first character position of the variable
SHADOW is ignored because the first character position in the variable
CATTAREA is a ~ indicating a field attribute.)

On DBCS terminals, ISPF ignores any TYPE(CHAR) attribute that maps to a
character that precedes the first field attribute. Following the first field attribute,
any TYPE(CHAR) attribute that maps to the second byte of a double-byte character
is ignored. In addition, the GE(ON) keyword specified for a TYPE(CHAR) attribute
that maps to a double-byte character is ignored.

A character attribute specifying the GE(ON) keyword can be defined within a
TYPE(DATAIN) field. However, any data typed into this character position might
be returned to the dialog as an unpredictable character.

Character attributes are associated with a character and not with the character’s
position in the buffer. If a character is moved, for example, because of an insert or
delete operation, the attribute moves with the character.

The screen image recorded in the list data set as a result of the PRINT, PRINT-HI,
PRINTL, or PRINTLHI contains a blank character for all character attributes
defined with the GE(ON) keyword.

[Figure 49 on page 150| shows an example of the panel source for a panel with a
dynamic area containing character attributes.

Chapter 6. Panel definition statement guide 149

150

JATTR

* AREA(DYNAMIC)

$ TYPE(CHAR) HILITE(REVERSE) COLOR(YELLOW)
> TYPE(CHAR) COLOR(RED)

TYPE(CHAR) COLOR(BLUE) HILITE(USCORE)

~ TYPE(DATAOUT) INTENS(LOW) COLOR(WHITE)

%COMMAND ===>_7CMD

+The following will contain character attributes:
*#CATTAREA, SHADOW === = m = m oo oo o oo *

)END

Figure 49. Dynamic area with character attributes

The next example shows how the dynamic area and shadow variables are defined
and initialized in a PL/I program to display the panel shown.

DECLARE CATTAREA CHAR(50) INIT /* Dynamic Area Variable */
('"~These words contain character attributes: Fox Cat');

DECLARE SHADOW CHAR(50) INIT /* Shadow of Dynamic Area Variable =/
(! $#t 0 ');

In the panel displayed from the examples shown, the F in the word Fox is yellow
and displayed in reverse video, the ox in the word Fox is blue and underscored,
the C in the word Cat is red with no highlighting, and the at in the word Cat as
well as the rest of the sentence, defaults to the field attribute and is displayed low
intensity and white with no highlight.

Formatting panels that contain a graphic area

ISPF panel definition syntax allows specification of a graphic area within a panel.
An ISPF display can contain a picture or graph generated through use of the
Graphical Data Display Manager (GDDM) licensed program. A graphic area
defined within a panel definition provides part of the interface between ISPF and
GDDM. A graphic area can contain either a picture, constructed by use of GDDM
services or a graph, constructed by use of the GDDM Presentation Graphics
Feature (PGF). Graphic areas can contain alphanumeric fields within them,
represented in the usual panel field syntax. These fields can partially overlap the
graphic area.

Formatting of a graphic area display is controlled by GDDM.

When specifying a graphic area display, the dialog developer issues a request for
the ISPF GRINIT service specifying the name of the panel definition in which the
graphic area is defined. This request establishes the interface to GDDM. Next, calls
to GDDM that request GDDM services specify the picture to appear in that graphic
area. Then the ISPF DISPLAY service is used to display the panel.

The dialog must provide an 8-byte area, called an application anchor block (AAB),
which is on a full-word boundary, to the GRINIT call. This AAB identifies the
ISPF/GDDM instance and must be used in all GDDM calls made by the dialog.
Within the ISPF/GDDM instance, the dialog cannot perform any of these GDDM
calls:

ASREAD FSSHOR ISFLD MSPCRT MSQMOD PTNSEL WSCRT

FSSHOW ISQFLD MSPQRY MSQPOS PTSCRT WSDEL WSIO
FSENAB FSTERM ISXCTL MSPUT MSREAD PTSDEL WSMOD

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

FSEXIT GSREAD MSCPOS MSQADS PTNCRT PTSSEL WSSEL
FSINIT ISCTL MSDFLD MSQGRP PTNDEL PTSSPP WSSWP
FSRNIT ISESCA MSGET MSQMAP PTNMOD SPINIT

ISPF GDDM services do not run in the background, and thus, cannot be requested
in a batch environment. See [“Defining the attribute section” on page 172| for
information using the AREA keyword in the)ATTR section to define a graphic
area.

Graphics panel processing considerations

ISPF automatically switches into graphics interface mode when the GRINIT service
is requested. This mode continues for the life of the ISPF session. GDDM is called
to perform all full-screen displays from this point on, or until a request for the
dialog service GRTERM is issued. These notes apply to graphics interface mode:

Stacked TSO commands
The field mark key is not available to enter commands at one time.

5550 terminals
GDDM graphics are supported through the Japanese 3270PC/G Version 3
emulator program. The ISPF-GDDM interface allows DBCS and
mixed-character fields in the panel body, outside the graphics area, to be
displayed through GDDM. Full color and highlighting are supported
through use of the Japanese 3270PC/G Version 3 and 3270PC Version 5
emulator programs.

3290 terminals
The vertical split function is disabled. Panels are displayed with a
larger-size character set. The partition jump key is not functional.

Alternate screen widths
You cannot use GDDM with terminal devices whose primary width is
different from their alternate width. For example, 3278 model 5.

Autoskip facility
When entering data in a field, GDDM automatically moves the cursor to
the next input field when the preceding field is full.

First field attribute
GDDM requires that the first field on a panel begin with an attribute
character. Therefore, the ISPF/GDDM interface copies the attribute
character for the last field on a panel to the first panel position. This can
result in the first byte of the panel data being overlaid.

Data transfer
The entire screen buffer is sent to the terminal even if no fields have been
modified.

NUMERIC (ON)
The numeric lock feature is not active when using GDDM.

Graphic output
GDDM calls issued from an application are used to define graphic
primitives for the next full-screen output and are unknown to ISPF. Any
full-screen output, following the ISPF full-screen output containing the
graphic area, can cause the loss of the graphic primitives on the ISPF
panel. Hence, the application can be required to reissue the GDDM calls.

Pop-up windows
Pop-up windows cannot be displayed over graphic areas nor can graphic
areas be displayed over pop-up windows.

Chapter 6. Panel definition statement guide 151

GUI mode
Graphic areas are not supported if you are running in GUI mode. When a
GRINIT statement is encountered, you will receive a message that panels
with graphics will not be displayed. You may choose to continue. When a
panel with graphics is encountered, a pop-up window is displayed asking
if you want the panel displayed on your host emulator session or on your
workstation without the graph.

Notes:

1. If you are in split-screen mode, the graphic area panel cannot be
displayed on the host session.

2. If you specified GUISCRD and GUISCRW values on the ISPSTRT
invocation which are different from the actual host screen size, GDDM
cannot be initialized and the GRINIT service will end with a return
code of 20.

Using DBCS-related variables in panels

These rules apply to substituting DBCS-related variables in panel text fields.

e If the variable contains MIX format data, each DBCS subfield must be enclosed
with shift-out and shift-in characters.

Example:
eeee[DBDBDBDBDB] eee [DBDBDB]

ee... represents a field of EBCDIC characters; DBDB... represents a field of DBCS
characters; [and] represent shift-out and shift-in characters.

e If the variable contains DBCS format data only, the variable must be preceded
by the ZE system variable, without an intervening blank.
Example:
...text...&ZE&DBCSVAR. .text...

¢ If the variable contains EBCDIC format data, and it is to be converted to the

corresponding DBCS format data before substitution, the variable must be
preceded by the ZC system variable, without an intervening blank.

Example:
...text...8&ZC&DBCSVAR. .text...
The ZC and ZE system variables can be used only for the two purposes described.

When variable substitution causes a subfield length of zero, the adjacent shift-out
and shift-in characters are removed.

Using preprocessed panels

152

You can store preprocessed panel definitions to reduce transition time. These
preprocessed panel definitions are in an encoded format, and cannot be edited
directly.

Preprocessed panel data sets must be defined to ISPF as you would define other
data sets. This can be either by normal allocation before invoking ISPF, or
dynamically during an ISPF session by using the LIBDEF service. ISPF provides a
dialog, ISPPREP, for creating preprocessed panels. This dialog can be run either in
batch mode or interactively.

You invoke the ISPPREP dialog by:
¢ Issuing the ISPPREP command from the command line
* Selecting it from the Compilers pull-down on the ISR@PRIM panel.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

* Specifying ISPPREP with the PGM keyword on the SELECT service request

To run ISPPREP by using the SELECT service, issue ISPPREP with no parameters.
For example, entering ISPEXEC SELECT PGM(ISPPREP) displays this selection panel:

4 N\

Preprocessed Panel Utility
Specify input and output data set names below:

Panel input data set:
Data set name
Member (* for all members)
Volume serial . . (If not cataloged)

Panel output data set:
Data set name
Member (blank or member name)
Volume serial . . (If not cataloged)

Enter "/" to select option
Replace 1like-named members
/ Save statistics for members

Command ===>
Fl=Help F2=Split F3=Exit F9=Swap F10=Actions F12=Cancel

Figure 50. Panel for specifying preprocessed panel data sets (ISPPREPA)

Entering ISPPREP from a command line or invoking ISPPREP from the Functions
choice on the action bar of the ISPF Primary Option Menu also causes this
selection panel to be displayed.

To run ISPPREP in batch mode, include the PARM keyword and the panel-input
and panel-output identifiers on the SELECT service request. For example:

ISPEXEC SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(PANA)'),
OUTPAN('ISPFPROJ.PXY.PANELS(PANB) ') EXEC)

requests the SELECT service to convert member PANA in ISPFPROJ.GRE.PANELS
to the internal format and to write it to member PANB in ISPFPROJ.PXY.PANELS.

Note: The previous example must be run from a REXX or CLIST command
procedure.

You can control whether existing members in the output data set having the same
identification as that specified will be replaced. In batch mode, use the

NOREPL | REPLACE parameter with the PARM keyword for specifying whether
members are to be reilaced. In interactive mode, use the line provided on the

panel shown in |Figure 50| for specifying whether members are to be replaced.

ISPPREP converts panel input data set members to an internal format and writes
them to the specified output panel data set members. A given panel file can
contain a mixture of preprocessed panels and regular panel definitions.

ISPPREP does not destroy the source panels from which it creates preprocessed
panels. However, you should save those panels in case they must be updated in
the future. When the preprocessed panels are ready for use, you can use them to
replace the corresponding source files for the ISPPLIB defaults.

Chapter 6. Panel definition statement guide 153

154

ISPPREP provides an option to generate statistics for preprocessed panels. ISPF
provides the version (always 1), modification counter, creation date last-modified
date, current number of lines, initial number of lines, number of modified lines
(always 0), and user ID for the message or panel. These statistics are visible on
memberlist displays such as ISPF BROWSE and EDIT. The statistics are placed in
the ISPF directory.

Restrictions for using ISPPREP

When using ISPPREP, you should note that certain restrictions apply to those panel
definitions that can be converted to their internal format. These restrictions apply
only when creating preprocessed panels and are based on the fact that
preprocessed panels cannot have a dynamically defined width and depth.

These restrictions apply to panel definitions to be converted:

1. The use of a dialog variable with the WIDTH keyword on the)BODY header
statement of a panel definition is not allowed.

2. The specification of EXTEND(ON) for the attribute character of a dynamic,
graphic, or scrollable area is not allowed.

3. The use of a dialog variable to define a model line in a table display panel
definition is not allowed.

4. For DBCS panels, the correct character set must be loaded before invoking
ISPPREP. Panels to be displayed on a 5550 3270 Kanji Emulation terminal must
be converted using the 3278KN character set (set in option 0.1).

Preprocessed panel objects should not be copied from a fixed to a variable record
format data set. Blank data could be lost. This can cause the product to abend or
can create a display error when the copied panel object is used by display
processing. Use ISPPREP to transfer preprocessed panel objects to a variable record
format data set or when the receiving data set logical record length or logical
record format is not the same as the source data set.

ISPPREP output data sets must conform to the same LRECL limits as ISPPLIB.

Using ISPPREP with the SELECT service

You can use the PGM keyword of the SELECT service to invoke ISPPREP. The
syntax for invoking ISPPREP is as follows:

ISPEXEC SELECT PGM(ISPPREP) [PARM(INPAN(PDSin),
OUTPAN(PDSout)
[,INVOL(volser#)]
[,OUTVOL(volser#)]
[,NOREPL |REPLACE]
[,STATS|NOSTATS]
[,EXEC])]

The PARM keyword on the SELECT indicates that ISPPREP is to be run in batch
mode. The absence of the PARM keyword indicates that ISPPREP is to be run as
an interactive dialog and that PDSin, the panel input library, and PDSout, the
panel output library, are to be specified on a data-entry panel. Both the ISPPREP
command and option 2 on the ISP@PRIM primary option panel select ISPPREP in
interactive mode.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

The panel input and panel output library identifiers, whether specified on the
SELECT statement when in batch mode or on the data entry panel when in
interactive mode, follow the same guidelines.

PDSin (panel input library)
The name of the library of panel definitions to be converted to their
internal format. PDSin must be in the form:

('partitioned data set name[(member)]"')

The member name can be specified either by indicating the specific name
or by coding an asterisk. Coding an asterisk for the member name
indicates that all members in the specified data set are to be converted to
preprocessed panels. This allows conversion of all panel definitions within
a data set in one call of ISPPREP.

You cannot specify the same name for the input partitioned data set and

for the output data set, even if you specify REPLACE unless the data sets
exist on different volumes and you specify the appropriate volume serial

numbers by using the INVOL and/or OUTVOL parameters.

When running in batch mode, you are not required to enter a member
name. The absence of the member name is equivalent to coding an asterisk
for the member name. In interactive mode, failure to explicitly state a
member name or an asterisk causes the data-entry panel to be redisplayed
with a message prompting the user for the member name.

PDSout (panel output library)
The name of the library to which the preprocessed panels will be written.

The form of PDSout is the same as that of PDSin. You can specify a blank
or name for the member name. A blank indicates that the member name
specified for PDSin is to be used as the member name for PDSout.

Coding an asterisk for a member name in PDSout is invalid.

INVOL (input PDS volume serial number)
Specifies the serial number of the volume on which PDSin is stored. If this
parameter is omitted, the system catalog is searched.

It must be used when the data set exists but is not cataloged. INVOL is
optionally specified in batch mode as well as in interactive mode. In batch
mode the keyword (INVOL) is specified along with the volume serial
number as part of the SELECT statement.

OUTVOL (output PDS volume serial number)
Specifies the serial number of the volume on which PDSout resides. If this
parameter is omitted, the system catalog is searched.

It must be used when the data set exists but is not cataloged. OUTVOL is
optionally specified in batch mode as well as in interactive mode. In batch
mode the keyword (OUTVOL) is specified along with the volume serial
number as part of the SELECT statement.

NOREPL | REPLACE
A keyword that specifies whether existing partitioned data set members
are to be replaced in PDSout. The default is NOREPL in batch mode. In
interactive mode, an option must be specified.

STATS INOSTATS
User controls whether member statistics are to be saved in the ISPF
directory. The default option is STATS.

Chapter 6. Panel definition statement guide 155

EXEC Specifies that ISPPREP is being executed from a CLIST or REXX command
procedure. The EXEC parameter causes the return code to be set to 24 if a
space-related abend occurs on the output file.

Any panel specified in the panel input library that is already a preprocessed panel
is copied directly to the panel output library (contingent on the
NOREPL | REPLACE specification).

ISPPREP should be invoked with the NEWAPPL keyword specified on the SELECT
statement. (This is necessary because ISPPREP issues LIBDEF service calls.) If
NEWAPPL is not specified, any LIBDEF issued before the execution of ISPPREP
can no longer be in effect.

Examples of using ISPPREP
* Convert PDS member PANA, in ISPFPROJ.GRE.PANELS, and write the
preprocessed panel to member PANB, in ISPFPROJ.PXY.PANELS, if it does not
already exist. Both PDSs are cataloged.
SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(PANA)'),
OUTPAN('ISPFPROJ.PXY.PANELS(PANB)'),
NOREPL) NEWAPPL
* Convert PDS member PANA, in ISPFPROJ.GRE.PANELS, and unconditionally
write the preprocessed panel to member PANB, in ISPFPROJ.PXY.PANELS. Both
PDSs are cataloged.
SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(PANA)'),
OUTPAN (' ISPFPROJ. PXY.PANELS (PANB) '),
REPLACE) NEWAPPL
* Convert the entire PDS ISPFPROJ.GRE.PANELS, which contains three members
(PANA, PANB, and PANC), and unconditionally write the preprocessed panels
to PDS ISPFPROJ.PXY.PANELS, which contains three members also (PANA,
PANB, and PANC). Both PDSs are cataloged.
SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(*)'),
OUTPAN('ISPFPROJ.PXY.PANELS()'),
REPLACE) NEWAPPL
e Convert the entire PDS ISPFPROJ.GRE.PANELS, which contains four members
(PAN1, PAN2, PAN3, and PAN4) and is cataloged. If the members do not
already exist, write the preprocessed panels to PDS ISPFPROJ.PXY.PANELS,
which is not cataloged
SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(%)"'),
OUTPAN(' ISPFPROJ.PXY.PANELS()'),
OUTVOL(TSOPK7) ,NOREPL) NEWAPPL
* Convert the entire PDS ISPFPROJ.GRE.PANELS and unconditionally write the
preprocessed panels to PDS ISPFPROJ.PXY.PANELS. Both PDSs are not
cataloged.
SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(*)"'),
INVOL(TSOPK?7),

OUTPAN(' ISPFPROJ.PXY.PANELS()'),
OUTVOL (TSOPK7) ,REPLACE) NEWAPPL

Handling error conditions and return codes

There are two general classes of error conditions involved with ISPPREP: those
associated with the dialog itself, and those associated with the conversion of
individual panel definitions.

The dialog error conditions encountered cause immediate termination of ISPPREP
conversion processing. If you are operating in interactive mode and recovery is

156 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

possible, the data-entry panel is redisplayed with an appropriate message.
Otherwise, ISPPREP will terminate. Dialog errors include conditions such as:
invalid input or output PDS names; a reference to a nonexistent PDS; or a
reference to an uncataloged PDS without providing the correct volume serial
number.

Panel conversion error conditions apply only to the current panel being converted.
They are usually due to an error in the panel definition. If such an error is
encountered, processing of the current panel definition halts, and processing of the
next panel definition (if it exists) begins. A panel conversion error associated with
one panel definition does not affect the conversion of subsequent panel definitions.

ISPPREP logs error and informational messages in ISPLOG. Any error conditions
encountered cause an appropriate message and return code to be written to the
log. This is also true for any conditions that warrant an informational message.

When ISPPREP is run in the foreground, the program uses the ISPF CONTROL
ERRORS CANCEL service to cause a terminating dialog box to be displayed when
a return code of 12 or greater is encountered.

If ISPPREP is run in the background (batch TSO), then CONTROL ERRORS
CANCEL is not set and ISPPREP passes the return code back to the calling
program. If ISPPREP has issued a message, variables ZERRMSG, ZERRSM, and
ZERRLM are written to the shared pool and the message is written to the log.

These return codes are possible from ISPPREP:

0 Normal completion.

4 Panel definition cannot be processed (see restrictions); NOREPL is specified
and the panel (member) already exists in the output library.

8 Panel definition contains syntax errors; panel already in use (enqueue
failed) or panel (member) not found.

12 Invalid syntax or keyword in parameter string; data set is not found.

16 Data set allocation or open failure.

20 Severe error.

24 A space-related abend occurred while ISPPREP was being executed from a

CLIST or REXX command procedure with the EXEC parameter specified.

Since ISPPREP can convert a number of panel definitions to their internal format in
one call, a number of conditions may arise that generate a return code other than
‘0’. ISPPREP returns the highest return code generated. However, if invoked in
interactive mode, ISPPREP will return ‘0" unless an unrecoverable dialog error is
encountered, in which case the code returned is 20". Refer to the log for a more
comprehensive look at ISPPREP’s results.

Chapter 6. Panel definition statement guide 157

158 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 7. Panel definition statement reference

The panel definition statement reference provides reference information to help
you define the sections of a panel. It covers the statements that can be coded in
each section, and control variables, which you can use to test conditions pertaining
to the display of a panel or message.

» |"Defining panel sections’|

* [“Formatting panel definition statements” on page 235

» |"Using ISPF control variables” on page 283|

The sections, statements, and control variables in this panel definition statement
reference are arranged in alphabetical order.

Defining panel sections

[Table 4 on page 106| describes the panel sections in the order in which they must be
defined.

For reference information for each of these panel sections, see:
YJABC— page
)ABCINIT— page

e

)JATTR— page

YHELP— page |22
JINIT— page 23]
)LIST— page 223
YMODEL— page [224
)PANEL— page |225
)PNTS— page 22
)PROC— page|23
)REINIT— page |233

Defining the action bar choice section

The)ABC (action bar choice) section defines an action bar choice for a panel and
its associated pull-down choices. An JABC section must exist for each action bar
choice displayed in the Action Bar area on a panel. The maximum number of JABC
sections on a panel is 40.

|)ABC DESC(choice-description-text) [MNEM(number)] |

where:

DESC(choice-description-text)
Text displayed in the panel’s action bar area for the action bar choice. The
maximum length of the text is 64 characters.

© Copyright IBM Corp. 1980, 2007 159

)ABC Section

The action bar choice-description-text must match the choice-description-text
specified in the)BODY section of the panel. ISPF does not translate the value
to uppercase. If choice-description-text contains any special characters or
blanks, you must enclose it in quotes in the JABC DESC parameter. However,
when it is specified in the) BODY section of the panel, you should not enclose
it in quotes. Each action bar choice should be unique.

MNEM (number)
Specifies the position of the character that will be the mnemonic for the action
bar text. The letter is designated by an underscore on the display. This
keyword, if it exists, must follow the DESC keyword. number is the position of
the character (not byte position).

)ATTR

TYPE(AB)
@ TYPE(NT)
? TYPE(PT)
$ TYPE ABSL

JABC DESC('Menu') MNEM(1)

)BODY CMD(ZCMD)
O# Menu# Utilities# Compilers# Options# Status# Help@

(@ ?ISPF Primary Option Menu+

For SBCS/DBCS mixed choice-description-text, number cannot be the position
of a double-byte character position. Shift-in/shift-out bytes are not considered
characters. For action bar text containing double-byte characters, add a
single-byte character, enclosed in parentheses, to the end of the double-byte
text. The MNEM(number) is the position of this single-byte character. For
example:

)ATTR

TYPE(AB)
@ TYPE(NT)
? TYPE(PT)
$ TYPE ABSL

iABC DESC('OEDDOOUUBBLLEEQF (M) ') MNEM(8)

)BODY CMD(ZCMD)
@# OEDDOOUUBBLLEEOF(M)# Utilities# Compilers# Options# Status# Help@

(@ ?ISPF Primary Option Menu+

where DD, OO, UU, BB, LL, and EE represent double-byte characters, and 0E
and OF are shift-out and shift-in characters. The single-byte character, M,
enclosed in parentheses is the mnemonic letter. MNEM(8) indicates the
underscored mnemonic letter is in the eighth character position (not byte
position). Shift-out and shift-in characters are not considered as character
positions.

In 3270 mode you access the action bar choice in one of these ways, where "x"
is the mnemonic letter that is underscored:

1. Enter "ACTIONS x" in the command field

160 2z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)JABC Section

2. Enter "x” in the command field and press the function key assigned to the
ACTIONS command.

The pull-down menu for that action bar choice displays. If you enter a
mnemonic letter, "x”, that is not found to be an underscored mnemonic letter
on the panel, then the cursor is placed on the first action bar choice.

In 3720 mode, panels without a command line will not display mnemonic
characters, because there is no command line on which to enter the ACTIONS
command and parameter. Terminals or emulators that do not support extended
highlighting will not display host mnemonics.

In GUI mode you use a hot key to access an action bar choice; that is, you can
press the ALT key in combination with the letter that is underscored in the
choice. A hot key is also referred to as an accelerator key or shortcut key. If the
character in the ALT character combination is not found to be an underscored
mnemonic letter in the panel, then no action is taken.

Note: If you specify duplicate characters (case insensitive) for the mnemonics
within the action bar, the result of invoking the mnemonics is operating
system dependent.

Note: For each separate action bar choice section, you must define a corresponding
JABCINIT (action bar choice initialization) section. An JAPCPROC (action
bar choice processing) section is optional. You must include these sections in
the panel source definition in the proper order as shown in this example:
)ABC

YABCINIT
)ABCPROC

Specifying action bar choices in panel)BODY section

The specification of an action bar choice is included in the panel source
immediately following the)BODY panel definition statement header. The order in
which the action bar choices are specified indicates to ISPF how the choices will
appear in the action bar area on the displayed panel. Internally, action bar choices
are numbered sequentially starting from left to right and from top to bottom. The
first action bar choice will be numbered one.

)ATTR
@ TYPE(AB)
TYPE(NT)

)BODY
@ choicel@ choice2@ choice3#

Notes:

1. A blank must separate the choice-description-text and the AB attribute
character. The attribute byte for the first choice can be in any column except
column 1. A text attribute character to delimit an action bar line should be
coded immediately following the last character of the last choice-description-
text on each action bar line.

2. A separator line should follow the last action bar line.

When the panel is displayed in GUI mode, the separator line (the line
following the last action bar choice) is not displayed.

3. ISPF considers the panel line following the last action bar choice as part of the
action bar area.

Chapter 7. Panel definition statement reference 161

)ABC Section

The action bar can consist of multiple lines by specifying action bar choices on
more than one line in the panel)BODY section.
JATTR

@ TYPE(AB)
TYPE(NT)

)BODY
@ choicel@ choice2@ choice3#
@ choiced4@ choice5@ choiceb#

Defining pull-down choices within the)ABC section
Within each action bar section, pull-down choices are defined with the PDC
statement.

PDC DESC(choice-description-text)
[UNAVAIL(unavail variable name)]
[MNEM (number)]

[ACC(keyl[+key2] [+key3]1)]

[PDSEP (OFF|ON)]

where:

DESC (choice-description-text)
Actual text that is displayed for the pull-down choice it defines. Special
characters or blanks must be enclosed within quotes. The maximum length of
the text is limited to 64 characters. ISPF numbers each choice. Do not include
choice numbers in your text. The pull-down choices defined in each)ABC
section are internally numbered sequentially starting with the number one
(1,2,...,n) and the number is prefixed to the pull-down choice-description-text.

Note: Numbers do not appear with pull-down choices when you are running
in GUI mode.

UNAVAIL(unavail_variable_name)
Name of a variable that contains a value to indicate whether the pull-down
choice is available for selection when the panel is displayed. When the variable
contains a value other than 0 (false, therefore available) or 1 (true, therefore
unavailable), the variable is ignored and the choice is available. The choice is
available even if the specified variable cannot be found.

Note: The current setting is shown as an unavailable choice; that is, it displays
in blue (the default) with an asterisk as the first digit of the selection
number. If you are running in GUI mode, the choice is grayed. ISPF
issues an error message if you try to select it. You can change the color,
highlight, and intensity of an unavailable choice by using the CUA
Attribute Utility.

MNEM (number)
Specifies the position of the character that will be the mnemonic for the
pull-down choice text. The letter is designated by an underscore on the GUI
display. number is the position of the character (not byte position). For
SBCS/DBCS mixed choice-description-text, number cannot be the position of a
double-byte character. Shift-in/shift-out bytes are not considered characters.

Note: If you specify duplicate characters (case insensitive) for the mnemonics
within the action bar, the result of invoking the mnemonics is operating
system dependent.

162 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)JABC Section

This keyword is ignored on a 3270 display.

ACC(key1[+key2] [+key3])
Specifies an accelerator, or shortcut, key. This is a key or combination of keys
assigned to a menu choice that initiates that choice, even if the associated
menu is not currently displayed. The accelerator key text is displayed next to
the choice it pertains to on the menu.

The variables key1, key2, and key3 can be any of these keys: Ctrl, Shift, Alt,
Insert, Delete, Backspace, Fn, the single keys a through z, and 0 through 9. The
keys Ctrl, Shift, Alt, a through z, and 0 through 9 cannot be used as single
accelerator keys. They must be used in combination with other keys.

Rules for accelerator keys:

1. Avoid using the Alt key combined with a single character key as an
accelerator. Use Alt + char for mnemonic access only. Also, avoid using a
function key, or Shift + function key, as an accelerator.

2. These single keys must be used in combination with some other key: Ctrl,
Shift, Alt, A-Z, a-z, and 0-9.

3. Only one key can be a function key.

4. If you use a two key combination, one key must be Ctrl, Shift, or Alt, and
the other must be Insert, Delete, Backspace, F1-F12, A-Z, a-z, or 0-9.

5. If you use a three key combination, two key must be Ctrl, Shift, or Alt, and
the other must be Insert, Delete, Backspace, F1-F12, A-Z, a-z, or 0-9.

6. The combined text string cannot exceed 30 characters.

After you define your accelerators, remember to keep this accelerator search
order in mind when you press a key or combination of keys:

1. Operating system specific definitions. For example, in Windows XP,
Ctrl+Alt+Delete displays the Windows Security dialog box instead of
invoking a menu choice that might have this key combination specified as
an accelerator.

2. Menu choice accelerator definitions.
3. Accelerator assigned with the panel. For example, a function key.

4. System menu-type definitions. For example, Alt+F4 is defined in Windows
XP as an accelerator for closing the current window.

For example, if F2 is defined as an accelerator key on the ISPF Primary Option
Panel’s Menu pull-down for the EDIT option, and the F2 function key is set to
the ISPF SPLIT command, when you press the F2 key, EDIT is started instead
of the screen being split.

Accelerators are a GUI-specific function. An option appears on the ISPF
Settings Panel (under GUI settings) that specifies whether or not accelerators
are supported. The default is to have the support. If you turn this setting off,
accelerators are not functional, and do not appear in the pull-down menus.

PDSEP(OFF | ON)
Specifies a pull-down choice separator bar. These are separators within a
pull-down that group logically related choices.

The separator is a solid line between the previous choice and the first choice in
the logical group. You code the PDSEP keyword on the pull-down choice
AFTER the separator bar. That is, the separator bar is displayed above the
choice it is coded on.

Chapter 7. Panel definition statement reference 163

)ABC Section

Any separator coded on the first pull-down choice is ignored, and because the
function is GUI-specific, separator bars are ignored in the host environment.

You must associate the pull-down choice entry field with a variable name. To do
this, code a .ZVARS statement in the JABCINIT section. This variable is used as the
pull-down entry field name of each pull-down.

The PDC statement is paired with an optional ACTION statement. When some
action is to be performed for a pull-down choice, an ACTION statement must
immediately follow the PDC statement defining the pull-down choice.

| ACTION RUN(command-name) [PARM(command-parms)]

where:

RUN ((command-name)
Required keyword. Specifies the name of a command to be run. The command
name must be 2-8 characters. Coding the keyword ACTION RUN(x), where x
is a 1-character command name, results in an error condition. ISPF searches for
the command in the application, user, site, and system command tables, if they
are defined.

You can use the ISRROUTE command, which is an ISPF command in
ISPCMDS, to invoke the SELECT service. The ACTION RUN statement is as
follows:

ACTION RUN(ISRROUTE) PARM('SELECT your-select-command-parms")

where your-select-command-parms contains all the required parameters for the
invocation of the SELECT service. This allows your dialog not to have to create
a separate command in the application command table for every RUN
statement coded within your dialog panels.

Here is an example of invoking the SELECT service from an ACTION RUN
statement:

ACTION RUN(ISRROUTE) PARM('SELECT PGM(USERLIST) NEWAPPL(USR)')

PARM(command-parms)
Optional keyword. Specifies the parameters to use when processing the
command in the application, user, site, or system command table. Enclose the
command-parms value in quotes.

You can define only one ACTION statement per PDC statement in the JABC panel
section. You can specify the RUN() or PARM() keywords in any order on an
ACTION statement. Also, if the RUN() or PARM() keywords are duplicated within
an ACTION statement, ISPF will use the last occurrence of the keyword.
shows an example of an action bar section definition.

164 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)JABCINIT Section

) PANEL
)ATTR
@ TYPE(AB)
TYPE(NT)

)ABC DESC(FILE) MNEM(1)
PDC DESC(file-choicel) ACC(A1t+F1)
ACTION RUN(command-name) PARM(command-parms)
PDC DESC(file-choice2) UNAVAIL(&unvar2)
ACTION RUN(command-name) PARM(command-parms)
PDC DESC(file-choice3) PDSEP(ON)
ACTION RUN(command-name) PARM(command-parms)

JABCINIT
.ZVARS = PDCHOICE
&PDCHOICE = '
&unvar2 =1
)ABCPROC

VER (&PDCHOICE,LIST,1,2,3)

)ABC DESC(HELP)
PDC DESC(help-choicel) MNEM(6)
ACTION RUN(command-name) PARM(command-parms)
PDC DESC(help-choice2)
ACTION RUN(command-name)
PDC DESC(help-choice3)
ACTION RUN(command-name) PARM(command-parms)

JABCINIT
.ZVARS = PDCHOICE
&PDCHOICE = '

)ABCPROC
VER (&PDCHOICE,LIST,1,2,3)

)BODY
@ FILE@ HELP#

YEND
Figure 51. Action bar section example

Defining the action bar choice initialization section

The)ABCINIT section header statement has no parameters. ISPF associates the first
JABCINIT section it encounters before another panel definition statement header
with the previous)ABC section.

|)ABCINIT

The rules that apply to the JABCINIT section and its contents are the same as those
that apply to the ISPF)INIT panel definition statements. However, the processing
is limited to the action bar choice and its pull-down.

The)ABCINIT section runs when the user selects that action bar choice.

Note: If you are running in GUI mode, the JABCINIT section runs prior to sending
the panel to the workstation.

At least one statement must be specified in the JABCINIT section. The JABCINIT
section must contain a .ZVARS control variable assignment statement to associate a
field name with the pull-down entry field.

Chapter 7. Panel definition statement reference 165

)ABCINIT Section

See [“Formatting panel definition statements” on page 235|for additional
information.

Defining the action bar choice processing section

The)ABCPROC section header statement has no parameters. ISPF associates the
first JABCPROC section it encounters before another panel definition statement
header with the previous)ABC section.

|)ABCPROC

The rules that apply to the JABCPROC section and its contents are the same as
those that apply to the ISPF)PROC panel definition statement. However, the
processing is limited to the action bar choice and its pull-down.

The) ABCPROC section runs when the user completes interaction with the
pull-down choice.

Note: If you are running in GUI mode, the JABCPROC section runs after the
pull-down has been selected at the workstation.

The)ABCPROC section is not required. ISPF verifies all valid pull-down choices
for you.

When you manually position the cursor in the action bar area with the CANCEL,
END, or RETURN command on the command line, and you press ENTER, or if
you manually position the cursor in the action bar area and you press a function
key to run the CANCEL, END, or RETURN commands, the cursor is repositioned
to the first input field in the body of the panel. If there is not an input field, the
cursor is repositioned under the action bar area. If the request is to run the EXIT
command, the action taken is controlled by the application.

When you use the ACTIONS command to position the cursor in the action bar
area and you run the CANCEL command, the cursor is returned to where it was
before the ACTIONS command was run. A CANCEL command executed from a
pull-down removes the pull-down.

See [‘Formatting panel definition statements” on page 235 for additional
information.

Defining the area section

The)AREA (scrollable area definition) section allows you to define scrollable areas
on a panel. See [“Defining the attribute section” on page 172|for information about
using the AREA(SCRL) keyword to specify that you want a scrollable area. You
can see and interact with the total content defined for the panel area by scrolling
the area.

Use the)AREA section header to describe the scrollable area.

|)AREA name [DEPTH(depth)]

name
Specifies the name of the scrollable area that is to be matched with the name
specified in the)BODY section. This name cannot be specified as a dialog
variable.

166 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)AREA Section

DEPTH(depth)
Optional. Specifies the minimum number of lines in the scrollable area (not
including the scroll indicator line) when EXTEND(ON) has been specified.
DEPTH has no effect when EXTEND(OFF) is used. The top line is always
reserved for the scroll information and is not considered part of the depth
value. DEPTH can be used to ensure that a required number of lines are
displayed. The depth value cannot be specified as a dialog variable. It must be
greater than or equal to the number of lines defined for the area in the)BODY
section and less than or equal to the number of lines in the JAREA definition.

A panel)AREA section defines the size and the contents of the information to be
scrolled. The contents of the)JAREA section generally follow the same rules as the
)BODY section. See [“Panel definition considerations” on page 168 for rules
concerning the definition of a scrollable area. Multiple scrollable areas can be
defined. The name specified immediately following an AREA(SCRL) character in
the)BODY section is used to match each scrollable area to its corresponding
JAREA section. If the default EXTEND(OFF) is used, you designate the desired
depth of the scrollable area by repeating the AREA(SCRL) attribute. If
EXTEND(ON) is specified, the minimum depth is the DEPTH specified in the
)JAREA section.

The width of the scrollable area includes the special characters that designate the
vertical sides. These delimiter characters do not represent attribute characters.

The scrollable area is identified in the panel source with a new attribute defined in
the)ATTR section. This new attribute designates the borders of the scrollable area.
For example:

)ATTR
AREA(SCRL) EXTEND(ON)
)BODY
#myarea--------- #
#
#
#

A single character, Z, can be used in the JAREA section, just as it can be used in the
)BODY section, as a place-holder for an input or output field. The actual name of
the field is defined in the INIT section with the control variable .ZVARS. The
actual field names are in a name list, with all the actual field names for the) BODY
and)MODEL sections. The actual field names must appear in the name list in the
order they appear in the panel definition, not in the order they will appear when
the panel is displayed. The names must appear in the)BODY section, then
)MODEL section, and then JAREA section order.

If you have defined several)JAREA sections, the .ZVARS must be listed in order
from top-to-bottom left-to-right as they appear in the panel definition.

Cursor position determines how an area scrolls. This is called cursor-dependent
scrolling. If scroll down is requested, the line on which the cursor is placed is
moved to the top line. If the cursor is currently on the top line of the scrollable
area, the section is scrolled as total visible lines minus one. On a panel with only
one scrollable area, if the cursor is not within the area and scrolling is requested,
the area is scrolled by the total visible lines minus one. If scrolling an area causes
the last line of an area to not be the last visible line in the area, the cursor is
moved so that the last line of the area appears at the last visible line of the
scrollable area.

Chapter 7. Panel definition statement reference 167

)AREA Section

The top line of the scrollable area is reserved for the scroll indicators. Actual
information from the JAREA section is displayed beginning on the second line of
the scrollable area. The scroll indicators are displayed only if more data was
defined in the)AREA section than fits in the panel area.

The scroll indicators are displayed as follows:

More: + You can only scroll forward.
More: - You can only scroll backward.
More: - + You can scroll forward or backward.

Forward and backward function keys should be defined in the keylist for any
application panel that has scrollable areas.

The)AREA section can contain any of the items that can be included in the)BODY
section except for:

* Action Bar lines

* Graphics Area

* Model Section

e Command Line

* Alternate Message Locations

* Another scrollable area using AREA(SCRL)

* Dynamic Area using EXTEND(ON) or SCROLL(ON).

The)AREA section must fit within the general panel limit of 64K.

Panel definition considerations
When you are defining a scrollable area, a number of rules apply:

* The area cannot be specified by using a Z-variable place-holder within the panel
body.

e To allow for the scroll information, the minimum width for a scrollable area is
20. The minimum depth of the scrollable area is 2.

e If the width of the scrollable area is less than the screen size, you must place
appropriate attribute characters around this area so that the data within the area
is not inadvertently affected. For example, by using place fields with SKIP
attributes following the right-most boundaries of the area, you can ensure that
the cursor will tab correctly to the next or continued input field within the area.

* You must terminate an input or output field preceding a scrollable area with an
attribute character.

* A text field’s attribute character is only processed if the start of the field is
visible in the scrollable area. This means that text fields defined to wrap in a
scrollable area may not show their defined attribute when they are only partially
displayed. For example, if a field has the attribute HILITE(REVERSE), the text
will only appear in reverse video if the start of the field is visible in the
scrollable area.

* The initialization of variables in the scrollable area has nothing to do with Z
variables. The setting of .ZVARS simply associates the name of a variable with a
Z place holder. It does not initialize the variable value.

An explicit setting of the variable in the)INIT section will initialize the variable
whether it is in a scrollable area or not. Normally, variables that are not
explicitly defined are set to null by ISPF. This occurs because ISPF tries to
retrieve an existing value from the variable pool and finds that it is not defined.
ISPF then defines the variable and sets it to null.

168 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)AREA Section

For scrollable areas, ISPF does not retrieve the variable unless it is to be
displayed. Therefore, a variable in a scrollable area that is not visible on the
screen does not get implicitly initialized. This is true for all the variables. If the
user wishes to initialize a variable it can be done by setting the variable to null
in the)INIT section.

If an EXTEND(ON) scrollable area is defined on a panel that does not have a
)BODY definition that covers the entire depth of the screen on which it is
displayed, the)BODY line over which the last line of the scrollable area is defined
is repeated for the remaining depth of the screen, or for the remaining number of
lines of data in the scrollable area, whichever is larger.

It is good practice to frame a scrollable area or to allow enough blank space so that
the definition of the scrollable area is clear. You should consult you own usability
standards to determine the best implementation.

Help panels

When a help panel is defined with a scrollable area, the Left, Right, and Enter keys
that currently scroll through the tutorial panels also scroll the scrollable area. When
running under tutorial and trying to scroll past the end of the scrollable area, a
message will be displayed indicating that no more information is available in the
scrollable area. If RIGHT or ENTER is pressed again, ISPF will follow the normal
tutorial flow and display the next help panel if one has been defined. The same is
true when scrolling to the TOP of the scrollable AREA; a message indicating that
no more information is available will be displayed, and if LEFT is pressed, the
previous tutorial panel will be displayed if one has been defined.

Cursor positioning usually defines which scrollable area will be scrolled. However,
when in tutorial, if the cursor is not within a scrollable area, the first area defined

in the)BODY section will be scrolled. The LEFT and RIGHT commands should be
included in any keylist specified for a scrollable help panel.

Panel processing

When a DISPLAY service is issued, the)INIT section is processed before the panel
is displayed on the screen. Each time you scroll and the panel is redisplayed, the
)PROC and)REINIT sections are not processed. The)PROC section is only
processed when the panel is submitted for processing as when the Enter or End
key is pressed.

When panel processing is complete and ISPF returns control to the dialog, it is
possible that required fields were not displayed. Therefore, unless a VER NB was
coded in the panel for a required field, it is possible that the application user never
scrolled the panel to see the field. It is your responsibility to ensure that all
required information is obtained.

When fields are displayed on a panel, their characteristics can change without the
user interacting with the fields. For example, when CAPS(ON) is set for a field,
this only affects fields that actually are displayed. If a field is initialized with
lowercase letters and it appears on a portion of the panel that is never displayed,
the data remains in lowercase even if CAPS(ON) was set for the field.

Scrollable area examples
[Figure 52 on page 170 shows an invalid scrollable area definition. The last line of
the extendable scrollable area also contains a line of nonextendable text to its right.

Chapter 7. Panel definition statement reference 169

)AREA Section

)ATTR
AREA(SCRL) EXTEND(ON)
$ AREA(SCRL)

)BODY

% New Patient Information

%Command ===> ZCMD

+Name oL _pname %

+

#areal --------- # $area2 --------——----- $

$ $

$ $

$ $

$ $

$ $

$ $
$ $
$ $

+

+Please fill in all information.

+

)AREA AREA1 DEPTH(5)

JAREA AREA2 DEPTH(5)

Figure 52. Invalid scrollable area definition

shows a valid scrollable area definition. It is followed by the actual
scrollable panel displays.

)ATTR
AREA(SCRL) EXTEND(ON)
)BODY

Command ===>_7CMD

A° P o

o

+Patient name _pname

+Please fill in all information.
+

Figure 53. Valid scrollable area definition (Part 1 of 2)

170 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)AREA MYAREA DEPTH(5)
+Personal information

+ Address
City, State
Zip Code
Birth date
Sex

Marital Status

+ 4+ + + + + + ++++ o+

+Emergency Contact

+ Name
+ Home phone
+ Work phone

++Emergency Contact

+ Name
+ Home phone
+ Work phone
+

+Insurance Coverage

Group number

Relationship

+
+
+
+
+
+
+
+
+
+ Signature on file
)INIT

)PRQC

YHELP

)END

Figure 53. Valid scrollable area definition (Part 2 of 2)

Home phone
Work phone

Insurance Company .

ID number
Cardholder's name . .

._address
._Ctyst

. zip %
._birth %

._MS+1. Married
2. Single
3. Divorced
4. Widowed

>
o
>
o
=}
D
O ¢

._ehphone
._ewphone

N o

._ename
._ehphone
._ewphone

N o

._insure

._RL+1. Self
+2. Spouse
+3. Parent
+4. Relative
+5. Other

. . SG+ iY=Yes N=No)

)AREA Section

N o

N

[Figure 54 on page 172| shows the initial panel display, which contains a scrollable

area. More: + indicates that you can now scroll forward in the scrollable area.

Chapter 7. Panel definition statement reference 171

)AREA Section

4 N
Command ===>
Patient name CECILIA COFRANCESCO
More: +
Personal information
Address 2825 N. OCEAN BOULEVARD
City, State BOCA RATON, FL
Zip Code 33432
Birth date 00/00/00
SeX v v v e e e e F (M=Male or F=Female)
Marital Status . . . 1 1. Married
2. Single
3. Divorced
4. Widowed
Home phone (407)395-9446
Work phone (407)982-6449
Please fill in all information.
J
Figure 54. Scrollable area screen display (part 1 of 2)
shows the panel display after one scroll request has been processed.
More: - +indicates that you can now scroll forward or backward in the
scrollable area.
4 N\
Command ===>
Patient name CECILIA COFRANCESCO
More: -+
Home phone (407)395-9446
Work phone (407)982-6449
Emergency Contact
Name PAULO COFRANCESCO
Home phone (407)395-9446
Work phone (407)982-6449
Insurance Coverage
Insurance Company . . BLUE CROSS BLUE SHIELD
Group number 22
ID number 45463
Cardholder's name . . CECILIA COFRANCESCO
Relationship 1 1. Self
2. Spouse
Please fill in all information.)

Figure 55. Scrollable area screen display (part 2 of 2)

After you have completely scrolled through the scrollable area, More: -
indicates that you can now only scroll backward.

Defining the attribute section

The)ATTR (attribute) section of a panel contains the definitions for the special
characters or two-digit hexadecimal codes that are to be used in the definition of
the body of the panel to represent attribute (start-of-field /end-of-field) bytes. When
the panel is displayed, these characters are replaced with the appropriate hardware
attribute bytes and appear on the screen as blanks. If you do not define attribute
characters, ISPF uses defaults.

172 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

If specified, the attribute section precedes the panel body. It begins with the JATTR
header statement.

)ATTR [DEFAULT (defldef2def3)]
[FORMAT (EBCDIC|DBCS |[MIX)]
[OUTLINE([L][R] [0] [U]|BOX|NONE)]

where:

DEFAULT (defldef2def3)
You can use the DEFAULT keyword to specify the characters that define a
high-intensity text field, a low-intensity text field, and a high-intensity input
field, respectively. The value inside the parentheses must consist of exactly

three characters, not enclosed in single quotes and not separated by commas or
blanks.

The DEFAULT keyword can also be specified on the)BODY header statement.

FORMAT(EBCDIC | DBCS | MIX)
The default value for a TYPE(INPUT) and a TYPE(DATAIN) field is
FORMAT(EBCDIC). These two default values can be changed by using the
)JATTR statement or the) BODY statement. These values, in turn, can be
overridden if explicitly specified on a subsequent statement. For example, the
net result of these two statements is FORMAT(DBCS):

JATTR FORMAT (MIX)
$ TYPE(INPUT) FORMAT(DBCS)

OUTLINE([LI[RI[O][U] I BOX | NONE)
The default value for OUTLINE is NONE. The default value for TYPE(INPUT)
and TYPE(DATAIN) fields can be specified on the)ATTR or)BODY statement
and can be overridden by the OUTLINE keyword. For example:

)ATTR OUTLINE(U)
@ TYPE(INPUT) OUTLINE(BOX)

The attribute section ends with the)BODY header statement. The number of lines
allowed in an)ATTR section depends upon the storage size available.

Using default attribute characters
If not specified explicitly with the DEFAULT keyword, the default attribute
characters are:

% (percent sign) — text (protected) field, high intensity
+ (plus sign) — text (protected) field, Tow intensity
_ (underscore) - input (unprotected) field, high intensity

These three defaults are the equivalent to specifying:

JATTR
% TYPE(TEXT) INTENS(HIGH)
+ TYPE(TEXT) INTENS(LOW)
_ TYPE(INPUT) INTENS(HIGH)

The default values for the JUST (justification) and CAPS (uppercase and lowercase)
keywords vary according to how the field is used. JUST and CAPS are attribute

statement keywords that are described in [“Formatting attribute section statements”]
fon page 174]

You can change the default characters by using a keyword on either the)ATTR or
)BODY header statement. For example:

DEFAULT (abc)

Chapter 7. Panel definition statement reference 173

)ATTR Section

where a, b, and c are the three characters that take the place of %, +, and _,
respectively.

Typically, you use the DEFAULT keyword on the)ATTR header statement if the 3
default characters are to be changed, and additional attribute characters are also to
be defined. For example:

)ATTR DEFAULT($G_)

= TYPE(INPUT) ~INTENS(NON)
TYPE(OUTPUT) INTENS(LOW) JUST(RIGHT) PAD(0)

In this example, the default characters for text fields are changed to $ for high
intensity, and o for low intensity. The default character for high-intensity input
fields is _, the same as the ISPF-supplied default. The example defines two
additional attribute characters: - for nondisplay input fields and # for low-intensity
output fields. The output fields are to be right-justified and padded with zeros.

You could use DEFAULT on the)BODY header statement, with the entire attribute
section omitted, if the only change is to redefine the default characters. For
example:

)BODY DEFAULT($e)

If you use DEFAULT on both the)ATTR and the)BODY header statements, the
)BODY specification takes precedence.

Formatting attribute section statements

Each attribute statement defines the attribute character for a particular kind of
field. You can define a given attribute character only once. The remainder of the
statement contains keyword parameters that define the nature of the field.

Generally, you should choose special (non-alphanumeric) characters for attribute
characters so that they will not conflict with the panel text. An ampersand (&),
blank (hexadecimal 40), shift-out (hexadecimal OE), shift-in (hexadecimal OF), or
null (hexadecimal 00) cannot be used as an attribute character.

Notes:

1. You can specify a maximum of 127 attribute characters. This limit includes the
3 default characters, attribute overrides, and TBDISPL dual defaults. For action
bar panels or panels with scrollable areas, you can specify a maximum of 110
attribute characters. This is because ISPF uses some attribute characters
internally.

2. For the attribute keywords AREA, EXTEND, SCROLL, and REP, the keyword
value must be expressed as a literal.

3. For other attribute keywords the value can be expressed as a literal, or as a
dialog variable name preceded by an ampersand (&). For example:
INTENS (&A)

4. Variable substitution is done after the)INIT section has been processed. The
current value of the dialog variable must be valid for the particular keyword.

For example, if the CAPS keyword is specified as CAPS(&B), the value of
dialog variable B must be ON, OFF, IN, or OUT.

174 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

attrchar

[AREA (DYNAMIC) [EXTEND(ON|OFF)][SCROLL(ON|OFF)]]
[USERMOD (usermod-code)]

[DATAMOD (datamod-code)]
[AREA(GRAPHIC) [EXTEND(ON|OFF)]]
[AREA(SCRL) [EXTEND(ON|OFF)TT
[ATTN(ON|OFF)] __
[CAPS (ON[OFF|IN|OUT]
[CKBOX (ON | OFF)]

[COLOR(value)]

[CSRGRP(x)]

[COMBO (ON | OFF [name)]
[CUADYN(value)]

[DDLIST (ON|OFF|name)]

[DEPTH(d)]

[FORMAT (EBCDIC | DBCS |MIX)]
[HILITE(value)]

[GE(ON|OFF)]

[INTENS (HIGH|LOW|NON)]

[JUST (LEFT[RIGHT|ASIS)]
[LISTBOX(ON|OFF|name)]

[NOJUMP (ON|OFF)]

[NUMERIC (ONOFF)]
[OUTLINE([LITRT[0] [u]|BOX|NONE)]
[PAD (char|NULLS|USER)] -
[PADC (char |NULLS |USER)]

[PAS (ON|OFF)]

[RADIO(ON]OFF)]

[REP(char)]

[SKIP(ON|OFF)]

[TYPE(value)]

[UNAVAIL (ON|OFF)]

[WIDTH(w)] ~—

where:

attrchar
The single-character or two-digit hexadecimal code that is assigned to the
attributes that follow.

AREA(DYNAMIC) EXTEND(ON | OFF) SCROLL(ON | OFF) USERMOD(usermod-
code) DATAMOD (datamod-code)

The value in attrchar specifies the special character or two-position hexadecimal
value that is used to define the dynamic area within the panel body section. In
the panel body section, the name immediately following this character
identifies the dialog variable that contains the dynamically formatted string to
be displayed in the area. Subsequent lines of the dynamic area are defined in
the panel body by placing this character in the starting and ending columns of
the dynamic area. Except on the first line of the dynamic area, where the area
name immediately follows the left delimiter character, at least one blank must
follow the delimiter characters on the left side of the dynamic area. This is a
special character, not an actual attribute character. Other fields must not be
defined within or overlapping a DYNAMIC area.

EXTEND(ON | OFF)
Specifies whether the depth of an area can be automatically increased.

ON Specifies that the depth (number of lines) of an area can be
automatically increased, if required, so that the depth of the entire
body of the panel matches the depth of the physical screen on
which it is being displayed. Accordingly, an extendable area can be
designated in the panel definition by a single line unless text or

Chapter 7. Panel definition statement reference 175

)ATTR Section

other fields are to appear along the graphic area. Only one
extendable area can be specified in a panel definition.

Note: Using EXTEND(ON) is not recommended if your dynamic
area is displayed in a pop-up. When EXTEND(ON) is used,
the panel is extended to the size of the logical screen. If the
panel is then displayed in a pop-up, the panel may be
truncated at the pop-up border.

The value for the EXTEND keyword cannot be specified as a
dialog variable.

OFF The default. Specifies that the depth (number of lines) of an area
cannot be automatically increased.

SCROLL(ON | OFF)
Specifies whether the area can be treated as a scrollable area.

ON Specifies that the area can be treated as a scrollable area. When a
panel containing a scrollable area is displayed, the scrolling
commands are automatically enabled. Only one scrollable area can
be specified in a panel definition.

The value for the SCROLL keyword cannot be specified as a dialog
variable.

A panel cannot have more than one scrollable area or more than
one extended area.

A panel displayed using TBDISPL cannot have a dynamic area
defined by SCROLL ON.

Although the panel display service does not perform the scrolling,
it does provide an interpretation of the user’s scroll request.

OFF The default. Specifies that the area cannot be treated as a scrollable
area.

USERMOD (usermod-code) and DATAMOD (datamod-code)
Specifies a character or two-position hexadecimal value to be substituted
for attribute characters in a dynamic area variable following a user
interaction. The attribute characters used within the dynamic area are
intermixed with the data. These attribute characters designate the
beginning of a new data field within the area. When the dynamic area
variable is returned to the dialog, usermod-code and datamod-code are used to
replace the attribute character of each field that has been modified,
according to these rules:

¢ USERMOD specified but DATAMOD not specified
If there has been any user entry into the field, even if the field was
overtyped with identical characters, the attribute byte for that field is
replaced with usermod-code.

* DATAMOD specified but USERMOD not specified
If there has been any user entry into the field, and if the value in the
field has changed, either by the user entry or by ISPF capitalization or
justification, the attribute byte for that field is replaced with
datamod-code.

¢ Both USERMOD and DATAMOD specified If there has been any user

entry into the field but the value in the field has not changed, the
attribute byte for that field is replaced with usermod-code.

176 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

If there has been any user entry into the field and the value in the field
has changed, either by the user entry or by ISPF capitalization or
justification, then the attribute byte for that field is replaced with
datamod-code.

¢ Neither DATAMOD nor USERMOD specified
The attribute byte for the field is unchanged.

You can specify more than one dynamic area on a panel. The number of
dynamic areas in a panel definition is limited only by physical space
limitations of the particular terminal being used for the display.

Examples:

YATTR
AREA(DYNAMIC) EXTEND(ON) USERMOD(!)

The character ’!" replaces the attribute byte for each field in the dynamic area
that has been touched, not necessarily changed in value, by the user. All other
attribute bytes remain as they are.

JATTR
AREA(DYNAMIC) EXTEND(ON) DATAMOD(01)

The hexadecimal code 01" replaces the attribute byte for each field in the
dynamic area that has been touched by the user and has changed in value. All
other attribute bytes remain as they are.

JATTR
AREA(DYNAMIC) EXTEND(ON) USERMOD(OC) DATAMOD(03)

The hexadecimal code '0C’ replaces the attribute byte for each field in the
dynamic area that has been touched by the user, but has not changed in value.
The hexadecimal code 03’ replaces the attribute byte for each field in the
dynamic area that has been touched by the user and has changed in value. All
other attribute bytes remain as they are.

If the datamod or usermod code is one of these special characters, it must be
enclosed in single quotes in the)ATTR section:

b]ank<(+|);—|_,>:=

If the desired character is a single quote, use four single quotes:
DATAMOD(""”).

AREA(GRAPHIC) EXTEND(ON | OFF)
The value in attrchar specifies a character or two-digit hexadecimal value,
called the graphic attribute character, to be used to define the graphic area (4
corners) within the panel body. If you use a graphics area, this character must
be defined; there is no default value. A panel definition can contain only one
graphic area.

EXTEND(ON | OFF)
Specifies whether the depth of an area can be automatically increased.

ON Specifies that the depth (number of lines) of an area can be
automatically increased, if required, so that the depth of the entire
body of the panel matches the depth of the physical screen on
which it is being displayed. Accordingly, an extendable area can be
designated in the panel definition by a single line unless text or
other fields are to appear along the graphic area. Only one
extendable area can be specified in a panel definition.

Chapter 7. Panel definition statement reference 177

)ATTR Section

Note: Using EXTEND(ON) is not recommended if your graphic
area is displayed in a pop-up. When EXTEND(ON) is used,
the panel is extended to the size of the logical screen. If the
panel is then displayed in a pop-up, the panel may be
truncated at the pop-up border.

The value for the EXTEND keyword cannot be specified as a
dialog variable.

OFF The default. Specifies that the depth (number of lines) of an area
cannot be automatically increased.

A graphic attribute character cannot have any other attribute properties. For
example, it cannot be mixed with attributes such as INTENS, CAPS, JUST, or
PAD.

The graphic attribute character is used to define the boundaries of the graphic
area in the panel body, as follows:

The graphic area is defined on the panel as a rectangle. The graphic attribute
character is used to define the 4 corners plus the remaining characters of the
vertical sides of this rectangle. You delineate the top and bottom of the
rectangle with the characters you use to complete the area outline on the
screen. For example, in [Figure 56 on page 179 the 4 corners and vertical
sides are defined by the asterisk character in the)ATTR section. The top and
bottom of the area have been completed with dashes.

A graphic area must be identified with a name that appears in the left top
corner, immediately following the first graphic attribute character of that
area. The name of the graphic area must be followed by a blank. This name
is used when retrieving information about the area through the PQUERY
dialog service or the LVLINE panel built-in function. The PQUERY service is
described in [z/OS ISPF Services Guidel

A graphic area can contain ISPF-defined alphanumeric fields.

ISPF-defined alphanumeric fields can partially overlap graphic areas.

The first line of the graphic area in the panel definition must have the
graphic attribute character in the starting and ending columns of the area. If

an alphanumeric field overlaps one of the subsequent lines of the graphic
area, it must be delimited by a graphic attribute character. See
for an example.

Any field preceding a graphic attribute character should be terminated by an
ISPF attribute character to prevent GDDM from overlaying the left-most
boundary characters of the area. When variable substitution occurs within a
text field in the panel body, the field must be terminated by an attribute
character before a special character defining a graphic area. [“Using variables

[and literal expressions in text fields” on page 115 provides additional
information about variable substitution in text fields.

The width of the graphic area includes the graphic attribute character
positions.

The PQUERY service and the LVLINE panel built-in function can be used to
obtain information about the size of the graphic area.

These rules are applied in [Figure 56 on page 179}

178 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

/)ATTR)
* AREA(GRAPHIC)
)BODY
ittt TITLE === mmmmmme -
%COMMAND ===>_7CMD %
+ (Text or other fields that are part of the
+ normal panel body ...)
+
+ A*PICTL =mmmmmmmmmmmmmmmmeeome *
* *
* *
* *
* *
* *
* *
K o - *
)END
o %

Figure 56. Panel definition illustrating a graphic area

In this example, a graphic area is defined. PICT1 is specified as the name of
the area. An asterisk (*) is the delimiter character for the vertical sides of the
area, and hyphens (-) are the delimiter character for the top and bottom. Note
that a blank follows the area name and follows all asterisks (*) other than the
asterisk adjacent to PICTT1.

[Figure 57| and [Figure 58 on page 180|are examples of panel definitions with a
graphic area. In [Figure 58 on page 180} note that the alphanumeric field
INPUT1 starts at *_" and ends at " |’.

/)ATTR h

* AREA(GRAPHIC)

)BODY

% MY COMPANY OPTION PANEL

% Your selection ==>_7ZCMD +

+

+ 1 Our application 1 +*L0G0 ---------------- *

+ 2 Our application 2 +* *

+ 3 Our application 3 +* *

+ 4 Our application 4 +x *

+ 5 Our application 5 +k *

+ +* *

+ X Exit HH oo *

+ T Tutorial <--- Graphic Area --->

)END
- J

Figure 57. Panel definition with graphic area

Chapter 7. Panel definition statement reference 179

)ATTR Section

~
/BATTR
| AREA(GRAPHIC)

)BODY

% Panel with Overlapping text field

% Here is the data as a graph and with editorial text:

+

+|PICl --=---------
INPUT1 |

% <- graphic area ->

)END
o J

Figure 58. Definition of panel graphic area with overlapping text field

AREA(SCRL) EXTEND(ON | OFF)
The value in attrchar specifies the special character or two-position hexadecimal
value that is used to define the borders of the scrollable area in the)BODY
section.

EXTEND(ON | OFF)
Specifies whether the depth of an area can be automatically increased.

ON Specifies that the depth (number of lines) of an area can be
automatically increased, if required, so that the depth of the entire
body of the panel matches the depth of the physical screen on
which it is being displayed. Accordingly, an extendable area can be
designated in the panel definition by a single line unless text or
other fields are to appear along the graphic area. Only one
extendable area can be specified in a panel definition.

Note: Using EXTEND(ON) is not recommended if your scrollable
area is displayed in a pop-up. When EXTEND(ON) is used,
the panel is extended to the size of the logical screen. If the
panel is then displayed in a pop-up, the panel may be
truncated at the pop-up border.

The value for the EXTEND keyword cannot be specified as a
dialog variable.

OFF The default. Specifies that the depth (number of lines) of an area
cannot be automatically increased.

ATTN(ON | OFF)
Defines the attention-select attribute of the field; it is valid only for text fields.

ON Specifies that the field can be selected by using the light pen or cursor
select key.

OFF The default. Specifies that the field cannot be selected in this manner.
Note: The panel designer must provide an adequate number of blank

characters before and after the attention attribute character, as required
by the 3270 hardware.

180 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

CAPS(ON | OFFIIN|10OUT)
Specifies the uppercase or lowercase attribute of a field. CAPS is not valid for
text fields. The CAPS keyword can have any one of these values:

ON Data is translated to uppercase before being displayed and all input
fields are translated to uppercase before being stored.

OFF Data is displayed as it appears in the variable pool and all input fields
are stored as they appear on the screen.

IN Data is displayed as it appears in the variable pool, but all input fields
on the screen are translated to uppercase before being stored.

OUT Data is translated to uppercase before being displayed. All input fields
are stored as they appear on the screen.

Unless you specify a CONTROL ASIS command procedure (CLIST)
statement, the use of CAPS(OFF), CAPS(IN), and CAPS(OUT) is
negated if the dialog variable is referred to in the command procedure.

If you omit the CAPS parameter, the default is:

* CAPS(OFF) for input or output fields in the)MODEL section of a
table display panel
* CAPS(OFF) for DATAIN and DATAOUT fields in dynamic areas

* CAPS(ON) for all other input or output fields.

CKBOX(ON | OFF)
Allows a 1-character input field followed by a protected (text or output) field
to be processed as a check box in GUI mode. The input field is displayed as a
check box and the protected field is the check box description.

The CKBOX keyword can have one of these values:
ON Process the input field as a check box.
OFF Process the input field as non-check box field. This is the default

setting.

If the check box input field is not blank, the check box is initialized as selected
(checked). If the check box is selected, a slash character (/) is placed in the
check box input field when the panel is processed.

The CKBOX keyword is ignored if the input field is greater than one character,
or if the field following the check box field is not a protected field. An error
message is issued if the CKBOX keyword is used on any fields other than
input fields, or the selected choice (SC) output field.

Chapter 7. Panel definition statement reference 181

)ATTR Section

)ATT
@ TY
$ TY
)BOD

+ S
&
@
@

R
PE(CEF) CKBOX (ON)
PE(SAC)

y

elect options:

INSTR+

Z$Check box #1 description+
Z$Check box #2 description+

@Z$Check box #3 description+

@Z$Check box #4 description+
YINIT
.ZVARS = '(BOX1 BOX2 BOX3 BOX4)'
IF (&ZGUI = ' ')

&INSTR = 'Enter '/'' to select option.'
ELSE

&INSTR = 'Check box to select option.'
JEND
Figure 59. Example of CKBOX keyword
COLOR (value)

For 3279-B terminals (or other ISPF-supported seven-color terminals), the
COLOR keyword defines the color of a field. The value can be: WHITE, RED,
BLUE, GREEN, PINK, YELLOW, or TURQ (turquoise). If a color has not been
specified and the panel is displayed on a terminal, a default color is generated
based on the protection (TYPE) and intensity attributes of the field.
shows which defaults are the same as the hardware-generated colors for
3279-A (or other ISPF-supported four-color terminals).

Table 8. Color defaults

Field Type Intensity Default Color
Text/Output HIGH WHITE
Text/Output LOW BLUE

Input HIGH RED

Input LOW GREEN

If a color has been specified and the panel is displayed on a terminal other
than one with features such as those on the 3279-B, then:

* If an explicit intensity has also been specified for the field, the color
specification is ignored. For example:
YATTR
@ TYPE(INPUT) INTENS(HIGH) COLOR(YELLOW)
In this example, COLOR(YELLOW) is ignored except on terminals like the
3279-B. On a 3279-A terminal, for example, the resulting color is red.
 If an explicit intensity has not been specified for the field, the color is used
to generate a default intensity. Specification of blue, green, or turquoise
defaults to low intensity. Specification of red, yellow, pink, or white defaults
to high intensity. For example:
)ATTR
$ TYPE(OUTPUT) COLOR(GREEN)
In this example, a low-intensity output field results.

¢ If neither color nor intensity has been specified for a field, the default
intensity is HIGH.

182 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

Note: You can make global changes to one or more of the ISPF-supported
colors by using the COLOR command or by selecting the Global Color
Change choice from the Colors pull-down on the ISPF Settings panel
(Option 0). You can control the colors when you are in GUI mode. See
the|z/OS ISPF User’s Guide Vol II| for more information.

COMBO(ON | OFF | name)
Enables you to define choices for a combination box in GUIL mode. This
keyword is used in conjunction with the)LIST section. See |“Defining the LIST|
lsection” on page 223| for more information about the)LIST section.

The COMBO attribute keyword is valid on input type fields only. The
combination box combines the functions of an entry field and a drop-down list
(see ['DDLIST Keyword” on page 184). It has an entry field and contains a list
of choices that you can scroll through to select from to complete the entry
field. The list of choices is hidden until you take an action to make the list
visible. As an alternative, you can type text directly into the entry field. The
typed text does not need to match one of the choices in the list.

The width of the input field determines the width of the combination box. If a
COMBOBOX field is immediately followed by three or more consecutive
attributes, the COMBOBOX will be displayed for the entire length of the field,
since the three attributes allow space for the COMBOBOX button without
overlaying data in the next field. If a COMBOBOX field is not followed by
three or more consecutive attributes, the COMBOBOX will be displayed for the
length of the field, to avoid overlaying data in the next field, but the
COMBOBOX field will scroll to the right so that the user will be able to type in
more than enough data to fill the field.

On the host, the application must be made to implement this function. One
method to do this is to code the input field with a field-level help panel
containing a scrollable list of choices.

The COMBO keyword can have one of these values:

ON Specifies an input field is to display as a combination box when
running in GUI mode.

OFF Specifies an input field is NOT to display as a combination box when
running in GUI mode. This is the default setting.

name Specifies a name that is matched with the)LIST section name
parameter (see [‘Defining the LIST section” on page 223). This name is
valid only on a CEF or other input type field. The name is composed
of 1 to 8 characters. Alphanumeric characters A-Z, a-z, 0-9, #, §, or @
can be used in the name, but the first character cannot be numeric.
Lowercase characters are converted into uppercase equivalents.

Note: The COMBO keyword is supported for any input field type. To keep the
discussion simple, CEF is used to mean any input field type, and SAC is
used to mean any text or output field type.

The COMBO keyword must be used in conjunction with the CSRGRP(x)
keyword. The CSRGRP(x) keyword must appear on the CEF field that is used
to enter the selection on the host, and on the SAC field that identifies the
choices in the list. The x value is a number that ties the choices to the correct
input field, which has the same COMBO keyword and CSRGRP(x) number.

To specify the attributes of a combination box, use this syntax:
attribute-char TYPE(input) COMBO(ON|OFF|name) CSRGRP(x) DEPTH(d)

Chapter 7. Panel definition statement reference 183

)ATTR Section

where attribute-char is the special character or 2-position hexadecimal value that
is used to define the field within the panel body section. The x in CSRGRP(x)
can be a number between 1 and 99. The number is used to group all of the
fields with the same value into cursor groups.

The TYPE value must be an input type field. The DEPTH(d) sets the number
of rows for the combination box. Values can be from 0 to 99. For example, if
you specify DEPTH(8), the combination box contains eight rows of data. If the
depth specified is 0, or if the depth is not specified, the default depth is 4.

CSRGRP(x)

Enables you to determine which pushbuttons and checkbox fields are grouped
together for cursor movement purposes. When pushbuttons or checkboxes are
grouped into cursor groups, the cursor up and down keys move the focus
through each of the fields within the group. The TAB key moves the focus out
of the group, to the next field that is not within this particular group.

To specify the CSRGRP(x) keyword for cursor groups use this syntax:

attribute-char TYPE(PS) CSRGRP(x)
attribute-char TYPE(OUTPUT) PAS(ON) CSRGRP(x)
attribute-char TYPE(CEF) CKBOX(ON) CSRGRP(x)

where attribute-char is the special character or 2-position hexadecimal value that
is used to define the field within the panel body section. The x in CSRGRP(x)
can be a number between 1 and 99. The number is used to group all of the
fields with the same value into cursor groups. If you specify a CSRGRP on a
field that is not displayed as a pushbutton, a checkbox, a radio button, list box,
combination box, or drop-down list, then the CSRGRP keyword is ignored.

All pushbuttons and checkbox fields that do not have a CSRGRP defined do
not have a cursor group set in GUI mode, which has the same effect as having
them all in the same cursor group.

CUADYN (value)

Enables you to define dynamic area DATAIN and DATAOUT attributes with
CUA attribute characteristics. For more information, see [“Specifying dynamic|
fareas” on page 202 |

DDLIST(ON | OFF | name)

Enables you to define choices for a single choice selection list and display the
list in a drop-down box in GUI mode. A drop-down list is a variation of a list
box (see[“LISTBOX Keyword” on page 190). A drop-down list initially displays
only one item until you take action to display the rest of the items in the list.

The DDLIST keyword can have one of these values:

ON Specifies a single selection list to display as a drop-down list when
running in GUI mode.

OFF Specifies a single selection list is NOT to display as a drop-down list
when running in GUI mode. This is the default setting.

name Specifies a name that is matched with the)LIST section name
parameter (see [‘Defining the LIST section” on page 223)). This name is
valid only on a CEF or other input type field. The name is composed
of 1-8 characters. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @ can
be used in the name, but the first character cannot be numeric.
Lowercase characters are converted into uppercase equivalents.

184 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

Note: To keep the discussion simple, CEF is used to mean any input field
type, and SAC is used to mean any protected text or output type.

The DDLIST keyword must be used in conjunction with the CSRGRP(x)
keyword (see "CSRGRP(x)"). The CSRGRP(x) keyword must appear on the CEF
field that is used to enter the selection on the host, and on the SAC field that
identifies the choices in the list. The x value is a number that ties the choices to
the correct input field, which has the same DDLIST keyword and CSRGRP(x)
number.

Defining a DDLIST Without a)LIST Section

To define a drop-down list using just the attribute keywords DDLIST and
CSRGRP, define the drop-down list by coding the DDLIST(ON) keyword on
the CEF field and on the SAC field that identifies the choices that go with the
CEF field. The SAC choice fields that have the same keyword settings (DDLIST
and CSRGRP) as the CEF field are used to build the list of choices in the list.
They are not built into the panel body when the panel is displayed. The fields
following the SAC fields should be text or output fields, they are used as the
list choice text. If a field following an SAC field is not a text or output field, no
entry is built in the list for that field. The data in the drop-down list is
displayed in the order that ISPF processes the defined panel body, that is, left
to right, and top to bottom.

ISPF initially compares the CEF field with each SAC field for the drop-down
list. If a CEF and SAC match is found the drop-down list field is set to the
matching SAC choice text field. If no match is found, or if the CEF field is
blank, the drop-down list field is set to blank.

To specify the attributes of a drop-down list use this syntax in the JATTR
section:

attr-char TYPE(CEF) DDLIST(ON) CSRGRP(x) WIDTH(w) DEPTH(d)
attr-char TYPE(SAC) DDLIST(ON) CSRGRP(x)

Where attr-char is the special character or 2-position hexadecimal value used to
define the choice entry field, or the SAC field within the panel body section.
The other variables listed in the example are:

WIDTH(w)
The value of w sets the width of the drop-down list. Values can be
from 0 to 99. This parameter is only used when it is specified on a CEF
field. If you specify a width, ISPF makes the drop-down list that is
displayed the specified width. If you do not specity, or specify a width
of zero, ISPF scans the next field that is not one of the choice numbers
or choice text fields for the CEF field to determine the available space
for the list. In this case, ISPF sets the width to the smaller value
between the available space and the length of the longest choice text
string.
This value does not include the DDLIST borders. If you specify
WIDTH(5), the DDLIST can contain 5 characters of data. The width
you specify should be large enough to hold the longest choice text
string. Also ensure that there is enough panel space for it to fit without
overlaying other fields on the panel.

Chapter 7. Panel definition statement reference 185

)ATTR Section

Note: Ensure that, from the starting position of the drop-down list, the
width that you specify does not extend past the right border of
the panel.

DEPTH(d)
The value of d sets the number of rows for the list to display. Values
can be from 0 to 99. This parameter is only used when it is specified
on a CEF field. If you specify a depth, ISPF makes the drop-down list
that is displayed the specified depth.

If you specify DEPTH(8), the DDLIST can contain 8 lines of data. If the
depth specified is 0, or if the depth is not specified, the default depth
is 4.

Example Panel Definition for DDLIST

JATTR

@ TYPE(CEF) DDLIST(ON) CSRGRP(1)
$ TYPE(SAC) DDLIST(ON) CSRGRP(1)
TYPE(SAC)

)BODY

+Terminal Characteristics:
+Screen format

0Z $1.#Data+ $3.#Max+

$2.#STD+ $4.#Part+

Defining a DDLIST With a)LIST Section

Another way to define a DDLIST is to build the choices into the)LIST section
of the panel. See|"Defining the LIST section” on page 223| for more information
about the LIST section.

To specify the attributes of a drop-down list use this syntax:

)ATTR
attr-char TYPE(CEF) DDLIST(name) CSRGRP(x) WIDTH(w) DEPTH(d)
. attr-char TYPE(SAC) DDLIST(ON) CSRGRP(x)

)LIST name
VAL(valuel) CHOICE(choicel)
VAL(value2) CHOICE(choice2)

Where the DDLIST(name) on the CEF field in the JATTR section matches the
name on the)LIST statement. The)LIST section contains the list of choices and
the values for the drop-down list. The data in the drop-down list is displayed
in the order in which you define the choices in the)LIST section.

If the choices are also built into the panel body, the SAC attribute must have
DDLIST(ON) so that ISPF does not display the choices in the panel body, but
uses the choices specified in the)LIST section.

ISPF initially compares the CEF field with each VAL(value) in the named)LIST
section. If a CEF and VAL match is found the drop-down list field is set to the
matching VAL'’s choice text. If no match is found, or if the CEF field is blank,
the drop-down list field is set to blank.

186 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

Note: Defining drop-down lists is not a trivial task. You might find it simpler
to use Dialog Tag Language to define panels that contain drop-down
lists. See [z/OS ISPF Dialog Tag Language Guide and Reference|for more
information.

When you define drop-down lists, keep these points in mind:

* The CEEF field (or other input field) receives the selection number and the
SAC field (or other output or text field) that contains the selection number.
The SAC field must be followed by another output or text field with the
choice description to be placed in the list.

¢ The CEF field should not be more than 3 characters long. Only 3 characters
are checked and set for CEF fields processed as drop-down lists.

* If the text following the SAC attribute is longer than 3 characters or the CEF
field, then the text is truncated to the size of the CEF field, or 3 characters
(whichever is smaller when that list choice is selected). Periods at the end of
the string are ignored, they are not set into the list entry field with the other
text when the choice is selected and the panel is processed.

 If a CEF field has the same CSRGRP value as a previous CEF field, and both
of them have the same DDLIST(ON) keyword, then the second CEF field is
displayed as an input field and all of the choices with the same keywords
are grouped under the first CEF field.

» If a CEF field has a DDLIST(ON) and a CSRGRP value that does not match
an SAC field with DDLIST(ON) and a CSRGRP value that comes after it,
then the CEF field is displayed as an input field.

» If an SAC field has a DDLIST(ON) and a CSRGRP value that does not match
a previous CEF field with DDLIST(ON) and a CSRGRP value, then the SAC
field and the description following it do not display.

 If an SAC field is not followed by an output or text field to be used as the
list choice text, then the SAC field is not displayed, and there is no entry in
the list for that choice.

DEPTH(d)
The value of d sets the number of rows for a list box, drop-down list, or
combination box to display. Values can be from 0 to 99. This parameter is only
used when it is specified on an input field. See the appropriate sections on list
boxes, drop-down lists, and combination boxes for more information.

FORMAT(EBCDIC | DBCS | MIX)
For DBCS terminals, the FORMAT keyword specifies the character format for a
field.

EBCDIC EBCDIC characters only
DBCS DBCS characters only
MIX EBCDIC and DBCS characters

In a FORMAT(MIX) field, any DBCS character string must be enclosed by a
shift-out (hexadecimal OE) and a shift-in (hexadecimal OF).

The default value for a TYPE(INPUT) and a TYPE(DATAIN) field is
FORMAT(EBCDIC). These two default values can be changed by using the
)JATTR statement or the)BODY statement. These values, in turn, can be
overridden if explicitly specified on a subsequent statement. For example, the
net result of these two statements is FORMAT(DBCS):

JATTR FORMAT(MIX) § TYPE(INPUT) FORMAT (DBCS)

Chapter 7. Panel definition statement reference 187

)ATTR Section

The default value for a TYPE(TEXT) and a TYPE(OUTPUT) field is
FORMAT(MIX). The format of a TYPE(TEXT) field cannot be overridden by the
execution of an .ATTR or .ATTRCHAR statement. Attempting to do so results
in a dialog error.

The pad character for a DBCS field is converted to the corresponding 16-bit
character and is then used for padding. Other format fields are padded
normally.

The CAPS attribute is meaningful only for EBCDIC and MIX fields. In
addition, within a MIX field, the CAPS attribute applies only to the EBCDIC
subfields.

GE(ON | OFF)

The GE keyword indicates that a specific character attribute should be
preceded in the order stream by the graphic escape order, provided the
terminal supports GE order. The GE order indicates that the character comes
from the APL/TEXT character set. This keyword is supported on TYPE(CHAR)
within a Dynamic Area, action bar separator lines (TYPE(ABSL)), work area
separator lines (TYPE(WASL)), and column headings (TYPE(CH)).

The GE keyword can have one of these values:

ON Specifies that ISPF will place a graphic escape order before the
attribute character when building the order stream.

OFF The default. Specifies that ISPF will not place a graphic escape order
before the attribute character.

If GE(ON) is specified on TYPE(ABSL), TYPE(WASL), or TYPE(CH), and if the
characters following these TYPE’s in the panel definition are dashes (-) or
vertical bars (), then the appropriate APL character will be used. This results
in these panel elements displaying as solid horizontal or vertical lines, instead
of broken lines.

Note: If the terminal does not support graphic escape or if you are running
under GDDM (i.e., GRINIT service has been issued) then these panel
elements will be displayed as coded in the panel definition.

For more information about the GE keyword support on TYPE(CHAR) within

a dynamic area, see [“Specifying character attributes in a dynamic area” on|
page 148.

HILITE(value)

For ISPF-supported terminals with the extended highlighting feature, the
HILITE keyword defines the extended highlighting attribute for a field. The
value can be:

USCORE Underscore

BLINK Blinking

REVERSE Reverse video

No default is assumed if highlighting is not specified. When you are running
in GUI mode, the HILITE keyword is ignored.

If highlighting is specified and the panel is displayed on a terminal without
the extended highlighting feature, then:

* If an explicit intensity has also been specified, the highlighting is ignored.

188 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

* If an explicit intensity has not been specified for the field, a high-intensity
field results. On a 3279-A terminal, there is also color provided by default, as
described in[Table 8 on page 182}

Examples of Using COLOR and HILITE Keywords
@ TYPE(OUTPUT) INTENS(HIGH) COLOR(YELLOW) HILITE(BLINK)

the results are as follows:

3277,8 — TYPE(OUTPUT) INTENS(HIGH)

3279-A — TYPE(OUTPUT) INTENS(HIGH) =

3279-B — TYPE(OUTPUT) COLOR(YELLOW) HILITE(BLINK)
3290 — TYPE(OUTPUT) HILITE(BLINK)

* Results in white.

INTENS(HIGH | LOW INON)
Specifies the intensity of the field (HIGH is the default):

HIGH High-intensity field
LOW Low-intensity (normal) field
NON Nondisplay field

You can specify these operands for the basic attribute types

(TEXT I INPUT |OUTPUT). NEF is the only CUA panel-element type that
supports the INTENS(NON) operand. The remaining CUA panel-element types
do not allow the COLOR, INTENS, and HILITE keyword default values to be
changed. The NON operand allows you to optionally display comments or
directive lines.

For a panel displayed on a color terminal, you can also use the INTENS
keyword to generate a default color for the field, as described for the COLOR
keyword. INTENS(HIGH) and INTENS(LOW) are ignored for a 3290 terminal
and in GUI mode.

JUST(LEFT | RIGHT | ASIS)
Specifies how the contents of the field are to be justified when displayed. JUST
is valid only for input and output fields.

LEFT Left justification
RIGHT Right justification
ASIS No justification

Justification occurs if the initial value of a field is shorter than the length of the
field as described in the panel body. Normally, right justification should be
used only with output fields, since a right-justified input field would be
difficult to type over.

For LEFT or RIGHT, the justification applies only to how the field appears on
the screen. Leading blanks are automatically deleted when the field is
processed. For ASIS, leading blanks are not deleted when the field is
processed, nor when it is initialized. Trailing blanks are automatically deleted
when a field is processed, regardless of its justification.

If you omit the JUST parameter, the default is:

* JUST(ASIS) for input or output fields in the)MODEL section of a table
display panel

* JUST(ASIS) for DATAIN and DATAOUT fields in dynamic areas
e JUST(LEFT) for all other input or output fields.

Chapter 7. Panel definition statement reference 189

)ATTR Section

LISTBOX(ON | OFF | name)

Enables you to define choices for a single choice selection list and display the
list in a list box in GUI mode. A list box displays a scrollable list of choices in a
box on the display.

The LISTBOX keyword can have one of these values:

ON Specifies a single selection list to display as a list box when running in
GUI mode.

OFF Specifies a single selection list is NOT to display as a list box when
running in GUI mode. This is the default setting.

name Specifies a name that is matched with the)LIST section name
parameter (see [‘Defining the LIST section” on page 223). This name is
valid only on a CEF or other input type field. The name can be 1 to 8
characters long. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @ can
be used in the name, but the first character cannot be numeric.
Lowercase characters are converted into uppercase equivalents.

Note: To keep the discussion simple, CEF is used to mean any input field
type, and SAC is used to mean any protected text or output type.

The LISTBOX keyword must be used with the CSRGRP(x) keyword (see .
The CSRGRP(x) keyword must appear on the CEF field that is used to enter
the selection on the host, and on the SAC field that identifies the choices in the
list. The x value is a number that ties the choices to the correct input field,
which has the same LISTBOX keyword and CSRGRP(x) number.

Defining a LISTBOX Without a)LIST Section

Define the list box by coding the LISTBOX(ON) keyword on the CEF field and
on the SAC field that identifies the choices that go with the CEF field. The
SAC choice fields that have the same keyword settings (LISTBOX and
CSRGRP) as the CEF field are used to build the list of choices in the list. They
are not built into the panel body when the panel is displayed. The fields
following the SAC fields should be text or output fields, they are used as the
list choice text. If a field following an SAC field is not a text or output field, no
entry is built in the list for that field.

To specify the attributes of a list box use this syntax in the JATTR section:

attr-char TYPE(CEF) LISTBOX(ON) CSRGRP(x) WIDTH(w) DEPTH(d)
attr-char TYPE(SAC) LISTBOX(ON) CSRGRP(x)

Where attr-char is the special character or 2-position hexadecimal value used to
define the choice entry field, or the SAC field within the panel body section.
The other variables listed in the example are:

WIDTH(w)
The value of w sets the width of the list box. Values can be from 0 to
99. This parameter is only used when it is specified on a CEF field. If
you specify a width, ISPF makes the list box that is displayed the
specified width. If you do not specify, or specify a width of zero, ISPF
scans the next field that is not one of the choice numbers or choice text
fields for the CEF field to determine the available space for the list. In
this case, ISPF sets the width to the smaller value between the
available space and the length of the longest choice text string.

This value does not include the LISTBOX borders. If you specify
WIDTH(5), the LISTBOX can contain 5 characters of data.

190 2z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

DEPTH(d)
The value of d sets the number of rows for the list to display. Values
can be from 0 to 99. This parameter is only used when it is specified
on a CEF field. If you specify a depth, ISPF makes the list box that is
displayed the specified depth. If the depth specified is 0, or if the
depth is not specified, the default depth is 4.

This value does not include the horizontal scroll bar. If you specify
DEPTH(8), the list box can contain 8 lines of data.

Note: Ensure that from the starting position of the List Box, the width
specified does not extend past the right border of the panel.
Also ensure that from the starting position of the List Box, the
depth specified does not extend past the bottom edge of the
panel.

Example Panel Definition for LISTBOX

JATTR

@ TYPE(CEF) LISTBOX(ON) CSRGRP(1) DEPTH(4)
$ TYPE(SAC) LISTBOX(ON) CSRGRP(1)

TYPE(SAC)

)BODY

+Terminal Characteristics:
+Terminal Type
@Z $1.#3277+ $5.#3290A+
$2.#3277A+ $6.#3278T+
$3.#3278+ $7.#3278CF+
$4.#3278A+ $8.#3277KN+

Defining a LISTBOX With a)LIST Section

Another way to define a LISTBOX is to build the choices into the)LIST section
of the panel. See|’Defining the LIST section” on page 223| for more information
about the LIST section.

To specify the attributes of a list box use this syntax:

)ATTR
attr-char TYPE(CEF) LISTBOX(name) CSRGRP(x) WIDTH(w) DEPTH(d)
_ attr-char TYPE(SAC) LISTBOX(ON) CSRGRP(x)

.

)LIST name
VAL(valuel) CHOICE(choicel)
VAL(value2) CHOICE(choice2)

Where the LISTBOX(name) on the CEF field in the JATTR section matches the

name on the)LIST statement. The)LIST section contains the list of choices and
the values for the drop-down list. The data in the drop-down list is displayed

in the order in which you define the choices in the)LIST section.

If the choices are also built into the panel body, the SAC attribute must have

LISTBOX(ON) so that ISPF does not display the choices in the panel body, but
uses the choices specified in the)LIST section.

Chapter 7. Panel definition statement reference 191

)ATTR Section

Note: Defining list box lists is not a trivial task. You might find it simpler to
use Dialog Tag Language to define panels that contain list box lists. See
[z/0S ISPF Dialog Tag Language Guide and Referencel for more information.

When you define listboxes, keep these points in mind:

e The CEF field (or other input field) receives the selection number and the
SAC field (or other output or text field) that contains the selection number.
The SAC field must be followed by another output or text field with the
choice description to be placed in the list.

¢ The CEF field should not be more than 3 characters long. Only 3 characters
are checked and set for CEF fields processed as drop-down lists.

* If the text following the SAC attribute is longer than 3 characters or the CEF
field, then the text is truncated to the size of the CEF field, or 3 characters
(whichever is smaller when that list choice is selected). Periods at the end of
the string are ignored, they are not set into the list entry field with the other
text when the choice is selected and the panel is processed.

* If a CEF field has the same CSRGRP value as a previous CEF field, and both
of them have the same LISTBOX(ON) keyword, then the second CEF field is
displayed as an input field and all of the choices with the same keywords
are grouped under the first CEF field.

» If a CEF field has a LISTBOX(ON) and a CSRGRP value that does not match
an SAC field with LISTBOX(ON) and a CSRGRP value that comes after it,
then the CEF field is displayed as an input field.

* If an SAC field has a LISTBOX(ON) and a CSRGRP value that does not
match a previous CEF field with LISTBOX(ON) and a CSRGRP value, then
the SAC field and the description following it do not display.

* If an SAC field is not followed by an output or text field to be used as the
list choice text, then the SAC field is not displayed, and there is no entry in
the list for that choice.

NOJUMP(ON | OFF)

Specifies whether the jump function is disabled for a specific input field. It is
ignored on text and output fields. NOJUMP(OFF), jump function enabled, is
the default for fields with field prompts of ==> and for fields with field
prompts of leader dots (. . or ...), provided that jump from leader dots is set to
YES in the Configuration table or "jump from leader dots” is selected in the
Settings panel.

ON Specifies that the jump function is disabled and the data entered is
passed to the dialog as it was entered.

OFF Specifies that the jump function is enabled for fields with field prompts
of ==> and for fields with field prompts of leader dots (. . or ...)
provided that "jump from leader dots” is set to YES in the
Configuration table or selected in the Settings panel. This is the
default.

Note: If the application developer defines the NOJUMP(ON) attribute
keyword on a specific input field, this disables the "jump from leader
dots” setting for that field, and takes precedence over the "jump from
leader dots” setting on the Settings panel or the Configuration setting of
YES for "jump from leader dots”.

NUMERIC(ON | OFF)

For terminals with the Numeric Lock feature, the NUMERIC attribute keyword

192 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

allows users to be alerted to certain keying errors. The NUMERIC attribute
keyword is used to specify, for a panel field, whether Numeric Lock is to be
activated for data keyed into that field.

ON Specifies that the Numeric Lock feature is to be activated. The terminal
keyboard locks if the operator presses any key other than 0 through 9,
minus(-), period (.), or duplicate (DUP). ON is valid only for
unprotected fields.

OFF Specifies that the Numeric Lock feature is not to be activated. The user
can type in any characters. NUMERIC(OFF) is the default value.

On a data-entry keyboard with the Numeric Lock feature, when the user
moves the cursor into a field defined by the NUMERIC(ON) attribute
keyword, the display shifts to numeric mode. If the user presses any key other
than those allowed by the Numeric Lock feature, the DO NOT ENTER
message displays in the operator information area and the terminal is disabled.
The user can continue by pressing the reset key.

Note: On non-English keyboards with the Numeric Lock feature, the comma
sometimes replaces the period as a valid numeric character.

NUMERIC(ON) and SKIP(ON) attributes cannot be specified for the same
field. If attempted, ISPF issues an error message.

The NUMERIC(ON) attribute is not supported when GDDM is active.

When running in GUI mode, any panel field defined as NUMERIC(ON) is
verified at the workstation. That is, only numeric characters 0 through 9 and
special characters comma (,), dash (-), and period (.) are accepted in a numeric
only defined field.

OUTLINE([LI[R][O][U] BOX I NONE)
For DBCS terminals, the OUTLINE keyword lets you display lines around any
type of field. The keyword parameters specify where the line or lines are

displayed.

L Line to the left side of the field

R Line to the right side of the field

(0] Line over the field

U Line under the field

BOX Line surrounding the field (equivalent to LROU)
NONE No lines

You can specify any combination of the L, R, O, or U parameters in any order,
without intervening blanks.

The default value for OUTLINE is NONE. The default value for TYPE(INPUT)
and TYPE(DATAIN) fields can be specified on the)ATTR or)BODY statement,
and can be overridden by the OUTLINE keyword. For example:

JATTR OUTLINE(U)
@ TYPE(INPUT) OUTLINE(BOX)

When you are running in GUI mode, the OUTLINE keyword is ignored.

PAD(char INULLS | USER)
Specifies the pad character for initializing the field. This is not valid for text
fields. If PAD is omitted, the default is PAD(" ’) for output fields.

char Any character, including blank (" ’), can be specified as the
padding character. If the character is any of these, it must be
enclosed in single quotes:

Chapter 7. Panel definition statement reference 193

)ATTR Section

blank < (+) ;3 -, >: =

If the desired pad character is a single quote, use four single
quotes: PAD(”).

NULLS Nulls are used for padding.

USER Padding character is specified by a user through the ISPF
Settings panel.

If the field is initialized to blanks or the corresponding dialog variable is blank,
the entire field contains the pad character when the panel is first displayed. If
the field is initialized with a value, the remaining field positions, if any, contain
the pad character.

Padding and justification work together as follows. At initialization, unless you
have specified ASIS, the field is justified and then padded. For left-justified
and ASIS fields, the padding extends to the right. For right-justified fields, the
padding extends to the left.

When ISPF processes an input field, it automatically deletes leading or trailing
pad characters as follows:
* For a left-justified field, ISPF deletes leading and trailing pad characters.

* For a rightjustified field, ISPF deletes leading pad characters and stores
trailing pad characters.

¢ For an ASIS field, ISPF deletes trailing pad characters and stores leading pad
characters.

Regardless of the type of justification, ISPF deletes leading and trailing pad
characters for command fields.

In no case does ISPF delete embedded pad characters. It deletes only leading
or trailing pad characters.

PADC(char INULLS | USER)

Specifies conditional padding with the specified pad character. The pad
character is used as a field filler only if the value of the input or output field is
initially blank. The pad character is not displayed in the remaining unfilled
character positions if the field has an initial value. Instead, the unfilled
positions contain nulls. Otherwise, ISPF treats the PADC keyword like the PAD
keyword, including justification and deletion of pad characters before storing
variables in the pool.

char Any character, including blank (* ’), can be specified as the padding
character. If the character is any of these, it must be enclosed in single
quotes:

blank < (+) ; -, > : =

If the desired pad character is a single quote, use four single quotes:
PAD(/I//) .

NULLS
Nulls are used for padding.

USER Specifies that a user-defined character be used for padding. You define
the character by using the ISPF Settings panel. PAD and PADC are
incompatible. It is not valid to specify both PAD and PADC for the
same attribute character.

If PADC is omitted, the default is PADC(USER) for input fields.

194 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

PAS(ON | OFF)
PAS is valid for input and output fields only (not for text fields). The
point-and-shoot keyword specifies the field as a point-and-shoot field. In GUI
mode, output fields specified as point-and-shoot fields are displayed as
buttons. The PAS keyword is used in conjunction with the)PNTS
point-and-shoot panel section. See [‘Defining the point-and-shoot section” on|
for more information.

For each field on the panel that has been designated as a point-and-shoot field,
there must be a corresponding entry in the)PNTS point-and-shoot panel
section. If the cursor is placed on a point-and-shoot panel field and the Enter
key is pressed, the action associated with the field is performed. In the
example shown, if the cursor is placed on the point-and-shoot field, BLUE1,
and the Enter key is pressed, the variable RED1 is set to RED. In GUI mode,
the action is performed when the pushbutton point-and-shoot field is selected.
The cursor only remains positioned on the point-and-shoot field if no
intermediate panel is displayed and if the dialog does not set the cursor
position.

Note: You can use option 0 (Settings) to set the tab key to move the cursor
point-and-shoot fields. This changes output fields to input fields, but
data is not altered. However, if a variable is used on an output field that
is changed to an input field by the tab to point-and-shoot option, and
the variable is VDEFINEd to the application, the variable will be
truncated. In this case, the application developer should have a
temporary panel variable.

ON The field is a point-and-shoot field.
OFF The default. This field is not a point-and-shoot field.

Example:

) PANEL
JATTR

$ TYPE(PIN)

} TYPE(PS)

+ TYPE(NT)

| AREA(SCRL) EXTEND(ON)

! TYPE(OUTPUT) PAS(ON) COLOR(RED)

* TYPE(OUTPUT) PAS(ON) COLOR(BLUE)
@ TYPE(TEXT) INTENS(LOW) COLOR(RED) PAD(NULLS)
o TYPE(TEXT) INTENS(LOW) COLOR(BLUE) PAD(NULLS)
BODY WINDOW(60,23)

COMMAND ===> ZCMD

Press }DEFAULTS$to reinstate defaults

S1
AREA S1

oBLUE*BLUEl

+ + + +

)
5
§
5
s
+
|
)
+
+
+
+
)

.cursor = bluel
&bluel =

)PROC

REFRESH (*)

Chapter 7. Panel definition statement reference 195

)ATTR Section

YPNTS
FIELD(BLUEL) VAR(RED1) VAL(RED)
FIELD(ZPS00001) VAR(BLUE1) VAL(DEFAULT)
)END

RADIO(ON | OFF) CSRGRP(x)
Displays mutually exclusive textual settings choices. These fields must contain
at least two choices, one of which is usually selected. A single-choice selection
list is the equivalent function on the host. In GUI mode, they appear as radio
button groups.

To have a single-choice selection list display as a radio button group, use the
RADIO(ON) keyword with the CSRGRP(x) keyword on the CEF type (or other
input type) field that is used to enter the selection on the host.

Note: The RADIO keyword is supported for any input, output, or text field
type. To keep the discussion simple, CEF is used to mean any input
field type, and SAC is used to mean any protected text or output type.

For a list of possible selections, attribute type SAC (select available choice) or

another text or output field type must be used before the choice selection

number. The attribute used for the choice selection number also must have the

RADIO(ON) keyword with the CSRGRP(x) keyword. The x on the CSRGRP

keyword is a number used to identify each radio button group. The CSRGRP

number on both the CEF type field and the SAC type field must match. (For
more information about CSRGRP, see) The next field must be a text or
output field, used as the radio button choice text.

ISPF initially sets the radio button in the group that corresponds to the value
in the CEF field. If the CEF field is blank or the value in the field does not
correspond with any of the radio button selections, then no radio button is set
by default. ISPF then uses the characters following the SAC attribute to set the
value into the CEF field with the same CSRGRP(x) number.

The CEF field must be no more than 3 characters, because only 3 characters are
checked and set for the CEF fields processed as radio buttons. If the text
following the SAC attribute is longer than 3 characters, or longer than the
value in the CEF field, then the text is truncated to the size of the CEF field or
3 characters, whichever is smaller when the radio button corresponding to that
choice is selected. Periods at the end of the string are ignored.

To specify the RADIO(ON/OFF) CSRGRP(xx) keyword for radio buttons, use
this syntax:

attribute-char TYPE(CEF) RADIO(ON/OFF) CSRGRP(x)
attribute-char TYPE(SAC) RADIO(ON/OFF) CSRGRP(x)

attribute-char
the special character or 2-position hexadecimal value used to define the
choice entry field, or the SAC field within the panel body section. The
radio button group is defined in the panel body section by using the
special character to define the radio button entry field and the radio
button choices that go with it.

TYPE(CEF)
field attribute overrides for the CEF fields can be used to set the
RADIO(ON) and CSRGRP(x) value for the CEF field.

TYPE(SAC)
or other text or output field type to be used before each of the choice
selection numbers.

196 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

RADIO(ON | OFF)
ON if the radio button is implemented, OFF if it is not.

CSRGRP(x)
x can be any number from 1 to 99. The number refers to the number of
the radio button group as a whole, not the individual choices with the
radio button group.

For example:

JATTR

@ TYPE(CEF) RADIO(ON) CSRGRP(1)
$ TYPE(SAC) RADIO(ON) CSRGRP(1)
! TYPE(CEF) RADIO(ON) CSRGRP(2)
~ TYPE(SAC) RADIO(ON) CSRGRP(2)
#TYPE(SAC)

)BODY

+Terminal Characteristics:
+Screen format @Z $1.#Data+ $2.#Std+ §$3.#Max+ $4.#Part+

+Terminal Type !Z ~1.#3277+ ~73.#3278+ ~5.#3290A+ ~7.#3278CF+
2. #3277A+ N4 #3278A+ 6. #3278T+ ~8.#3277KN+
YEND

Notes about syntax:

1. If a CEF field has the same CSRGRP(x) value as a previous CEF field, and
both of them have RADIO(ON), then the new CEF field is displayed as an
input field.

2. If a CEF field has a RADIO(ON) and a CSRGRP(x) value that does not
match an SAC with RADIO(ON) and a CSRGRP(x) value that comes after
it, then the CEF field is displayed as an input field.

3. If an SAC field has a RADIO(ON) and a CSRGRP(x) value that does not
match a previous CEF field with RADIO(ON) and a CSRGRP(x) value, then
the SAC field is displayed as an output field instead of a radio button.

4. If an SAC field is not followed by an output field to be used as the radio
button text, then the SAC field is displayed as an output field.

5. If the radio button choice text wraps from one row to the next, then the

text on the next line is not displayed as part of the radio button choice text,
but as normal text.

— Restrictions on radio buttons and scrollable areas

* Radio button groups can appear in a scrollable area, but choices that do
not appear in the visible portion of the area are not displayed.

* If a radio button group does appear in a scrollable area, and the panel
cannot be scrolled to show all of the choices and the CEF field, then it
might not be possible to select some of the choices in the radio button
group.

o If the CEF field is scrolled out of the visible area of a scrollable area,
the SAC field and the choice text field that follow it are displayed in
the panel body as text or output fields.

Because of these scrolling restrictions, instead of using radio buttons, try
using a LISTBOX or DDLIST with the)LIST section for your application.

Chapter 7. Panel definition statement reference 197

)ATTR Section

REP(character)

For DBCS terminals, the REP keyword allows users to view, on panel
definitions, the displayable replacements for nondisplayable attribute
characters. This provides for the use of a wider range of BODY record attribute
characters that can be viewed on panel definitions. These replacement
characters are not visible on the actual panel displays.

You can specify any replacement character, but those that must be enclosed in
single quotes are as follows: < > () +; :, = blank.

Replacement characters are defined in the attribute section. Then, in the body
section of the panel definition, a record containing only the defined attribute
replacement characters is inserted immediately below any field defined by a
corresponding statement in the attribute section. Each replacement character
must be in the same column position as the attribute character position in the
field above.

When the panel definition, for example, is viewed for editing, the data field
and the characters that replace the attribute positions are both displayed.
However, when the panel is displayed, the record containing the replacement
characters is not displayed.

Any character immediately above an attribute replacement character in the
panel definition is overlaid by the attribute character’s hexadecimal code, not
by the displayable replacement character.

In the example shown, hexadecimal codes 38, 31, 32, and 34 are in the field
attribute positions when the panel is displayed. Because these codes are not
visible on a display, replacement characters *, !, $, and # are specified for
viewing the panel definition.

When the panel is displayed, the attribute position above the asterisk (*)
contains hexadecimal 38; the one above the exclamation marks (!) contain
hexadecimal 31; the one above the dollar sign ($) contains hexadecimal 32, and
the one above the number sign (#) contains hexadecimal 34. None of these
attribute characters is visible on the display, and the panel definition record
containing the replacement characters is not displayed.

The field attribute positions on the panel definition can contain any character,
illustrated as x in the example shown, because they are overlaid by the
replacement characters when the panel is displayed.

Example:

)ATTR
38 TYPE(INPUT) FORMAT(DBCS) REP(*)
31 TYPE(INPUT) FORMAT(EBCDIC) REP(!)
32 TYPE(TEXT) FORMAT(EBCDIC) REP($)
34 TYPE(TEXT) FORMAT(MIX) REP(#)

)BODY
+ DBCS input field %===>x VARDBCS +

*

[DBDBDBDBDBDBDBDBDB] ===>x VAREBC +
$!

Any characters used to replace shift-out or shift-in characters must be less than
hexadecimal 40 and must not be hexadecimal 00, OE, or OF.

The EXPAND keyword cannot be used for records containing only those
characters defined by the REP keyword.

198 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

SKIP(ON | OFF)

)ATTR Section

The SKIP keyword defines the autoskip attribute of the field. It is valid only
for text or output (protected) fields (OFF is the default).

ON Specifies that the cursor automatically skips the field. When a character
is entered into the last character location of the preceding unprotected
data field, ISPF positions the cursor at the first character location of the
next unprotected field.

OFF Specifies that the cursor does not automatically skip the field when the
condition described for SKIP(ON) occurs.

When you are running in GUI mode, the SKIP keyword is ignored.

TYPE(value)

Specifies the TYPE category of the panel element. The default is TYPE(INPUT).
The TYPE values shown must be coded explicitly; it is not valid to assign any

of these values to dialog variables: AB, ABSL, CH, CHAR, CT, DATAIN,
DATAOUT, DT, ET, FP, GRPBOX, NT, PIN, PT, RP, SAC, SI, SUC, TEXT, WASL,
and WT. For simplicity, the values in examples are shown as literals.

value may be:

Value
AB
ABSL
CEF

CH
CHAR
CT
DATAIN
DATAOUT
DT

EE

ET

FP
GRPBOX
INPUT
LEF

LI

LID

NEF

NT
OUTPUT
PIN

PS

PT

RP

SAC

SC

SI

suC
TEXT
VOI
WASL
WT

Description

AB unselected choices

AB separator line

Choice entry field

Column heading

Character attributes in a dynamic area
Caution text

Input (unprotected) field in a dynamic area
Output (protected) field in a dynamic area
Descriptive text

Error emphasis
Emphasized text

Field prompt

Group box

Input (unprotected) field
List entry field

List items

List item description
Normal entry field

Normal text

Output (protected) field
Panel instruction
Point-and-shoot

Panel title

Reference phrase

Select available choices
Selected choice

Scroll information

Select unavailable choices
Text (protected) field
Variable output information
Work area separator line
Warning text

Note: TYPE values are grouped into four categories:

Chapter 7. Panel definition statement reference

199

)ATTR Section

* Basic attribute types (TEXT [INPUT | OUTPUT). See page
* Dynamic area types (CHAR | DATAIN | DATAOUT). See page
* CUA panel-element types. See page

* Other attribute types. See page

UNAVAIL(ON | OFF)
The UNAVAIL attribute keyword is used to show the availability of a choice in
conjunction with radio buttons, checkboxes, and pushbuttons.

The UNAVAIL attribute keyword can also be used with the LISTBOX, DDLIST,
and COMBO attribute keywords on choices specified in the)LIST section to
show the availability of a choice.

In GUI mode, if a LISTBOX, DDLIST, or COMBO choice is set as unavailable,
that choice does not appear in the LISTBOX, DDLIST, or COMBO list of
choices.

ON Specifies that the choice is not available. In GUI mode this means that
the choice cannot be selected in the current context. In host mode, you
can still select the choice. It is up to the application you are running to
display an error message or ignore the choice. You can use the VER
statement keywords LISTX or LISTVX to handle an unavailable choice
selection.

OFF Specifies the choice is available and can be selected. This is the default
setting.

WIDTH(w)
The value of w sets the width for a list box or drop-down list. Values can be
from 0 to 99. This parameter is only used when it is specified on an input field.
See the appropriate sections on list boxes, and drop-down lists for more
information.

Basic attribute types

For text (protected) fields, the information in the body of the panel following the
attribute character is the data to be displayed. Text fields can contain substitutable
variables which consist of a dialog variable name preceded by an ampersand (&).
The name and ampersand are replaced with the value of the variable, with trailing
blanks stripped, before the panel is displayed.

For input (unprotected) or output (protected) fields in the body of the panel, a
dialog variable name immediately follows the attribute character, with no
intervening ampersand. The name is replaced with the value of the variable before
displaying the panel. For input fields, any user-entered information is stored in the
variable after the panel has been displayed.

An output field is different from a text field in that an output field has a variable
name associated with the field. It also permits padding, capitalization, justification,
and refreshing of the data. There is no default attribute character for output fields.

ISPF initializes input fields before displaying them. They can be entered (or typed
over) by the user. ISPF also initializes output fields before displaying them, but
output fields cannot be changed by the user. Both input and output fields can have
associated caps, justification, and pad attributes. There is no default attribute
character for output fields.

The default values for the data-manipulation attribute keywords, by TYPE, are
summarized in [Table 9 on page 201}

200 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

Table 9. Default values for data-manipulation keywords

TYPE CAPS JUST PADDING
TEXT N/A N/A N/A

INPUT ON LEFT PADC(USER)
OUTPUT ON LEFT PAD()

The ISPF basic attribute type rules for field types (defined in [Table 9) determine
which attribute keywords can be used in conjunction with the basic attribute TYPE
keywords.

Keyword Valid For
CAPS Not valid for text fields
PAD Not valid for text fields
JUSsT Valid only for input and output fields
ATTN Valid only for text fields
SKIP Valid only for text or output (protected) fields
NUMERIC Valid only for input fields
PADC Valid only for input or output fields
FORMAT(EBCDIC | DBCS | MIX)
EBCDIC Default value for input fields
MIX Default value for text and output fields
DBCS Valid for text, input, and output fields

Example of basic attribute types: [Figure 60 on page 202|shows a panel definition
in which an attribute section is included. As previously mentioned, an attribute
section is not required in a panel definition if only the default attributes are to be
used in the panel body.

Chapter 7. Panel definition statement reference 201

)ATTR Section

-
)ATTR
* TYPE(TEXT) INTENS(HIGH) COLOR(WHITE) CAPS(OFF)
TYPE(TEXT) INTENS(HIGH) COLOR(BLUE) CAPS(OFF)
@ TYPE(TEXT) INTENS(LOW) COLOR(BLUE) HILITE(REVERSE)
? TYPE(TEXT) INTENS(LOW) COLOR(TURQ) CAPS(OFF)
_ TYPE(INPUT) INTENS(HIGH) COLOR(YELLOW)
$ TYPE(INPUT) INTENS(NON)
@ TYPE(OUTPUT) INTENS(LOW) COLOR(TURQ) CAPS(OFF)
)BODY

SERIAL NO.*===> SERNUM +&rb]l %

NAME:?&LAST, &FIRST

ADDRESS : sADDR1
oADDR2
oADDR3
oADDR4

+ 4+ + +

POSITION:gPOSIT +
YEARS EXPERIENCE:gYRS+

SALARY : gSALARY + # PASSWORD*===>$PSW +
(Password is required for salary)

*
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
* Enter#END+*command to terminate application.
#

)

PROC

VER(&SERNUM, NB,NUM)

.ATTR(.CURSOR) = 'COLOR(RED) HILITE(BLINK)'
)END

- J
Figure 60. Attribute section in a panel definition

Specifying dynamic areas

TYPE(DATAIN | DATAOUT | CHAR) can be specified for dynamic areas. Use
DATAIN and DATAOUT values only for specifying unprotected or protected
fields, respectively, within a dynamic area.

You can specify the ATTN, CAPS, COLOR, HILITE, INTENS, JUST, PAD, PADC,
and SKIP keywords for DATAIN and DATAOUT fields. You can specify NUMERIC
for DATAIN fields. The defaults for CAPS, JUST, and padding are different from
those for other panel fields.

The default values for the DATAIN and DATAOUT attribute keywords, by TYPE,
are summarized in|Table 10

Table 10. Default values for DATAIN and DATAOUT keywords

TYPE CAPS JUST PADDING
DATAIN OFF ASIS PAD(" ')
DATAOUT OFF ASIS PADC(" ")

For more information about TYPE(CHAR) see |“Character-level attribute support|
ffor dynamic areas” on page 148

CUA attribute characteristics in dynamic areas: You can define dynamic area
DATAIN and DATAOUT attributes with CUA attribute characteristics. You do this

202 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR Section

with the attribute keyword CUADYN(value) on the TYPE(DATAIN) or
TYPE(DATAOUT) attribute statements. DATAIN and DATAOUT fields that you
define with the CUADYN(value) keyword are not true CUA attribute fields, but
are DATAIN and DATAOUT fields that have taken on CUA attribute
characteristics.

The valid values of CUADYN for each TYPE keyword are:
Field Type Valid Attribute Keyword

DATAIN CEF, EE, LEF, NEF
DATAOUT CH, CT, DT, ET, FP, LI, LID, NT, PIN, PT, SAC, SI, SUC, VO,
WASL, WT

The CUADYN(value) keyword is ignored on any type other than DATAIN or
DATAOUT. The values allowed on the TYPE(DATAOUT) statement are ignored if
specified on the TYPE(DATAIN) statement, and the reverse is also true.

After the DATAIN or DATAOUT attribute is defined with CUA attribute
characteristics, the color, intensity, and highlighting of the attribute can only be
overridden using the CUA Attribute Color Change utility.

CUA panel-element types

The CUA guidelines define the default colors and emphasis techniques for
individual panel elements. The CUA guidelines also request that application users
be allowed to change the color and emphasis for individual panel elements. To
conform with CUA principles, ISPF provides panel-element attributes. The CUA
Attribute Change Ultility, which is invoked with the CUAATTR command or by
selecting the “CUA attributes” choice from the Colors pull-down on the ISPF
Settings panel, allows you to change the color and emphasis for individual panel
elements.

You can define those panel-element attributes that have a TYPE keyword value in
the panel attribute section. The panel-element attributes without a TYPE keyword
value are used internally by ISPF in response to user interactions.

These field types of the CUA panel-element attributes play a major role in
determining which attribute keywords can be used with the CUA panel-element
attribute values.

Field Type Valid Attribute Keyword

Input, Unprotected CEF, EE, LEF, NEF

Output, Protected VOI, LID, LI

Text, Protected ABSL, CH, CT, DT, ET, FP, NT, PIN, PS, PT, SAC,
SI, SUC, WASL,WT

Text, Unprotected AB, RP

The ISPF CUA attribute type rules for field types (defined in [Table 11 on page 204)
determine which attribute keywords can be used in conjunction with the CUA
panel-element TYPE keywords.

[Table 11 on page 204 lists the CUA values for the TYPE keyword. With each TYPE
keyword are listed additional attribute keywords and their default values.

Chapter 7. Panel definition statement reference 203

)ATTR Section — TYPE Keyword

Table 11. CUA TYPE default keyword values

TYPE

Keyword NUM-

Value COLOR * INTENS * HILITE * CAPS JUST PAD PADC SKIP ERIC FORMAT
AB WHITE HIGH NONE N/A N/A N/A N/A N/A N/A MIX
CEF TURQ LOW USCORE OFF LEFT B N/A OFF EBCDIC
EE YELLOW HIGH REVERSE OFF LEFT 6D N/A OFF EBCDIC
LEF TURQ LOW USCORE OFF ASIS B N/A OFF EBCDIC
NEF TURQ %OW USCORE OFF LEFT B N/A OFF EBCDIC
RP WHITE HIGH NONE N/A N/A N/A N/A N/A N/A MIX
ABSL BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX

CH BLUE HIGH NONE N/A N/A N/A N/A OFF N/A MIX

CT YELLOW HIGH NONE N/A N/A N/A N/A OFF N/A MIX

DT GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

ET TURQ HIGH NONE N/A N/A N/A N/A OFF N/A MIX

FP GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

NT GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX
PIN GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

PS TURQ HIGH NONE N/A LEFT B OFF N/A MIX

PT BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX
SAC WHITE LOW NONE N/A N/A N/A N/A OFF N/A MIX

SI WHITE HIGH NONE N/A N/A N/A N/A OFF N/A MIX
sucC BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX
WASL BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX
WT RED HIGH NONE N/A N/A N/A N/A OFF N/A MIX

LI WHITE LOW NONE OFF ASIS B OFF N/A MIX
LID GREEN LOW NONE OFF ASIS B OFF N/A MIX
VOI TURQ LOW NONE OFF LEFT B OFF N/A MIX

Notes:

1. The attribute keywords whose value is denoted with N/A (not applicable) are
not valid to use in conjunction with the corresponding TYPE keyword value.

2. It is not valid to use the attribute keywords FORMAT, REP, and OUTLINE with
TYPE(AB). If used, the default values remain in effect.

3. You cannot change the keyword values for COLOR, INTENS, or HILITE. This is
indicated with an * in the preceding table. If you attempt to change these
keyword values, you will get an error condition. The exceptions are the CUA
attribute types NEF, LEF, VOI, LID, and LI. NEFE, LEF, VOI, LID, and LI support
the INTENS(NON) keyword value.

4. You can change the default values of COLOR, INTENS, and HIGHLIGHT by

using the CUAATTR command or by selecting the “CUA attributes” choice
from the Colors pull-down on the ISPF Settings panel.

1. You may specify the INTENS(NON) keyword with the CUA type NEF.

204

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section — TYPE Keyword

5. The character B in the PAD column stands for blank. The PAD and PADC
keywords are mutually exclusive, so when PAD is set to B (blank, X'40") PADC
cannot be set. The EE pad character is X'6D', underscore.

6. Three keywords not shown on this table are ATTN, REP, and OUTLINE. ATTN
always is N/A, REP is defined by the dialog, and OUTLINE is NONE.

7. Another keyword not shown on this table is CKBOX. CKBOX is only used with
TYPE(CEF). This keyword is ignored when running in non-GUI mode. For

more information about using CKBOX, see the ["CKBOX Keyword” on pagd
-181.

lists the CUA panel-element attributes that are used internally by ISPF in
response to user interactions. These panel-element attributes do not have a TYPE
keyword, so you cannot code them in the panel attribute section. They are
considered as field-type text (that is, protected). The related attribute keywords and
their default values are shown for each.

Table 12. Internal attributes without TYPE keyword values

Panel Element Attribute COLOR INTENS HILITE
AB Selected Choices YELLOW LOW NONE
PD Choices BLUE LOW NONE
Function Keys BLUE LOW NONE
Informational Message Text WHITE HIGH NONE
Warning Message Text YELLOW HIGH NONE
Action Message Text RED HIGH NONE
Panel ID BLUE LOW NONE

You can change the default values of COLOR, INTENS, and HIGHLIGHT by using
the CUAATTR command or by selecting the “CUA attributes” choice from the
Colors pull-down on the ISPF Settings panel.

Other attribute types
The other attribute types consist of the Group Box (GRPBOX) and Selected Choice
(SC).

Group box: A group box is a rectangle that is drawn around a group of related
fields. The upper-left corner of the box contains a label for the group. Group boxes
display in GUI mode only.

To specify a group box, use the type keyword GRPBOX. Its syntax is:
attribute-char TYPE(GRPBOX) WIDTH(wvalue) DEPTH(dvalue)

Where:

* attribute-char is the special character or 2-position hexadecimal value used to
define the group box area within the panel body section. The area is defined by
using the special character to position the upper-left corner of the group box in
the panel body section.

* woalue is the width of the group box, not including the borders. This value can
be 0 to 99. For example, a specification of WIDTH(9) means the box can contain
data 9 characters wide.

* doalue is the depth of the group box, including the group box title line. This
value can be 0 to 99. A minimum of 2 lines must be defined for the box. The top

Chapter 7. Panel definition statement reference 205

)ATTR Section — TYPE Keyword

206

line is reserved for the label. For example, a specification of DEPTH(5) means
the box consists of a group box title and 4 lines of data.

In the panel body section, the name immediately following the special character
for the upper-left corner of the group box identifies the dialog variable that

contains the text for the group box label. In [Figure 61 on page 207, that name is
gbar. The name cannot be specified by using a Z-variable placeholder within the

panel body.

Some things to remember when defining group boxes are:

Input/output/text fields should have ending attributes within the group box, or
blanks where the box border falls.

Dynamic areas are allowed within group boxes, and should be entirely
contained within the box.

Group boxes cannot be defined within dynamic areas.

Dynamic areas and group boxes should not overlap.

Scrollable areas are allowed within group boxes, and should be entirely
contained within the box.

Group boxes are allowed within scrollable areas, and should be entirely
contained within the area.

Scrollable areas and group boxes should not overlap.

Group boxes should not be used with graphic areas.

If the parameters WIDTH and DEPTH are not specified, the group box does not
display.

If you specify WIDTH with no DEPTH, DEPTH(0) is assumed. This means the
group box ends at the bottom of the panel.

If you specify DEPTH with no WIDTH, WIDTH(0) is assumed. This means the
group box does not display.

If the group box DEPTH is coded as zero and the group box is within a
scrollable area, the group box expands to the bottom of the scrollable area.

If the depth of the scrollable area is less than the group box DEPTH, the group
box ends at the bottom of the visible scrollable area. The group box DEPTH is
expanded when scrolling up, as long as the maximum group box depth has not
been reached and the group box title is within the displayed portion of the
scrollable area. After the group box title is no longer displayed in the scrollable
area, the group box no longer appears.

Note: Even though the type GRPBOX is considered an output field, it maps to the

CUA panel-element type Column Heading (CH). Therefore, its color,
intensity, and highlight values can only be changed through the CUA
Attribute Change Utility.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section — TYPE Keyword

/ N\
JATTR
+ TYPE(TEXT) INTENS (Tow) SKIP(on)
% TYPE(TEXT) INTENS(HIGH) SKIP(on)
_ TYPE(INPUT) INTENS(HIGH) CAPS(ON)
TYPE(GRPBOX) WIDTH(44) DEPTH(7)
)BODY
L L L Group Box Example---=-=--cmmmmmmmmmmeeeem
%COMMAND ===> 7CMD
+ +
+ #gbar +
+ +
+ +Available Desired+ +
+ +Cruise Control Sunroof+ +
+ +AM/FM Stereo AM/FM Stereo +
+ +Power Brakes+ +
+ +Sunroof+ +
+ +
+ +
)INIT
&zemd = &z
&gbar = 'Options'
JREINIT
&zemd = &z
)PROC
)END
- J

Figure 61. Group box definition

Selected choice: The Select Choice (SC) type is an output (protected) field to be
used in conjunction with the UNAVAIL attribute keyword.

When TYPE(SC) is coded with the UNAVAIL(OFF) attribute, the field has the color,
intensity, and highlighting characteristics of TYPE(SAC).

When TYPE(SC) is coded with the UNAVAIL(ON) attribute, the field has the color,
intensity, and highlighting characteristics of TYPE(SUC).

You can use field overrides on the choices.

Relationship to Control variables .ATTR and .ATTRCHAR

The appropriate and inappropriate override conditions for CUA and basic
el—element attributes are described here. See[“.ATTR and .ATTRCHAR” on page|
286

for information on .ATTR and .ATTRCHAR.
* TYPE

CUA panel-element attribute TYPE keywords can be overridden by .ATTR or by
.ATTRCHAR. You can change the TYPE:

— From INPUT/CUA input types to OUTPUT/CUA output and input types

— From OUTPUT/CUA output types to INPUT/CUA input and output types

— From TEXT/CUA text types to TEXT/CUA text types

Some exceptions are:

— Only TYPE keyword values that have a field type of input can be overridden
with TYPE(EE)—error emphasis.

— CUA attribute types AB, RP, ABSL, and PS cannot be overridden, nor can
they be used to override text fields.

— TYPE keyword GRPBOX can only be overridden with .ATTR(field), where field
is the dialog variable name for the group box as specified in the)BODY
section.

* COLOR, INTENS, HILITE

Chapter 7. Panel definition statement reference 207

)ATTR Section — TYPE Keyword

If you change a basic attribute type to a CUA attribute type, the attribute takes
on the characteristics of that particular CUA type, including the default COLOR,
HILITE, and INTENS keyword values. For example, if you change a
TYPE(INPUT) INTENS(HIGH) attribute to TYPE(NEF), the default color for the
attribute changes from red to turquoise, the default color of the NEF attribute
type. Also, after you change a basic attribute type into a CUA attribute type, the
color, highlight, and intensity can only be overridden by using the CUA
Attribute Color Change utility.

For example, hoping to change the TYPE(INPUT) to CUA TYPE(NEF) with the
color pink, you enter:

LATTR(FIELD1) = 'TYPE(NEF) COLOR(PINK)'

The result is that the field is changed to CUA TYPE(NEF), but when the
COLOR(PINK) keyword is processed a dialog error message is given stating that
the color of the CUA attribute cannot be overridden.

If you try to enter:
.ATTR(FIELD1) = 'COLOR(PINK) TYPE(NEF)'

The COLOR(PINK) keyword is processed before the TYPE(NEF) keyword. Thus,
no error message is given concerning the changing of the color of a CUA
attribute. However, when the TYPE(NEF) keyword is processed, the attribute
type is changed to the CUA default color, and subsequent attempts to change
the attribute’s color, intensity, or highlighting result in a dialog error message.

If you change a CUA attribute type to a basic attribute type, only the type
changes. The other characteristics associated with the type do not change. For
example, the color associated with the CUA type does not change unless you
specifically override the color using the COLOR keyword. If you change the
CUA type ET to basic type TEXT, the color remains turquoise unless you
purposely override it.

* CAPS, JUST, PAD, PADC, SKIP, ATTN, NUMERIC, FORMAT, REP, OUTLINE

If the keyword is applicable on the)ATTR statement, it can be overridden using
the attribute override statements. Those panel attribute keywords whose value is
denoted as N/A (not applicable) are not valid in attribute override statements.

¢ CUADYN(value) keyword

The CUADYN(value) attribute keyword can be used in .ATTRCHAR statements
for DATAIN or DATAOUT attribute characters. The keyword values listed in
[“CUA attribute characteristics in dynamic areas” on page 202| for DATAOUT
attributes can only override DATAOUT attribute characters. Those listed for
DATAIN attributes can only override DATAIN attribute characters.

* Input fields with LISTBOX(ON |name) or DDLIST(ON | name)
You can override input fields with LISTBOX(ON |name) or DDLIST(ON I name)
that are coded in the)ATTR section. You do this by using the .ATTR or
ATTRCHAR statements to set LISTBOX, DDLIST, CSRGRP, WIDTH, and
DEPTH values for the input field.

* Input fields with COMBO(ON | name)
You can override input fields with COMBO(ON | name) that are coded in the

)ATTR section. You do this by using the .ATTR or .ATTRCHAR statements to set
COMBO, CSRGRP, and DEPTH values for the input field.

208 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)BODY Section

Defining the body section

The)BODY (panel body) section of the panel definition specifies the format of the
panel as the user sees it. Each record in the body section corresponds to a line on
the display.

The body section begins with the)BODY header statement, which can be omitted
if there are no preceding sections and no change to the default attribute characters.
The)BODY header statement and all associated keywords must be specified on the
same line. The panel body ends with any of these statements:

)MODEL)FIELD
) AREA YHELP
)INIT YPNTS
YREINIT JLIST
)PROC YEND

) BODY

[KANA]

[WINDOW(width,depth)]

[CMD(field name)]

[SMSG(field name)]

[LMSG(field name)]

[ASIS]

[WIDTH(width)]

[EXPAND (xy)]

[DEFAULT (defldef2def3)]

[FORMAT (EBCDIC | DBCS |MIX)]
[OUTLINE([L] [R] [0][U] |BOX|NONE)]

Notes:

1. There are system-defined (default) areas for the display of messages and the
command field. You can specify alternate locations using the WINDOW, CMD,
SMSG, LMSG, and ASIS keywords on the)BODY header statement.

2. The WIDTH and EXPAND keywords on the)BODY header statement control
the width of a panel. Both keywords are optional. You can specify either or
both. However, if the panel definition width is greater than 80 characters, the
WIDTH keyword must be used. If the WIDTH keyword is used, the WIDTH
variable must be set in the variable pool before the panel is displayed.

3. DEFAULT, FORMAT, and OUTLINE can also be specified on the)ATTR section
statement. The values specified on the)BODY section statement take
precedence.

where:

KANA
Include the KANA keyword when Katakana characters will appear within the
panel and you have not specified an extended code page using the)CCSID
section.

WINDOW (width,depth)
Identifies the width and depth of the window that the Dialog Manager uses
when displaying the panel in a pop-up window. The values do not include the
panel borders; the Dialog Manager adds them outside of the dimension of the
width and depth values.

Note: When you are running in GUI mode, the width you specify is respected
regardless of whether the panel is displayed in a pop-up window. The
depth is honored when the panel is displayed in a pop-up window. If

Chapter 7. Panel definition statement reference 209

)BODY Section

you specify a depth greater than the depth of the panel definition, extra
lines are generated to fill the space. Any extendable areas (such as
AREA(DYNAMIC), or AREA(SCRL) with EXTEND(ON)) might be
truncated at the depth of the pop-up window.

For panels not displayed in a pop-up window, the depth is the
minimum of the specified depth and the actual number of)BODY
records in the panel definition. Extendable areas are not truncated. That
is, the depth expands to the length of the logical screen.

The width that you specify must be a numeric value greater than or equal to
the minimum width of 8 characters. The depth that you specify must be a
numeric value greater than 0.

Note: The width and depth cannot be specified by a dialog variable.

For panels that are not being displayed in a pop-up window (no active
ADDPOP), ISPF validates the width and depth values against the screen size
and issues an error message if either:

e The width is greater than the current device width.

¢ The depth is greater than the current device depth.

For help panels and panels that are being displayed in a pop-up window (after

ADDPOP service), ISPF validates the width and depth values against the

screen size minus the frame and issues an error message if:

* The depth is greater than the screen depth minus 2.

* The depth is less than the screen depth minus 2 and the width is greater
than the screen width minus 3.

¢ The depth is equal to the screen depth minus 2 and the width is greater than
the screen width minus 4.

When running in GUI mode, the frame will be what you specified on
ISPSTART unless its ADDPOP was specified in a dialog. In this case, the frame
is a dialog frame.

The Dialog Manager recognizes the WINDOW keyword for panels displayed
in a pop-up window (after an ADDPOP service request has been issued), and
when running in GUI mode. If the panel is not being displayed in a pop-up
window and you are not in GUI mode, ISPF validates the keyword, but
ignores it. If the text on the panel you are defining exceeds the width of the
window, the panel fields do not wrap. All fields end at the window width.

Note: Text coded in column 1 of the panel body does not appear when a panel
is displayed in a pop-up window. This occurs because ISPF places a
tield attribute in the column following the pop-up border character, due
to hardware requirements. Without the field attribute after the border
character, subsequent panel text would have the attributes (color,
intensity, and so on) of the window frame. Therefore, your panel text
should be coded so that it does not start in column 1 of the body if you
are going to display your panel in a pop-up window.

Attributes coded in column 1 of the panel body overlay the field attributes that
ISPF generates following the left side of the window frame. Therefore, an
attribute coded in column 1 of the panel will be in effect for subsequent text.

CMD(field-name)

Identifies the panel field (variable name) to be treated as the command field.
The field type must be a CUA input type. If the CMD keyword is omitted from
a)BODY statement, ISPF uses the first input field as a default command field.

210 2z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)BODY Section

You can specify that you do not want a command field by using CMD(). Do
not use this option for a table display. You must have a command field for a
table display.

SMSG(field-name)
Identifies the panel field (variable name) where the short message, if any, is to
be placed. The field type must be a CUA output type. If the message is longer
than the length of this field, the message is placed in a pop-up window. The
SMSG keyword does not effect placement of the TOP-ROW-DISPLAYED
indicator which is right-justified on the top line of the display, or just below
the action bar separator line if an action bar is defined.

LMSGf(field-name)
Identifies the panel field (variable name) where the long message, if any, is to
be placed. The field type must be a CUA output type. If the message is longer
than the length of this field, the message is placed in a pop-up window.

Notes:

1. For CMD, SMSG, and LMSG the field-name must be within the)BODY
section, not within a scrollable area or table.

2. For long or short messages in pop-up windows, if the message originates
from panel processing, as in a verification error message, the message
pop-up window is placed adjacent to the field that is the object of the
validation.

3. The format of the command, long-message, and short-message fields must
not be FORMAT(DBCS). Because a FORMAT(EBCDIC) field does not
display DBCS characters correctly, FORMAT(MIX) is recommended.

4. For additional information about the placement of the command and long
message fields, see about understanding ISPF panels in the |z/OS ISPF|
[User’s Guide Vol 1}

ASIS
Specifies that the command and long message fields are to appear on the
display as specified in the panel definition. When ASIS is specified, any user
request, using SETTINGS option 0 or by setting system variable ZPLACE, to
reposition the command and long message fields is ignored.

WIDTH (width)
The number of columns to use in formatting the panel. width can be a constant
or a dialog variable, including the system variable &ZSCREENW The specified
width must not be less than 80 or greater than the width of the terminal on
which the panel is to be displayed. If the WIDTH keyword is not specified, the
default is 80.

EXPAND (xy)
The repetition delimiter characters. The delimiters can be used on any line
within the panel body to enclose a single character that is repeated to expand
the line to the required width. The starting and ending delimiter can be the
same character. If no delimiters are specified, or if any line does not contain
the delimiters, then the line is expanded to the required width by adding
blanks on the right. The delimiter characters cannot be specified with a dialog
variable.

Before the panel is displayed, it is formatted according to the WIDTH and
EXPAND keyword values as if the expanded format of the body were originally
coded in the panel definition. For example:

Chapter 7. Panel definition statement reference 211

)BODY Section

)BODY WIDTH(&EDWIDTH) EXPAND(//)

L 1 I 1 S P ——
%COMMAND ===>_ZCMD // +SCROLL%===> SCRL +
+

%EMPLOYEE NUMBER:@EMPLN // e

In the title line, hyphens are repeated to expand the line to the width specified
by &EDWIDTH The command field and the employee number field would
both be expanded with repeated blanks.

If more than one repetition character appears in a line of the panel body, each
of the characters is repeated an equal number of times. For example:

)BODY EXPAND(#@)
TUTORIAL #-@ TITLE OF PAGE #-@ TUTORIAL

would become:
TUTORIAL ===-=mmmmmmmm TITLE OF PAGE -----nnnnn- TUTORIAL

ISPF treats as an error a request to display a panel that is wider than the
physical screen or current logical screen for a 3290 terminal. ISPF displays a
box panel indicating the error. For the 3290, if a panel that is wider than 80
characters is being displayed, and the user attempts to divide the screen
vertically (SPLITV command), ISPF denies the request and displays an error
message. Remember that the panel is displayed as though the expanded format
of the body were originally coded in the panel definition. Therefore, be careful
when expanding text fields that contain substitutable variables, so that
meaningful text is not truncated. For example:

)BODY EXPAND(//)
TUTORIAL /-/ &VAR1 /-/ TUTORIAL

would become:
TUTORIAL ===-mmmmmmmme &VAR] --m-mmmmammos TUTORIAL

Then, if &VARI had the value “ABCDEFG” when the screen was displayed, this
line would result:

TUTORIAL -------mmmmmmm - ABCDEFG --==--=mmmmmmmmm TUTORI

To avoid this problem, provide a few blanks at the end of the text string, as
follows:

TUTORIAL /-/ &VAR1 /-/ TUTORIAL +

[Table 13 and [Table 14 on page 213| describe the display width, data expansion
width (resulting from EXPAND keyword on the) BODY statement), and the
pop-up window width based on various WINDOW /WIDTH keyword
combinations.

Table 13. Display in primary window

WINDOW/WIDTH
Combinations

DISPLAY

EXPANSION

no WINDOW, no WIDTH

WIDTH (def. 80)

WIDTH (def. 80)

WINDOW, no WIDTH WIDTH (def. 80) WINDOW value
no WINDOW, WIDTH WIDTH WIDTH value
WINDOW <= WIDTH WIDTH WINDOW value
WINDOW > WIDTH ERROR ERROR

212 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 14. Display in pop-up window

)BODY Section

WIND.OW/WIDTH DISPLAY EXPANSION WINDOW
Combinations
no WINDOW, no WIDTH WIDTH (def. 80) WIDTH (def. 80) (76, 22)

WINDOW, no WIDTH

WIDTH (def. 80)

WINDOW value

WINDOW (w, d)

no WINDOW, WIDTH

WIDTH

WIDTH value

(76, 22)

WINDOW <= WIDTH

WIDTH

WINDOW value

WINDOW (w, d)

ERROR

ERROR

ERROR

WINDOW > WIDTH

Note: ISPF will issue an error message if you attempt to display a panel in a
pop-up window where the WINDOW width value is greater than the
width of the underlying panel.

DEFAULT (defldef2def3)
You can use the DEFAULT keyword to specify the characters that define a
high-intensity text field, a low-intensity text field, and a high-intensity input
field, respectively. The value inside the parentheses must consist of exactly
three characters, not enclosed in single quotes and not separated by commas or
blanks.

The DEFAULT keyword can also be specified on the)ATTR section statement.

FORMAT(EBCDIC | DBCS | MIX)
The default value for a TYPE(INPUT) and a TYPE(DATAIN) field is
FORMAT(EBCDIC). These two default values can be changed by using the
)JATTR statement or the)BODY statement. These values, in turn, can be
overridden if explicitly specified on a subsequent statement. For example, the
net result of these two statements is FORMAT(DBCS):

)BODY FORMAT (MIX)
$ TYPE(INPUT) FORMAT(DBCS)

OUTLINE([LI[RI[O][U] BOX I NONE)
The default value for OUTLINE is NONE. The default value for TYPE(INPUT)
and TYPE(DATAIN) fields can be specified on the)ATTR or)BODY statement
and can be overridden by the OUTLINE keyword. For example:

)BODY OUTLINE(U)
@ TYPE(INPUT) OUTLINE(BOX)

A sample panel body section
The sample panel definition, shown in [Figure 62 on page 214} consists of a panel
body followed by an)END control statement. It has no attribute, initialization,
reinitialization, or processing sections, and uses the default attribute characters.

This data entry panel has 11 input fields (for example, ZCMD and TYPECHG)
indicated with the underscore attribute character. It also has a substitutable
variable (EMPSER) within a text field. The first two lines of the panel and the
arrows preceding the input fields are all highlighted, as indicated by the percent
sign attribute characters. The other text fields are low intensity, as indicated by the
plus sign attribute characters.

Chapter 7. Panel definition statement reference 213

)BODY Section

)Body

R ittt EMPLOYEE RECORDS === mmm e
%COMMAND ===> 7CMD %
%EMPLOYEE SERIAL: &EMPSER

+

+ TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)
+

+ EMPLOYEE NAME:

+ LAST %===>_LNAME +

+ FIRST %===>_FNAME +

+ INITIAL%===> I+

+

+ HOME ADDRESS:

+ LINE 1 %===>_ADDR1 +
+ LINE 2 %===>_ADDR2 +
+ LINE 3 %===>_ADDR3 +
+ LINE 4 %===> ADDR4 +
+

+ HOME PHONE:

+ AREA CODE %===>_PHA+

+ LOCAL NUMBER%===> PHNUM +

+

)End

Figure 62. Sample panel definition

shows the panel as it appears when displayed, assuming that the current
value of EMPSER is 123456 and that the other variables are initially null.

4 N

COMMAND ===>
EMPLOYEE SERIAL: 123456
TYPE OF CHANGE ===> (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:

LAST
FIRST

LINE 1
LINE 2
LINE 3
LINE 4

INITIAL

>
>

HOME ADDRESS:

VvV V Vv

\

HOME PHONE:
AREA CODE =2
LOCAL NUMBER ===>

o J
Figure 63. Sample panel—when displayed

Defining the CCSID section

The)CCSID section identifies the Coded Character Set Identifier used in the panel
definition.

|)ccsxo [NUMBER (xxxxx)]

where:

214 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)CCSID Section

NUMBER (xxxxx)
The CCSID of the EXTENDED CODE PAGE as defined by Character Data
Representation Architecture. See [“Supported CCSIDs” on page 351| for which
CCSIDs are supported.

The)CCSID section must be the first section in the panel as illustrated in this
example:
)CCSID NUMBER(00037)

) PANEL
)BODY

%COMMAND ===>__ZCMD
)END

If the CCSID section is used, the single-byte text characters in the)BODY,)AREA,
or)MODEL section of the panel are translated to the equivalent character (or a
period if the character does not exist) in the terminal code page for display. ISPF
scans the panel for a text attribute, notes the position, and then scans for a non-text
attribute. When the non-text attribute is found, ISPF translates the text between the
text attribute and the non-text attribute. Thus you must have one text attribute
defined before any text you want translated. This translation occurs only if the
code page indicated by the CCSID is different from the code page of the terminal.

All characters in the panel source that are not in the) BODY text must be in the
Syntactic Character Set:

o A-Z

° a-z

* 09

C +<=>%&*"’
° ()1_’-/:;?

Note: Lowercase a-z can be used for any CCSID supported by ISPF except the
Japanese (Katakana) Extended CCSID 930.

See [Chapter 11, “Extended code page support,” on page 347

Defining the END section

The)END section identifies the end of the panel definition. It is a required section.

|)END

The definition consists only of the)END statement. Any lines placed after the END
statement are ignored.

) PANEL
)BODY

%COMMAND ===>__ZCMD
)END

Defining the FIELD section

The)FIELD section of a panel definition specifies what fields, if any, are scrollable
fields. Defining a field as scrollable provides the ability to display and input a
variable larger than the display area that the dialog variable occupies. The LEFT,
RIGHT, and ZEXPAND primary commands are active when the cursor is

Chapter 7. Panel definition statement reference 215

)FIELD Section

positioned within the variable on the display panel. These enable left and right
scrolling and expansion of the variable into a pop-up window.

)FIELD

FIELD(field-name)
[LEN(value | field-name)]
[IND(field-name,value)]
[LIND(field-name,value)]
[RIND(field-name,value)]
[SIND(field-name,value)]
[LCOL(field-name)]
[RCOL(field-name)]
[SCALE(field-name)]
[SCROLL(value | field-name)]

Notes:

1.

Each entry in the)FIELD section must begin with the keyword FIELD.

2. With the exception of the LCOL parameter, all dialog variable names must be
unique to each parameter.

3. Scrollable field support is panel specific. A subsequent panel display that
references the same variable but does not define it as scrollable may cause data
truncation (depending on the data lengths involved).

where:

FIELD (field-name)

The name of the field on the panel that this statement controls.

LEN(value | field-name)

Length of the displayed variable.
value: Specify a value between 1 and 32 767.

field-name: The length dialog variable can be used to specify an initial length if
it contains a value between 1 and 32 767. After the display, this variable will
contain the calculated display length.

Calculated display length: The length of the variable will be the maximum
value of the default display variable length and the specified length.

Default: If the LEN parameter is not specified, the field will default to the
length of the dialog variable, if it exists. For variables referenced in a)MODEL
section, the dialog variable length will be the maximum of all instances on the
current display for that variable.

IND(field-name,value)

Left and right scroll indicator dialog variable.

field-name: This must refer to a 2 byte scroll indicator dialog variable that will
be updated on the panel to indicate whether left and right scrolling can be
performed.

value: (Default -+) Specify a 2 byte literal (enclosed in quotes) to override the
default scroll indicator values. Each byte must be nonblank.

Displays as:

-+ : Indicates that you can scroll left and right
- : Indicates that you can only scroll left
+ : Indicates that you can only scroll right.

Panel definition:

216 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)FIELD Section

YATTR

| TYPE(OUTPUT) CAPS(OFF) JUST(ASIS)

_ TYPE(INPUT) CAPS(OFF) JUST(ASIS)

YBODY

+Scrollable Variable: SCRFLD | SCRIND+

YFIELD

FIELD(SCRFLD) IND(SCRIND,'<>"') /x replace -+ with <> x/

Panel display:
Scrollable Variable: CDEFGHIJKLMNOPQRST <>

LIND(field-name,value)
Left scroll indicator dialog variable.

field-name: This must refer to a 1 byte left scroll indicator dialog variable that
will be updated on the panel to indicate whether left scrolling can be
performed.

value: (Default -) Specify a 1 byte nonblank literal (enclosed in quotes) to
override the default left indicator value.

Displays as:
value : Indicates that you can scroll left
blank : Indicates you are positioned at the start of the field.

Panel definition:

YFIELD
FIELD(SCRFLD) LIND(LSCRIND,'<') /+ replace - with < #/

RIND(field-name,value)
Right scroll indicator dialog variable.

field-name: This must refer to a 1 byte right scroll indicator dialog variable that
will be updated on the panel to indicate whether right scrolling can be
performed.

value: (Default +) Specify a 1 byte nonblank literal (enclosed in quotes) to
override the default right indicator value.

Displays as:
value : Indicates that you can scroll right
blank : Indicates you are positioned at the end of the field.

Panel definition:

)FIELD
FIELD(SCRFLD) RIND(RSCRIND,'>') /* replace - with > =*/

SIND(field-name,value)
Separator scroll indicator dialog variable. This field will be initialized with the
value repeated for the length of the field on the panel. If the field is scrollable
to the left, the leftmost byte will be the value of the left indicator (default "-).
If the field is right scrollable, the rightmost byte will be the value of the right
indicator (default "+").

field-name: This must refer to a 3 byte scroll indicator dialog variable that will
be updated on the panel to indicate whether left and right scrolling can be
performed.

value: (Default '<->") Specify a 3 byte literal (enclosed in quotes) to override the
default separator indicator values. The 3 bytes represent the left scroll
indicator, the separator value and the right scroll indicator respectively. Each
byte must be nonblank.

Chapter 7. Panel definition statement reference 217

)FIELD Section

Panel definition:

JATTR

| TYPE(OUTPUT) CAPS(OFF) JUST(ASIS)
_ TYPE(INPUT) CAPS(OFF) JUST(ASIS)
YBODY

+Separator Variable:|SEPIND
+Scrollable Variable: SCRFLD

)FIELD

FIELD(SCRFLD) SIND(SEPIND)

Panel display:

Separator Variable: <-------c--mmoono >
Scrollable Variable: CDEFGHIJKLMNOPQRST

LCOL(field-name)

Left column dialog variable - to display current left position.

field_name: This must refer to a dialog variable that will be updated when the
field is scrolled to contain the left column value. You can use this to specify an
initial left column position for the scrollable field. It must be a numeric value
greater than or equal to 1. Values greater than the maximum left column
position will be set to the maximum left column position.

Note: Fields with the same left column dialog variable will scroll
simultaneously and will have the same left column value up to the
maximum for each field.

RCOL(field-name)

Right column dialog variable - to display current right position.

field_name: This must refer to a dialog variable that will be updated when the
field is scrolled to contain the right column value. It is an output field only.
Any pre-existing values will be ignored and will be replaced with the current
right column value.

SCALE(field-name)

Scale indicator dialog variable. This field will be initialized with a scale line
reflecting the current columns within the field being displayed. The variable
will occupy the display length on the panel with the a value as follows:

cmmtmmmnlemmdoe2emmmt----3. L. etC.

field_name: This must refer to the dialog variable that is placed on the panel in
the position at which the scale line is to be initialized.

Panel definition:

JATTR
| TYPE(OUTPUT) CAPS(OFF) JUST(ASIS)
_ TYPE(INPUT) CAPS(OFF) JUST(ASIS)

)BODY
+Scale Line :|SCLIND
+Scrollable Variable:_SCRFLD
)FIELD

FIELD(SCRFLD) SCALE(SCLIND)

Panel display:

Scale Line P, [
Scrollable Variable: CDEFGHIJKLMNOPQRST

SCROLL(value | field-name)

Scroll control field.
value: OFF - field is not scrollable

218 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)FIELD Section

ON - field is scrollable

field_name: specifies a scroll control dialog variable which you can set to a
value of OFF to turn scrolling off from the application or from the panel.

Default: If the SCROLL parameter is not specified, the default for the scroll
control is ON.

Primary commands for scrollable fields
These commands apply when the cursor has been placed within a scrollable field:

LEFT Scroll left the specified scroll amount.

RIGHT
Scroll right the specified scroll amount.

ZEXPAND
Display the variable in a dynamic area in a popup window. If the
scrollable field is input then you will be able to update the variable in the
expand window.

The expand panel displays the variable in a scrollable dynamic area.
Standard up and down scrolling is supported. You can display the variable
in character and hexadecimal using the HEX primary command.

HEX ON/OFF Turn hexadecimal display on and off

The setting will be remembered for subsequent expand processing.
ZCLRSFLD

Clears the contents of the scrollable field to blanks.
If a scroll field is found on the current panel, then the scroll amount will be
honored as for up and down scrolling, where:
PAGE is the equivalent of the length of the display field
DATA is the equivalent of the length of the display field minus 1
HALF is half the length of the display field
CSR will scroll relative to the cursor position
You can enter M in the command line to scroll the maximum distance in the left or
right direction. The maximum right position is the field length minus the display

length. The maximum left position is 1. You can also enter a number in the
command line to specify the number of characters to scroll to the left or right.

Chapter 7. Panel definition statement reference 219

)FIELD Section

Example

Panel source:

JATTR
| TYPE(OUTPUT) CAPS(OFF) JUST(ASIS)
_ TYPE(INPUT) CAPS(OFF) JUST(ASIS)

)BODY
R LEFT / RIGHT / Expand Example 1 ===---mmmmmmmmmmmmeeoo
%0PTION ===>_Z(CMD
+ Testcase 1
+
+ Field Value Scroll
S
+ Value :_SCRFLD | SFIND
+ Left & Right :[SFLIND | SFRIND
+ Left column :_SFLCOL
+ Right column : SFRCOL
+ Length :_SFLEN
JINIT
.CURSOR = ZCMD
)FIELD

FIELD(SCRFLD) LEN(SFLEN)
LCOL(SFLCOL) RCOL(SFRCOL)

IND(SFIND) LIND(SFLIND) RIND(SFRIND)
SCROLL(SFCTL)
)END

REXX to display panel:
/* REXX - Example 1 FOR LEFT/RIGHT/EXPAND PANEL FUNCTIONS x/

ARG SFCTL

SCRFLD = 'abcdefghijklimnopgrstuvwxyz' /* initialize field */
SFLCOL = 3 /* initial Teft position */
SFLEN = 84 /* initial length */

DO UNTIL RC = 8
ADDRESS ISPEXEC
'"DISPLAY PANEL(SFSAMP1)' /* display panel */
END

Initial panel display:

R LEFT / RIGHT / Expand Example 1 =----eeccmmmoocccoeeaooo
OPTION ===>
Testcase 1
Field Value Scroll
Value : cdefghijklmn -+
Left & Right : - +
Left column : 3
Right column : 14
Length : 84
o

Changing the scroll indicators in the panel definition to:

)FIELD

FIELD(SCRFLD) LEN(SFLEN)

LCOL (SFLCOL) RCOL (SFRCOL)

IND(SFIND, '<>') LIND(SFLIND,'<') RIND(SFRIND,'>")
SCROLL (SFCTL)
)END

220 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)FIELD Section

changes the panel display to:

(e LEFT / RIGHT / Expand Example 1 ===---mmmmmmmmmmmeeeeoo)
OPTION ===>
Testcase 1
Field Value Scroll
Value : cdefghijklmn <>
Left & Right : < >
Left column : 3
Right column : 14
Length . 84
NG)

If PF4 is set to the value ZEXPAND and PF4 is pressed while the cursor is positioned within
the scrollable field, ISPF displays:

SCRFLD+0

Line 1 of 2
Command ===> Scroll ===> CSR
abcdefghijkTmnopgrstuvwxyz

If the HEX ON primary command is entered, ISPF displays:
SCRFLD+X'0' (0)

Line 1 of 2

Command ===> Scroll ===> CSR

abcdefghijkTmnopgrstuvwxyz
888888888999999999AAAAAAAALLALLALAALAALAALAAAAAAAANAAAAA44440444044404440444044
1234567891234567892345678900

4444444444
0000000000

Panel definition considerations
The LEFT, RIGHT, and ZEXPAND commands should be included in any keylist
specified for a scrollable field.

Chapter 7. Panel definition statement reference 221

JHELP Section

Defining the HELP section

The)HELP section of the panel definition specifies what help panel, if any, is
displayed when help is requested for a particular element defined on the panel.

Help can be requested for a field, an action bar choice, or a pull-down choice b
including a statement in the source panel definition help section. See

[phrase help” on page 96|for a discussion on requesting help for reference phrases.

|)HELP FIELD(field-name) [PANEL(help-panel-name) | MSG(msg-name) | PASSTHRU]

where:

FIELD (field-name)
The name of the source panel element (input selection field, action bar choice,
dynamic area name, and so on). When the PANEL keyword is used, a help
panel is displayed when help is requested for an element. When the MSG
keyword is used, a message is displayed when help is requested for an
element. When the PASSTHRU keyword is used, control returns to the dialog
when help is requested for an element. Field-name can be a variable. If the
field-name variable value is not found, the Tutorial table of contents panel
(ISR00003) is displayed.

PANEL (help-panel-name)
The name of the help panel associated with the field. Help-panel-name can be
a variable.

MSG(msg-name)
The name of the message associated with the field. The msg-name can be a
variable. When help is requested on the field that specified MSG(msg-name) in
the)HELP section, the message is displayed. The short message appears in the
upper right corner of the panel. The long message box is placed at the field on
the screen.

PASSTHRU
The PASSTHRU keyword is intended for use on dynamic-area fields. When
help is requested on the field, control returns to the dialog. No help panel or
message is displayed.

Notes:

1. Using the PASSTHRU keyword on reference phrases within scrollable areas
can cause unpredictable results.

2. System variables ZCURFLD and ZCURPOS can be used to determine the
cursor position. You must define a)PANEL section for ZCURFLD and
ZCURPOS to be set.

Specifying the value for the field-name and help-panel-name
When modifying or adding statements to the)HELP section of a new or existing
source panel, you must adhere to these rules to prevent unexpected results and
errors when the source panel is processed.

The field-name and help-panel-name must have these characteristics:
* 1-8 characters in length

* The first (or only) character must be A-Z or a-z

* The remaining characters, if any, must be A-Z, a-z, or 0-9.

Lowercase characters are translated to their uppercase equivalents.

222 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)JHELP Section

The action bar choice and pull-down choice elements have no associated field
name. ISPF uses these conventions when generating a field-name value for these
panel elements:
e Action bar choice field-names have the format ZABCxx, where:

ZABC The field-name prefix

xx The number of the action bar choice
e Pull-down choice field-names have the format ZPDCxxyy, where:

ZPDC The field-name prefix

xx The number of the action bar choice

yy The number of the pull-down choice within this action bar choice

See [“Specifying action bar choices in panel)BODY section” on page 161|to
determine the numbering sequence ISPF uses for these panel elements.

Defining the initialization section

The initialization section specifies the initial processing that is to occur before the
panel is displayed.

|)INIT

It begins with the)INIT header statement and ends with either the)REINIT,
)PROC, JHELP, or)JEND header statement. The number of lines allowed in an
)JINIT section depends upon the storage size available for panel processing at
execution time.

The variables that are displayed in the panel body reflect the contents of the
corresponding dialog variables after the)INIT section has been processed, just
before the panel is displayed. The input fields are automatically stored into the
corresponding dialog variables immediately following display and before
processing the)PROC section.

See [“Formatting panel definition statements” on page 235|for more information.

Defining the LIST section

The)LIST section of the panel definition specifies what list choices appear on your
screen. It can be useful if the selection list is displayed in a scrollable area and
some of the list choices might not be visible. With the)LIST section coded, all of
the choices are built into the list box, drop-down list, or combination box even if
some are not immediately visible in the scrollable area.

It is used in conjunction with the attribute keywords DDLIST(name),
LISTBOX(name), and COMBO(name). These keywords match the list box attributes
to the corresponding list choices found in the)LIST list-name section of the panel.

The)LIST section, if you use it, follows the)PROC section. The)LIST section
contains these parameters when used with list boxes and drop-down lists:

)LIST list-name
VAL(value) CHOICE(value)

Chapter 7. Panel definition statement reference 223

)LIST Section

The)LIST section contains these parameters when used with combination boxes:

)LIST list-name
CHOICE (value)

where:

list-name
The name of the list. It must match a LISTBOX(name), DDLIST(name), or
COMBO(name) specified on an input field in the JATTR section. The name can
be 1 to 8 characters long. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @ can
be used in the name, but the first character cannot be numeric. Lowercase
characters are converted to their uppercase equivalents.

VAL(value)
This parameter is used for list boxes and drop-down lists only. It is not used
for combination boxes. The value can be a variable or text. It must be 3
characters or less (more than three characters are truncated without warning)
and is used as the value placed into the CEF field when the choice is selected.

CHOICE(value)
This parameter is used with list boxes, drop-down lists, and combination
boxes. The value can be a variable or text. If the value is a variable, the
ampersand (&) must be in the first column following the left parenthesis of the
CHOICE keyword. The length of the variable data is limited to 99 single-byte
characters. If the variable data is longer than 99 bytes, it will be truncated.

CHOICE(&var)

If the value is a single word text string it is not necessary to enclose it in single
quotation marks.

CHOICE(3278)

If the value is more than a single word of text, the phrase must be enclosed in
single quotation marks.

CHOICE('3278 terminal type')

Literal values can be split between lines by coding a plus sign (+) as the last
character on each line that is to be continued. The plus sign is used as a
continuation character.

CHOICE('This is an example of a continuation +
of the literal string')

The)LIST section must contain a list-name. For list boxes and drop-down lists, it
also must contain a VAL and a CHOICE for each of the choices to display in the
list. Each entry in the)LIST section must contain the keywords in this order:
VAL(value) CHOICE(value). For combination boxes, the list section must contain a
CHOICE(value) for each of the choices to display in the list. The data in the lists is
displayed in the order in which you define the choices in the)LIST section.

Defining the model section

The)MODEL section defines how each table row is to be formatted. Because the
model section is used only for table display panels, it is discussed in |i5efining tabla
display panelg—see [“Requirements for model section” on page 139

224 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)PANEL Section

Defining the panel section

The)PANEL section specifies the keylist that will be used for the panel, identifies
where the keylist is to be found, controls specific CUA display characteristics of the
panel, specifies the image that will be used on the panel, and specifies the row and
column placement for the upper left corner of the image.

The IMAGE keyword is used to show images on panels in GUI mode. It is ignored
in 3270 mode. ISPF supports image files in the Graphical Interchange Format (GIF).

ISPF ships image files in sample library SISPSAMP. The panel ISR@PRIM uses
three of the GIF image files: ISPFGIFL, ISPFGIFS, and ISPEXIT.

To use images, store the image files on the host in a partitioned data set and
allocate this image data set to ddname ISPILIB before invoking ISPF. For more
information about allocating this image library, see "Allocating Optional Image
ISPF Library” in the /OS ISPF User’s Guide Vol 1}

Images can be placed on unused panel space. They should not be positioned on
text or panel fields. When an image is requested, ISPF does a query and file
transfer to download the image specified to the workstation. The image is
downloaded to the image path, which the user specifies from the GUI Panel Settings
window (Option 0). See the [z/0S ISPF User’s Guide Vol II|for details. If no image
path is specified, ISPF downloads the images to the workstation’s working
directory.

)PANEL [KEYLIST (keylist-namel[,keylist-applid,SHARED])]
[IMAGE (image-name,row,col)]

where:
KEYLIST

keylist-name
Required when KEYLIST is specified. The keylist name must have these
characteristics:
* 1-8 characters in length
* First, or only, character must be A-Z or a-z
* Remaining characters, if any, must be A-Z, a-z, or 0-9.

Lowercase characters are translated to their uppercase equivalents.

keylist-applid
Optional. Application ID used at run time to find the keylist. It has a
maximum length of 4 characters, the first of which must be alphabetic.
Any remaining characters can be alphabetic or numeric.

SHARED
Optional. When specified, ISPF looks only at the shared keylist for the
panel. If the user issues the KEYLIST OFF or KEYLIST PRIVATE
commands, they have no effect; the keylist in xxxxKEYS table allocated to
ISPTLIB is used.

IMAGE

image-name
Required when IMAGE is specified. The image-name identifies the image
to be displayed. The image-name can be a variable, which should follow
ISPF’s variable naming conventions.

Chapter 7. Panel definition statement reference 225

)PANEL Section

Note: ISPF downloads images only in panel initialization processing.
Variables for images should only be set in the)INIT section of your
panel definition. Variables for images in panel sections other than
the)INIT section are not supported unless the image exists on the
PC Image Path you specify.

row,col
The row and column specify the starting position, upper left corner, of the
image. The row and column can be numeric or variables. Variables for the
row and column should follow ISPF’s variable naming conventions. If no
row or column is specified, you must code commas as place holders, and
the row and column will default to 0,0. For example:

IMAGE (imagea, ,)

It is left to the dialog developer to select appropriate row and column
values such that the image will display. ISPF checks for valid numeric
values 0-9, but does not check for any limits.

When a keylist-name is specified without a keylist-applid, ISPF searches for the
named keylist in the:

* Keylists for the application ID that is currently running

* ISP applid (if not found in application ID that is currently running and the name
of the application ID is not ISP).

If the KEYLIST keyword is not found on the)PANEL statement, then the default
keylist, ISPKYLST, is used.

Before runtime processing, any keylist (other than the default ISPKYLST)
referenced in a panel’s definitions must have been created and stored. If you add
or modify the)PANEL KEYLIST statement in the definition of an existing source
panel, you must create the keylist if it does not already exist. New keylists can be
created using ISPF option 0 or using the Dialog Tag Language.

Keylist variables

These variables are used by the keylist function:

ZKLUSE Y or N, this variable indicates whether the keylists are being used
for an application ID or not. For example, if KEYLIST OFF has
been issued, &ZKLUSE is N. This variable is stored in the
application profile. The VPUT service can be used by your
application to set this value. Putting a value of N in &ZKLUSE to
the profile pool is equivalent to issuing the KEYLIST OFF
command. Putting a value of Y in &ZKLUSE to the profile pool is
equivalent to issuing the KEYLIST ON command.

ZKLNAME contains the name of the keylist of the panel currently being
displayed. If no keylist is defined for the panel or the keylist is not
being used, &ZKLNAME is blank.

ZKLAPPL contains the application ID where the keylist of the panel currently
being displayed is found. If no keylist is defined for the panel or
the keylist is not being used, &ZKLAPPL is blank.

ZKLTYPE P or S, this variable indicates that the keylist for the panel
currently being displayed is a private (P) copy defined in the
profile table, or a shared (S) copy defined in the xxxxKEYS table
(where xxxx is the application ID of the keylist (ZKLAPPL)).

ZKLPRIV Y or N, this variable indicates that ISPF is to look at both the
private and shared keylist (Y, the default) or that it is to look at
only the shared keylists (N). This variable is stored in the

226 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)PANEL Section

application profile. The VPUT service can be used by the
application to set this value. Putting a value of N in &ZKLPRIV to
the profile pool is equivalent to issuing the KEYLIST SHARED
command. Putting a value of Y in &ZKLPRIV to the profile pool is
equivalent to issuing the KEYLIST PRIVATE command.

Note: This variable shows and determines where ISPF looks for a
keylist. &ZKLTYPE is a non-modifiable variable that shows
where ISPF found the keylist.

CUA display characteristics

The)PANEL section controls specific CUA display characteristics of a panel.
Specifying the)PANEL statement in the panel source definition affects the same
display characteristics controlled by selecting the Panel display CUA mode option
on the ISPF Settings panel (Option 0). See the [z/0OS ISPF User’s Guide Vol II| for
more information.

The)PANEL statement controls these CUA display characteristics:

* Display and placement of the command line and long message text

* Building and display of the named keylist in the Function Key Area (FKA)
* Handling of undefined or null function key definitions

* Execution of the CANCEL and EXIT commands

* Setting of three system control variables that relate to the position of the cursor
after panel display.

Command lines and long messages

When the)PANEL section is used, the ISPF default command line placement is at
the bottom of the panel (above the function key area, if it is displayed). Long
messages are displayed above the command line. To override the ISPF default, go
to the ISPF Settings panel and specify Command line placement - ASIS. This
setting places the command line and long message as they are specified in your
panel definition (usually at the top of the panel). See |z/OS ISPF User’s Guide Vol 1|
Changes to the)BODY section also affect command line and long message
placement. The ASIS keyword on the)BODY section overrides ISPF defaults. The
WINDOW keyword also affects the displaying of the command line and long
messages. See [“Defining the body section” on page 209

You can specify to not have a command line by including the keyword CMD()
with no value on the)BODY statement. This is valid only for displaying panels
with the DISPLAY service. In this case, the default position of the long message is
at the bottom of the panel above the FKA, if it is displayed. Panels (tables)
displayed with the TBDISPL service must specify a command area either by coding
a CMD() with a value or by coding the system control variable ZCMD in the panel
body.

Because the)PANEL statement affects the same display characteristics as if you
had selected the Panel display CUA mode option on the ISPF Settings panel, the
color and intensity of the short and long messages is affected by the presence of
the)PANEL statement. If you specify the LMSG or SMSG keywords on the)BODY
statement, you control the color and intensity in which both the short and long
messages are displayed, regardless of CUA mode or the presence of a) PANEL
statement. [Table 21 on page 313 illustrates default message placement.

Chapter 7. Panel definition statement reference 227

)PANEL Section

Keylist building and display
The format and display of the named keylist or an ISPF default keylist for a panel
containing the)PANEL statement is as follows:

* The maximum number of function keys that can be formatted on each line is
displayed.

* Each displayed function key definition appears as Fnn=label or Fn=label (where
nn or n is the numeric value of the function key).

ISPF attempts to build the FKA with the named keylist or an ISPF default keylist.
However, the display of the keylist in the FKA area depends upon the settings of
the FKA or PFSHOW commands and the keylist format (SHORT or LONG)
specified for the function key definition. The number and set of function keys
displayed also varies.

Note: The system control variable ZPFCTL setting is ignored for panel source
definitions that contain the)PANEL statement.

Undefined or null function keys
When you press an undefined or null function key, ISPF displays an error message.

CANCEL and EXIT execution

When the CANCEL or EXIT commands (specified on a function key or entered in a
command field) are processed, ISPF returns the entered command in the system
control variable ZVERB and sets a return code of 8 from the display service.

If the panel contains an action bar and the cursor is on the action bar, CANCEL
moves the cursor to the panel body. ZVERB is not updated.

Setting system control variables
When panels with a)PANEL section specified are displayed, ISPF sets these system
control variables:

ZCURFLD Name of the field (or list column) containing the cursor when the
user exits the panel.

ZCURPOS Position of the cursor within the field specified by ZCURFLD
when the user exits the panel.

ZCURINX Current row number of the table row containing the cursor.

These system variables are stored in the function pool as output variables.

Defining the point-and-shoot section

The)PNTS (point-and-shoot) section of a panel definition specifies what fields, if
any, are point-and-shoot fields. Input and output fields are specified as
point-and-shoot fields by the use of the attribute keyword, PAS(ON). Text fields are
specified as point-and-shoot fields by the attribute type keyword, TYPE(PS). For
each panel field specified as a point-and-shoot field, there must be a corresponding
entry in the)PNTS section. If a field specified as a point-and-shoot field has no
corresponding entry in the)PNTS section, no action will be taken if the
point-and-shoot field is selected. The examples show a)PNTS section
point-and-shoot phrase definition for input/output fields and for text fields.

Note: You can use option 0 (Settings) to set the tab key to move the cursor
point-and-shoot fields. This changes output fields to input fields, but data is
not altered. However, if a variable is used on an output field that is changed
to an input field by the tab to point-and-shoot option, and the variable is

228 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)PNTS Section

VDEFINEd to the application, the variable will be truncated. In this case, the
application developer should have a temporary panel variable.

GUI mode

If you are running in GUI mode, fields designated as point-and-shoot output and
text fields will appear as pushbuttons. Point-and-shoot input fields will appear as
selection fields.

Large pushbuttons are point-and-shoot output or text fields which display with a
depth greater than one. Large pushbuttons are built by coding the DEPTH
keyword on the point-and-shoot statement in the)PNTS panel section.

In GUI mode, images can be displayed on these pushbuttons. The keywords that
provide the support for images are DEPTH, IMAGE, IMAGEP, TEXT, and PLACE.
These keywords are used in GUI mode and ignored in 3270 mode.

Although you can define images on point-and-shoot output fields and
point-and-shoot text fields, if you define an image for a point-and-shoot output
field, the field cannot be a Z-variable in the panel body.

You can specify where to place an image on a large pushbutton. It can be above
the pushbutton text, or to the left or right of the pushbutton text. When you
specify the placement of the image to be above the text, the image is always
centered relative to the text.

ISPF ships sample images in sample library SISPSAMP. The panel ISR@PRIM uses
three of the GIF image files: ISPFGIFL, ISPFGIFS, and ISPEXIT.

To use images, store the image files on the host in a partitioned data set and
allocate this image data set to ddname ISPILIB before invoking ISPF. For more
information about allocating this image library see "Allocating Optional Image
ISPF Library” in the |z/OS ISPF User’s Guide Vol 1}

When an image is requested, ISPF does a query and file transfer to download the
image specified to the workstation. The image is downloaded to the image path that
you specify from the GUI Panel Settings window (Option 0). See the
[User’s Guide Vol 11| for details. If no image path is specified, ISPF downloads the
image to the workstation’s working directory.

)PNTS

FIELD(field _name|ZPSxxyyy) VAR(value) VAL(value)
[DEPTH(depth)] [IMAGE(image-name)] [IMAGEP(image-name)]
[TEXT('text')] [PLACE(a,b,l,r)]

Note: Each entry in the)PNTS section must contain the keywords in this order:
FIELD, VAR, VAL, [DEPTH]. When defining large pushbuttons or large
pushbuttons with images the DEPTH keyword must immediately follow the
VAL keyword on the)PNTS entry statement. The remaining keywords,
[IMAGE] [IMAGEP], [TEXT], [PLACE], follow the DEPTH keyword. Both
the DEPTH keyword and the TEXT keyword must be coded on the PNTS
entry for point-and-shoot text fields if you are defining a large pushbutton,
or an image for the field.

where:

Chapter 7. Panel definition statement reference 229

)PNTS Section

FIELD(field_name | ZPSxxyyy)
The name of the field on the panel that this statement controls.

For point-and-shoot input/output fields, the format is:

FIELD(field_name)
where:

field name
The name of the field on the panel that this statement controls.

For point-and-shoot text fields, the format is:

FIELD(ZPSxxyyy)
where:

XX 00 for a point-and-shoot field defined in the) BODY section and 01
to 99 for the number of the scrollable area in which the
point-and-shoot text field is defined.

Each scrollable area is assigned a sequential number based on its
relative position within the panel body. The scrollable area closest
to the upper-left corner of the panel body is assigned number 01.
Each additional scrollable area, scanning left to right, top to
bottom, is assigned the next sequential number. A maximum of 99
scrollable areas in any given panel can contain point-and-shoot text
fields.

yyy 001 to 999 for the relative number of the point-and-shoot text field
within the panel body or within a particular scrollable area.

A point-and-shoot text field can wrap around multiple terminal
lines in panels that are not displayed in a window. A
point-and-shoot text field that logically wraps in a pop-up window
requires the beginning of each wrapped line to contain a PS field
attribute and an entry must exist in the)PNTS section for each
wrapped line. This is also true for panels containing the
WINDOW() keyword that are not displayed in a pop-up window.
The additional)PNTS section entries should result in the same
action as the first line of the wrapped text field.

VAR (value)
The name, or a variable containing the name, of the variable to be set
when the field named in this)PNTS statement is selected. If the value is a
variable, an ampersand (&) must be in the first column following the left
parenthesis of the VAR keyword, and it must follow dialog variable
naming conventions. If the value is a variable it is limited to the leading
ampersand plus 7 characters.

VAL (value)
The value assigned to the variable named in this statement. The value can
be a variable or text. If the value is a variable, an ampersand (&) must be
in the first column following the left parenthesis of the VAL keyword. The
length of the variable data is limited to 255 single-byte characters. If the
variable data is longer than 255 bytes, it is truncated. If the value is a
variable it is limited to the leading ampersand plus 7 characters.

VAL (&var)

If the value is a single word text string it is not necessary to enclose it in
single quotation marks.

VAL (Batch)

230 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)PNTS Section

If the value is more than a single word of text, the phrase must be
enclosed in single quotation marks.

VAL('List of products')

Literal values can be split between lines by coding a plus sign (+) as the
last character on each line that is to be continued. The plus sign is used as
a continuation character.

VAL('This is an example of a continuation +
of the literal string')

DEPTH(depth)
The depth of the point-and-shoot field (pushbutton). The DEPTH keyword
is required and must be specified immediately following the VAL keyword
on the)PNTS section statement. ISPF allows depth values from zero to
sixty-two (0-62). The maximum screen depth is 62. It is up to the dialog
developer to define the depth such that other items on the panel body will
not be overlaid by the point-and-shoot field (pushbutton). If depth is
specified as 0, the default depth of two (2) is used. The depth can be a
variable, whose value is from 0-62.

IMAGE(image-name)
The image-name identifies the image to be displayed. The image-name is
used when the images are stored on the host in a partitioned data set, with
a data set definition of ISPILIB. The image-name must follow TSO data set
member naming conventions. The image-name can be a variable, which
should follow ISPF’s variable naming conventions.

IMAGEP(image-name)
The image-name identifies the image to be displayed, when the
point-and-shoot pushbutton is pressed. For example, a pushbutton might
normally display a closed door image, but when you press the button, an
‘open door’ image appears. The image-name is used when the images are
stored on the host in a partitioned data set, with a data set definition of
ISPILIB. The image-name must follow TSO data set member naming
conventions. The image-name can be a variable, which should follow ISPF’s
variable naming conventions.

Note: ISPF downloads images only in panel initialization processing.
Variables for images should only be set in the)INIT section of your
panel definition. Variables for images in panel sections other than
the)INIT section are not supported unless the image exists on the
PC Image Path you specify.

TEXT(text’)
The TEXT keyword is required for point-and-shoot text fields. The text ties
the point-and-shoot text field defined in the panel body with its
point-and-shoot entry in the)PNTS section. The text must match the text
for the point-and-shoot field in the body. If the text in the body contains
variables, the text of the TEXT keyword must allow for the possible
expansion once the variable has been substituted, just as the
point-and-shoot text field in the body should. If the text consists of more
than a single word of text, the phrase must be enclosed in single quotation
marks.

PLACE(@1blllr)
The values a (above), I (left), and r (right) specify the position of the image
relative to the pushbutton text. The PLACE keyword is optional. If not
specified, the default image position is above (a) the text in the pushbutton.

Chapter 7. Panel definition statement reference 231

)PNTS Section

The text for pushbuttons is always centered within the pushbutton. The
text for a pushbutton does not wrap, thus one line of text is the maximum.
The image is placed either above the text, or to the left or the right of the
text. It is up to the dialog developer to allow for space for the pushbutton
text and the image. The value for PLACE can be a variable whose value is
a, b, 1, or r.

Example:

) PANEL
)ATTR
$ TYPE(PIN)
} TYPE(PS)
+ TYPE(NT)
| AREA(SCRL) EXTEND(ON)
! TYPE(OUTPUT) PAS(ON) COLOR(RED)
* TYPE(OUTPUT) PAS(ON) COLOR(BLUE)
@ TYPE(TEXT) INTENS(LOW) COLOR(RED) PAD(NULLS)
@ TYPE(TEXT) INTENS(LOW) COLOR(BLUE) PAD(NULLS)

)BODY WINDOW(60,23)
$
%COMMAND ===> ZCMD
$
$ Press }DEFAULTS$to reinstate defaults
$
+
|s1
)AREA S1
+ +
+ +
+ @BLUE*BLUE1 +
+ GRED!REDI +
)INIT
.CURSOR = bluel

&bluel = ' !
)PROC
REFRESH ()
)PNTS

FIELD(BLUEL) VAR(RED1) VAL(RED)
FIELD(ZPS00001) VAR(BLUE1) VAL(DEFAULT)

)END

Figure 64. Sample point-and-shoot definition

Defining the processing section

The processing section specifies additional processing that is to occur after the
panel has been displayed. It begins with the)PROC header statement and ends
with the)JHELP or)END statement. The number of lines allowed in a)PROC
section depends upon the storage size available.

|)PROC

A statement can be continued over as many lines as necessary as long as it is
broken at the end of a word, or a continuation symbol (+) is used within a literal.
In menus, the processing section is required and must be in a special format, as
described in [“Defining menus” on page 117

See [“Formatting panel definition statements” on page 235 for additional
information.

232 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

)REINIT Section

Defining the reinitialization section

The reinitialization section specifies processing that is to occur prior to redisplay of
a panel. If it is present, it follows the initialization section and precedes the
processing section.

|)REINIT

Panel redisplay occurs in either of these situations:

* Redisplay occurs automatically after the)PROC section has been processed if the
.MSG control variable is nonblank and the user has not requested END or
RETURN. The .MSG control variable is set automatically if a translation or
verification error occurs. It can also be set explicitly by use of an assignment
statement in the)PROC section.

* Redisplay occurs if a dialog function invokes the DISPLAY or TBDISPL service
with no panel name specified (a blank).

Note: See [z/OS ISPF Services Guide] under the description of TBDISPL for a
explanation of how redisplay processing for the TBDISPL service differs
from that for the DISPLAY service described here.

Processing of the)INIT section is intentionally bypassed when a redisplay occurs.
Instead, the)REINIT section is processed. The automatic fetching of variables to be
displayed in the panel body is also bypassed on a redisplay. Thus, the panel is
redisplayed exactly as the user last saw it, except:

* An error message can appear on a redisplay.

* Field attribute overrides, assignment statements, or REFRESH statements can be
used.

* A scrollable area can be scrolled to position the cursor or to verify failure.

Typically, a)REINIT section contains:
* Field attribute overrides, specified by the .ATTR control variable

* Changes to displayed panel fields, specified by assignment statements and the
REFRESH statement.

See [“Formatting panel definition statements” on page 235| for additional
information.

[Figure 65 on page 234] shows panel processing and the point at which attribute
settings can be modified for redisplay of a panel.

Chapter 7. Panel definition statement reference 233

)REINIT Section

DISPLAY DISPLAY service
service with with panel name
no panel name i
)INIT section
processing
Attribute
JREINIT section determination
processing i
Automatic

initialization of fields
in the panel body

(see Note 1)

(see Note 2)

Display/redisplay
of panel

l

Wait for user input

AB
selected?

Data is scrolled

Yes

(see Note 4)

No

Notes:

1. Any attributes specified in variables in the)ATTR or)INIT
sections are determined after the)INIT section has been processed.
2. Any attributes set above this line are permanent across redisplays of
the panel. Those set below the line hold for a single redisplay only.
3. On panels created using the Dialog Tag Language (DTL), the next
EXIT and CANCEL commands also produce return code 8.
4. The Yes branch is taken if there is a scroll request, a scrollable area
is defined for the panel, and the cursor is within a scrollable area.

Figure 65. Panel processing

234

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Msg = blank?

Yes

N JABCINIT section _| Display/redisplay
° processing of pulldown
Automatic storing i
of input variables
from the panel body JABCPROC < Pulldown choice
section processing selection
Scroll No
request? Msg = blank?
Yes
)PROC section
processing
END Yes (see Note 3)
»~ or RETURN
command?

RETURN
RC=0

v
RETURN
RC =8

v

panel definition statements

Formatting panel definition statements

This topic describes panel definition statements:
* Assignment statements. See|“The assighment statement.”|

Note: You can use ten built-in functions in an assignment statement:
— TRUNC (truncate)
— TRANS (translate)
- PFK (function key)
— LENGTH (return length of variable)
— UPPER (return uppercase value of variable)
— LVLINE (last visible line)
— ADDSOSI (add shift-out character)
— DELSOSI (delete shift-out character)
— ONEBYTE (convert to a 1-byte code)
— TWOBYTE (convert to a 2-byte code)
* ELSE on page[“The ELSE statement” on page 242|
* EXIT on page ["EXIT and GOTO statements” on page 244)
* GOTO on page [“EXIT and GOTO statements” on page 244]
* IF on page [“The IF statement” on page 246|
* PANEXIT on page [“The PANEXIT statement” on page 250|
* REFRESH on page [‘The REFRESH statement” on page 257
+ *REXX ... *YENDREXX on page [‘The *REXX statement” on page 25§|
* TOG on page [“The TOG statement” on page 266]
* VEDIT on page|Figure 72 on page 268|
* VER on page [‘The VER statement” on page 268
* VGET on page [‘The VGET statement” on page 280
* VPUT on page|“The VPUT statement” on page 282

These types of data references can appear within panel section statements:

Dialog variable
A name preceded by an ampersand (&)

Control variable
A name preceded by a period (.)

Literal value
A character string not beginning with an ampersand or period. A literal
value can be enclosed in single quotes (). It must be enclosed in single
quotes if it begins with a single ampersand or a period, or if it contains
any of these special characters:

Blank < (+ |) 3~ -, >: =

A literal can contain substitutable variables, consisting of a dialog variable name
preceded by an ampersand (&). The name and ampersand are replaced with the
value of the variable before processing the statement. Trailing blanks are removed
from the variable before the replacement. You can use a double ampersand to
specify a literal character string starting with, or containing, an ampersand.

In the description of statements and built-in functions that follows, a variable can
be either a dialog variable or a control variable. A value can be either type of
variable or a literal value.

The assignment statement

Assignment statements can be used in the)INIT section to set the contents of
dialog variables before the automatic initialization of variables in the panel body.

Chapter 7. Panel definition statement reference 235

assignment statement

Also, they can be used in the)REINIT section before redisplay of the panel body.
Assignment statements can also be used in the)PROC section, typically to set the
contents of dialog variables that do not correspond to fields in the panel body.

variable = value

where:

value
Specifies the contents of the dialog variable.

Example:

gA =

&COUNT = 5

&SN = '''SYS1.MACLIB'"''
&BB = &C

The first example sets variable A to blanks. The second example sets variable
COUNT to a literal character string (the number 5). The third example sets variable
DSN to a character string that begins and ends with a single quote. See
[“Panel definition statement guide”|for information about syntax rules and
restrictions. The fourth example sets variable BB to the contents of another
variable, C.

The literal '’ represents a single blank. To define a null, you must use the &Z
literal.

The TRUNC built-in function

The TRUNC built-in function can occur on the right side of an assignment
statement to cause truncation.

variable = TRUNC (variable,value)

where:

variable
(Inside the parentheses). Specifies the variable to be truncated.

value
A numeric quantity indicating the length of the truncated result or any special
character indicating truncation at the first occurrence of that character.

Examples:

&A = TRUNC (&XYZ,3)
&INTEG = TRUNC (&NUMB,'.")

In the first example, the contents of variable XYZ are truncated to a length of 3
characters and stored in variable A. Variable XYZ remains unchanged. In the
second example, the contents of variable NUMB are truncated at the first
occurrence of a period and stored in variable INTEG. Variable NUMB remains
unchanged. If NUMB contains 3.2.4, INTEG contains 3.

The control variable . TRAIL contains the remainder following a TRUNC operation.
When the contents of a variable are truncated to a specified length, all remaining
characters are stored in .TRAIL. If the contents of a variable are truncated at the
first occurrence of a special character, the remaining characters following the special

236 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

assignment statement

character are stored in .TRAIL. The special character is not stored, nor is it retained
in the assignment variable’s value. For example:

)PROC
&AAA = TRUNC (&zCMD, '.')
&BBB = .TRAIL

If variable ZCMD contains 9.4.6, variable AAA contains 9. The .TRAIL control
variable and variable BBB contain 4.6. The value of ZCMD remains as 9.4.6.

Because the control variable .TRAIL is set to blanks before the truncation function
is performed, it should not be specified as the truncation variable in the TRUNC
statement. For example: &ERROR = TRUNC(.TRAIL,1) would always result in
&ERROR being set to blank.

For the TRUNC built-in function, the source and destination variables can be the
same. [Figure 66 on page 239|shows an example in which it is assumed that
variable TYPECHG was originally set (in the dialog function) to a single character
N, U, or D. In the)INIT section, TYPECHG is translated to NEW, UPDATE, or DELETE
and stored into itself before the panel is displayed. In the)PROC section,
TYPECHG is truncated back to a single character.

Use of this technique allows you to change the valid options for TYPECHG by
simply typing over the first character.

The TRUNC and TRANS built-in functions can be nested. For example:

&XYZ = TRUNC(TRANS(&A ---),1)
&ZSEL = TRANS(TRUNC(&ZCMD,'.') ---)

In the first example, the current value of variable A is translated. The translated
value is then truncated to a length of one, and the result is stored in variable XYZ.
In the second example, the contents of variable ZCMD are truncated at the first
period, the truncated value is then translated, and the result is stored in variable
ZSEL.

The VSYM built-in function can be nested on the TRANS and TRUNC built-in
functions. For example:

&B = TRANS(VSYM(A) A,1 B,2 *,3)
&B = TRANS(TRUNC(VSYM(A),1) A,1 B,2 *,3)

The TRANS built-in function

The TRANS built-in function can occur on the right side of an assignment
statement to cause translation.

|variable = TRANS (variable value,value[MSG=value])

where:

variable
(Inside the parentheses). Specifies the variable to be translated.

value,value
Paired values. The maximum number of paired values allowed is 126. The first
value in each pair indicates a possible value of the variable, and the second
indicates the translated result.

Example:
&REPL = TRANS (&MOD Y,YES N,NO)

Chapter 7. Panel definition statement reference 237

assignment statement

238

The current value of variable MOD is translated, and the result is stored in
variable REPL. Variable MOD remains unchanged. The translation is as
follows: if the current value of MOD is Y, it is translated to YES. If the current
value is N, it is translated to NO. If the current value is anything else (neither Y
nor N), it is translated to blank.

The anything-else condition can be specified by using an asterisk in the last set
of paired values. For example:

&REPL = TRANS (&MOD ... =*,'?")
&REPL = TRANS (&MOD ... *,*)

In the first example, if the current value of MOD does not match any of the
listed values, a question mark is stored in variable REPL. In the second
example, if the current value of MOD does not match any of the listed values,
the value of MOD is stored untranslated into REPL.

MSG=value
A message ID. Another option for the anything-else condition is to cause a
message to be displayed to the user. Typically, this technique is used in the
processing section of the panel definition.

Example:
&DISP = TRANS (& 1,SHR 2,NEW 3,MOD MSG=PQRS001)

The contents of variable D are translated as follows: 1 is translated to SHR, 2 is
translated to NEW, and 3 is translated to MOD. If none of the listed values is
encountered, message PQRS001 is displayed. Message PQRS001 can be an error
message indicating that the user has entered an invalid option.

For the TRANS built-in function, the source and destination variables can be the
same. [Figure 66 on page 239|shows an example in which it is assumed that
variable TYPECHG was originally set (in the dialog function) to a single character

N, U, or D. In the)INIT section, TYPECHG is translated to NEW, UPDATE, or DELETE
and stored into itself before display of the panel. In the)PROC section, TYPECHG
is truncated back to a single character.

Use of this technique allows you to change the valid options for TYPECHG by
simply typing over the first character.

The TRANS and TRUNC built-in functions can be nested. For example:

&XYZ = TRUNC(TRANS(&A ---),1)
&ZSEL = TRANS(TRUNC(&ZCMD,'.') ---)

In the first example, the current value of variable A is translated. The translated
value is then truncated to a length of one, and the result is stored in variable XYZ.
In the second example, the contents of variable ZCMD are truncated at the first
period, the truncated value is then translated, and the result is stored in variable
ZSEL.

The VSYM built-in function can be nested on the TRANS and TRUNC built-in
functions. For example:

&B = TRANS(VSYM(A) A,1 B,2 *,3)
&B = TRANS(TRUNC(VSYM(A),1) A,1 B,2 *,3)

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

assignment statement

~
)Body
S EMPLOYEE RECORDS ~===-======mmmmmmmmmmmmmmmemee
%COMMAND===>_ZCMD 5
+
%EMPLOYEE SERIAL: &EMPSER
+
+ TYPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)
+
+ EMPLOYEE NAME:
+ LAST %===>_LNAME +
+ FIRST %= +
+ INITIAL%===>_I+
+
+ HOME ADDRESS:
i LINE 1 %===>_ ADDRI1 +
+ LINE 2 %===> ADDR2 +
T LINE 3 %===>_ADDR3 +
+ LINE 4 %===> ADDR4 +
+
+ HOME PHONE:
+ AREA CODE %===>_PHA+
i LOCAL NUMBER%===>_PHNUM i
+
)Init
&TYPECHG = Trans (&TYPECHG N,NEW U,UPDATE D,DELETE)
)Proc
&TYPECHG = Trunc (&TYPECHG,1)
)End
N J

Figure 66. Sample panel definition with TRANS and TRUNC

The PFK built-in function

The PFK built-in function provides function key assignment information by
command or key number.

|variable = PFK(value)

where:

value
Either a command or a key number.

Example:
&X = PFK (HELP)
&Y = PFK (2)

In the first example, the first function key that is assigned to the HELP command
is returned in variable X as a character string PFnn, where nn is the function key
number. If CUA mode is set, or the panel has an active keylist, the character string
is Fnn, where nn is the function key number. If the HELP command is not assigned
to a function key, a blank value is returned.

In scanning the current function key definitions, the primary keys are scanned first,
then the secondary keys. If KEYLIST OFF has been issued, ISPF searches the ZPF
variables. On a 24-key terminal, for example, if both function keys 13 and 1 are
assigned to HELP, the function returns F13.

In the second example, the command assigned to F2 is returned in variable Y. If no
command is assigned to the key requested, a blank value is returned.

Chapter 7. Panel definition statement reference 239

assignment statement

The LENGTH built-in function

The LENGTH built-in function can occur on the right side of an assignment
statement to evaluate the length of a dialog variable. The variable length returned
will be the maximum value of the actual length of the variable if it exists and the
length specified in the)FIELD section if any.

|variable = LENGTH(field-name)

where:

field-name
Specifies the dialog variable name.

Example
&A = LENGTH(ABC)

The length of dialog variable ABC is stored in &A. If ABC does not exist, zero is
returned. If we added this section to the panel:

)FIELD
FIELD(ABC) LEN(105)

then the length calculated for &A will be 105 if ABC does not exist or exists with a
length less than 105.

The UPPER built-in function

The UPPER built-in function can occur on the right side of an assignment
statement and will return the uppercase value of a variable.

|variable = UPPER(field-name)

where:
field-name
Specifies the dialog variable name.

Example
&A = UPPER(ABC)

The uppercase value of ABC dialog variable will be returned.

The LVLINE built-in function

The LVLINE built-in function (used on an assignment statement in the)INIT,
)REINIT, or)PROC section) provides the line number of the last visible line within
a graphic or dynamic area of the currently displayed panel.

|variable = LVLINE(value)

where:

value
Name of the GRAPHIC or DYNAMIC area. In split-screen mode, this value
could be less than the number of lines defined in the area.

This built-in function provides the line number of the last line within a graphic or
dynamic area that is visible to the user on the currently displayed panel. The value

240 2z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

assignment statement

parameter is the name of the graphic or dynamic area. In split-screen mode, this
value could be less than the number of lines defined in the area. If the area is
defined within a scrollable area, the number returned is the last visible line when
the user submitted the panel, even if the user could have scrolled to see more.

Note: When coding the command line after the dynamic area on a non-TBDISPL
panel, ISPF might not be able to calculate the LVLINE value correctly based
on the location of the command line following the dynamic area, the
number of lines after the dynamic area, the function key settings, SPLIT or
SPLITV command processing, or other ISPF commands that affect the screen
size displayed. To achieve the correct LVLINE value with the command line
displayed at the bottom of the ISPF dynamic area panel, the command line
will have to be coded above the dynamic area on the panel, ZPLACE set to
BOTTOM, and CUA mode set to YES.

Example:
&L1 = LVLINE(AREAL)

The ADDSOSI and DELSOSI built-in functions

These built-in functions are used to add to or delete from a value-string the
shift-out and shift-in characters that mark the start and end of a DBCS field,
without changing the value of the input string.

variable = ADDSOSI(variable name)
variable = DELSOSI(variable name|DBCS literal)
where:

variable name
Name of the variable that the function will process.

Examples:

&VAR2 = ADDSOSI (&VAR1)
&VAR2; = DELSOSI('[DBDBDBDB]"')

The bracket characters [and] represent the shift-out and shift-in characters.

The target variable must not contain mixed (DBCS/EBCDIC) data. Only variables,
not literals, can be specified with the ADDSOSI function. Variables or literals can
be specified with the DELSOSI function. An odd input-value length is not
permitted for either function. The input-value length does not include trailing
blanks or nulls. Nested built-in functions are not allowed on the DELSOSI
function. The ADDSOSI function allows nesting of the TWOBYTE built-in function
(see ['The ONEBYTE and TWOBYTE built-in functions”).

Example:
&VARB = ADDSOSI(TWOBYTE (&VARA))

Variable VARA is converted to a 2-byte character code and shift-out and shift-in
characters are added to the character string. Then, variable VARB is set to the
resulting value.

The ONEBYTE and TWOBYTE built-in functions

The ONEBYTE function is used to convert a variable from a 1-byte character code
to the corresponding 1-byte code without changing the value of the variable. The
TWOBYTE function is used to convert a variable from a 1-byte character code to

Chapter 7. Panel definition statement reference 241

assignment statement

the corresponding 2-byte code without changing the value of the variable.

variable = ONEBYTE(variable name)
variable = TWOBYTE(variable name)
where:

variable name
Name of the variable the function will process.

Examples:
&VARA = ONEBYTE(&VARB)
&VARA = TWOBYTE(&VARB)

The variable being converted must not contain mixed (DBCS/EBCDIC) data. Only
variables, not literals, can be converted. An odd input value length is permitted for
the TWOBYTE function, but is not permitted for the ONEBYTE function. The input
value length does not include trailing blanks or nulls. Literals cannot be used as
input parameters for either function. Nested built-in functions are not allowed on
the TWOBYTE function. The ONEBYTE function allows nesting of the DELSOSI
built-in function.

Example:
&VARB = ONEBYTE(DELSOSI (&VARA))

The VSYM built-in function

The VSYM built-in function can appear on the right side of an assignment
statement and returns the value of a dialog variable found in the function pool
with all the system symbols resolved.

variable = VSYM(field-name)

where:

field-name
Specifies the dialog variable name.

Examples:
&VARA = ONEBYTE(&VARB)
&VARA = TWOBYTE(&VARB)

The variable being converted must not contain mixed (DBCS/EBCDIC) data. Only
variables, not literals, can be converted. An odd input value length is permitted for
the TWOBYTE function, but is not permitted for the ONEBYTE function. The input
value length does not include trailing blanks or nulls. Literals cannot be used as
input parameters for either function. Nested built-in functions are not allowed on
the TWOBYTE function. The ONEBYTE function allows nesting of the DELSOSI
built-in function.

Example:
&A = VSYM(ABC)

The ELSE statement

The ELSE statement specifies that alternate processing is to take place when the
conditions of the matching IF statement are not satisfied.

242 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

ELSE Statement

ELSE

The ELSE statement has no parameters. The ELSE statement must be
column-aligned with the matching IF statement. Only one ELSE statement is
allowed on the same line, even though each can align with a prior IF statement.
You can nest IF statements within ELSE statements. The only limitation on the
number of nested IF statements is the maximum number of columns available for
indented statements due to the panel record length.

The ELSE statement is indentation sensitive. If the conditional expression is true,
the ELSE statement that is column-aligned with the IF plus all statements to the
right of that column are skipped. Processing continues with the next statement that
begins in the same column as the ELSE or in a column to the left of the ELSE.

An example of using the ELSE statement:

IF (&DOW = UP)
&ACTION = SELL
ELSE
IF (&DOW = DOWN)
&ACTION = BUY
ELSE
&ACTION = HOLD
&DOW = &BEAR

In this example, if the value of &DOW is UP, variable &ACTION is set to SELL
and processing continues at the statement &DOW = &BEAR. The indented
processing statements following the first ELSE statement execute if variable &DOW
does not have a value of UP. The assignment statement, &ACTION = HOLD,
executes only if the value of &DOW is not UP or DOWN.

[Figure 67 on page 244 shows a sample panel definition with an IF/ELSE statement
pair. The current value of variable PHA is tested for the local area code, 919. If the
value of PHA is 919, variable RATE is set to the value of variable &LOCAL. If the
value of PHA is not 919, variable RATE is set to the value of variable &LONGD.

Chapter 7. Panel definition statement reference 243

EXIT and GOTO statements

%COMMAND===>_ZCMD P

+

%EMPLOYEE SERIAL: &EMPSER
TYPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:
LAST %===>_LNAME +
FIRST %===>_FNAME +
INITIAL%===>_1+

LINE 1
LINE 2
LINE 3
LINE 4

> ADDRI
> ADDR2
> ADDR3

HOME ADDRES
===>_ADDR4

n um un nwm

+ 4+ + +

%
%
%
%

HOME PHONE:
AREA CODE %
LOCAL NUMBER%

===> PHA+
===> PHNUM +

— 4+ + + + + ++ A+ F o+ F o+ o+

INIT
&TYPECHG

TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC
&TYPECHG = TRUNC (&TYPECHG,1)
IF (&PHA = '919')
&RATE = &LOCAL
ELSE
&RATE = &LONGD

)END
-

Figure 67. Sample panel definition with IF and ELSE statement

EXIT and GOTO statements

Nested IF/ELSE statements can easily become complex, especially since the IF
statement is indentation sensitive. The GOTO and EXIT statements allow you to
avoid these complexities and achieve enhanced performance during panel
processing. You can transfer control back to the user as soon as processing errors
are detected.

The GOTO and the EXIT statements are both allowed in the)INIT,)REINIT,
)PROC,)ABCINIT, and JABCPROC sections of the panel source definitions.

EXIT statement

|EXIT

The EXIT statement has no parameters. When an EXIT statement is encountered
during panel processing, ISPF halts processing of the section in which the
statement was found and bypasses all remaining statements in that section. Further
processing of the panel continues normally.

¢ Example 1: Simple GOTO/EXIT

244 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

EXIT and GOTO statements

)PROC
IF (&CUSTNAME = ' ')
GOTO NAMERR
IF (&CUSTNUM = ' ')
.MSG=XXXXX /* message indicating number is required */
EXIT /* exit)PROC section */
VER (&CUSTNAME,ALPHA,msg=xxxxx) /* messages specific to x/
VER (&CUSTNUM,NUM,msg=XXXXX) /* data type - alpha or num */
GOTO NXTSECT
NAMERR:
LMSG=XXXXX /* message indicating name must be entered */
EXIT /* exit)PROC section x/
NXTSECT:

zero, one, or more statements

In this example, the VER statements are skipped if no values are entered for the
CUSTNAME or CUSTNUM variable fields. Processing for the)PROC is halted
after the .msg variable is set.

* Example 2: Multiple GOTOs

YINIT

&var2 = ' !

IF (&newcust = ' ')
GOTO BYPASS

IF (&newcust = 'renew')
&var2 = 1
GOTO NXTCHK1

IF (&newcust = 'initial')

&var2 = 2
GOTO NXTCHK1

ELSE
GOTO BYPASS

NXTCHK1 :

IF (&var2 = 1)
&var3 =1
&vard = 0
GOTO NXTSECT

ELSE
&vard =1
&var3 = 0
GOTO NXTSECT

BYPASS:

&var3 = 0
&vard = 0
NXTSECT:

zero, one, or more statements

Assuming that the variable NEWCUST was entered and verified to contain one
of the two values on a previous panel display, this example illustrates that
certain fields on the panel currently being processed will or will not be set
depending on the value of NEWCUST.

e Example 3: GOTO Label within IF/ELSE

)INIT
IF (&varl = ' ")
GOTO BYPASS
IF (&var2 = 1)

&vars = 1

&varée = 0

BYPASS

&var7 =1
ELSE

zero, one, or more statements

Chapter 7. Panel definition statement reference 245

EXIT and GOTO statements

246

If variable varl is blank, control is transferred to the label BYPASS. Variables var5
and var6 are not set and processing will continue as if the IF statement were
TRUE. Variable var7 will be set to 1. The ELSE branch is not executed.

GOTO statement
|GOT0 label

where:

label
Literal value of the label to which you will branch. The label:
* Must be from 1 to 8 characters in length
* Must begin with an alphabetic character (A-Z, a-z)
* May contain any other alphameric character (A-Z, a-z, 0-9).

The literal value of the label used must be followed by a colon when it appears
by itself as a label. For example:

Tabel:
ISPF translates the value for the label to uppercase before it is processed.

There are no indentation restrictions on a GOTO and its corresponding label.
They may be at different indentation levels.

ISPF processes the GOTO statement as follows:
e ISPF assumes that transfer of control to the named label is downward.

* ISPF continues processing with the next sequential statement after the first
occurrence of the named label.

* ISPF ignores duplicate labels.

* ISPF may transfer control within the IF or ELSE branch of an IF/ELSE
statement. If the label is within the IF branch, processing continues with the next
statement following the label as if the IF were true. If the label is within the
ELSE branch, processing continues with the next statement following the label as
if the IF were false.

ISPF issues a severe error message if it does not find a matching label below the
GOTO statement and within the same section in which the GOTO statement is
coded. The label need not be on a line by itself.

The IF statement

The IF statement is a valuable tool used to verify a conditional expression. The
conditional expression can be as basic as testing the value of a variable or can be
expanded to use VER statement constructs and Boolean capabilities. This topic first
defines the complete syntax of the IF statement. Other more detailed topics
describe:

* Basic IF value testing

* IF statement with VER constructs

¢ IF statement with Boolean operators

* IF statement with VSYM built-in function

IF statements are valid in the)INIT,)REINIT,)PROC,)ABCINIT, and)ABCPROC
panel sections.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

IF Statement

IF (conditional-expression [boolean-operator conditional-expression]..)

[ELSE]

where:

conditional-expression
Is either:

Basic value test expression:
variable operator value[,value...]

VER statement construct coded without the MSG= parameter:
VER (variable [, NONBLANK], keyword [, valuel, value2,...])

Boolean-operator
The character symbol & or characters AND (AND Boolean operator) or the
character symbol | or characters OR (OR Boolean operator).

ELSE
The optional statement that specifies alternate processing if the IF condition is
not satisfied.

Basic IF value testing

IF (variable operator value [,value ...])

[ELSE]

The parentheses in the syntax contain a conditional expression, in which the
operator is expressed in either uppercase character symbols, such as EQ, or in
special symbols, such as =. These symbols can be any of:

= or EQ (equal to)

-=or NE (not equal)

> or GT (greater than)

<or LT (less than)

>= or GE (greater than or equal)
<=or LE (less than or equal)

-> or NG (not greater than)

-< or NL (not less than).

You can specify comparison against up to 255 values for the EQ (=) and NE (-=)
operators. For the remaining operators, you can specify comparison against only
one value.

If you use a character symbol operator, it must be separated from the variable
name and comparison value by one or more blanks. For example:

IF (&ABC EQ 365)

Chapter 7. Panel definition statement reference 247

IF Statement

Separation of a special symbol operator from the variable name and comparison
value is optional.

IF (&ABC = 365) 1is the same as IF (&ABC=365)

A compound symbol operator, such as <= or NG, must not contain intervening
blanks. For example:

<= cannot be < =

In determining whether the criteria of a conditional expression are met, ISPF uses a
numeric compare if the value of the variable and the value being compared are
whole numbers between —2147483648 and +2147483647. Thus, if &A is set to +1,
the expression IF (&A=1) is evaluated as being true, using the numeric compare. If
the value of the variable and the value being compared are not whole numbers
between —2147483648 and +2147483647, ISPF uses a character compare, using the
EBCDIC collating sequence to evaluate the IF expression. For both numeric and
character compares, trailing blanks are ignored.

Examples of basic value testing:
e IF (&DSN =) — True if variable DSN is null or contains blanks.

* IF (&OPT EQ 1,2,5) — True if variable OPT contains any of the literal values 1,
2, or 5.

* IF (&A GE &B) — True if the value of variable A is greater than or equal to the
value of variable B.

e IF (&A == AAA,BBB) — True if variable A is not equal to AAA and not equal to
BBB.

The IF statement is indentation sensitive. If the conditional expression is true, then
processing continues with the next statement. Otherwise, all following statements
are skipped up to a column-aligned ELSE statement, if one exists, or up to the next
statement that begins in the same column as the IF or in a column to the left of the
IF. Example:

IF (8XYZ = ')
&A - &B
= &PQR
(B = YES)
&c = NO
&D = 8777

In this example, processing skips to statement &D = &ZZZ from either IF
statement if the stated condition is false.

Note that the scope of the IF statement is not terminated by a blank line.

IF statement with VER constructs

The conditional expression on the IF statement now includes VER statement
constructs with one exception: the MSG= parameter is not allowed. The IF
conditional-expression evaluates to TRUE (1) for successful verifications and to
FALSE (0) for failing verifications. See [“The VER statement” on page 268| for
complete explanation of the VER statement. An example of using VER statements
with IF statements:

IF (VER (valid keyword parameters and values))

ELS.E
.MSG = n1d122

248 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

IF Statement

IF (VER (valid keyword parameters and values))

The VER statement can be split over more than one line, but the VER statement
and the left parenthesis of its keyword parameters must be on the same line. This
example is invalid:

IF (VER
(valid keyword parameters and values))

IF statement with VSYM built-in function

The syntax of the panel IF statement supports the VSYM built-in function within
any of the conditional expressions as either the variable on the left side of the
operator or the value on the right side of the operator. The VSYM built-in function
can also be included in the variable on the VER statement specified within an IF
statement.

Examples of the VSYM built-in function in the IF statement:

IF (VSYM(A) = &B)

IF (&A = VSYM(B))

IF (&A = VSYM(B), VSYM(C), &D)
IF (VSYM(A) = &B | VSYM(C) = &D)
IF (VER(VSYM(X),NAME)

IF statement and boolean operators

You can combine two or more conditional expressions on the IF statement. ISPF
evaluates the conditional expressions on the IF statement from left to right, starting
with the first expression and proceeding to the next and subsequent expressions on
the IF statement until processing is complete.

The use of the AND Boolean operator takes precedence over the OR Boolean
operator as shown in these examples.

The number of conditional expressions you can specify on the IF statement is
limited to 255.

The accepted symbols for the Boolean operators are:
* & or AND (AND Boolean operator)

AND processing returns a TRUE result for the IF statement only if all the
conditional expressions evaluate as TRUE.

* | or OR (OR Boolean operator)

OR processing returns a TRUE result for the IF statement if any of the
conditional expressions evaluate as TRUE. Also, for an IF statement to be
evaluated as FALSE, all conditional expressions must be evaluated as FALSE.

The Boolean operators must be separated by a preceding and following blank or
blanks.

Examples of Boolean operators in the IF statement:

e Example 1: Comparison of two expressions using different Boolean operators in
two separate IF statements.

IF (VER (&vara,NB,ALPHA) & VER (&varb,NB,ALPHA))

ELSE

Chapter 7. Panel definition statement reference 249

IF Statement

IF (&varc = 123 OR VER (&vard,NB,NUM))

The first IF statement will be successful only if both VER expressions are
satisfied, while the IF statement under the ELSE will be successful if either of
the expressions on the IF statement are satisfied.

* Example 2: Comparison of three expressions using the AND Boolean operator in
the same IF statement, with additional OR Boolean operators.

IF (VER (&vara,NB,ALPHA) & VER (&varb,NB,ALPHA) &
_&varc = abc,xyz | &vard = 123 | &vard = 456)

ELSE
.msg = n1d123
The IF statement will be successful if the comparisons of the first three
expressions evaluate to TRUE, or if expressions four or five evaluate to TRUE.
* Example 3: Comparison of two pairs of expressions using the AND Boolean
operator combined on the same IF statement by the OR Boolean operator.

IF (VER (&vara,NB,ALPHA) AND &varb = abc OR
VER (&vara,NB,ALPHA) AND &varb = xyz)
ELSE
.msg = nld124

.attr (vara) = 'color(yellow)'
.attr (varb) = 'color(yellow)'

Either of the pairs of expressions must evaluate to TRUE to achieve a successful
IF statement.

e Example 4: Comparison of three expressions showing that the AND operator has
precedence.

IF (Expression-1 OR Expression-2 AND Expression-3)

ELSE
.msg = nld125

Because the IF statement AND Boolean operator has precedence over the IF
statement OR Boolean operator, specifying an IF statement similar to the one
shown might not give you the results you expected.

If you expected the previous statement to be evaluated like this:
IF ((expressionl OR expression2) AND expression3)

You would need to write either two separate IF statements:
IF (Expression-1 OR Expression-2)
IF (Expression-3)
Else
.msg = n1d126

Or two separate comparison pairs:

IF (Expression-1 AND Expression-3 OR
Expression-2 AND Expression-3)

Else
.msg = n1d127

The PANEXIT statement

The ISPF panel user exit provides a way for you to extend the panel language
processing of dialog variables. This processing can include operations such as

250 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

PANEXIT Statement

verification, transformation, translation, and formatting of dialog variables passed
to the panel user exit routine. Performing these operations in a panel user exit
routine reduces the logic required in the ISPF function programs.

Use the PANEXIT statement in a panel’s)INIT,)REINIT, or)PROC section to
invoke the panel user exit. This statement causes ISPF to branch to the panel user
exit routine. When the routine processing completes, control returns to the next
sequential panel language statement.

PANEXIT ((value,value,...),{PGM,exit-add
[,exit-data]l
[,MSG=msgid]
LOAD, exit-mod
[,exit-data]
[,MSG=msgid]
REXX, rexx-name
[,exit-data]
[,MSG=msgid]})

where:

value Specifies the names of dialog variables being passed to the exit.
The string of values, including the parenthesis, cannot exceed 255
characters. The string of values can be represented by the name of
a dialog variable that contains a list of names of variables being
passed to the exit routine.

PGM Keyword that indicates that the exit routine being invoked was
loaded when ISPF loaded the application dialog or was loaded
from the application. The application passes ISPF the address of
the exit routine in exit-add.

exit-add This is the name of a 4-byte, FIXED format dialog variable that
contains the address of the exit routine, which can reside above or
below the 16Mb line. The exit routine receives control in
AMODE=31 mode. This parameter is used in conjunction with the
keyword PGM.

exit-data This is the name of a 4-byte FIXED format dialog variable that
contains a value, such as the address of an information area, to be
passed to the exit routine.

msgid If no message identification is returned to ISPF from the exit
routine, this parameter identifies the message to be displayed if a
variable fails the exit routine evaluation. If this parameter is not
specified, and no message identification is returned from the exit
routine, ISPF issues a generic message indicating that the exit
routine evaluation failed.

LOAD Keyword that indicates that the exit routine is to be loaded
dynamically. The application passes ISPF the module name of the
exit routine that is to be dynamically loaded. The module name is
passed in the exit-mod parm.

exit-mod This parameter identifies the name of the panel user exit routine
module that is to be dynamically loaded by ISPE. The panel user
exit name can be passed as a literal or as a dialog variable that
contains the panel user exit name. This parameter is used in
conjunction with the LOAD keyword.

Chapter 7. Panel definition statement reference 251

PANEXIT Statement

REXX Keyword that indicates the name of the Rexx panel exit that is to
be loaded and run. The exit can be an interpreted Rexx exec or an
exec that was compiled into load module form. Standard search
sequences are used to load the Rexx program.

rexx-name This parameter is the name of the Rexx program that is to be used
as the panel exit. If the exit is an interpreted Rexx exec and might
conflict with an existing load module name, the name can be
preceded by a percent sign (%) to avoid using the load module. If
the REXX program is in load module format, ensure that it was
linked with the MVS stub.

On the PANEXIT statement you can specify that these are passed to the panel user
exit routine:

» A list of dialog variables to be processed by the exit routine in one call. Rules
that apply to the variables being passed are:

— Variable values must be in character format when passed, and must remain in
character format.

— The exit routine can change a variable’s value but it cannot change its length.
Thus, if a dialog uses the VDEFINE service to define any of these variables to
be passed, it should specify the NOBSCAN option. Otherwise, the variable
value’s length is considered to be the length of the actual data with blanks
being ignored.

For implicitly defined variables, the variable length is considered to be the
same as the length of its value.

* A 4-byte area that you can use to pass the address of data to be used by the exit
routine.

* The identification of a message to be issued if a variable fails the exit routine
evaluation. ISPF uses this value to set the .MSG control variable or, in the case of
a panel user exit severe error (RC=20 or invalid value), to set ZERRMSG.

Notes:

1. A panel user exit routine cannot access any dialog variables except those
passed on the call.

2. A panel user exit routine cannot issue requests for any ISPF services.
3. ISPF ignores any PANEXIT statement issued from dialog test option 7.2.

4. A PANEXIT statement cannot be issued from a selection panel that initiates a
dialog before defining the exit address.

5. Although panel exits can be written in Language Environment-conforming
languages, the overhead of initializing Language Environment each time the
exit is called needs to be considered.

Following a successful validation exit, during which one or more dialog variable
values are changed, ISPF updates the values for all dialog variable names included
on the PANEXIT statement. This allows the exit routine to define dialog variables
for cursor field or cursor position, and to return these values to ISPF when an
error has been detected.

How to LOAD the panel user exit routine
If the dialog function routine and the panel user exit routine are separate object
modules, you can load the panel user exit routine by either:

* Linking the exit routine object module to the dialog function object module
containing the display request for the panel from which the PANEXIT statement
is issued. Thus, when ISPF loads the application, it also loads the exit routine.

252 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

PANEXIT Statement

¢ Loading the exit routine from the application and passing to ISPF the address of
the exit routine.

* Letting ISPF load the exit routine dynamically.

How to LOAD a REXX panel exit

REXX panel exits can interpreted Rexx programs or compiled Rexx programs
(CREXX or load modules). ISPF automatically loads the Rexx program by using
standard system interfaces. For non-load module programs, ISPF calls TSO to
pre-process the program. The program remains loaded for as long as the current
screen is active. If you change your Rexx program and want to run the new copy,
you must end any split screens that used the previous copy.

REXX exits receive only one parameter — a hexadecimal representation of the

address of the list of addresses shown in [Figure 68 on page 2541 You can use the

Rexx storage() function to view and modify the parameters that are pointed to b
i

that list, or yvou can use the ISPF function named ISPREXPX, described in
[[SPREXPX to read and modify parameters” on page 256,

Note that you can also code REXX statements directly within the source of a panel.
See [“The *REXX statement” on page 258

Invoking the panel user exit routine

A dialog invokes the panel user exit by issuing the PANEXIT statement from a
panel’s)PROC,)INIT, or)REINIT section. If the LOAD keyword is specified, ISPF
will issue an OS load to bring the load module into virtual storage. ISPF then
invokes the exit routine through a call (BALR 14,15). You must use standard OS
linkage conventions when invoking the panel user exit. The exit routine (called in
AMODE 31) must support 31-bit addressing.

Panel exits can be written in languages that use the Language Environment
runtime environment. However, a mixture of Language Environment-conforming
main dialog code and service routine code is not supported. Dialogs and service
routines must either all be Language Environment-conforming or all be Language
Environment-nonconforming.

ISPF uses the standard parameter list format to pass parameters. Register one
points to a list of addresses; each address points to a different parameter as shown
in [Figure 68 on page 254} See [‘Parameters passed from ISPF to the panel user exit]
froutine” on page 254 for information on these parameters.

Chapter 7. Panel definition statement reference 253

PANEXIT Statement

254

reg 1 —| addr 1 |—> Exit Data
addr 2 |—> Panel Name
addr 3 | Panel Section
addr 4 |—> Message ID
addr 5 |—> Number of Variables
addr 6 [—> Array of Variable Names
addr 7 —> Array of Variable Lengths
addr 8 |— String of Variable Values

Figure 68. Standard parameter list format

The keyword, LOAD, on the PANEXIT panel statement, provides the option of
dynamically loading a panel user exit routine. PGM and LOAD are the only valid
keywords. PGM indicates that a panel user exit using a compiled source is being
invoked. LOAD indicates that the panel user exit routine named by the exit-mod
parameter is to be dynamically loaded by ISPE.

ISPF checks the keyword to determine if the panel user exit routine is to be
dynamically loaded. If it is, ISPF issues an OS load to bring the load module into
virtual storage. The search sequence for link libraries is: job pack area, ISPLLIB,
steplib, link pack area, linklib. See |z/OS ISPF Services Guide| for further discussion
of the search order using LIBDEF.

The panel user exit routine is loaded only once per SELECT level the first time the
panel is displayed. The loaded panel user exit routine is not deleted until the
SELECT, which first displayed the panel, is terminated.

Parameters passed from ISPF to the panel user exit routine
Parameters passed to the panel user exit routine are (in the order passed):

1. Exit Data
The value of the dialog variable identified on the PANEXIT statement to
contain exit data. Its format is a fullword fixed value. If no exit data area is
provided, ISPF passes binary zeros.

2. Panel Name
The name of the panel from which the panel user exit is being invoked. Its
format is CHAR(8), left-justified in the field. ISPF ignores any changes made to
this parameter by the exit routine.

3. Panel Section
A 1-character code that identifies the panel section from which the panel user
exit is being invoked. Its format is CHAR(1). Its value is:
I for the)INIT section
R for the)REINIT section
P for the)PROC section.

4. Message ID
The identification of the message used to set the .MSG value if the variable
evaluation fails. In case of a severe error in the exit routine processing, ISPF
uses this value to set variable ZERRMSG. Its format is CHAR(8). When the exit

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

PANEXIT Statement

routine is invoked, it contains eight blanks (X"40"). On return to ISPF, if the
value in Message ID is not blank, ISPF assumes the value to be a message 1D,
which must be left-justified in the field.

5. Number of Variables
The dimension of the array of variable names and the array of variable lengths
passed to the panel user exit routine. Its format is a fullword fixed value. ISPF
ignores any changes made to this parameter by the exit routine.

6. Array of Variable Names
An array of dialog variable names being passed to the panel user exit routine.
Each array entry has a format of CHAR(S8), left-justified in the array. ISPF
ignores any changes made to this parameter by the exit routine.

7. Array of Variable Lengths
An array of dialog variable lengths being passed to the panel user exit routine.
Each array entry format is a fullword fixed value. If the exit routine is a REXX
routine that uses the ISPREXPX to set and return the variables, then the exit
routine is permitted to increase or decrease the length of any variables passed
back from the exit, except ZRXRC and ZRXMSG. Otherwise, if the exit routine
changes any of the variable length values, a severe error results.

8. String of Variable Values
A character buffer of dialog variable values mapped by the array of variable
lengths and the array of variable names. The length of the buffer is the sum of
the lengths in the array of variable lengths. The exit routine returns updated
dialog variable values to ISPF in this buffer.

Return codes and error processing
Return codes, set in the panel user exit routine, recognized by ISPF are:

0 Successful operation.

8 Exit-defined failure. ISPF sets the .MSG control variable and displays or
redisplays the panel with the message.

20 (or code unrecognized by ISPF)
Severe error in the exit routine.

For an exit routine return code of 8, ISPF sets the .MSG control variable by using
this search order:

1. If the value in the Message ID parameter is not blank on return to ISPF, that
value is used for setting the .MSG control variable.

2. 1If the value in the Message ID parameter is blank on return, the value (if any)
specified for the MSG= keyword on the PANEXIT statement is used for setting
the .MSG control variable.

3. If neither the Message ID parameter nor the MSG= keyword has been given a
value, the default ISPF exit error message is used for setting the .MSG control
variable.

The panel section in which the .MSG control variable is set affects the message
display as follows:

*)INIT or)REINIT section: the message is displayed on the panel.

¢)PROC section: the panel, including the message to be displayed, is redisplayed.

If the return code from the exit routine is either 20 or not one of the recognized

codes, the display service terminates with a severe error condition. ISPF sets the
ZERRMSG system variable by using this search order:

Chapter 7. Panel definition statement reference 255

PANEXIT Statement

256

1. If the value in the Message ID parameter is not blank on return to ISPF, it is
used for setting the ZERRMSG system variable. This allows the exit routine to
define the message to be used in case of a severe error.

2. If the value in the Message ID parameter is blank on return, the value (if any)
specified for the MSG= keyword on the PANEXIT statement is used for setting
the ZERRMSG system variable.

3. If neither the Message ID parameter nor the MSG= keyword has been given a
value, the default ISPF exit error message is used for setting ZERRMSG.

If CONTROL ERRORS CANCEL is in effect, ISPF displays on the severe error
panel the message indicated by the value of ZERRMSG.

Using ISPREXPX to read and modify parameters

A Rexx panel exit receives only the storage address of the standard panel exit
parameter list. Although you can use the standard Rexx storage() function to read
and modify the list, ISPF supplies a program called ISPREXPX to set local Rexx
variables that reflect the information passed to and from the panel exit.

ISPREXPX syntax:

Call ISPREXPX('I') to initialize Rexx variables
Call ISPREXPX('T') to set ISPF variables from the Rexx variables of the
same name

ISPREXPX establishes several variables within the Rexx program. The stem
variable VARNAMES.n contains the names of the variables passed to the program.
ISPREXPX then creates variables of those names, called "named variables”.

The Rexx program must ensure that changes to the variables are done to the
named variables and not to the VARNAMES.n stem variable. For example, if the
PANEXIT statement on the panel passes in a variable named ZDATA, then
ISPREXPX creates a named variable called ZDATA. The Rexx program must refer
to and update that variable. If you do not know the exact name that is specified on
the PANEXIT statement in the panel that calls the Rexx exit, you can get the name
from the VARNAMES.n stem variable and use the INTERPRET instruction to get
and set the actual variable.

A REXX panel exit can only increase or decrease the length of any variables passed
back from the exit to the ISPF dialog by means of the command, ISPREXPX "T".

Variable Explanation

user variables The variables as named in the PANEXIT statement. For example, a
PANEXIT statement like PANEXIT((ZDATA,USER),REXX...) creates
variables ZDATA and USER. Changes to the variables are returned
to ISPFE. If the length changes, the new value is truncated or padded
with blanks as needed to keep the original length.

VARNAMES.0 All of these variables contain the number of variable names passed

VARVALS.0 to the panel exit. Changes to these variables are ignored.

VARLENS.O

MSGID Message ID to set in case of error. It is blank on entry to the exit.
Changes to this variable are used.

PANELNAME The name of the panel being processed. Changes to this variable are
ignored.

PANELSECTION Panel section 'I’, 'R’, or 'P’. Changes to this variable are ignored.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

PANEXIT Statement

Variable Explanation

EXDATA A hexadecimal representation of the address of the user data.
Changes to this variable are ignored, but the program might change
the data to which this address points.

Return codes: These return codes are possible:

0 Normal result. Variables were retrieved or set successfully.
16 Parameter error. Incorrect parameter passed to ISPREXPX.
20 Error. Another error occurred. Most likely there is a failing return code

from a Rexx service called by ISPREXPX.

Example: This sample exit changes the case of all data in the variable ZDATA. It

also overlays the beginning of the variable ZDATA with the string "**REXX**’. The

name ZDATA is used on the PANEXIT statement in the panel source and is

assigned to the variable name VARNAMES.1.

/* REXX panel exit: panexit((zdata),REXX,sample) =/

call ISPREXPX 'i'

zdata=overlay('02'x'#* REXX **''01'x,translate(zdata, ,
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ', ,

'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkImnopgrstuvwxyz'))
call ISPREXPX 't'

Note: You can see how this panel works by saving this example in a REXX library
using the name SAMPLE and changing the Browse panel ISRBROBA to
include this line in the)INIT and)REINIT sections:

panexit((zdata),REXX,sample)

The REFRESH statement

The REFRESH statement provides a means to force specified fields in the panel
body to be retrieved before a redisplay.

|REFRESH (value, value, ...)

where:

value Name of an input or output field in the panel body.

Typically, when a panel is redisplayed, the automatic fetching of variables that
appear in the panel body is bypassed. As a result, all variables are normally
displayed as the user last saw them, even though the variable contents can have
been changed. REFRESH causes the contents of specified fields to be retrieved and
allows the user to see any changes that have occurred since the panel was last
displayed.

The REFRESH statement can appear within the)PROC or)REINIT section of a
panel definition. ISPF flags it as an error if it appears in the)INIT section. When
this statement is encountered, the specified input/output fields within the panel
body are retrieved from the corresponding dialog variables prior to redisplay of
the panel.

A value of * indicates that all input/output fields on the panel are retrieved. You
can omit the parentheses if only one field is refreshed.

¢ Example 1:

Chapter 7. Panel definition statement reference 257

REFRESH statement

) PROC
IF (.MSG -= ')

&STMT = 'Correct invalid field and press Enter key'.
IF (.MSG = ' ')

&STMT = ' !

REFRESH STMT

If the panel is displayed again and if the control variable .MSG is set to
nonblank in the)PROC section, the panel field STMT is reset to Correct the ...
Enter key. Otherwise, the field is set to blank.

* Example 2:

YREINIT
REFRESH(SEL, RENAME)

Both panel fields SEL and RENAME are reset with their current values before
any redisplay.
* Example 3:

YREINIT
REFRESH (%)

All of the panel fields are reset to their current values.
* Example 4:

YREINIT
REFRESH (&RVARS)

The variable RVARS will contain a list of one or more panel fields to be
refreshed.

A field that is refreshed on the screen remains unchanged for multiple redisplays
unless it is again refreshed.

The *REXX statement

The *REXX statement is used to invoke REXX code in a panel’s)INIT,)REINIT, or
)PROC section. The REXX can be coded within the panel source immediately after
the *REXX statement, or the name of a member containing a REXX program can be
supplied.

|*REXX[([*,]value,vaZue, «..[, (member)])]

where:

* Specifies that all the dialog variables defined in the panel)BODY
section are to be passed to the REXX code for processing.

value Specifies the names of dialog variables passed to the REXX code
for processing.

member Specifies the name of a member in the standard search sequences

used to load REXX programs. This member can contain interpreted
REXX or compiled REXX. Compiled REXX can be either the output
generated by the REXX compiler when using the CEXEC option or
a load module generated when link-editing the output generated
by the REXX compiler when using the OBJECT option.

258 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

*REXX statement

Notes:

1. The string of values, including the parentheses, cannot exceed 255 characters.
The string of values can be represented by the name of a dialog variable
containing a list of variables being passed to the REXX code.

2. The REXX code within a panel procedure is stored in an internal table which
contains the statements for the)INIT,)REINIT, JAREA, and)PROC sections of
the panel. The size of this table is limited to 64K, so a large number of REXX
statements coded directly within a panel procedure could cause this table to
overflow, resulting in error message ISPP321. If this error occurs, consider using
the (member) option on the *REXX statement so the REXX is loaded from a
member in the standard search sequences used for REXX programs.

3. When the REXX program has been compiled into load module format, it needs
to have been linked with the MVS stub.

4. The REXX code cannot access any dialog variables except those specified on the
*REXX statement.

5. The REXX code cannot issue requests for any ISPF services.

6. REXX coded within the panel source must be terminated by a *ENDREXX
statement.

Processing ISPF dialog variables with panel REXX

ISPF dialog variable can be processed by panel REXX code. Dialog variables are
made available to the REXX code via the parameters specified on the *REXX
statement:

* Specifying * as the first parameter causes all the dialog variables associated with
the input and output fields on the panel to be passed to the panel REXX code.

* Specifying a dialog variable name causes that dialog variable to be passed to the
REXX code.

These rules apply to the dialog variables passed to panel REXX:

* The variable values must be in character format when passed, and must remain
in character format.

* Panel REXX can change the value of a variable but it cannot change its length.

 For implicitly defined variables that are fields on the panel, the length of the
associated REXX variable is the larger of the length of the panel field and the
length of the variable’s value.

For other implicitly defined variables, the variable length is considered to be the
same as the length of its value.

ISPPRXVP: dialog variable processor for panel REXX: The ISPF module
ISPPRXVP is used to make ISPF dialog variables available to panel REXX, and to
update the dialog variables after they have been processed by panel REXX.

When the panel REXX is interpreted REXX (that is, the REXX statements are coded
directly in a panel procedure or the member specified on *REXX statement
contains interpreted REXX) ISPF creates calls to ISPPRXVP to perform these tasks:

* Set up corresponding REXX variables for the ISPF dialog variables before the
panel REXX is invoked

* Update the ISPF dialog variables with any changes made by the panel REXX
after it has finished.

This is done by ISPF generating these REXX statements before and after the
supplied panel REXX code:

Chapter 7. Panel definition statement reference 259

*REXX statement

Call ISPPRXVP 'I'
If rc!=0 then do
say 'ISPPRXVP Init failed rc=' rc
Return
End
Call p_01A2B3CO
Call ISPPRXVP 'T'
If rc!=0 then
say 'ISPPRXVP Term failed rc=' rc
Return
P_01A2B3C0O:

panel REXX code

'Return
(Bold text indicates REXX generated by ISPF.)

Note: The 11 lines of REXX code generated by ISPF before the supplied panel
REXX and the line of REXX code generated by ISPF after the supplied panel
REXX will affect the results obtained from the SOURCELINE function. For
example using SOURCELINE() in interpreted panel REXX returns a value
that is 12 more than the number of source lines of panel REXX.

— Interpreted panel REXX and the EXIT statement
If the interpreted panel REXX code uses the EXIT statement to terminate
REXX processing, the termination call to ISPPRXVP generated by ISPF will
not be executed. Therefore, any changes made to REXX variables will not be
applied to the corresponding ISPF dialog variables. If you need to use the
EXIT statement in your panel REXX and you want changes applied to the
ISPF dialog variables, ensure a termination call to ISPPRXVP (that is,

Call ISPPRXVP 'T') is run before the EXIT statement.

When the panel REXX is compiled REXX, ISPF does not create these initialization
and termination calls to ISPPRXVP. Therefore, panel developers must include these
calls in their panel REXX code.

Return codes and error processing

ISPF provides these system dialog variables for return code and error processing in
panel REXX:

ZRXRC Available for panel REXX to pass a return code back to ISPE
Length is 2 bytes. The corresponding REXX variable is initialized
with a value of 0.

ZRXMSG Available for panel REXX to provide a message ID used to set the
.MSG value. Length is 8 bytes. The corresponding REXX variable is
initialized with a value of 8 blanks.

ISPF recognizes these return codes passed back by panel REXX in the dialog
variable ZRXRC:
0 Successful operation.

8 Panel REXX defined failure. ISPF sets the .MSG control variable and displays
or redisplays the panel with the message.

260 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

*REXX statement

20 Severe error in the panel REXX.

Any other return code not recognized by ISPF is treated as a severe error in the
panel REXX.

When control returns to ISPF after the panel REXX has executed, if ZRXRC
contains a return code of 8, ISPF sets the .MSG control variable using this search
order:

1. If the value in ZRXMSG is not blank on return to ISPF, that value is used to set
the .MSG control variable.

2. If the value in ZRXMSG is blank on return, the default ISPF panel REXX error
message ISPP335 is used to set the .MSG control variable.

The panel section in which the .MSG control variable is set affects the message
display as follows:

e)INIT or)REINIT section: The message is displayed on the panel.
*)PROC section: The panel, including the message to be displayed, is redisplayed.

If the return code in ZRXRC is either 20 or is not one of the recognized codes, the
display service terminates with a severe error condition. ISPF sets the ZERRMSG
system variable using this search order:

1. If the value in ZRXMSG is not blank when control returns to ISPF, it is used to
set the ZERRMSG system variable. This allows the panel REXX to define the
message to be used in case of a severe error.

2. If the value in ZRXMSG is blank when control returns to ISPF, ZERRMSG is set
to ISPP336. This is the default ISPF message for severe errors relating to panel
REXX.

If CONTROL ERRORS CANCEL is in effect, ISPF displays on the severe error
panel the message indicated by the value of ZERRMSG.

An example of using panel REXX

The panel shown demonstrates the use of the *REXX statement to invoke REXX
code from the)INIT and)PROC sections. The application displays cost, tax, and
sales commission values for an order quote.

Chapter 7. Panel definition statement reference 261

*REXX statement

262

) PANEL
)ATTR DEFAULT (%+) FORMAT (MIX)
~ TYPE(PT)
> TYPE(PIN)
TYPE(FP)
TYPE(NT)
TYPE (NEF)
TYPE(NEF) JUST(RIGHT)
TYPE(VOI) JUST(RIGHT)
)BODY WINDOW(70,20) CMD(ZCMD)

* = N D@ —

e “Widget Order Quotes@

ICommand ===>%Z e
@

“Enter the number of widgets to be ordered and the quoted price.
@

INumber of Widgets. . .#Z @

1Quoted Price #Z @

@

ITotal Cost ex Tax. . .*Z e

ITotal Tax. *7 (€

ITotal Cost *7 e

@

1Sales Commission . . .*Z @

@

)INIT

.ZVARS = '(ZCMD NWIDGETS QPRICE TCSTXTAX TOTTAX TOTCOST SCOMM)'
/* Call REXX routine VALUSER to validate the user is allowed to use
/* this application.
*REXX (ZPANELID,ZUSER, (VALUSER))
/* 1f the user is not allowed, display a message and protect the
/* input fields.
IF (.MSG -= &Z)
.ATTRCHAR(#) = 'TYPE(LI)"'
) PROC
/* Call REXX routine VALUSER to validate the user is allowed to use
/* this application.
*REXX (ZPANELID,ZUSER, (VALUSER))
/* If the user is not allowed, display a message and protect the
/* input fields.
IF (.MSG -= 8&Z)
.ATTRCHAR(#) = 'TYPE(LI)'
EXIT

Figure 69. Panel REXX example (Part 1 of 3)

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

*/
*/

*/
*/

*/
*/

*/
*/

/* Initialize the cursor position variable.
&CPOS = '----m---
&HPRICE = '
&LPRICE

*REXX statement

*/

/* Invoke panel REXX to validate input and calculate quote values. */

REXX (,CPOS, LPRICE,HPRICE)

Trace 0

upper zcmd

cpos = "'ZCMD'"
/**/
/* If the CLR command is entered in the command field, */
/* clear all input/output fields and return to redisplay */
/* the panel. */

/**/

If zecmd = 'CLR' then do

nwidgets = "'

gprice = "'!

call Clear_Output

return
End
/**/
/* Ensure the output fields are cleared. */
[gk ek ke ok koK T Fkkkkkkkkkkkhkkhhkxk [

Call Clear_Output
/**/
/* Verify the value entered for the number of widgets is */
/* a positive whole number. */
/**/
if datatype(nwidgets,'N’) =0 |,

pos('.',nwidgets) -=

pos('-',nwidgets) -= 0 then do

cpos = 'NWIDGETS'

zrxmsg = 'TPRX0OL'

zrxrc =8

return
end
R R R R R 2 R R e E oL *xk [
/* Verify the quoted price is a monetary value. */

/**/
gprice = strip(qprice)
if substr(gprice,1,1) = '$§' then
gprice = substr(qprice, 2)
if datatype(gprice,'N') =
(pos('.",gprice) = 0 & ((1ength(qpr1ce) - pos('.',gprice))

cpos = 'QPRICE '

zrxmsg = 'TPRX002'

zrxrc =8

return
end
/**/
/* Verify the quoted price is above the lowest possible */
/* value. x/

/**/
Tprice = 12.50
if gprice < Iprice then do

cpos = 'QPRICE '
zrxmsg = 'TPRX003'
Tprice = '$'||1price
zrxrc =8
return

end

Figure 69. Panel REXX example (Part 2 of 3)

Chapter 7. Panel definition statement reference

> 2)) then do

263

*REXX statement

/**/
/* Verify the quoted price is above the highest possible x/
/* value. */
[Fk Kk dkk ok dkk ko k ok ok k ok kk ko k ko k ok ko k ko k ko k ok kkk ko kk ko kok ko k kKo k kK /
hprice = 25.00

if gprice > hprice then do

cpos = 'QPRICE '

zrxmsg = 'TPRX004'

hprice = '$'||hprice

zrxrc =8

return
end
/**/
/* Calculate the total pre-tax cost. */

/**/
tcstxtax = format(nwidgets*qprice,5,2)
/**/
/* Calculate the total sales tax at a rate of 6.25%. */
/**/
tottax = format(tcstxtax*0.0625,5,2)
/**/

/* Calculate the total cost after tax. */

totcost = format(tcstxtax+tottax,5,2)

/**/
/* Calculate the sales commission at a rate of 12.5% of the */
/* profit. */
/**/

scomm = format((tcstxtax-(nwidgets*Iprice))*0.125,5,2)

/* Format the output fields for display. */

/**/

gprice = '$'||strip(gprice)

testxtax = '$'||strip(tcstxtax)

totcost = '§'|[|strip(totcost)

tottax = '$'||strip(tottax)

scomm = '$'||strip(scomm)

return
/**/
/* This routine clears the output fields. */

/**/
clear_output:

tcstxtax
tottax
totcost =
zcmd
scomm
return
*ENDREXX
IF (.MSG -= &Z)

.CURSOR = &CPOS

REFRESH (*)
ELSE

.CURSOR = ZCMD
/% IF (.MSG —= &Z AND .MSG NE TPRX00O AND &ZVERB NE CANCEL) .RESP = ENTER =/
)END

Figure 69. Panel REXX example (Part 3 of 3)

The user of this application enters the number of widgets to be ordered and the
price quoted to the customer. The panel REXX coded directly in the)PROC section
receives all the panel input and output fields for processing. It also receives the
CPOS variable used to set the cursor position, and the LPRICE and HPRICE
variables used to check that the quoted price is in a valid range. This panel REXX
performs these functions:

264 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

*REXX statement

* Validates the values entered by the user. If any values are invalid, variable
ZRXRC is set to 8, the appropriate error message ID is set in variable ZRXMSG,
the appropriate field name is stored in the variable CPOS, and control is
returned to ISPE.

* Calculates and formats the values displayed for the cost (ex tax), tax, total cost,
and sales commission.

* Checks if the user has entered 'CLR’ in the command. If so, all the input/output
fields on the panel are set to blanks.

The panel REXX routine in member VALUSER is invoked in the)INIT and)PROC
sections. This routine receives the system variables ZPANELID and ZUSER and
checks if the user is allowed to use the panel. This is the REXX code for VALUSER:

/**/

/% Call ISPPRXVP to get the ISPF dialog variables into =/
/% REXX. x/

/**/

Call ISPPRXVP 'I'

/**/
/* This common REXX routine checks whether the user is =/

/* allowed to use the panel being displayed. */
/**/
say 'zpanelid = ' zpanelid

say 'zuser = ' zuser

found = 0

users = '!
/**/
/* Set up the user 1ist based on the panel Id. */

/**/
if zpanelid = 'SQUOTE' then

users = 'ADAMS MITCHELL JACKSON JAMES JONES WEBSTER'
else
if zpanelid = 'PORDER' then

users = 'BRADLEY CONNOR EVANS PRINCE WALLS'
else
if zpanelid = "INVENTRY' then

users = 'BAXTER HILL NELSON SWAN WILSON'
/**/
/* Check that the user Id is in the user Tlist. */
/**/
do i = 1 to words(users)

if zuser = word(users,i) then do

found =1
leave

end
end
/**/
/* If not found, pass back error message TPRX009 in */
/* dialog variable ZRXMSG and set a return code of 8 */
/* in dialog variable ZRXRC. */
[k gk ke kok ok k ok ke ok ok ok ok k ok ok ok ko kKK xR T IR Rk hh ko krhh kKK Kk *kkkkk [
if =found then do

zrxmsg = 'TPRX009'

zrxrc =8
end
/**/
/* Call ISPPRXVP to get update the ISPF dialog */
/* variables with the changes made in this REXX. */

/**/

Call ISPPRXVP 'T'
Return

Figure 70. Sample member VALUSER to invoke panel REXX

Chapter 7. Panel definition statement reference 265

*REXX statement

Member VALUSER contains compiled REXX, so processing commences with a call
to ISPPRXVP to initialize REXX variables for the ISPF dialog variables ZPANELID,
ZUSER, ZRXRC and ZRXMSG. Before returning to ISPF there is also a call to
ISPPRXVP to update these dialog variables with the values in the corresponding
REXX variables.

These are the messages used by this application:

TPRX001 'Invalid number ' .TYPE=N NOKANA

'The value entered is not a positive whole number.'

TPRX002 'Invalid price ' .TYPE=N NOKANA

'The value entered is not in the form $xx.yy'

TPRX003 'Quoted price too Tow ' .TYPE=N NOKANA

'The quoted price cannot be lower than &LPRICE'

TPRX004 'Quoted price too high ' .TYPE=N NOKANA

'The quoted price cannot be greater than &HPRICE'

TPRX009 'Not available ' .TYPE=A .W=NORESP NOKANA

'This application is not available to user &ZUSER'

Panel REXX example supplied with ISPF: The member ISRVCALP in the ISPF
panel library contains a panel which makes use of panel REXX. The)INIT
procedure section of the panel contains a *REXX statement which invokes the
REXX in member ISRVCHIL in the ISPF REXX exec library. This panel REXX code
is used to enable color highlighting of the entries in the trace data set generated by
the ISPVCALL utility. ISPVCALL is used by the ISPF product support team to
assist in debugging customer reported problems.

The TOG statement

Use the TOG statement to alternate the value of a variable between two values.

|TOG(mode,fld,&variable[, valuel,value?])

where:

mode Mode in which TOG is to function:
* S—single, used for pull-downs and single-choice selection fields.
¢ M—multiple, used for multiple choice selection fields.

fld Panel field used to determine whether &variable alternates.

&variable
Variable whose value may alternate between valuel and value2.

valuel Value &variable receives if &variable is not equal to valuel. The default is
0. Valuel can be a dialog variable or literal.

value2 Value &variable receives if &variable is equal to valuel. The default is 1.
Value2 can be a dialog variable or literal.

Examples:

Valuel = 0
Value2 =1

IF &variable
&variable

ELSE
&variable

Value2
Valuel

Value2

The statement accepts numeric or alphabetic values. A numeric compare is
performed on numeric data. When scan encounters a comma (even if it is followed

266 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

TOG statement

immediately by an another comma or a right parenthesis) it assumes a value is
given. The TOG value will be assigned a blank in this case. For example:
TOG(S,f1dl,test,) valuel = ' ' value2 =1

TOG(S,f1d1,test,,) valuel "' value2 vt
TOG(S,f1d1,test) valuel = 0 value2

1 (both will use defaults)

If the TOG is in single mode, a check is made to determine if the data has been
modified. If it has been modified, then the TOG is performed.

If the TOG is in multiple mode, and a check determines that the data has been
modified, then:

e If the field contained a character at the last display and it has not been changed
to a blank, the TOG is not performed.

o If the field contained a blank and now contains a character, the TOG is
performed.

This is to ensure the selection is not deselected by a different character. Only by
blanking the field should the variable be deselected.

The TOG statement example in uses both single and multiple mode
combinations. The single mode TOG statements are prefaced with IF statements
and are performed based on the IF statement condition. The multiple mode TOG
statements are not conditional. They are performed with each pass through this
processing section.

)PROC
IF (&CLS = 1)

TOG (S,CLS,&CHSPORT,'0",'1")
IF (&CLS = 2)

TOG (S,CLS,&CHSEDAN,'0",'1")
IF (&CLS = 3)

TOG (S,CLS,&CHLUXRY,'0",'1")
IF (&PERFMOD ~= ' ')

&PERFMOD = '/°

&PERFORM = 'MODERATE'

ELSE &PERFORM = '0'
TOG (M,PERFMOD,&CHPERFO0,'0"','1")
IF (&PERFSUP ~= ' ')

&PERFSUP = '/'

&PERFORM = 'SUPER'
ELSE &PERFORM = '@’
TOG (M,PERFSUP,&CHSUPER,'0','1")
IF (&PERFULT ~= ' ')

&PERFULT = '/'

&PERFORM = 'ULTRA'
ELSE &PERFORM = '@’
TOG (M,PERFULT,&CHULTRA,'0','1")
)END

Figure 71. TOG statement example

The VEDIT statement

The VEDIT statement identifies the variables on which ISPF must do mask
validation. The VEDIT statement should precede all other)PROC statements that
involve variables, such as the VER statement or the VPUT statement. It must
precede any statements that refer to a VMASKed variable. A VEDIT statement
must be coded for all masked variables defined in the panel. An example is shown
in [Figure 72 on page 268

|VEDIT (variable [,MSG=value])

Chapter 7. Panel definition statement reference 267

VEDIT statement

where:

variable
Specifies the name of a dialog variable, whose value is to be verified against
the mask pattern specified by the VMASK service.

MSG=value
Optional. Can be set to a message ID in the processing section to cause a
message to be displayed.

JATTR DEFAULT(%+_)
@ TYPE(INPUT) INTENS(LOW)

)BODY

R i e TEST PANEL--=--=--mmmmm e e
%COMMAND ===> ZCMD

+ PHONE %===>QCVAR + (999)999-999
+ TIME %===>@FVAR + HH :MM

+

+

+

+

+ Press%ENTER+to leave this panel
)INIT

)PROC

VEDIT (CVAR)
VEDIT (FVAR)
)END

Figure 72. VEDIT example

The VER statement

Use the verify statement, VER, to check that the current value of a variable meets
some criteria. Typically, it is used in the processing section to verify the data stored
in a dialog variable. Verification of an input variable value is performed after the
value has been stored in the variable pool. The current rules for padding,

ustification, and VDEFINE apply to the value stored in the pool. [Table 15 on pagd
and the associated text describe the types of verification provided by ISPF.

The syntax of the VER statement supports the VSYM built-in function in the
variable parameter. In addition, the verification processing for the types DSNAME,
DSNAMEF, DSNAMEFM, DSNAMEPQ, and DDSNAMEQ resolves system
symbols within the variable name and updates the variable in the panel field.
Therefore, there is no need to include VSYM within the variable parameter on the
VER statement when you specify any one of these DSNAME types.

Example:
VER(VSYM(X) ,NAME ,MSG=ABC123)

268 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

VER statement

Table 15. Types of verification provided by ISPF

VER (variable [NONBLANK] keyword [,MSG=value])
ALPHA
ALPHAB
BIT
DBCS
DSNAME
DSNAMEF
DSNAMEFM
DSNAMEPQ
DSNAMEQ
EBCDIC
ENUM
FILEID
HEX
IDATE
INCLUDE[,IMBLK] ,valuel[,value?]
IPADDR4
ITIME
JDATE
JSTD
LEN,relational-operator,expected-length
LIST,valuel[valuel...]
LISTV,varlist
LISTVX,varlist
LISTX,valuel,value2,...
MIX
NAME
NAMEF
NUM
PICT,string
PICTCN,mask-character,field-mask,string
RANGE, lower, upper
STDDATE
STDTIME

where:

variable
Name of the variable to be checked.

NONBLANK
Optional keyword. Specifies that the variable must contain a value and not all
blanks. NONBLANK, or NB, can be specified with another type verification,
such as ALPHA, NUM, or HEX. Do this by specifying the NONBLANK
keyword after the variable name but before the other keyword. Example:

VER (&A,NB,PICT,NNN-NNNN)

is equivalent to:

VER (&A,NONBLANK)
VER (&A,PICT,NNN-NNNN)

If the variable does not meet the verification criteria, ISPF displays a message.
The message can be specified in the MSG=value parameter, where value is a
message ID. If no message is specified, an ISPF-supplied message is displayed,
based on the type of verification. Even if a VER fails, processing of the panel’s
)PROC and)REINIT statements is performed.

keyword
Specifies the verification criteria. One of these keywords must be specified:

Chapter 7. Panel definition statement reference 269

VER statement

ALPHA

The variable must contain only lowercase or uppercase alphabetic
characters (A-Z, a-z, #, $, or @). Blanks are not allowed.

ALPHAB

The variable must contain only lowercase or uppercase alphabetic
characters (A-Z or a-z). Blanks are not allowed.

The variable must contain all zeros and ones.

DBCS

The variable must contain only valid DBCS characters.

DSNAME

The variable must contain a valid TSO data set name. A data set name
qualifier must begin with an alphabetic character (A-Z, $, @, or #). The
remaining characters must be either uppercase alphanumeric or a hyphen
(-). A period is used to connect each qualifier in the data set name.

ISPF first determines if the TSO/E NOPREFIX PROFILE option is in use. If
it is, ISPF does use a prefix in the calculation of the data set length. A
maximum of 44 characters can be entered for a data set name, if that data
set name is enclosed in quotes. If the TSO/E NOPREFIX PROFILE option
is in use, a maximum of 44 characters can be entered for a data set name
when it is not enclosed within quotes. If the TSO/E NOPREFIX PROFILE
option is not in use, a maximum of 42 characters can be entered for a data
set name, not enclosed in quotes. ISPF uses the minimum data set prefix of
two characters (one character and a period separator) during its calculation
of the data set name length.

Note: The verification processing for DSNAME resolves system symbols
within the variable name and updates the variable in the panel field.
Therefore, when you specify the verification type DSNAME, there is
no need to include VSYM within the variable parameter on the VER
statement.

DSNAMEF

This parameter provides the same function as DSNAME with the
additional feature that asterisks (*) and percent signs (%) can be used
within the qualifiers. You can use DSNAMEEF to filter a list of data sets.

A single asterisk within a qualifier indicates that zero or more characters
can occupy that position. Consecutive asterisks are not valid within a
qualifier.

A single percent sign indicates that any one alphanumeric or national
character can occupy that position. One to eight percent signs can be
specified in each qualifier.

Note: The verification processing for DSNAMEF resolves system symbols
within the variable name and updates the variable in the panel field.
Therefore, when you specify the verification type DSNAMEEF, there
is no need to include VSYM within the variable parameter on the
VER statement.

DSNAMEFM

This parameter provides the same function as DSNAMEEF, but asterisks (*)
and percent signs (%) can only be used within a member name, not within
the qualifiers. You can use DSNAMEFM to filter members in a data set.

270 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

VER statement

A single asterisk within a member name indicates that zero or more
characters can occupy that position.

A single percent sign indicates that any one alphanumeric or national
character can occupy that position. One to eight percent signs can be
specified in each member name.

Note: The verification processing for DSNAMEFM resolves system
symbols within the variable name and updates the variable in the
panel field. Therefore, when you specify the verification type
DSNAMEEFM, there is no need to include VSYM within the variable
parameter on the VER statement.

DSNAMEPQ

This parameter provides the same function as DSNAMEQ, except if the
TSO data set name starts with a parenthesis and no closing parenthesis is
found, DSNAMEPQ adds the closing parenthesis and the end quote.

Note: The verification processing for DSNAMEPQ resolves system
symbols within the variable name and updates the variable in the
panel field. Therefore, when you specify the verification type
DSNAMEPQ, there is no need to include VSYM within the variable
parameter on the VER statement.

DSNAMEQ
This parameter provides the same function as DSNAME with the
additional feature that if the TSO data set name starts with a quotation
mark and no ending quotation mark is found, DSNAMEQ adds the ending
quotation mark for you.

Note: The verification processing for DSNAMEQ resolves system symbols
within the variable name and updates the variable in the panel field.
Therefore, when you specify the verification type DSNAMEQ, there
is no need to include VSYM within the variable parameter on the
VER statement.

EBCDIC
The variable must contain only valid EBCDIC characters.

ENUM
The variable can contain, in addition to numeric characters:
Plus sign (+)
Negative number indicators
Delimiter symbols
Decimal symbol (.)
Certain national language decimal symbol (,).

ISPF ignores leading blanks. Blanks between characters (except the French
language delimiter) and trailing blanks are not allowed. This includes
blanks between leading or trailing signs and the adjacent character. Use of
any characters other than those listed results in ISPF issuing an appropriate
error message.

The ENUM parameter allows verification of a numeric variable that has
been expressed in a more natural style. ISPF verifies variable values for
correct decimal and comma notation plus correct sign placement.

Chapter 7. Panel definition statement reference 271

VER statement

Negative number indicators include a leading or trailing minus sign and a
number enclosed by parentheses. The decimal and delimiter symbols can
vary according to national language. The negative number indicators are
common to all national languages.

Use of delimiter symbols is optional. However, if they are used, ISPF
validates the delimiter symbols beginning at the left-most symbol that it
finds in the variable being verified. In case of an invalid placement or
omission of a delimiter symbol, ISPF issues an appropriate error message.

Use of the decimal symbol is optional. A maximum of one decimal symbol
is allowed. If used, the decimal must be correctly placed in relation to any
delimiter symbols used. Delimiter symbols are not allowed to the right of a
decimal symbol. In case of an invalid placement of a decimal symbol, ISPF
issues an appropriate error message. illustrates decimal and
delimiter symbol use for each of the national languages supported by ISPF.

Table 16. Decimal and delimiter symbols

Language Whole Fractional
Danish 999,999.88 0.789
English 999,999.88 0.789
French 999.999,88 0,789
German 999.999,88 0,789
Ttalian 999.999,88 0,789
Japanese 999,999.88 0.789
Korean 999,999.88 0.789
Portuguese 999.999,88 0,789
Spanish 999.999,88 0,789
Traditional Chinese 999,999.88 0.789
Simplified Chinese 999,999.88 0.789
Swiss-German 999.999,88 0,789

The variable being verified can contain leading blanks. Any trailing blanks
in the variable’s value in the variable pool cause a verify error condition.
Trailing blanks result from defining the variable by using the VDEFINE
service with the NOBSCAN option specified. These trailing blanks are not
overlaid when the variable is updated by a panel operation if the
corresponding panel field has a justification attribute of LEFT or ASIS.

Note: ISPF treats fields containing the nonnumeric characters allowed
when using VER ENUM as character fields. To use these fields in
numeric operations, an installation can need to provide a routine to
convert the fields from character to numeric data. The ISPF
VDEFINE exit routine is one option available for incorporating these
conversion routines.

shows examples of results when verifying variable values
(English) with the ENUM keyword specified.

Table 17. Verifying variable values with the ENUM keyword specified

Value Results Reason

+2574 Valid Leading plus sign is allowed

272 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

VER statement

Table 17. Verifying variable values with the ENUM keyword specified (continued)

Value Results Reason

-2574 Valid Leading minus sign allowed

25.74 Valid Decimal allowed

2574 Valid Leading decimal allowed

2,574 Valid Delimiter character allowed (but not required)

(2,574) Valid Alternate method of showing a negative value
allowed

2574- Valid Trailing minus sign allowed

2574+ Invalid Trailing plus sign not allowed

-2574- Invalid Double negative indication not allowed

(2,574) Invalid Two errors; blanks not allowed between either sign
indicator and the adjacent character

35,543785 Invalid If used, the delimiter character must be inserted at
every appropriate point (35,543,785)

4,5932.673 Invalid Delimiter must be positioned in relation to decimal
(45,932.673)

33.452.78 Invalid Only one decimal allowed in numeric field

8.364,798 Invalid Delimiter not allowed to right of decimal

FILEID

The variable must contain a valid file ID in CMS syntax. The file name and
file type, if given, must be from 1-8 alphanumeric characters, including
A-Z,0-9, $, #, @, +, - (hyphen), : (colon), and _ (underscore). The filemode
must be a single letter (A-Z), optionally followed by a single digit (0-9). In
addition, one or more fields of the fileid can be an asterisk (*) or a string of
characters followed by an asterisk. For example:

trx status All files having a file name beginning with the letters tr
and having a file type of status.
* exec All files having a file type of exec.
HEX
The variable must contain only hexadecimal characters (0-9, A-F, a-f).
IDATE

The international date (IDATE) format contains 8 characters, including the
national language date delimiter. The format represents a date expressed in
a 2-digit year (YY), month (MM), and day (DD). Valid values for YY are
00-99. Valid values for MM are 01-12. Valid values for DD are 01-31. ISPF
verifies for a valid date and national language date delimiter. For the
United States, the format is YY/MM/DD.

INCLUDE [, IMBLK],valuell,value2]
Defines a list of value parameters, each specifying the character types a
verify field is allowed to contain.

IMBLK
Optional positional subparameter. Indicates that the variable is allowed
to contain embedded blanks. Any leading or trailing blank characters
are ignored.

valuel,value2
Specifies ALPHA, ALPHAB, or NUM; at least one value must be

Chapter 7. Panel definition statement reference 273

VER statement

specified. The specification of two different values are combined and
indicate to ISPF that the field can contain data of either type. ISPF
issues an error message if more than two values are specified.

Example:

)PROC
VER (&vara,NB, INCLUDE, IMBLK,ALPHAB,NUM,MSG=NSL001)
VER (&varb,NB, INCLUDE, IMBLK,NUM,MSG=NSL0O02)
VER (&varc,NB,INCLUDE,ALPHA,NUM,MSG=NSLO0O3)

This example illustrates that the variable vara can contain any alphabetic
(A-Z or a-z) or numeric character as well as embedded blanks; varb can
contain numeric characters only and embedded blanks; and variable varc
can only contain alphabetic characters (A-Z, a-z, #, $, or @) and numeric
characters (0-9), but no embedded blanks.

IPADDR4

The variable must contain a valid IP (Internet Protocol) address in dotted
decimal notation (as the decimal representation of four 8-bit values,
concatenated with dots). For example, 128.2.7.9 is a valid IP version 4
address. The first octet (8-bit value) can range from 0 to 223 in decimal
notation. The remaining three octets of the IP version 4 address can range
from 0 to 255 in decimal notation. IPADDR4 verifies standard IP version 4
IP addresses. IPADDR4 does not support Classless Inter-Domain Routing
(CIDR) notation.

ITIME

The international date (ITIME) format contains 5 characters, including the
national language time delimiter. The format represents a date expressed in
a 2-digit hour (HH), and a 2-digit minute (MM). Valid values for HH are
00-23. Valid values for MM are 00-59. For the United States, the format is
HH:MM.

JDATE

The Julian date (JDATE) format contains 6 characters, including the period
(.) delimiter. The format represents a date expressed in a 2-digit year (YY),
and a 3-digit day of the year (DDD). Valid values for YY are 00-99. Valid
values for DDD are 001-365 (or 001-366 for leap years). The format is
YY.DDD.

JSTD

The Julian standard date (JSTD) format contains 8 characters, including the
period (.) delimiter. The format represents a date expressed in a 4-digit
year (YYYY), and a 3-digit day of the year (DDD). Valid values for YYYY
are 0000-9999. Valid values for DDD are 001-365 (or 001-366 for leap years).
The format is YYYY.DDD.

LEN,relational-operator,expected-length

The length of the variable (number of characters) must satisfy the
condition expressed by the relational operator and expected length.

You can use the LEN function in a panel’s)INIT,)REINIT, or)PROC
section to verify the number of characters (bytes) in a variable that is
currently residing in the variable pool.

For DBCS character strings the number of bytes in the string is twice the
number of characters.

274 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

VER statement

relational-operator
Valid relational operators are:

= or EQ Equal to

<orLT Less than

> or GT Greater than

<= or LE Less than or equal
>= or GE Greater than or equal
-= or NE Not equal

=> or NG Not greater than

=< or NL Not less than.

You can specify the relational operator either as a special symbol (=, <,
and so forth) or as a character symbol (EQ, LT, and so forth) expressed
in uppercase. A relational operator can be expressed either as a literal
value (remember to enclose special symbol values in quotes) or as a
dialog variable containing the value.

expected-length
The expected-length operand is a positive number having a maximum
of 5 characters, with which ISPF compares the number of characters in
the variable data. Like the relational operator, the expected-length
operand can be expressed as a literal value or as a dialog variable
containing the value.

Example:
VER (&NAME,LEN,'<=",8)

This statement verifies that the number of characters defining the value
of variable &NAME is less than or equal to 8.

Example:
VER (&NAME,LEN,NG,&SIZE)

This statement verifies that the number of characters defining the value
of variable &NAME is not greater than the value of dialog variable
&SIZE

When input fields are stored in their corresponding dialog variables,
any keyed leading or trailing pad characters associated with right or
left justification of the variable field are deleted before being stored.

The length of a variable, used by ISPF for comparison, is the total
number of characters in the variable as it is currently stored in the
variable pool. Thus, for a variable created using the VDEFINE service
with NOBSCAN specified, any trailing blanks are included in the
length value used for comparison.

If a variable has been defined using the VDEFINE service but currently
has no value, ISPF uses a length value of zero for comparison.

LIST,valuel,value2, ...
The variable must contain one of the listed values. The maximum number
of listed values allowed is 100.

LISTV,varlist
Allows the use of a variable containing a list of values to be used for
variable field verification.

Chapter 7. Panel definition statement reference 275

VER statement

varlist
When defined within the panel, this is the name of a variable,
preceded by an &, that contains a list of values that will be compared
to the value contained in the verify variable. The varlist variable can
contain up to 100 values. Each value in the varlist variable must be
delimited by a comma or at least one blank. A value in the varlist
variable containing any of these special characters should be enclosed
in single quotes (" ’):

Blank < (+ |);~-,>:=

To specify the ampersand character in a value contained in the varlist
variable, or a period in a value contained in the varlist variable when it
immediately follows a dialog variable name, you must double these
characters. To specify the single quote character in a value contained in
the varlist variable, use two single quote characters enclosed within
single quotes (”).

If the varlist is set in the dialog, use the notation that is correct for the
programming language used to code the dialog.

Example:
)P ROC

VER (&areacode,NONBLANK,LISTV,&varlist,MSG=NSLO11)

The variable specified in the VER LISTV variable parameter must be set
before being referenced in the statement. (The variable used in the
previous example could have been assigned these values in the)INIT
section of the panel definition.)

&varlist ='919 914 212'

Note: To have quotes as part of an assignment, you must double the
number of quotes used in each previous layer. For example:

&listl = 'one o''ne' yields one o'ne
&list2 = "two t''"'wo' yields two t''wo
LISTVX,varlist

The LISTVX (“varlist exclude”) keyword enables you to specify a variable
containing a list of values that the field variable must not contain. If
LISTVX is used, the keyword NONBLANK is implied. The varlist follows
the same rules as the varlist for LISTV.

LISTX,valuel,value2,...
The LISTX (“list exclude”) keyword enables you to list values that the field
variable must not contain. If LISTX is used, the keyword NONBLANK is
implied. The maximum number of listed values allowed is 100.

MIX
The variable must contain all valid DBCS, EBCDIC, shift-in, and shift-out
characters.

NAME
The variable must contain a valid name, following the rules of member
names, up to eight alphanumeric characters (A-Z, #, $, @, 0-9). The first
character must be alphabetic (A-Z, $, @, or #).

NAMEF

276 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

VER statement

This parameter provides the same function as NAME with the additional
feature that asterisks (*) and percent signs (%) can be used within the
qualifiers. You can use DSNAMEEF to filter a list of data sets.

A single asterisk within a qualifier indicates that zero or more characters
can occupy that position. Consecutive asterisks are not valid within a
qualifier.

A single percent sign indicates that any one alphanumeric or national
character can occupy that position. One to eight percent signs can be
specified in each qualifier.

NUM
The variable must contain all numeric characters (0-9). However, leading
blanks are acceptable.

PICT,string
The variable must contain characters that match the corresponding type of
character in the picture string. The string parameter can be composed of
these characters:

any character

any alphabetic character (A-Z, a-z, #, $, @)

any numeric character (0-9)

any numeric character (same as N)

any hexadecimal character (0-9, A-F, a-f)

RezZp@En

In addition, the string can contain any special characters that represent
themselves. For example:

VER (xxx,PICT,'A/NNN')

In this example, the value must start with an alphabetic character, followed
by a slash, followed by 3 numeric characters. The length of the variable
value and the picture string must be the same. Trailing blanks are not
included.

PICTCN,mask-character,field-mask,string
The VER statement keyword PICTCN, with its three parameters, enables
you to check a variable for specific constants within the variable.
VER (variable,PICTCN,mask-character,field-mask,string)

variable
Name of the variable to be checked.

mask-character
Any special character that represents itself. If you select one of
these special characters as a mask-character, the mask-character
and the field-mask containing the mask-character must be enclosed

in quotes:

- not” symbol

= equal sign
period

greater than symbol
less than symbol
right parenthesis
left parenthesis
single quote

S~~~ AV

Note: The mask-character cannot be one of the picture string
characters (C, A, N, 9, X, ¢, a, n, x).

Chapter 7. Panel definition statement reference 277

VER statement

field-mask
A combination of constants and the mask-character. The field-mask
is used to audit the string. For example, your mask-character is a
slash mark (/) and the constants are V, R, and M in the positions
shown: 'V//R//M//’. A single quote can be used as a constant
but avoid using a mask-character that must be enclosed in single
quotes when a single quote is a constant.

string

A combination of constants and picture string characters. The
picture string characters can be:

C any character

A any alphabetic character (A-Z, a-z, #, $, @)

N any numeric character (0-9)

9 any numeric character (same as N)

X any hexadecimal character (0-9, A-F, a-f)

The picture string characters must be in the positions indicated by
the mask-character in the field-mask parameter. For example,
"VNNRNNMNN".

The three parameters mask-character, field-mask, and string can be
dialog variables.

Examples

In this VER PICTCN statement the mask-character is the not symbol (-),
the constants are V,R, and M. The picture string characters are N (any
numeric character 0-9). If fld1 = V10R20MOO it passes the verification. If
fld1 = VI0R20MOY it fails because Y is not a numeric character.

VER (&f1d1,PICTCN,'=","'V==R==M-=" VNNRNNMNN)

In this VER PICTCN statement the mask-character is the asterisk (*), the
constants are O and S. The picture string characters are N (any numeric
character 0-9) and A (any alphabetic character A-Z, a-z#,$,@). If fld1 =
OS390RS8 it passes verification. If fld1 = OS39018 it fails because 1 is not an
alphabetic character.

VER (&f1d1,PICTCN,*,0S***xx,0SNNNAN)

RANGE,lower,upper

The variable must contain all numeric characters (0-9). It can also contain a
leading plus (+) or minus (—). Its value must fall within the specified
lower and upper limits, which can be either positive or negative. The
length of the specified variable is limited to 16 digits, in addition to the
plus or minus sign. Further, the lower and upper parameters can consist of
no more than 16 digits each, in addition to the plus or minus sign, if used.
Any characters in excess of the 16 allowed are truncated.

STDDATE

The standard date (STDDATE) format contains 10 characters, including the
national language date delimiter. The format represents a date expressed in
a 4-digit year (YYYY), 2-digit month (MM), and a 2-digit day (DD). Valid
values for YYYY are 0000-9999. Valid values for MM are 01-12. Valid values
for DD are 01-31. ISPF verifies for a valid date and national language date
delimiter. For the United States, the format is YYYY/MM/DD.

278 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

VER statement

STDTIME
The standard time (STDTIME) format contains 8 characters, including the
national language time delimiter. The format represents a time expressed in
a 2-digit hour (HH), 2-digit minute (MM), and a 2-digit second (SS). Valid
values for HH are 00-23. Valid values for MM are 00-59. Valid values for SS
are 00-59. For the United States, the format is HH:MM:SS.

MSG=value
value contains the message issued if the current value of the variable does not
meet the criteria being checked.

For all tests except NONBLANK, LISTX, and LISTVX, a blank value is acceptable.
That is, if you enter a value, or leave a nonblank initial value unchanged, it must
conform to the specified condition. If a variable value is stored as all blanks, the
value passes any verification test except NONBLANK.

[Figure 73 on page 280 shows a sample panel with VER statements to verify that
information entered meets these criteria:

e The truncated value of TYPECHG is N, U, or D.

¢ The three name variables, LNAME, FNAME, and I, contain all alphabetic
characters.

* The PHA (area code) field contains all numeric characters and a length of 3.

* The PHNUM (local number) field contains 3 numeric characters followed by a
hyphen, followed by 4 numeric characters.

For the TYPECHG test, a message ID has been specified in the event that the test

fails. In all the other cases, an ISPF-provided message is displayed if the variable
fails the verification test.

Chapter 7. Panel definition statement reference 279

VGET statement

) BODY
B EMPLOYEE RECORDS ----mnnmmmmmmmmmmmmmmmm
%COMMAND===>_ZCMD 5
+
%EMPLOYEE SERIAL: &EMPSER
+
+ TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)
+
+ EMPLOYEE NAME:
+ LAST %===>_LNAME +
+ FIRST %===>_FNAME +
+ INITIAL%===>_I+
+
+ HOME ADDRESS:
+ LINE 1 %===>_ADDRI +
+ LINE 2 %===>_ADDR2 +
+ LINE 3 %===>_ADDR3 +
+ LINE 4 %===>_ADDR4 +
+
+ HOME PHONE:
+ AREA CODE %===>_PHA+
+ LOCAL NUMBER%===>_PHNUM +
+

)INIT

IF (8PHA = ')
&PHA = 301
&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)
)PROC

&TYPECHG = TRUNC (&TYPECHG,1)

VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)
VER (&LNAME,ALPHAB)

VER (&FNAME,ALPHAB)

VER (&I,ALPHAB)

VER (&PHA,LEN,'="',3)

VER (&PHA,NUM)

VER (&PHNUM,PICT,'NNN-NNNN')

)END
Figure 73. Sample panel definition with verification

The VGET statement

The VGET statement copies variables from the shared or application profile
variable pool or from system symbols.

|VGET name-1ist [ASIS|SHARED|PROFILE|SYMDEF] [SYMNAMES (symname-list)]

where:

name-list Specifies one or more dialog variables, separated by commas or
blanks, whose values are to be copied from the shared or
application profile pool or from system symbols. The names are
passed in standard name-list format. A name-list of more than one
name must be enclosed in parentheses.

ASIS Variable values are to be copied from the shared variable pool, if
found there; otherwise, they are to be copied from the application
profile pool. ASIS is the default value.

SHARED Variable values are to be copied from the shared variable pool.

PROFILE Variable values are to be copied from the application profile

280 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

VGET statement

variable pool. ISPF deletes any shared pool variables having the
same name, even if they do not exist in the application profile
pool.

SYMDEF The values for the variables defined by name-list are to be obtained
from the system symbols.

SYMNAMES(symname-list)
symname-list lists the names of one or more system symbols that
are to be obtained. It is specified in the same format as the
name-list parameter. Where symname-list is omitted, the system
symbols obtained are the same as those specified on the name-list
parameter.

One reason why you might use the SYMNAMES parameter is that
some system symbols may have the same name as a reserved or
read-only dialog variable. In this case you must specify a different
variable name in name-list and specify the actual symbol name in
symname-list. For example, you could specify this command to
obtain the current value for the static symbol SYSCLONE and store
it in a variable named CLONE:

VGET (CLONE) SYMDEF SYMNAMES (SYSCLONE)

If there are fewer symbol names in symname-list than names in the
name-list, then the symbol names are used from the symmname-list
until there are no more corresponding symbol names, then the
remaining names in the name-list are used. In other words, if there
are five names in name-list and only three symbol names, the
symbol names are used for the first three symbols and the last two
names in the name-list are used for the remaining symbols.

If the number of symbol names in symname-list exceeds the number
of names in name-list, a severe error occurs.

This is an optional parameter. It is only valid when the SYMDEF
parameter is also specified.

Notes:
1. The length of the constructed VGET statement can not exceed 255 characters.

2. Specifying a non-modifiable variable in a VGET statement in a selection panel
results in a severe error.

DISPLAY service panel

When processing a DISPLAY or TBDISPL service request, ISPF normally searches
for dialog variable values in the order:

1. Function pool

2. Shared pool

3. Application profile pool

To give you control over the pool from which ISPF retrieves variable values, the
VGET statement in a panel’s)INIT,)REINIT, or)PROC section allows you to
specify that ISPF is to copy one or more variable values from either the shared
pool or application profile pool to the function pool. If one or more of these
variables already exist in the function pool, their values are updated with the
values of the corresponding variables accessed by the VGET statement. Any of
these variables that do not exist in the function pool are created and updated with
the values of those accessed by the VGET statement.

Chapter 7. Panel definition statement reference 281

VGET statement

Examples:

)PROC
VGET (XYZ ABC) PROFILE

This VGET statement in a panel’s)PROC section causes the current values for
variables XYZ and ABC to be copied from the profile pool and updated in the
function pool and used as the variable values for display of a panel field. If XYZ
and ABC do not already exist in the function pool, they are created then updated.

)PROC
VGET (LHHMMSS) SYMDEF

This VGET statement causes the current value for the dynamic system variable
LHHMMSS to be obtained.

)PROC
VGET (LTIME) SYMDEF SYMNAMES (LHHMMSS)

This VGET statement causes the current value for the dynamic system variable
LHHMMSS to be placed in the dialog variable LTIME.

SELECT service panel

At the time ISPF processes a SELECT service request, there is no function pool.
Therefore, ISPF normally searches for dialog variable values in the order:

1. Shared pool

2. Profile pool

When specified on a selection panel, the VGET statement functions as follows:

* If the variable value is taken from the profile pool, the shared pool value, if it
exists, is deleted.

¢ Otherwise, the VGET statement has no effect.

Further processing of the variables on the selection panel, other than by the VGET
statement, is described in [“SELECT service and variable access” on page 62)

Here is an example of a VGET statement on a selection panel, where the specified
variable exists in both the shared and profile pools:

VGET FNAME PROFILE

This statement causes ISPF to retrieve the current value of variable FNAME from
the profile pool and display it in the corresponding panel field. Any updates to the
variable are made to the profile pool. ISPF deletes the variable from the shared
pool.

The VPUT statement

While variables entered from a panel are automatically stored in the function
variable pool, variables can also be stored in the shared and profile variable pools
by VPUT statements used in the)INIT,) REINIT, JABCINIT, JABCPROC, or)PROC
sections of the panel definition.

VPUT name-list [ASIS|SHARED|PROFILE]

where:

name-list Specifies the names of one or more dialog variables whose values
are to be copied from the function pool to the shared or profile
pool.

282 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

VPUT statement

ASIS Specifies that the variables are to be copied to the pool in which
they already exist or that they are to be copied to the shared pool,
if they are new. If the variables exist in both the shared and profile
pools, they are copied only to the shared pool.

SHARED Specifies that the variables are to be copied to the shared pool.

PROFILE Specifies that the variables are to be copied to the application
profile pool. Any shared pool variables with the same names are
deleted.

Note: The length of the constructed VPUT statement can not exceed 255

characters.
Example:
)PROC

VPUT (XYZ ABC) PROFILE

This statement causes current values for variables XYZ and ABC to be stored in the
profile pool by a VPUT operation.

The syntax for the VPUT statement is the same as that for the VPUT service when
it is invoked from a command procedure except that the ISPEXEC command verb
is omitted.

The VSYM statement

The VSYM statement updates the value of dialog variables found in the function
pool by resolving the values of any system symbols. This includes all system static
symbols and dynamic symbols and any user-defined static symbols. The
Initialization and Tuning Reference| has details on system static and dynamic symbols.
Consult your system programmer for any locally defined user symbols as these are
system and installation dependent.

|VSYM name-1ist

where:

name-list Specifies the names of one or more dialog variables whose values
in the function pool are to be processed to resolve system symbols.
The names are passed in the standard name-list format.

Note: The length of the constructed VSYM statement can not exceed 255
characters.

Example:
VSYM (DSNL)

Using ISPF control variables

Control variables are used to control and test certain conditions pertaining to the
display of a panel or message. Only those that apply to displays are discussed
here. They can be used only in the)INIT,)REINIT, and)PROC sections of a panel
definition.

These control variables are described:
+ .ALARM: see [*. ALARM” on page 285

Chapter 7. Panel definition statement reference 283

Using ISPF control variables

284

+ .ATTR: see[".ATTR and .ATTRCHAR” on page 286
« .ATTRCHAR: see [".ATTR and .ATTRCHAR” on page 286
» .AUTOSEL: see [". AUTOSEL” on page 289

+ .CSRPOS: see [".CSRPOS” on page 289

+ .CSRROW: see|”.CSRROW” on page 290|

+ .CURSOR: see[“.CURSOR” on page 290

« .HELP: see|”.HELP” on page 292|

+ MSG: see[”.MSG” on page 292|

+ NRET: see|”.NRET” on page 293|

+ PFKEY: see [*.PFKEY” on page 294|

* RESP: see [*.RESP” on page 294]

- TRAIL: see[.TRAIL” on page 295]

s .ZVARS: see[".ZVARS” on page 295|

Control variables are automatically reset to blank when the panel display service
first receives control. If .MSG, .CURSOR, and .CSRPOS are still blank after
processing of the initialization section, they are set to the values passed by the
calling sequence, if any, for an initial message or cursor placement. Under certain
conditions, processing of the initialization section is bypassed.

Once .CURSOR, .CSRPOS, .MSG, and .RESP have been set to nonblank by panel
processing, they retain their initial values until the panel is displayed, or
redisplayed, at which time they are reset.

The control variables
ALARM
AUTOSEL
.CURSOR
HELP
MSG
.PFKEY
.RESP

have a length of 8 bytes. When set in an assignment statement to a longer value,
the value is truncated. If these control variables are tested in a conditional
expression, the compare value (literal or dialog variable) must not be longer than
8 bytes.

[Figure 74 on page 285 shows an example in which both .HELP and .CURSOR have
been set in the)INIT section of the panel definition.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

.ALARM Control Variable

/')BODY h
R EMPLOYEE RECORDS = -===m=mmmmmmmmmmm e e
%COMMAND===>_ZCMD 5
+
%EMPLOYEE SERIAL: &EMPSER
+
+ TYPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)

+
+ EMPLOYEE NAME:
+ LAST %===> LNAME +
+ FIRST %===> FNAME +
+ INITIAL%===> I+
+
+ HOME ADDRESS:
+ LINE 1 %===> ADDRI +
+ LINE 2 %===> ADDR2 +
+ LINE 3 %===> ADDR3 +
+ LINE 4 %===> ADDR4 +
+
+ HOME PHONE:
+ AREA CODE %===> PHA+
+ LOCAL NUMBER%===> PHNUM +
+
YINIT
.HELP = PERS032
.CURSOR = TYPECHG
IF (8PHA = ' ")

&PHA = 301
&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC
&TYPECHG = TRUNC (&TYPECHG,1)
VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)
VER (&LNAME,ALPHAB)
VER (&FNAME,ALPHAB)
VER (&I,ALPHAB)
VER (&PHA,NUM)
VER (&PHNUM,PICT,'NNN-NNNN')

YEND

Figure 74. Sample panel definition with control variables

.ALARM

The .ALARM control variable can be set in an assignment statement within the
)INIT,)REINIT, or)PROC sections to control the terminal alarm.

|.ALARM = value

where:

value YES, NO, a blank, or null.
YES Causes the terminal alarm to sound when the panel is displayed.
NO Causes the terminal alarm to be silent when the panel is displayed.
blank Causes the terminal alarm to be silent when the panel is displayed.
null Causes the terminal alarm to be silent when the panel is displayed.

Note: value can also be a variable containing the value YES, NO, a blank
or null.

Examples:

Chapter 7. Panel definition statement reference 285

.ALARM Control Variable

286

.ALARM
.ALARM

YES
&ALRM

In the first example, the .ALARM setting is YES, which causes the terminal alarm
to sound when the panel is displayed. In the second example, the alarm setting can
be turned on (YES) or off (NO) according to the current value of the variable
ALRM. If the panel is displayed with a message that has .ALARM = YES, the
alarm sounds regardless of the setting of . ALARM within the panel assignment
statement.

Control variable .ALARM can also appear on the right side of an assignment
statement. For example:

&ALRM = .ALARM

might be used to save the setting of .ALARM in variable ALRM.

.ATTR and .ATTRCHAR

See:

. ”.ATTR”l

+ [“.ATTRCHAR” on page 287
+ |[“Using .ATTR and .ATTRCHAR with table display panels” on page 288

* [“Things to remember when using attribute override control variables” on page
28

.ATTR

The .ATTR control variable can be set in the)INIT,)REINIT, or)PROC section to
allow attributes to be changed on a field basis.

| .ATTR (field) = 'keyword (value),keyword (value)....'

where:

field Can be:

* The name of any input or output field that occurs in the panel body or
area section.

e The .CURSOR control variable, which indicates the field where the
cursor is currently positioned.

¢ The name of a dialog variable, preceded by an ampersand. The variable

must contain the name of an input or output field that occurs in the
panel body, .CURSOR, or a blank.

keyword (value)
A legitimate attribute keyword and value for that attribute.

Examples:

.ATTR (.CURSOR) = 'COLOR(YELLOW) HILITE(REVERSE)'
.ATTR (&FLD) = 'HILITE(BHLTE)'

.ATTR (&FLD) = 'PAS(ON)'

In the first example, the color and highlighting of the field containing the cursor is
overridden. In the second example, the name of the field whose highlighting
attribute is to be overridden is found in dialog variable FLD and the highlighting
value is in variable HLTE.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

.ATTR and .ATTRCHAR Control Variables

Overriding the cursor field (CURSOR) and the alternate long or short message
field attributes can be particularly useful if the panel is being redisplayed because
of a translation or verification failure. When such a failure occurs, the cursor is
automatically placed on the field in error and the message ID to be displayed is
automatically placed in the message area.

For example, if SMFIELD is specified on the)BODY statement as the alternate
short message field, a)REINIT section could be specified as follows:
JREINIT

.ATTR (.CURSOR)
.ATTR (SMFIELD)

'COLOR(RED) HILITE(USCORE)"
'"HILITE(BLINK)"

This will cause the field in error to be redisplayed in red and underscored, and the
error message to blink.

Only the specified attributes are overridden. Any other attributes associated with
the field remain in effect.

When a field attribute is overridden in the)INIT section of a panel, the override
remains in effect if the panel is redisplayed (unless the attribute is again
overridden by another statement in the)REINIT section). However, an attribute
override in the)PROC or)REINIT section of the panel remains in effect only for a
single redisplay of that panel, should a redisplay occur. This allows one field at a
time to be highlighted as errors are found. Once the user corrects the error, the
field reverts to its normal attributes.

.ATTRCHAR
The .ATTRCHAR control variable can be set in the)INIT,)REINIT, or)PROC
section to override attributes for all fields related to an existing attribute character.

| .ATTRCHAR(<char)="keyword (value) ,keyword(value)'

where:

char Can be:

* One of the special characters, one-digit character, or two-digit
hexadecimal codes used to denote attribute characters within the panel.

* The name of a dialog variable, the value of which must contain an
attribute character, two-digit hexadecimal code, or a blank.

char follows the rules for literals. That is, it must be enclosed in single
quotes if it contains any of the special characters listed in|“Using variables|
land literal expressions in text fields” on page 115

keyword (value)
A legitimate attribute keyword and value for that attribute.

When a field attribute is overridden in the)INIT section of a panel, the override
remains in effect if the panel is redisplayed unless the attribute is again overridden
by another statement in the)REINIT section. However, an attribute override in the
)PROC or)REINIT section of the panel remains in effect only for a single redisplay
of that panel, should a redisplay occur.

See [“Relationship to Control variables .ATTR and .ATTRCHAR” on page 207|for a
description of appropriate and inappropriate override conditions for CUA and
basic panel-element attributes.

Chapter 7. Panel definition statement reference 287

.ATTR and .ATTRCHAR Control Variables

288

Using .ATTR and .ATTRCHAR with table display panels

The effect that an attribute override has on a table display panel depends on
whether the override is permanent (overridden in the)INIT section) or temporary
(overridden in the)REINIT or)PROC section). If the attribute override for a field
or attribute character in the scrollable section of a panel is:

¢ Permanent, the override for the specified field or character is effective for every
model set displayed

* Temporary, the override for the specified field or character is effective for only
the last selected model set processed

Any scrolling activity performed when temporary overrides are in effect causes the
affected attributes to be cleared, including any temporary overrides in the fixed
portion of the panel, and the original attributes to be put into effect. In addition, if
a table is redisplayed after model sets have been selected and a scroll has taken
place, any .ATTR or .ATTRCHAR temporary overrides are not put into effect.

Things to remember when using attribute override control

variables

¢ The .ATTR or .ATTRCHAR control variable cannot appear on the right side of
an assignment statement.

* Several characteristics (for example, INTENSITY, COLOR, and CAPS) can be
changed with one attribute override statement. However, only one field can be
changed by a single .ATTR statement, and only one attribute character or
hexadecimal code can be changed by a single ATTRCHAR statement.

* The TYPE keyword can be overridden by .ATTR or .ATTRCHAR. You can
change the TYPE:

from INPUT/CUA input types to OUTPUT/CUA output types
from OUTPUT/CUA output types to INPUT/CUA input types

from TEXT/CUA text types to TEXT/CUA text types
from DATAIN to DATAOUT
from DATAOUT to DATAIN

Exceptions: CUA TEXT types AB, ABSL, PS, RP

However, if you attempt to change the TYPE of a field from TEXT to INPUT, a
dialog error will result.
See ["Relationship to Control variables .ATTR and .ATTRCHAR” on page 207 for
a description of appropriate and inappropriate override conditions for CUA and
basic panel-element attributes.

* The command field or scroll amount field cannot be changed to TYPE(OUTPUT)
by an attribute override assignment.

* The first .ATTR assignment that is encountered within a panel section for a
particular field is the one that is honored. Subsequent .ATTR assignments for
that field are ignored. In this example, FIELD1 will be blue and FIELD2 will be
yellow:

)INIT
.ATTR(FIELD1) = COLOR(BLUE)
.ATTR(FIELD2) = COLOR(YELLOW)
.ATTR(FIELD1) = COLOR(RED)

* Similarly, the first . ATTRCHAR assignment that is encountered within a panel
section for a particular attribute character or hexadecimal code is the one that is
honored.

* Be careful when overriding the pad character. Since the string of overridden

attribute keywords is in quotes, the new pad character must be specified either
without quotes or in double quotes, as follows:

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

.ATTR and .ATTRCHAR Control Variables

ATTR(FIELDL) = 'PAD($)"
ATTR(FIELD2) = 'PAD(''x'')"

 If both an .ATTRCHAR assignment and an .ATTR assignment apply to the same
field, the .ATTR assignment takes precedence.

Example:
)BODY

%===> FIELD1 +

)INIT

.ATTRCHAR(_) = 'COLOR(YELLOW)"

.ATTR(FIELD1) = 'COLOR(WHITE)'

YREINIT

IF (.MSG ~= ' ')
.ATTR(FIELD1) = 'COLOR(RED) HILITE(BLINK)'
.ATTRCHAR(_) = 'COLOR(BLUE)"

)PROC

VER(&FIELD1,NB)

)END

When this panel is initially displayed, FIELD1 will be white and all other input
fields will be yellow. If the panel is redisplayed with a message, FIELD1 will be
blinking red and all other input fields will be blue. If the panel is redisplayed
without a message, FIELD1 will revert to white, and all other input fields will
revert to yellow.

.AUTOSEL

The .AUTOSEL control variable is used in conjunction with table display panels to
specify auto-selection.

| -AUTOSEL = YES | NO

where:

YES Indicates that if the CSRROW parameter or control variable is specified,
the row is to be retrieved even if the user did not explicitly select the row.
This is called auto-selection.

NO Indicates that if the CSRROW parameter or control variable is specified,
the row is to be retrieved only if the user explicitly selects the row by
entering data in the corresponding model set on the screen.

If the CSRROW parameter or control variable is not specified, .AUTOSEL is
ignored. .AUTOSEL can be set in the)INIT or)REINIT section. Any assignment
made to .AUTOSEL in the)PROC section is ignored.

.CSRPOS

The .CSRPOS control variable can be set in the)INIT or)REINIT section and
controls where in a field the cursor is to be set.

.CSRPOS = integer
variable = .CSRPOS

where:

integer
Specifies the position in the field to which the cursor is set. This position
applies regardless of whether the cursor placement was specified using the

Chapter 7. Panel definition statement reference 289

.CSRPOS Control Variable

CURSOR calling sequence parameter, the .CURSOR control variable in the
JINIT or)REINIT section, or the default cursor placement. If
cursor-position is not specified or is not within the field, the default is one,
the first position of the field.

The .CSRPOS control variable can appear on the right side of an assignment
statement, making it act like a function. Thus, the cursor field name and its
position within a field can be stored in variables.

Example:
&CPOS = .CSRPOS

In the preceding statement, the position (an integer value) of the cursor within the
input or output field or area is returned in variable CPOS.

.CSRROW

The .CSRROW control variable is used in conjunction with table display panels.

.CSRROW = CRP-number
variable = .CSRROW

where:

CRP-number

Table current-row-pointer number corresponding to the model set on the

display where the cursor is to be placed. If the specified row does not have a

corresponding model set displayed on the screen, the cursor is placed at the

command field. The row will be auto-selected under either of these conditions:

* If the CSRROW parameter is specified on the TBDISPL service either
without AUTOSEL(NO) being specified on TBDISPL or .AUTOSEL(NO)
specified as a panel definition statement.

e If the .CSRROW control variable is specified as a panel definition statement
either without AUTOSEL(NO) being specified on TBDISPL or
.AUTOSEL(NO) specified as a panel definition statement.

The .CSRROW control variable can appear on the right side of an assignment
statement, making it act like a function. Thus, the table row number corresponding
to the model set on the display where the cursor is to be placed can be stored in a
variable.

Example:
&CROW = .CSRROW

.CURSOR

The .CURSOR control variable can be set in the)INIT or)REINIT section to control
the placement of the cursor.

.CURSOR = string
variable = .CURSOR

where:

string A character string that matches a field name or a DYNAMIC or GRAPHIC
area name in the panel body. Its value cannot be a character string that

290 2z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

.CURSOR Control Variable

matches a scrollable area name, but it can be a character string that
matches a field name within the scrollable area.

Example:
.CURSOR = DSN

This example causes the cursor to be placed at field DSN. This variable is
automatically set to the field last referred to whenever .MSG is set explicitly or
indirectly by TRANS or VER statements. The .CURSOR control variable overrides
any cursor position specified on the DISPLAY or TBDISPL service request.

Note: In GUI mode, .CURSOR can be set only to an input or pushbutton
(point-and-shoot) field. If the application attempts to set the cursor to any
other field, ISPF ignores the placement and uses the default cursor
placement.

The .CURSOR control variable can appear on the right side of an assignment
statement, making it look like a function.

Example:
&CNAME = .CURSOR

If the control variable .CURSOR is not explicitly initialized, or if it is set to blank,
the initial field where the cursor is positioned (default placement) is determined as
follows:

1. The panel body is scanned from top to bottom, and the cursor is placed at the
beginning of the first input field that meets these conditions:

* It must be the first or only input field on a line.

* It must not have an initial value; that is, the corresponding dialog variable
must be null or blank.

e It must not have a field name of ZCMD.

2. If the stated criteria are not met in the panel body, the scrollable areas are
searched using the same criteria.

3. If the criteria are still not met, the cursor is placed on the first input field in the
panel body or scrollable area, usually the command field.

4. If the panel has no input fields, the cursor is placed at the upper-left corner of
the screen.

The cursor is automatically placed at the beginning of the field that was last
referred to in any panel definition statement when a message is displayed because
of:

* A verification failure that sets .MSG

* A MSG=value condition in a TRANS

* An explicit setting of . MSG

Examples:

&XYZ = TRANS (&A ... MSG=Xxxxxx)
&A = TRANS (&XYZ ... MSG=Xxxxxx)
VER (&XYZ,NONBLANK) VER (&B,ALPHA)

Assume that field XYZ exists in the panel body, but there are no fields

corresponding to variables A or B. In all the preceding examples, the cursor would
be placed on field XYZ if a message is displayed.

Chapter 7. Panel definition statement reference 291

.HELP Control Variable

292

.HELP

The .HELP control variable can be set in the initialization section to establish a
tutorial (extended help) panel to be displayed if the user enters the HELP
command.

.HELP = panelname
variable = .HELP

where:

panelname Name of the tutorial panel to be displayed.

Example:
.HELP = ISPTE

This example causes tutorial panel ISPTE to be displayed when the user enters the
HELP command.

The .HELP control variable can appear on the right side of an assignment
statement, making it act like a function.

.HHELP

-MSG

The .HHELP control variable can be set in the initialization section to establish a
tutorial (extended help) panel to be displayed if the user enters the HELP
command from within HELP.

| .HHELP = panelname

where:

panelname Name of the tutorial panel for help to be displayed.

Example:
.HHELP = ISP00006

This example causes tutorial panel ISP00006 to be displayed when the user enters
the HELP command from HELP. This also happens to be the default setting. The
Dialog Tag Language generates the setting .HHELP = ISP00006 for any help panels
it builds.

The .MSG control variable can be set to a message ID, typically in the processing
section, to cause a message to be displayed.

.MSG = msgid
variable = .MSG

where:

msgid The message ID of the message to be displayed.

Example:
.MSG = ISPEO16

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

.MSG Control Variable

This variable is automatically set by use of the MSG=value keyword on a TRANS
statement if there is no match with the listed values, or on a VER statement if the
verification fails.

The .MSG control variable can appear on the right side of an assignment
statement, making it act like a function.

.NRET

On enabled panels, the .NRET key retrieves the library names from the current
library referral list or data set, or workstation file name from the current data set
referral list. Unlike some othe dot variables, NRET can be assigned multiple times
in panel logic.

.NRET = ON|OFF|DSN|LIB

where:
ON Sets the NRETRIEV command table entry active.
OFF Sets the NRETRIEV command table entry inactive.

DSN Tells ISPF that the NRETRIEV command retrieved a name from the current
data set referral list.

LIB Tells ISPF that the NRETRIEV command retrieved a name from the current
library referral list.

Other values are reserved by ISPF. No messages are given in case of an assignment
that is not valid.

When .NRET is used as the source for an assignment statement it always returns a
null.

The user is responsible for assigning NRETRIEV to a PF key. NRETRIEV is
normally inactive but can be made active by using the .NRET=ON assignment in
the)INIT and)REINIT section of a panel. If it is turned on, .NRET=OFF must be
executed in the)PROC section of the panel. Failure to turn off NRET in the)PROC
section of the panel can lead to errors when the NRETRIEV key is pressed on
subsequent panels.

NRETRIEV sets these variables in the FUNCTION pool:

Variable Function

ZNRPRO]J Project name

ZNRGRP1 First group name

ZNRGRP2 Second group name

ZNRGRP3 Third group name

ZNRGRP4 Fourth group name

ZNRTYPE Type name

ZNRMEM Member name

ZNRODSN Other data set name

ZNRVOL Volume associated with the other data set name
ZNRLIB Successful library retrieve (YES or NO)

Chapter 7. Panel definition statement reference 293

.NRET Control Variable

294

Variable Function

ZNRDS Successful data set retrieve (YES or NO)

ZNRWSN Workstation name indicator for other data set name
(H = Host, W = Workstation)

.PFKEY

The .PFKEY control variable is set to a value that reflects the function key pressed
by a user while the panel is being displayed.

.PFKEY = value
variable = .PFKEY

where:

value The function key (F01-F24) pressed by a user.

The value of .PFKEY can be examined in the)PROC section of the panel and
copied into dialog variables through use of assignment statements. If no function
key is pressed by the user, .PFKEY contains blanks. .PFKEY is blank during
processing of the)INIT and)REINIT sections.

The .PFKEY control variable can appear on the right side of an assignment
statement, making it act like a function.

The .RESP control variable indicates normal or exception response on the part of the
user.

.RESP = ENTER | END
variable = .RESP

where:

ENTER
Normal response. ISPF always sets .RESP to ENTER unless the user enters
an END or RETURN command.

END Exception response. ISPF sets .RESP to END if the user enters an END or
RETURN command.

The value in .RESP can be tested in the processing section to determine the user’s
response.

Example:
IF (.RESP = END)

Setting .RESP in the)INIT or)REINIT section of the panel definition has no effect
if a message is being displayed.

The)INIT or)REINIT section can be coded with these statements to ensure that the
panel is not displayed, regardless of whether a message was specified on the
DISPLAY service request.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

.RESP Control Variable

Example:

JINIT or)REINIT
IF (.MSG -= &Z)
.MSG = &Z
.RESP = END

This variable can be set in a panel processing section to force an END or ENTER
response. This can be useful if a verification has failed (or .MSG was set) and you
want that panel to be redisplayed with the message even if the user entered END
or RETURN.

The .RESP control variable can appear on the right side of an assignment
statement, making it act like a function.

-TRAIL

The .TRAIL control variable contains the remainder following a truncate (TRUNC)
operation.

|variable = .TRAIL |

where:

variable Assigned the value in .TRAIL.

If the contents of a variable are truncated to a specified length, all remaining
characters are stored in .TRAIL. If the contents of a variable are truncated at the
first occurrence of a special character, the remaining characters following the
special character are stored in .TRAIL.

.ZVARS

The .ZVARS control variable can be set in the initialization section to a list of
variable names that correspond to Z place-holders in the body and/or model lines.

.ZVARS = var | '(varlist)'
variable = .ZVARS

where:
var Name that corresponds to a Z place-holder.
varlist One or more variable names that correspond to Z place-holders.

The .ZVARS control variable can appear on the right side of an assignment
statement, making it act like a function.

Using Z variables as field name place-holders

In the body and area sections of a panel definition and in the model lines for a
table display panel, the name of an input or output field can be represented by the
single character Z. This serves as a place-holder; the actual name of the field is
defined in the initialization section of the panel definition.

Use of place-holders allows the definition of short fields for which the lengths of
the variable names exceed the lengths of the fields.

The actual names of these fields are assigned in the initialization section of the
panel definition. The names are in a name list, enclosed in parentheses if more

Chapter 7. Panel definition statement reference 295

.ZVARS Control Variable

than one name is specified, assigned to the control variable .ZVARS. The first name
in the list corresponds to the first Z place-holder that appears in the body or model

lines. The second name in the list corresponds to the second Z, and so forth.

In the example shown in the input field labeled TYPE is 1 character long
and the next two input fields are each 2 characters long. The names of these three
fields are TYPFLD, LNGFLD, and OFFSET, respectively.

%COMMAND===>_7CMD

Ye==> 7
+ LENGTH%===>_Z + (0 to 99)
+ OFFSET%===>_7 + (0 to 99)

YINIT
.ZVARS = '(TYPFLD LNGFLD OFFSET)"

+ (A for alpha, N for numeric)

Figure 75. Example of Z variable place-holders

The name list assigned to .ZVARS must be enclosed in single quotes because the
list contains special characters (parentheses) and blanks. As with other name lists,

either commas or blanks can be used to separate the names in the list. .ZVARS can
also be set to a dialog variable that has a valid name list as its value. For example:

.ZVARS = &NLIST

where the value of &NLIST is (TYPFLD LNGFLD OFFSET). See [“Defining the area
lsection” on page 166| for the description of how to use Z place-holders in scrollable

panel areas.

296 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 8. ISPF help and tutorial panels

Online help and tutorial panels are a set of panels that a developer can include to
provide online information for an application user. Help and tutorial panels can
contain information that is helpful to a first-time user. They also can instruct a user
to take specific actions based on a particular condition that has occurred during the
application processing.

All ISPF help panels that are created using the Dialog Tag Language display in a
pop-up window. ISPF help panels created using the ISPF panel source statements
and containing the WINDOW keyword on the panel’s)BODY statement also
display in a pop-up window. If field-level help is being displayed, the ISPF help
facility attempts to position the pop-up window relative to the object field.

The width and depth values specified on the HELP tag or on the WINDOW
keyword must be valid for the device on which these help panels are displayed.
See the |z/OS ISPF Dialog Tag Language Guide and Reference| for details on the HELP
tag. For details on the WINDOW keyword, see R09)

You can provide several types of help or tutorial panels. The ISPF tutorial is
included with the product.

Extended help (panel help)
Provides general information about the contents of a panel. The
information in extended help can be an overall explanation of items on the
panel, an explanation of the panel’s purpose in the application, or
instructions for the user to interact with the panel.

See the description of the .HELP variable in [*.HELP” on page 292| for more
information.

Field-level help
Provides help panels for fields defined on an application panel.

When the user enters the HELP command, ISPF displays the help panel
defined for the field on which the cursor is located.

You may define field-level help for action bar choices and pull-down
choices, as well as for fields within the panel body. If you are creating
panels with field level help using Dialog Tag Language, refer to the
[SPF Dialog Tug Language Guide and Referencd for a description of the tag
attributes you should use. Otherwise, for more information about defining

the)JHELP section of the panel, refer to |”Defining the HELP section” onl

HELP FOR HELP
Provides help for using the help or tutorial facility.

Keys help
Provides a brief description of each key defined for a panel. See
lhelp” on page 95|for more information about keys help.

Message help
Provides help for ISPF messages. See [‘How to define a message” on page
for more information.

© Copyright IBM Corp. 1980, 2007 297

Reference phrase help
Provides help for reference phrases. See [‘Reference phrase help” on page]
@for more information.

Tutorial
Describes the ISPF product. The tutorial is included with ISPE. See
[SPF tutorial panels” on page 301| for more information.

TUTOR command
Provides a direct path to specific tutorial panels, in effect indexing Help
hierarchies by panel identifiers.

Processing help

You can request help from an application panel or a help panel. You can also
specify a keylist to be associated with a help panel.

Help requests from an application panel
When the user enters the HELP command, ISPF displays a help or tutorial panel
according to this sequence:
1. When a short message appears on an application panel and the user requests
HELP, ISPF displays the long message.
2. If a long message is on the screen and the user requests HELP, ISPF checks to
see if message help is defined.
 If message help is defined, ISPF displays that panel. If the user requests help
from the message help panel, the Help Tutorial panel is displayed.
* If message help is not defined, ISPF checks to see if field-level help is
defined for the field on which the cursor is located.
— If field-level help is defined, ISPF displays that panel. If the user requests
HELP from the field-level help panel, the Help Tutorial panel is displayed.
— If field-level help is not defined, ISPF checks for panel help.
- If panel help is defined, ISPF displays that panel. If the user requests
HELP from the panel help panel, the Help Tutorial panel is displayed.
- If panel help is not defined, ISPF displays the first panel within the
application’s tutorial.

3. When an application panel has been displayed and the user requests HELP,
ISPF checks to see if field-level help is defined for the field on which the cursor
is located.

e If field-level help is defined, ISPF displays that panel. If the user requests
HELP from the field-level help panel, the Help Tutorial panel is displayed.

* If field-level help is not defined, ISPF checks for panel help.
— If panel help is defined, ISPF displays that panel. If the user requests
HELP from the panel help panel, the Help Tutorial panel is displayed.
— If panel help is not defined, ISPF displays the first panel within the
application’s tutorial.

[Figure 76 on page 299|illustrates the panel flow for help according to the ISPF
search sequences.

298 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Application
panel with

short message

Application
panel with
long message

ISPF searches

Is
message
help

defined
?

Message
help

User requests
additional Help

Help

tutorial

User requests Help

User requests Help

Application
panel

Is
field-level
help*
defined
?

Field-level
help

User requests
additional Help

Help
tutorial

Is

panel help

defined
?

Yes

Panel
help

User requests
additional Help

Help

tutorial

* |SPF searches for field-level help for
the field on which the cursor is located

Figure 76. Help panel flow

Keys help request from an application panel
When an application panel is displayed and the user requests KEYSHELP, ISPF
displays the keys help panel (provided that keys help is defined).

If the panel contains a short message or long message and the user requests

KEYSHELP, ISPF displays the keys help panel without following the search
sequence as illustrated in

Extended help request from an application panel
When an application panel is displayed and the user requests EXHELP, ISPF
displays the extended help panel (provided that extended help is defined).

If the panel contains a short message or long message and the user requests
EXHELDP, ISPF displays the extended help panel without following the search
sequence as illustrated in

Chapter 8. ISPF help and tutorial panels 299

Help available from a help panel

This list describes the ISPF help facilities available when a help panel or tutorial

panel is displayed:

e If the user requests HELP from any help or tutorial panel, ISPF displays the help
for help panel defined by the HHELP control variable. If the variable is not
defined, then ISPF displays the Help Tutorial panel.

¢ If the user requests EXHELP from any help or tutorial panel (except from the
extended help panel), ISPF displays extended help.

* If the user requests KEYSHELP from any help or tutorial panel (except the keys
help panel), ISPF displays keys help.

* If the help panel contains a reference phrase, and the user requests HELP while
the cursor is positioned on a reference phrase, ISPF displays the reference phrase
help panel defined. When a reference phrase help panel is canceled, the help
panel from which reference phrase help was requested is redisplayed. All other
help facilities are available from a reference phrase help panel.

Ending help
When the user requests END or EXIT from any help panel (except the Help

Tutorial panel), ISPF returns to the original application panel. If the user requests
END or EXIT from the Help Tutorial panel, ISPF returns to the previous panel.

If the user requests CANCEL from any help or tutorial panel, ISPF returns to the
previous panel.

ISPF default keylist for help panels
You can specify a keylist to be associated with a help panel by using the keylist
attribute on the HELP tag (DTL) or by using the)PANEL statement in your panel
definition. If you do not specify a keylist, ISPF uses the keys defined for ISPHELP
to display in the function area of the help panel when it is displayed.

The key settings and forms for ISPHELP are shown in [Table 18 For more
information about keylists, refer to the "Settings (option 0)" topic in the /OS ISP
[User’s Guide Vol II

Table 18. ISPHELP key settings

Key Command Form
F1 HELP Short
F2 SPLIT Long
F3 EXIT Short
F5 EXHELP Short
F6 KEYSHELP Short
F7 ur Long
F8 DOWN Long
F9 SWAP Long
F10 LEFT Long
F11 RIGHT Long
F12 CANCEL Short

300 2z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

The ISPF tutorial panels

A tutorial panel is a special type of panel that is processed by the ISPF tutorial
program. This program invokes the panel display service to display the panel.

A user invokes the ISPF program that displays tutorial panels in four ways:
* As an option from a menu

* Directly or indirectly from any non-tutorial panel by entering the HELP
command or by pressing the function key assigned to the HELP command.

* By selecting a choice from a Help pull-down
¢ Through the use of the TUTOR command

Transfer into and out of the tutorial using the HELP command is transparent (no
action required) to ISPF functions.

ISPF tutorial panels are arranged in a hierarchy. Generally, this hierarchy is a table
of contents, each succeeding level of which contains a more detailed list of topics.
When the tutorial is entered from a menu, the first panel to be displayed is usually
the top of the hierarchy. The name of the first panel is passed as a parameter to the
ISPTUTOR program.

When the tutorial is entered by use of the HELP command, the first panel to be
displayed is a panel within the hierarchy, appropriate to what you were doing
when help was requested.

When viewing the tutorial, you can select topics by entering a selection code or by
simply pressing Enter to view the next topic. On any panel, you can also enter
these commands:

BACK or B To return to the previously viewed panel

SKIP or S To advance to the next topic
UP or U To display a higher-level list of topics
TOCor T To display the table of contents

INDEX or I To display the tutorial index

Note: If you enter the UP command after viewing a portion of a tutorial
sequentially and if you do not select a new topic from the displayed list,
you can resume the tutorial at the next sequential topic on the list by
entering the NEXT command or by pressing Enter.

You can use these keys whenever you are in the tutorial:

ENTER To display the next sequential page or scroll a scrollable help panel
HELP To redisplay this page for help information

END To terminate the tutorial

UP To display a higher level list of topics (rather than typing UP)
DOWN To skip to the next topic (rather than typing SKIP)

RIGHT To display the next page (rather than pressing Enter) or to scroll a

scrollable help panel

LEFT To display the previous page (rather than typing BACK) or to
scroll a scrollable help panel

Chapter 8. ISPF help and tutorial panels 301

302

When running under tutorial and trying to scroll past the end of the scrollable
area, a message will be displayed indicating that no more information is available
in the scrollable area. If RIGHT or ENTER is pressed again, ISPF will follow the
normal tutorial flow and display the next help panel if one has been defined. The
same is true when scrolling to the TOP of the scrollable AREA; a message
indicating that no more information is available will be displayed, and if LEFT is
pressed, the previous tutorial panel will be displayed if one has been defined.

Cursor positioning usually defines which scrollable area will be scrolled. However,
when in tutorial, if the cursor is not within a scrollable area, the first area defined

in the)BODY section will be scrolled. The LEFT and RIGHT commands should be
included in any keylist specified for a scrollable help panel.

If you issue the HELP command while viewing a tutorial, ISPF displays a tutorial
panel that contains a summary of commands that are available to the tutorial user.

When you end the tutorial, using the END or RETURN command, the panel from
which you entered the tutorial is displayed again.

The name of the top panel must be specified by dialog variable ZHTOP. The name
of the first index panel must be specified by ZHINDEX. It is recommended that
these two dialog variables be initialized at the beginning of the application to
ensure that the user can always display the tutorial top or index, regardless of how
the tutorial was entered. One way to initialize these variables is to set them from
the i rimary option menu, as shown in [“Example of a primary option menu” on|

The index is optional. It is a collection of panels in which topics are arranged in
alphabetical order. You can jump to the index from any point by using the INDEX
command. The index need not be connected to the main tutorial hierarchy. It can
be a topic that you can select from the main table of contents or other panels. A list
of the last 20 tutorial panels displayed, including the current panel, is maintained
by ISPE. You should issue the TOP or INDEX command instead of the BACK
command if you want to view panels displayed before the last 20 panels.

Each tutorial panel must have a next selection input field. Generally, you should use
the name ZCMD for this field. A tutorial panel should also have a processing
section in which these variables are set:

ZSEL or SEL
Specifies the name of the next panel to be displayed based on the topic
selected by the user, by translating ZCMD to a panel name. The panel
name can be preceded by an asterisk (*) to indicate a topic that can be
explicitly selected by the user, but which is bypassed if the user presses
Enter to view the next topic.

The maximum number of entries allowed is 100.
If a panel does not have any selectable topics, omit ZSEL.

ZUP or UP
Specifies the name of the parent panel from which this panel was selected.
Generally, ZUP can be omitted since the tutorial program remembers the
sequence of selections that lead to the display of this panel. ZUP is used
only if this panel is the first to be displayed by a user entering the HELP
command, or if it is selected from the tutorial index and the user then
enters the UP command.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

ZUP is ignored when it is defined in the top panel (defined by ZHTOP).

ZCONT or CONT
Specifies the name of the next continuation panel. If there is no
continuation panel, ZCONT should be omitted.

ZIND When set to a value of YES, specifies that a page in the tutorial is an index
page. For example:

)PROC
&ZIND = YES

The ZIND variable is used only on index pages; it should not be set on
other tutorial panels.

Use variable names ZSEL, ZUP, and ZCONT. Variables SEL, UP, and CONT are
provided only for compatibility with the previous SPF product.

A panel cannot have both a continuation panel and selectable topics. However, the
last panel in a sequence of continuation panels can have selectable topics.

Help/tutorial panels can contain variables so that dialog information, including
information entered by a user, can be displayed on the help panel. Function
variables, as well as shared and profile variables, can be displayed.

shows a sample hierarchy of tutorial panels. Panels A and B have three
selectable topics each. Panels C and D2 have two selectable topics each. The other
panels have no selectable topics. Panel D1 has a continuation page (D2), and panel
F1 has two continuation pages (F2 and F3).

In assuming that panel A is the highest-level table of contents, the
viewer can get to A from any point by issuing the TOC command. A viewer
currently on panel F1, F2, or F3 can return to panel B by issuing the BACK
command. Then, from B, the SKIP command would take the viewer to panel C. If
the user enters the TUTOR command along with a panel identifier parameter, a
specific tutorial panel within the Help hierarchy is displayed. From that point on,
any movement within the hierarchy is the same as if the user had reached the
panel by any other means.

D1

D2

F1

F2

F3

Figure 77. Sample tutorial hierarchy

Chapter 8. ISPF help and tutorial panels 303

304

Two sample tutorial panels are shown in [Figure 78| and [Figure 79 on page 305}
These are assumed to be panels B and F2, respectively, in the hierarchy in
[Figure 77 on page 303

/%TUTORIAL ------------------ 3270 DISPLAY TERMINAL -----------ommmmmmm- TUTORIAL h
%NEXT SELECTION ===>_ZCMD +
+

[
% ||| mmmmmmmmmmmmmmmmmmemmmmmmmmmmm————a

General Information |
| 3270 Key Usage |

The IBM 3270 display terminal has several keys which will assist you
in entering information. These are hardware defined keys; they do not
cause a program interruption.

+
The following topics are presented in sequence,
or can be selected by number:
+
%1+ Insert and Delete Keys
%2+ Erase EOF (to End-of-Field) Key
+
The following topic will be presented only if
explicitly selected by number:
+
%3+ New Line and TAB Keys
+
)PROC
&ZSEL = TRANS(&ZCMD 1,E 2,F1 3,*G =,'?')
&ZUP = A
)END

Figure 78. Sample tutorial panel definition (panel B)

Panel B has three selectable topics. In the processing section, ZCMD is translated to
a panel name (E, F1, or G) corresponding to the selected option, and the result is
stored in ZSEL. If none of the valid options is selected, a question mark (?) is
returned as the translated string, which causes the tutorial program to display an
invalid option message.

Note that option 3 is translated to *G. This indicates that panel G is displayed if the
user selects option 3, but is bypassed if the user repeatedly presses Enter to view
each topic. The order in which topics are presented when Enter is pressed is the
same as the order in which they appear in the TRANS function. If option 3 is
selected, pressing the Enter key does not display the other topics.

In panel B, the name of the parent panel (A) is stored in variable ZUP.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

/ N

STUTORIAL =-----mmmmm e ERASE EOF KEY -----cmmmmmmmmmmeeo TUTORIAL
%NEXT SELECTION ===>_ZCMD +
+
When the erase EOF (erase to end-of-field) key is used, it will appear
to blank out the field. Actually, null characters are used in erasing
to the next attribute byte, thus making it easy to use the insert
mode, which requires null characters.
+
If the erase EOF key is pressed when the cursor is not within an input
field, the keyboard will lock. Press the RESET key to unlock the
keyboard.
+
You can try out the erase EOF key by entering data on line 2, then
moving the cursor back over part or all of the data and pressing the
key.
+
(Continued on next page)
+
)PROC
&ZCONT = F3
)END
- J

Figure 79. Sample tutorial panel definition (panel F2)

Panel F2 has no selectable topics, but does have a continuation page.
The name of the continuation panel (F3) is stored in variable ZCONT. The name of
the parent panel (B) could have been stored in ZUP, but this was omitted assuming
that F2 cannot be directly entered by use of the HELP command or from the
tutorial index.

If you call ISPTUTOR from an edit macro, be sure to save and restore the
environment at that point. For example:

ISREDIT MACRO

ISPEXEC CONTROL DISPLAY SAVE

ISPEXEC SELECT PGM(ISPTUTOR) PARM(panel-id)
ISPEXEC CONTROL DISPLAY RESTORE

EXIT

Chapter 8. ISPF help and tutorial panels 305

306 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 9. Defining messages

This topic describes how to create and change ISPF messages. You can create
messages in two ways:

* Using the existing message definition.

 Using the MSG and MSGMBR tags of the Dialog Tag Language (DTL). See the
[z/OS ISPF Dialog Tag Language Guide and Referencd for more information about
these tags.

ISPF message definitions are stored in a message library and displayed by using
the DISPLAY, TBDISPL, or SETMSG service, written to the ISPF log file by the
LOG service, or copied to variables specified in a GETMSG service request. You
create or change messages by editing directly into the message library. ISPF
interprets the messages during processing. No compilation or preprocessing step is
required.

Note: When not in TEST mode, the most recently accessed message definitions are
retained in virtual storage for performance reasons. If you have modified a
message, using TEST mode will ensure that the updated version of the

message will be picked up by ISPF services. See |“ISPF test and trace modes”]
for more information.

Several messages can be within each member of the message library. When using
the PDF editor to create a message file, prevent numbers from appearing in the file
by specifying NUMBER OFF.

The member name is determined by truncating the message ID after the second
digit of the number.

For example:

Message ID Member Name
G015 G01

ISPE241 ISPE24
XYZ123A XYZ12
ABCDE965 ABCDE96
EMPX214 EMPX21

All messages that have IDs beginning with the characters G01, for example, must
be in member GO1. [Figure 80 on page 308 shows an example of a member in the
message library. This member contains all message IDs that begin with EMPX21.

© Copyright IBM Corp. 1980, 2007 307

EMPX210 'INVALID TYPE OF CHANGE' .HELP=PERSO033 .ALARM=YES
'"TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE.'

EMPX213 "ENTER FIRST NAME' .HELP=PERS034 .ALARM=YES
'"EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE=NEW OR UPDATE.'

EMPX214 "ENTER LAST NAME' .HELP=PERS034 .ALARM=YES
"EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE=NEW OR UPDATE.'

EMPX215 "ENTER HOME ADDRESS' .HELP=PERS035 .ALARM=YES
"EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE=NEW OR UPDATE.'

EMPX216 "AREA CODE INVALID' .ALARM=YES
"AREA CODE &PHA IS NOT DEFINED. PLEASE CHECK THE PHONE BOOK.'

EMPX217 '&EMPSER ADDED'
'"EMPLOYEE &LNAME, &FNAME &I ADDED TO FILE'

EMPX218 "&EMPSER UPDATED'
'"RECORDS FOR &LNAME, &FNAME &I UPDATED'

EMPX219 '&EMPSER DELETED'
'RECORDS FOR &LNAME, &FNAME &I DELETED'

Figure 80. Sample messages

How to define a message

308

Messages generally should appear in collating sequence by message ID. Each
message within the library consists of two required lines and (optionally)
additional long message lines. The additional lines can contain up to 512 bytes of
long message text. ﬂlustrates the syntax for defining messages.

Line 1:

msgid ['short message'][.HELP=panel|*] [.ALARM=YES|NO]
[NOKANA | KANA] [.WINDOW=RESP | NORESP | LRESP| LNORESP]
[.TYPE=NOTIFY|WARNING|ACTION|CRITICAL]

Line 2:

'Tong message' [+]

Additional Tong message text lines — optional

Line 3:
['Tong message' [+]]
Line 4:
['Tong message' [+]]
Line n:
['Tong message' 1

Figure 81. Example syntax for defining messages

msgid
Required. Each message is referred to by a message identifier (ID). A message
ID can be four to eight characters long. It is defined as follows:
* Prefix: one to five alphabetic characters (A-Z, #, $, or @)
* Number: three numeric characters (0-9)
* Suffix (optional): one alphabetic character.

If the prefix is five characters long, the suffix must be omitted so that the total
length does not exceed eight characters. Use the message ID suffix if more than
10 messages are to be included in one member.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

short message
Optional. If a short message is specified on an ISPF panel, it is displayed first
(before the long message). Its maximum length is 24 bytes. The short message
is displayed in a pop-up window if the text is longer than will fit in the short
message area or if you defined a message window using the .WINDOW
keyword for the message. Otherwise, the short messages are right-justified and
displayed, with a high intensity attribute, either:
* At the right end of the first line on the screen, if an action bar is not defined
At the right end of the line following the action bar

If the user enters the HELP command, the long message is displayed, with a
high intensity attribute. If the user enters the HELP command again, tutorial
mode is entered.

The location of the short and long messages in a user-designed panel is
specified by the SMSG and LMSG keywords. These keywords are defined
under [‘Defining the body section” on page 209.|

When messages are written to the ISPF log file, both the short message, if any,
and the long message are written in the same output line. The short message
comes first, followed by the long message.

Note: For long or short messages in pop-up windows, if the message
originates from panel processing, such as a verification error message,
the message pop-up window is placed adjacent to the field that is the
object of the validation.

.LOG=YES
Optional. Ensures that ISPF will write a copy of the message to the ISPF log, if
it is allocated.

HELP=panel | *
Optional. (Can be abbreviated to .H) If the user enters tutorial mode, the panel
name specified by .HELP is the first tutorial page displayed. If HELP=" is
specified, the first tutorial page is the one specified in the panel definition, that
is, the panel on which this message is being displayed. The default is *.

NOKANA IKANA
Optional. The NOKANA keyword allows messages to contain lowercase
characters, and still display correctly on a Katakana terminal. Because
hexadecimal codes for some lowercase characters overlap those of some
Katakana characters, they would display as meaningless characters on a
Katakana terminal. If the NOKANA keyword is present in a message
definition, ISPF translates any lowercase message characters to uppercase
before displaying the message on a Katakana terminal.

In summary, if the terminal is Katakana, and:

* KANA is specified, all characters are left as is.

* NOKANA is specified, lowercase characters are translated to uppercase.
¢ If neither KANA nor NOKANA is specified, all characters are left as is.

If the terminal is not Katakana, and:

* KANA is specified, lowercase characters are displayed as periods

* NOKANA is specified, all characters are left as is.

* If neither KANA nor NOKANA is specified, all characters are left as is.

Notes:

1. On non-Katakana terminals, the KANA keyword can be used to display
overlapping Katakana characters as periods rather than as meaningless
lowercase characters.

Chapter 9. Defining messages 309

310

2. On Katakana terminals, the NOKANA keyword is necessary in messages
containing lowercase English characters.

3. See [Chapter 11, “Extended code page support,” on page 347| for the
discussion of the treatment of the KANA or NOKANA keywords if a
CCSID is specified.

ALARM=YES INO

Optional. (Can be abbreviated to .A) If ALARM=YES is specified, the audible
alarm sounds when the message displays. If .ALARM=NO is specified, the
alarm does not sound unless .ALARM is set to YES in the panel definition. The
default is NO.

WINDOW=RESP | NORESP | LRESP | LNORESP

Optional. (Can be abbreviated to .W) The .WINDOW keyword tells ISPF to
display the message in a message pop-up window.

WINDOW=RESP (R is a valid abbreviation for RESP) requests ISPF to display
both long and short messages in a message pop-up window that requires the
user to press Enter before data can be entered into the underlying panel. The
user cannot enter data or interact with the underlying panel until Enter (or
some other attention key) is pressed.

WINDOW=NORESP (N is a valid abbreviation for NORESP) requests ISPF to
display both long and short messages in a message pop-up window that does
not require direct user response. The user can enter data into the underlying
panel while this message is being displayed.

WINDOW=LRESP (LR is a valid abbreviation for LRESP) requests ISPF to
display only long messages in a message pop-up window that requires the
user to press Enter before data can be entered into the underlying panel. The
user cannot enter data or interact with the underlying panel until Enter (or
some other attention key) is pressed.

WINDOW=LNORESP (LN is a valid abbreviation for LNORESP) requests ISPF
to display only long messages in a message pop-up window that does not
require direct user response. The user can enter data into the underlying panel
while this message is being displayed.

The MSGLOC parameter on the DISPLAY, TBDISPL, and SETMSG services
controls the placement of the message pop-up window. For messages that
originate from panel processing, such as a verification error message, the
message pop-up window is placed adjacent to the field which is the object of
the validation. The window placement will be such that it does not overlay the
object field, if possible. If no correlation can be made between the validation
and a field (such as when the variable being validated is not a panel field
name), the message pop-up window is displayed at the bottom of the logical
screen or below the active pop-up window, if one exists. See the sections on
these services in the [z/0S ISPF Services Guide|for a complete description of the
MSGLOC parameter.

.TYPE=NOTIFY | WARNING | ACTION | CRITICAL

Optional. (Can be abbreviated to .T) The .TYPE keyword in the message
definition identifies the type of message. There are four types of messages,
NOTIFY, WARNING, ACTION, and CRITICAL. N, W, A, and C are valid
abbreviations.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

summarizes the characteristics of the different types of messages.

Table 19. Message characteristics

Type Color Intensity Placement Response Alarm

NOTIFY White High Message area or Optional Off
pop-up window

WARNING Yellow High Message area or Optional On
pop-up window

ACTION Red High Message area or Optional On
pop-up window

CRITICAL Red High Pop-up window Required On

The .TYPE keyword overrides any .ALARM value that can be specified. A
.TYPE=CRITICAL message is always displayed as though .WINDOW=RESP
was specified. The defined color and highlighting characteristics apply to
messages displayed in the default short/long location and a pop-up message
window. The dialog application controls the field attributes for alternate
message location fields.

long message
Required. If a short message is not specified, the long message is automatically
displayed first, with a high intensity attribute, in the long message area or in a
message pop-up window. The long message is displayed in a pop-up window
if the text is longer than will fit in the long message area, if you defined a
message window using the WINDOW keyword for the message, or if you
have selected this option on the Settings panel.

The location of the short and long messages in a user-designed panel is
specified by the SMSG and LMSG keywords. These keywords are defined
under [‘Defining the body section” on page 209.|

The maximum length of the long message text is 512 bytes. If the message text
is greater than 512 bytes, it will be truncated. Messages greater than 78 bytes
require multiple long message lines. The continuation of the long message text
into additional lines is indicated by one or more spaces following the ending
quote () followed by a plus (+) sign. For example:

ISPX001 'short message text'

'Long message text' +

' continued over ' +

'multiple lines. The maximum length is ' +
'512 bytes.'

For the best results, use the fewest number of message lines possible.

ISPX001 'short message text'
'Long message text continued over multiple Tines. The maximum' +
" Tength is 512 bytes.'

Consecutive SOSI characters resulting from multiple lines of DBCS data are
automatically removed. For example,
'Long messageSDBS' +

0 I

'SCSSdata.’
01

Result: Long messageSDBCSSdata.
0 I

Chapter 9. Defining messages 311

The ending SI in the first record and the beginning SO in the second record are
automatically removed.

When messages are written to the ISPF log file, both the short message, if any,
and the long message are written in the same output line. The short message
comes first, followed by the long message.

The long message text will be written to multiple records if the text is greater
than 78 characters.

Existing dialogs which have VDEFINEd the system variable ZERRLM as 78
characters should be updated to VDEFINE this variable as 512 characters.

Note: For long or short messages in pop-up windows, if the message
originates from panel processing, such as a verification error message,
the message pop-up window is placed adjacent to the field which is the
object of the validation.

Message display variations

The tables shown demonstrate various message display situations and the effect of
the .TYPE keyword and the PANEL DISPLAY CUA MODE field on the color and
highlighting of the message text. The variations are dependent on whether you
used the Dialog Tag Language (DTL) or the panel definition statements to define
your panels.

Note: If you are running in GUI mode, messages that would appear in a pop-up
window in non-GUI mode will be displayed in a message box. The message
box will include the appropriate icon as defined by CUA guidelines:

* .TYPE=NOTIFY produces an i in a circle, the international symbol for
information

* .TYPE=WARNING produces an exclamation point (!)

¢ .TYPE=ACTION or .TYPE=CRITICAL produces a red circle with a
diagonal line across it

If your dialog application panels are generated using the DTL, the dialog manager
displays the messages as shown in [Table 20

Table 20. Message display using DTL

Message Definition Text Intensity
.TYPE=NOTIFY .ALARM=YESINO White High
.TYPE=WARNING .ALARM=YES INO Yellow High
.TYPE=ACTION .ALARM=YESINO Red High
.TYPE=CRITICAL .ALARM=YES INO Red High
.TYPE not specified . ALARM=NO White High
.TYPE not specified .ALARM=YES Yellow High

If your application panels are generated from the panel definition statements and
you use the default message placement, the dialog manager displays the messages
as documented in [Table 21 on page 313

312 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 21. Message display using panel definition statements

Message Definition Text Intensity
TYPE=NOTIFY .ALARM=YES INO White High
.TYPE=WARNING .ALARM=YES |NO Yellow High
.TYPE=ACTION .ALARM=YESINO Red High
.TYPE=CRITICAL .ALARM=YES INO Red High
.TYPE not specified .ALARM=NO CUA mode=YES White High
.TYPE not specified . ALARM=YES CUA mode=YES Yellow High
.TYPE not specified . ALARM=NO CUA mode=NO White High
.TYPE not specified .ALARM=YES CUA mode=NO White High

If you define your panels using the panel definition statements and you use an
alternate message placement, the dialog (using the field attributes) controls the
message text color and highlighting.

Messages tagged with CCSID

An ISPF message can be defined with .CCSID=xxxxx where xxxxx is the CCSID of
the EXTENDED CODE PAGE as defined by Character Data Representation
Architecture. See|“Supported CCSIDs” on page 351| for which CCSIDs are
supported.

Panels or messages tagged with the CCSID keyword invoke the TRANS service.
The to CCSID is the value in ZTERMCID. This value is filled in during ISPF
initialization as the result of the terminal query done by ISPE. The from CCSID is
the CCSID entered following the CCSID keyword.

If the CCSID keyword is used, the characters in the message are translated to the
equivalent characters in the terminal code page for display. This translation occurs
only if the terminal has returned information to allow ISPF to determine its CCSID
and only if the code page indicated by the CCSID is different from the code page
of the terminal.

Note: The same CCSID is used for all messages within a message member.
Therefore, this keyword should be in the first record and start in the first
column of the message member. If the .CCSID keyword is not in the first
record or does not start in the first column of the first record, it is ignored
and character translation does not occur.

.CCSID=xxxxx

ISPX001 'short message text'

'"Long message text' +

" continued over ' +

'multiple Tines. The maximum length is ' +
'512 bytes.'

All characters in the message member which are not short or long message text
must be in the Syntactic Character Set:

e A-Z

° a-z

* 09

e +<=>%&*""
° ()r_'-/:;?

Chapter 9. Defining messages 313

The beginning and ending inhibited character tables are enhanced to include
characters from the extended code pages for the supported Asian Pacific languages
in formatting message text. The CCSID of the message is used to determine which
tables to use. If no CCSID is specified, the session language ID and terminal type
determine the tables used. See [Chapter 11, “Extended code page support,” on page]

and [“Message pop-up text formatting.”|

Modeless message pop-ups

ISPF allows you to cancel a modeless message pop-up by positioning the cursor
within the bounds of the message pop-up and requesting CANCEL or ENTER.
This allows you to remove the message pop-up without submitting the underlying
panel for processing.

For the cursor to be within the bounds of the message pop-up, it must be inside
the window frame of the message. Placing the cursor on the message window
frame does not result in the message window being canceled. Note that
asynchronous command processing is not suspended when the cursor is placed
inside a message window. Therefore, commands such as PRINT and SPLIT are
started when typed on the command line and Enter pressed, even if the cursor is
placed inside a modeless message pop-up window.

The HELP command will not display message help for a message window that has
been canceled.

Message pop-up text formatting

314

The message text is retrieved from the message member. If it is more than one line
(that is, if ISPF finds at least one blank and a plus sign following the closing quote)
the lines are concatenated, including blanks within or at the end of the text.
Trailing blanks are stripped from any variable values before the values are
substituted into the text string.

The width of the message pop-up window is determined based on the location
where the window will be placed. If the message is displayed as a result of a panel
verification error, the message pop-up is displayed relative to the field in error. If
the MSGLOC parameter is specified on the DISPLAY or SETMSG service, the
message pop-up is displayed relative to the specified field name. If the MSGLOC
parameter is not specified, the message pop-up will be displayed at the bottom of
the logical screen or below the active ADDPOP pop-up window, if one exists.

The width of the window will be the width from this determined location to the
right edge of the screen. Note that this width will vary based on the screen size the
user is running with.

ISPF determines if the message text is to be formatted according to English rules or
Asian rules based on the type of data in the message text, MIXED or EBCDIC,
together with the message CCSID or the current ISPF session language variable,
ZLANG.

If the data contains double-byte characters and the message CCSID is 00930, 00933,
00935, 00937, or 00939, the Japanese (Katakana), Korean, Simplified Chinese,
Traditional Chinese, or Japanese (Latin) text formatting rules are used, respectively.
If the data contains double-byte characters and the message does not have a
CCSID or the CCSID is not 00930, 00933, 00935, 00937, or 00939 and the ZLANG
value is JAPANESE, CHINESET, CHINESES, or KOREAN, the Japanese,

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Traditional Chinese, Simplified Chinese, or Korean text formatting rules are used,
respectively. If the data contains double-byte characters and the message does not
have a CCSID, or if the message CCSID is not 00930, 00933, 00935, 00937, or 00939,
or if the ZLANG is not JAPANESE, CHINESET, CHINESES, or KOREAN, the
Japanese text formatting rules are used by default.

If the data is all single-byte data and there is no CCSID for the message, ISPF
determines if the application is running on a Japanese Katakana terminal and if the
NOKANA keyword was specified on the message definition. If so, ISPF uses the
English formatting rules. If NOKANA was not specified, ISPF uses the Japanese
Katakana formatting rules. If the application is not running on a Katakana terminal
and there is no CCSID for the message, ISPF uses the English formatting rules.

English rules for message text formatting

Message text exceeding the width of the message window is wrapped to the next
line. The text is split at blanks only. If a word is longer than the message window
width, the window is expanded to the width of this word. However, if a word
exceeds the maximum window size (screen width minus 3), the word will be split
and continued on the next line. Once the message formatting is complete, the
message pop-up window width will be decreased to the length of the longest line,
excluding trailing blanks.

Asian rules for message text formatting

Some characters should not be placed at the beginning of a line, and some should
not be placed at the end of a line. These beginning-inhibited and ending-inhibited
characters are different among the languages, yet the required process is the same.
Thus, ISPF uses the same text formatting process for the Asian languages, but it
uses a different beginning-and-ending-inhibited character table for each language.
The CCSID of the message is used to determine which tables to use. If no CCSID is
specified, the session language ID and terminal type determine the tables used. See
[Chapter 11, “Extended code page support,” on page 347

The message text is first split into words. An SBCS “word” is delimited by blanks,
or SO/SI characters. Then any beginning inhibitors are stripped from the
beginning of the word and treated as separate words, and any ending inhibitors
are stripped from the end of the word and treated as separate words.

Adjoining DBCS alphanumeric characters (that is, Ward 42 characters) are treated
as one DBCS “word”. Then any beginning inhibitors are stripped from the
beginning of the word and treated as separate words, and any ending inhibitors
are stripped from the end of the word and treated as separate words. All other
non-Ward 42 double-byte characters are treated as separate DBCS words.

If a word is longer than the message window width, the window is expanded to
the width of this word. However, if a word exceeds the maximum window size
(screen width = 3), the word will be split and continued on the next line. If the text
consists of mixed data and does not fit in one line within the specified width, the
first position will always be reserved for an SO character (if first word is
double-byte) or for a blank (if the first word is single byte). This will allow the text
to be aligned properly.

Words that exceed the width of the message window are wrapped to the next line
according to following rules:

Chapter 9. Defining messages 315

. CE_1CE
CB CB+1 ...

CE_1 CE CB | CB+1| Process

any B,X B X,E Backward
E E X,B | X,E Backward

X,B E any | any Forward
Xx,B - X - B - B Forward
______any other No process

where:
CE-1 and CE Last two words that fit on line
CB and CB+1 First two words on next line
E Ending inhibitor
B Beginning inhibitor
X Neither
Forward Move CE to next line
Backward Move CB to previous line
No process Split as is.

Note: If words CE or CB are single-byte words and are more than one character,
or if CE or CB are double-byte words and are more than one double-byte
character, no special processing is used; the line is split as is.

SBCS and DBCS blanks that end or begin a line will be deleted.

Substitutable parameters in messages

A substitutable parameter, a dialog variable name preceded by an ampersand (&),
can appear anywhere within the short and long message text. For example:

'"Volume &VOL not mounted'

Substitutable parameters can also be used to specify the value of .HELP or
ALARM, as follows:

'Volume &VOL not mounted' .HELP = & .ALARM = &A

where variable H must contain a panel name or single asterisk, and variable A
must contain YES or NO. Substitutable parameters can also be used to specify the
value of .TYPE and .WINDOW.

Substitutable parameters in messages are normally replaced with values
immediately before the message displays. If the message is specified for display by
using the SETMSG service, substitutable parameters are replaced during SETMSG
processing. When the GETMSG service is invoked, substitutable parameters are
replaced at the time of the GETMSG call. After substitution of the variables, the
short message is truncated to 24 characters and the long message is truncated to
512 characters.

Syntax rules for consistent message definition

These rules apply to the syntax of messages as they appear in the message library
(Figure 80 on page 308):

316 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

¢ The message ID must begin in column 1 of the first line, and the long message
must begin in column 1 of the second line. For readability, one or more blank
lines can separate the two-line message specifications within the member.

* Comments can precede or follow a two-line message specified within a member.
A comment begins with the characters /* starting in column one.

* In the first line, the fields must be separated by at least one blank. One or more
blanks can optionally occur on either side of an equal sign (=).

* The short message, if specified, and the long message must each be enclosed in
single quotes (’). If the short message is omitted, the enclosing single quotes are
also omitted.

* Within the short or long message text, any non-alphanumeric character can
terminate a variable name. For example:

"Enter &X, &Y, or &Z'

where a comma terminates the variable names X and Y. The name 7 is delimited
by the single quote that marks the end of the message.

* A period (.) at the end of a variable name has a special meaning. It causes
concatenation with the character string following the variable. For example, if
the value of variable V is ABC, then:

'&V.DEF' yields 'ABCDEF'

* A single ampersand followed by a blank is interpreted as a literal ampersand
character, not the beginning of a substitutable variable. An ampersand followed
by a nonblank is interpreted as the beginning of a substitutable variable.

* A double ampersand can be used to produce a character string starting with an
ampersand. The double character rule also applies to single quotes within the
delimiting single quotes required for the short and long message text, and to a
period, if it immediately follows a variable name. For example:

&& yields &
"' yields ' within delimiting single quotes
yields . immediately following a variable name.

DBCS-related variables in messages

These rules apply to substituting DBCS related variables in messages. These rules
also apply to file skeletons and file-tailoring operations.

e If the variable contains MIX format data, each DBCS subfield must be enclosed
with shift-out and shift-in characters.
Example:

eeee [DBDBDBDBDB] eee [DBDBDB]

ee... represents a field of EBCDIC characters
DBDB... represents a field of DBCS characters

-[1- represent shift-out and shift-in characters.

* If the variable contains DBCS format data only, the variable must be preceded
by the ZE system variable, without an intervening blank.

Example:
...text...&ZE&DBCSVAR. .text...

e If the variable contains EBCDIC format data and is to be converted to the
corresponding DBCS format data before substitution, the variable must be
preceded by the ZC system variable, without an intervening blank.

Example:
...text...8ZC&EBCSVAR. .text...

The ZC and ZE system variables can only be used for the two purposes described.

Chapter 9. Defining messages 317

318 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 10. Defining file-tailoring skeletons

ISPF skeleton definitions are stored in a skeleton library and accessed through the
ISPF file-tailoring services. You create or change skeletons by editing directly into
the skeleton library. ISPF interprets the skeletons during execution. No compilation
or preprocessing step is required.

There are two types of records that can appear in the skeleton file:

Data records
A continuous stream of intermixed text, variables, and control characters
that are processed to create an output record.

Control statements
Control the file-tailoring process. Control statements start with a right
parenthesis in column 1. Records containing a) in column 1 and a blank
in column 2 are interpreted as data records. Records containing a) in
column 1 and a nonblank character in column 2, are interpreted as control
statements.

A)DEFAULT control statement can be used to assign different special
characters for syntactical purposes. The available control statements are:

) BLANK)CM)DEFAULT
)DO)DOT)ELSE

) ENDDO)ENDDOT) ENDREXX
)ENDSEL)IF)IM

) ITERATE)LEAVE)NOP
)YREXX)SEL)SET
)SETF)TB)TBA

You can use the ISPFTTRC command to trace both the execution of file tailoring
service calls (FTOPEN, FTINCL, FTCLOSE, and FTERASE) and the processing that
occurs within the file tailoring code and processing of each statement. For more
information, refer to [File tailoring trace command (ISPFTTRC)” on page 374.|

Control characters

The characters listed are control characters and have special meanings in a
skeleton. They can appear in either a data record or a control statement.

) (right parenthesis)
Defines:

* The start of a control statement when placed in column 1 and followed
by a nonblank character in column 2.

* The start of a data record when placed in column 1 and followed by a
blank in column 2.

? (question mark)
The question mark is used as a continuation character when more than one
input record maps to a single output record or control statement.

Data records
A question mark in the last input column of a data record indicates
record continuation. If any character other than a question mark
appears in the last input column of an input data record, it is copied to

© Copyright IBM Corp. 1980, 2007 319

Control characters

that column of the output record. Continuation of data records is not
permitted for variable-length input records.

Control statements
Continuation of control statements is permitted for both fixed-length
and variable-length input records.

In a fixed-length record, continuation of a control statement is

identified by a question mark in the last input column:

)SEL &RC = 0 ?
&& &VARNAME = &ZUSER ?
&& &VARI <= 10

In a variable-length record, continuation of a control statement is
identified by a question mark in the last nonblank input column that is
preceded by a space:
)SEL &RC = 0 ?

&& &VARNAME = &ZUSER ?

&& &VARI <= 10

& (ampersand)
Indicates the start of a variable name. The value of the corresponding
dialog variable is substituted in the output record. A value of all blanks is
treated as null. These characters implicitly delimit the end of a variable
name:

(blank) 6 < (+ | & ! %) 3~ -/, % >: "' ="
Note: File tailoring treats an ampersand-blank combination in the input
record as an invalid variable name.

(period)
Causes the value of the variable to be concatenated with the character
string following the period when used at the end of a variable name.

Example:

If variable V has the value ABC, then "&V.DEF" yields "ABCDEF".

Two consecutive control characters in the input record result in one control
character being placed in the output record:

)) yields)
?? yields ?
&& yields &

yields . immediately following a variable name.

Note: If any of these characters is overridden by the)DEFAULT control statement,
the same rule applies to the new control character. For example, if a
)DEFAULT statement substitutes the /A character for), then two consecutive
A characters in the input record will result in one ~ character being placed
in the output record.

Considerations for data records

Input records can have a maximum length of 255 bytes. For fixed-length records,
the last eight character positions are considered to be a sequence number. The
character preceding the last eight characters is considered to be the last input
column. Variable-length input records are scanned up to the end of the record.

320 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Considerations for data records

If variable substitution results in an output record larger than the logical record
length of the output file, file tailoring terminates and a message is displayed.

Any blank data records in the input data are deleted from file-tailoring output.
However, the) BLANK control statement can be used to produce blank lines in the
output file.

Control characters for data records

These characters have special meanings in data records:

! (exclamation point)

Serves as the default tab character for the)TB and the)TBA control
statements. The file-tailoring tabbing function works either similarly to that
of a typewriter tabbing operation, or you can specify in the)TB syntax that
tabbing is not to take place if a tab stop is sensed at the same record
position as the tab character.

< (less-than)
| (vertical bar)
> (greater-than)

Specify, respectively, the beginning, middle, and end of a conditional
substitution string. For example:

<stringl|string2>

where string]l must contain at least one variable name. string? can be null.
If the first variable in stringl is not null, stringl is substituted in the output
record. If the first variable in stringl is null, string2 is substituted in the
output record.

Example:

An input skeleton contains these lines:

)SET I = 82
)SET J = VALUE_OF J
)SET K = VALUE_OF K

FIRST CONDITIONAL SUBSTITUTION RESULT: <&J|&K>;
SECOND CONDITIONAL SUBSTITUTION RESULT: <&I|&J>;

After processing, the file-tailoring output file contains:

FIRST CONDITIONAL SUBSTITUTION RESULT: VALUE_OF_J
SECOND CONDITIONAL SUBSTITUTION RESULT: VALUE_OF_J

Two consecutive control characters in the input record result in one control
character being placed in the output record:

I}
<<

>>

Note:

yields !
yields
yields
yields

vV — A

If any of these characters is overridden by the)DEFAULT control statement,
the same rule applies to the new control character. For example, if a
)DEFAULT statement substitutes the ~ character for !, then two consecutive
A characters in the input record will result in one ~ character being placed
in the output record.

Chapter 10. Defining file-tailoring skeletons 321

Considerations for control statements

Considerations for control statements

322

The general format of a control statement is:
)control-word parameterl parameter? ... parameter63

where each parameter represents a name, value, operator, or keyword.

Notes about formatting control statements:

1. Control statements must begin in column 1. Note that an)IF or)ELSE control
statement can contain another control statement on the same line, as long as the
)IF or)ELSE statement begins in column 1.

2. All control words must be entered in uppercase.

3. The parameters must be separated by one or more blanks, and cannot contain
embedded blanks. A parameter can be coded as:
* A character string
* A dialog variable name, preceded by an ampersand
* A concatenation of variable names and character strings

4. The current value of each variable is substituted before the control statement is
evaluated. The rules for delimiting variable names and for using ampersands,
periods, double ampersands, and double periods are the same as for data
records, as described in|“Control characters for data records” on page 321.

The)N comment statement of PDF edit models is not a valid control statement for
file tailoring and will cause file tailoring to terminate with a severe error.

Control statements
This topic describes each of the ISPF file tailoring control statements:

)JBLANK [number]
The specified number of blank lines are placed in the output file at the
point where the)BLANK statement is encountered. The number parameter
can be specified as a symbolic variable. If number is omitted, the default
value is 1.

Example:
)BLANK

)BLANK &SPACER

The first example inserts one blank line into the output file. In the second
example, the number of blank lines inserted is equal to the current value of
the variable SPACER.

YCM comment
The statement is treated as a comment. No tailoring is performed, and the
record is not placed in the output file. Comment statements cannot be
continued.

In addition, comment control statements are ignored in these cases:

* When specified as the control statement for either the)IF or)ELSE
control statements.

* When embedded within another control statement that includes
continuation across two or more input records

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Considerations for control statements

)DEFAULT abcdefg
The seven characters represented by abcdefg override the use of the), &, ?,
!, <, |, and > characters, respectively. Exactly seven characters must be
specified.

If you are using a non-U.S. keyboard, refer to |Appendix A, ”Characteli
ltranslations for APL, TEXT, and Katakana,” on page 361|for text keyboard
character translations.

The)DEFAULT statement takes effect immediately when it is encountered.
It remains in effect until the end of FTINCL processing, or until another
)DEFAULT statement is encountered. If the)DEFAULT statement is used to
change defaults during an imbed, it is only in effect for that imbed level. It
does not apply to deeper or previous imbed levels. The defaults will not be
in effect for any imbedded skeletons but will be in effect for any data in
the skeleton after the)IM. The)DEFAULT statement cannot be continued.

Example 1:

This example demonstrates that defaults changed using) DEFAULT do not
take effect in imbedded skeletons.

This skeleton changes the variable name control character & to the o sign:

JDEFAULT)o?!<|>
)SET A = USERNAME
A: oA

)IM SKEL2

A: oA

An FTINCL of this skeleton imbeds SKEL2, which contains:

AA: oA
AA: &A

This results in this data in the output data set:

A: USERNAME
AA: oA

AA: USERNAME
A: USERNAME

Example 2:

This example demonstrates that defaults changed in an imbedded skeleton
are not passed back to the skeleton doing the)IMBED.

An FTINCL of this skeleton imbeds SKEL3:

)SET A = USERNAME
A: oA

)IM SKEL3

A: oA

SKEL3 changes the variable name control character & to the o sign:

)DEFAULT)o?!<|>
AA: oA
AA: &A

This results in this data in the output data set:

A: oA
AA: USERNAME
AA: 8&A
A: oA

Chapter 10. Defining file-tailoring skeletons 323

Considerations for control statements

Example 3:

This example demonstrates how to use the NT parameter to prevent
tailoring from occurring when imbedding a file. Using NT eliminates
having to change defaults in the imbedded skeleton when it contains
default control characters.

An FTINCL of this skeleton imbeds a skeleton with the NT parameter:

)SET A = LBLI

&A:

)IM SKEL4 NT
GO TO &A

The imbedded skeleton SKEL4 contains:

IF (%A < 0) | (%A > 10) THEN
8A = 0
ELSE

This results in this data in the output data set:

LBL1:
IF (8A < 0) | (%A > 10) THEN
& =0
ELSE
GO TO LBL1
)DO
JENDDO

The skeleton input records between the)DO and the corresponding
JENDDO statements are repeatedly processed until a condition causes the
)DO loop to terminate. Processing then continues with the input record
immediately following the ENDDO statement.

The processing of a)DO loop can be prematurely ended using the)LEAVE
statement, or the current iteration of the)DO loop can terminated using
the)ITERATE statement.

There are several different formats of the)DO statement supported by file
tailoring. The possible syntaxes are:

)DO [do-expression] [WHILE while-expression | UNTIL until-expression]
)DO FOREVER
)DO count

Where:

do-expression is of the form:
var = n [TO m] [BY incr] [FOR cnt]

var The control variable name.

n The starting value, which can be either a positive or a negative
integer in the range -2147483648 to 2147483647.

m The ending value, which can be either a positive or a negative
integer in the range -2147483648 to 2147483647.

incr The increment value, which can be either a positive or a negative
integer in the range -2147483648 to 2147483647. Default value is 1.

cnt The maximum number of iterations of the)DO loop to be

324 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Considerations for control statements

performed. The number can be either a positive or a negative
integer in the range -2147483648 to 2147483647. If cnt is less than 1,
the)DO statement is skipped.

until-expression is a relational expression that is evaluated for a true or false
condition. The)DO loop continues while the until-expression evaluates to a
false condition. The test is performed at the end of each loop prior to
updating the control variable. The loop is always performed at least once.

while-expression is a relational expression that is evaluated for a true or false
condition. The)DO loop continues while the while-expression evaluates to a
true condition. The test is performed at the start of each loop, once the
control variables are initialized.

count is an integer number used to control the number of iterations of the
)DO loop. The number can be either a positive or a negative integer in the
range -2147483648 to 2147483647 If the count is less than 1, the)DO
statement is skipped. The default value for count is 1.

FOREVER continues processing the)DO loop until a)LEAVE statement
within the loop terminates the)DO loop. All other parameters are ignored
when using the FOREVER parameter. File tailoring makes no attempt to
determine if a)DO FOREVER loop can be suitably terminated.

Example 1

This example performs a loop 10 times with the control variable, I, starting
at 1 and increasing by 1 each time. The control variable will have the value
11 at the end of the loop.

)DO I =1 70 10
)ENDDO
Example 2

This example shows a)DO loop that is to continue until the variable RC is
nonzero.

)SET RC = 0
)DO FOREVER

)IF &RC —= 0 THEN)LEAVE
)ENDDO
Example 3

This is another example of a)DO loop that is to continue until the variable
RC is nonzero. Note that testing of the variable RC is performed at the
start of each loop.

)JSET RC = 0
)DO WHILE &RC = 0

)ENDDO
Example 4

This example performs a loop 10 times. There is no control variable.

Chapter 10. Defining file-tailoring skeletons 325

Considerations for control statements

326

)DO 10

)ENDDO

)DOT table-name [SCAN [(name-cond-pairs)]]
JENDDOT

Note: The)DOT command parameter table-name must be in uppercase for
use with ISPF table services.

The skeleton input records between the)DOT and the corresponding
JENDDOT are iteratively processed as follows:

¢ Where the SCAN keyword is not provided, each row of the table is
processed, beginning with the first row.

* Where the SCAN keyword is provided, only those rows of the table that
match the current scan arguments are processed.

— Where the additional name-cond-pairs parameter is not specified, a
search argument must have already been established for the ISPF
table, table-name. This requires table-name to have been opened and a
valid search argument established using the TBSARG service before
the file tailoring services are invoked. A severe dialog error will occur
if the SCAN keyword is specified and valid search arguments have
not yet been established for the table.

— Where the additional name-cond-pairs parameter is specified, ISPF file
tailoring services will establish the search arguments using the
TBSARG service prior to processing table. The dialog variable must
already be initialized to the required values for the TBSARG service.

At the start of each iteration, the contents of the current table row are
stored into the corresponding dialog variables. Those values can then be
used as parameters in control statements or substituted into data records.
Up to four levels of)DOT nesting are permitted. The same table cannot be
processed recursively. The list of records must end with the)JENDDOT
statement.

If the table was already open, it remains open after file tailoring with the
CRP positioned at TOP. If it was not open, it is opened automatically and
then closed upon completion of file tailoring.

Any of the other control statements can be used between the)DOT and the
)ENDDOT control statements.

Example 1

This example takes the information from table ABC, and writes any blank
table row as a blank line:
)DOT ABC
)SEL &LNAME = &Z && &FNAME = &Z
YBLANK 1
)ENDSEL
&FNAME &LNAME
) ENDDOT

Example 2
This example takes the information from table ABC, and writes out the

records containing the value in the dialog variable &VAR2, where the table
variable VAR1 matches the current value in the dialog variable &VARI:

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Considerations for control statements

)DOT ABC SCAN(VAR1,EQ)
&VAR2
)ENDDOT

)IF relational-expression THEN [control-statement]
JELSE [control-statement]
The relational-expression is evaluated for a true or false condition.

» If the condition is true, then either the control-statement on the)IF control
statement is processed or the next non-comment line is processed. The
)ELSE statement, if one is present, is skipped.

e If the condition is false, the control-statement or next non-comment line is
skipped and the subsequent)ELSE statement, if one is present, is
processed.

Up to 32 levels of)IF and)SEL nesting are permitted.

The control-statement can be any ISPF file tailoring control statement, except
)CM (comment), which is ignored. Some control statements, namely)DO,
)SEL, and)DOT require more than one input record. Similarly, the)IM
control statement imbeds another ISPF skeleton member. The processing of
the)IF or)ELSE statement is not completed until the control statement
specified on the)IF or)ELSE statement is also completed.

Only a control statement can be included on the same input record after
the THEN parameter or)ELSE control word. Put data records that are to
be processed as part of the)IF or)ELSE on the next input record. The
control-statement is optional on the same line as either the)IF or)ELSE
control words, but a valid statement must be supplied for an)IF and)ELSE
control statement before the end of the skeleton member. A severe error
will occur if the control statement is missing after the THEN parameter or
)ELSE control word. Use the)NOP control statement to provide a null
statement.

Example 1

This example combines the)IF and)DO statements to process a block of
input records when the variable RC has a value of zero, or another block
of input records when its value is nonzero.

)IF &RC = O THEN)DO
) ENDDO

)ELSE)DO

5EI;JD[‘)O

Example 2

This example sets the dialog variable RC back to zero when it has a value
of 4. Note that the comment statement is ignored.

)IF &RC = 4 THEN
)CM RESET RETURN CODE TO ZERO
)SET RC = 0

)IM skel-name [NT] [OPT] [EXT I NOEXT]

The specified skeleton is imbedded at the point where the)IM statement is
encountered. Up to 15 levels of imbedding are permitted.

The optional NT parameter indicates that no tailoring is to be performed
on the imbedded skeleton. Because the NT parameter causes the data to be

Chapter 10. Defining file-tailoring skeletons 327

Considerations for control statements

328

imbedded as it is, without any processing of control characters or control
statements, using the NT option improves performance.

The optional OPT parameter indicates that the skeleton is not required to
be present in the skeleton library. If OPT is coded and the skeleton is not
present, no error indication is given, and the record is ignored. If OPT is
not coded, and the skeleton is not present, a severe error occurs.

The EXT parameter enables the use of the extended built-in functions
within the skeleton skel-name. The NOEXT parameter disables the use of
the extended built-in functions. Both parameters are optional. When
neither the EXT or NOEXT parameter is specified, the ability to use the
built-in functions is determined by the FTINCL service call:

FTINCL service
Not specified EXT
Not specified on No Yes
)IM control primary skeleton
statement EXT Yes Yes
NOEXT No No

JITERATE
The)ITERATE statement terminates the current iteration of the)DO
structure and repeats the loop, providing any conditions that would cause
the loop to terminate have not yet been reached. A severe dialog error will
occur if the)ITERATE statement is used outside a)DO structure.

JLEAVE [DOT]
The)LEAVE statement immediately terminates the innermost)DO
statement. A severe dialog error will occur if the)LEAVE statement is used
outside a)DO structure.

The optional DOT parameter permits the termination of the current table
via the)DOT ...)ENDDOT control statements. The)LEAVE DOT statement
must be found within an active)DOT ...)JENDDOT sequence.

JNOP The)NOP control statement does not generate any output and can be used
anywhere in a skeleton input file. It can be used as a null control-statement
for either the)IF or)ELSE control statements.

YREXX [variablel variable2 ... variablen] [REXX=[%]lrexxname]

JENDREXX
The)REXX control statement is used to invoke REXX code from within a
file tailoring skeleton. The REXX can be coded within the skeleton
immediately after the)REXX control statement, or the name of a member
containing a REXX exec can be supplied.

variablel ... variablen are optional parameters that specify the names of
dialog variables to be passed to the REXX code for processing. Each
variable can itself be a variable name, whose value is a list of one or more
dialog variables, separated by either a space or a comma, that are to be
passed to the REXX code.

rexxname specifies the name of a member in the standard search sequence
used to load REXX programs. This member can contain interpreted REXX
or compiled REXX. Compiled REXX can be either the output generated by
the REXX compiler when using the CEXEC option, or a load module
generated by link-editing the output generated by the REXX compiler
when using the OBJECT option. This is an optional parameter.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Considerations for control statements

If a percent sign (%) is specified before rexxname, it will bypass the attempt
to load the REXX as a load module and attempt to load it directly from the
standard SYSEXEC/SYSPROC allocations.

Notes:

1. The REXX code cannot access any other dialog variables except those
specified on the)REXX control statement.

2. The REXX code cannot issue requests for ISPF services.

3. REXX coded within the skeleton must be terminated by a)ENDREXX
control statement within the same skeleton member.

Processing ISPF Dialog Variables with File Tailoring REXX

ISPF dialog variables can be processed by file tailoring REXX code. Dialog
variables are made available to the REXX code via the parameters specified
on the)REXX control statement:

These rules apply to the dialog variables that are passed to file tailoring
REXX code:

* The variable values must be in character format when passed, and must
remain in character format.

* File tailoring REXX can change the value of a variable but it cannot
change its length.

ISPFTRXV: Dialog Variable Processor for File Tailoring REXX

The ISPF module ISPFTRXYV is used to make ISPF dialog variables
available to the file tailoring REXX code, and to update the dialog variables
after they have been processed by file tailoring REXX.

When the file tailoring REXX is interpreted REXX (that is, the REXX
statements are coded directly in a skeleton or the member specified on
JREXX control statement contains interpreted REXX), ISPF creates calls to
ISPFTRXV to perform these tasks:

1. Set up corresponding REXX variables for the ISPF dialog variables
before the file tailoring REXX is invoked.

2. Update the ISPF dialog variables with any changes made by the file
tailoring REXX after it has finished.

To do this, ISPF generates these REXX statements before and after the
supplied file tailoring REXX code:

Chapter 10. Defining file-tailoring skeletons 329

Considerations for control statements

330

Call ISPFTRXV 'I'

If rc=0 then do

say 'ISPFTRXV Init failed rc='rc
return

end

Call ft_0003B060

Call ISPFTRXV 'T'

If rc=0 then

say 'ISPFTRXV Term failed rc='rc
return

ft_0003B060:

file tailoring REXX code

return

(Bold text indicates REXX code generated by ISPF.)

Notes:

1. A “trace i” statement is also inserted into the REXX code generated by
ISPF when the file tailoring trace command (ISPFTTRC) is used with
the debug option.

2. The 11 or 12 lines of REXX code generated by ISPF before the supplied
file tailoring REXX code and the line of REXX code generated by ISPF
after the supplied file tailoring REXX code will affect the results
obtained from the SOURCELINE function. For example using
SOURCELINE() in interpreted file tailoring REXX code returns a value
that is 12 or 13 more than the number of source lines of file tailoring
REXX.

Interpreted File Tailoring REXX and the EXIT statement

If the interpreted file tailoring REXX code uses the EXIT statement to
terminate REXX processing, the termination call to ISPFTRXV generated by
ISPF will not be executed. This means that any changes made to REXX
variables will not be applied to the corresponding ISPF dialog variables. If
you need to use the EXIT statement in your file tailoring REXX code and
you want changes to be applied to the ISPF dialog variables, ensure that a
termination call to ISPFTRXV (that is, Call ISPFTRXV 'T') is executed
before the EXIT statement.

When the file tailoring REXX code is compiled REXX, ISPF does not create
these initialization and termination calls to ISPFTRXV. Therefore, file
tailoring developers must include these calls in their file tailoring REXX
code.

Return Codes and Error Processing
ISPF provides these system dialog variables for processing errors and

return codes in file tailoring REXX:

ZFTXRC Available for file tailoring REXX code to pass a return code
back to ISPE. Length is 2 bytes. The corresponding REXX
variable is initialized with a value of 0.

ZFTXMSG Available for file tailoring REXX to return a message ID to

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Considerations for control statements

file tailoring and the invoking application. Length is 8
bytes. The corresponding REXX variable is initialized with
a value of 8 blanks.

ISPF recognizes these return codes passed back by the file tailoring REXX
code in the dialog variable ZFTXRC:

0 Successful operation.
8 File tailoring REXX defined failure. File tailoring continues.
other Severe error in the file tailoring REXX. File tailoring terminates.

When control returns to ISPF after the file tailoring REXX code has
executed, if ZFTXRC contains a return code of 8 and the value in
ZFTXMSG is blank, then ZFTXMSG is set to ISPF222.

If the return code in ZFTXRC is other than 0 or 8, the FTINCL service
terminates with a severe error condition. ISPF sets the ZERRMSG system
variable using this search order:

1. If the value in ZFTXMSG is not blank when control returns to ISPF it is
used to set the ZERRMSG system variable. This allows the file tailoring
REXX code to define the message to be used if a severe error occurs.

2. If the value in ZFTXMSG is blank when control returns to ISPF,
ZFTXMSG and ZERRMSG are set to ISPF223. This is the default ISPF
message for severe errors relating to file tailoring REXX.

If CONTROL ERRORS CANCEL is in effect, ISPF displays on the severe
error panel the message indicated by the value of ZERRMSG.

)SEL relational-expression
JENDSEL
The relational expression is evaluated for a true or false condition.

* If the condition is true, the skeleton input records between the)SEL and
the corresponding)ENDSEL are processed.

* If the condition is false, these records are skipped.

Up to 32 levels of)SEL and)IF nesting are permitted. The list of records
must end with an)ENDSEL statement.

Any of the other control statements can be used between the)SEL and the
JENDSEL control statements. For example, if you want to write
information from a table only if variable ABC is set to the name of that
table, specify:
)SEL &ABC='TABNAME'
)DOT TABNAME

&FNAME &LNAME
)ENDDOT
) ENDSEL

The relational expression consists of a simple comparison of the form:
valuel operator value2

or a combination of up to eight simple comparisons joined by connectors.
The system variable Z can be used to represent a null or blank value.

The allowable operators are:

EQ or = LE or <=
NE or -= GE or >=
GT or > NG or —>
LT or < NL or -—<

Chapter 10. Defining file-tailoring skeletons 331

Considerations for control statements

332

The allowable connectors are | (OR) and && (AND). ISPF evaluates
connected expressions from left to right and evaluates the connectors with
equal priority.

Examples:

)SEL &COND = YES

)SEL &TEST1 -= &Z | &ABC =5
)SEL &TEST1 -= &Z &% &ABC = 5

)SET variable = expression

)SET allows a value to be assigned to a dialog variable. The variable name
should not be preceded by an ampersand, unless the variable name is itself
stored as a variable. A blank is required between the variable and the
equal sign and between the equal sign and the expression.

The expression can be specified in either of these ways:
valuel

valuel operator value? operator ... value3l
where operator can be a plus sign (+) or a minus sign (-).
To assign a null value to a dialog variable, use the system variable &Z.
Example:

An input skeleton file contains:

)JSET A =1
)SET B = 2
)SET C = &A + &B
)SET D = &Z

A is &\, B is &B, C is &C, D is &D

The resulting output file contains:
Ais 1, Bis 2, Cis 3, D is

)SETF variable = expression

The)SETF control statement is the same as the)SET control statement,
except that it does not require the use of the EXT parameter on either the
FTINCL service or)IM control statement that is processing the skeleton to
use any of the built-in functions. In other words, the extended built-in
functions can always be used on the)SETF control statement.

The expression can be specified in either of these ways:
valuel

valuel operator value? operator ... value3l

where operator can be a plus sign (+) or a minus sign (-). Each value of
the expression can be a built-in function or a value.

If you need more arithmetic capabilities, use the [&EVAL()|built-in function
or use the)REXX control statement to invoke a REXX exec.

Examples:

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

)TB

Considerations for control statements

)SETF TOTAL = &EVAL(&SUBL * (&N-1)) + 2
)SETF NAME = &STR($FNAME &SNAME)

The)TB control statement has 3 forms:

)TB valuel ... valuel6 (standard tabbing)
)TB valuel[Al] ... valuel6[A] (alternate tabbing: designated positions)
)TBA valuel ... valuel6 (alternate tabbing: all positions)

An exclamation point (!) is used as the default tab character for the)TB
control statement. It tabs the output record to the next tab stop and fills the
intervening spaces with blanks. The next character following an
exclamation point in the input record is put at the tab stop location in the
output record. Up to 16 tab stops can be specified. A tab stop specifies a
tab position in the output record, and must be in the range 1-255. The
default is one tab stop at location 255.

When you use the standard tabbing syntax,)TB valuel ... valuel6, and
the tab stop value equals the current output position, the tabbing skips to
the next tab stop value that is greater than the current output position. The
input character following the tab character is then inserted into the
position skipped to in the output record.

When you use alternate tabbing syntax, specified with an A’ in the)TB
tabbing syntax, and the tab stop value equals the current output position,
the input character following the tab character is inserted into the current
position in the output record. This allows you to write to the current
position of the output record if a tab character in the input record is
encountered at the same time as a tab stop is encountered in the output
record.

The way you specify alternate tabbing syntax on the)TB control statement
determines whether only designated or all tab stop values are affected,
even if the tab stop value equals the current position in the output record
when a tab character is encountered in the input record. If you specify:

)TB valuelA ... valuelbA

only the tab stop values to which the character A is appended selectively
cause tabbing to stop in any of those positions. If you specify:

)TBA valuel ... valuelb

any tab stop value that equals the current position in the output record
when a tab character is encountered in the input record causes tabbing to
stop.

Be sure the character that you append for alternate tabbing is an uppercase
A. Appending an A to the)TB control word (that is,)TBA) has the same
effect as appending an A to all individual tab stop values. When you use
the)TBA control word, appending an A to an individual tab stop value has
no additional effect.

Example 1:

This example uses the standard tabbing syntax:
)TB valuel ... valuel6

An input skeleton file contains:

Chapter 10. Defining file-tailoring skeletons 333

Considerations for control statements

334

)TB 5 10 20
!ABCDE!F

After processing, the file-tailoring output record contains these characters:

* DPositions 1-4 contain the blanks inserted by the first tab operation.

* Positions 5-9 contain ABCDE. Standard tabbing occurs between E and F
because tab stop 10 is at the same (not greater than) position of the
output record at which the tab character is encountered in the input
record.

* Positions 10-19 contain blanks inserted by the second tab operation.

* Position 20 contains F.

Example 2:

This example uses alternate tabbing syntax for designated tab positions:
)TB valuel[A] ... valuel6[A]

An input skeleton file contains:

)TB 5 10A 20
!ABCDE!F

After processing, the file-tailoring output record contains these characters:

* DPositions 1-4 contain the blanks inserted by the first tab operation.

* Positions 5-10 contain ABCDEF. F immediately follows E because
alternate tabbing is specified for tab position 10. This allows tabbing to
stop in the current output record position (10) when the tab character
was encountered in the input record.

Example 3:

This example uses the alternate tabbing syntax for all tab positions:
)TBA valuel ... valuel6

An input skeleton file contains:

)TBA 3 6 10
'ABC!DEF!GH

After processing, the file-tailoring output record contains:

* Positions 1-2 contain the blanks inserted by the first tab operation.

* Positions 3-5 contain ABC. D immediately follows C because alternate
tabbing is specified and a tab stop is set at the current output
position (6).

* Positions 6-8 contain DEF.

* Position 9 contains a blank inserted by normal tabbing.

* Positions 10-11 contain GH.

Built-in functions

ISPF skeletons support the built-in functions listed. These can be used in place of
any single parameter on a control statement, except the)DEFAULT control
statement or the control statement keyword itself. They cannot be used on data
records.

A built-in function name is defined as a variable name, including the ampersand

and immediately followed by an open bracket “(”. Built-in functions can be nested
up to 32 levels.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Built-in functions

The built-in functions are:
* |&EVAL()
&LEFT()

]
=
£
Z
0
;_]

L|

0
« [&RIGHT()
&STR()

* [&STRIP()
RQ
(
&SYMDEF()

;

&
wn
-
jos]
wn
=

&=
<
92]
<

\E|

Chapter 10. Defining file-tailoring skeletons 335

Built-in functions

&EVAL()

The &EVAL() function evaluates an arithmetic expression. Only integer calculations
are supported.

Syntax:
&EVAL (expression)

expression
An arithmetic expression that is to be evaluated. Only integers with values
in the range (-2147483647 to +2147483646) are supported. All intermediate
results are also truncated to an integer. The expression can include these
operators:

+ addition

- subtraction

* multiplication

/ division

** raised to the power of

/I remainder
The expression can include up to 32 levels of nested parentheses.

Examples:
&EVAL(&SUB1 * (&N-1))

&EVAL (&YEAR//4)

336 2/0S V1IR9.0 ISPF Dialog Developer’s Guide and Reference

Built-in functions

&LEFT()

The &LEFT() function returns a string of characters starting at the left of the
specified string. Where the string is shorter than the required length, the resulting
string is padded at the right with a pad character.

Syntax:
&QLEFT([string], length [, pad])

string The string from which the leftmost characters are to be obtained. This can
be a null parameter.

length The length of the resulting string. It must be a positive integer or zero. The
length parameter can be an expression and will be automatically evaluated
using the EVAL()| function. This parameter is required.

pad A single character used to extend the resulting string to the required length
when the length of string is less than length. The default pad character is a
blank. This parameter is optional.

Examples:
&LEFT(,80,+)

&LEFT (&NAME, 1)

Chapter 10. Defining file-tailoring skeletons 337

Built-in functions

&LENGTH()

The &LENGTH() function returns the length of a string.

Syntax:
&LENGTH([string])

string The string used to obtain the required length. This can be a null parameter.

Examples:
&LENGTH (&NAME)

338 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Built-in functions

&RIGHT()

The &RIGHT() function returns a string of characters starting at the right of the
specified string. Where the string is shorter than the required length, the resulting
string is padded at the left with a pad character.

Syntax:
&RIGHT ([string], length [, pad])

string The string from which the rightmost characters are to be obtained. This can
be a null parameter.

length The length of the resulting string. It must be a positive integer, or zero. The
length parameter can be an expression and will be automatically evaluated
using the EVAL()| function. This parameter is required.

pad A single character used to extend the resulting string, at the left, to the
required length when the length of string is less than length. The default
pad character is a blank. This parameter is optional.

Examples:
&RIGHT(25,6,0)

&RIGHT (&DSN, 1)

Chapter 10. Defining file-tailoring skeletons 339

Built-in functions

&STR()

The &STR() function returns a string. The resulting string can include embedded
blanks.

Syntax:
&STR([string])

string The string of characters to be returned. This can be a null parameter.

Examples:
&STR(&FNAME &SNAME)

340 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Built-in functions

&STRIP()

The &STRIP() function removes leading and trailing characters that match a
supplied character.

Syntax:
&STRIP([string], option [, char])
string The string of characters to be processed. This can be a null parameter.
option This parameter is required. It must contain one of these values:
L remove leading characters only
T remove trailing characters only
B remove both leading and trailing characters
char A single character that is the character to be removed from the string. The

default character is a blank. This parameter is optional.

Examples:
&STRIP(&NUM, L,0)

Chapter 10. Defining file-tailoring skeletons 341

Built-in functions

&SUBSTR()

The &SUBSTR() function obtains a substring of another string, starting at a
specified position and obtaining either the remainder of the string a specified
number of characters.

Syntax:

&SUBSTR([string], position [, length] [, pad])

string

position

length

pad

The string of characters to be processed. This can be a null parameter.

The starting position within the string from which to obtain the resulting
value. It must be a positive integer. The position parameter can be an
expression and will be automatically evaluated using the &EVAL()
function. This parameter is required.

The length of the resulting string. It must be a positive integer or zero. The
length parameter can be an expression and will be automatically evaluated
using the function. The default length is to return the remainder
of the string. This parameter is optional.

A single character used to extend the resulting string to the required length
when the remaining length of string is less than length. The default pad
character is a blank. This parameter is optional.

Examples:
&SUBSTR(&DATE, 5,2)

342 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Built-in functions

&VSYM()

The &VSYM() function processes the value of a dialog variable found in the
function pool and resolves the values of any system symbols. This includes all
system static symbols and dynamic symbols and any user defined static symbols.
k/OS MVS Initialization and Tuning Referencd has details on system static and
dynamic symbols. Consult your system programmer for any locally defined user
symbols as these are system and installation dependent.

Syntax:
&VSYM(varname)

varname
The name of a dialog variable whose value in the function pool is
processed to resolve the values for system symbols.

Examples:
&VSYM(DSNL)

Chapter 10. Defining file-tailoring skeletons 343

Built-in functions

&SYMDEF()

The &SYMDEF() function obtains the value for the corresponding system symbolic
symbol. This includes all system static symbols and dynamic symbols and any user
defined static symbols. /OS MVS Initialization and Tuning Referencd has details on
system static and dynamic symbols. Consult your system programmer for any
locally defined user symbols as these are system and installation dependent.

Syntax:
&SYMDEF (symname)
symname
The name of the system or user symbol that is to be obtained. If the

symbol name is not found file tailoring processing returns a null value and
processing continues. This parameter is required.

Examples:
&SYMDEF (SYSCLONE)

&SYMDEF (LHHMMSS)

344 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Sample skeleton file

Sample skeleton file

shows a sample skeleton file. The sample skeleton refers to several dialog
variables (for example, ASMPARMS, ASMIN, and MEMBER). It also illustrates use
of the select statements) SEL and) ENDSEL to conditionally include records. The first
part of the example has nested selects to include concatenated macro libraries if
the library names have been specified by the user, that is, if variables ASMMAC1

and ASMMAC2 are not equal to the null variable Z.

In the second part of the example,) IF ...)ELSE statements are used to
conditionally run a load-and-go step. An imbed statement,) IM, is used to bring in

a separate skeleton for the load-and-go step.

//ASM EXEC PGM=IF0X00,REGION=128K

// PARM= (&ASMPARMS)

//SYSIN DD DSN=&ASMIN(&MEMBER) ,DISP=SHR
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
)SEL &ASMMACL -= &Z

/] DD DSN=RASMMACI,DISP=SHR
)SEL &ASMMAC2 -= &Z

/] DD DSN=RASMMAC2,DISP=SHR
) ENDSEL

)ENDSEL

//SYSUTL DD UNIT=SYSDA,SPACE=(CYL, (5,2))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL, (2,1))

//SYSPRINT DD SYSOUT=(&ASMPRT)

)CM IF USER SPECIFIED "GO," WRITE OUTPUT IN TEMP DATA SET
)CM THEN IMBED "LINK AND GO" SKELETON

YIF &GOSTEP = YES THEN)DO

//SYSGO DD DSN=8&&&0OBJSET,UNIT=SYSDA,SPACE=(CYL, (2,1)),
/] DISP=(MOD, PASS)

)IM LINKGO

) ENDDO

)CM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET

)ELSE)DO

//SYSGO DD DSN=8ASMOUT (&MEMBER) ,DISP=0LD

) ENDDO

/1*

Figure 82. Sample skeleton file

DBCS-related variables in file skeletons

These rules apply to substituting DBCS-related variables in file skeletons (they also

apply to messages and file-tailoring operations):

e If the variable contains MIX format data, each DBCS subfield must be enclosed

with shift-out and shift-in characters.
Example:

eeee[DBDBDBDBDB] eee [DBDBDB]

ee... represents a field of EBCDIC characters
DBDB... represents a field of DBCS characters

-[1- represent shift-out and shift-in characters.

* If the variable contains DBCS format data only, the variable must be preceded

by the ZE system variable, without an intervening blank.
Example:
...text...&ZE&DBCSVAR. .text...

* If the variable contains EBCDIC format data and is to be converted to the
corresponding DBCS format data before substitution, the variable must be
preceded by the ZC system variable, without an intervening blank.

Chapter 10. Defining file-tailoring skeletons 345

DBCS-related variables

Example:
...text...&ZC&EBCSVAR. .text...

The ZC and ZE system variables can be used only for the two purposes described.
For file skeleton definition and file tailoring, these two variables can be used only
between)DOT and)ENDDOT statements. When variable substitution causes a
subfield-length of zero, the adjacent shift-out and shift-in characters are removed.

346 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 11. Extended code page support

EXTENDED CODE PAGE support allows panels, messages, and variable
application data to be displayed correctly on terminals using any of the supported
code pages. For example, a German panel can be displayed on a French Country
Extended Code Page (CECP) terminal, with all common characters displayed
correctly. Any characters in the panel that do not exist in the terminal code page
are displayed as periods (.).

age 351.|CCSID stands for Coded Character Set IDentifier. The CCSID is a short
identifier, representing a code page and character set combination. An extended
CCSID has the same code page as its base CCSID, but has a larger character set.

ISPF supports the EXTENDED CODE PAGES listed in [“Supported CCSIDs” on|

Translating common characters

ISPF translates common characters from EXTENDED CODE PAGES to the code
page of the terminal for panel) BODY,)MODEL, and)AREA text, if the panel is
tagged with a CCSID, and for the long and short message text if the message
member is tagged with a CCSID.

The TRANS service is provided to allow the application to translate variable
application data from one CCSID to another CCSID (see |z/OS ISPF Services Guidd).

In a panel tagged with a CCSID, all characters that are not)BODY,)MODEL, and
)JAREA text and all characters in variable names within the)BODY,)MODEL, and
JAREA text of a tagged panel and within the message text of a tagged message
member must be in the syntactic character set:

s AZ

* az

* 09

c +<=>%&*"’
e (), _-./1;7

Note: Lowercase a-z can be used for any CCSID supported by ISPF except the
Japanese (Katakana) Extended CCSID 930.

If an EXTENDED CODE PAGE is specified and the terminal code page and
character set is one of those recognized by ISPF, all displayable code points are
available for display (no displayable code points are invalidated by ISPF).

If an EXTENDED CODE PAGE is not indicated in a panel or message member, a
base character set and code page is assumed based on the terminal type specified
in option 0 (see /OS ISPF User’s Guide Vol II).

Z variables

These Z variables are available for code page processing:

ZTERMCP Terminal code page. Returned as a 4-digit decimal number (4
characters).

ZTERMCS Terminal character set. Returned as a 4-digit decimal number (4
characters).

© Copyright IBM Corp. 1980, 2007 347

ZTERMCID Terminal CCSID. Returned as a 5-digit decimal number (5
characters).

ZERRCSID Contains the 5-digit decimal CCSID of a dialog error message, or
blanks if the error message is not tagged with a CCSID. Returned
as a 5-digit decimal number (5 characters).

If an extended code page is specified for a panel or message and the terminal code
page cannot be determined, there is no transformation of characters.

illustrates when characters will be transformed for Extended Code Page
support and when they will not be transformed:

Table 22. Character transformation table

Terminal Query Terminal Query Terminal Query
Reply CP/CS Reply CP/CS Reply CP/CS
Valid for ISPF Not Returned Invalid for ISPF
CCSID Tag Present Characters Characters not Characters not
transformed transformed transformed
No CCSID Tag Present Characters not Characters not Characters not
transformed transformed transformed

For DBCS languages, the beginning and ending inhibited character tables are
enhanced to include characters from the extended code pages for the text
formatting of messages and panels.

Panels tagged with CCSID

Panels can be defined with a)CCSID section and the NUMBER (xxxxx) keyword
where xxxxx is the CCSID of the extended code page as defined by Character Data
Representation Architecture. The)JCCSID section must be the first section in the
panel. See [“Defining the CCSID section” on page 214

Messages tagged with CCSID

An ISPF message can be defined with .CCSID=xxxxx. See [“Messages tageed with]|
[CCSID” on page 313

GETMSG service

The GETMSG service can be called with a CCSID parameter. If the message is
tagged with a CCSID, the CCSID will be returned; otherwise, blanks will be
returned.

TRANS service

Users can call the TRANS Service in ISPF to translate variable data specified by the
user from one CCSID to another CCSID. The fo and from CCSIDs are also specified
by the user in the TRANS call (see [z/0OS ISPF Services Guidd). For a list of the
EXTENDED CODE PAGE translate tables provided by ISPF, see [‘Extended code]
fpage translate tables provided by ISPF” on page 356

ISPccsid translate load modules

The ISPccsid translate load modules provide ISPF with the information needed to
translate data from one CCSID to another. There is one ISPccsid translate load
module for each of the supported CCSIDs. The name (or alias for those ISPccsid

348 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

modules provided by ISPF) of each CCSID translate load module is made up of
the 5-digit CCSID, prefixed with ISP. For example, load module ISP00111 supports
translation of the CCSID 00111. Each CCSID translate load module must contain
two translate tables. The required translate tables permit data to be translated
between the respective CCSID and CCSID 00500. Additionally, each CCSID load
module can contain up to 256 pairs of optional direct translate tables. ISPF will use
direct translate tables when available. Otherwise, ISPF translates through CCSID
00500. Translating through CCSID 00500 can result in valid characters being lost.
This is due to CCSID 00500 not having all possible code points defined.

ISPccsid translate load module generation macro

An assembler macro that permits the user to generate customized ISPccsid
translate load modules is supplied with ISPE. The macro also allows the user to
add direct translate tables to the ISPccsid translate load modules ISPF supplies
with the product.

Only the values for the hex digits X'40” through X'FE’ are defined in a given
translate table. These are the only code points that vary from CCSID to CCSID.

The assembler macro is:
ISPCCSID CCSID=nnnnn,TO=to-address,FROM=from-address

ISPCCSID macro

The initial ISPCCSID macro usage identifies the CCSID associated with the
particular ISPccsid translate load module and provides addresses of the to and from
CCSID 00500 translate tables.

Subsequent usage of the ISPCCSID macro in a particular ISPccsid translate load
module generation identifies the CCSID and translate table addresses of optional
direct to and from translate tables.

Description of parameters

nnnnn
Required parameter. The nnnnn value is a 5-digit decimal (5 characters)
number that specifies a CCSID number. The nnnnn value on the first or only
ISPCCSID macro definition is the CCSID associated with the ISPccsid translate
load module. The nnnnn value on other than the first ISPCCSID macro
definition is the CCSID associated with direct to and from translate tables.
Assembly errors will occur if this parameter is not 5 digits.

to-address
Required parameter. On the first or only ISPCCSID macro definition, this
parameter specifies the address of the translate table that converts data from
the CCSID associated with the respective ISPccsid translate load module to
CCSID 00500. On subsequent ISPCCSID macro definitions within the same
ISPccsid translate load module, it specifies the address of the translate table
that converts data from the CCSID associated with the respective ISPccsid
translate load module to the CCSID specified on this ISPCCSID macro
definition.

from-address
Required parameter. On the first or only ISPCCSID macro definition, this
parameter specifies the address of the translate table that converts data from
CCSID 00500 to the CCSID associated with the respective ISPccsid translate
load module. On subsequent ISPCCSID macro definitions within the same

Chapter 11. Extended code page support 349

ISPccsid translate load module, it specifies the address of the translate table
that converts data from the CCSID specified on this ISPCCSID macro definition
to the CCSID associate with the respective ISPccsid translate load module.

ISPccsid translate load module definition examples
Each ISPccsid translate load module must be compiled separately using Assembler
H (or functional equivalent). shows an example of a basic translate
model, and shows an example of a translate model with two direct
CCSID entries.

ISPCCSID CCSID=00111,T0=TRT0500,FROM=TRFR500

*
*

TRT0500 DC XL191'... 00111 TO 00500
TRFR500 DC XL191'... 00111 FROM 00500 (00500 TO 00111)
END

Figure 83. Basic ISP00111 translate module

ISPCCSID CCSID=00222,TO=TRT0500,FROM=TRFR500
ISPCCSID CCSID=00333,T0=TRTO0333,FROM=TRFO0333
ISPCCSID CCSID=00444,T0=TRT00444,FROM=TRF00444

*
*

TRT0500 DC XL191'... 00222 TO 00500

TRFR500 DC XL191'... 00222 FROM 00500 (00500 TO 00222)
*

*

TRTO0333 DC XL191'... 00222 TO 00333

Figure 84. ISP00222 translate module with two direct CCSID entries

KANA and NOKANA keywords

If a CCSID is specified, the KANA (panels and messages) and NOKANA
(messages) keywords are ignored by ISPF. Panels and messages that specify the
Japanese (Katakana) Extended CCSID (CCSID=00930) are handled as follows
regardless of whether KANA or NOKANA (for messages) keywords are specified:

* If the terminal code page is the base Katakana code page, all characters in the
panel)BODY,)MODEL, or)AREA text or short and long message text, except
lowercase English characters, are left as is. Because the base Katakana code page
does not support lowercase English characters, all lowercase English characters
are translated to uppercase English characters. All other parts of the panel or
message must be in the syntactic character set, excluding characters a-z.

e If the terminal code page is non-Katakana, all lowercase English characters in
the)BODY,)MODEL, or)AREA text or short and long message text in a panel
or message that has been tagged with the extended Katakana code page
(CCSID=05026) are translated to the equivalent lowercase English characters in
the terminal code page for display. All Katakana characters are displayed as
periods (.). For example, the lowercase a, which is X’62" in the extended
Katakana code page, is translated to X’81" (lowercase a) in the U.S. English code
page. The Katakana character which is X’81" is translated to a period (X’4B’) in
the U.S. English code page. All other parts of the panel or message must be in
the syntactic character set, excluding characters a-z.

Character translation

[Table 23 on page 351|illustrates the character translation from the extended
Katakana code page and from the extended Japanese (Latin) code page (if

350 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

CCSID=00930 or CCSID=00939 is specified in a panel, message, or in the TRANS
service) to the U.S. English (CECP and base) code page, to the extended and base
Katakana, and to the Japanese (Latin) Extended code pages for code points X'81,

X’62" and X’'59’.

Table 23. Character translation from extended katakana code page

Source

Destination Code Page

Source

CCSID=00930 Translation CCSID=00939 Translation

Base Katakana X'81" X'81 X'81 X'C1
(base code page) X'62 X'Cr X'59 X'81
Extended Katakana X'81 X'81 X'81 X'62
(CCSID=00930) X'62’ X'62’ X’59’ X'81"
U.S. English CECP X'81" X'4B’ X'81" X'81’
and Non-CECP X'62’ X'81" X'59’ X'4B’
Japanese (Latin)
Non-Extended
Japanese (Latin) Extended X'81" X’59 X'81" X'81"
(CCSID=00939) X'62’ X'81" X’59" X’59’

Code Points
X’'81’

Character Translation

a in the U.S. English (CECP and base) and Japanese (Latin)
(Extended and base) code pages.

X'62’

A Katakana character in the Katakana code pages and is lowercase

Lowercase a in the extended Katakana (CCSID=00930) code page, a
Katakana character in the extended Japanese (Latin)

(CCSID=00939) code page, and is an unknown character in the U.S.
English, base Japanese (Latin), and base Katakana code pages.

X'59’

A Katakana character in the Japanese (Latin) Extended

(CCSID=00939) code page, and an unknown character in the other

code pages.

XCr

mentioned code pages.

Uppercase A and X4B’ is a period (.) in all of the previously

Supported CCSIDs

The CCSIDs listed in [Table 24| are supported for panels and messages that specify
an EXTENDED CODE PAGE and for the TRANS service.

Table 24. Extended CCSID1 Supported

CCSID

Character Set

Code Page

Country/Language

00037

697

37

US.A.
Canada
Netherlands
Portugal
Brazil
Australia
New Zealand

00273

697

273

Austria
Germany

00277

697

277

Denmark
Norway

Chapter 11. Extended code page support

351

Table 24. Extended CCSID1 Supported (continued)

CCSID Character Set Code Page Country/Language
00278 697 278 Finland

Sweden
00280 697 280 Italy
00284 697 284 Spain

L.A. Spanish
00285 697 285 United Kingdom
00297 697 297 France
00420 235 420 Arabic
00424 941 424 Hebrew
00500 697 500 Switzerland

Belgium
00838 1176 838 Thailand
00870 959 870 Latin-2
00871 697 871 Iceland
00875 923 875 Greece
00880 960 880 Cyrillic
01025 1150 1025 Cyrillic
01026 1126 1026 Turkey
01047 697 1047 Latin1
01123 1326 1123 Ukraine

Table 25. Extended CCSID1 Supported (EURQO)

CCSID Character Set Code Page Country/Language

00924 1353 0924 Latin9

01140 695 1140 US.A.
Canada
Netherlands
Portugal
Brazil
Australia
New Zealand

01141 695 1141 Austria
Germany

01142 695 1142 Denmark
Norway

01143 695 1143 Finland
Sweden

01144 695 1144 Italy

01145 695 1145 Spain
L.A. Spanish

01146 695 1146 United Kingdom

01147 695 1147 France

01148 695 1148 Switzerland
Belgium

352 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 25. Extended CCSID1 Supported (EURQ) (continued)

CCSID Character Set Code Page Country/Language
01149 695 1149 Iceland
01153 1375 1153 Latin2
01154 1381 1154 Cyrillic
01155 1378 1155 Turkey
01158 1388 1158 Ukraine
01160 1395 1160 Thailand
04899 1356 0803 Hebrew
04971 1371 0875 Greece
12712 1357 0424 Hebrew
16804 1461 0420 Arabic

The extended CCSIDs shown in [Table 25 on page 352 and [Table 24 are supported
for the TRANS service, and also with the use of the CCSID keyword in panels and
messages. These are the mixed SBCS/DBCS CCSIDs for these languages.

Japanese (Katakana) and Simplified Chinese EXTENDED CODE PAGES are not

supported on any terminal, but these CCSIDs are supported by ISPF for the
TRANS service and for tagging panels and messages.

Note: Although these CCSIDs represent both SBCS and DBCS character sets and
code pages, only the SBCS character set and code page are involved in the
EXTENDED CODE PAGE support in ISPE.

Table 26. Extended SBCS and DBCS CCSIDs Supported

CCSID Character Set Code Page Country

00930 1172 290 Japanese (Katakana)
00939 1172 1027 Japanese (Latin)
00933 1173 833 Korean

00935 1174 836 Simplified Chinese
00937 1175 037 Traditional Chinese
01159 65535 1159 Traditional Chinese
01364 65535 0834 Korean

01371 65535 0835 Traditional Chinese
01388 65535 0837 Simplified Chinese
01390 65535 0300 Japanese

01399 65535 0300 Japanese

05123 65535 1027 Japanese

08482 65535 0290 Japanese

Base code pages for terminals

Translation to base character sets and code pages is supported for panels,
messages, and the TRANS service. See [“Base CCSIDs” on page 355)

Chapter 11. Extended code page support

353

Direct translation between each base code page and its EXTENDED CODE PAGE
is provided. Also, direct translation between both base and extended Japanese
(Katakana) and both base and extended Japanese (Latin or English) is provided. All
translation between the single-byte EXTENDED CODE PAGES for the double-byte
languages and the CECP code pages is through CCSID 00500.

Adding translate tables for extended code page support

354

You can add code pages to be used for messages and panels that specify code page
and for the TRANS service by creating these translate tables using the sample
assembler module ISPEXCP as an example. (ISPEXCP is provided in the
SYS1.SAMPLIB library in the MVS environment.) The tables to translate between
the new code page and CCSID 00500 are needed to reduce the number of translate
tables necessary to translate characters between the new code page and any other
supported (or added) code page. For example, to translate characters from a panel
with CCSID=xxxxx to a terminal with CCSID=yyyyy, the characters in the panel
are first translated to CCSID 00500 and then from CCSID 00500 to CCSID yyyyy
for display on the terminal.

Note: The translate tables for the CCSIDs listed in [Table 24 on page 351|and
Table 26 on page 353|are provided and included with ISPE. Also, see
“Extended code page translate tables provided by ISPE” on page 356)

Any translate tables that are added must be named ISPnnnnn, where nnnnn is the
CCSID. The translate tables should include code points X'40” through X'FE’.

* This example illustrates the translation to CCSID 00500 from CCSID xxxxx,
where xxxxx is the CCSID for the new code page. This CCSID must be different
from any of the supported CCSIDs previously listed, and should be a CCSID
defined in the Character Data Representation Architecture. In XXXXX is
00037.

Table Hexadecimal Code Position

TO_500 DC X'4041424344454647" (X'40' to X'47"')
DC X'4849B04B4C4D4EBB' (X'48' to X'4F')
DC X'5051525354555657" (X'50" to X'57"')
DC X'58594F5B5C5D5EBA" (X'58' to X'5F')
DC X'78797A7B7C7D7E7F" (X'78"' to X'7F')
DC X'8081828384858687"' (X'80' to x'87"')
DC X'EBE9EAEBECEDEEEF' (X'E8' to X'EF')
DC X'FOF1F2F3F4F5F6F7" (X'"FO' to X'F7"')
DC X'F8F9FAFBFCFDFE' (X'F8' to X'FE')

Figure 85. Translation to CCSID 00500 from CCSID XXXXX

* [Figure 86 on page 355|illustrates the translation to CCSID xxxxx from CCSID
00500, where xxxxx is the CCSID for the new code page. This CCSID must be
different from any of the supported CCSIDs previously listed, and should be a
CCSID defined in the Character Data Representation Architecture. In this
example, xxxxx is 00037.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Table Hexadecimal Code Position

FROM_500 DC X'4041424344454647' (X'40' to X'47')
DC X'4849BA4B4ACAD4ESA" (X'48' to X'4F')
DC X'5051525354555657" (X'50" to X'57')
DC X'5859BB5B5C5D5EBO (X'58' to X'5F')
DC X'78797A7B7C7D7E7F" (X'78' to X'7F')
DC X'8081828384858687" (x'80' to X'87')
DC X'ES8E9EAEBECEDEEEF' (X"E8"' to X'EF')
DC X'FOF1F2F3F4F5F6F7" (X'FO' to X'F7')
DC X'F8F9FAFBFCFDFE' (X'F8' to X'FE')

Figure 86. Translation to CCSID XXXXX from CCSID 00500

* Optionally, any number of pairs of to and from tables can be provided for direct
translation from the new CCSID to and from another CCSID.

The assembler macro, ISPCCSID, is supplied with ISPF to allow you to generate
custom ISPxxxxx translate load modules (where xxxxx is the new CCSID). Calls to
this macro must also be coded for the To_500 and From_500 tables and any to and
from tables for direct translation. The load module must either have the name
ISPxxxxx (where xxxxx is the new CCSID) or an alias of ISPxxxxx. See |”ISPccsia|
translate load modules” on page 348)|“ISPccsid translate load module generation|
macro” on page 349 [and ["ISPCCSID macro” on page 349)

Note: New translate tables can still be added based on terminal type as described
in[z/0S ISPF Planning and Customizing]for untagged messages and panels.

Direct to and from translate tables can be added for direct translation (to prevent
possible loss of characters through CCSID 00500 for character sets other than 697).
Additional direct translation tables can also be added to the extended code page
translate tables provided by ISPE. The direct translation CCSID must be one of the
CCSIDs supported by ISPF, or added by the user. If the CCSID of the terminal is
the same as the CCSID in any of the direct translation tables, those tables are used.
Otherwise, the To_500 and From_500 tables are used to translate through CCSID
00500.

Note: Both to and from translate tables must be provided for direct translation
tables as well as CCSID 00500 tables, even though there may be no
translation needed. For example, to translate from a base CCSID to an
extended CCSID for the same code page, all characters will translate to
themselves.

Base CCSIDs

The CCSIDs for the BASE CODE PAGES supported by ISPF (that include mixed
SBCS/DBCS CCSIDs for the DBCS languages) are listed in[Table 2

Table 27. Base CCSIDs Supported

CCSID Character Set Code Page Country/Language
00803 1147 424 Hebrew (O1d)
00931 101 037 Japan (English)

Chapter 11. Extended code page support 355

Table 27. Base CCSIDs Supported (continued)

CCSID Character Set Code Page Country/Language
04369 265 273 Germany and Austria
04371 273 275 Brazil

04373 281 277 Denmark and Norway
04374 285 278 Finland and Sweden
04376 293 280 Italy

04380 309 284 L.A. (Spanish Speaking)
04381 313 285 U.K. English

04393 1129 297 France

04934 938 838 Thailand

04966 959 870 Latin-2

04976 960 880 Cyrillic

05029 933 833 Korean

05031 936 836 Simplified Chinese
05033 101 037 Traditional Chinese
08229 101 037 U.S. English and Netherlands
08476 650 284 Spain

09122 332 290 Japan (Katakana)

41460 904 500 Switzerland

45556 908 500 Switzerland

Note: Although the CCSIDs for the DBCS languages (Japanese, Korean, and

Chinese) represent both SBCS and DBCS character sets and code pages, only
the SBCS character set and code page are involved in the EXTENDED
CODE PAGE support in ISPFE.

Extended code page translate tables provided by ISPF

The translate tables provided by ISPF that can be updated by the user are as
follows:

356

ISPSTC1 (CCSID=00037 / 01140 U.S.A., Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand)

ISPSTC2 (CCSID=00273 / 01141 Austria and Germany)
ISPSTC3 (CCSID=00277 / 01142 Denmark and Norway)
ISPSTC4 (CCSID=00278 / 01143 Finland and Sweden)
ISPSTC5 (CCSID=00280 / 01144 Italy)

ISPSTC6 (CCSID=00284 / 01145 Spain and Spanish-Speaking)
ISPSTC7 (CCSID=00285 / 01146 United Kingdom)

ISPSTC8 (CCSID=00297 / 01147 France)

ISPSTC9 (CCSID=00500 / 01148 Switzerland and Belgium)
ISPSTC10 (CCSID=00939 Japan (Latin))

ISPSTC11 (CCSID=00930 Japan (Katakana))

ISPSTC12 (CCSID=00933 Korea)

ISPSTC13 (CCSID=00935 Simplified Chinese)

ISPSTC14 (CCSID=00937 Traditional Chinese)

ISPSTC15 (CCSID=00870 Latin-2)

ISPSTC16 (CCSID=00880 Cyrillic)

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

» ISPSTC17 (CCSID=01025 Cyrillic)

» ISPSTC18 (CCSID=00420 Arabic)

» ISPSTC19 (CCSID=00424 Hebrew)

» ISPSTC20 (CCSID=00838 Thai)

» ISPSTC21 (CCSID=00871 / 1149 Iceland)
» ISPSTC22 (CCSID=00875 Greek)

« ISPSTC23 (CCSID=01026 Turkish).

The source for the previous modules is provided in the SYS1.SAMPLIB library in
the MVS environment.

Example of user-modifiable ISPF translate table

The module shown is for CCSID 00037 (ISPSTC1). The existing tables can be
modified, or more pairs of direct translation tables can be added. To add direct
translation tables, add a new ISPCCSID macro call for the new direct translate
tables, and add the new tables. Rename the assembler program to ISPTTCx(x),
where x(x) is the last 1- or 2-digit number of the ISPSTCx(x) name. For example,
ISPSTC1 should be renamed ISPTTC1, and ISPSTC14 renamed ISPTTC14.

* THE FOLLOWING MACROS WILL GENERATE THE CCSID 00037 MODULE.

*

*
ISPCCSID CCSID=00037,TO=TTC1T5H,FROM=TTC1F5H
ISPCCSID CCSID=08229,TO=TTC1TB1,FROM=TTC1FB2
ISPCCSID CCSID=04371,TO=TTC1TB2,FROM=TTC1FB2

*

* TTCI1T5H - CCSID 00037 TO CCSID 00500 Table

*

TTC1T5H DS 0XL191

DC X'4041424344454647" (x'40' TO X'47')
DC X'4849B04B4C4DAEBB' (x'48' TO X'4F')
DC X'5051525354555657 (x'50" TO X'57')
DC X'58594F5B5C5D5EBA" (X'58' TO X'5F')
DC X'6061626364656667 ' (X'60' TO X'67")
DC X'68696A6B6CO6DOEGF (X'68' TO X'6F')
DC X'7071727374757677" (x'70' TO X'77")
DC X'78797A7B7C7D7E7F' (x'78' TO X'7F")
DC X'8081828384858687 " (x'80' TO X'87")
DC X'88898A8B8CSDBESF" (x'88' TO X'8F')
DC X'9091929394959697" (x'90' TO X'97')
DC X'98999A9BICIDIEIF" (X'98' TO X'9F')
DC X'AOA1A2A3A4A5A6A7" (X"A0' TO X'A7')
DC X'ASA9AAABACADAEAF' (X'A8' TO X'AF')
DC X'5FB1B2B3B4B5B6B7 (x'BO' TO X'B7')
DC X'B8B94A5ABCBDBEBF' (x'B8' TO X'BF')
DC X'COC1C2C3C4C5C6CT7! (x'co' TO X'C7')
DC X'C8C9CACBCCCDCECF' (x'C8' TO X'CF')
DC X'DOD1D2D3DA4D5D6D7 (X'DO' TO X'D7"')
DC X'D8DIDADBDCDDDEDF (x'D8' TO X'DF')
DC X'EOE1E2E3EAE5EGE7" (X'"E@' TO X'E7')
DC X'ES8E9EAEBECEDEEEF' (X'E8' TO X'EF')
DC X'FOF1F2F3FAF5F6F7" (X'FO' TO X'F7')
DC X'F8F9FAFBFCFDFE' (X'F8' TO X'FE')

*

* TTCIF5H - CCSID 00037 FROM CCSID 00500 Table

*

TTC1F5H DS 0XL191

DC X'4041424344454647" (x'40' TO X'47')
DC X'4849BA4B4CAD4ESA" (x'48' TO X'4F')
DC X'5051525354555657" (X'50' TO X'57")
DC X'5859BB5B5C5D5EBO (X'58' TO X'5F')
DC X'6061626364656667 (X'60' TO X'67")
DC X'68696A6B6CO6D6EGF (X'68' TO X'6F')
DC X'7071727374757677" (x'70' TO X'77')

Chapter 11. Extended code page support 357

358

*

X'78797A7B7C7D7E7F"
X'8081828384858687
X'88898A8B8C8DSESF"
X'9091929394959697 "
X'98999A9BICIDIEIF"
X'AOA1A2A3A4A5A6A7
X"'ABA9AAABACADAEAF'
X'4AB1B2B3B4B5B6B7
X'B8B95F4FBCBDBEBF
X'COC1C2C3C4C5C6CT7 "
X'C8C9CACBCCCDCECF!
X'DOD1D2D3D4D5D6D7
X 'D8DIDADBDCDDDEDF
X'EOE1E2E3EAE5EGET "
X'ESE9EAEBECEDEEEF'
X'FOF1F2F3FAF5F6F7"
X'F8F9FAFBFCFDFE'

(x'78"
(x'80"
(x'88'
(X'90"
(x'98"
(X'A0"
(X'A8"
(x'BO"
(x'B8"
(x'co’
(x'cs'
(X'DO"
(x'D8"
(X'EO"
(X'E8"
(X'FO"
(X'F8"

T0
TO
T0
TO
T0
TO
TO
T0
TO
T0
TO
T0
T0
TO
T0
TO
T0

* TTC1TB1 - CCSID 00037 TO CCSID 08229 Table

*

TTC1TB1 DS
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

*

0XL191

X'404B4B4B4B4BAB4B'
X'4B4B4A4BACADAEAF!
X'504B4B4BAB4B4B4B"
X'4B4B5A5B5C5D5E5F !
X'60614B4B4AB4B4B4B"
X'4B4B6A6B6CODOEGF
X'4B4B4B4B4B4B4B4B'
X'4B797A7B7C7D7E7F"
X'4B81828384858687
X'88894B4B4B4B4B4B"
X'4B91929394959697 "
X'98994B4B4B4B4B4B"
X'4BA1A2A3A4A5A6A7
X'A8A94B4B4B4B4B4B'
X'4B4B4B4BABAB4B4B'
X'4B4B4B4B4B4B4B4B'
X'COC1C2C3C4C5C6CT7 !
X'C8(C94B4B4B4B4B4B'
X'DOD1D2D3D4D5D6D7
X'D8D94B4B4B4BAB4B'
X'EO4BE2E3E4ESEGE7
X'ES8E94B4BABAB4B4B"
X'FOF1F2F3F4F5F6F7"
X'F8F94B4B4B4B4B'

* TTC1FB1 - CCSID 00037 FROM

*

TTC1FB1 DS
DC
DC
DC

DC

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

0XL191
X'4041424344454647"
X'48494A4BACADAE4F!
X'5051525354555657
X'58595A5B5C5D5E5F
X'6061626364656667 '
X'68696A6B6CO6DOEGF
X'7071727374757677"
X'78797A7B7C7D7E7F"
X'8081828384858687
X'88898A8B8C8DSESF"
X'9091929394959697"
X'98999A9B9CIDIEIF"
X'AOA1A2A3A4A5A6A7
X'A8A9AAABACADAEAF'
X'BOB1B2B3B4B5B6B7
X'B8B9BABBBCBDBEBF'
X'COC1C2C3C4C5C6CT7 !
X'C8C9CACBCCCDCECF"

(x'40"
(x'48"
(X'50"
(X'58"
(X'60"
(X'68"
(x'70"
(x'78"
(x'80"
(x'88'
(X'90"
(x'98"
(X'A0"
(X'A8"
(X'BO"
(x'B8"
(x'co’
(x'cs8'
(X'DO"
(x'D8"
(X'EO"
(X'E8"
(X'FO"
(X'F8"

T0
TO
T0
TO
T0
T0
TO
T0
TO
T0
TO
T0
T0
TO
T0
TO
T0
TO
T0
T0
TO
T0
TO
T0

CCSID 08229 Table

(X'40"
(x'48"
(X'50"
(X'58"
(X'60"
(X'68"
(x'70"
(x'78"
(x'80"
(x'88'
(X'90"
(x'98"
(X'A0"
(X'A8"
(X'BO"
(x'B8"
(x'co’
(x'c8'

T0
TO
T0

X'7F")
X'87")
X'8F')
X'97"')
X'9F")
X'A7")
X'AF')
X'B7"')
X'BF')
X'C7")
X'CF')
X'D7")
X'DF')
X'E7")
X'EF')
X'F7')
X'FE')

DX XK > 3K K XX XX K K X XX X XK XK X X X X X X X X X X
MMM MMOOOOTWI>>OOW0oNNooool B B

MN TN TN TN TN TN TN TN TN TN TN T N
— e

X'47")
X'4F")
X'57")
X'5F"')
X'67")
X'6F"')
X'77")
X'7F")
X'87"')
X'8F')
X'97"')
X'9F")
X'A7")
X'AF')
X'B7"')
X'BF')
X'C7")
X'CF')

DC
DC
DC
DC
DC
DC

*

* TTC1TB2 - CCSID 00037 TO CCSID 04371 Table

*

TTC1TBZ2 DS
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

*

* TTC1FB2

*

TTC1FB2 DS
DC

X'DOD1D2D3D4D5D6D7 !
X'D8DIDADBDCDDDEDF
X'EOE1E2E3EAESEGET
X'ESE9EAEBECEDEEEF'
X'FOF1F2F3FAF5F6F7"
X'F8F9FAFBFCFDFE'

0XL191

X'404B4B4B4B4B794B'
X'4B4B4B4BACADAE4B'
X'50D04B4B4B4B4B4B"
X'4B4B4F5A5C5D5E4B
X'60614B4B4B4B7C4B"
X'5B4B4B6B6CO6DOEGF
X'4B4A4B4BABABAB4B'
X'4B4B7A4BAB7D7E7F!
X'4B81828384858687
X'88894B4B4B4B4B4B'
X'4B91929394959697 "
X'98994B4B4B4B4B4B'
X'4BA1A2A3A4A5A6A7 "
X'A8A94B4BABABAB4B'
X'5F44B4BB4B4B4B4B'
X'4B4B4B4BABABAB4B'
X'4BC1C2C3C4C5C6C7 "
X'C8C94B4B4B4B4BCO'
X'4BD1D2D3D4D5D6D7
X'D8D94B4B4B4B4B4B'
X'EO4BE2E3EAESEGET
X'E8E94B4B4B4B4B7B'
X'FOF1F2F3F4F5F6F7"
X'F8F94B4B4B4B4B'

- CCSID 00037 FROM

0XL191

X'4041424344454647 "
X'4849714BAC4DAESA"
X'5051525354555657
X'58595B685C5D5EBO
X'6061626364656667 '
X'6869486B6CO6DOEGF
X'7071727374757677"
X'78467AEF667D7E7F"
X'8081828384858687
X'88898A8B8C8DSESF"
X'9091929394959697"
X'98999A9BICIDIEIF"
X'AOA1A2A3A4A5A6A7
X'ABA9AAABACADAEAF'
X'BOB1B2B3B4B5B6B7
X'B8BI9BABBBCBDBEBF'
X'CFC1C2C3C4C5C6CT7 !
X'C8CICACBCCCDCECF!
X'51D1D2D3D4D5D6D7
X'D8DIDADBDCDDDEDF
X'EOE1E2E3EAESEGET
X'ESE9EAEBECEDEEEF'
X'FOF1F2F3FAF5F6F7"
X'F8F9FAFBFCFDFE'

(x'Do"
(x'D8"
(X'EQ"
(X'E8"
(X'FO"
(X'F8"

(x'40"
(x'48"
(X'50"
(X'58"
(X'60"
(X'68'
(x'70"
(x'78"
(x'80"
(x'88'
(X'90"
(x'98"
(X'A0"
(X'A8'
(x'BO"
(X'B8'
(x'co’
(x'c8'
(x'Do"
(x'D8"
(X'EQ"
(X'E8"
(X'FO"
(X'F8"

T0
TO
T0
TO
T0
TO

TO
T0
T0
TO
T0
TO
T0
TO
T0
T0
TO
T0
TO
T0
TO
T0
T0
TO
T0
TO
T0
TO
T0
T0

CCSID 04371 Table

(x'40"
(x'48"
(X'50"
(X'58"
(X'60"
(X'68'
(x'70"
(x'78"
(x'80"
(x'88'
(X'90"
(x'98"
(X'A0"
(X'A8'
(x'BO"
(x'B8"
(x'co’
(x'cs8'
(X'DO"
(x'D8"
(X'EQ"
(X'E8"
(X'FO"
(X'F8"

Chapter 11. Extended code page support

> > > > > ><
T Mmoo
M~ N
NN

> > > 3K DK DK DX DX > XK XK XK DK 3K > > > > > > > > > >
TTIMMOOOOWEIIIOVLOOOINNNO OO~ A
MNTINTANTAINTANTAINANTIN NN N1
NN NN NN NSNS NS NSNS NN NN NS NN NN N NN

X > > 3K DK DK DK DX > XK XK XK 3K 3K 3K > > > XK XX > > > >
TTIMMOOOOWEIITWOOOOINNIO TG
MNTINTANTANTANTAINANTIN TN NN
NSNS NN NN NSNS NS NN NN NN NS NN NN N NN

359

360 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix A. Character translations for APL, TEXT, and
Katakana

This topic contains the character translation tables for APL, TEXT, and Katakana.
This information does not include Extended Code Page Support. See|Chapter 11,
[“Extended code page support,” on page 347 |

ISPF permits use of all keyboards for all models of 3270 and 3290 terminals, and
text keyboards for 3278 and 3279 terminals. The 2-byte transmission codes for APL
and text characters are translated by ISPF into 1-byte codes for internal storage as
shown in [Figure 87 on page 362| and [Figure 88 on page 363} ISPF also permits use
of 3277 and 3278 Japanese Katakana terminals. ISPF does not permit the use of
3277 and 3278 Katakana terminals and an APL terminal at the same time.

The character codes are documented in IBM 3270 hardware manuals. Many of the
Katakana codes overlay the lowercase EBCDIC codes. In a panel definition, it is
assumed that lowercase EBCDIC characters are to be displayed for these codes,
unless the)BODY header statement includes the keyword KANA. Example:

)BODY KANA

The keyword, KANA, is used on a)BODY header statement when Katakana
characters are included within the panel. Input and output fields and model line
fields are not affected by use of the KANA keyword. Rules for display of text
fields are as follows:

e If the terminal type is Katakana, and
— The KANA keyword is present, text characters are left as is.

— The KANA keyword is not present, any lowercase text characters are
translated to uppercase and uppercase text characters are left as is.
e If the terminal type is not Katakana, and
— The KANA keyword is present, any lowercase text characters are treated as

being nondisplayable and are translated to a period. Any uppercase text
characters are left as is.

— The KANA keyword is not present, lowercase and uppercase text characters
are left as is.

See [“How to define a message” on page 308 for a description of how the KANA
keyword provides a similar function for messages containing lowercase characters
that must be displayed on a Katakana terminal.

Note: The KANA keyword is not needed for panels and messages that specify a
CCSID for Extended Code Page Support. See [Chapter 11, “Extended code]
[page support,” on page 347

© Copyright IBM Corp. 1980, 2007 361

Character translations

3278 only; character
is not valid on 3277

National use character.
Graphics shown are for U.S. Keyboards;
graphics differ in other countries.

00
10
20
30
40 [sp| A | B |C|D|E|F|G|H]|I|e¢ < + |
|
o | & |J|K|L|M|[N|O|P|Q|R|:! . ;|
o | |, s |Tlu|v|w]|x|Yy|z][] % > 7
A
70 n v N @ = | "
| |

80 ~ a b c d e f g h i 4+ < | -
90] j k | m n o p q r 2 <

N 4
A0 ~ s t u v w X y z n 1 > o
Bo | o | €| 1| p| w x |\ o= % T Z ||

4 —
co | { A B C D E F G| H I N ®
pol| } | vl k|lL|mM|N]J]O|P|la|R]|T g A
EO \ s|T ul|l v|iw]| x|y | z]|# Bl | ¢
|

Fo | o | 1 2| 3| 4| 5| s 7| 8 | 9 A b

o 1 2 3 4 5 6 7 8 9 A c E F

Figure 87. Internal character representations for APL keyboards

362

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

00

10

20

30

40

50

60

70

80

90

A0

BO

co

Do

EO

FO

3278 only; character
is not valid on 3277

sp ¢ < (+ |
| Vi
& 1 2 3 ¥ ! $ *) H 1
Ad 4 |
_ / } , % - > ?
n o \ # Q@ ! = il
V| 4d 4 4
a b c d e f g h i 4 { < (- +
] i k | m n o p q r 1 Pl) =+ [|
o ~ s t u v w X y z ® L [[> .
(0] 1 2 3 4 5 6 7 8 9 v J —‘] ¢ _
{ A B|c|D| E|F G | H I Al LT v AN
1 J K|L|M|N|JO|P|Q|R|[H]|A § T < | »
~ A
NN s T lulviw | x|y |lz|T|F|lAd]4]7
|
11 23| 4| 5|6 7| 8 | 9 || Ll | | T
0 1 2 3 a 5 6 7 8 9 A B C D E F

Figure 88. Internal character representations for text keyboards

Appendix A. Character translations for APL, TEXT, and Katakana

363

364 2/0S V1IR9.0 ISPF Dialog Developer’s Guide and Reference

Appendix B. ISPTTDEF specify translate table set

ISPF provides a program, ISPTTDEEF, for specifying the set of terminal translate
tables to be used. This program lets you specify private sets of translate tables.

Note: This program is not used for Extended Code Page Support translate tables.
See [Chapter 11, “Extended code page support,” on page 347)

You can invoke ISPTTDEF from a selection panel, as a command, or from a dialog
function. The format of the ISPTTDEF program call is:

SELECT PGM(ISPTTDEF) PARM(xxx)

where xxx is the terminal type or the name of the load module containing translate
tables.

Return codes from invoking ISPTTDEF are as follows:

0 Normal completion

4 Translate tables could not be loaded

Valid terminal types are those that can be specified using the ISPF Settings panel.

If the name specified is not a valid terminal type, ISPF attempts to load a module
having that name.

© Copyright IBM Corp. 1980, 2007 365

366 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix C. Diagnostic Tools and Information

This chapter covers the following topics:

* debugging tools

* The panel trace and file-tailoring trace utilities

¢ diagnostic information

¢ common problems that can occur when developing dialogs and using ISPF

ISPF debug tools

The following tools ship with ISPF as samples.

ISRABEND

ISRCSECT

ISRFIND

ISRPOINT

ISRTCB

ISRTEST

A CLIST that provides a step-by-step explanation of how to
diagnose an abend interactively. It uses TSO TEST to gather the
information that the IBM support organization normally requires.

A REXX exec used in conjunction with ISRTCB exec. It takes the
entry point of a load module and begins searching for a specific
CSECT. If it finds one, the exec displays the CSECT’s eye-catcher.

A REXX exec that issues a LISTA STATUS and searches for a
specified member or load module. Also, the exec optionally calls
AMBLIST to check the MODIFIED, FIXED, and PAGEABLE LPAs
and checks LPALIST and LNKLST (pointed to by system control
blocks) for the specified load module. If invoked under ISPF, the
information is displayed via an ISPF table display (panel
ISRFINDP) and allows the user to BROWSE or EDIT the specified
member.

A REXX exec used in conjunction with the ISRTCB exec. This exec
uses the entry point address obtained from ISRTCB and lists the
CSECT eye-catchers associated with that load module.

A REXX exec that emulates the TSO TEST command LISTMAP. It
lists the TCBs and the load modules (with their entry points)
associated with each TCB, without using TSO TEST.

A CLIST that uses TSO TEST to load the job pack area (JPA) and
set breakpoints on entry to a specific ISPF or PDF CSECT. This
allows for the verification of the compilation date associated with
the CSECT with the most recent maintenance level for that version
or release. Additionally, you can modify this sample to set specific
breakpoints within the CSECT to identify the failing instruction.

Panel trace command (ISPDPTRC)

The ISPDPTRC command traces the Dialog Manager panel processing that occurs
within any screen in the current ISPF session. You can trace both the execution of
panel service calls (DISPLAY, TBDISPL, and TBQUERY) and the processing that
occurs within the Dialog Manager panel code, including the processing of
statements in the JABCINIT, JABCPROC,)INIT,)REINIT, and)PROC sections of

the panel.

© Copyright IBM Corp. 1980, 2007

367

Panel trace command (ISPDPTRC)

368

The output from the trace is written to a dynamically allocated VB (variable
blocked) data set that has a record length of 255. Where the ddname ISPDPTRC is
preallocated, this data set will be used, providing it refers to a sequential, VB data
set with a record length of at least 255.

The ISPDPTRC command starts the trace if it is not running. If the trace is already
active, ISPDPTRC allows you to stop and optionally to view or edit the trace
output. ISPDPTRC must be executed while ISPF is active.

The syntax of the command is:

ISPDPTRC [END]
[VIEW]
[LIST]
[QUIET]
[DSP|DISPLAY(None | In | Out | Both)]
[PNL|PANEL(* | panel_name | panel_mask)]
[READ(None | Summary | Detail)]

[SCR|SCREEN(0 | * | screen_id)]

[SECT|SECTION(= | A11 | None | [Init] [Reinit] [Proc] |
TNOInit] [NOReinit] [NOProc])]

[SVC|SERVICE(None | Detail)]

Where:

END Terminates the trace if it is active. No attempt is made to edit or view the
trace data set.

VIEW Terminates the trace if it is active and views the trace data set. If an
allocation for the DD ISPDPTRC is present, this data set is viewed.
SYSOUT data sets are not supported.

When VIEW is unable to locate the trace data set, it performs the LIST
processing and displays the list of panel trace data sets.

LIST The panel trace command invokes the Data Set List Utility to display panel
trace data sets.

Where the user’s prefix is not blank, the data set list displayed is for data
sets of the form:
prefix.**.ISPPNL.TRACE

Otherwise, the data set list displayed is for data sets of the form:
userid.**.ISPPNL.TRACE
QUIET

Prevents trace initialization and termination messages being displayed.
Error messages continue to be displayed on the screen.

DISPLAY
Controls the generation of trace records resembling the panel as displayed
at the terminal. Only the panel for the active screen is shown when a panel
is being read into memory.

None No trace records are produced during panel display processing.

In Generates trace records showing the panel, including data entered
after the user has pressed the Enter key or a function key.

Out Generates trace records showing the panel as it shown on the
screen. Attribute bytes are also represented in the screen display.

Both Generates both the In and Out display traces. This is the default.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

PANEL

Panel trace command (ISPDPTRC)

Controls the generation of trace records based on the panel name.

*

panel_name

panel_mask

Generate trace records for all panels. This is the default.
Generates trace records only for the panel name as
specified.

Generates trace records for panels matching panel_mask.
The mask can contain % to represent a single character or *
to represent any number of characters.

Note: Panel service calls (DISPLAY, TBDISPL, and TBQUERY) continue to
be traced for all panels, regardless of the panel_name or panel_mask
parameter specified.

READ Controls the generation of trace records when a panel is being read into

memory.

None No trace records are produced during the read processing.

Summary

Generates summary information, including where the panel was
loaded from (either an ISPPLIB or LIBDEF data set), and the
number of records read until the)END statement was detected.
This is the default setting.

Detail Generates the same information as for the summary trace, but
includes the panel source. Preprocessed panels can not be
displayed.

SCREEN

Controls the generation of trace records based on the screen ID.

0 Generate trace records for the all logical screens. This is the default.

*

screen_id

Generate trace records for the current screen ID.

Generate trace records only for the logical screen ID as specified.
The screen ID is a single character in the range 1-9, A-W.

SECTION

Controls the generation of trace records for the different panel logic
sections. The default is all sections.

* 1 All

None

Init

Reinit

Proc

NOInit

Generates trace records for all sections. Either form of this
parameter can only be specified by itself, and not with any
of the other SECTION parameter values.

Generates no trace records for any of the panel processing
logic sections. This parameter can only be specified by
itself and not in conjunction with any of the other
SECTION parameter values.

Generates trace records for the)ABCINIT and)INIT
sections.

Generates trace records for the)REINIT section.

Generates trace records for the) ABCPROC and)PROC
sections.

Turns off the generation of trace records for the JABCINIT
and)INIT sections.

Appendix C. Diagnostic Tools and Information 369

Panel trace command (ISPDPTRC)

370

NOReinit

NOProc

SERVICE
Controls the generation of trace records for the panel processing service
calls, namely DISPLAY, TBDISPL and TBQUERY.

Turns off the generation of trace records for the)REINIT
section.

Turns off the generation of trace records for the) ABCPROC
and)PROC sections.

None No trace records are produced during the service call processing.

Detail Generates trace records for the DISPLAY, TBDISPL, and TBQUERY
service calls, showing all the parameters. A trace record is
produced both before and after the call processing, with the post
record showing the return code from the service. This is the default
setting.

Notes:

1. Where neither the END nor VIEW parameters is provided, the panel trace is
started if it is not already active, otherwise the trace is stopped and where
possible you are put into an edit session with the trace output.

When the panel trace is already active, only the END and VIEW parameters
have any effect on the command. All other valid parameters are ignored. If
invalid parameters are entered the command terminates without starting to

process the trace.

Trace format

Panel trace header

ZISPFOS: ISPF FOR
ISPDPTRC Command:
Options in Effect:

Physical Display:

ISPCDI ~ Version:
ISPDPA Version:
ISPDPE Version:
ISPDPL Version:
ISPDPP Version:
ISPDPR Version:
ISPDPS Version:
ISPDTD Version:
ISPPQR Version:
ISPDPTRO Version:

ISPF Panel Trace ==================== 2004.243 04:53:20 GMT ==========
z/0S 02.07.00 Z0S390RL: z/0S 02.07.00
ISPDPTRC

PANEL(*) SCREEN(O) SECTION(INIT REINIT PROC)
SERVICE(DETAIL) SOURCE(SUMMARY) DISPLAY (BOTH)

PRI=24x80 ALT=60x132 GUI=OFF

ISPCDI 04237-BASE z/27
ISPDPA 04243-BASE z/27
ISPDPE 04237-BASE z/27
ISPDPL 04243-BASE z/27
ISPDPP 04237-BASE z/27
ISPDPR 04237-BASE z/27
ISPDPS 04237-BASE z/27
ISPDTD 04237-BASE z/27
ISPPQR 04237-BASE z/27
ISPDPTRO 04243-BASE z/27

TLD# Type Panel Section Cd RC Data

Figure 89. Sample Panel Trace header

The trace header shows the following information:

1.

2.
3.
4

Current date and time (GMT) when the trace was initialized
ISPF level information as found in dialog variable ZISPFOS
z/0S level information as found in dialog variable ZOS390RL
ISPDPTRC command with the invocation parameters

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Panel trace command (ISPDPTRC)

5. The options that are in effect for the current execution of the panel trace

6. Module level information for each of the modules associated with ISPF Panel

Processing

The remainder of the trace is broken into a number of columns to show each trace
record. The columns are:

TLD# The task or screen identifier from which the panel service is being invoked.

Type The trace entry type. The valid types are:

Dspl

DspO

Err

PrcR

Read

RexR

Rexx

Svc

SvcR

Var

VarR

Records are generated after a user has pressed the Enter key or a
function key, and show the data displayed on the ISPF panel at
that time. Attribute bytes are also included in the display. The
generation of this type of trace record is controlled by the
ISPDPTRC DISPLAY parameter.

Records are generated displaying an ISPF panel at the screen.
Attribute bytes are also included in the display. The generation of
this type of trace record is controlled by the ISPDPTRC DISPLAY
parameter.

Records are generated when a ISPF panel processing error occurs
and ISPF issues an error message. The records generated include
both the short and long error messages.

Records are generated during the processing of the panel logic
sections, including)INIT,)REINIT,)PROC,)JABCINIT and
JABCPROC. The data as displayed resembles that of the original
panel, but may not be identical to it. Where an assignment
statement includes dialog variables or functions, an additional
record is displayed showing the result of the assignment. The
generation of this type of trace records is controlled by the
ISPDPTRC SECTION parameter.

Records are generated reading a panel into storage. The generation
of this type of trace record is controlled by the ISPDPTRC READ
parameter. A summary trace does not show the panel source
records. The source of preprocessed panels can not be displayed.

Records that are generated when REXX processing is complete and
control is being returned back to the panel.

Records that are generated when a *REXX statement is being
processed.

Records are generated for calls to the ISPF Display Services and
show all the call parameters. This is limited to the DISPLAY,
TBDISPL, and TBQUERY services. The generation of this type of
trace record is control by the ISPDPTRC SERVICE parameter.

Records are generated returning from the ISPF Display services.
The trace includes the return code from the service.

Records that are generated to show the ISPF variables and their
values being passed to the Panel Exit or Panel REXX command.

Records that are generated to show the ISPF variables and their
values being passed back from the Panel Exit or Panel REXX
command.

Panel The ISPF panel name associated with the trace record.

Appendix C. Diagnostic Tools and Information 371

Panel trace command (ISPDPTRC)

Section
The logic section associated with the PrcR type trace record.

Cd The Condition value returned for IF and ELSE panel statements:
T Indicates a True condition
F Indicates a False condition

Note: A plus (+) character in this field indicates a record continuation.
RC The Return Code, shown only for SvcR, and PrcR type trace records.

Data Trace data for the particular trace entry. The trace data extends the full
width of the output file and will wrap if required.

Panel display

[Figure 90 on page 373 shows the output and input trace generated for panel
ISRUTIL. It includes a scale line across the top and down the side of the panel,
and includes panel size and cursor position information. The input trace also gives
an indication of the key or command entered.

372 2/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1
TLD1

Dsp0O
Dsp0
DspO
Dsp0
Dsp0O
Dsp0
DspO0
Dsp0O
Dsp0
Dsp0O
Dsp0
Dsp0
Dsp0
Dsp0
DspO
Dsp0
Dsp0O
Dsp0
Dsp0O
DspO
DspO0
DspO
Dsp0
Dsp0O
Dsp0
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI
DspI

Figure 90.

ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL

ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL
ISRUTIL

[PO

Menu Help

Option ===>§
1 Library
2 Data Set

1 3 Move/Copy
4 Dslist

5 Reset

6 Hardcopy
+ 7 Transfer

8 Outlist

9 Commands
11 Format
12 SuperC
2 13 SuperCE
14 Search-For
15 Search-ForE
16 Tables
. --- Screen=23x80

Menu Help

Option ===>&4
1 Library
2 Data Set

1 3 Move/Copy
4 Dslist

5 Reset

6 Hardcopy
+ 7 Transfer

8 Outlist

9 Commands
11 Format
12 SuperC
2 13 SuperCE
14 Search-For
15 Search-ForE
16 Tables
. --- Screen=23x80

Sample DISPLAY trace

0mmmmtommmlmmmmte

Panel trace command (ISPDPTRC)

S JER R USSRy, U SRR - SR SRR S S [S

Utility Selection Panel

Compress or print data set. Print index Tisting. Print,
rename, delete, browse, edit or view members

Allocate, rename, delete, catalog, uncatalog, or display
information of an entire data set

Move, or copy members or data sets

Print or display (to process) list of data set names.
Print or display VTOC information

Reset statistics for members of ISPF Tibrary

Initiate hardcopy output

Download ISPF Client/Server or Transfer data set

Display, delete, or print held job output

Create/change an application command table

Format definition for formatted data Edit/Browse

Compare data sets (Standard Dialog)
Compare data sets Extended (Extended Dialog)
Search data sets for strings of data (Standard Dialog)

Search data sets for strings of data Extended (Extended Dialog)
ISPF Table Utility

Cursor=4/14

R Uy i P U Uy SR JR S

Utility Selection Panel

Compress or print data set. Print index Tisting. Print,
rename, delete, browse, edit or view members

Allocate, rename, delete, catalog, uncatalog, or display
information of an entire data set

Move, or copy members or data sets

Print or display (to process) Tist of data set names.
Print or display VTOC information

Reset statistics for members of ISPF library

Initiate hardcopy output

Download ISPF Client/Server or Transfer data set

Display, delete, or print held job output

Create/change an application command table

Format definition for formatted data Edit/Browse

Compare data sets (Standard Dialog)
Compare data sets Extended (Extended Dialog)
Search data sets for strings of data (Standard Dialog)

Search data sets for strings of data Extended (Extended Dialog)
ISPF Table UtiTity
Cursor=4/15 Key=ENTER

Panel processing trace

[Figure 91 on page 374 shows an example of the trace generated when processing

the PROC section of panel ISRUTIL after the number 4 was entered in the
command field. Statements skipped as the result of a “false” condition on an IF or
ELSE statement are never displayed. In addition, the panel trace always splits the
value pairs for the TRANS functions into separate records, making the trace more
readable. The result of an assignment statement is only shown when the
assignment statement includes a dialog variable, an including panel control
variable, or a panel function.

Appendix C. Diagnostic Tools and Information 373

Panel trace command (ISPDPTRC)

Panel REXX is not traced. This should be traced using normal REXX trace

capabilities.
TLD1 PrcR ISRUTIL PROC 0 &ZCMDWRK=&Z
TLD1 PrcR ISRUTIL PROC -> &ZCMDWRK=""
TLD1 PrcR ISRUTIL PROC T 0 IF(&ZCMD = &7Z)
TLD1 PrcR ISRUTIL PROC 0 &ZCMDWRK=TRUNC (&ZCMD, '.")
TLD1 PrcR ISRUTIL PROC -> &ZCMDWRK=4
TLD1 PrcR ISRUTIL PROC 0 &ZTRAIL=.TRAIL
TLD1 PrcR ISRUTIL PROC -> &ZTRAIL=""

TLD1 PrcR ISRUTIL PROC
TLD1 PrcR ISRUTIL PROC

IF(&ZCMDWRK = &Z)
&ZSEL=TRANS (TRUNC (&ZCMD, '.")

-n
[cNo)

TLD1 PrcR ISRUTIL PROC + 1, 'PGM(ISRUDA) PARM(ISRUDAL) SCRNAME(LIBUTIL)"
TLDL PrcR ISRUTIL PROC + 2,'PGM(ISRUDA) PARM(ISRUDA2) SCRNAME (DSUTIL)"
TLDL PrcR ISRUTIL PROC + 3, 'PGM(ISRUMC) SCRNAME (MCOPY)'

TLDL PrcR ISRUTIL PROC + 4,'PGM(ISRUDL) PARM(ISRUDLP) SCRNAME(DSLIST)'
TLDL PrcR ISRUTIL PROC + 5,'PGM(ISRURS) SCRNAME (RESET)"

TLD1 PrcR ISRUTIL PROC + 6,'PGM(ISRUHC) SCRNAME (HARDCOPY) '

TLDL PrcR ISRUTIL PROC + 7,'PANEL(ISPUDL) SCRNAME (DOWNLOAD)'

TLD1 PrcR ISRUTIL PROC + 8, 'PGM(ISRUOLP) SCRNAME(OUTLIST)'

TLDL PrcR ISRUTIL PROC + 9, 'PANEL (ISPUCMA) ADDPOP SCRNAME (CMDTABLE)"
TLDL PrcR ISRUTIL PROC + 11, 'PGM(ISRFMT) SCRNAME (FORMAT)"

TLDL PrcR ISRUTIL PROC + 12, 'PGM(ISRSSM) SCRNAME (SUPERC) '

TLDL PrcR ISRUTIL PROC + 13, 'PGM(ISRSEPRM) SCRNAME (SUPERCE) NOCHECK'
TLDL PrcR ISRUTIL PROC + 14, 'PGM(ISRSFM) SCRNAME (SRCHFOR) "

TLDL PrcR ISRUTIL PROC + 15, 'PGM(ISRSEPRM) PARM(S4) SCRNAME (SRCHFORE) NOCHECK'
TLD1 PrcR ISRUTIL PROC + 16, 'PGM(ISRUTABL) NEWPOOL SCRNAME (TBLUTIL)"
TLDL PrcR ISRUTIL PROC + v

TLD1 PrcR ISRUTIL PROC + e, 170)

TLDL PrcR ISRUTIL PROC -> &ZSEL='PGM(ISRUDL) PARM(ISRUDLP) SCRNAME(DSLIST)"

Figure 91. Sample PROCESS trace

File tailoring trace command (ISPFTTRC)

The ISPFTTRC command traces the processing of file tailoring services that are
invoked from any screen within the current ISPF session. You can trace both the
execution of file tailoring service calls (FTOPEN, FTINCL, FTCLOSE, and
FTERASE) and the processing that occurs within the file tailoring code and
processing of each statement.

The output from the trace is written to a dynamically allocated VB (variable
blocked) data set that has a record length of 255. Where the ddname ISPFTTRC is
preallocated, this data set will be used, providing it refers to a sequential, VB data
set with a record length of at least 255.

The ISPFTTRC command starts the trace if it is not running. If the trace is already
active, ISPFTTRC allows you to stop and optionally to view or edit the trace
output. ISPFTTRC must be executed while ISPF is active.

The syntax of the command is:

374 2/0S V1IR9.0 ISPF Dialog Developer’s Guide and Reference

File tailoring trace command (ISPFTTRC)

ISPFTTRC [END]

Where:
END

VIEW

LIST

QUIET

READ

[VIEW]

[LIST]

[QUIET]

[READ(None | Summary | Detail)]

[REC|RECORDS(= | A11 | None | [Src|Source] [Data] [Cntl1] |
TNOSrc|NOSource] [NOData] [NOCnt1])]

[SCR|SCREEN(© | * | screen_ id)]

[SVC|SERVICE(None | Detail)]

[SKL|SKEL|SKELETON(* | skel _name | skel mask)]

[TBV|TBVARS(None | Detail)]

Terminates the trace if it is active. No attempt is made to edit or view the
trace data set.

Terminates the trace if it is active and views the trace data set. If an
allocation for the DD ISPFTTRC is present, this data set is viewed.
SYSOUT data sets are not supported.

When VIEW is unable to locate the trace data set, it performs the LIST
processing and displays the list of panel trace data sets.

The file tailoring trace command invokes the Data Set List Utility to
display file tailoring trace data sets.

Where the user’s prefix is not blank, the data set list displayed is for data
sets of the form:
prefix.** ISPFT.TRACE

Otherwise, the data set list displayed is for data sets of the form:
userid.**.ISPFT.TRACE

Prevents trace initialization and termination messages being displayed.
Error messages continue to be displayed on the screen.

Controls the generation of trace records when a skeleton member is being
read into memory.

None No trace records are produced during the read processing.

Summary
Generates summary information, including where the skeleton was
loaded from (either an ISPSLIB or LIBDEF data set), and the
number of records read.

Detail Generates the same information as for the summary trace, but
includes the skeleton source. This is the default setting.

RECORDS

Controls the generation of trace records during record processing of the
skeleton member.

* 1 All
Generates trace records for all skeleton record processing. Either
form of this parameter can only be specified by itself, and not with
any of the other RECORDS parameter values.

None Generates no trace records for any of the skeleton record
processing. This parameter can only be specified by itself and not
in conjunction with any of the other RECORDS parameter values.

Appendix C. Diagnostic Tools and Information 375

File tailoring trace command (ISPFTTRC)

Source
Generates trace records for the source skeleton record. This is
performed before any processing is done to determine if it is a data
or control record.

Data Generates trace records for the data records. This is performed
after record processing has completed.

Cntl Generates trace records for the control statements. This is
performed after record processing has completed.

NOSource
Turns off the generation of trace records for the source skeleton
records.

NOData
Turns off the generation of trace records for the data records.

NOCntl
Turns off the generation of trace records for the control statements.

SCREEN
Controls the generation of trace records based on the screen ID.

0 Generate trace records for the all logical screens. This is the default.

* Generate trace records for the current screen ID.

screen_id
Generate trace records only for the logical screen ID as specified.
The screen ID is a single character in the range 1-9, A-W.

SERVICE
Controls the generation of trace records for the file tailoring service calls,
namely OPEN, FTINCL, FTCLOSE, and FTERASE.

None No trace records are produced during the service call processing.

Detail Generates trace records for the OPEN, FTINCL, FTCLOSE, and
FTERASE service calls, showing all the parameters. A trace record
is produced both before and after the call processing, with the post
record showing the return code from the service. This is the default
setting.

SKELETON
Controls the generation of trace records based on the skeleton name.

* | All Generate trace records for all skeletons. This is the default.

skel_name Generates trace records only for the skeleton name as
specified.

skel_mask Generates trace records for skeletons matching skel_mask.
The mask can contain % to represent a single character or *
to represent any number of characters.

Note: File tailoring service calls (OPEN, FTINCL, FTCLOSE, and
FTERASE) continue to be traced for all skeleton processing,
regardless of the skel_name or skel_mask parameter specified.

TBVARS
Used on a)DOT control word to display key variables and named
variables on each iteration through the table.

None No trace records are produced during)DOT processing.

376 2/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

File tailoring trace command (ISPFTTRC)

Detail Generates trace records for the)DOT control word, displaying key
variables and named table variables on each iteration. Extension
variables are not displayed. This is the default setting.

Notes:

1. Where neither the END nor VIEW parameters are provided, the file tailoring
trace is started if it is not already active, otherwise the trace is stopped and
where possible you are put into an edit session with the trace output.

2. When the file tailoring trace is already active, only the END and VIEW
parameters have any effect on the command. All other valid parameters are
ignored. If invalid parameters are entered the command terminates without
starting to process the trace.

Trace format
File tailoring trace header

========= [SPF File Tailoring Trace =========== 2005.305 01:48:01 GMT ==========
ZISPFOS: ISPF FOR z/0S 01.08.00 Z0S390RL: z/0S 01.05.00
ISPFTTRC Command: ISPFTTRC
Options in Effect: SKELETON(*) SCREEN(®) RECORDS(SOURCE CNTL DATA)
READ(DETAIL) SERVICE(DETAIL) TBVARS(DETAIL)

ISPFICRX Version: ISPFICRX 05286-BASE z/18
ISPFICWC Version: ISPFICWC 05286-BASE z/18
ISPFICWD Version: ISPFICWD 05286-BASE z/18
ISPFICWE Version: ISPFICWE 05286-BASE z/18
ISPFICWL Version: ISPFICWL 05286-BASE z/18
ISPFICWT Version: ISPFICWT 05286-BASE z/18
ISPFICWX Version: ISPFICWX 05286-BASE z/18
ISPFIEND Version: ISPFIEND 05286-BASE z/18
ISPFIINT Version: ISPFIINT 05286-BASE z/18
ISPFILBS Version: ISPFILBS 05284-BASE z/18
ISPFITLR Version: ISPFITLR 05284-BASE z/18
ISPFITRO Version: ISPFITRO 05297-BASE z/18
ISPFITRV Version: ISPFITRV 05286-BASE z/18

TLD# Type Skeleton Rec# IM IF DO TB Cd RC Data

______________________ —_—— m— m—— - e e —— -

Figure 92. Sample file tailoring trace header

The trace header shows the following information:

Current date and time (GMT) when the trace was initialized

ISPF level information as found in dialog variable ZISPFOS

z/0S level information as found in dialog variable ZOS390RL

ISPFTTRC command with the invocation parameters

The options that are in effect for the current execution of the file tailoring trace

o gk whPRE

Module level information for each of the modules associated with file tailoring
and skeleton processing

The remainder of the trace is broken into a number of columns to show each trace
record. The columns are:

TLD# The task or screen identifier from which the file tailoring is being invoked.
Type The trace entry type. The valid types are:

CtIR Records are generated when record processing has completed and

Appendix C. Diagnostic Tools and Information 377

File tailoring trace command (ISPFTTRC)

378

the record was determined to be a control statement. The
generation of CtIR trace records is controlled by the ISPFTTRC
RECORDS parameter.

DatR Records are generated when record processing has completed and
the record was determined to be a data record. The generation of
DatR trace records is controlled by the ISPFTTRC RECORDS
parameter.

Err Records are generated when a file tailoring processing error occurs
and ISPF issues an error message. The generated records include
both the short and long error messages.

Fncl Records are generated when a built-in function has been identified
and is ready to be evaluated.

FncR Records are generated when a built-in function has been evaluated.

NoFT Records are generated after the point where the NOFT parameter is
specified on the FTINCL service call, or the point where the NT
option is specified on the)IM control statement. The generation of
NoFT trace records is controlled by the ISPFTTRC RECORDS
parameter.

Read Records are generated reading a skeleton into storage. The
generation of Read trace records is controlled by the ISPFTTRC
READ parameter. A summary trace does not show the skeleton
source records.

RexR Records are generated when REXX processing is complete and
control is being returned back to the file tailoring.

Rexx Records are generated when a)JREXX control statement is being
processed.

Src Records are generated when a skeleton record is selected for
processing. The generation of Src trace records is controlled by the
ISPFTTRC RECORDS parameter.

Sve Records are generated for calls to the ISPF file tailoring services
and show all the call parameters. This is limited to the FTOPEN,
FTINCL, FTCLOSE, and FTERASE services. The generation of Svc
trace records is controlled by the ISPFTTRC SERVICE parameter.

SvcR Records are generated returning from the ISPF file tailoring
services. The trace includes the return code from the service. The
FTCLOSE return trace entry includes an additional record showing
the number of records written to the file tailoring output data set.

Var Records that are generated to show the ISPF variables and their
values being passed to the file tailoring REXX command.

VarR Records that are generated to show the ISPF variables and their
values being passed back from the file tailoring REXX command.

Skeleton
The ISPF skeleton name associated with the trace record.

Record
Display the record number associated with the trace entry type. For Read,
Src, and CtIR the input record number from the skeleton member is
displayed. (For control statements that are continued over more than one
line this is always the record number associated with the first line of the

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

IM

IF

DO

TB

Cd

RC
Data

File tailoring trace command (ISPFTTRC)

control statement.) For DatR and NoFT, the output record number is
displayed. This field is blank for all other record types.

The current imbed level. The skeleton name specified on the FTINCL
service is always level 1.

The current IF or SEL level. This field is blank if no)IF or)SEL statement
is being processed.

The current DO level. This field is blank if no)DO structure is being
processed.

The current Table level. This field is blank if no)DOT structure is being
processed.

The Condition value returned for the following skeleton control statements:
*)IF,)SEL,)UNTIL, or YWHILE statement

T Indicates a True condition

F Indicates a False condition
* JENDDO, or)ENDDOT statement

X Indicates the corresponding)DO or)DOT control statement is
terminating. In other words, the exit condition has been met.

*)IM statement with OPT parameter
X Imbed member was not found. File tailoring processing will
continue.
Note: A plus (+) character in this field indicates a record continuation.
The Return Code, shown only for SvcR, DatR, and CtIR trace entries.

Trace data for the particular trace entry. The trace data extends the full
width of the output file and will wrap if required.

Appendix C. Diagnostic Tools and Information 379

File tailoring trace command (ISPFTTRC)

File tailoring processing trace

TLD# Type Skeleton Rec# IM IF DO TB Cd RC Data

______________________ —_—— m— m—— - e -

TLD1 Svc FTOPEN TEMP
--- DD=ISP14484 DSN=LSACKV1.SPFTEMP1.CNTL
TLD1 SvcR 0 FTOPEN TEMP

TLD1 Svc FTINCL SKREXIA EXT

--- DD=ISPSLIB DSN=LSACKV2.ISPSLIB
TLD1 Read SKREX1A >>1A>>START>> REXX >>
TLD1 Read SKREX1A)SET VARLIST = &STR(VARL VAR2,VAR3)

TLD1 Read SKREX1A)SET VARL = SAY

TLD1 Read SKREX1A)SET VAR2 = HI

TLD1 Read SKREX1A)SET VAR3 = &STR(TO REXX)
= &STR(:)

TLD1 Read SKREX1A)JREXX &VARLIST VAR4

TLD1 Read SKREX1A SAY VAR1 VAR2 VAR3 VAR4

TLD1 Read SKREX1A VAR3 = 'from rexx to you'

TLD1 Read SKREX1A) ENDREXX

TLD1 Read SKREX1A >>]A>>-END-<< &VAR1 &VAR2 &VAR3

TLD1 Read SKREX1A —==—--—mmmmmmmmmm e Total Records=11

TLD1 Src SKREX1A 1 1 >>]A>>START>> REXX >>

TLD1 DatR SKREX1A 1 1 0 >1A>START> REXX >

TLD1 Src SKREX1A 2 1)SET VARLIST = &STR(VAR1 VAR2,VAR3)
2 1
2 1

1
2
3
4
5
TLD1 Read SKREX1A 6)SET VAR4
7
8
9
0
1

[EEFRN

TLD1 FncI SKREX1A &STR(VAR1 VAR2,VAR3)
TLD1 FncR SKREX1A 0 = VAR1 VARZ,VAR3

TLD1 FncR SKREX1A +000060 0000000B 00000003 800000. ..
TLD1 Ct1R SKREX1A 10 1 0)ENDREXX

TLD1 RexR SKREXI1A ZFTXRC(2)=0

TLD1 RexR SKREX1A ZFTXMSG(8) =

TLD1 RexR SKREX1A VAR1(3)=SAY

TLD1 RexR SKREX1A VAR2 (2)=HI

TLD1 RexR SKREX1A VAR3(9)=from rexx

TLD1 RexR SKREX1A VAR4(1)=:

TLD1 Src SKREX1A 11 1 >>]A>>-END-<< &VAR1 &VARZ2 &VAR3

TLD1 DatR SKREXI1A 2 1 0 >1A>-END-< SAY HI from rexx

TLD1 SvcR O FTINCL SKREX1A EXT

TLD1 Svc FTCLOSE
--- DD=ISP09474 DSN=LSACKV1.SPFTEMP1.CNTL
TLD1 SvcR 0 FTCLOSE

TLD1 SvcR e Total Records=2

Figure 93. Sample file tailoring process trace

Diagnostic information

This section is intended to help you gather information to diagnose ISPF problems.

Using the ENVIRON system command

ISPF provides the ENVIRON command to assist you in gathering data that can be
helpful in diagnosing problems, thus reducing service time. The ISPF session does
not have to be running in any ISPF TEST/TRACE mode when you use the
ENVIRON command.

The ENVIRON command can help you to:

* Produce system abend dumps when not running in ISPF TEST mode
(ENBLDUMP parameter)

* Trace the TPUT, TGET, and PUTLINE buffers and obtain dump information for
TPUT and TGET errors (TERMTRAC parameter)

380 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic information

* Gather terminal status information (TERMSTAT parameter)

You can display a panel for selecting command options by entering the
ENVIRON command with no parameters, or display the panel through the use of
the Environ settings... choice from the Environ pull-down on the ISPF Settings
panel. This panel includes the current values of the ENVIRON command
parameters (ENBLDUMP and TERMTRAC) and the ddname, if any, allocated for a
dump data set. The values can be changed by entering new values directly on the
panel.

=0 EE

Log/List Function keys Colors Environ Tenporary Help
- | SPF Settings
| SPF ENVI RON Conmand Setti ngs

S| Enter "/" to select option
Enabl e a dunp for a subtask abend when not in | SPF TEST node

Term nal Traci ng (TERMIRAC)
Enable . . . _ 1. Enable termnal tracing (ON)
2. Enable ternminal tracing when a termnal error
i's encountered (ERROR)
3. Disable termnal tracing (OFF)
DDNAME . . . | SPSNAP (DDNAME for TERMIRAC ON, ERROR, or DUWP.)

T| Terminal Status (TERVSTAT)

Enable . . . _ 1. Yes, invoke TERVSTAT i medi ately
2. Query ternminal information
3. No

Command ===>
Fl=Hel p F2=Spl it F3=Exi t F7=Backwar d F8=For war d
F9=Swap F12=Cancel
C
Fl=Hel p F2=Spl it F3=Exi t F7=Backward F8=Forward F9=Swap

F10=Acti1 ons Fl12=Cancel

Figure 94. ENVIRON Settings Panel (ISPENVA)

You can issue the ENVIRON command at any time during an ISPF session.

ENVIRON command syntax and parameter descriptions
The general syntax for the ENVIRON command is:

ENVIRON [ENBLDUMP [ON|OFF]]
[TERMTRAC [ON|ERROR|DUMP|OFF]]

[TERMSTAT [QUERY]]

The parameter descriptions for the ENVIRON command are as follows:

ENBLDUMP
Specifying the ENBLDUMP parameter enables ISPF to produce an abend
dump if a subtask abnormally terminates when ISPF is not running in TEST
mode. The ENBLDUMP parameter does not apply to attached commands.
Before a dump is taken you must allocate either the SYSUDUMP, SYSMDUMP,
or SYSABEND ddname. For more information about these data sets, refer to
/0S MV'S Diagnosis: Tools and Service Aids}

Appendix C. Diagnostic Tools and Information 381

Diagnostic information

382

The default value for the ENBLDUMP parameter is ON. ENVIRON
ENBLDUMP ON specifies to ISPF that a dump is to be generated for the
subtask that abended.

Issuing ENVIRON ENBLDUMP OFF cancels the effect of the ON status.

The ENBLDUMP parameter value is preserved across ISPF sessions in the
ISPSPROF profile.

With ENBLDUMP active, even when ISPF is not running in TEST mode,
abnormal termination of a subtask results in a dump being taken and control
being returned to TSO. ISPF execution is not resumed.

When running in ISPF TEST mode, issuing ENVIRON ENBLDUMP has no
effect on dump processing.

TERMTRAC

Specifying the TERMTRAC parameter allows you to trace all terminal input
and output data (TPUT, TGET, PUTLINE) during an ISPF session. The
TERMTRAC parameter also allows you to turn on in-core tracing and cause
ISPF to produce a SNAP dump if the TPUT or TGET service results in an error.
ISPF does not have to be running in TSO TEST mode.

Note: The ENVIRON TERMTRAC buffer does not include:

* The TPUT/TGET instructions issued to query the terminal:
— At ISPF initialization
— By the ENVIRON TERMSTAT command

¢ The TPUT instruction issued to clear the screen at ISPF termination

* Under certain severe ISPF error conditions, the TPUT instruction
issued to display a severe error line message

Before issuing the ENVIRON TERMTRAC DUMP command you must have
first issued the ENVIRON TERMTRAC ON or ENVIRON TERMTRAC ERROR
command.

Before using the TERMTRAC option, you must define to ISPF the ddname for
the data set to be used for the SNAP macro, which ISPF invokes to provide
data stream dumps. The ddname can be defined by specifying it on the panel
displayed as a result of either issuing the ENVIRON command with no
parameters, or selecting the “Environ settings” choice from the Environ
pull-down on the ISPF Settings panel. You must follow the data set
characteristics guidelines defined by MVS for the SNAP macro. See
(Programming: Assembler Services Guidd for DCB information that can be
specified for the SNAP ddname.

The terminal data stream buffer used for ENVIRON TERMTRAC data
collection is not reset to zeros.

Subparameters define terminal data tracing as follows:
* ENVIRON TERMTRAC ON

Activates TPUT, TGET, and PUTLINE buffer tracing of the terminal data
stream. All data is retained in a 24K buffer provided by ISPF. No buffer
entry is fragmented. If an entry will not fit into the remaining buffer space,
ISPF issues a SNAP to capture the buffer data. The next trace entry is stored
at the top of the buffer, regardless of the status of the SNAP execution.

Messages are displayed to the user only for errors during SNAP execution.
No messages are displayed during dumps taken as a result of the data
buffer filling.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic information

Because ENVIRON TERMTRAC ON causes a SNAP dump to be taken each
time the buffer fills, the ddname that you allocate for the SNAP macro
should have a disposition of MOD. This assures that no trace data is lost.

The layout of the terminal data buffer for all SNAP dumps is:

1 TPUT/TGET/PUTLINE BUFFER TRACE

2 Header of 8 bytes initialized to
TERMTRAC

2 4-byte pointer to where the next entry
is to be placed

2 Reserved (20 bytes, for 32-byte boundary
alignment)

2 TPUT/TGET/PUTLINE DATA (%)
3 8-byte TPUT/TGET/PUTLINE identifier
3 4-byte pointer to previous entry
3 Information specific to the terminal

type identifier.

The TPUT/TGET identifiers and specific information for each is as follows.
Each buffer entry is aligned on a 32-byte boundary.

TGET Before issuing TGET SVC. 4-byte pointer to previous entry.
General purpose registers 0, 1, and 15:
RO = input data area size
R1 = input data area pointer
R15 = TGET option byte
TGETR Return from TGET SVC. 4-byte pointer to previous entry.
General purpose registers 1 and 15:
Rl = input data Tength
R15 = TGET return code

4-byte length of data stream.
Data stream.

TPUT Before issuing edit TPUT macro. 4-byte pointer to previous
entry. General purpose registers 0, 1, and 15:
RO = output data area

R1 output data area pointer
R15 = TPUT option byte

4-byte length of data stream.
Data stream.

TPUTR Return from edit TPUT macro. 4-byte pointer to previous
entry. General purpose register 15:

R15 = TPUT return code

TPUTNE before issuing the noedit TPUT macro. 4-byte pointer to
previous entry. General purpose registers 0, 1, and 15:

R1
R15

address of plist
TPUT option byte

16-byte noedit plist:

Reserved (2 bytes)

2-byte Tength of data stream
Code (1 byte)

3-byte addr of data stream
Reserved (8 bytes)

Data stream.

TPUTNER Return from noedit TPUT macro. 4-byte pointer to previous
entry. General purpose register 15:

Appendix C. Diagnostic Tools and Information 383

Diagnostic information

R15 = TPUT return code

PUTLINE Before issuing the PUTLINE macro. 4-byte pointer to
previous entry 12-byte PUTLINE parameter block:
Control flags (2 bytes)
2-byte TPUT options field

4-byte address of message
4-byte address of format-only line

125-byte message description:

2-byte message Tength

2-byte message offset

121-byte message
Actions that occur as a result of issuing the ENVIRON TERMTRAC
command when ENVIRON TERMTRAC ON is already in effect are listed by
command subparameter below:

ON ENVIRON TERMTRAC ON continues to function normally.

OFF Tracing is turned off and ISPF issues a SNAP macro. If
ENVIRON TERMTRAC tracing is requested again, the next
entry is written at the top of the buffer, regardless of
whether the prior SNAP was successful.

ERROR Changes the setting of the command to ENVIRON
TERMTRAC ERROR. Tracing continues, with the next buffer
entry being written after the last entry written by the
ENVIRON TERMTRAC ON setting.

DUMP The ENVIRON TERMTRAC ON condition continues. In
addition, ISPF issues a SNAP macro and, if the SNAP is
successful, the next trace entry is written at the top of the
buffer. If the SNAP fails, the next entry is written after the
last entry before the SNAP.

ENVIRON TERMTRAC ERROR

Initiates tracing of the TPUT, TGET, and PUTLINE buffers. In addition, it
causes ISPF to initiate a SNAP dump if a TPUT or TGET error occurs. The
dump includes the storage trace buffer, the current TCB, all system control
program information, and all problem program information. The SNAP
macro definition provides more specific information about the areas dumped
when all system control program and problem program information is
requested.

ISPF issues the SNAP macro on the first occurrence of a TPUT failure. ISPF
makes three consecutive attempts to correct a TPUT error.

Before using this option, you must have defined the ddname for the SNAP
macro as described earlier in this topic under TERMTRAC.

Actions that occur as a result of issuing the ENVIRON TERMTRAC

command when ENVIRON TERMTRAC ERROR is already in effect are
listed by command subparameter below:

ON Changes the setting of the command to ENVIRON
TERMTRAC ON. Tracing continues, with the next buffer
entry being written after the last entry written by the
ENVIRON TERMTRAC ON setting.

ERROR ENVIRON TERMTRAC ERROR continues to function
normally, with the next trace entry written after the last
ERROR trace entry.

384 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic information

OFF The setting for ENVIRON TERMTRAC is set to OFF. If
ENVIRON TERMTRAC tracing is requested again, the next
entry is written at the top of the buffer, regardless of
whether the prior SNAP was successful.

DUMP The ENVIRON TERMTRAC ERROR condition continues. In
addition, ISPF issues a SNAP macro and, if the SNAP is
successful, the next trace entry is written at the top of the
buffer. If the SNAP fails, the next entry is written after the
last entry before the SNAP.

e ENVIRON TERMTRAC DUMP

Causes ISPF to immediately issue a SNAP macro, but only if ENVIRON
TERMTRAC ON or ENVIRON TERMTRAC ERROR is active. The resulting
dump includes the storage trace buffer, the current TCB, all system control
program information, and all problem program information. The SNAP
macro definition provides more specific information about the areas dumped
when all system control program and problem program information is
requested.

Notes:

1. This command execution does not turn off terminal data stream tracing if
it is active at the time.
2. The next entry is written to the top of the terminal data buffer if the

SNAP was successful; otherwise, tracing continues immediately after the
last trace buffer entry.

e ENVIRON TERMTRAC OFF

Resets active ENVIRON TERMTRAC ON and ENVIRON TERMTRAC
ERROR commands. If ENVIRON TERMTRAC is active, ISPF issues a SNAP
macro.

The TERMTRAC parameter value is preserved across ISPF sessions in the
ISPSPROF profile. The ddname specified for TERMTRAC on the ENVIRON
option panel is also saved across sessions.

TERMSTAT
Specifying the TERMSTAT option of the ENVIRON command allows you to
collect information about the characteristics of the terminal you are using and
the line to which it is attached. The information is returned to your terminal by
using line mode, and is written to the ISPF log data set.

The description below of the information returned from an ENVIRON
TERMSTAT request is divided into three parts:

e A list of terminal characteristics as defined in ISPF variables. In other words,
this list defines what ISPF thinks your terminal characteristics are.

e A list of terminal characteristics as defined within TSO.

* A list of structured fields that apply only to terminals with extended data
stream (EDS) capability.

If you issue ENVIRON TERMSTAT (without the QUERY parameter) ISPF
unconditionally returns information from lists A and B (below). In addition, if
your terminal is connected to a port that supports extended data streams, ISPF
returns information from list C (below).

If your terminal is one that supports extended data streams, such as an IBM
3279, but is connected to a non-EDS port, you can issue ENVIRON TERMSTAT
QUERY to force ISPF to return information from list C. Be aware that if you

Appendix C. Diagnostic Tools and Information 385

Diagnostic information

386

issue ENVIRON TERMSTAT QUERY, and your terminal is not a type that
supports extended data streams, such as the IBM 3277, you will receive an
ORDER STREAM CHECK error.

Information returned as a result of issuing the ENVIRON TERMSTAT
command is as follows:

List A — Terminal Characteristics as Defined Within ISPF

14-bit terminal addressing mode (ON or OFF)

16-bit terminal addressing mode (ON or OFF)

Color mode (ON or OFF)

Highlighting mode (ON or OFF)

DBCS mode (ON or OFF)

Primary screen size (length, width, total bytes)
Alternate screen size (length, width, total bytes)
Partition screen size (length, width, total bytes)
ISPF terminal buffer data (TSB ptr., TSB size,

TPP addr.)

List B — Terminal Characteristics as Defined Within TSO

Return code from GTTERM

Primary screen information (rows, columns)
Alternate screen information (rows, columns)
Screen attribute value

Character set (ASCII or EBCDIC)

Extended data streams or non-EDS support
Return code from GTSIZE

GTSIZE information (rows, columns)

Access method being used (VTAM* or TCAM)

List C — Terminals Supporting EDS (structured fields)

Usable areas
Partitions
Character sets
Color
Highlighting
Reply modes
PC 3270
Implicit partition
Input control
Field rule

e ENVIRON TERMSTAT QUERY

The QUERY parameter allows you to request terminal data related to
extended data stream capability, even though your terminal is connected to a
port that does not support extended data streams.

Abend panels provide diagnostic information

When ISPF processing ends abnormally, diagnostic panels are available for
displaying:

* Task abend code

* Reason code

* Module name

* Entry point address

e Program-Status Word (PSW)

* Register content at the time of the abend

This information is used in logged abend messages. A tutorial panel displays a list
of the common abend codes.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic information

On abnormal ISPF termination, the Error Recovery panel shown in
indicates the abend code and reason code.

/ N

Error Recovery
Command ===>

* kX kK k¥ kK k k k¥ k¥ k k¥ k¥ k¥ k¥ k¥ k kx k¥ k¥ *x k¥ k¥ k¥ k¥ *x k¥ k¥ *x k*k *x %
* k k k k k k¥ k¥ k k¥ k¥ k k k *k *k k¥ k¥ ¥ k¥ k¥ ¥ ¥ ¥ ¥ ¥ ¥ *¥ *x *x *
ISPF processor ended abnormally *

System abend code 0C1
Reason code 01

Note: The ABEND and REASON codes displayed above are
HEXADECIMAL values for "SYSTEM" abends and DECIMAL
values for "USER" abends.

Enter HELP command for Tist of common ABEND codes.
Press ENTER key for additional DIAGNOSTIC information.

Enter END command to display primary option menu.
*

* k¥ k¥ k¥ k¥ x¥ k¥ k¥ *¥ k¥ k¥ k¥ k¥ x¥ k¥ k¥ *¥ k¥ ¥ k¥ k¥ *¥ k¥ ¥ *x ¥ k¥ *x k¥ *x %

EBEE R S R N R I N I
EEE I I S R R N T T R
* %k ok 3k 3k X Ok X X X X X X
%k 3k 3k 3k % % % X X X X X X X X X X X

*k k k k k kK Kk k kK Kk k k& k k k¥ k k k¥ k k *k *k ¥ *k *x k¥ %k *k ¥ % %

- J
Figure 95. Error Recovery Panel (ISPPRS1)

If the SDWA (System Diagnostic Work Area) Reason Code is not supplied, that is,
the SDWA reason code flag bit is OFF, the Reason Code panel field will be blank. If
the abend code documentation indicates that the reason code is in a particular
register, see the contents of that register, which can be displayed on the Additional
Diagnostic Information panel as shown in [Figure 96 on page 388

If you enter HELP, ISPF displays a list of the common abend codes. To return to
the Error Recovery panel, enter END from the Common ABEND panel.

If you press Enter from the Error Recovery panel, the Additional Diagnostic
Information panel is displayed. [Figure 96 on page 388 shows sample data where
the SDWA extension is installed. The format for the register content is slightly
different if the SDWA extension is not present.

Appendix C. Diagnostic Tools and Information 387

Diagnostic information

388

4 ™\
Additional Diagnostic Information
Command ===>
More: +
System abend code = 0C1
Reason code = 01
ISPF Release Level : 5.7.0000
Module name . . . : ASMTEST
Entry point address 0000D488
PSW : 07801000 0000D4BC

Register content:

RO 00000000 - 16308E22 R1 00000000 - OO048EA4
R2 00000000 - 0000D4DO R3 00000000 - 00048ACO
R4 00000000 - 00048AAC R5 00000000 - FFFFFFFF
R6 00000000 - 00000000 R7 00000000 - 00000001
R8 00000000 - 00000000 R9 00000000 - 00039060
R10 00000000 - OO048AA8 R11 00000000 - 00000000
R12 00000000 - 0000D488 R13 00000000 - 000ODADO
R14 00000000 - 80FCC860 R15 00000000 - 00OODA88

-
Figure 96. Additional Diagnostic Information panel (ISPPRS3)

Entry point, PSW, and register values are in hexadecimal. Abend code and reason
code are in hexadecimal for system abends and in decimal for user abends.
Meanings for the entries on the Additional Diagnostic Information panel are:

Abend code
Abend completion code, identified on the panel as “user” or “system”.

Reason code
Component reason code or return code associated with the abend.

ISPF Release Level
ISPF version/release/modification level.

Module Name
Name of abending program or *NOT SPECIFIED* if no name is available.

Entry Point Address
Entry point address of abending program.

PSW Program-Status Word at time of error.

Register content
General Purpose register content at time of error.

If the Recovery Termination Manager (RTM) could not get storage for the System
Diagnostic Work Area (SDWA) or an error occurred within the error routine, all

fields on this panel will contain 0’s, with the exception of the abend code and ISPF
release level. Those fields will contain the correct data.

You can enter the HELP command from this panel as well to display the list of
common abend codes. Information associated with an abend is available from the

ISPF log file.

Press the END function key to return to the primary option menu.

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic information

ISPF statistics entry in a PDS directory

The following is the format of the information that ISPF writes to the PDS
directory to maintain statistics for a member. If you suspect the statistics data has
been corrupted, you can compare the existing entry against these formats to help
in problem determination.

Byte
1
2
3

9-12

13-14

15-16
17-18
19-20
21-27
28-30

Description and Format
Version number, in hexadecimal format. Value is between X'01' and X'99'.

Modification level, in hexadecimal format. Value is between X'00' and X'99'.

Flags:

Bit 1 SCLM indicator. SCLM uses this to determine whether the
member and any related SCLM information are still in
sync.

* ON means the member was last edited by SCLM, the
Software Configuration and Library Manager.
* OFF means the member was somehow processed outside
SCLM.
Bit 2-7 Reserved for future ISPF use.
Bit 8 Reserved.

The seconds portion of the time last modified, in packed decimal format.
Creation date:

Byte 5 Century indicator. X'00' = 1900. X'01" = 2000.
Byte 6-8 Julian date, in packed decimal format

Date last modified:

Byte 9 Century indicator. X'00' = 1900. X'01' = 2000.
Byte 10-12 Julian date, in packed decimal format

Time last modified, in packed format:

Byte 13 Hours, in packed decimal format

Byte 14 Minutes, in packed decimal format

Current number of lines, in hexadecimal format

Initial number of lines, in hexadecimal format

Number of modified lines, in hexadecimal format

Userid, in character format

Reserved for future ISPF use

Common problems using ISPF

This section contains some common error messages that may be encountered while
using ISPE. Error resolutions and explanations are also included.

Messages

» IKJ565001 COMMAND NOT FOUND

Appendix C. Diagnostic Tools and Information 389

Common problems using ISPF

390

If a command processor exists only in LPA, there must be an entry in the
ISPTCM for the command processor. See |z/OS ISPF Planning and Customizing|for
more details on customizing the ISPF TSO command table.

IKJ568611 FILE ddname NOT FREED, DATA SET IS OPEN

If the LIBRARY parameter is used with a table service, the user is not able to
free the ddname for the table library pointed to by the LIBRARY parameter. ISPF
keeps this library open until a new ddname is used in the LIBRARY parameter
with another table service. ISPF functions in this manner for performance
reasons.

Issuing a table service with a LIBRARY parameter containing a ddname that
does not exist causes the previous library to be closed and therefore allows the
user to free the previous ddname. Use of CONTROL ERRORS RETURN may be
used to guard against a severe error as a result of a ddname not existing.

For example:

ALLOC FILE(DD1) DATASET('USERID.YOUR.TABLES') SHR
ISPEXEC TBOPEN MYLIB LIBRARY(DD1)

/*ISPF services against your table*/

ISPEXEC TBCLOSE MYLIB LIBRARY(DD1)

ISPEXEC CONTROL ERRORS RETURN

ISPEXEC TBOPEN JUNK LIBRARY(DDJUNK) /*nonexistent table in a =*/

/*nonexistent library */

ISPEXEC CONTROL ERRORS CANCEL

FREE F(DD1)
ISPP150 Panel ‘name’ error—At least one of the CLEAR names listed is not a
panel field name.

or:
ISPP121 Panel 'name’ error-Panel definition too large, greater than screen size.

when entering KEYLIST, when requesting field-level help in ISPF panels, or
when displaying panels created using DTL.

These messages are often caused by having a GML library in the ISPPLIB
concatenation or by having GML source code in the panel library. Check your
ISPPLIB concatenation to make sure that the ISPF-supplied GML library is not
concatenated first. The ISPF-supplied GML library should not be in any of the
ISPF library concatenations. Make sure that the libraries in your ISPPLIB
concatenation do not contain GML source code.

ISPT036 Table in use-"table service’” issued for table "table name’ that is in use,
ENQUEUE failed.

This message frequently occurs when batch jobs that use ISPF services run
concurrently. This occurs because most batch jobs allocate a new profile each
time they run. ISPF issues a TBOPEN against ISPPROF DD card for member
ISPSPROEF. The TBOPEN fails since ISPPROF does not contain this member. ISPF
then issues a TBOPEN against ISPTLIB to copy the default ISPSPROF from
ISPTLIB to ISPPROE.

If the first data set in the ISPTLIB concatenation sequence is the same for two
batch jobs running concurrently, message ISPT036 is issued. To ensure that this
condition does not occur, the first data set in the ISPTLIB concatenation should
be user unique. For example, "sysuid.. ISPPROF” would be a user unique data set,
which could be used as the first data set concatenated to the ISPTLIB DD.

For the same reasons, this problem can also occur when two users log on to
ISPF for the first time if they have the same data set concatenated first in the
ISPTLIB concatenation.

e ISPTO016, ISPT017, and other I/O Errors

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Common problems using ISPF

ISPF has various messages that reference I1/O errors on either GET or PUT
(READ and WRITE macros) such as message ISPT017. These errors are typically
caused by concatenation problems on one of the ISPF libraries.

Allocating data sets that do not have consistent DCB parameters in ISPF library
concatenations often causes these messages. Also, ISPTABL, ISPFILE, and
ISPPROF are used for output and therefore must have only a single data set
allocated to their ddnames.

— For I/O errors during panel services, check your ISPPLIB concatenation for
inconsistent DCBs.

— For 1/0 errors during file tailoring services, check your ISPSLIB concatenation
for inconsistent DCBs and make sure that only one data set is allocated to
ddname ISPFILE.

— For I/0 errors during table services, check your ISPTLIB concatenation for
inconsistent DCBs and make sure that only one data set is allocated to
ddname ISPTABL.

I/0O error messages cannot be issued when there is a problem with the ISPMLIB

concatenation since messages cannot be located due to the I/O error. Message

CMG999 occurs when there is an I/O error due to an ISPMLIB concatenation

problem.

* CMG999

CMG999 is issued with an appropriate description of the error condition for any

problem with accessing a message. See k/OS ISPF Dialog Developer’s Guide and)

erence| for further information on how to define a message.

Unexpected output

* ISPF services do not pick up updated copies of messages or panels.

When not in TEST mode, the most recently accessed panel and message
definitions are retained in virtual storage for performance reasons. If you have
modified a panel or message file, using TEST mode ensures that the latest copy
of each message or panel is accessed. See [z/0S ISPF Services Guide| for more
information on executing ISPF in TEST mode.

e ISPF commands such as WINDOW, COLOR, CUAATTR, EXIT, CANCEL,
ACTIONS, KEYSHELP, KEYLIST, EXHELP, FKA, and ISPDTLC are not
recognized as valid commands, or function keys defined as these commands do
not function properly.

The user issuing these commands or pressing the function keys defined as these
commands has a private copy of ISPCMDS in the ISPTLIB concatenation. The
user’s private copy of ISPCMDS is missing some or all of the new commands
supplied in the new command table, ISPCMDS.

Users experiencing this problem should either replace their private copy of
ISPCMDS with the ISPF-supplied copy, or update their private ISPCMDS with
the missing commands.

Abend codes and information

ISPF controller and processor task abends are controlled by STAE and STAI exit
routines and by ISPF execution modes set using the ISPSTART TEST parameters.

Under normal conditions (that is, when processor and controller dumps have not
been requested by specifying the ISPSTART TEST command):

* When a processor task abends:
— No dump is taken.

Appendix C. Diagnostic Tools and Information 391

Abend codes and information

392

— The controller reattaches the processor main drive (ISPPMD).
— The primary option menu is redisplayed for that logical screen.
* When the controller task abends:
— ISPF terminates with *** ISPF MAIN TASK ABEND *** message.
— Control returns to TSO.
— Pressing Enter causes a dump to be taken if a dump data set has been
allocated.

The controller and processor tasks issue the ABEND system service and allow

dumps under certain situations. The ISPF modules that issue ABENDs and their

associated codes and reasons are listed below:

Abend code 0C1 in various common ISPF subroutines

In several ISPF modules, an invalid operation code of (X’00") is executed to
force an abend at the point that an unexpected condition occurs. Contact
IBM support if this condition occurs within an ISPF module.

Abend code 0C4 in ISPDVCGT, ISPDVCPT, or ISPDVCFD

These abends are often caused by mismatched VDEFINE and VDELETE
services in a user’s program. The VDEFINE service gives ISPF
addressability to user storage. This storage is used by variable services any
time the variable that has been established by the VDEFINE service is
referenced. If this storage is released back to the system, an 0C4 abend may
occur depending on whether the storage is still accessible. Following are
two common scenarios that often show these abends:

* A program establishes a variable in a called subroutine using the
VDEFINE service and subsequently uses an ISPF service that references
this variable in another routine. If the called subroutine was dynamically
loaded and therefore released its storage, an 0C4 abend could occur
when the subroutine references a VDEFINEd variable.

* A program establishes a variable in a called subroutine using the
VDEFINE service and then calls another program without using the
SELECT service. Then the called program VDEFINEs a variable with the
same name, but does not VDELETE it on exit. If the calling program
references that variable after the called program returns control to it, an
0C4 abend can occur. Since a VDELETE has not been done, ISPF services
still reference the variable VDEFINEd by the called program.

If the program intent is to use the same variable in the main and called
routines, the variable should be VDEFINEd only in the main routine. If the
program intent to isolate a variable to be used only in the routine in which
it is VDEFINEd, then the program should also VDELETE the variable
before it ends. To diagnose whether the user application has this problem,
a function trace on VDEFINE, VDELETE, and the SELECT services (Option
7.7.1) is very helpful.

Abend codes 111 or 222

To produce these abends, the user must be in test mode and request
processor dumps by entering one of the following commands on the ISPF
command line. With exception of the user completion code, both
commands function in the same manner.

ABEND Terminates ISPF with user completion code 111.
CRASH Terminates ISPF with user completion code 222.

Abend code 908

ZISPFRC value was not valid

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Abend codes and information

Abend code 920
ISPSTART command syntax was not valid

Abend code 985
An attempt was made to start a GUI in batch mode, but no workstation
connection was made.

Abend code 987
An attempt was made to start GUI with GUISCRW or GUISCRD and the
GUI initialization failed.

Abend code 988
Invalid TSO environment. See [z/OS ISPF Planning and Customizing| for the
proper TSO version.

Abend code 989
The ISPF C/S component window was closed while still running ISPF in
GUI mode

Abend code 990
An error occurred running in batch mode. If ZISPFRC has not been set
previously, and ISPF encounters a severe error that terminates the product,
then 990 is set.

Abend code 995
Configuration table is not compatible with current ISPF release.
Configuration table must be release 4.8 or later.

Abend code 996 (or X'3E5’)
ISPF was not able to load the terminal translate table during initialization.
Check that the load module defined in the configuration table is available
in the ISPLLIB or MVS load library search concatenation. The value is
stored in the user’s profile data set, so a reset may be required to load the
correct value.

Abend code 997 (or X’3E5)
A TPUT returned a return code other than 0 or 8. A message is displayed
and an attempt is made to redisplay the full screen. If the redisplay fails
twice, this abend is issued.

Abend code 998 (or X’3E6)
An ISPF severe error that occurs while not in CONTROL ERRORS
RETURN mode and before ISPF is fully initialized. ISPF is considered to be
fully initialized when the Enter key on the primary option menu has been
processed without a severe error occurring.

Abend code 999 (or X’3E7’)
This abend is issued for the following reasons:

* No function pool is established for a command processor.
For example, a command processor that uses ISPF services is invoked
using option 6 or SELECT CMD, but the command processor does not
have a function pool. The user needs to have an entry for the command
processor in the ISPTCM with the X’40” flag set on. The X'40” flag
indicates that the command requires a function pool. See
[Planning and Customizing|for more information on customizing the
ISPTCM.

* An error occurs while another error is already being processed.

ISPF issues the abend code 999 in this case to protect against an infinite
loop.

* An error occurred during ISPF initialization.

Appendix C. Diagnostic Tools and Information 393

Abend codes and information

For example:

— An I/0O error occurred due to ISPF library allocations such as
ISPSLIB, ISPPLIB, ISPMLIB, and so forth, containing inconsistent or
incorrect DCB attributes.

— An ISPF library allocation does not contain the required ISPF libraries

in its concatenation. For example, the ISPMLIB contains user product
libraries but not ISPF libraries.

Terminal I/O error codes

Below is a list of terminal I/O error codes that you may see while using ISPF.
* ISPF screen output error code

41 TPUT return code not equal to 0 or 8
* ISPF screen input error code

21 TGET return code other than 0, 4, or 8.

22 Input stream size greater than input buffer size or 0.

23 Unknown attention identifier (AID).

24 Invalid input AID.

25 Input stream size invalid for input AID.

26 Input cursor location not within physical screen.

28 First byte of input buffer field not an SBA (invalid input data).

31 Byte preceding the physical screen field is past the end of the physical
screen (input data from invalid screen position).

32 Byte preceding the physical screen field is not an input attribute (input
data from invalid screen position).

33 Physical screen field not defined on panel (input data from invalid
screen position).

51 Physical screen field attribute not found in logical screen.

52 Byte preceding logical screen field is not an input attribute.

55 Physical screen size is greater than corresponding logical screen size.

Notes:

1. The physical screen size is determined by ISPF during initialization.
2. The input buffer size is a variable based on the physical screen size.

3. The logical screen is the same size as the physical screen, and is the size that
the processor task uses for screen I/O. When the 3290 is running in 62 X 160
partition mode, the SPLITV command makes the logical screen width equal to
80. When a 3278 mod 5 is running in standard mode, the logical screen size is
24 X 80.

4. Only part of the logical screen appears on the physical screen when ISPF is
running in split-screen mode. When the 3290 is running in 62 X 160 partition
mode, the entire logical screen may be visible, depending on the position of the
horizontal split line.

5. An input buffer field extends from an SBA to either the next SBA or the end of
the input buffer.

6. A physical screen field extends from the location indicated in the input buffer
SBA to the location of the next attribute byte in the physical screen.

394 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Register linkage conventions

Register linkage conventions

ISPF uses standard linkage conventions:
* SELECT PGM(program-name)

REGISTER
1

2-12
13
14
15

CONTENTS

Points to the address of the parameter data (from the PARM
keyword) field (half-word length) followed by the data

Not used
72-byte save area
Return address

Entry address / Return code on exit

» ISPF EXITS / Call to ISPLINK

REGISTER
1

2-12
13
14
15

CONTENTS

On entry, points to a parameter list; each address in the list in
turn points to a parameter. On return to the caller of ISPLINK,
the user’s parameter list starts at the second parameter. ISPF has
inserted a parameter in front of the user’s parameters for ISPF
use.

Not used
72-byte save area
Return address

Entry address / Return code on exit

* SELECT CMD(cmdname) where cmdname is a program that will be attached as
a command processor by ISPF:

REGISTER
1

2-12
13
14
15

CONTENTS

Points to a CPPL (Command Processor Parameter List) which is
a list of four addresses that point respectively to: Command
buffer, UPT, PSCB, ECT. See the TSO programming services
manual for descriptions of these parameters.

Not used
72-byte save area
Not applicable

Return code on exit

Usually when an abend occurs within ISPF code, register 12 points to the entry
point of the abending CSECT.

Obtaining message IDs

In order to obtain the message ID associated with an error message in ISPF, you
need to be in ISPF TEST mode.

ISPF is in TEST mode if:

* ISPF is invoked with the TEST, TESTX, TRACE, or TRACEX parameter specified
on the ISPSTART, PDF, or ISPF command, or

Appendix C. Diagnostic Tools and Information 395

Obtaining message IDs

» “Restore TEST/TRACE options” is not selected in option 0 and you go into
option 7, Dialog Test, at some point in your current ISPF session.

If you are not in TEST mode, split the screen, enter option 7, Dialog Test, and swap
back to the screen containing the error.

You can use the either of the following methods to get the message ID:

* Enter print on the panel displaying the error message. The message ID, along
with the displayed message text and screen output, appears in the LIST data set.
The LIST data set can be printed using the LIST command.

e With the short message displayed:

1. Press the function key assigned to Help (default is F1) or type help on the
command line. This displays the long message text for the error.

2. Press the function key assigned to Help or type help on the command line
once more to display the Tutorial panel associated with the error. The bottom
lines of the Tutorial panel contain fields that list the current panel name, the
previous panel name, and the message ID. The value following LAST MSG= is
the message ID associated with the error.

396 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix D. Dialog variables

This topic describes the ISPF dialog variables.

The following table lists the dialog function pool variables that are both read from
and written to by several of the PDF library access services. For details of function
pool variables written by other services, refer to the [z/OS ISPF Services Guide|

The variables are listed in alphabetical order. The first column lists the variable
name. The second column indicates the variable’s type, which corresponds to the
format parameter of the ISPF VDEFINE service. The third column specifies the
variable’s length, which corresponds to the length parameter of the VDEFINE
service.

The fourth column lists the PDF services that either read from or write to the
variable. An R in parentheses (R) after a service name indicates that the service,
when called, reads from the given variable. A W in parentheses (W) after a service
name indicates that the service, when called, writes to the given variable. All
variables are available to a dialog unless otherwise indicated.

The last column contains a brief description of the contents of the variable and any
restrictions on the value of the variable.

© Copyright IBM Corp. 1980, 2007 397

Dialog variables

Variable Name | Format Length Service (Access) Description

ZCMD Char 256 LMMDISP(W) Primary Command field from member list panel if the
command is not a valid ISPF or PDF primary
command.

ZDLBLKSZ Char 5 LMDLIST(W) Block size.

ZDLCATNM Char 44 LMDDISP(R), Name of the catalog in which the data set was

LMDLIST(W) located.

ZDLCDATE Char 10 LMDLIST(W) Creation date.

ZDLDEV Char 8 LMDLIST(W) Device type.

ZDLDSNTP Char 8 LMDLIST(W) DS name type (‘PDS’, ‘LIBRARY’, or *).

ZDLDSORG Char 4 LMDLIST(W) Data set organization.

ZDLEDATE Char 10 LMDLIST(W) Expiration date.

ZDLEXT Char 3 LMDLIST(W) Number of extents used.

ZDLEXTX Char 5 LMDLIST(W) Number of extents used (long format).

ZDLLRECL Char 5 LMDLIST(W) Logical record length.

ZDLMIGR Char 3 LMDLIST(W) Whether the data set is migrated (YES or NO).

ZDLMVOL Char 1 LMDLIST(W) Multivolume indicator (Y or N).

ZDLOVEFE Char 3 LMDLIST(W) Whether variables ZDLEXTX and ZDLSIZEX are used
(YES or NO).

ZDLRDATE Char 10 LMDLIST(W) Date last referenced.

ZDLRECFM Char 5 LMDLIST(W) Record format.

ZDLSIZE Char 6 LMDLIST(W) Data set size in tracks.

ZDLSIZEX Char 12 LMDLIST(W) Data set size in tracks (long format).

ZDLSPACU Char 10 LMDLIST(W) Space units, one of the following: CYLINDERS,
MEGABYTES, KILOBYTES, BYTES, BLOCKS or
TRACKS.

ZDLUSED Char 3 LMDLIST(W) Percentage of used tracks or pages (PDSE).

ZDLVOL Char 6 LMDLIST(W) Volume serial.

ZDSN Char 44 LMMDISP(W) Name of the first or only data set in the concatenation
of the member list being displayed. This variable is
only available for member list panels.

ZDST Char 54 BRIF (W) EDIF (W) |Title line data name for EDIF and BRIF.

ZEDBDSN Char 44 EDIT (R) Backup data set name for standard edit recovery.

EDREC(W)

ZEDILMSG Char 240 Any Edit macro Long message text. Corresponds to the first 240 bytes
of the message that would be displayed if the
command were entered from the command line
instead of within an edit macro.

ZEDISMSG Char 24 Any Edit macro Short message text. Corresponds to the short message
that would be displayed if the command were entered
from the command line instead of within an edit
macro.

ZEDITCMD Char 8 Any Edit macro The last primary command entered in Edit.

ZEDMSGNO Char 8 Any Edit macro Message ID. Corresponds to the message that would
be displayed if the command were entered from the
command line instead of within an edit macro.

398 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Dialog variables

Variable Name | Format Length Service (Access) Description
ZEDROW Fixed 4 EDIT (R) Row number of entry in standard edit recovery table.
EDREC(W)

ZEDSAVE Char 8 Data_changed EDIT | END command will save data (SAVE or NOSAVE).

macro command

ZEDTDSN Char 44 EDIT (R) Target data set name for standard edit recovery.

EDREC(W)
ZEDTMCMD Char 8 Any Edit macro The edit command entered that caused an edit macro
to run. Can be the macro name or other name is the
edit DEFINE command was used to define an alias.
ZEDTMEM Char 8 EDIT (R) Target member name (if applicable) for standard edit
EDREC(W) recovery.

ZEDTRD Char 6 EDIT (R) Volume serial of target data set for standard edit
EDREC(W) recovery.

ZEDUSER Char 2 EDIT (R) User data table extension for standard edit recovery.
EDREC(W)

ZEIBSDN Char 54 EDIF (R) Backup data name for EDIF edit recovery.
EDIREC(W)

ZEIROW Fixed 4 EDIF (R) Row number of entry in EDIF edit recovery table.
EDIREC(W)

ZEITDSN Char 54 EDIF (R) Target data name for EDIF edit recovery.
EDIREC(W)

ZEIUSER Char 2 EDIF (R) User data table extension variable for EDIF edit
EDIREC(W) recovery.

ZERRALRM Char 3 ALL(W) The value YES if an alarm was specified in the
message definition; otherwise, the value NO. Set when
ISPF services issue a return code of 8 or greater.

ZERRHM Char 8 ALL(W) The name of a Help panel, if one was specified in the
message definition. Set when ISPF services issue a
return code of 8 or greater.

ZERRLM Char 512 ALL(W) Long-message text in which variables have been
resolved. Set when ISPF services issue a return code of
8 or greater.

ZERRMSG Char 8 ALL(W) Message ID. Set when ISPF services issue a return
code of 8 or greater.

ZERRSM Char 24 ALL(W) Short-message text in which variables have been
resolved. Set when ISPF services issue a return code of
8 or greater.

ZGRPLVL Char 8 LMHIER (W) ISPF table variable that contains the level of this ISPF
library in the controlled hierarchy.

ZGRPNME Char 8 LMHIER (W) ISPF table variable that contains the ISPF library
group name.

ZLAC Char 2 LMMDISP(W) Authorization code of the member.

LMMFIND(W)
LMMLIST(W)
ZLALIAS Char 8 LMMDISP(W) Name of the real member of which this member is an
LMMFIND(W) alias.
LMMLIST(W)
ZLAMODE Char 3 LMMDISP(W) AMODE of the member.
LMMFIND(W)
LMMLIST(W)

Appendix D. Dialog variables 399

Dialog variables

Variable Name | Format Length Service (Access) Description

ZLATTR Char 20 LMMDISP(W) Load module attributes. See the |z/OS ISPF Services|
LMMFIND(W)
LMMLIST(W)

ZLCDATE Char 8 LMMADD(R) Date on which the specified member was created. A
LMMDISP(W) character string in the national format. For example,
LMMFIND(W) yy/mm/dd or mm/dd/yy. If no value exists for this
LMMLIST(W) variable, the PDF component will set the value to
LMMREP(R) blanks.

ZLC4DATE Char 10 LMMADD(R) Date on which the specified member was created, in
LMMDISP(W) 4-character year format. A character string in the
LMMFIND(W) national format. For example, yyyy/mm/dd or
LMMLIST(W) mm/dd/yyyy. If no value exists for this variable, the
LMMREP(W) PDF component will set the value to blanks.

ZLCNORC Fixed 4 LMMADD(R) Current number of records in the specified member. A
LMMDISP(W) number from 0 to 65 535. If no value exists for this
LMMFIND(W) variable, the PDF component will set the value to
LMMLIST(W) blanks.
LMMREP(R)

ZLINORC Fixed 4 LMMADD(R) Number of records in the specified member when it
LMMDISP(W) was first created. A number from 0 to 65 535.
LMMFIND(W)
LMMLIST(W)
LMMREP(R)

ZLLIB Fixed 4 LMMDISP(W) Position of the specified member in the concatenated
LMMFIND(W) data sets. A number from 1 to 4.
LMMLIST(W)

ZLMDATE Char 8 LMMADD(R) Date on which the specified member was last
LMMDISP(W) modified. A character string in the national format.
LMMFIND(W) (For example, yy/mm/dd or mm/dd/yy.) If no value
LMMLIST(W) exists for this variable, the PDF component will set the
LMMREP(R) value to blanks.

ZLM4DATE Char 10 LMMADD(R) Date on which the specified member was last
LMMDISP(W) modified, in 4-character year format. A character
LMMFIND(W) string in the national format. (For example,
LMMLIST(W) yyyy/mm/dd or mm/dd/yyyy.) If no value exists for this
LMMREP(W) variable, the PDF component will set the value to

blanks.

ZLMEMBER Char LMMDISP(W) Name of the current selected member.

ZLMNORC Fixed 4 LMMADD(R) The number of records that have been modified in the
LMMDISP(W) specified member. A number from 0 to 65 535.
LMMFIND(W)
LMMLIST(W)
LMMREP(R)

Z1LMOD Fixed 4 LMMADD(R) Modification level of the specified member. A number
LMMDISP(W) from 0 to 99.
LMMFIND(W)
LMMLIST(W)
LMMREP(R)

ZLMTIME Char 5 LMMADD(R) Time when the specified member was last modified. A
LMMDISP(W) character string in the form hh:mm.
LMMFIND(W)
LMMLIST(W)
LMMREP(R)

400 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Dialog variables

Variable Name | Format Length Service (Access) Description

ZLMSEC Char 2 LMMADD(R) Seconds value of last modified time.
LMMDISP(W)
LMMFIND(W)
LMMLIST(W)
LMMREP(R)

ZLSSI Char 8 LMMDISP(W) SSI (System Status Index) of the load module.
LMMFIND(W)
LMMLIST(W)

ZLPDSUDA Char 62 LMMDISP(W) A character string containing the contents of the user
data area in the PDS directory entry of the specified
member if the member’s statistics are not in PDF
format.

ZLRMODE Char 3 LMMDISP(W) RMODE of the member.

LMMFIND(W)
LMMLIST(W)
Z1SIZE Char 8 LMMDISP(W) Load module size (in Hex).
LMMFIND(W)
LMMLIST(W)
ZLTTR Char 6 LMMDISP(W) TTR of the member.
LMMFIND(W)
LMMLIST(W)
ZLUSER Char 7 LMMADD(R) User ID of user who last modified the specified
LMMDISP(W) member.
LMMFIND(W)
LMMLIST(W)
LMMREP(R)
ZLVERS Fixed 4 LMMADD(R) Version number of the specified member. A number
LMMDISP(W) from 1 to 99. If no value exists for this variable, the
LMMFIND(W) PDF component will set the value to blanks.
LMMLIST(W)
LMMREP(R)

ZMEMCNT Char 8 LMMLIST(W) Number of members in the member list.

ZMLCOLS Char 80 LMMDISP(W) A character string that contains the member statistics
column headings that appear on the member list
panel display. This variable is only available for
member list panels.

ZMLCR Fixed 4 LMMDISP(W) The relative number in the member list of the member
that appears at the top of the member list display. Its
range is from 1-99 999. This variable is only available
for member list panels.

ZMLTR Fixed 4 LMMDISP(W) Number of members in the member list. Its range is
from 1-99 999. This variable is only available for
member list panels.

ZMSRTFLD Char 8 ALL(W) Contains the field name used to sort a member list.
Field name corresponds to the title line used in
member list panels, with the exceptions of the "VV
MM’ field which is returned as VVMM, and the
attributes field which is returned as ATTRIBUT.

ZSCALIAS Char 1 LMINIT(W) Data set name is an alias (Y’ or 'N’).

ZSCLM Char 1 LMMDISP(W) Last updater of member. 'Y indicates SCLM was last

LMMFIND(W) updater. ‘N’ indicates PDF.
LMMLIST(W)

Appendix D. Dialog variables 401

Dialog variables

VIEW(R) VIIF(R)

Variable Name | Format Length Service (Access) Description
ZSCMVOL Char 1 LMINIT(W) Data set name is multivolume ("Y” or 'N’).
ZUSERMAC Char 9 EDIT(R) EDIF(R) Application-wide edit macro.

2. Length limited only by ISPF restrictions on the length of table extension variables.

402 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Dialog variables

PDF non-modifiable variables

The following read-only variables are available to PDF component dialogs:

Variable Name | Format Length Service (Access) Description

ZCUNIT Char 8 none Unit name to be used for temporary allocations. This
variable comes from ISPF configuration table keyword
PDF_DEFAULT_UNIT.

ZCUSIZE Fixed 4 none Number of kilobytes available for use by the edit
UNDO command when running in SETUNDO
STORAGE mode. This variable comes from ISPF
configuration table Keyword UNDO_STORAGE_SIZE.
See [z/0S ISPF Edit and Edit Macros| for further
information.

ZICFPRT Char 3 none ICF indicator. "YES’ - All foreground print requests
will be processed using ICE. 'NO’ - ICF will not be
used. This variable comes from ISPF configuration
table keyword PRINT_USING_ICE.

ZPDFREL Char 8 none PDF version number in the form "PDF x.y ". The x.y
is a sequence number. If x.y:

¢ <= 4.2 means the x.y version.release of PDF

* = 4.3 means ISPF for OS/390 Release 2

* =44 means PDF 4.2.1 and ISPF OS/390 Release 3

ZSESS Char 8 none This variable contains either "Y” or 'N” and comes
from the ISPF configuration table keyword
USE_SESSION_MANAGER. See the description of the
general system variable ZSM for additional
information.

ZSWIND Char 4 none Sliding window value used by PDF for determining
the century of 2-character years. This variable comes
from ISPF configuration table keyword
YEAR_2000_SLIDING_RULE. Dates less than or equal
to this value are 20xx. Dates greater than this value
are 19xx.

Appendix D. Dialog variables 403

Dialog variables

404 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix E. System variables

The system variables are described with type and pool information in the
following tables. The variables are also discussed with the ISPF service to which

they apply.

Commonly used system variables that a dialog can access are listed below. They
are grouped by topic.

The first column gives the name of the variable. The second column indicates in
which pool the variable resides. The following abbreviations are used:

func Function pool

shr Shared pool

prof Profile pool

any Any pool.

The third column indicates the variable’s type. The following abbreviations are
used:

in Input variable, set by a dialog to provide information to ISPF

out Output variable, set by ISPF to provide information to dialogs

non Non-modifiable output variable

i/o Both an input and an output variable.

The fourth column gives the length of the variable.

The fifth column gives a brief description of the variable.

Numeric system variables set by ISPF are right-justified and padded with zeros on
the left, if necessary. If a program function uses the VCOPY service to access the

variable, the value will be in character string format rather than in fixed binary
format.

© Copyright IBM Corp. 1980, 2007 405

System variables

Configuration utility

Name Pool |Type |Len

Description

ZCFGCMPD |shr non 10

Current Configuration module compilation date. ZCFGCMPD contains
the national language delimiter and contains the date in the format
YYYY/MM/DD. For countries that use a delimiter other than a slash (/),
that delimiter replaces the slash in the date representation.

ZCFGCMPT shr non 5

Current Configuration module compilation time. ZCFGCMPT contains
the national language delimiter and contains the time in the format
HH:MM. For countries that use a delimiter other than a colon (:), that
delimiter replaces the colon in the time representation.

Note: This field will be blank for a configuration module compiled with
a previous version of ISPE.

ZCFGKSRC shr non 54

Keyword source data set and member for the current configuration
module.

Note: This field will be blank for a configuration module compiled with
a previous version of ISPE.

ZCFGLVL shr non 8

Current Configuration module level.

ZCFGMOD shr non 8

Current Configuration module name.

Time and date

Name Pool Type |Len Description

ZDATE shr non 8 Current date. The format of ZDATE depends on the current national
language (see ZDATEF and ZDATEFD).

ZDATEF shr non 8 Current national language date format using the characters DD for day,
MM for month, and YY for year. ZDATEF contains the national language
delimiter. For example, DD/MM/YY, YY/MM/DD, MM.DD.YY. For
countries that use a delimiter other than a slash (/), that delimiter
replaces the slash in the date representation.

ZDATEFD shr non 8 The date format as described under ZDATEF but with the national
language convention instead of DD, MM, and YY.

ZDATESTD shr non 8 Current date with a 4-digit year (YYYY/MM/DD). The format of

ZDATESTD depends on the current national language (see ZDATEF and
ZDATEFD).

ZDAYOFWK | shr non 8 The name of the day of the week.

ZDAY shr non 2 Day of month (2 characters)

ZJDATE shr non 6 Day-of-year date (format yy.ddd)

ZJ4DATE shr non 8 Day-of-year date (format yyyy.ddd)

ZMONTH shr non 2 Month of year (2 characters)

ZSTDYEAR shr non 4 All 4 digits of the current year (4 characters).

ZTIME shr non 5 Time of day (format hh:mm)

ZTIMEL shr non Time of day (format hh:mm:ss:TQ —where T is tenths of a second, and Q
is hundredths)

ZYEAR shr non 2 Year (2 characters)

The current date is displayed in the appropriate format for the session language,
where DD=DAY, MM=MONTH, and YY=YEAR. For countries that use a delimiter
other than a slash (/), that delimiter replaces the slash in the date representation.

406 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

System variables

General

Name

Pool

Type

Len

Description

Z

shr

non

Null Variable

ZACCTNUM

shr

non

40

The MVS account number specified at logon time.

ZAPLCNT

shr

non

Number of times APL invoked for a logical screen

ZAPPLID

shr

non

Application identifier

ZAPPTTL

any

in

N/A

When running in GUI mode, the title to be displayed in the window
frame.

Note: If the panel is to be displayed in a pop-up window, the value
specified in ZWINTTL will be used instead of ZAPPTTL.

ZBDMAX

shr

i/o

Maximum number of displays that can occur within a batch mode
session. This value is obtained from the BDISPMAX keyword on the
ISPSTART command. See [“Avoiding panel loop conditions in the batch|
lenvironment” on page 40

ZBDMXCNT

shr

non

Count of current number of displays in a batch mode session

ZCS

shr

non

NLS currency symbol

ZCSDLL

shr

non

File name of the DLL required for this level of code for the Client/Server

ZDECS

shr

non

NLS decimal separator character

ZDEL

prof

non

== | Ul |0

The delimiter is used to separate stacked commands. The default
delimiter is a semicolon (;).

ZENTKTXT

any

in

12

When you are running in GUI mode, the name that appears on the Enter
key push button. If this variable is not found, “Enter” appears on the
push button.

ZENVIR

shr

non

32

Environment description:
* Characters 1 to 8 contain the product name and sequence number, in
the form ISPF x.y. The sequence number x.y indicates the following;:
5.9 means ISPF for z/OS Version 1 Release 9.0
5.8 means ISPF for z/OS Version 1 Release 8.0
5.7 means ISPF for z/OS Version 1 Release 7.0
5.6 means ISPF for z/OS Version 1 Release 6.0
5.5 means ISPF for z/OS Version 1 Release 5.0
5.2 means ISPF for z/OS Version 1 Release 2.0
5.0 means ISPF for z/OS Version 1 Release 1.0
OR
5.0 means ISPF for OS/390 Version 2 Release 10.0
4.8 means ISPF for OS/390 Version 2 Release 8.0

Note: See also the system variables ZISPFOS and ZOS390RL.
* Characters 9 to 16 contain the generic operating system name (MVS).
 Characters 17 to 24 contain the operating system environment (TSO or
BATCH).
* Characters 25 to 32 contain blanks and are reserved.

ZEURO

shr

non

The EURO currency symbol.

ZGUI

shr

non

68

Workstation address or name (in character format) if ISPSTART is issued
with the GUI parameter or if specified on the Settings GUI invocation
panel. ZGUI will be set to blank if ISPSTART is issued without the GUI
parameter or if GUI is not invoked from the Settings panel.

ZISPFOS

shr

non

30

The level of ISPF code that is running as part of z/OS on your system.
This level might or might not match the z/OS level found in ZOS390RL.

ZISPFRC

shr

in

Return code from ISPSTART-selected dialog to invoking application.

Appendix E. System variables 407

System variables

Name Pool Type |Len Description

ZKEYHELP any in 8 Keys help panel identifier. If a keys help panel is not specified on the
referenced keylist, the application can provide the keys help panel name
in this variable. If the help panel name is present as part of the
referenced keylist definition, it takes precedence over the ZKEYHELP
value. This system variable must be redefined each time the keys help
panel is to change.

ZLANG prof non 8 Session language

ZLOGO shr non 3 Indicates whether the user has requested bypass of LOGO panel. NO
indicates that the user has specified the NOLOGO keyword at the time
ISPF was called, thus, requesting that the LOGO panel be bypassed.
Otherwise, the value of the variable will be YES.

ZLOGON shr non 8 Stepname of TSO logon procedure

ZNESTMAC |any in 2 When set to a value of NO, REXX and CLIST edit macros are not
invoked as nested commands, even when the NESTMACS parameter is
specified on the ISPSTART command.

ZMLPS shr non 3 Indicates whether the ISPF Profile Sharing feature is active. ZMLPS has a
value of either YES or NO.

ZOS390RL shr non 16 Indicates the z/OS release running on your system.
ZPANELID shr non 8 The name of the currently displayed panel.
ZPFKEY shr non 4 The name of the PF key (PFxx) in effect when the user exits the panel. If

ZPFKEY = PF00 then no PF key is in effect.

ZPLACE prof i/o 7 Command line placement (ASIS or BOTTOM)

ZPREFIX shr non 8 TSO user prefix

ZPROFAPP prof in 8 Name of application profile pool extension table

ZSCRCUR shr non 4 Displays the number of logical screens currently in use.

ZSCREENC shr non 5 Cursor position within the logical screen data.

ZSCREENI shr non ? Logical screen data. Size depends upon your screen size.

ZSCRNAME | shr in 8 Screen name set by dialog. The screen name is in effect only for the select
level in which it was defined. Option 7.3 can alter ZSCRNAME, but this
will have no impact.

See ["ZSCRNAME examples” on page 410 for examples of its use.

ZSCRMAX shr non 4 Displays the number of logical screens allowed by the installation.

ZSCTPREF shr non 4 First site command table prefix

ZSCTPRE2 shr non 4 Second site command table prefix

ZSCTPRE3 shr non 4 Third site command table prefix

ZSCTSRCH shr non 1 Search order for site command tables relative to system command table.
Set to either B (Before ISP) or A (After ISP).

ZSEQ shr non 5 Unique number within the sysplex.

ZSM shr i/o 3 Indicates whether session manager panels will be used for ISPF options 4
and 6. This variable is initialized from the ISPF configuration table
keyword USE_SESSION_MANAGER at startup and stored in the shared
variable pool. Once initialized it can only be changed with Option 0 -
Settings or by use of the RESET_USE_SESSION_MANAGER
configuration option.

ZSYSICON shr non 8 The 8-character variable that contains the command to be executed when

the system icon is double-clicked or close is selected.

408 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

System variables

Name

Pool

Type

Len

Description

ZSYSID

shr

non

The 8-character SYSNAME obtained from the SYS1.PARMLIB member
TEASYSxx which is read at IPL time. NONAME is the default value of
SYSNAME. The operator can change this value at IPL time. See the
IMVS Initialization and Tuning Reference| for more information.

ZSYSNODE

shr

non

12

The network node name of your installation’s JES. This name identifies
the local JES in a network of systems or system complexes being used for
network job entry (NJE) tasks. The node name returned in ZSYSNODE
derives from the NODE initialization statement of JES.

If the system finds that the subsystem is not active, the ZSYSNODE
variable contains the string --INACTIVE-- (note the string delimiters).

If the system finds that the subsystem is neither JES2 4.3 or later, nor
JES3 5.1.1 or later, the ZSYSNODE variable contains the string
--DOWNLEVEL-- (note the string delimiters).

The value in ZSYSNODE remains the same throughout the ISPF session.
Note: If, for instance, the JES subsystem is taken down during an ISPF
session and the node name is changed, the value in ZSYSNODE will still
contain the value as determined at ISPF initialization.

ZSYSPLEX

shr

non

The MVS sysplex name as found in the COUPLExx or LOADxx member
of SYS1.PARMLIB. If no sysplex name is specified in SYS1.PARMLIB,
ZSYSPLEX contains blanks.

ZSYSPROC

shr

non

TSO Logon Procedure name. In foreground, will have the name of the
current logon procedure; in batch, will have the value 'INIT’; a Started
Task will have the Started Task procedure name.

ZTEMPF

shr

non

44

Name of temporary data set for file tailoring output

ZTEMPN

shr

non

DDNAME of temporary data set for file tailoring output

ZTERMCID

shr

non

CCSID coded character set identifier of the terminal. Set by ISPF based
on the code page and character set of the terminal. If the terminal code
page and character set cannot be queried or if they are not supported by
ISPF, this variable will be blank.

ZTERMCP

shr

non

CECP support 4-digit code page.

Note: ZTERMCS is defined as character length 4. It cannot handle
5-character character sets. For example, the character set 65535 is
displayed in ZTERMCS as "5535". This does not mean that ISPF has
defined character set 5535 (X"159F’). Two other Z variables, ZTERMCS5
and ZTERMCPS5, for character set and code page respectively, were
created to handle 5-character character sets and code pages. For example,
the character set 65535 is displayed in ZTERMCP5 as 65535.

ZTERMCP5

shr

non

CECP support 5-digit code page

ZTERMCS5

shr

non

CECP support 5-character set

ZTERMCS

shr

non

CECP support 4-digit character set

ZTHS

shr

non

=G| U,

NLS thousands separator character

ZTS

shr

non

—_

NLS time separator character

ZTSICMD

shr

non

32767

The entire initial invocation command string which invoked the ISPF
environment. If storage cannot be obtained at startup, only the first 50
characters will be saved. The maximum length is 32767.

ZTSSCMD

shr

non

32767

SELECT portion of the initial invocation command. The maximum length
is 32767.

ZUCTPREF

shr

non

First user command table name

ZUCTPRE2

shr

non

Second user command table name

Appendix E. System variables 409

System variables

Name Pool Type |Len Description

ZUCTPRE3 shr non 4 Third user command table name

ZUSER shr non 8 User ID

ZVERB shr out 8 Command verb after a SETVERB command table action

ZWINTTL any in N/A Title to be displayed in pop-up window frame

ZWSCDPG shr non 4 When running in GUI mode, the code page of the workstation. When not
running in GUI mode, value will be blank.

ZWSCON shr non 68 TCP/IP or APPC address when ISPF session is connected to a
workstation.

ZWSOPSYS shr non 16 Operating system of workstation to which the session is connected. The
first 10 characters are the operating system name, followed by a blank,
followed by two 2-digit numbers separated by a blank. These numbers
are returned to ISPF from the operating system and change by version
and release.

ZSCRNAME examples

Example 1
On the ISPF primary option panel the user issues the command SCRNAME POP.

The primary option panel’s screen name is now POP. The user then invokes
CLIST1.

CLIST1

PROC 0

ISPEXEC DISPLAY PANEL(PANELA)

SET &ZSCRNAME = EDIT1

ISPEXEC VPUT (ZSCRNAME) SHARED

ISPEXEC EDIT DATASET ('PROJECT.GROUP.TYPE(BBBBBB)')
SET &ZSCRNAME = EDIT2

ISPEXEC VPUT (ZSCRNAME) SHARED

ISPEXEC EDIT DATASET ('PROJECT.GROUP.TYPE(CCCCCC)')
SET &ZSCRNAME = BROWSE1

ISPEXEC VPUT (ZSCRNAME) SHARED

ISPEXEC BROWSE DATASET ('PROJECT.GROUP.TYPE(DDDDDD) ')
SET &ZSCRNAME = LASTPAN

ISPEXEC VPUT (ZSCRNAME) SHARED

ISPEXEC DISPLAY PANEL(PANELA)

After the CLIST processes, the following results occur:

o gk whNPE

PANELA displays with screen name POP.

The EDIT session displays with the screen name EDIT1.

The next EDIT session displays with the screen name EDIT2.
The BROWSE session displays with the screen name BROWSET.
PANELA displays with the screen name LASTPAN.

End from PANELA and the primary option panel displays with screen name
POP.

Example 2

On the ISPF primary option panel the user issues the command SCRNAME POP.
The primary option panel’s screen name is now POP. The user then invokes
CLIST1 with the following results:

1. PANELA displays with screen name POP.
2. The EDIT session displays with the screen name EDITT.

3. The user enters SCRNAME MYEDIT, so the screen name becomes MYEDIT.

410 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

© N o gk

10.

11.

System variables

After the EDIT session ends, the CLIST sets ZSCRNAME to EDIT2.

The EDIT session displays with the screen name EDIT2.

After this EDIT session ends, the CLIST sets ZSCRNAME to BROWSET.
The BROWSE session displays with the screen name BROWSEL.

The user enters SCRNAME MYBROWSE PERM, so the screen name becomes
MYBROWSE.

After the BROWSE session ends, the CLIST sets ZSCRNAME to LASTPAN.
PANELA displays with the screen name MYBROWSE. The CLIST command

ZSCRNAME=LASTPAN is ignored because the user issued the SCRNAME
MYBROWSE command with the PERM parameter.

The CLIST completes and the primary option panel displays with the screen
name MYBROWSE (again because the user issued the SCRNAME
MYBROWSE command with the PERM parameter).

Example 3

On the ISPF primary option panel the user issues the command SCRNAME POP.
The primary option panel’s screen name is now POP. The user then invokes
CLIST2.

CLIST2

PROC 0

SET &ZSCRNAME = STATE

ISPEXEC VPUT (ZSCRNAME) SHARED

ISPEXEC SELECT PANEL(MENUA) SCRNAME (NATION)
ISPEXEC DISPLAY PANEL(PANELA)

After the CLIST processes, the following results occur:

1.
2.
3.

MENUA displays with screen name NATION.
PANELA displays with the screen name STATE.

End from PANELA and the primary option panel displays with screen name
POP.

Terminal and function keys

Name Pool Type |Len Description

ZCOLORS shr non 4 Number of colors supported by the terminal type (either 1 or 7)

ZDBCS shr non 3 DBCS terminal capability (YES or NO)

ZFKA prof non 8 Current state of the function key area form (LONG, SHORT, OFF (no
display))

ZGE shr non 3 Terminal support for graphic escape order:

YES graphic escape is supported
NO graphic escape is not supported
Note: If you are running in GUI mode, ZGE will be set to NO.

ZHILITE shr non 3 Extended highlighting availability (YES or NO)

ZIPADDR shr non 15 TCP/IP address of the currently connected TN3270 workstation. Entering
the TERMSTAT QUERY option of the ENVIRON command will refresh
the value.

ZIPPORT shr non 4 TCP/IP port number of the currently connected TN3270 workstation.
Entering the TERMSTAT QUERY option of the ENVIRON command will
refresh the value.

ZLUNAME shr non 8 VTAM LU name of the current TSO session. Entering a TERMSTAT
QUERY command will refresh the value.

Appendix E. System variables 411

System variables

Name Pool Type |Len Description

ZKEYS prof out 4 Number of Function keys

ZKLAPPL shr non 4 If KEYLIST is ON and it is a panel with the)PANEL statement, this
contains the application id where the current keylist came from.

ZKLNAME shr non 8 If KEYLIST is ON and it is a panel with the)PANEL statement, this
contains the name of the current keylist.

ZKLTYPE shr non 1 If KEYLIST is ON and it is a panel with the)PANEL statement, this
contains either P (for Private) or S (for Shared) for the current keylist.

ZKLUSE prof i/o 1 If KEYLIST is ON this contains Y, if it is OFF, it contains an N.

ZPECTL prof i/o 5 User authorization to use PFSHOW command

* USER—User controls function key display with PESHOW command
* ON—Display function key definitions on all panels
* OFF—Do not display function key definitions

ZPFFMT prof i/o 4 Number of Function key definitions displayed per line
* SIX—Always display six keys per line
* MAX—Display as many keys as will fit on each line

ZPFSET prof i/o 4 Function key definition set displayed
* PRI—Primary set (1-12)

* ALT—Alternate set (13-24)

e ALL—AII keys (1-24)

ZPFSHOW prof out 4 PFSHOW command status

ZPFxx prof i/o 255 Setting for Function keys:

ZPF13-ZPF24 contain settings for the primary keys (for 12-key terminals:
physical keys 1-12; for 24-key terminals: physical keys 13-24)

ZPF01-ZPF12 contain settings for the alternate keys (for 24-key terminals
only: physical keys 1-12)

The maximum length is 255.

ZPFLxx prof i/o 8 Setting for Function key labels:
ZPFL13-ZPFL24 contain labels for the primary keys

ZPFL01-ZPFL12 contain labels for the alternate keys

ZPRIKEYS prof i/o 4 Indicates the set of Function keys that will be the primary keys
* LOW—I1 to 12 are primary keys
e UPP—13 to 24 are primary keys

ZSCREEN shr non 1 Logical screen number up to 32 screens (1-9, A-W)

ZSCREEND shr non 4 Screen depth available for dialog use. In batch mode, this variable is set
by the value specified for BATSCRD on the ISPSTART call.

412 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

System variables

Name Pool Type |Len Description
ZSCREENW | shr non 4 Screen width available for dialog use. In batch mode this variable is set
by the value specified for BATSCRW on the ISPSTART call.
ZSCREEND and ZSCREENW are generally the dimensions of the
physical display screen. There are two exceptions:
1. On a 3290, if a dialog is executing on a display with a width of 160
characters and the user does a vertical split, then ZSCREENW is 80.
2. On a 3278 model 5, if a user has specified SCREEN FORMAT IS STD,
then ZSCREENW is 80 and ZSCREEND is 24, rather than the
maximum physical size of 132 by 27.
ZSCRMAXD | shr non 4 Maximum screen depth available for dialog use. In batch mode, this
variable is set by the value specified for BATSCRD on the ISPSTART call.
ZSCRMAXW | shr non 4 Maximum screen width available for dialog use. In batch mode, this
variable is set by the value specified for BATSCRW on the ISPSTART call.
ZSCRMAXD and ZSCRMAXW are identical to ZSCREEND and
ZSCREENW, except for terminals on which an alternate size is available.
In that case, ZSCRMAXD and ZSCRMAXW contain the screen
configuration size that produces the largest screen.
For the 3290, these variables contain sizes of the hardware partition on
which ISPF is operating.
ZSPLIT shr non 3 Split-screen mode in effect (YES or NO)
ZTERM prof out 8 Terminal type as defined by option 0
Scrolling
Name Pool Type |Len Description
ZAMT prof i/o 4 Scroll amount for functions such as Dialog Test, the Keylist Utility, the
Command Table Utility, and the LIBDEF Utility
ZSCBR prof i/o 4 Scroll amount for the BROWSE service
ZSCED prof i/o 4 Scroll amount for the EDIT service
ZSCML prof i/o 4 Scroll amount for member lists
ZSCRML shr non 1 Specifies if ISPF should scroll to the first member selected in the member
list after processing or disable the member list from automatic scrolling
and instead place the cursor in front of the last member selected.
ZSCROLLA shr out 4 Value from scroll amount field (PAGE, MAX, number)
ZSCROLLD |any in 4 Value to be used as default scroll value for scrollable dynamic areas and
table display
ZSCROLLN |shr out 4 Scroll number as computed from the value in the scroll amount field
ZXSMAX shr non 4 Maximum scroll amount allowed to be used in any scroll operation.
ZXSMIN shr non 4 Minimum scroll amount allowed to be used in any scroll operation.
ZUSC prof i/o 4 Scroll amount for the Data Set List Utility
PRINTG command
Name Pool |Type |Len Description
ZASPECT func in 4 Aspect ratio of printed output from PRINTG

Appendix E. System variables 413

System variables

Name Pool Type |Len Description
ZDEVNAM func in 8 Device name for PRINTG
ZFAMPRT func non 4 Family printer type for PRINTG

Table display service

Name Pool |Type |Len Description
ZTDADD func out 3 More rows needed to satisfy scroll request (YES |NO)
ZTDAMT func out 4 Number of rows that the dialog should add to satisfy scroll
ZTDLROWS | func in 6 Number of rows in the logical table (dynamic table expansion)
ZTDLTOP func in 6 Maps current top row in physical table to its position in logical table.
ZTDMARK any in See User-defined text for table display Bottom-of-Data marker

note Note: Value can be any length that is not more than the screen width.
ZTDMSG any in 8 User-defined message ID for table display top-row-displayed indicator
ZTDRET func in 8 Defines whether dialog wants to use scroll return feature.
ZTDROWS func out 6 Number of table rows upon return from table display
ZTDSCRP func in/out | 6 CRP of top row to be displayed after the scroll
ZTDSELS func out 4 Number of selected table rows upon return from each table display
ZTDSIZE func out 4 Size (number of model sets) of the table display scrollable section
ZTDSRID func out 6 Rowid of the row pointed to by ZTDSCRP
ZTDTOP func out 6 Row number (CRP) of top row displayed during most recent table

display

ZTDVROWS | func out 6 Number of visible table rows upon return from table display
LIST service
Name Pool Type |Len Description
ZLSTLPP shr non 4 Number of lines per page in list data set
ZLSTNUML |shr non 4 Number of lines written to current list data set page
ZLSTTRUN shr non 4 List data set record length truncation value
LOG and LIST data sets
Name Pool Type |Len Description
ZLOGNAME |shr non 44 Contains the fully qualified data set name of the log data set.
ZLSTNAME |shr non 44 Contains the fully qualified data set name of the list data set.
Dialog error
Name Pool Type |Len Description
ZERRALRM | func out 3 Message alarm indicator (YES or NO)
ZERRHM func out 8 Name of help panel associated with error message

414 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

System variables

Name Pool Type |Len Description

ZERRLM func out 512 Long error message text
ZERRMSG func out 8 Error message-id

ZERRSM func out 24 Short error message text
ZERRTYPE func out 8 Error message type
ZERRWIND | func out 6 Error message window type

Tutorial panels

Name Description

ZCONT Name of next continuation panel
ZHINDEX Name of first index panel
ZHTOP Name of top panel

ZIND YES specifies an index page
ZUP Name of parent panel

Selection panels

Name Description

ZCMD Command input field

ZPARENT Parent menu name (when in explicit chain mode)
ZPRIM YES specifies panel is a primary option menu
ZSEL Command input field truncated at first period

DTL panels or panels containing a)JPANEL section

Name

Pool

Len Description

Type

ZCURFLD

func

out 8 Name of field (or list column) containing the cursor when the user exits

the panel.

ZCURINX

func

out 8 For table display panels, the current row number of the table row
containing the cursor. The value ZCURINX is in character format. If the

cursor is not within a table row, this value will be 0.

ZCURPOS

func

out 4 Position of the cursor within the field specified by ZCURFLD when the
user exits the panel. The value in ZCURPOS is in character format. If the

cursor is not within a field, ZCURPOS will contain a 1.

Note: These variables will contain the values that would result if they were set to
.CURSOR, .CSRPOS, and .CSRROW, as the first statements in the panel’s
)PROC section.

Appendix E. System variables 415

System variables

416 2/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix F. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

* Use assistive technologies such as screen readers and screen magnifier software
* Operate specific or equivalent features using only the keyboard
* Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPE. Refer to |z/OS TSO/El
Primer} e/OS TSO/E User’s Guidd, and [z/OS ISPF User’s Guide Vol Il for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

z/0S information

z/0S information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at:

[ttp://www.ibm.com/servers/eserver/zseries/zos/bkserv/|

© Copyright IBM Corp. 1980, 2007 417

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

418 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1980, 2007 419

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming Interface Information

420

This publication primarily documents information that is NOT intended to be used
as Programming Interfaces of ISPF.

This publication also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of ISPE. This information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AD/Cycle
APL2
BookManager
BookMaster
C++/MVS
COBOL/370
Common User Access
CUA

DB2
DEFSMSdfp
DFSMSrmm
DFSORT
FFST

GDDM

IBM

Language Environment
MVS

MVS/XA

0S/390

RACF

SAA

Systems Application Architecture
Tivoli

VTAM

z/0S

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 421

422 7z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

Index

Special characters

_ (underscore) character, default
attribute 173
.ALARM control variable 285
.ATTR control variable
considerations 288
description 286
override conditions 207
using with table display panels 288
ATTRCHAR control variable
description of 287
dynamic area override 147
override conditions 207
.AUTOSEL control variable 289
.CCSID section of message
definition 313
.CSRPOS control variable 289
.CSRROW control variable 290
.CURSOR control variable
description 291
example 285
when not initialized or set to
blank 291
.HELP control variable
description 292, 301, 309
example 285
.HHELP control variable
description 292
KANA control variable in messages 309
.MSG control variable
description 292
in batch mode 39
panel user exit messages 255
NRET control variable 293
.PFKEY control variable 294
.RESP control variable
description 294
in batch mode 38
.TRAIL control variable
description 295
example 119, 237
.TYPE keyword, message definition 310
WINDOW keyword, message
definition 310
.ZNARS control variable
description 295, 296
example 296
.ZVARS control variable, associating a
PDC with a variable name in
)JABCINIT 164
JABC section of panel definition 159
JABC section, defining pull-down
choice 162
JABCINIT section of panel
definition 165
JABCPROC section of panel
definition 166
JAREA section of panel definition 166
JATTR section of panel definition 172
)BLANK file-tailoring control
statement 321, 322

© Copyright IBM Corp. 1980, 2007

)BODY section of panel definition 209
)BODY statement, WINDOW
keyword 112
)CCSID section of panel definition 214
)CM file-tailoring control statement 322
)DEFAULT skeleton control
statement 323
)DO file-tailoring control statement 324
)DOT file-tailoring control statement 326
)ELSE file-tailoring control
statement 327
)END section of panel definition 215
)END statement, required on panel
definition 113
JENDDO file-tailoring control
statement 324
JENDDOT file-tailoring control
statement 326
)ENDREXX file-tailoring control
statement 328
)ENDSEL file-tailoring control
statement 331
)FIELD section of panel definition 215
JHELP section of panel definition 222
)IF file-tailoring control statement 327
)IM file-tailoring control statement 327
)INIT section of panel definition 223
)ITERATE file-tailoring control
statement 328
)LEAVE file-tailoring control
statement 328
)LIST section of panel definition 223
)JMODEL section of panel definition 224
)N comment statement 322
)NOP file-tailoring control statement 328
)PANEL statement KEYLIST
parameter 225
)PNTS statement 228
)PROC section of panel definition 232
)REINIT section of panel definition 233
)REXX file-tailoring control
statement 328
)SEL file-tailoring control statement 331
)SET file-tailoring control statement 332
)SETF file-tailoring control
statement 332
)IB file-tailoring control statement 333
)TBA file-tailoring control statement 333
*REXX panel statement 258
SOURCELINE function 260
" (quotation marks), enclosing
literals 115
% sign
beginning a command procedure
name with 12
default attribute character 173
+> operator on the IF statement 247
+< operator on the IF statement 247
+= operator on the IF statement 247
> (greater than) operator on the IF
statement 247

>= operator on the IF statement 247

< operator on the IF statement 247

<= operator on the IF statement 247

+ sign
continuation character for literals 115
default attribute character 173

= (equal sign) operator on the IF

statement 247

Numerics

3278 Mod 5

batch mode 38

graphics interface mode 151
3290

batch mode 39

graphics interface mode 151
900-999 error return codes 25
999 error return code 25

A

A, used to specify alternate tabbing 333
ABCINIT section of panel definition 165
ABCPROC section of panel
definition 166
abend
description 27
diagnostic panels 386
ABEND
codes 387
accelerators 102
accessibility 417
accessing table data 72
action bar choice initialization panel
definition section
definition 165
action bar choice processing section of
panel definition
definition 166
action bar choice section of panel
definition
definition 159
action bars and pull-down choices 92
ADDPOP parameter on ISPSTART
command 11
ADDPOP service 91, 92
address, APPC 99
address, TCP/IP 99
ADDSOSI built-in function on assignment
statement 241
alarm indicator message 414
ALARM keyword, message
definition 310
ALPHA parameter on VER
statement 269
ALPHAB parameter on VER
Statement 270
alternate tabbing 333
APL keyboard character translations 361

423

APL2
multiple calls of 33
number of times invoked, system
variable containing 407
using 31
workspace used as the function
pool 34
APPC address
definition 99
application identifier, system
variable 407
application keylist 91
application profile pool 62, 67
application profile pool extension name,
system variable 408
application-id parameter on
ISPSTART 11, 16
area section of panel definition
definition 166
AREA(DYNAMIC) parameter in)JATTR
section 175
AREA(SCRL) parameter in JATTR
section 180
argument variables 72
array of variable lengths on panel user
exit parameter 255
array of variable names on panel user
exit parameter 255
ASIS parameter
in)BODY header statement 211
on VGET panel statement 280
on VPUT panel statement 282
with JUST keyword 189
aspect ratio system variable for
PRINTG 413
assignment statement in panel
definition 235
attention exits (CLIST) 30
ATTN keyword in JATTR section 180
ATTN statement 30
attribute characters
default 173
restriction 174
attribute section of panel definition
basic attribute types 200
CUA attribute types 203
default characters 173
definition 172
other attribute types 205
requirements for table display
panel 138
authorized programs, invoking 28
authorized TSO commands, invoking 28
AUTOSEL (.LAUTOSEL) control
variable 289
AUTOSEL (auto-selection) 134
autoskip
description 199
graphic area 151

B

BACK tutorial command 301
background display execution 37
background panel processing 37
BARRIER keyword 118

batch display facility, using 37

batch environment
avoiding loops in batch 40
display error processing 39
log and list data sets 40
maximum number of panel
displays 40
processing commands 39
terminal characteristics 38
TSO 36
batch execution
description 36
TSO error processing 37
TSO sample job 36
BATSCRD keyword on ISPSTART
command 11, 38
BATSCRW keyword on ISPSTART
command 11, 38
BDBCS keyword on ISPSTART
command 11, 39
BDISPMAX keyword
and ZBDMAX system variable 407
on ISPSTART command 11, 40
BIT parameter on VER statement 270
BKGRND keyword on ISPSTART
command 11
BKGRND parameter on ISPSTART 16
BLANK file-tailoring control
statement 322
blinking, specifying for HILITE
keyword 188
body section of panel definition
controlling width of panel 209
defining 209
definition 209
formatting message field 211
requirements 138
requirements for table display
panel 138
sample 213
Boolean operators on the IF
statement 249
bottom-of-data marker
definition 134
system variable containing for table
display, user defined 414
BREDIMAX keyword on ISPSTART
command 11, 39
BRIF service 87
BROWSE service 86
browse service scroll amount, system
variable 413
browse services panel definition, scroll
field location 108
built-in function on assignment
statement 242

C

call of ISPF 9, 10
CAPS keyword in panel)JATTR
section 138, 175, 181
CCSID parameter of the GETMSG
service 348
CCSID section of message definition
messages tagged 313
CCSID section of panel definition
definition 214

424 7z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

CCSID section of panel definition
(continued)
extended code page support 348
chain mode, explicit 121
char parameter
with PAD keyword 193
with PADC keyword 194
with PAS keyword 195
character compare on IF statement 248
character level attribute 148
character translations for APL, TEXT and
Katakana keyboards 361
CHINESES keyword on ISPSTART
command 11, 17
CHINESET keyword on ISPSTART
command 11, 17
CKBOX keyword in panel) ATTR
section 181
CLEAR keyword on)MODEL statement
in table display panel 139
CLIST
attention exits 30
invoking procedure from ISPSTART
command 18
variables used in procedure 8
CLIST edit macros, running
unnested 408
CM file-tailoring control statement 322
CMD
keyword
in)PROC section 118
in panel)BODY section 210
parameter on ISPSTART
command 11
code page parameter for ISPSTART 15
coded character set identifier, system
variable 409
CODEPAGE 15
COLOR keyword in panel)ATTR
section 182
Combination boxes 102
COMBO keyword in panel)ATTR
section 183
command field
naming of 108
naming with the CMD keyword 210
panel)BODY section 209
position in panel definition 108
command field of a table display
panel 134
command line placement, system
variable 408
COMMAND parameter, in panel)PROC
section 118
command procedure 63
command tables
and application IDs 16
definition of 2
ISPCMDS system command table 2
command verb after a SETVERB
command table action, system
variable 410
commands
ISPF, in batch environment 38
processing in batch environment 39
comment statements 114
comments, optional display 189

Common User Access (CUA)
description of ISPF support 91
dot leaders 110
keyword values 204
compare character vs. numeric 248
compiled REXX 29, 253
COMPOUND variables 8
concatenation of variables 115
conditional padding of panel field 175
conditional substitution string 321
configuration utility (system
variables) 406

CONFLICT parameter on SHRPROF
command 21

CONT system variable on tutorial
panels 302

continuation character for literals 115

continuation panel 303

control characters
in skeleton definition 319

control characters in skeleton

definition 321
CONTROL NONDISPL in batch
mode 38

CONTROL service 88

control variables
example 285
in panels 283
initialization 284
list of 283
when reset 284

conversion utility 91

CRASH 27

creating action bars 164

creating panel display dialog elements 5

CRP of top row displayed in most recent

table display, system variable 414

CSRGRP(x) keyword in panel JATTR

section 184

CSRPOS (.CSRPOS) control variable 289

CUA guidelines, dot leaders 110

CUADYN 202

CUADYN keyword in panel) ATTR

section 184

cursor placement, default 291

cursor position
system variable 408

D

DANISH keyword on ISPSTART
command 11, 17
data records in skeleton definition 319
control characters 321
DATAMOD keyword in)ATTR section of
dynamic panels 176
date and time information (system
variables) 406
DBCS
batch mode 39
command and message fields 210
data validation 116
parameter on VER statement 270
replacement characters 198
specifying format 187
specifying search argument format for
table services 83

DBCS (continued)
system variable containing terminal
capability 411
variables
in messages and file
skeletons 152
on panel definitions 317, 345
verifying string length (VER
LEN) 274
DDL file name
system variable 407
DDLIST keyword in panel JATTR
section 184
ddname of file tailoring temporary file,
system variable 409
debug tools 367
DEFAULT
attribute or body section
statement 173
skeleton control statement 323
default attribute characters 173
default keylist for DTL Help Panels 300
defining messages 307
delimiter
system variable 407
delimiters in verified variable 271
DELSOSI built-in function on assignment
statement 241
DEPTH keyword in panel)ATTR
section 187
determining table size 75
device name system variable for
PRINTG 414
diagnosing ISPF abends 386
dialog
beginning with menu or function 6,
10
call by using application master
menu 19
control 5
definition 1
development of 4
elements 1
example 75
function, languages used for
coding 2
initiation 22
organization 5
return codes 24
running of 10
scope 23
termination 24
variables 7
writing
using display services 43
using file-tailoring services 83
using miscellaneous services 88
using PDF services 86
using table services 71
using variable services 61
dialog elements
description 4, 5
test of 4
dialog function 1
creation of 4
description of 2
dialog, languages used for coding 2

dialog function (continued)
example 75
function pools 63
naming 12
scope 23
Dialog Tag Language (DTL) 91
dialog variables
format of 69
ISPPRXVP processor 259
processing with panel REXX 259
dialog variables, list of 397
directive lines, optional display 189
disability 417
display error processing in the batch
environment 39
display message variations 312
display services
DBCS-related variables
in batch mode 37
displaying a pop-up window 92
DO
file-tailoring control statement 324
DOT file-tailoring control statement 326
Drop-down List 102
DSNAME parameter on VER
statement 270
DSNAMEEF parameter on VER
statement 270
DSNAMEFM parameter on VER
statement 270
DSNAMEPQ parameter on VER
statement 271
DSNAMEQ parameter on VER
statement 271
DUMP keyword on ENVIRON
command 385
dynamic area
character level attribute support 148
formatting panels 145
dynamic table expansion 47, 135

152, 317, 345

E

EBCDIC
parameter on VER statement 271
specifying format 187
EDIF service 87
EDIREC service 87
EDIT service 86
edit service panel definition, specifying
location of scroll field 108
edit service scroll amount, system
variable 413
EDREC service 86
elements of a dialog 1
ELSE file-tailoring control statement 327
ELSE statement in panel sections 246
ENBLDUMP parameter on ENVIRON
command 381
end of displayed data specification 134
END section of panel definition
definition 215
ENDDO file-tailoring control
statement 324
ENDDOT file-tailoring control
statement 326

425

Index

ENDREXX file-tailoring control
statement 328
ENDSEL file-tailoring control
statement 331
ENGLISH keyword on ISPSTART
command 11, 17
Enter Key, in GUI mode 103
entry point address on diagnostic
panel 386
ENUM parameter on VER
statement 271
ENVIRON system command 380
environment 1
environment description, system
variable 407
EQ operator on the IF statement 247
error conditions for panel user exit 255
ERROR keyword on ENVIRON
command 384
error message-id, system variable 415
error panel 39
error processing
SYSPRT file 23
TSO batch execution 37
when put into effect 23
error recovery panel at abend 387
error return codes from dialog to
invoking application 25
ESTAE restrictions 36
EXCLPROF
parameter on ISPSTART
command 16
EXCLPROF parameter 11
executable section of a dialog 223, 232,
233
executing APL2 functions 33
EXHELP 95, 297
exit data on panel user exit
parameter 254
EXIT keyword in)PROC section 118,
120, 122
EXIT statement
panel REXX 260
EXIT statements 244
exits, CLIST attention 30
EXPAND keyword in panel) BODY
section 209
expected-length operand (on VER
LEN) 275
explicit chain mode 121
EXTEND parameter
in)ATTR section 175, 180
in graphic areas 177
Extended Code Page Support
base code pages 353
CCSIDs supported 351
description 347
ISPF-provided translate tables 356
messages tagged 348
panels tagged 348
translate load modules 348
Z variables 347
Extended Code Page Translate Tables
Provided by ISPF 356
extended help 95, 297
extended highlighting availability, system
variable 411

426

extension table 67
extension variables 67, 72
clearing in model lines 139

F

FI: parameter for GUI mode 100
FIELD keyword
in panel)FIELD section 216
field section of panel definition
definition 215
field-level help 95, 222, 297
field-type specification in panel JATTR
section 199
file tailoring temporary file name, system
variable 409
file-tailoring services
example 85
skeleton files 84
writing dialogs 83
file-tailoring skeleton
control statement considerations 322
data record considerations 84, 320
DBCS considerations 345
debugging 374
defining 319
definition 3
sample 345
trace command (ISPFTTRC) 374
FILEID parameter on VER
statement 273
fixed portion of a TBDISPL display 135
FORMAT keyword
in panel)ATTR section 175, 187
in panel) BODY section 209
formatting guidelines for panels 225
FRAME parameter on ISPSTART 15
FRENCH keyword on ISPSTART
command 11, 17
function commands, definition 138
Function key set displayed, system
variable 412
Function key settings, system
variables 412
Function keys, system variable containing
number of 412
function pool 62, 63
using variables to communicate
between functions 70
function, definition 1

G

GDDM
in batch environment 38
interface to 150
GDDM service 88
GE keyword
in panel)ATTR section 188
GE operator on the IF statement 247
GERMAN keyword on ISPSTART
command 11, 17
GETMSG service 89
GIF 225
GOTO statement in panel section 244,
246

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

graphic area, panel definition 177
graphical user interface

batch mode 40
Group Boxes 102
GRPBOX 205
GT operator on the IF statement 247
GUI in batch mode 40
GUI parameter on ISPSTART 11, 14, 99
GUISCRD 15
GUISCRD parameter on ISPSTART 11
GUISCRW 15
GUISCRW parameter on ISPSTART 11

H

help
extended 95, 297
field-level 95, 297
help for help 297
keys 95,297
message 297, 298
panel 297, 298
reference phrase 96, 298
TUTOR command 298
tutorial 298
help for help command 297
help panel
See also tutorial
name associated with error
message 414
system variable containing name
associated with error message 415
with scrollable areas 169
help section of panel definition
definition 222
HELP system command
entry to tutorial 301
on ABEND panels 387
HEX parameter on VER statement 273
HEX primary command 219
HIGH parameter with INTENS
keyword 189
HILITE keyword in panel)ATTR
section 188

IDATE parameter on VER statement 273
IF file-tailoring control statement 327
IF statement
basic IF 247
with Boolean operators 249
with VER constructs 248
with VSYM built-in function 249
IM file-tailoring control statement 327
IMAGE keyword 225
Images, in a GUI display 103
IN parameter used with CAPS
keyword 181
INCLUDE parameter on VER
Statement 273
IND keyword
in panel)FIELD section 216
index page, specifying for tutorials 303
INDEX tutorial command 301
initialization of control variables 284

initialization section of panel definition
definition 223
requirements for table display 141
initiating dialog execution 22
INPUT parameter used with TYPE
keyword 199
INTENS keyword in panel)ATTR
section 175
interpreted REXX 253
invoking
authorized commands 28
authorized programs 28
authorized TSO commands 28
TSO commands 28
invoking a dialog
from a selection panel 18
from the ISPF master application
menu 19
the ISPSTART command 18
IP address 14
ISP@MSTR, ISPF Master Application
Menu 121
ISP@PRIM on the ISPF Primary Option
Menu 127
ISPCMDS system command table 2
ISPDPTRC (panel trace command) 367
ISPF
command 29
Common User Access support 91
default keylist 300
EDIF service 35
help panels 297
interface with APL2 35
overview 4
tutorial panels 297
variables 68
ISPF Client/Server Component
dialog developer’s details
action bars 101
APL/TEXT character sets 103
check boxes 102
closing a window 102
cursor placement 103
displaying application in GUI
mode 99
function keys 102
long messages 102
pull-down menus 101
short messages 102
title bars 101
Restrictions
3290 partition mode 104
character-level color, intensity, and
highlighting 103
cursor placement 103
field-level intensity and
highlighting 103
graphic areas 103
OUTLINE attribute 104
pop-up window and message
pop-up positioning 104
SKIP attribute 104
ISPF conversion utility 91
ISPF dialog variables
panel REXX 260
ISPF Services in Batch Mode 36

ISPFTTRC (file tailoring trace
command) 374
ISPPREP preprocessed panel routine
batch environment 39
error conditions 156
examples 156
restrictions 154
return codes 156
using 152
ISPPRXVP dialog variable processor 259
ISPREXPX 256
ISPSTART command
description 9, 10
example 10
syntax 10
SO 29
ISPTTDEE, using to specify translate
tables 365
ISPTUTOR 301
ISRABEND debug tool 367
ISRCSECT debug tool 367
ISRFIND debug tool 367
ISRPOINT debug tool 367
ISRROUTE command 164
ISRTCB debug tool 367
ISRTEST debug tool 367
ISRVCALP panel REXX example 266
ITALIAN keyword on ISPSTART
command 11, 17
ITERATE file-tailoring control
statement 328
ITIME parameter on VER statement 274

J

JAPANESE keyword on ISPSTART
command 11, 17
JDATE parameter on VER statement 274
JSTD parameter on VER statement 274
JUST keyword in panel JATTR
section 138, 175, 189
justifying a panel field 189

K

KANA keyword
extended code page support 350
on panel)BODY section 209, 361
Katakana
keyboard character translations 361
terminal displaying messages 309
key assignment 91
keyboard 417
keylist
application 91
system 91
keylist defaults for DTL Help Panels 300
KEYLIST parameter on)PANEL
statement 225
keylist utility 112
keys 300
keys help 95, 297
KEYS system command, batch
environment 39
KEYSHELP 95, 297

KOREAN keyword on ISPSTART
command 11, 17

L

LANG(APL) parameter
in panel)PROC section 118
on ISPSTART command 11
languages used for coding functions 2
last visible line function (LVLINE) 240
LCOL keyword
in panel)FIELD section 218
LE operator on the IF statement 247
leading blanks in verified variable 271
LEAVE file-tailoring control
statement 328
LEFT parameter used with JUST
keyword 189
LEN keyword
in panel)FIELD section 216
LEN keyword on VER statement 274
LENGTH built-in function on assignment
statement 240
LIBDEEF service 89
library access services 87
light pen, using to select a field 180
LIND keyword
in panel)FIELD section 217
line display mode, automatic and
nonautomatic entry into line mode 12
list boxes 102
list data set in a batch environment 40
LIST parameter on VER statement 275
list section of panel definition
definition 223
LIST service 89
LISTBOX keyword in panel)ATTR
section 190
LISTV parameter on VER Statement 275
LISTVX parameter on VER
Statement 276
LISTX parameter on VER Statement 276
LMSG parameter on panel)BODY
section 211
loading a panel user exit routine 252
loading a REXX panel exit 253
log data set
batch messages 39
in batch environment 40
LOG service 89
logical screens
system variable 408
logical screens, maximum
system variable 408
LOGO parameter on ISPSTART
command 16
LOGOFF command 29
LOGON command 29
long error message text, system
variable 415
LookAt message retrieval tool xi
loops, avoiding in batch 40
LOW parameter used with INTENS
keyword 189
LT operator on the IF statement 247
LU name of TSO session, system
variable 411
427

Index

LVLINE built-in function on assignment
statement 240

M

master application menu
example of definition 121
example of display 19
member lists scroll position, system
variable 413
member lists, scrolling 413
menu
definition of primary option 120
entry to tutorial 301
example of a master application
menu 121
example of primary option 133
special definition requirements 116,
117
use of ZPARENT to set next
display 121
message alarm indicator 414
message definition
DBCS considerations 317, 345
description of 3
example of short and long 308
Katakana considerations 309
message ID 308
processing 307
syntax 308, 316
message field location 107
message fields in panel)BODY
section 209
message help 297, 298, 309
message ID on panel user exit
parameter 254
message library
description of 307
example 308
message retrieval tool, LookAt xi
message text
long error 415
short error 415
system variable containing 415
message-id, system variable containing
error 415
messages
display variations 312
in batch environment 39
miscellaneous services, used in writing
dialogs 88
MIX parameter on VER statement 276
mixed characters, specifying format 187
mnemonics, in a GUI session 102
MODE keyword 118, 119
model lines
clearing variables in 139
definition of 135
specified in a variable 140
model section of panel definition
definition 224
requirements for table display
panel 139
model sets
description of 135
example 45
modeless message pop-ups 314

module name on diagnostic panel 386
movable pop-ups
manual movement 94
WINDOW command 93
MSG=value parameter on assignment
statement 237
msgid keyword 308

N

NAME parameter on VER
statement 276
name-list parameter
on VSYM panel statement 283
named variables 256
NAMEF parameter on VER
statement 276
naming defined and implicit
variables 65
naming restrictions for dialog
functions 13
NB parameter on VER statement 269
NE operator on the IF statement 247
negative number indicators 271
NEST keyword 118
nested CLISTS, attention exits 31
NESTMACS keyword on ISPSTART
command 11
NEWAPPL, (application-id)
parameter 11, 118
NEWPOOL parameter in)PROC
section 118
NG operator on the IF statement 247
NL operator on the IF statement 247
NLS
common characters 347
GETMSG service 348
messages tagged with CCSID 313
TRANS service 348
NOCHECK parameter
example 119
in)PROC section 118
NOJUMP keyword in panel)ATTR
section 192
NOKANA keyword in message
definition 309
NOLOGO parameter on ISPSTART
command 17
NON parameter used with INTENS
keyword 189
NONBLANK parameter on VER
statement 269

NOP file-tailoring control statement 328

NOPROMPT parameter on SHRPROF
command 21

Notices 419

null system variable 407

NULLS parameter used with PAD
keyword 193

NUM parameter on VER statement 277

number of colors supported by the
terminal type, system variable 411

number of Function keys, system
variable 412

number of variables on panel user exit
parameter 255

numeric (extended) verification 271

428 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

numeric compare on IF statement 248

NUMERIC keyword in panel) ATTR
section 192

Numeric Lock feature (with NUMERIC
attribute keyword) 192

O

OFF parameter
with ATTN keyword 180
with CAPS keyword 181
with NOJUMP keyword 192
with NUMERIC keyword 193
with SKIP keyword 199
ON parameter
with ATTN keyword 180
with CAPS keyword 181
with NOJUMP keyword 192
with NUMERIC keyword 193
with SKIP keyword 199
ONEBYTE built-in function on
assignment statement 241
online tutorial 301
OPT system variable 117
OPT(option) parameter on ISPSTART
command 11
OUT parameter used with CAPS
keyword 181
OUTLINE keyword
in panel)ATTR section 173, 175, 193
in panel)BODY section 209, 213
OUTPUT parameter used with TYPE
keyword 199

P

PAD keyword in panel)ATTR
section 175, 193
PADC keyword in panel)JATTR
section 194
panel definition 106
)PNTS statement 228
attribute section
default characters 173
blanks 114
body section
sample 213
command field
description 107
specifying 209
comment statement 114
creation of 5
description 106, 107
design suggestions 109
dynamic areas 202
graphic areas 177
GUI considerations 139, 151
help and tutorial panels 301
initialization section
statement formats 235
line 1 content 107
line 2 content 108
line 3 content 108
location 107
menus 117
model section 139

panel definition (continued)
panel title, location 107
reinitialization section
statement formats 235
restrictions 113
sections 106
short message for TBDISPL
operations 108
size 112
special requirements 116
specifying a message field 211
split-screen consideration 109
syntax rules 113
table display 133
tutorial and help panels 301
using)PANEL 225
panel help 297, 298
panel name on panel user exit
parameter 254
PANEL parameter
in)PROC section 118
on ISPSTART command 11
panel redisplay 233
panel REXX 258
EXIT statement 260
ISPF dialog variables 260
ISRVCALP example panel 266
SOURCELINE function 260
panel section of panel definition
formatting panel 225
panel section on panel user exit
parameter 254
panel trace command (ISPDPTRC) 367
panel user exit routine
description 250
how to invoke 253
how to load 252
parameters passed 254
return codes 255
panels
debug/trace 367
preprocessed 152
vertically scrollable 113
PANEXIT statement 251
PARM
keyword
in)PROC section 118
on preprocessed panels 153
parameter on ISPSTART
command 11
parts of a dialog 1
PAS keyword in panel) ATTR
section 195
passing control from program-coded to
command-coded function 6
PDF command 29
PDF service
library access 87
writing dialogs 86
pending END request 135
pending scroll request 135
pending selected rows 136
percent (%) sign, beginning a command
procedure name with 12
PF key, system variable 408
PFK built-in function on assignment
statement 239

PGM keyword in)PROC section 118
PGM parameter on ISPSTART
command 11
PICT parameter on VER statement 277
PICTCN parameter on VER
statement 277
PNTS section of panel definition 228
Point-and-shoot section of panel
definition 228
pools, variable
application profile 62
function 62
shared 62
pop-up window
ADDPOP service 92
movable 93
processing considerations 151
size 209
PORTUGUESE keyword on ISPSTART
command 11, 17
POSITION, TBDISPL parameter 136
PQUERY
in batch environment 38
used with dynamic area 147
PQUERY service 89
prefix system variable 408
preprocessed panels
creating (ISPPREP) 152
definition 152
ISPPREP call 154
PARM keyword 153
SELECT service 153
Primary Option Menu 120
printer family type for PRINTG 414
processing section of panel definition
definition 232
requirements for table display 141
PROFILE parameter
on VGET panel statement 281
on VPUT panel statement 282
program status word on diagnostic
panel 386
program-name parameter
in panel)PROC section 118
on ISPSTART command 11
PROMPT parameter on SHRPROF
command 21
protecting table resources 73
PSW on diagnostic panel 386
pull-down choice, defining within the
)ABC section 162
pushbuttons 229
pushbuttons, large 229

Q

QUERY parameter on the ENVIRON
command 386

quotation mark, enclosing literals 115

quote mark, enclosing literals 115

R

radio buttons 103
RADIO keyword in panel JATTR
section 196

RANGE parameter on VER
statement 278
RCOL keyword
in panel)FIELD section 218
read-only profile pool extension
variables 67
reason code on diagnostic panel 386
recovery termination manager at
abend 388
redisplay of a panel 233
reference phrase help 96, 298
REFRESH statement in panel
sections 257
register content at abend on diagnostic
panel 386
reinitialization section of panel definition
definition 233
requirements for table display 141
relational operators (on VER LEN) 275
removing a pop-up window 92
removing variables from the shared or
profile pool 67
REMPOP service 91, 92
REP keyword in panel JATTR
section 175, 198
replacement characters 198
reset of control variables 284
RESET parameter on SHRPROF
command 21
RETRY parameter on SHRPROF
command 21
return codes
for panel user exit routine 255
from terminating dialog 24
return to function when scrolling 47
REVERSE parameter used with HILITE
keyword 188
reverse video, specifying 188
REXX edit macros, running
unnested 408
REXX file-tailoring control
statement 328
REXX panel exit
how to load 253
REXX panel statement 258
SOURCELINE function 260
REXX variables 260
RIGHT parameter used with JUST
keyword 189
RIND keyword
in panel)FIELD section 217
ROWS keyword on)MODEL statement in
table display panel 139
rows of a table, adding dynamically 47,
51
running a dialog 10

S

SCALE keyword

in panel)FIELD section 218
scope of a function 23
screen

logical number of 412

system variable containing 412

Index 429

screen depth and width available for use
by a dialog
system variable containing 413
screen depth and width available for use
by a dialog, system variable 413
screen depth on ISPSTART command for
batch 11
screen depth parameter for
ISPSTART 15
screen name
system variable 408
screen width for batch mode on
ISPSTART command 11
screen width parameter for
ISPSTART 15
scroll amount
field of a TBDISPL display, definition
of 136
for browse service, system variable
containing 413
for edit service, system variable
containing 413
for member lists, system variable
containing 413
location 107
maximum for member lists 413
minimum for member lists 413
number of lines or columns 413
system variable containing 413
system variable containing field
value 413
value default for dynamic areas and
table display 413
SCROLL keyword
in panel)FIELD section 218
SCROLL parameter in)ATTR
section 176
scroll position
for member lists, system variable
containing 413
scrollable areas
definition, section of panel 166
in the)BODY section 180
vertically scrollable panels 113
with help panel 169
scrollable fields, primary commands 219
scrollable portion of a TBDISPL
display 136
scrolling, expanding displayed table 48
SDWA reason code at abend 387
searching variable pools 62
SEL
file-tailoring control statement 331
system variable 117, 302
select field of a TBDISPL display 136
SELECT service 62
call 23
description 22
panel (VGET) 282
panel processing 118
passing control in a dialog 62
preprocessed panels 153
Selected Choice (SC) attribute 207
selected row, defined 136
selection panel, system variables 415
separator
system variable 407

430

separator (continued)
system variable containing 408, 409
separator bars 102
services
to dialogs 1
to interactive applications 1
services description, SELECT 22
SET file-tailoring control statement 332
SETF file-tailoring control statement 332
SFIHDR keyword on)MODEL statement
in table display panel 139
SGERMAN keyword on ISPSTART
command 11, 17
shadow variable 148
SHARED parameter
on VGET panel statement 280
on VPUT panel statement 282
shared pool 62
sharing variables among dialogs 66
shift-in character (DBCS) 187, 241
shift-out character (DBCS) 187, 241
short error message text, system
variable 415
short message syntax 309
shortcut keys 417
SHRPROF
parameter on ISPSTART
command 16
SHRPROF system command 20
SIND keyword
in panel)FIELD section 217
site command table prefix, system
variable 408
skeleton
description of 3
skeleton definition
)REXX statement 328
assigning a value to a variable 332
comment statement 322
control characters 319
control statements 319, 322
data records 319
defining 319
example 345
IF-THEN-ELSE statement 327
imbedding 327
imbedding blank lines 322
loop processing 328
null statement 328
SET with functions statement 332
specifying table processing 326
tab stop 333
SKIP
keyword in panel)ATTR section 175,
199
tutorial command 301
SMSG parameter on panel)BODY
section 211
SOURCELINE function, and panel
REXX 260
SPANISH keyword on ISPSTART
command 11, 17
specifying DBCS search argument
format 83
SPF command 29
SPLIT command, disabled in batch
environment 39

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

split-screen in effect, system
variable 413
SPLITV system command, disabled in
batch environment 39
stacked commands, graphics interface
mode restriction 151
START service 97
starting a dialog
methods 10
using the ISPSTART command 18
using the SELECT service 22
starting a GUI session
using ISPSTART 99
starting ISPF 9, 10
STDDATE parameter on VER
statement 278
STDTIME parameter on VER
statement 279
STEM variables 8
stepname of TSO logon, system
variable 408
storing variables from a panel in shared
and profile pools (VPUT) 282
string of variable values on panel user
exit parameter 255
substitution string, conditional 321
subtasking support 35
SYMDEF parameter
on VGET panel statement 281
SYMNAMES parameter
on VGET panel statement 281
syntax rules
message definition 308, 316
panel definition 113
skeleton definitions 319
System keylist 91
system symbolic variables 70
system variables
list of 405
used for communication between
dialogs and ISPF 415
Z 407
ZACCTNUM 407
ZAMT 413
ZAPLCNT 407
ZAPPLID 407
ZAPPTTL 407
ZASPECT 413
ZBDMAX 407
ZBDMXCNT 407
ZCFGCMPD 406
ZCFGCMPT 406
ZCFGKSRC 406
ZCFGLVL 406
ZCFGMOD 406
ZCMD 415
ZCOLORS 411
ZCONT 415
ZCS 407
ZCSDLL 407
ZCURFLD 415
ZCURINX 415
ZCURPOS 415
ZDATE 406
ZDATEF 406
ZDATEFD 406
ZDATESTD 406

system variables (continued)

ZDAY 406
ZDBCS 411
ZDECS 407
ZDEL 407
ZDEVNAM 414
ZENTKTXT 407
ZENVIR 407
ZERRALRM 414
ZERRHM 414
ZERRLM 415
ZERRMSG 415
ZERRSM 415
ZERRTYPE 415
ZERRWIND 415
ZEURO 407
ZFAMPRT 414
ZFKA 411
ZGE 149, 411
ZGUI 407
ZHILITE 411
ZHINDEX 415
ZHTOP 415
ZIND 415
ZIPADDR 411
ZIPPORT 411
ZISPFOS 407
ZISPFRC 407
ZJADATE 406
ZJDATE 406
ZKEYHELP 408
ZKEYS 412
ZKLAPPL 412
ZKLNAME 412
ZKLTYPE 412
ZKLUSE 412
ZLANG 408
ZLOGNAME 414
ZLOGO 408
ZLOGON 408
ZLSTLPP 414
ZLSTNAME 414
ZLSTNUML 414
ZLSTTRUN 414
ZLUNAME 411
ZMLPS 408
ZMONTH 406
ZNESTMAC 408
ZOS390RL 408
ZPANELID 408
ZPARENT 415
ZPF01-24 412
ZPFCTL 412
ZPFEMT 412
ZPFKEY 408
ZPFLxx 412
ZPFSET 412
ZPFSHOW 412
ZPLACE 408
ZPREFIX 408
ZPRIKEYS 412
ZPRIM 415
ZPROFAPP 408
ZRXRC 260
ZSCBR 413
ZSCED 413
ZSCML 413

system variables (continued)

ZSCRCUR 408
ZSCREEN 412
ZSCREENC 408
ZSCREEND 412
ZSCREENI 408
ZSCREENW 413
ZSCRMAX 408
ZSCRMAXD 413
ZSCRMAXW 413
ZSCRML 413
ZSCROLLA 413
ZSCROLLD 413
ZSCROLLN 413
ZSCTPRE2 408
ZSCTPRE3 408
ZSCTPREF 408
ZSCTSRCH 408
ZSEL 415
ZSEQ 408
ZSM 408
ZSPLIT 413
ZSTDYEAR 406
ZSYSICON 408
ZSYSID 409
ZSYSNODE 409
ZSYSPLEX 409
ZSYSPROC 409
ZTDADD 414
ZTDAMT 414
ZTDLROWS 414
ZTDLTOP 414
ZTDMARK 414
ZTDMSG 414
ZTDRET 414
ZTDROWS 414
ZTDSCRP 414
ZTDSELS 414
ZTDSIZE 414
ZTDSRID 414
ZTDTOP 414
ZTDVROWS 414
ZTEMPF 409
ZTEMPN 409
ZTERM 413
ZTERMCID 409
ZTERMCP 409
ZTERMCS 409
ZTHS 409
ZTIME 406
ZTIMEL 406
ZTS 409
ZTSICMD 409
ZTSSCMD 409
ZUCTPRE2 409
ZUCTPRE3 410
ZUCTPREF 409
ZUP 415
ZUSC 413
ZUSER 410
ZVERB 410
ZWINTTL 410
ZWSCDPG 410
ZWSCON 410
ZWSOPSYS 410
ZXSMAX 413
ZXSMIN 413

system variables (continued)
ZYEAR 406
SYSTSPRT file for error messages 37

T

tab stop in skeleton definition 333
tabbing
alternate 333
table
accessing data 72
adding rows dynamically 47
definition 3
dynamic expansion 135
temporary or permanent 71
when created or updated 3
table display (TBDISPL), terms related
to 133
table display output example 143, 145
table display panel definition
attribute section 138
body section 138
example 142
example of multiple model lines 144
initialization section 141
message location 108
model line 45, 133
model section 139
scroll field location 108
short message area content 108
using the TBDISPL service 133
table rows
number of selected upon return from
table display 414
number of system variable containing
upon return from table display 414
number of visible rows upon return
from table display 414
system variable containing 414
table services
determining table size 75
example 74, 75
protecting resources 73
row operation 73
using 71,72
tags, creating dialog elements 91
task abend code on diagnostic panel 386
TB file-tailoring control statement 333
TBA file-tailoring control statement 333
TBDISPL series 136
TBDISPL service
description 142
dynamically building the table 48
terms related to 133
writing dialogs 43
TCP/IP 14
TCP/IP address
definition 99
terminal data in batch mode 38
terminal type
specifying ISPTTDEF = 365
system variable containing 413
terminating
a dialog 24
ISPF 9, 10
TERMSTAT parameter on ENVIRON
command 385

Index 431

TERMTRAC parameter on ENVIRON
command 382
TEST
difference from TESTX 28
mode 27
parameter on ISPSTART
command 11
testing dialog elements 4
TESTX
difference from TEST 28
mode 27
parameter on ISPSTART
command 16
TEXT keyboard character
translations 361
TEXT parameter used with TYPE
keyword 199
time and date information (system
variables) 406
title displayed in window frame 407
TOC tutorial command 301
TOG statement 266
top-row-displayed indicator
trace
file-tailoring execution 374
panel execution 367
TRACE
difference from TEST and
TRACEX 28
mode 28
parameter on ISPSTART
command 11
TRACEX
difference from TEST and TRACE 28
mode 28
parameter on ISPSTART
command 16
trailing blanks in verified variable 271
TRANS built-in function on assignment
statement
description 237, 238
example 119, 239, 291
example, nested 237, 238
translate tables, specifying 365
translation
common characters 347
GETMSG service 348
messages tagged with CCSID 313
TRANS service 348
TRUNC built-in function on assignment
statement
description 236
example 119, 236, 239
example, nested 237, 238
truncation, system variable containing list
data set 414
TSO
batch environment 36
batch execution 36
command restrictions 29
invoking authorized commands 28
invoking commands 28
TSO command 29
TSO session LU name, system
variable 411
TSOEXEC interface 29
TUTOR command 298

50, 136, 414

432

tutorial 116
call of 301
commands 301
defining panels 301
description 298
ending of 302
entry to 301
sample hierarchy of panels 303
sample panel 304
specifying an index page 303
use 301
tutorial panels, system variables that
contain information about 415
TWOBYTE built-in function on
assignment statement 241
TYPE keyword in panel)ATTR
section 175

U

unavail specification in panel)JATTR
section 200

unavailable choices 102

underscore, specifying 188

UP tutorial scroll command 301

UPPER built-in function on assignment
statement 240

UPPERENG keyword on ISPSTART
command 11, 17

USCORE parameter used with HILITE
keyword 188

used for communication between dialogs
and ISPF 69

user exit for panel processing 250

USER parameter used with PAD
keyword 193

user-selection 137

userid, system variable 410

USERMOD parameter in JATTR
section 176

\'

validation of DBCS data 116
value from scroll amount field, system
variable 413
variable model lines 140
variable services
creating or deleting defined
variables 65
summary 71
writing dialogs 61
variables
assignment statement 235
COMPOUND 8
creating implicit 65
description of 7
dialog 62
dialog, format 69
in IF or ELSE statements 246
in message definition 316
in VER statements 268
maximum size 7
names too long for panel
definition 295
naming 7

z/0S VIR9.0 ISPF Dialog Developer’s Guide and Reference

variables (continued)
naming defined and implicit 65
on panels, restricted size 113
owned by ISPF 68
panel REXX 260
processing using panel user exit 252
read-only extension 67
removing from the shared or profile
pool 67
saving across ISPF sessions 66
sharing among dialogs 66
STEM 8
storing from a panel to shared and
profile pools (VPUT) 282
system variable charts 405
testing the value of 246
to function pool from shared or
profile pools (VGET) 280
value test during panel
processing 248
ZERRCSID 347
ZKEYHELP 95
ZTERMCID 347
ZTERMCP 347
ZTERMCS 347
Variables for ISPSTART parameters 11
VARS variable in table display
panel 141
VCOPY service 70
VDEFINE service
in panel user exit routine 252
writing dialogs 70
VDELETE service 70
VEDIT statement 267
VER statement in panel section
description 268
syntax 269
VERASE service 70
verifying variable content 269
VGET statement
in panel)INIT,)REINIT, or)PROC
section 280
on DISPLAY panel 280
on SELECT panel 282
syntax 280
using 70
VMASK service 70
VPUT statement
example 283
in panel)INIT,)REINIT, or)PROC
section 282
syntax 282
using 70
VREPLACE service 70
VRESET service 70
VSYM
statement 283
VSYM built-in function on assignment
statement
example, nested 237, 238
VSYM statement
example 283
syntax 283

W

WAIT parameter on SHRPROF
command 21
WIDTH keyword in panel JATTR
section 200
WIDTH keyword in panel)BODY
section 209
WINDOW command 93
WINDOW keyword
defining pop-up windows 112
in panel) BODY section 209
window title variable 91, 92
workstation command 13
workstation command var 14
workstation IP address, system
variable 411
workstation IP port number, system
variable 411
writing dialogs
display services 43
file-tailoring services 83
miscellaneous services 88
PDF services 86
table services 71
variable services 61
WSCMD 13
WSCMD parameter on ISPSTART
command 11
WSCMDV 14
WSCMDV parameter on ISPSTART
command 11

YA

Z system variable 407
Z variables used for field name
place-holders 295
ZACCTNUM system variable 407
ZAMT system variable 413
ZAPLCNT system variable 407
ZAPPLID system variable 407
ZAPPTTL system variable 407
ZASPECT system variable 413
ZBDMAX system variable 407
and BDISPMAX keyword 40
ZBDMXCNT system variable 407
ZC system variable 317, 346
ZCFGCMPD system variable 406
ZCFGCMPT system variable 406
ZCFGKSRC system variable 406
ZCFGLVL system variable 406
ZCFGMOD system variable 406
ZCLRSFLD primary command 219
ZCMD 398
ZCMD system variable 415
example 119
on tutorial panels 302
processing
blank 120
invalid option 120
truncation 118
versus other names for command
field 108
ZCOLORS system variable 411
in batch mode 39
ZCONT system variable 303, 305, 415

ZCS system variable 407
ZCSDLL system variable 407
ZCUNIT 403
ZCURFLD

general description 228
ZCURFLD system variable 415
ZCURINX

general description 228
ZCURINX system variable 415
ZCURPOS

general description 228
ZCURPOS system variable 415
ZCUSIZE 403
ZDATE system variable 406
ZDATEF system variable 406
ZDATEFD system variable 406
ZDATESTD system variable 406
ZDAY system variable 406
ZDBCS system variable 411

in batch mode 39
ZDECS system variable 407
ZDEL system variable 407
ZDEVNAM system variable 414
ZDLBLKSZ 398
ZDLCATNM 398
ZDLCDATE 398
ZDLDEV 398
ZDLDSNTP 398
ZDLDSORG 398
ZDLEDATE 398
ZDLEXT 398
ZDLEXTX 398
ZDLLRECL 398
ZDLMIGR 398
ZDLMVOL 398
ZDLOVF 398
ZDLRDATE 398
ZDLRECFM 398
ZDLSIZE 398
ZDLSIZEX 398
ZDLSPACU 398
ZDLUSED 398
ZDLVOL 398
ZDSN 398
ZDST 398
ZE system variable 317, 346
ZEDBDSN 398
ZEDILMSG 398
ZEDISMSG 398
ZEDMSGNO 398
ZEDROW 399
ZEDSAVE 399
ZEDTDSN 399
ZEDTMCMD 399
ZEDTMEM 399
ZEDTRD 399
ZEDUSER 399
ZEIBSDN 399
ZEIROW 399
ZEITDSN 399
ZEIUSER = 399
ZENVIR system variable 36, 407
ZERRALRM 399
ZERRALRM system variable 414
ZERRHM 399
ZERRHM system variable 414
ZERRLM 399

ZERRLM system variable 415
ZERRMSG 399
ZERRMSG system variable 415
for panel user exit messages 255
ZERRSM 399
ZERRSM system variable 415
ZERRTYPE system variable 415
ZERRWIND system variable 415
ZEURO system variable 407
ZEXPAND primary command 219
ZFAMPRT system variable 414
ZFKA system variable 411
ZGE system variable 149, 411
ZGRPLVL 399
ZGRPNME 399
ZGUI system variable 407
ZHILITE system variable 411
in batch mode 39
ZHINDEX system variable 415
example 127

specifying top indexed panel 302

ZHTOP system variable 415
example 127
specifying top tutorial panel 302
ZICFPRT 403
ZIND system variable 415
using on tutorial panels 303
ZIPADDR system variable 411
ZIPPORT system variable 411
ZISPFOS system variable 407
ZISPFRC system variable
description 24
example of using 26
return codes 407
ZJ4DATE system variable 406
ZJDATE system variable 406
ZKEYHELP system variable 95, 408
ZKEYS system variable 412
ZKLAPPL system variable 412
ZKLNAME system variable 412
ZKLTYPE system variable 412
ZKLUSE system variable 412
ZLAC 399
ZLALIAS 399
ZLAMODE 399
ZLANG system variable 408
ZLATTR 400
ZLC4DATE 400
ZLCDATE 400
ZLCNORC 400
ZLINORC 400
ZLLIB 400
ZLM4DATE 400
ZLMDATE 400
ZLMEMBER 400
ZLMNORC 398, 400
ZLMOD 400, 401
ZLMSEC 401
ZLMTIME 400, 402
ZLOGNAME system variable 414
ZLOGO system variable 408
ZLOGON system variable 408
ZLPDSUDA 401
ZLRMODE 401
ZISIZE 401
ZLSSI 401
ZLSTLPP system variable 414

Index

433

ZLSTNAME system variable 414
ZLSTNUML system variable 414
ZLSTTRUN system variable 414
ZLTTR 401
ZLUNAME system variable 411
ZLUSER 401
ZIVERS 401
ZMLCOLS 401
ZMLCR 401
ZMLPS system variable 408
ZMLTR 401
ZMONTH system variable 406
ZMSRTFLD 401
ZNESTMAC system variable 408
ZPARENT system variable 121, 415
ZPDFREL 403
ZPF01-24 system variables 412
ZPFCTL system variable 412
ZPFFMT system variable 412
ZPFKEY system variable 408
ZPFSET system variable 412
ZPFSHOW system variable 412
ZPLACE system variable 408
ZPREFIX system variable 408
ZPRIKEYS system variable 412
ZPRIM system variable 415
example 120, 127
ignored in explicit chain mode 121
using 121
ZPROFAPP system variable 408
ZRXMSG system variable 260
ZRXMSGsystem variables
ZRXMSG 260
ZRXRC system variable 260
ZSCBR system variable 413
ZSCED system variable 413
ZSCLM 401
ZSCML system variable 413
ZSCRCUR system variable 408
ZSCREEN system variable 412
ZSCREENC system variable 408
ZSCREEND system variable 412, 413
in batch environment 38
ZSCREENI system variable 408
ZSCREENW system variable 413
in batch environment 38
ZSCRMAX system variable 408
ZSCRMAXD system variable 413
in batch environment 38
panel definition 112
ZSCRMAXW system variable 413
in batch environment 38
panel definition 112
ZSCRML system variable 413
ZSCROLLA system variable 139, 413
ZSCROLLD system variable 138, 413
ZSCROLLN system variable 139, 413
ZSCTPRE2 system variable 408
ZSCTPRE3 system variable 408
ZSCTPREF system variable 408
ZSCTSRCH system variable 408
ZSEL system variable 415
contains result of truncating
ZCMD 117
example 119
on menus 117
on tutorial panels 302

ZSEL system variable (continued)
parameters and keywords used
with 118
restriction for 302
ZSEQ system variable 408
ZSESS 403
ZSM system variable 408
ZSPLIT system variable 413
ZSTDYEAR system variable 406
ZSWIND 403
ZSYSICON system variable 408
ZSYSID system variable 409
ZSYSNODE system variable 409
ZSYSPLEX system variable 409
ZSYSPROC system variable 409
ZTDADD function variable
definition of 47
using 49
ZTDADD system variable 414
ZTDAMT function variable
definition of 47
using 49
ZTDAMT system variable 414
ZTDLROWS function variable
definition of 48
using 50
ZTDLROWS system variable 414
ZTDLTOP function variable
definition of 48
using 48, 50
ZTDLTOP system variable 414
ZTDMARK system variable 134, 414
ZTDMSG system variable 414
ZTDRET function variable
definition of 47
using 47
ZTDRET system variable 414
ZTDROWS system variable 414
ZTDSCRP function variable
definition of 47
using 49
ZTDSCRP system variable 414
ZTDSELS system variable 141, 414
description 46
example 46
ZTDSIZE function variable
definition of 47
using 50
ZTDSIZE system variable 414
ZTDSRID function variable
definition of 47
using 49
ZTDSRID system variable 414
ZTDTOP system variable 414
ZTDVROWS system variable 414
ZTEMPF system variable 409
ZTEMPN system variable 409
ZTERM system variable 413
ZTERM, mapped to APL2 terminals
ZTERMCID system variable 409
ZTERMCP system variable 409
ZTERMCS system variable 409
ZTHS system variable 409
ZTIME system variable 406
ZTIMEL system variable 406
ZTS system variable 409
ZTSICMD system variable 409

434 z/0S V1R9.0 ISPF Dialog Developer’s Guide and Reference

ZTSSCMD system variable 409
ZUCTPRE2 system variable 409
ZUCTPRES3 system variable 410
ZUCTPREF system variable 409
ZUP system variable 415

on tutorial panels 302
ZUSC system variable 413
ZUSER system variable 410
ZUSERMAC 402
ZVERB system variable 139, 410
ZWINTTL 92
ZWINTTL system variable 410
ZWSCDPG system variable 410
ZWSCON system variable 410
ZWSOPSYS system variable 410
ZXSMAX system variable 413
ZXSMIN system variable 413
ZYEAR system variable 406

Readers’ Comments — We’d Like to Hear from You

Interactive System Productivity Facility (ISPF)
Dialog Developer’'s Guide and Reference
z/OS Version 1 Release 9.0

Publication No. SC34-4821-06

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Overall satisfaction]]] O O

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate] O O]]
Complete O O]]]
Easy to find]]] O]
Easy to understand O O 0 U u
Well organized O O O] U U
Applicable to your tasks O] | |]

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You

SC34-4821-06

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

SC34-4821-06

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Reader Comments
DTX/E269

555 Bailey Avenue
San Jose, CA
U.S.A. 95141-9989

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

File Number: S370/4300-39
Program Number: 5694-A01

Printed in USA

SC34-4821-06

	Contents
	Figures
	Preface
	About this document
	Who should use this document
	What is in this document?
	Notation conventions
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	Summary of changes
	Product function changes for z/OS V1R9.0 ISPF
	ISPF product changes
	ISPF Dialog Manager component changes
	ISPF PDF component changes
	ISPF SCLM component changes
	ISPF Client/Server component changes
	Migration considerations

	Changes to this document for z/OS V1R9.0 ISPF

	What's in the z/OS V1R9.0 ISPF library?
	Chapter 1. Introduction to ISPF
	What is ISPF?
	What is a dialog?
	Functions
	Variables
	Command tables
	Panel definitions
	Message definitions
	File-tailoring skeletons
	Tables

	What does a dialog do?
	Developing a dialog
	How dialog elements interact
	Dialog variables

	Chapter 2. Controlling ISPF sessions
	Dialog control and data flow
	Processing a dialog
	Starting a dialog
	Syntax for issuing the ISPSTART command
	Parameters

	Using the ISPSTART command
	Invoking a dialog from a selection panel
	Invoking a dialog from a master application menu

	Controlling ISPF sessions
	Using the SHRPROF system command
	SHRPROF command syntax and parameter descriptions

	What the SELECT service does
	Invoking the SELECT service
	Terminating a dialog
	Return Codes from Terminating Dialogs
	Return Codes from Termination Dialogs

	An example using the ZISPFRC return code

	ISPF test and trace modes
	Test modes
	ISPF trace modes

	Invoking authorized programs
	Invoking TSO commands
	Compiled REXX requirements
	CLIST requirements
	Attention exits
	Restrictions on using attention exits from CLISTs
	Examples of CLIST attention exit process flow

	Using APL2
	Invoking APL2
	Executing APL2 functions
	Invoking ISPF dialog services in the APL2 environment
	APL2 workspace as the ISPF function pool
	Interface between ISPF and APL2

	Subtasking support
	ESTAE restrictions
	ISPF services in batch mode
	Command processors in the TSO batch environment
	Sample batch job
	Processing errors

	Batch display facility for background panel processing
	Supplying input in lieu of interactive users
	Supplying batch terminal characteristics
	Message processing in the batch environment
	Command processing in the batch environment
	Display error processing in the batch environment
	How ISPF handles log and list data sets in the batch environment
	Avoiding panel loop conditions in the batch environment

	ISPF graphical user interface in batch mode
	Restrictions
	Example JCL: invoking client/server in batch mode

	Chapter 3. Introduction to writing dialogs
	Using the display services
	Example: creating a display with TBDISPL
	Processing selected rows
	Adding table rows dynamically during table display scrolling
	System variables are the ISPF-function interface
	Using variable ZTDRET
	Using variable ZTDADD
	Using variable ZTDAMT
	Using variables ZTDSCRP and ZTDSRID
	Using variable ZTDSIZE
	Using variables ZTDLTOP and ZTDLROWS

	Example: dynamic table expansion

	Using the variable services
	Searching variable pools
	SELECT service and variable access
	Function pools and dialog functions
	Command procedures, program functions, and function pools
	Use a variable service to create or delete defined variables
	Creating implicit variables
	Naming defined and implicit variables
	Sharing variables among dialogs
	Saving variables across ISPF sessions
	Removing variables from the shared or profile pool
	Read-only profile pool extension variables
	Variables owned by ISPF
	Variable formats
	System variables communicate between dialogs and ISPF
	Using VDEFINE, VDELETE, VRESET, VCOPY, VMASK, and VREPLACE
	Using the VGET, VPUT, and VERASE services
	Summary of variable services

	Using the table services
	Where tables reside
	Accessing data
	Services that affect an entire table
	Services that affect table rows
	Protecting table resources
	Example: create and update a simple table
	Determining table size
	Example: function using the DISPLAY, TBGET, and TBADD services
	Command procedure function
	Description of function steps

	Specifying dbcs search argument format for table services

	Using the file-tailoring services
	Skeleton files
	Example of a skeleton file

	Example of using file-tailoring services

	Using the PDF services
	BROWSE, EDIT, and EDREC
	BRIF, EDIF, and EDIREC
	Library access services

	Using the miscellaneous services
	CONTROL service
	GDDM services (GRINIT, GRTERM, and GRERROR)
	GETMSG service
	LIBDEF service
	LIST service
	LOG Service
	PQUERY Service

	Chapter 4. Common User Access (CUA) guidelines
	Using the dialog tag language to define dialog elements
	Keylists
	Action bars and pull-downs
	Pop-up windows
	Movable pop-ups
	WINDOW command
	Manual movement
	Pop-up movement considerations

	Field-level help
	Extended help
	Keys help
	Reference phrase help
	START service

	Chapter 5. Graphical User Interface (GUI) guidelines
	How to display an application in GUI mode
	Other considerations
	Some general GUI restrictions

	Chapter 6. Panel definition statement guide
	Introduction to panel definition sections
	Guidelines for formatting panels
	Requirements for specifying message and command line placement
	Additional L/title>
	Example of a CUA panel definition

	Factors that affect a panel's size
	Vertically scrollable panels

	Syntax rules and restrictions for panel definition
	Using blanks and comments
	Formatting items in lists
	Using variables and literal expressions in text fields
	Validating DBCS strings

	Special requirements for defining certain panels
	Defining menus
	NOCHECK keyword
	MODE keyword
	EXIT keyword
	Blank or invalid options (‘’ or *,‘?’)
	Defining primary option menus
	Specifying the next menu to display
	Example of a master application menu
	Example of a primary option menu

	Defining table display panels
	Table display vocabulary
	Requirements for attribute section
	Requirements for body section
	Requirements for model section
	Requirements for initialization section
	Requirements for reinitialization section
	Requirements for processing section
	Using control variables
	Processing panels by using the TBDISPL service

	Formatting panels that contain dynamic areas
	Panel processing considerations
	Character-level attribute support for dynamic areas
	Specifying character attributes in a dynamic area
	Conflict resolution between attributes

	Formatting panels that contain a graphic area
	Graphics panel processing considerations

	Using DBCS-related variables in panels

	Using preprocessed panels
	Restrictions for using ISPPREP
	Using ISPPREP with the SELECT service
	Examples of using ISPPREP

	Handling error conditions and return codes

	Chapter 7. Panel definition statement reference
	Defining panel sections
	Defining the action bar choice section
	Specifying action bar choices in panel)BODY section
	Defining pull-down choices within the)ABC section

	Defining the action bar choice initialization section
	Defining the action bar choice processing section
	Defining the area section
	Panel definition considerations
	Help panels
	Panel processing
	Scrollable area examples

	Defining the attribute section
	Using default attribute characters
	Formatting attribute section statements
	Basic attribute types
	Specifying dynamic areas
	CUA panel-element types
	Other attribute types
	Relationship to Control variables .ATTR and .ATTRCHAR

	Defining the body section
	A sample panel body section

	Defining the CCSID section
	Defining the END section
	Defining the FIELD section
	Primary commands for scrollable fields
	Example
	Panel definition considerations

	Defining the HELP section
	Specifying the value for the field-name and help-panel-name

	Defining the initialization section
	Defining the LIST section
	Defining the model section
	Defining the panel section
	Keylist variables
	CUA display characteristics
	Command lines and long messages
	Keylist building and display
	Undefined or null function keys
	CANCEL and EXIT execution
	Setting system control variables

	Defining the point-and-shoot section
	GUI mode

	Defining the processing section
	Defining the reinitialization section

	Formatting panel definition statements
	The assignment statement
	The TRUNC built-in function
	The TRANS built-in function
	The PFK built-in function
	The LENGTH built-in function
	The UPPER built-in function
	The LVLINE built-in function
	The ADDSOSI and DELSOSI built-in functions
	The ONEBYTE and TWOBYTE built-in functions
	The VSYM built-in function

	The ELSE statement
	EXIT and GOTO statements
	EXIT statement
	GOTO statement

	The IF statement
	Basic IF value testing
	IF statement with VER constructs
	IF statement with VSYM built-in function
	IF statement and boolean operators

	The PANEXIT statement
	How to LOAD the panel user exit routine
	How to LOAD a REXX panel exit
	Invoking the panel user exit routine
	Parameters passed from ISPF to the panel user exit routine
	Return codes and error processing
	Using ISPREXPX to read and modify parameters

	The REFRESH statement
	The *REXX statement
	Processing ISPF dialog variables with panel REXX
	Return codes and error processing
	An example of using panel REXX

	The TOG statement
	The VEDIT statement
	The VER statement
	The VGET statement
	DISPLAY service panel
	SELECT service panel

	The VPUT statement
	The VSYM statement

	Using ISPF control variables
	.ALARM
	.ATTR and .ATTRCHAR
	.ATTR
	.ATTRCHAR
	Using .ATTR and .ATTRCHAR with table display panels
	Things to remember when using attribute override control variables

	.AUTOSEL
	.CSRPOS
	.CSRROW
	.CURSOR
	.HELP
	.HHELP
	.MSG
	.NRET
	.PFKEY
	.RESP
	.TRAIL
	.ZVARS
	Using Z variables as field name place-holders

	Chapter 8. ISPF help and tutorial panels
	Processing help
	Help requests from an application panel
	Keys help request from an application panel
	Extended help request from an application panel

	Help available from a help panel
	Ending help
	ISPF default keylist for help panels

	The ISPF tutorial panels

	Chapter 9. Defining messages
	How to define a message
	Message display variations
	Messages tagged with CCSID
	Modeless message pop-ups
	Message pop-up text formatting
	English rules for message text formatting
	Asian rules for message text formatting
	Substitutable parameters in messages

	Syntax rules for consistent message definition
	DBCS-related variables in messages

	Chapter 10. Defining file-tailoring skeletons
	Control characters
	Considerations for data records
	Control characters for data records

	Considerations for control statements
	Control statements
	Built-in functions
	&EVAL()
	&LEFT()
	&LENGTH()
	&RIGHT()
	&STR()
	&STRIP()
	&SUBSTR()
	&VSYM()
	&SYMDEF()

	Sample skeleton file
	DBCS-related variables in file skeletons

	Chapter 11. Extended code page support
	Translating common characters
	Z variables
	Panels tagged with CCSID
	Messages tagged with CCSID

	GETMSG service
	TRANS service
	ISPccsid translate load modules
	ISPccsid translate load module generation macro
	ISPCCSID macro
	Description of parameters
	ISPccsid translate load module definition examples

	KANA and NOKANA keywords
	Character translation

	Supported CCSIDs
	Base code pages for terminals
	Adding translate tables for extended code page support
	Base CCSIDs
	Extended code page translate tables provided by ISPF
	Example of user-modifiable ISPF translate table

	Appendix A. Character translations for APL, TEXT, and Katakana
	Appendix B. ISPTTDEF specify translate table set
	Appendix C. Diagnostic Tools and Information
	ISPF debug tools
	Panel trace command (ISPDPTRC)
	Trace format
	Panel trace header
	Panel display
	Panel processing trace

	File tailoring trace command (ISPFTTRC)
	Trace format
	File tailoring trace header
	File tailoring processing trace

	Diagnostic information
	Using the ENVIRON system command
	ENVIRON command syntax and parameter descriptions
	Abend panels provide diagnostic information
	ISPF statistics entry in a PDS directory

	Common problems using ISPF
	Messages
	Unexpected output

	Abend codes and information
	Terminal I/O error codes
	Register linkage conventions
	Obtaining message IDs

	Appendix D. Dialog variables
	PDF non-modifiable variables

	Appendix E. System variables
	Configuration utility
	Time and date
	General
	ZSCRNAME examples
	Example 1
	Example 2
	Example 3

	Terminal and function keys
	Scrolling
	PRINTG command
	Table display service
	LIST service
	LOG and LIST data sets
	Dialog error
	Tutorial panels
	Selection panels
	DTL panels or panels containing a)PANEL section

	Appendix F. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

