
PB Portable Batch SystemS

External Reference Specification

Albeaus Bayucan
Robert L. Henderson

Casimir Lesiak
Bhroam Mann

Tom Proett
Dave Tweten †

MRJ Technology Solutions
2672 Bayshore Parkway

Suite 810
Mountain View, CA 94043

http://pbs.mrj.com

Release: 2.2
Printed: November 30, 1999

† Numerical Aerospace Simulation Systems Division, NASA Ames Research Center, Moffett Field, CA

Preface PBS ERS

PBS ERS Preface

Portable Batch System (PBS) Software License

Copyright © 1999, MRJ Technology Solutions.
All rights reserved.

Acknowledgment: The Portable Batch System Software was originally developed as a joint
project between the Numerical Aerospace Simulation (NAS) Systems Division of NASA Ames
Research Center and the National Energy Research Supercomputer Center (NERSC) of
Lawrence Livermore National Laboratory.

Redistribution of the Portable Batch System Software and use in source and binary forms,
with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright and acknowledgment
notices, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright and acknowledg-
ment notices, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

- All advertising materials mentioning features or use of this software must display the
following acknowledgment:

This product includes software developed by NASA Ames Research Center,
Lawrence Livermore National Laboratory, and MRJ Technology Solutions.

DISCLAIMER OF WARRANTY

THIS SOFTWARE IS PROVIDED BY MRJ TECHNOLOGY SOLUTIONS ("MRJ")
"AS IS" WITHOUT WARRANTY OF ANY KIND, AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, AND NON-INFRINGEMENT ARE EXPRESSLY DISCLAIMED.

IN NO EVENT, UNLESS REQUIRED BY APPLICABLE LAW, SHALL MRJ,
NASA, NOR THE U.S. GOVERNMENT BE LIABLE FOR ANY DIRECT DAM-
AGES WHATSOEVER, NOR ANY INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This license will be governed by the laws of the Commonwealth of Virginia, without reference
to its choice of law rules.

This product includes software developed by the NetBSD Foundation, Inc. and its contribu-
tors.

pf1

Preface PBS ERS

PBS Revision History

Revision 1.0 June, 1994 — Alpha Test Release

Revision 1.1 March 15, 1995

...

Revision 1.1.9 December 20, 1996

Revision 1.1.10 July 31, 1997

Revision 1.1.11 December 19, 1997

Revision 1.1.12 July 9, 1998

Revision 2.0 October 14, 1998

Revision 2.1 May 12, 1999

Revision 2.2 November 30, 1999

pf2

PBS ERS Preface

Table of Contents

PBS License Agreement .. pf1
Revision History .. pf2
1. Introduction ... 1-1
1.1. Purpose ... 1-1
1.2. Glossary ... 1-1
1.3. Document Conventions ... 1-4
1.4. Overview of The Portable Batch System 1-4
1.5. PBS Features ... 1-5
1.5.1. Interactive Batch Jobs .. 1-5
1.5.2. Job Prologue and Epilogue Scripts ... 1-6
1.5.3. File Stage In and Stage Out ... 1-6
1.6. Acknowledgements ... 1-8
2. General Specifications ... 2-1
2.1. Attribute Types .. 2-1
2.2. Batch Jobs .. 2-1
2.2.1. Public Job Attributes .. 2-2
2.2.2. Privileged Job Attributes .. 2-4
2.2.3. Read-Only Job Attributes ... 2-4
2.2.4. Job Private Attributes ... 2-6
2.2.5. Job Internal Data Items .. 2-6
2.2.6. Interactive Batch Jobs .. 2-6
2.3. Queues ... 2-6
2.3.1. Queue Public Attributes ... 2-7
2.3.2. Queue Read-Only Attributes .. 2-9
2.4. Batch Server Attributes .. 2-10
2.4.1. Server Public Attributes ... 2-10
2.4.2. Read Only Server Attributes .. 2-13
2.4.3. Server Sub-Objects .. 2-13
2.5. PBS Files ... 2-13
2.6. Job Selection / Scheduling .. 2-15
2.7. General Identifiers ... 2-17
2.7.1. Account String ... 2-17
2.7.2. Attribute Name ... 2-18
2.7.3. Destination Identifiers .. 2-18
2.7.4. Default Server ... 2-18
2.7.6. Job Identifiers .. 2-18
2.7.8. Resource Name .. 2-19
2.7.10. User Name ... 2-19
3. Batch Server Functions ... 3-1
3.1. Client Service Requests .. 3-1
3.1.1. Server Management .. 3-1
3.1.2. Queue Management .. 3-2
3.1.3. Job Management ... 3-2
3.2. Server to Server Requests .. 3-8
3.2.1. Track Job Request ... 3-8
3.2.2. Synchronize Job Starts ... 3-8
3.2.3. Job Dependency ... 3-9
3.3. Deferred Services ... 3-10
3.3.1. Job Scheduling ... 3-10
3.3.2. File Staging .. 3-11
3.3.3. Job Initiation ... 3-11
3.3.4. Job Routing .. 3-12

pf3

Preface PBS ERS

3.3.5. Job Exit .. 3-12
3.3.6. Job Aborts .. 3-13
3.3.7. Timed Events ... 3-13
3.3.8. Event Logging .. 3-13
3.3.9. Accounting ... 3-14
3.4. Resource Management .. 3-15
3.4.1. Non Reservable Resources .. 3-15
3.4.2. Reservable Resources .. 3-16
3.4.3. Resource Limits ... 3-16
3.4.4. Types of Resources ... 3-16
3.4.5. Interactive Session Management ... 3-33
4. Interface Library ... 4-1
4.1. Interface Library Overview ... 4-1
4.2. Interface Library Routines ... 4-2
4.2.1. Alter Job ... 4-3
4.2.2. Connect with Server .. 4-5
4.2.3. Delete Job .. 4-6
4.2.4. Disconnect from Server ... 4-7
4.2.5. Get Error Message Text .. 4-8
4.2.6. Hold Job ... 4-9
4.2.7. Locate Job .. 4-10
4.2.8. Manager Server ... 4-11
4.2.9. Move Job .. 4-13
4.2.10. Message Job ... 4-14
4.2.11. Order Job ... 4-15
4.2.12. Rerun Job ... 4-16
4.2.13. Release Job .. 4-17
4.2.14. Run Job .. 4-18
4.2.15. Select Job ... 4-19
4.2.16. Status of Selected Jobs .. 4-22
4.2.17. Signal Job .. 4-25
4.2.18. Stage In Files ... 4-26
4.2.19. Status Job .. 4-27
4.2.20. Status Queue ... 4-29
4.2.21. Status Server ... 4-31
4.2.22. Submit Job ... 4-33
4.2.23. Terminate Server ... 4-36
4.2.24. Query Resource Availability ... 4-37
4.2.25. Make and Release Resource Reservations 4-39
4.2.26. Node Status ... 4-40
5. User Commands ... 5-1
5.1. General Specifications of User Commands 5-1
5.1.1. Error Checking .. 5-1
5.1.2. Directing Requests to Correct Server ... 5-1
5.1.3. Operands .. 5-1
5.2. General User Commands .. 5-1
5.2.1. Alter Job ... 5-2
5.2.2. Delete Job .. 5-9
5.2.3. Hold Job ... 5-10
5.2.4. Move Job .. 5-12
5.2.5. Message Job ... 5-13
5.2.6. Order Jobs .. 5-14
5.2.7. Rerun Job ... 5-15
5.2.8. Release Job .. 5-16

pf4

PBS ERS Preface

5.2.9. Select Jobs ... 5-18
5.2.10. Signal Job .. 5-22
5.2.11. Status Jobs, Queues, or Server ... 5-24
5.2.12. Submit Job ... 5-30
5.2.13. Convert NQS Scripts ... 5-41
5.2.14. BASL Compiler .. 5-42
5.2.15. Graphical User Interface: xpbs ... 5-81
5.2.16. Graphical User Interface: xpbsmon .. 5-90
6. Operator Commands ... 6-1
6.1. Initiate Server Operation ... 6-2
6.2. Initiate Execution Mini-server (MOM) Operation 6-5
6.3. Disable Queue .. 6-9
6.4. Enable Queue ... 6-10
6.5. Run Job ... 6-11
6.6. Start Queue .. 6-12
6.7. Stop Queue ... 6-13
6.8. Terminate Server Operation .. 6-14
7. Administrator Commands .. 7-1
7.1. PBS Job Schedulers ... 7-2
7.2. Node Management .. 7-17
7.3. Manage Server ... 7-18
8. The PBS Job Scheduler ... 8-1
8.1. Scheduler Overview ... 8-1
8.2. The Scheduling Cycle .. 8-1
8.3. The Tcl Scheduler ... 8-1
8.4. The C Scheduler .. 8-1
9. Resource Monitor .. 9-1
9.1. Resources .. 9-1
9.1.1. SunOS Resources .. 9-2
9.1.2. Digital Unix ... 9-3
9.1.3. FreeBSD Resources ... 9-3
9.1.4. SGI Resources .. 9-3
9.1.5. Solaris Resources ... 9-3
9.1.6. Fujitsu Resources .. 9-3
9.1.7. Cray Unicos Resources .. 9-3
9.1.8. Cray Unicos MK 2 Resources .. 9-5
9.1.9. IBM SP ... 9-5
9.2. Libraries .. 9-5
9.2.1. Resource Monitor Library ... 9-5
9.2.2. Task Management Library ... 9-5
9.2.3. Reliable Packet Protocol Library .. 9-9
10. Security ... 10-1
10.1. Authorization ... 10-1
10.1.1. Server Access ... 10-1
10.1.2. Queue Access ... 10-2
10.1.3. Job Access .. 10-2
10.1.4. Root Jobs .. 10-3
10.2. Authentication ... 10-3
11. Network Protocol .. 11-1
11.1. General DIS Data Encoding ... 11-1
11.2. DIS Encoded Batch Requests ... 11-3
11.2.2. Batch Reply Format .. 11-5
11.3. Description of Data Exchange Format 11-6
11.4. Request Format ... 11-6

pf5

Preface PBS ERS

11.5. Reply Format ... 11-7
11.6. Sequence of Subrequests .. 11-7
11.6.1. Open Connection .. 11-7
11.6.2. Service Requests .. 11-7
11.6.3. Connection Closure .. 11-7
11.7. Description of Service Request ... 11-7
11.7.1. Queue Job Request .. 11-7
11.7.2. Delete Job Request ..11-10
11.7.3. Hold Job Request ...11-10
11.7.4. Modify Job Request ... 11-11
11.7.5. Move Job Request .. 11-11
11.7.6. Message Job Request ... 11-11
11.7.7. Rerun Job Request .. 11-11
11.7.8. Select Jobs Request ... 11-11
11.7.9. Signal Job Request .. 11-11
11.7.10. Status Job Request ..11-12
11.7.11. Status Queue Request ...11-12
11.7.12. Status Server Request ...11-12
11.7.13. Server Shutdown Request ...11-12
11.7.14. Locate Job Request ..11-12
11.7.15. Track Job Request ...11-12
11.7.16. Run Job ..11-13
11.7.17. Manage Request ..11-13
11.7.18. Register Dependent Job ..11-13
12. Tools .. 12-1
12.1. Pbs_tclsh ... 12-1
12.2. Pbs_wish ... 12-1
13. Task Manger ... 13-1

pf6

PBS ERS Preface

1. Introduction

1.1. Purpose

This document is the Portable Batch System External Reference Specification. It describes
the overall design of the Portable Batch System, the PBS, and details its external behaviors
and interfaces. User, Operator, and Administrator commands are described. The interface
library which is used by the commands and also may be used to extend the functionality of
PBS is described, as is the application level data exchange protocol (network protocol).

NOTICE

However, this system is currently in development and the interfaces and function-
ality described are subject to change during the course of development.

Suggested reading of sections of the ERS is as follows:

General User
Users who just wish to make use of the common features of PBS to submit, monitor and
control jobs are advised to read ERS chapters 1, 2.2, 2.7, 3.2 through 3.4, and 5.

Programmers
Programmers wishing to add an interface to PBS to their code should read the sections
listed for the general user and chapter 4.

Operators
Batch system operator should read the sections listed under general user above plus
chapters 6 and 7.

Administrators
Batch system administrators or managers are advised to read the entire ERS with the
possible exception of chapters 4 and 11.

The requirements for PBS are given in the document Portable Batch System Requirement
Specifications. The internal design of each component of PBS is specified in the document
Portable Batch System Internal Design Specification.

1.2. Glossary

Account is an arbitrary character string which may have meaning to one or more
hosts in the batch system. Frequently, account is used as a grouping for
charging for the use of resources.

Administrator See Manager.

Attribute is an inherent characteristic of the parent object. Typically, this is a data
item whose value affects the operation or behavior of the object and is set-
table by owner of the object. For example, the user may supply values for at-
tributes of a job.

Batch or batch processing, is the capability of running jobs outside of the interac-
tive login session. In this document, batch implies a more complex subsys-
tem which provides for additional control over job scheduling and resource
contention.

Batch Server is a persistent subsystem (daemon) upon a single host which provides batch
processing capability.

Batch System is a set of batch servers that are configured for processing. The system may
consist of multiple hosts, each with multiple servers.

Chapt Revision: 2.2 1-1

Introduction PBS ERS

Cluster A complex made up of cluster nodes.

Complex A collection of nodes managed by one batch system. A complex may be made
up of nodes that are allocated to only one job at a time or of nodes that have
many jobs executing on each at once or a combination of both. A complex
may be made up of a set of workstations, multiple cpu systems, or one or
more parallel systems.

A queue complex in NQS was a set of queues within a batch server. The pur-
pose of a complex was to provide additional control over resource usage. The
advanced scheduling features of PBS eliminates the requirement for queue
complexes.

Cluster Node A node whose allocation units (Virtual processors) are allocated specifically |
to one job at a time (see .I "exclusive node"), or a few jobs (see temporarily- |
shared nodes). This type of node may also be called space shared . Hosts |
that are timeshared among many jobs are called ‘‘timeshared.’’ |

In prior versions of PBS, the entire node was allocated to a job. In this ver- |
sion, one or more virtual processors (see definition in this glossary) may be |
declared. Each virtual processor is allocated as an independent unit.

Destination is the location within the batch system where the job is sent for processing or
executing. IN PBS, a destination may uniquely define a single queue at a
single batch server or it may map into many locations.

Destination Identifier
is a string which names the destination. It is in two parts and has the for-
mat

queue@server

where server is the name of a batch server and queue is the string identify-
ing a queue on that server.

Exclusive NodesAn exclusive node is one whose virtual processors are used by one and only |
one job at a time. The processors of a set of nodes is assigned exclusively to a |
job for the duration of that job. This is typically done to improve the perfor- |
mance of message passing programs.

Temporarily-shared Nodes
A temporarily-shared node is one in which one or more of the virtual proces- |
sors are temporarily shared by multiple jobs. If several jobs request multiple
temporarily-shared nodes, some nodes may be allocated commonly to both
job and some may be unique to one of the jobs. When a node is allocated as a
temporarily-shared node, it remains so until all jobs using it are terminated.
Then the node may be next allocated again for temporarily-shared use or for
exclusive use.

File Staging is the movement of files between a specified location and the execution host.
See "Stage In" and "Stage Out" .

Group is a collection of system users (see Users). A user must be a member of a
group and may be a member of more than one. Within Unix and POSIX sys-
tems, membership in a group establishes one level of privilege. Group mem-
bership is also often used to control or limit access to system resources.

Hold is an artificial restriction which prevents a job from being selected for pro-
cessing. There are three types of holds, User which is applied by the job own-
er, Other (or operator) which is applied by the batch operator or administra-
tor, and System which is applied by the system itself or the batch system ad-
ministrator.

1-2 Chapt Revision: 2.2

PBS ERS Introduction

Job or batch job is the basic execution object managed by the batch subsystem.
A job is a collection of related processes which is managed as a whole. A job
can often be thought of as a shell script. In POSIX terms, a job is a session
group. A session is a processes group the member processes cannot leave.

Manager or Batch System Manager is a person authorized to use all restricted capa-
bilities of the batch system. The manager may act upon the the batch sys-
tem, queues, or jobs. Also called the administrator.

Node Within PBS, the term Node is used to mean a computational unit, one or
more of which can be allocated to a job in a shared or exclusive manner. A
node is characterized by (a) one or more virtual processors, (b)a unique mem-
ory address space, (c) and operating system image, (d) one or more IP ad-
dresses, and (e) a PBS execution server (pbs_mom). In prior versions of PBS, |
a node could only be allocated as a whole. Starting with version 2.2, pieces |
of a node, called virtual processors, VPs, may be defined and allocated indi- |
vidually. This is typically done where the node is a Shared Multiple Proces- |
sor, SMP, system. References to allocating a node may still be found and |
should be taken to mean allocating a virtual processor. If a node only has |
one virtual processor defined, then of course, allocating that processor is syn- |
onymous with allocating the node itself. |

If VPs on a set of nodes are allocated in an exclusive manner to a job, no oth- |
er job may use that set of processors during the execution of the job to which |
the nodes are assigned. This is often called Space Sharing If a set of VPs on |
a set nodes are allocated in a shared manner, multiple jobs may have pro- |
cesses executing on the set at the same time.

Operator or Batch Operator is a person authorized to use some but not all of the re-
stricted capabilities of the batch system.

Owner of a job is the user who submitted the job to the batch system.

PBS is short for Portable Batch System .

POSIX refers to the various standards being developed by the "Technical Committee
on Operating Systems and Application Environments of the IEEE Computer
Society" under standard P1003. There are a number of subcommittees un-
der POSIX, those of interest to this project were:

POSIX.1 System Application Program Interface (the system calls).

POSIX.2 The command shell language.

POSIX.3 Test Methods

POSIX.10 Super Computing Profile

POSIX.12 Protocol Independent Interfaces (one of the many network work-
ing groups)

POSIX.14 Multiprocessor Working Group

POSIX.15 Batch Queuing Extensions. This standard has been approved as
1003.2d and is the basis of the PBS external design.

Queue is a collection of jobs (or job related tasks) within the batch queuing system.
Each queue has a set of associated attributes which determine what actions
are performed upon each job within the queue. Typical attributes include
queue name, queue priority, resource limits, destination(s) and job count lim-
its. Selection/scheduling of jobs is implementation defined. The use of the
term "queue" does not imply the ordering is "first in, first out."

Rerunable If a batch job can be terminated and its execution restarted from the begin-
ning without harmful side effects, then the job is said to be rerunable.

Chapt Revision: 2.2 1-3

Introduction PBS ERS

Stage In is to move a file or files to the host prior to the batch job beginning execution.

Stage Out is to move a file or files off of the host after the batch job completes execu-
tion.

Timeshared In our context, to timeshare is to always allow multiple jobs to run concur-
rently on an execution host or node. A timeshared node is a node on which
jobs are timeshared. Often the term host rather than node is used in con-
junction with timeshared, as in timeshared host . If the term node is used
without the timeshared prefix, the node is a cluster node which is allocated
either exclusively or temporarily-shared.

User is a user of the compute system. Each user is identified by a unique charac-
ter string, the user name; and by a unique number, the user id.

User ID is a numeric identifier uniquely assigned to each user. Privilege to access
system resources and services is typically established by the user id.

Virtual Processor
An allocation unit that exists within a cluster (space-shared) node. Virtual
processors, VPs, are allocated to jobs on an exclusive or temporarily shared
basis. Virtual processors may or may not correspond in number to the num-
ber of real processors on the node. Fewer VPs than real processors may be
defined to keep the batch load on the node down. More VPs may be defined
to allow for over-subscription of the cpu resources.

1.3. Document Conventions

The following font conventions are used throughout this document.

New terms are introduced in italicized text.

Names of commands, library functions, and signals are shown in bold, serifed text.

[Error values] are shown in a sans-serif typeface and [inside brackets].

Option Argument and operands are shown as italic.

Attr ibute or data item names associated with jobs, queues, or the server are shown in a bold, sans-serif
typeface.

Nonspecific values of attribute or data items are shown in a sans-serif typeface.

{Symbolic Constant} values, typically to be found in header files are shown in a sans-serif typeface
and {inside braces }.

Examples of formats and type-ins are in the fixed width typewriter font.

Unresolved issues or areas which may require modification as the implementation progresses
are called out by a note in a quoted paragraph, left and right indents, and are headed with
the phrase ‘‘Author Note:’’. As these issues become resolved, this document will be updated
and those sections removed.

1.4. Overview of The Portable Batch System

In the past, Unix systems were used in a totally interactive manner. Background jobs were
just processes with their input disconnected from the terminal. However, as Unix moved on-
to larger and larger processors, the need to be able to schedule tasks based on available re-
sources increased in importance. The advent of networked compute servers, smaller general
systems, and workstations lead to the requirement of a networked batch capability.

The purpose of the PBS system is to provide additional controls over initiating or scheduling
execution of batch jobs; and to allow routing of those jobs between different hosts. The batch
system allows a site to define and implement policy as to what types of resources and how
much of each resource can be used by different jobs. The batch system also provides a mech-
anism with which a user can insure a job will have access to the resources required to com-

1-4 Chapt Revision: 2.2

PBS ERS Introduction

plete.

The batch system is made up of a number of components, the server and clients such as user
commands. A server component manages a number of different objects, such as queues or
jobs. Each object consists of a number of data items or attributes. The attributes are charac-
terized as public attributes, read-only public attributes, private attributes, and internal at-
tributes.

Public attributes have values which are supplied by or can be changed by client requests.
The behavior of the object changes when the value of an attribute is changed. The values of
public attributes are available upon request to clients. Read-only attributes are public at-
tributes whose values are available as status to clients, but the clients cannot change the val-
ues. Throughout this document, public and read-only attributes will be commonly referred to
simply as ‘‘attributes’’. Private attributes are those data items which are permanent. They
are passed as part of the object when the object changes ownership, for example when a job
moves between servers. Private items are generally not made available to client programs.
Internal data items are not visible, are not passed with the object between servers, and de-
pend on the server implementation. Public and private attributes will be described in this
ERS. Except in special cases, internal data items will not be described.

Typical interaction between the components is based upon the client - server model, with
clients making (batch) requests to servers and the servers performing work on behalf of the
clients. Clients do not create or modify objects directly, but depend upon the server which
manages those objects.

A batch server is a persistent process or set of processes, such as a daemon. The batch server
manages batch objects such as queues and jobs. It provides batch services like creating,
routing, executing, modifying, or deleting jobs for batch clients. A batch server may at times
request services of other servers. During that time, the server is acting in the role of a client.

User, operator, and administrator commands are batch clients. They allow users of the batch
system to request batch services via the command line. While the commands may appear to
accomplish certain services, they actually request and obtain the services from a batch server
by means of a batch request.

The Interface Library provided as part of PBS supplies the interface to a server for the sup-
plied commands and allows the development of other application clients.

1.5. PBS Features

This section describes some of the special features of PBS.

1.5.1. Interactive Batch Jobs

With a normal batch job, the input to the job is the script supplied via the qsub command and
the output and error streams are spooled to disk files and delivered after the job completes.
PBS provides support for scheduling and running jobs that require interactive user access to
the input and output of the job during run time. This access is often required to run debug-
gers or other programs requiring feedback as part of a job that must have scheduled access to
scarce hardware.

A PBS interactive job is submitted with the qsub command. If the -I option is specified on
the qsub command line or in a #PBS directive in the script file [or if -W interactive=true
is specified on the command line or in a directive] the job is a interactive job. A job may de-
termine that it is an interactive batch job by the value of the environment variable PBS_EN-
VIRONMENT. Instead of the normal value of PBS_BATCH, it will have a value of
PBS_INTERACTIVE. [Sessions not created by PBS do not have the PBS_ENVIRONMENT
variable set.]

After submitting the job to the batch system, qsub remains active waiting for the job to con-
nect over the network. When the job starts, data written to standard output and error is

Chapt Revision: 2.2 1-5

Introduction PBS ERS

sent to qsub which displays it on its terminal (qsub’s standard output). The qsub command
reads its standard input and passes the data to the job as the job’s standard input. The job is
connected via a pseudo tty, so job control signals and special characters are processed by the
job, not the local qsub session. Since the job’s stardard input is from the terminal, via qsub,
the script is not executed as is a normal script. However, any #PBS directives in the script
are processed by qsub and sent with the job. Therefore, job attributes and resources require-
ments may be specified in the script as with a normal batch job.

While qsub is waiting for the job to start, it will recognize the interrupt signal typically gen-
erated by entering CNTL-C on the keyboard. Qsub will ask if the user wishes to exit. If the
user responds with yes (or any string starting with a ’y’) qsub will send a request to the serv-
er asking that the batch job be aborted. Qsub will also periodically check on the batch job. If
qsub finds that the job has been deleted, qsub will inform the user and exit.

When the job starts execution, qsub will inform the user and begin to relay the input, output
and error streams. Control keys are passed to the job. Thus a CNTL-Z will suppend the job,
not the qsub command, and CNTL-C will cause a interrupt signal to the job, not to qsub.
During this time, qsub will three escape commands, if the line begins with:

˜. Qsub will exit. This will end the job.

˜ˆZ (CNTL-Z) Qsub will suspend itself, the job remains running. Neither input nor output
is transferred. The user may issue commands to the local shell.

˜ˆY (CNTL-Y) Qsub will suspend the part of itself that sends input to the job. This allows
the user to issue commands to the local shell while still receiving the output of the job.

Note, the last two escape lines do not work if the local shell does not support job control, e.g.
is the Bourne shell sh.

When the job terminates, qsub will exit returning control to the local shell.

1.5.2. Job Prologue and Epilogue Scripts

PBS provides for the execution of two administrative supplied scripts with each job. The
prologue script is run immediately before a job is executed, the epilogue script is run immedi-
ately after. Both scripts are run with root privilege and may used to place a ‘‘banner ’’ on the
job’s output or establish part of the evironment for the job such as creating temporary direc-
tories or cleaning up after the job.

1.5.3. File Stage In and Stage Out

PBS provides for files to be staged, or moved, before and after a job is run. The user specifies
a ‘‘remote’’ location and name of the file and the ‘‘local’’ name when submitting the job. The
remote name includes a host name which is typically a remote host, but may be the local exe-
cution host. If the file is local to the execution host, /bin/cp is used to copy the file, if the file
is remote, rcp is used.

Staging out of files occures as part of the post job processing. The job is shown to be in exit-
ing, ’E’, state during the staging out. Once the files are staged out to their destination, they
are deleted from the execution host. If the user wishes to retain the files on the execution
host, s/he should link the file to second file name using the ln (link) command.

Staging in files is a bit more complex. A decision must be made about when to begin to stage
in files for a job. The files must be available before the job executes. The amount of time that
will be required to copy the files is unknown to PBS, that being a function of file size and net-
work speed. If file in-staging is not started until the job has been selected to run when the
other required resources are available, either those resources are ‘‘wasted’’ while the stage in
occurs, or another job is started which takes the resources away from the first job, and might
prevent it from running. If the files are staged in well before the job is otherwise ready to
run, the files may take up valuable disk space need by running jobs.

1-6 Chapt Revision: 2.2

PBS ERS Introduction

PBS provides two ways that file in-staging can be initiated for a job. If a run request is re-
ceived for a job with a requirement for staging-in files, the staging in operation is begun and
when completed, the job is run. Or, a specific stage-in request may be received for a job, see
pbs_stagein(3B), in which case the files are staged in but the job is not run. When the job is
run, it begins execution immediately because the files are already there.

In either case, if the files could not be staged-in for any reason, the job is placed into a wait
state with a ‘‘execute at’’ time {PBS_STAGEFAIL_WAIT }, 30 minutes, in the future. A mail
message is sent to the job owner requesting that s/he look into the problem. The reason the
job is changed into wait state is to prevent the scheduler from constantly retrying the same
job which likely would keep on failing.

Figure 1−1 shows the (sub)state changes for a job involving file in staging. The scheduler
may note the substate of the job and chose to perform pre-staging via the pbs_stagein() call.
The scheduler developer should carefully chose a stage in approach based on factors such as
the likely source of the files, network speed, and disk capacity.

Chapt Revision: 2.2 1-7

Introduction PBS ERS

stage in
failed

stage in
failed

11 - Job Queued, has Stage-in requirement
10 - Job Queued, No Stage-in requirements

14 - In Staging Files only

15 - In Staging Files and Execute
37 - Stage in Failed (Wait state)
16 - Stage in Completed
41 - Prerun (Sending job to MOM)
42 - Running (Mom started job)

14 15

16

41

42

complete

run job request

stage in
stage In
request

mom acknowledges

stage in complete

run
request

11 10

stage in request
run job request

time

37

Substate Definitions

Figure 1−1: Job Substate Changes During File Stage In

1.6. Acknowledgements

Much assistance to the PBS project was given in the early days in terms of man power and
ideas by both Lawrence Livermore Nation Laboratory and by the National Energy Research
Supercomputer Center . Special thanks go to Bruce Kelly and Clark Streeter of NERSC, who
directly assisted in the development of PBS. Additional help was provided by Kent Crispin
and Terry Heidelberg of LLNL.

1-8 Chapt Revision: 2.2

PBS ERS Introduction

The supplied code for the mom_rcp utility was taken from the bsd4.4-Lite distribution. This
code is copyrighted by The Regents of the University of California . The complete copyright
notice and right to modify and redistribute the software is contained in the source code.

The Red Hat Linux port was done by the Pittsburgh Supercomputing Center under funding
by the National Institute of Standards and Technology , NIST. Special thanks go to John
Kochmar and Rob Pennington of PSC for doing the port.

The ports of PBS to Digitial Equipment Corporation Unix on the Alpha workstation and to
HP-UX were provided by Dirk Grunwald at University of Colorado, Boulder .

No list of acknowledgements for PBS would possibly be complete without special recognition
of the first two beta test sites and the brave individuals who were willing to try PBS.
Thomas Milliman of the Space Sciences Center of the University of New Hampshire was the
first beta tester. Wendy Lin of Purdue University was the second tester and holds the honor
of submitting more problem reports than anyone else outside of NASA. Without you two,
the project would not be so successful.

Chapt Revision: 2.2 1-9

Introduction PBS ERS

[Page intentionally left bank.]

1-10 Chapt Revision: 2.2

PBS ERS Introduction

2. General Specifications
A server is a persistent process, a daemon, which manages several classes of objects and pro-
vides batch services. Each class of object has a set of attributes (variables) which contain in-
formation that is specific to that object. In the following sections, the objects and the services
are described.

2.1. Attribute Types

Each attribute associated with an object has a defined data type. The following is a list of
the general data types currently supported.

Boolean
used for true/false yes/no variables. The true state may be input as True , TRUE, y , Y, or
1. The false state may be input as False , FALSE, n, N, or 0. Unset boolean attributes
are generally treated as if set to false.

Integer
used for numeric variables. The input data is a numeric string specifying a value which
will fit into a long integer on the host system. Some attributes will place additional re-
strictions on the value range.

Size used for size of disk or memory related values. The input data is in the form of a nu-
meric string with optional suffix. The suffix consist of an optional scale factor character
kKmMgGtTand an optional byte or word indicator bBwW.

Character
used for types containing a single alphanumeric character.

String
used for types requiring a single null terminated character string. Additional format
requirements may be placed on the string for a specific attribute.

Array of Strings
used where the attribute value is a series of strings. The value is input as a set of com-
ma separated stings. The value at the human interface level (command level) often re-
quires quoting.

List used for those attributes requiring a linked list of data structures. The input data is
typically of the same form as the ‘‘array of strings’’ above.

Resources
is a special case of list for resource limit or resource usage items.

Access Control List
is a special case of list for access control lists. More information on the access control
lists can be found in the ERS chapter ‘‘Security’’, section ‘‘Authorization’’.

2.2. Batch Jobs

A batch job is a primary object managed by a batch server. From the user’s view point, a job
is a file which is submitted via the qsub command. Typically, this file is a shell script and is
interpreted by a command shell. In fact the file may contain any data and the user can re-
quest any valid program to process the file as its standard input. In addition to the shell
script, a batch job consists of many attributes which affect the processing of the job. These
are covered in the next section.

The server maintains an internal representation of the job and a copy of that representation
as a file on disk to insure the job information is not lost across server instantiations.

Chapt Revision: 2.1 2-1

General Specification PBS ERS

Jobs are created by the server upon receipt and successful processing of a Queue Job batch
request. Jobs are maintained by the server until (1) the job executes and terminates, (2) the
job is deleted by a Delete Job batch request, (3) the job is moved or routed to another server,
or (4) the server determines it is impossible to process the job and the job is aborted .

When a job is created, it is named with a job_identifier by the server which created the job.
The job_identifier is of the form

sequence_number.server_name

where the sequence_number is a unique number within the creating server and serv-
er_name is the name of that server.

2.2.1. Public Job Attributes

A batch job has the following public attributes shown in the following list. The attributes
marked with the section symbol § are required by POSIX 1003.2d: If an attribute is unset,
the indicated default value is assumed.

Account_Name §
Used for accounting on some hosts. A server may not use the string, but allowances for
it must be made. Format: string; default value: none, not used. [internal type: string]

Checkpoint §
If supported by the server implementation and the host operating system, the check-
point attribute determines when checkpointing will be performed by PBS on behalf of
the job. The legal values for checkpoint are described under the qalter and qsub com-
mands. Format: the strings "n", "s", "c", "c=mmmm"; default value: "u", which is un-
specified. [internal type: string]

dependThe type of inter-job dependencies specified by the job owner. Format: "type:jobid[,jo-
bid...]"; default value: no dependencies. [internal type: special, dependency]

Error_Path §
The final path name for the file containing the job’s standard error stream. See the
qsub and qalter command description for more detail. Format: "[hostname:]path-
name"; default value: (job_name).e(job_number). [internal type: list]

Execution_Time §
The time after which the job may execute. The time is maintained in seconds since
Epoch. If this time has not yet been reached, the job will not be scheduled for execution
and the job is said to be in wait state. Format: "[[CCwYY]MMDDhhmm[.ss]"; default
value: time 0, no delay. [internal type: integer]

group_list §
A list of group_names@hosts which determines the group under which the job is run
on a given host. [internal type: array of strings] When a job is to be placed into execu-
tion, the server will select a group name according to the following ordered set of rules:

1. Select the group name from the list for which the associated host name matches the
name of the execution host.

2. Select the group name which has no associated host name, the ‘‘wild card name.’’

3. Use the login group for the user name under which the job will be run.

Format: "group_name[@host][,group_name[@host]...]". [internal type: array of strings]

Hold_Types §
The set of holds currently applied to the job. If the set is not null, the job will not be
scheduled for execution and is said to be in the hold state. Note, the hold state takes
precedence over the wait state. Format: string made up of the letters ’u’, ’s’, ’o’; default
value: no hold. [internal type: string]

2-2 Chapt Revision: 2.1

PBS ERS General Specification

Job_Name §
The name assigned to the job by the qsub or qalter command. Format: string up to 15
characters, first character must be alphabetic; default value: the base name of the job
script or STDIN. [internal type: string]

Join_Path §
If the Join_Paths attribute is {TRUE}, then the job’s standard error stream will be
merged, inter-mixed, with the job’s standard output stream and placed in the file deter-
mined by the Output_Path attribute. The Error_Path attribute is maintained, but ignored.
Format: boolean, values accepted are "True", "TRUE", "true", "Y", "y", "1", "False",
"FALSE", "false", "N", "n", "0"; default value: false. [internal type: string]

Keep_Files §
If Keep_Files contains the values "o" {KEEP_OUTPUT } and/or "e" {KEEP_ERROR } the corre-
sponding streams of the batch job will be retained on the execution host upon job termi-
nation. Keep_Files overrides the Output_Path and Error_Path attributes. Format: "o", "e",
"oe" or "eo"; default value: no keep, return files to submission host. [internal type:
string]

Mail_Points §
Identifies at which state changes the server will send mail about the job. Format:
string made up of the letters ’a’ for abort, ’b’ for beginning, and default value: ’a’, send
on job abort. [internal type: string]

Mail_Users §
The set of users to whom mail may be sent when the job makes certain state changes.
Format: "user@host[,user@host]"; default value: job owner only. [internal type: array of
strings]

Output_Path §
The final path name for the file containing the job’s standard output stream. See the
qsub and qalter command description for more detail. Format: see error_path, default
value: (job_name).o(job_number). [internal type: string]

Priority §
The job scheduling priority assigned by the user. Format: "[+|-]nnnnn"; default value:
undefined. [internal type: integer]

Rerunable §
The rerunable flag given by the user. Format: "y" or "n", see Join_Path; default value: y,
job is rerunable. [internal type: boolean]

Resource_List §
The list of resources required by the job. The resource list is a set of name=value
strings. The meaning of name and value is server dependent. The value also estab-
lishes the limit of usage of that resource. If not set, the value for a resource may be de-
termined by a queue or server default established by the administrator. Default value:
no usage or no limit depending on specific resource. [internal type: resource]

Shell_Path_List §
A set of absolute paths of the program to process the job’s script file. The list is in the
format: "path[@host][,path[@host]...]". If this is null, then the user’s login shell on the
host of execution will be used. Default value: null, login shell. [internal type: array of
strings]

stagein
The list of files to be staged in prior to job execution. Format: local_path@re-
mote_host:remote_path [internal type: array of strings]

stageout
The list of files to be staged out after job execution. Format: local_path@re-
mote_host:remote_path [internal type: array of strings]

Chapt Revision: 2.1 2-3

General Specification PBS ERS

User_List §
The list of user@hosts which determines the user name under which the job is run on
a given host. [internal type: array of strings] When a job is to be placed into execution,
the server will select a user name from the list according to the following ordered set of
rules:

1. Select the user name from the list for which the associated host name matches the
name of the execution host.

2. Select the user name which has no associated host name, the ‘‘wild card name.’’

3. Use the Job_Owner as the user name.

Default value: job owner name. [internal type: array of strings]

Variable_List §
This is the list of environment variables passed with the Queue Job batch request. For-
mat: "name=value[,name=value...]". [internal type: array of strings]

2.2.2. Privileged Job Attributes

The following attributes require system, manager, or operator privilege to set. They are visi-
ble to clients depending on privilege as noted.

comment
An attribute for displaying comments about the job from the system. Visible to any
client. Format: any string; default value: none. [internal type: string]

sched_hint
This attribute is present when the job is a member of a synchronous dependency set. It
is set when the hold is released on the job. The value is {SYNC_SCHED_HINT_FIRST } (1)
when the first job of the set is released for scheduling. This is a hint that may be used
by the scheduler to decrease the priority of the job. This keeps a user from attempting
to ‘‘game’’ the scheduler. The attribute is set to {SYNC_SCHED_HINT_OTHER } (2) for all
other jobs in the set as they become schedulable. This should be taken as a hint by the
scheduler to increase their priority to insure they will run at the same time as the earli-
er scheduled jobs in the set. [This attribute is viewable only by the batch administra-
tor.] [type: integer]

2.2.3. Read-Only Job Attributes

The following attributes are read-only, they are established by the server and are visible to
the client but cannot be set by a client. Certain ones are only visible to privileged clients
(those run by the batch administrator).

alt_idFor a few systems, such as Irix 6.x running Array Services, the session id is insufficient
to track which processes belong to the job. Where a different identifier is required, it is
recorded in this attribute. If set, it will also be recorded in the end-of-job accounting
record.

For Irix 6.x running Array Services, the alt_id attribute is set to the Array Session
Handle (ASH) assigned to the job. [internal type: string]

ctime The time that the job was created. [internal type: integer, (seconds since epoch)]

etime The time that the job became eligible to run, i.e. in a queued state while residing in an
execution queue. [internal type: integer, (seconds since epoch)]

exec_host
If the job is running, this is set to the name of the host on which the job is executing.
[internal type: string]

egroupIf the job is queued in an execution queue, this attribute is set to the group name un-
der which the job is to be run. [This attribute is available only to the batch administra-
tor.] [internal type: string]

2-4 Chapt Revision: 2.1

PBS ERS General Specification

euser If the job is queued in an execution queue, this attribute is set to the user name under
which the job is to be run. [This attribute is available only to the batch administrator.]
[internal type: string]

hashname
The name used as a basename for various files, such as the job file, script file, and the
standard output and error of the job. [This attribute is available only to the batch ad-
ministrator.] [type: string]

interactive
True if the job is an interactive PBS job. Format: boolean, see Join_Paths; default val-
ue: false. [internal type: long] Internally, the value is the port number obtained by qsub
when the job was submitted.

Job_Owner §
The login name on the submitting host of the user who submitted the batch job. [inter-
nal type: string]

job_state
The state of the job.

E for exiting, the job has completed execution, with or without errors, and the batch
system is doing post-execution clean-up.

H for Held, one or more holds have been applied to the job.

Q for Queued, the job resides in a execution or routing queue pending execution or
routing. It is not in held or waiting state.

R for Running, the job resides in a execution queue and has been placed into execu-
tion.

S for Suspend (Job running on Unicos only), the job was executing and has been sus-
pended. The job retains its assigned resources but does not use cpu cycle or wall-
time.

T for Transiting, the job is in process of being routed or moved to a new destination.

W for Waiting, the job is not held but the Execution_Time attribute contains a time
which has not yet been reached.

[internal type: character]

mtime The time that the job was last modified, changed state, or changed locations. Internal-
ly, maintained as number of seconds since epoch. [internal type: integer]

qtime The time that the job entered the current queue. Internally, maintained as number of
seconds since epoch. [internal type: integer]

queue The name of the queue in which the job currently resides. [internal type: string]

queue_rank
An ordered, non-sequential number indicating the job’s position with in the queue. This 7
is provided as an aid to the scheduler. [This attribute is available to the batch manager 7
only.] [internal type: integer]

queue_type
An identification of the the type of queue in which the job is currently residing. This is
provided as an aid to the scheduler. [This attribute is available to the batch manager
only.] Format: The letter ‘‘E’’ or the letter ‘‘r ’’. [internal type: character]

resources_used §
The amount of resources used by the job. This is provided as part of job status informa-
tion if the job is running. [internal type: resource]

server The name of the server which is currently managing the job. [internal type: string]

session_id
If the job is running, this is set to the session id of the first executing task. [internal

Chapt Revision: 2.1 2-5

General Specification PBS ERS

type: integer]

substate
A numerical indicator of the substate of the job. The substate is used by the PBS job 9
server internally. The attribute is visible to privileged clients, such as the scheduler. 9
Format: interger. [internal type: long integer] 9
The values are defined in the header file job.h. See the ERS section on file staging for 9
why it is available to the scheduler.

2.2.4. Job Private Attributes

The following data items are private attributes of the job. These items are a permanent part
of the job object and are passed with the job between servers or between the server and the
execution server, but are not passed to user clients.

hopcount
The hop count is maintained by the server. It is set to zero when the job is created
and incremented each time the job changes destination, queue or server. The hop-
count attribute is used to prevent endless routing loops and to ensure correct or-
dering of updates of the job’s current location for the Job Locate batch request.
[type: integer]

security
Reserved for future implementation. [type: string]

2.2.5. Job Internal Data Items

The following data items are internal to the server representation of a job. They are specifi-
cally described here because of their importance.

destination
The destination_id supplied on the qsub or qmove commands.

job_substate
The secondary job state field, see ‘‘state’’ under Job Read-Only Attributes. As it is
not visible to clients, the values are not defined in this document.

2.2.6. Interactive Batch Jobs

PBS supports ‘‘interactive batch jobs’’. An interactive batch job is a job submitted to PBS
where the standard input, output, and error streams of the job are connected to the terminal
session in which qsub is run. The qsub command acts as a conduit for the communication be-
tween the job and the terminal session.

2.3. Queues

A batch queue is an object managed by a batch server. A batch queue consists of a collection
of zero or more batch jobs, a set of queue attributes, private attributes, and a set of internal
data items. Jobs are said to reside in the queue or be members of the queue. In spite of the
name, jobs residing in a queue need not be ordered first in, first out.

Access to a queue is limited to the server which owns the queue. All clients gain information
about a queue or jobs within a queue through batch requests to the server.

Two main types of queues are defined: routing queues and execution queues. The type of
queue is determined by which subset of queue attributes have been assigned to it.

When a job resides in a routing queue, it is a candidate for routing to a new destination.
Each routing queue has a list of destinations to which jobs may be routed. The new destina-
tion may be a different queue within the same server or a queue under a different server.

Jobs are removed from a routing queue when:

2-6 Chapt Revision: 2.1

PBS ERS General Specification

- The job has been successfully routed to another queue.

- The job has been deleted.

- The job has been moved to another queue.

- The job has been aborted by the server.

When a job resides in an execution queue, it is a candidate for execution. A job in execution
is still a member of the execution queue from which it was selected for execution. Jobs are
removed from an execution queue when:

- The job has executed and terminated.

- The job has been deleted.

- The job has been moved to another queue.

- The job has been aborted.

2.3.1. Queue Public Attributes

Queue public attributes are alterable on request by a client. The client must be acting for a
user with administrator (manager) or operator privilege. Certain attributes require the user
to have full administrator privilege before they can be modified. The following attributes ap-
ply to both queue types:

acl_group_enable
Attribute which when true directs the server to use the queue group access control
list acl_groups . Format: boolean, "TRUE", "True", "true", "Y", "y", "1", "FALSE",
"False", "false", "N", "n", "0"; default value: false = disabled. [internal type:
boolean]

acl_groups
List which allows or denies enqueuing of jobs owned by members of the listed
groups. The groups in the list are groups on the server host, not submitting hosts.
See section 10.1, Authorization, in the PBS External Reference Specificaiton. For-
mat: "[+|-]group_name[,...]"; default value: all groups allowed. [internal type: ac-
cess control list]

acl_host_enable
Attribute which when true directs the server to use the acl_hosts access list. For-
mat: boolean (see acl_group_enable); default value: disabled. [internal type:
boolean]

acl_hosts
List of hosts which may enqueue jobs in the queue. See section 10.1, Authoriza-
tion, in the PBS External Reference Specificaiton. Format: "[+|-]hostname[...]";
default value: all hosts allowed. [internal type: access control list]

acl_user_enable
Attribute which when true directs the server to use the the acl_users access list
for this queue. Format: boolean (see acl_group_enable); default value: disabled.
[internal type: boolean]

acl_users
List of users allowed or denied the ability to enqueue jobs in this queue. See sec-
tion 10.1, Authorization, in the PBS External Reference Specificaiton. Format:
"[+|-]user[@host][,...]"; default value: all users allowed. [internal type: access con-
trol list]

enabled
Queue will or will not accept new jobs. When false the queue is ‘‘disabled’’ and
will not accept jobs. Format: boolean (see acl_group_enable); default value: dis-
abled. [internal type: boolean]

Chapt Revision: 2.1 2-7

General Specification PBS ERS

from_route_only
When true, this queue will not accept jobs except when being routed by the server
from a local routing queue. This is used to force user to submit jobs into a routing
queue used to distribute jobs to other queues based on job resource limits. For-
mat: boolean; default value: disabled. [internal type: boolean]

max_queuable
The maximum number of jobs allowed to reside in the queue at any given time.
Format: integer; default value: infinite. [internal type: integer]

max_running
The maximum number of jobs allowed to be selected from this queue for routing or
execution at any given time. For a routing queue, this is enforced, if set, by the
server. For an execution queue, this attribute is advisory to the Scheduler, it is
not enforced by the server. Format: integer. [internal type: integer]

Priority
The priority of this queue against other queues of the same type on this server.
May affect job selection for execution/routing. Advisory to the Scheduler, not used
by the server. Format: integer. [internal type: integer]

queue_type
The type of the queue: execution or route. Format: "execution", "e", "route", "r".
This attribute must be explicitly set. [internal type: string]

resources_max
The maximum amount of each resource which can be requested by a single job in
this queue. The queue value superceeds any server wide maximum limit. For-
mat: "resources_max.resource_name=value", see qmgr(1B); default value: infinite
usage. [internal type: resource]

resources_min
The minimum amount of each resource which can be requested by a single job in
this queue. Format: see resources_max, default value: zero usage. [internal type:
resource]

resources_default
The list of default resource values which are set as limits for a job residing in this
queue and for which the job did not specify a limit. Format: "resources_default.re-
source_name=value", see qmgr(1B); default value: none; if not set, the default
limit for a job is determined by the first of the following attributes which is set:
server ’s resources_default, queue’s resources_max, server’s resources_max. If
none of these are set, the job will unlimited resource usage. [internal type: re-
source]

started
Jobs may be scheduled for execution from this queue. When false, the queue is
considered ‘‘stopped.’’ Advisory to the Scheduler, not enforced by the server. [de-
fault value: false, but depends on scheduler interpretation] Format: boolean (see
acl_group_enable). [internal type: boolean]

The following attributes apply only to execution queues:

checkpoint_min §
Specifies the minimum interval of cpu time, in minutes, which is allowed between
checkpoints of a job. If a user specifies a time less than this value, this value is
used instead. Format: integer; default value: no minimum. [internal type: inte-
ger]

resources_available
The list of resource and amounts available to jobs running in this queue. The sum
of the resource of each type used by all jobs running from this queue cannot ex-

2-8 Chapt Revision: 2.1

PBS ERS General Specification

ceed the total amount listed here. Advisory to the Scheduler, not enforced by the
server. Format: "resources_available.resource_name=value", see qmgr(1B). [in-
ternal type: resource]

kill_delay
The amount of the time delay between the sending of SIGTERM and SIGKILL
when a qdel command is issued against a running job. Format: integer seconds;
default value: 2 seconds. [internal type: integer]

max_user_run
The maximum number of jobs owned by a single user that are allowed to be run-
ning from this queue at one time. This attribute is advisory to the Scheduler, it is
not enforced by the server. Format: integer; default value: none. [internal type:
integer]

max_group_run
The maximum number of jobs owned by any users in a single group that are al-
lowed to be running from this queue at one time. This attribute is advisory to the
Scheduler, it is not enforced by the server. Format: integer; default value: none.
[internal type: integer]

The following attributes apply only to routing queues:

route_destinations
The list of destinations to which jobs may be routed. [default value: none, should
be set to at least one valid destination] [internal type: array of strings]

alt_router
If true, an site supplied, alternative job router function is used to determine the
destination for routing jobs from this queue. Otherwise, the default, round-robin
router is used. Format: boolean (see acl_group_enable); default value: false. [in-
ternal type: boolean]

route_held_jobs
If true, jobs with a hold type set may be routed from this queue. If false, held jobs
are not to be routed. Format: boolean (see acl_group_enable); default value: false.
[internal type: boolean]

route_waiting_jobs
If true, jobs with a future execution_time attribute may be routed from this queue.
If false, they are not to be routed. Format: boolean (see acl_group_enable); default
value: false. [internal type: boolean]

route_retry_time
Time delay between route retries. Typically used when the network between
servers is down. Format: integer seconds; default value: {PBS_NET_RETRY_TIME }
(30 seconds). [internal type: integer]

route_lifetime
The maximum time a job is allowed to exist in a routing queue. If the job cannot
be routed in this amount of time, the job is aborted. If unset or set to a value of
zero (0), the lifetime is infinite. Format: integer seconds; default infinite. [inter-
nal type: integer]

2.3.2. Queue Read-Only Attributes

The following data items are read-only attributes of the queue. They are visible to but can-
not be changed by clients.

Items which apply to all types of queues are:

total_jobs
The number of jobs currently residing in the queue. [internal type: integer]

Chapt Revision: 2.1 2-9

General Specification PBS ERS

state_count
The total number of jobs currently residing in the queue in each state. [internal
type: special, array of integers]

These read-only attributes only apply to execution queues:

resources_assigned
The total amount of certain types of resources allocated to jobs running from this
queue. [internal type: resource]

2.4. Batch Server Attributes

The following attributes apply to the server.

2.4.1. Server Public Attributes

Server attributes can be read by any client; privilege is not required. Most server attributes
are alterable by a privileged client, run by a user with administrator or operator privilege.
Certain attributes require the user to have full administrator privilege. The following is a
list of the server attributes.

acl_host_enable
Attribute which when true directs the server to use the acl_hosts access control
lists. Requires full manager privilege to set or alter. Format: boolean, "TRUE",
"True", "true", "Y", "y", "1", "FALSE", "False", "false", "N", "n", "0"; default value:
false = disabled. [internal type: boolean]

acl_hosts
List of hosts which may request services from this server. This list contains the
network name of the hosts. Local requests, i.e. from the server’s host itself, are
aways accepted even if the host is not included in the list. See section 10.1, Au-
thorization, in the PBS External Reference Specificaiton. Requires full manager
privilege to set or alter. Format: "[+|-]hostname.domain[,...]"; default value: all
hosts. [internal type: access control list]

acl_user_enable
Attribute which when true directs the server to use the server level acl_users ac-
cess list. Requires full manager privilege to set or alter. Format: boolean (see
acl_group_enable); default value: disabled. [internal type: boolean]

acl_users
List of users allowed or denied the ability to make any requests of this server. See
section 10.1, Authorization, in the PBS External Reference Specificaiton. Re-
quires full manager privilege to set or alter. Format: "[+|-]user[@host][,...]"; de-
fault value: all users allowed. [internal type: access control list]

acl_roots
List of super users who may submit to and execute jobs at this server. If the job
execution id would be zero (0), then the job owner, root@host, must be listed in
this access control list or the job is rejected. Format: "[+|-]user[@host][,...]"; de-
fault value: no root jobs allowed. [internal type: access control list]

comment
A text string which may be set by the scheduler or other privileged client to pro-
vide information to the batch system users. Format: any string; default value:
none. [internal type: string]

default_node
A node specification to use if there is no other supplied specification. This at-
tribute is only used by servers where a nodes file exist in the server_priv directory
providing a list of nodes to the server. If the nodes file does not exist, this at-
tribute is not set by default and is ignored if set. The default value allows for jobs

2-10 Chapt Revision: 2.1

PBS ERS General Specification

to share a single node. Format: a node specification string; default value:
1#shared. [internal type: string]

default_queue
The queue which is the target queue when a request does not specify a queue
name. Format: a queue name; default value: none, must be set to an existing
queue. [internal type: string]

log_events
A bit string which specifies the type of events which are logged, see the section on
Event Logging in chapter 3 of the ERS. Format: integer; default value: 511, all
events. [internal type: integer]

mail_uid
The uid from which server generated mail is sent to users. Format: integer uid;
default value: 0 for root. [internal type: integer]

managers
List of users granted batch administrator privileges. Format: us-
er@host.sub.domain[,user@host.sub.domain...] . The host, sub-domain,
or domain name may be ‘‘wild carded’’ by the use of an ‘‘*’’ character, see the de-
scription of user access control lists in chapter 10.1.1 of the ERS. Requires full
manager privilege to set or alter. Default value: root on the local host. [internal
type: access control list]

max_running
The maximum number of jobs allowed to be selected for execution at any given
time. Advisory to the Scheduler, not enforced by the server. Format: integer. [in-
ternal type: integer]

max_user_run
The maximum number of jobs owned by a single user that are allowed to be run-
ning from this queue at one time. This attribute is advisory to the Scheduler, it is
not enforced by the server. Format: integer; default value: none. [internal type:
integer]

max_group_run
The maximum number of jobs owned by any users in a single group that are al-
lowed to be running from this queue at one time. This attribute is advisory to the
Scheduler, it is not enforced by the server. Format: integer; default value: none.
[internal type: integer]

node_pack
Controls how multiple processor nodes are allocated to jobs. If this attribute is set
to true, jobs will be assigned to the multiple processor nodes with the fewest free
processors. This packs jobs into the fewest possible nodes leaving multiple proces-
sor nodes free for jobs which need many processors on a node. If set to false, jobs
will be scattered across nodes reducing conflicts over memory between jobs. If un-
set, the jobs are packed on nodes in the order that the nodes are declared to the
server (in the nodes file). Default value: unset − assigned to nodes as nodes in or-
der that were declared. [internal type: boolean]

operators
List of users granted batch operator privileges. Format of the list is identical with
managers above. Requires full manager privilege to set or alter. Default value:
root on the local host. [internal type: access control list]

query_other_jobs
The setting of this attribute controls if general users, other than the job owner, are
allowed to query the status of or select the job. Format: boolean (see acl_host_en-
able); Requires full manager privilege to set or alter. default value: false - users

Chapt Revision: 2.1 2-11

General Specification PBS ERS

may not query or select jobs owned by other users. [internal type: boolean]

resources_available
The list of resource and amounts available to jobs run by this server. The sum of
the resource of each type used by all jobs running by this server cannot exceed the
total amount listed here. Advisory to the Scheduler, not enforced by the server.
Format: "resources_available.resource_name=value[,...]". [internal type: resource]

resources_cost
The cost factors of various types of resources. These values are used in determin-
ing the order of releasing members of synchronous job sets, see the section on
‘‘Synchronize Job Starts.’’ For the most part, these value are purely arbitrary and
have meaning only in the relative values between systems. The ‘‘cost’’ of the re-
sources requested by a job is the sum of the products of the various
resources_cost s and the amount of each resource requested by the job. It is not
necessary to assign a cost for each possible resource, only those which the site
wishes to be considered in synchronous job scheduling. Format: "re-
sources_cost.resource_name=value[,...]"; default value: none, cost of resource is not
computed. [internal type: list]

resources_default
The list of default resource values that are set as limits for a job executing on this
server when the job does not specify a limit, and there is no queue default. For-
mat: "resources_default.resource_name=value[,...]"; default value: no limit. [inter-
nal type: resource]

resources_max
The maximum amount of each resource which can be requested by a single job ex-
ecuting on this server if there is not a resources_max valued defined for the queue
in which the job resides. Format: "resources_max.resource_name=value[,...]"; de-
fault value: infinite usage. [internal type: resource]

scheduler_iteration
The time, in seconds, between iterations of attempts by the batch server to sched-
ule jobs. On each iteration, the server examines the available resources and
runnable jobs to see if a job can be initiated. This examination also occurs when-
ever a running batch job terminates or a new job is placed in the queued state in
an execution queue. Format: integer seconds; default value: 10 minutes, set by
{PBS_SCHEDULE_CYCLE } in server_limits.h. [internal type: integer, displays as
name defined below]

scheduling
Controls if the server will request job scheduling by the PBS job scheduler. If
true, the scheduler will be called as required; if false, the scheduler will not be
called and no job will be placed into execution unless the server is directed to do so
by an operator or administrator. Setting or resetting this attribute to true results
in an immediate call to the scheduler. For more information, see the section
Scheduler − Server Interaction in the PBS Administrator Guide. Format:
boolean (see acl_host_enable); default value: value of -a option when server is in-
voked, if -a is not specified, the value is is recoved from the prior server run. If it
has never been set, the value is "false". [internal type: boolean]

system_cost
An arbitrary value factored into the resource cost of any job managed by this serv-
er for the purpose of selecting which member of synchronous set is released first,
see resources_cost and section 3.2.2, ‘‘Synchronize Job Starts.’’ [default value:
none, cost of resource is not computed] [internal type: list]

2-12 Chapt Revision: 2.1

PBS ERS General Specification

2.4.2. Read Only Server Attributes

The following attributes are read-only, they are maintained by the server and cannot be
changed by a client.

resources_assigned
The total amount of certain types of resources allocated to running jobs. [internal
type: resource]

server_name
The name of the server which is the same as the host name. If the server is listen-
ing to a non-standard port, the port number is appended, with a colon, to the host
name. For example: host.domain:9999 . [internal type: string]

server_state
The current state of the server:

ActiveThe server is running and will invoke the job scheduler as required to
schedule jobs for execution.

Idle The server is running but will not invoke the job scheduler.

Scheduling
The server is running and there is an outstanding request to the job sched-
uler.

Terminating
The server is terminating. No additional jobs will be scheduled.

Terminating, Delayed
The server is terminating in delayed mode. The server will not run any new
jobs and will shutdown when the last currently executing job completes.

[internal type: integer]

state_count
The total number of jobs managed by the server currently in each state. [internal
type: special, array of integers]

total_jobs
The total number of jobs currently managed by the server. [internal type: integer]

PBS_version
The release version number of the server. [internal type: string]

2.4.3. Server Sub-Objects

The following are lists of objects belonging to the server.

queues
List of the queues managed by this server.

job List of the jobs managed by this server.

2.5. PBS Files

The PBS subsystem maintains its files under the directory {PBS_DIR } which is usually set to
/usr/spool/PBS, see figure 2−1 for the layout directories used by PBS. There is a subdirectory,
{PBS_DIR } /ser ver_pr iv for private files accessible only by the server, see figure 2−2 used by the
Server daemon for its private files. The Job Executor, MOM, has a similiar subdirectory
mom_pr iv.

Chapt Revision: 2.1 2-13

General Specification PBS ERS

PBS_HOME

ser ver_logs sched_logs

ser ver_pr iv
mom_pr iv sched_pr iv

mom_logs

spool checkpoint

undelivered

Figure 2−1: PBS Directory Structure

2-14 Chapt Revision: 2.1

PBS ERS General Specification

PBS_HOME

ser ver_pr ivspool ser ver_logs

accounting

queues acl_svr

jobs

*.JB

job attributes

one per queue

in each directory is a file per queue
with the name of the queue

ser verdb

ser ver attributes

managers operator acl_hosts

acl_que

*.SC

job scripts

by job ID

acl_users acl_hosts

Figure 2−3: PBS Server Files

2.6. Job Selection / Scheduling

Job selection or job scheduling is the process of picking which eligible job is placed into exe-
cution or initiated. To be eligible, the job must reside in an execution queue and be in the
queued state.

To maximize flexibility in implementing site policy, PBS provides a separate program as the
selection process. This process operates on the principle of evaluating the eligible jobs ac-
cording to a program written either in a yacc/lex based procedural language or in Tcl. This
process, the PBS Scheduler, pbs_sched, communicates with the PBS Server via a socket
based IPC, using the standard PBS API. This provides the capability of having the Sched-
uler and the Server reside on different hosts.

Chapt Revision: 2.1 2-15

General Specification PBS ERS

The Scheduler communicates with another process called the Machine Oriented Miniserv-
er, pbs_mom, in its role as a resource manager to obtain information about the loading of the
host system. Loading information may contain details of memory usage, cpu load average,
and more. This information, taken as input to the scheduling program can be used to control
job scheduling. The relationship between PBS, the Scheduler, and the Machine Oriented
Miniserver can be seen in figures 2−4 and 2−5.

1. Event tells Server to initiate a scheduling cycle.
2. Server sends scheduling command to Scheduler.
3. Scheduler requests resource info from MOM.
4. MOM retuns requested info.
5. Scheduler requests job info from server.
6. Server sends job status info to scheduler.

8. Server sends job to MOM to run.
7. Scheduler sends run request to server.
Scheduler makes policy decision to run job.

kernel Policy

jobs

ev ents

running
jobs

schedulermom ser ver
2,6

5,7

3

4

1

8

One Host

Figure 2−4: Batch Scheduling on a Single Host

The concept of the Scheduler and Machine Oriented Miniserver can be extended to include
multiple hosts. A single Scheduler would provide scheduling for one or more PBS servers.
The Scheduler would talk with a Machine Oriented Miniserver on each host for which it had
scheduling responsibility.

2-16 Chapt Revision: 2.1

PBS ERS General Specification

mom

kernel

running
jobs

mom

kernel

running
jobs

Policy

jobs

ev ents

scheduler ser ver
1.2,6

5,7

3

4

Host B - Exectution Host

kernel

running
jobs

mom

client

Host C - Execution Host Host D - Cleint Only

3

3 4

4

Host A - Server and Execution

8

running
job

new

Figure 2−5: Batch Scheduling on Multiple Hosts

The procedural or Tcl script which drives the Scheduler is a plain text file. The administra-
tor may update the script in the file or direct the scheduler to use a different file.

The script may be written to consider time and queue information, so different procedures
could apply at different times and to different queues. The script may also state when the
conditions are such that a job should be started, deleted, or suspended.

2.7. General Identifiers

The following identifiers or names are referenced throughout this document. Unless other-
wise noted, their usage will conform to the definition and syntax described in the following
sub-sections and to the general rules described in the next paragraph.

If allowed as part of the identifier, when entering the identifier string on the command line or
in a PBS job script directive, embedded single or double quote marks must be escaped by en-
closing the string in the other type of quote mark. Therefore, the string may not contain both
types of quote marks. If white space is allowed in the identifier string, the string must be
quoted when it is enteried on the command line or in a PBS job directive.

2.7.1. Account String

An Account String is a string of characters that some server implementations may use to
provide addition accounting or charge information. The syntax is unspecified except that it
must be a single string. When provided on the command line to a PBS utility or in a direc-
tive in a PBS job script, any embedded white space must be escaped by enclosing the string
in quotes.

Chapt Revision: 2.1 2-17

General Specification PBS ERS

2.7.2. Attribute Name

An Attribute Name identifies an attribute or data item that is part of the information that
makes up a job, queue, or server. The name must consist of alphanumeric characters plus
the underscore, ’_’, character. It should start with an alphanumeric character. The length is
not limited. The names recognized by PBS are listed in sections 2.2, 2.3, and 2.4.

2.7.3. Destination Identifiers

A destination identifier is a string used to specify a particular destination. The identifier
may be specified in one of three forms:

queue@server_name
queue
@server_name

where:

queue
is an ASCII character string of up to 15 characters. Valid characters are alphanu-
merics, the hyphen and the underscore. The string must begin with a letter.
Queue is the name of a queue at the batch server specified by server_name.
That server will interpret the queue string. If queue is omitted, a null string is
assumed.

server_name
is a string identifying a server; see server_name, section 2.7.9. If server_name is
omitted, the default server is assumed.

2.7.4. Default Server

When a server is not specified to a client, the client will send batch requests to the server
identified as the default server . A client identifies the default server by (a) the setting of the
environment variable PBS_DEFAULT which contains a server name, or by (b) the server
name in the file specified by the $(PBS_DEFAULT_FILE) build parameter in the local.mk file.

2.7.5. Host Name

A Host Name is a string that identifies a host or system on the network. The syntax of the
string must follow the rules established by the network. For IP, a host name is of the form
name.domain , where domain is a hierarchical, dot-separated List of subdomains. Therefore,
a host name cannot contain a dot, ‘‘.’’ as a legal character other than as a subdomain sepa-
rater. The name must not contain the commerical at sign, ‘‘@’’, as this is often used to sepa-
rate a file from the host in a remote file name. Also, to prevent confusion with port numbers
(see section 2.7.9) a host name cannot contain a colon, ":". The maximum length of a host
name supported by PBS is defined by {PBS_MAXHOSTNAME }, currently set to 64.

2.7.6. Job Identifiers

When the term job identifier is used, the identifier is specified as:

sequence_number[.server_name][@server]

The sequence_number is the number supplied by the server when the job was submitted.

The server_name component is the name of the server which created the job. If it is miss-
ing, the name of the default server will be assumed.

@server specifies the current location of the job. See the definition of default server in sec-
tion 2.7.4 and the section 5.1.2, entitled "Directing Requests to Correct Server."

When the term fully qualified job identifier is used, the identifier is specified as:

2-18 Chapt Revision: 2.1

PBS ERS General Specification

sequence_number.server[@server]

The @server suffix is not required if the job is still resides at the original server which creat-
ed the job. The qsub command will return a fully qualified job identifier.

2.7.7. Job Name

A Job Name is a string assigned by the user to provide a meaningful label to identify the job.
The job name is up to and including 15 characters in length and may contain any printable
characters other than white space. It must start with an alphanumeric character. If the us-
er does not assign a name, PBS will assign a default name as described under the -N option
of the qsub (1) command.

2.7.8. Resource Name

A Resource Name identifies a job resource requirement and may also indentify a resource us-
age limit. The name must consist of alphanumeric characters plus the underscore, ‘‘_’’, char-
acter. It should start with an alphamumeric character. The length is not limited. Certain
resource names are identified and reserved by POSIX 1003.2d and by PBS. They are listed
in section 3.4.3, ‘‘Types of Resources’’.

2.7.9. Server Name

Server Name is an ASCII character string of the form:

basic_server_name[:port]

The string identifies a batch server. Basic server names are identical to host names (see sec-
tion 2.7.5). The network routine gethostbyname will be used to translate to a network ad-
dress. The network routine getservbyname will be used to determine the port number.

An alternate port number may be specified by appending a colon, ‘‘:’’, and the port number to
the host name. This provides the means of specifying an alternate (test) server on a host.

2.7.10. User Name

A User Name is a string which identifies a user on the system under PBS. It is also known
as the login name. PBS will accept names up to and including 16 characters. The name may
contain any printable, non white space character excluding the commercial at sign, ‘‘@’’. The
various systems on which PBS is executing may place additional limitations on the user
name.

Chapt Revision: 2.1 2-19

General Specification PBS ERS

[Page intentionally left bank.]

2-20 Chapt Revision: 2.1

PBS ERS General Specification

3. Batch Server Functions
A batch server provides services in one of two ways:

- The server provides a service at the request of a client.

- The server provides a deferred service as a result of a change in conditions monitored by
the server. The server also performs a number of internal bookkeeping functions that are
described in this major section.

3.1. Client Service Requests

By definition, clients are processes that make requests of a batch server. The requests may
ask for an action to be performed on one or more jobs, one or more queues, or the server it-
self.

The server is required to respond to all requests it receives. Those requests that cannot be
successfully completed, are rejected . The reason for the rejection is returned in the reply to
the client.

The following subsections describe the services provided by a batch server in response to a
request from a client. The requests are grouped in the following sub-sections by the type of
object affected by the request: server, queue, job, or resource.

3.1.1. Server Management

The batch requests described in this section control the functioning of the batch server. The
control is either direct as in the Shut Down request, or indirect as when server attributes are
modified.

3.1.1.1. Manage Request

The Manage request supports the qmgr(8) command and several of the operator commands.
The command directs the server to create, alter, or delete an object managed by the server or
one of its attributes. For more information, see the qmgr command.

3.1.1.2. Server Status Request

The status of the server may be requested with a Server Status request.

The batch server will reject the request if any of the following conditions are true:

- The user of the client is not authorized to query the status of the server.

If the request is accepted, the server will return a Server Status Reply . See the qstat com-
mand and the Data Exchange Format description for details of which server attributes are
returned to the client.

3.1.1.3. Start Up

A batch request to start a server cannot be sent to a server since the server is not running.
Therefore a batch server must be started by a process local to the host on which the server is
to run.

The server is started by a pbs_server command. The server recovers the state of managed
objects, such as queues and jobs, from the information last recorded by the server. The treat-
ment of jobs which were in the running state when the server previously shut down is dic-
tated by the start up mode, see the description of the pbs_server(8) command.

Chapt Revision: 2.3 3-1

Batch Server PBS ERS

3.1.1.4. Shut Down

The batch server is "shut down" when it no longer reponds to requests from clients and does
not perform deferred services. The batch server is requested to shut down by sending it a
Server Shutdown request.

The server will reject the request from a client not authorized to shut down the server. When
the server accepts a shut down request, it will terminate in the manner described under the
qterm command.

When shutting down, the server must record the state of all managed objects (jobs, queues,
etc.) in non-volatile memory. Jobs which were running will be marked in the secondary state
field for possible special treatment when the server is restarted. If checkpoint is supported,
any job running at the time of the shut down request whose Checkpoint attribute is not n, will
be checkpointed. This includes jobs whose Checkpoint attribute value is ‘‘unspecified’’, a value
of u.

If the server receives either a SIGTERM or a SIGSHUTDN signal, the server will act as if
it had received a shut down immediate request.

3.1.2. Queue Management

The following client requests effect one or more queues managed by the server. These re-
quests require a privilege level generally assigned to operators and administrators.

3.1.2.1. Queue Status Request

The status of a queue at the server may be requested with a Queue Status request.

The batch server will reject the request if any of the following conditions are true:

- The user of the client is not authorized to query the status of the designated queue.

- The designated queue does not exist on the server.

If the request does not specify a queue, status of all the queues at the server will be returned.

When the request is accepted, the server will return a Queue Status Reply . See the qstat
command and the Data Exchange Format description for details of which queue attributes
are returned to the client.

3.1.3. Job Management

The following client requests effect one or more jobs managed by the server. These requests
do not require any special privilege except when the job for which the request is issued is not
owned by the user making the request.

3.1.3.1. Abort Request

[The Abort Request has been aborted (deleted).]

3.1.3.2. Commit Request

The Commit sub-request is part of the Queue Job request. The Commit notifies the receiv-
ing server that all parts of the job have been transferred and the receiving server should now
assume ownership of the job. Prior to sending the Commit, the sending client, command or
another server, is the owner.

3.1.3.3. Delete Job Request

A Delete Job request asks a server to remove a job from the queue in which it exists and not
place it elsewhere.

The batch server will reject a Delete Job Request if any of the following conditions are true:

3-2 Chapt Revision: 2.3

PBS ERS Batch Server

- The user of the client is not authorized to delete the designated job.

- The designated job is not owned by the server.

- The designated job is not in an eligible state. Eligible states are queued, held, waiting,
running, and transiting.

If the job is in the running state, the server will first send a SIGTERM signal to the job
process group. After a delay specified by the delete request or if not specified, the kill_delay
queue attribute, the server will send a SIGKILL signal to the job process group.

The job is then placed into the exiting state.

3.1.3.4. Hold Job Request

A client can request that one or more holds be applied to a job.

The batch server will reject a Hold Job request if any of the following conditions are true:

- The user of the client is not authorized to add any of the specified holds.

- The batch server does not manage the specified job.

When the server accepts the Hold Job Request, it will add each type of hold listed which is
not already present to the value of the Hold_Types attribute of the job.

If the job is in the queued or waiting state, it is placed in the held state.

If the job is in running state, then the following additional actions are taken: If
checkpoint / restart is supported by the host system, placing a hold on a running job will
cause the job (1) to be checkpointed, (2) the resources assigned to the job will be released, and
(3) the job is placed in the held state in the execution queue. If the expedite modifier to the
hold type is specified, the sched_hint job attribute will be set to one (1) to indicate to the sched-
uler that this job should be placed into execution as soon as possible. If the expedite modifier
is not specified, the job will be rescheduled for execution as if it had been re-submitted.

If checkpoint/restart is not supported, the server will only set the requested hold attribute.
This will have no effect unless the job is rerun or restarted.

3.1.3.5. Queue Job Request

The Queue Job sub-request is part of the Queue Job complex request. This sub-request iden-
tifies the destination for the job and, in effect, asks the receiving server to fork off a child to
process the remaining sub-requests. It also passes the public and private job attributes to
the receiving server.

3.1.3.6. Job Credential Request

The Job Credential sub-request is part of the Queue Job complex request. This sub-request
transfers a copy of the credential provided by the authentication facility explained in section
10.2.

3.1.3.7. Job Script Request

The Job Script sub-request is part of the Queue Job complex request. This sub-request pass-
es a block of the job script file to the receiving server. The script is broken into 8 kilobyte
blocks to prevent having to hold the entire script in memory. One or more Job Script sub-re-
quests may be required to transfer the script file.

3.1.3.8. Locate Job Request

A client may ask a server to respond with the location of a job that was created or is owned
by the server. When the server accepts the Locate Job request, it returns a Locate Reply .

The request will be rejected if any of the following conditions are true:

Chapt Revision: 2.3 3-3

Batch Server PBS ERS

- The server does not own (manage) the job, and

- The server did not create the job.

- The server is not maintaining a record of the current location of the job.

3.1.3.9. Message Job Request

A batch server can be requested to write a string of characters to one or both output streams
of an executing job. This request is primarily used by an operator to record a message for the
user.

The batch server will reject a Message Job request if any of the following conditions are true:

- The designated job is not in the running state.

- The user of the client is not authorized to post a message to the designated job.

- The designated job is not owned by the server.

When the server accepts the Message Job request, it will append the message string, fol-
lowed by a new line character, to the file or files indicated. If no file is indicated, the message
will be written to the standard error of the job.

3.1.3.10. Modify Job Request

A batch client makes a Modify Job request to the server to alter the attributes of a job. The
batch server will reject a Modify Job Request if any of the following conditions are true:

- The user of the client is not authorized to make the requested modification to the job.

- The designated job is not owned by the server.

- The requested modification is inconsistent with the state of the job. This is detailed later
in this subsection.

- A requested resource change would exceed the limits of the queue or server.

- An unrecognized resource is requested for a job in an execution queue.

When the batch server accepts a Modify Job Request, it will modify all the specified at-
tributes of the job. When the batch server rejects a Modify Job Request, it will modify none
of the attributes of the job.

The following table indicates which attributes are alterable in each state.

3-4 Chapt Revision: 2.3

PBS ERS Batch Server

Attribute q h w r t e
Account_Name x x x
Checkpoint x x x 1
depend x x x
Error_Path x x x 1
Execution_Time x x x 1
group_list x x x
Hold_Types x x x 1
Job_Name x x x x
Join_Path x x x
Keep_Files x x x
Mail_Points x x x x
Mail_Users x x x x
Output_Path x x x
Priority x x x
Rerunable x x x x
Resource_List x x x 2
Shell_Path_List x x x 1
stagein x x x
stageout x x x
User_List x x x
Variable_List

Notes:

1. May be altered with qalter, but changes will not take effect until job is requeued.
Use of qhold produces special processing.

2. Only certain resources limits may be changed. Those resource limits may be low-
ered by job owner. Increasing those limits requires special privilege.

3.1.3.11. Move Job Request

A client can request a server to move a job to a new destination.

The batch server will reject a Move Job Request if any of the following conditions are true:

- The user of the client is not authorized to remove the designated job from the queue in
which the job resides.

- The user of the client is not authorized to submit a job to the new destination.

- The designated job is not owned by the server.

- The designated job is not in the queued, held, or waiting state.

- The new destination is disabled.

- The new destination is inaccessible.

When the server accepts a Move Job request, it will

- Queue the designated job at the new destination.

- Remove the job from the current queue.

If the destination exists at a different server, the current server will transfer the job to the
new server by sending a Queue Job request sequence to the target server.

The server will insure that a job is neither lost nor duplicated.

Chapt Revision: 2.3 3-5

Batch Server PBS ERS

3.1.3.12. Queue Job Request

A Queue Job request is a complex request consisting of several subrequests: Initiate Job
Transfer, Job Data, Job Script, and Commit. The end result of a successful Queue Job re-
quest is an additional job being managed by the server. The job may have been created by
the request or it may have been moved from another server.

The job resides in a queue managed by the server. When a queue is not specified in the re-
quest, the job is placed in a queue selected by the server. This queue is known as the default
queue . The default queue is an attribute of the server that is settable by the administrator.
The queue, whether specified or defaulted, is called the target queue.

The batch server will reject a Queue Job Request if any of the following conditions are true:

- The client is not authorized to create a job in the target queue.

- The target queue does not exist at the server.

- The target queue is not enabled.

- The target queue is an execution queue and a resource requirement of the job exceeds the
limits set upon the queue.

- The target queue is an execution queue and an unrecognized resource is requested by the
job.

- The target queue is an execution queue, the batch server does not support checkpoint,
and the value of the Checkpoint attribute of the job is neither the single character "n" nor
the single character "u".

- The job requires access to a user identifier that the client is not authorized to access.

When a job is placed in a execution queue, it is placed in the queued state unless one of the
following conditions applies:

- The job has an execution_time attribute that specifies a time in the future and the
Hold_Types attribute has value of {NONE }. Then the job is placed in the waiting state.

- The job has a Hold_Types attribute with a value other than {NONE }. The job is placed in
the held state.

When a job is placed in a routing queue, It is placed in the queued state unless one of the
following conditions applies:

- The job has an execution_time attribute that specifies a time in the future, the Hold_Types
attribute has value of {NONE }, and the route_waiting_jobs queue attribute is {FALSE }. Then
the job is placed in the waiting state.

- The job has a Hold_Types attribute with a value other than {NONE } and the route_held_jobs
queue attribute is {FALSE }. Then the job is placed in the held state.

A batch server that accepts a Queue Job Request for a new job will add the PBS_O_QUEUE
variable to the Variable_List attribute of the job and set the value to the name of the target
queue.

A batch server that accepts a Queue Job Request for a new job will add the PBS_JOBID
variable to the Variable_List attribute of the job and set the value to the job identifier assigned
to the job.

A batch server that accepts a Queue Job Request for a new job will add the PBS_JOB-
NAME variable to the Variable_List attribute of the job and set the value to the value of the
Job_Name attribute of the job.

When the server accepts a Queue Job request for an existing job, the server will send a Track
Job request to the server which created the job.

3-6 Chapt Revision: 2.3

PBS ERS Batch Server

3.1.3.13. Release Job Request

A client can request that one or more holds be removed from a job.

A batch server rejects a Release Job request if any of the following conditions are true:

- The user of the client is not authorized to add (remove) any of the specified holds.

- The batch server does not manage the specified job.

When the server accepts the Release Job Request, it will remove each type of hold listed from
the value of the Hold_Types attribute of the job.

If the job is in the held state and all holds have been removed, the job is placed in the wait-
ing state if the Execution_Time attribute specifies a time in the future. Otherwise the job is
placed in the queued state.

3.1.3.14. Rerun Job Request

To rerun a job is to kill the members of the session (process) group of the job and leave the job
in the execution queue. Unless the Hold_Types attribute is not {NONE }, the job is eligible to be
re-scheduled for execution.

The server will reject the Rerun Job request if any of the following conditions are true:

- The user of the client is not authorized to rerun the designated job.

- The Rer unable attribute of the job has the value {FALSE }.

- The job is not in the running state.

The server does not own the job.

When the server accepts the Rerun Job request, it performs the following actions:

- Send a SIGKILL signal to the session (process) group of the job.

- Requeue the job in the execution queue in which it was executing. If the Hold_Types at-
tribute is not {NONE }, the job will be placed in the held state. If the execution_time at-
tribute is a future time, the job will be placed in the waiting state. Otherwise, the job is
placed in the queued state.

3.1.3.15. Run Job

The Run Job request directs the server to place the specified job into immediate execution.
The request is issued by a qrun operator command and by the PBS Job Scheduler.

3.1.3.16. Select Jobs Request

A client is able to request from the server a list of jobs owned by that server that match a list
of selection criteria. The request is a Select Jobs request. All the jobs owned by the server
and which the user is authorized to query are initially eligible for selection. Job attributes
and resources relationships listed in the request restrict the selection of jobs. Only jobs
which have attributes and resources that meet the specified relations will be selected.

The server will reject the request if any of the following conditions are true:

- The queue portion of a specified destination does not exist on the server.

When the request is accepted, the server will return a Select Reply containing a list of zero or
more jobs that met the selection criteria.

3.1.3.17. Signal Job Request

A batch client is able to request that the server signal the session (process) group of a job.
Such a request is called a Signal Job request.

The batch server will reject a Signal Job Request if any of the following conditions are true:

- The user of the client is not authorized to signal the job.

Chapt Revision: 2.3 3-7

Batch Server PBS ERS

- The job is not in the running state.

- The server does not own the designated job.

- The requested signal is not supported by the host operating system. (The killpg system
call returns [EINVAL].)

When the server accepts a request to signal a job, it will send the signal requested by the
client to the session (process) group of the job.

3.1.3.18. Status Job Request

The status of a job or set of jobs at a destination may be requested with a Status Job request.

The batch server will reject a Status Job Request if any of the following conditions are true:

- The user of the client is not authorized to query the status of the designated job.

- The designated job is not owned by the server.

When the server accepts the request, it will return a Job Status Message to the client. See
the qstat command and the Data Exchange Format description for details of which job at-
tributes are returned to the client.

If the request specifies a job identifier, status will be returned only for that job. If the request
specifies a destination identifier, status will be returned for all jobs residing within the speci-
fied queue that the user is authorized to query.

3.2. Server to Server Requests

Server to Server requests are a special category of client requests. They are only issued to a
server by another server.

3.2.1. Track Job Request

A client that wishes to request an action be performed on a job must send a batch request to
the server that currently manages the job. As jobs are routed or moved through the batch
network, finding the location of the job can be difficult without a tracking service. The Track
Job request forms the basis for this service.

A server that queues a job sends a track job request to the server which created the job. Ad-
ditional backup location servers may be defined.

A server that receives a track job request records the information contained therein. This in-
formation is made available in response to a Locate Job request.

3.2.2. Synchronize Job Starts

PBS provides for synchronizing the initiation of jobs across hosts. This is done to support
distributing processing.

Author note:
There are several approaches that could be taken to solve this requirement, none
of them simple and straightforward. The best approach for synchronization of
jobs would be a single job scheduler for all hosts on which jobs could be concur-
rently started. However, this approach greatly complicates the already complicat-
ed scheduling problem. Whereas the number of concurrent starts will be small
compared to the total number of jobs, the semaphore approach was selected.

It is the intent of the developers that PBS will be expanded to encompass the con-
cept of a single job whose execution is distributed among multiple hosts.

Job start synchronization is requested through a special dependency attribute. The first job
in the set, the ‘‘master ’’, specifies the dependency attribute as:

-W synccount=count
where count is an integer which is the number of other jobs to be synchronized with this job.

3-8 Chapt Revision: 2.3

PBS ERS Batch Server

This job is the master only in the sense that it defines the rendezvous point for the
semaphore messages and that it must be submitted first so the identifier is known for the
other jobs in the set.

The other jobs in the sync set specify the dependency attribute as:
-W syncwith=job_identifier

where job_identifier is the job identifier assigned to the job which contained the sync-
count resource, the master job.

When the server queues a job in an execution queue and the job is a member of a sync set, in-
cluding the ‘‘master ’’, the server places a system hold on the job. The secondary state is set
to indicate the system hold is for sync. The server managing the non master jobs will regis-
ter the job with the server managing the master by sending a Register Dependent request
with a "Register" operation.

When all jobs have registered, as determined by the count on the master, the server manag-
ing the master job will send a Register Dependent request, with a "Release" operation, re-
quest to each job in turn in the set to remove the system hold. The released job may now vie
for resources. The jobs are released in order of the ‘‘cheapest’’ resources first; the concept of
‘‘Resource Costs’’ will be explained shortly.

When the resources required by a released job are available, as determined by the Scheduler,
A run Job Request will be issued for that job. The server which manages the job will send a
Register Dependent request with a ‘‘Ready’’ operation to the server that owns the master job.
This request indicates that the dependent job is ready and the job with the next cheapest re-
sources can be released.

The server calculates the Resource Cost of a job by summing the product of the amount of
each resource multiplied by an assigned cost of the resource. A general system surcharge
may also be assigned and added to the above sum. Resources with a ‘‘size’’ unit are converted
to megabytes before the multiplication to keep the number from becoming too large. See the
server attributes resources_cost and system_cost.

If the master of a sync set is aborted before all jobs in the set begin execution, an Abort Job
request is sent to all jobs in the set. This is done because the synchronous feature is intend-
ed for a set jobs which need communication amount themselves during execution. If the
master is gone, (1) the rendezvous point for server messages is lost, and (2) the job set is un-
likely to be able to establish the inter job communications required.

3.2.3. Job Dependency

PBS provides support for job dependency. A job, the child, can be declared to be dependent
on one or more jobs, the parents. A parent may have any number of children. The dependen-
cy is specified as an attribute on the qsub command with the -W option The general specifica-
tion is of the form:

-W type=argument[,type=argument,...]
See the qalter(1B) or qsub(1B) man pages for the complete specification of the dependency
list.

When a server queues a job with a dependency type of syncwith, after, afterok, after notok, or after-
any in an execution queue, the server will send a Register Dependent Job request to the serv-
er managing the job specified by the associated job_identifier. The request will specify that
the server is to register the dependency. This actually creates a corresponding before... type
dependency attribute entry on the parent. If the request is rejected because the parent job
does not exist, the child job is aborted. If the request is accepted, a system hold is placed on
the child job.

When a parent job, with any of the before... types of dependency, reaches the required state,
started or terminated, the server executing the parent job sends a Register Dependent Job
request to the server managing the child job directing it to release the child job. If there are
no other dependencies on other jobs, the system hold on the child job is removed.

Chapt Revision: 2.3 3-9

Batch Server PBS ERS

When a child job is submitted with an on dependency and the parent is submitted with any of
the before... types of dependencies, the parent will register with the child. This causes the on
dependency count to be reduced and a corresponding after... dependency to be created for the
child job.

The result is a pairing between corresponding before... and after... dependency types.

If the parent job terminates in a manner that the child is not released, it is up to the user to
correct the situation by either deleting the child job or by correcting the problem with the
parent job and resubmitting it. If the parent job is resubmitted, it must have a dependency
type of before, beforeok, beforenotok, or beforeany specified to connect it to the waiting child job.

3.3. Deferred Services

This section describes the deferred services performed by batch servers: file staging, job se-
lection, job initiation, job routing, job exit, job abort, and the rerunning of jobs after a restart
of the server.

The following rules apply to deferred services on behalf of jobs:

- If the server cannot complete a deferred service for a reason which is permanent, then
the job is aborted.

- If the service cannot be completed at the current time but may be later, the service is re-
tried a finite number of times.

3.3.1. Job Scheduling

If the server attribute scheduling is set true, the server will immediately request a scheduling
cycle of the PBS Job Scheduler. While it remains true, the Scheduler will be cycled when any
of four events occur:

• Enqueuing of a job in an execution queue or the change of state of a job in an exe-
cution queue to Queued from Waiting or Held .

• Termination of a running job. The termination may be normal execution comple-
tion, or because the job was deleted by request.

• Elapse of a specified cycle time as established by the administrator.

• The completion of a scheduling cycle in which one and only one job was scheduled
for execution. This provides for the implementation of scheduling scripts that
must see the impact of the new job on system resources before picking a second
job.

The Scheduler is then treated as a privileged client and may make any request of the Server,
including Run Job, Delete Job, Hold Job, or Modify Job/Queue/Server.

While a request for a scheduling cycle is outstanding, the connection to the Scheduler is
open, the Server will not make another request of the Scheduler. If the server attribute
scheduling is set false, the server will not contact the scheduler. This condition is indicated by
the ser ver_state attribute as Idle .

3.3.2. File Staging

Two types of file staging services exist, in-staging before execution and out-staging after exe-
cution. These services are requested by an attribute (via the -W option) which specifies the
files to be staged:

-W stagein=local_file@host:remote_path[,local_file@host:remote_path,...]
-W stageout=local_file@host:remote_path[,local_file@host:remote_path,...]

A request to stage in a file directs the server to direct MOM to copy a file from a remote host
to the local host. The user must have authority to access the file under the same user name

3-10 Chapt Revision: 2.3

PBS ERS Batch Server

under which the job will be run. The remote file is not modified or destroyed. The file will be
available before the job is initiated. If a file cannot be staged in for any reason, any files
which were staged-in are deleted and the job is placed into wait state and mail is sent to the
job owner.

A request to stage out a file directs the server to direct MOM to move a file from the local
host to a remote host. This service is performed after the job has completed execution and
regardless of its exit status. If a file cannot be moved, mail is sent to the job owner. If a file
is successfully staged out, the local file is deleted.

A version of the BSD 4.4-Lite system utility, rcp(1), will be used to move files over the net-
work. This version of rcp has been modified to always return a non-zero exit status on any
failure.

3.3.3. Job Initiation

Job initiation is to place a job into execution. The server creates a session leader that runs
the shell program indicated by the Shell_Path_List attribute of the job. The pathname of the
script and any script arguments are passed as parameters to the shell. If the path name of
the shell is a relative name, the server will search its execution path, $PATH, for the shell. If
the path name of the shell is omitted or is the null string, the server uses the login shell for
the user under whose name the job is to be run.

The server will determine the user name under which the job is to be run by the following
rules:

1. Select the user identifier from the User_List job attribute which has a host name that
matches the execution host.

2. Select the user identifier from the User_List job attribute which has no associated host
name.

3. Use the user name from the job_owner attribute of the job.

The server will place the job into running state.

The server will create, in the environment of the session leader of the job, the environment
variables named:

PBS_ENVIRONMENT - the value of which is the string PBS_BATCH.
PBS_QUEUE - the value of which is the name of the execution queue.

The server will also place in the environment of the session leader of the job, all of the vari-
ables and their corresponding values found in the variables attribute of the job.

The server will place the required limits on the resources for which the host system supports
resource limits.

If the job had been run before and is now being rerun , the server will insure that the stan-
dard output and standard error streams of the job are appended to the prior streams, if any.

If the server and host system support accounting, the server will use the value of the Ac-
count_Name job attribute as required by the host system.

If the server and host system support checkpoint, the server will set up checkpointing of the
job according to the value of the Checkpoint job attribute. If checkpoint is supported and the
Checkpoint attribute requests checkpointing at the minimum interval or a interval less than
the minimum interval for the queue, then checkpoint will be set for an interval given by the
queue attribute minimum_inter val.

The server will set up the standard output stream and the standard error stream of the job
according to the following rules:

• The stream will be located either (1) in a temporary file in the server’s spool directory,
or (2) a file in the user’s home directory. The choice is determined by a server build
time configuration parameter.

Chapt Revision: 2.3 3-11

Batch Server PBS ERS

• If the job attribute Join_Path has the value eo or the value oe, the server connects the
standard error stream of the job to the same file as the standard output stream.

If the value of the job attribute Mail_Points contains the value {beginning }, the server will send
mail to each mail address specified in the job attribute Mail_Users.

3.3.4. Job Routing

Job routing is moving a job from a routing queue to one of the destinations associated with
the queue.

If the star ted queue attribute is {TRUE}, the server will route all eligible jobs which reside in
the queue. All jobs in the queued state are eligible. If the queue attribute route_held_jobs is
{TRUE}, jobs in the held state are eligible for routing. If the queue attribute route_waiting_jobs
is {TRUE}, jobs in the waiting state are eligible.

The server will execute the function specified by the queue attribute route_function to select a
destination for the job. Possible destinations are listed in the queue attribute route_destina-
tions.

If the destination to which the job is to be routed is at another server, the current server will
use a Queue Job request sequence to move the job to the new destination.

If the server is unable to route a job to a chosen destination, the server will select another
destination from the list and retry the route. If the server is unable to route a job to any des-
tination because of a temporary condition, such as being unable to connect with the server at
the destination, the server will retry the route after a delay specified by the queue attribute
route_retr y_time. The server will proceed to route other jobs in the queue. The server will
retry the route up to the number of tries in the queue attribute number_retr ies. If the server is
unable to route a job to any destination and all failures are permanent (non-temporary), the
server will abort the job.

3.3.5. Job Exit

When the session leader of a batch job exits, the server will perform the following actions in
the order listed.

Place the job in the exiting state.

‘‘Free’’ the resources allocated to the job. The actual releasing of resources assigned to the
processes of the job is performed by the kernel. PBS will free the resources which it ‘‘re-
served’’ for the job by decrementing the resources_used generic data item for the queue and
server.

Return the standard output and standard error streams of the job to the user. If the
Keep_Files attribute of the job contains {KEEP_OUTPUT }, the server copies the spooled file
holding the standard output steam of the job to the home directory of the user under whose
name the job executed. The file name for the output is

job_name. oseq_number
See the qsub(1B) command description. If the Keep_Files attribute of the job contains
{KEEP_ERROR } and the Join_Path attribute does not contain ’e’, the server copies the spooled
file holding the standard error stream of the job to the home directory of the user under
whose name the job executed. The file name for the error file is

job_name. eseq_number
If the files are not to be kept on the execution host as described above, the temporary file
holding the standard output is copied or renamed to the host and path name specified by the
job attribute Output_Path. If the path name is relative, the file will be located relative to home
directory of the user on the receiving host.

If the Join_Path attribute does not contain the value e, the standard error of the job is deliv-
ered according to the same rules as the standard output described above.

3-12 Chapt Revision: 2.3

PBS ERS Batch Server

If either output file cannot be copied to its specified destination, the server will send mail to
the job owner specifying the current location of the output.

If the Mail_Points job attribute contains the value {EXIT }, the server will send mail to the users
listed in the job attribute Mail_List.

If out staging of files is supported, the files listed in the outfile resource will be copied to the
specified destination.

The job will be removed from the execution queue.

3.3.6. Job Aborts

If the server aborts a job and the Mail_Points job attribute contains the value {ABORT}, the
server will send mail to the users listed in the job attribute Mail_List. The mail message will
contain the reason the job was aborted.

The job is removed from the queue.

3.3.7. Timed Events

The server performs certain events at a specified time or after a specified time delay.

A job may have an execution_time attribute set to a time in the future. When that time is
reached, the job state is updated.

If the server is unable to make connection with another server, it is to retry after a time
specified either by the routing queue attribute route_retr y_time, or the general server attribute
networ k_retry_time.

3.3.8. Event Logging

The various daemons including the PBS server will maintain a log file of events. This file is
available to the batch administrator for analysis of past events.

The file will be maintained under the path name {PBS_SERVER_HOME}/ser ver_log/date, where
date is the date in the form yyyymmdd when the log file started (see the -L option in
pbs_server(8B)).

The events recorded by the server in the file are specified by the server attribute log_events
which is a bit string with each bit determining if a type of event is logged:

1 Internal PBS errors.

2 System (OS) errors such as malloc failed.

4 Administrator related events, such as chaning server or queue attributes.

8 Job related events events: submitted, ran, deleted, ...

16 (0x010)
Job resource usage, this duplicates the accounting information in the log.

32 (0x020)
Security releated events, such as attempts to connect from an unknown host.

64 (0x040)
When the scheduler was called and why.

128 (0x080)
First level, common, debug messages.

256 (0x100)
Second level, more rare, debug messages.

The log file is a text file with each entry terminated by a new line. The format of an entry is:

date time;event_code;server_name;object_type;object_name;message_text

Chapt Revision: 2.3 3-13

Batch Server PBS ERS

The date time field is a date and time stamp in the format: mm/dd/yyyy hh:mm:ss . The
event_code is the type of event which triggered the event logging. It correspondings to the
bit position, 0 to n, in the log_events server attribute. The server_name is the name of the
server which logged the message. This is recorded in case a site wishes to merge and sort the
various logs in a single file. The object_type is the type of object which the message is
about, Svr for server, Que for queue, Job for job, Req for request, or Fil for file. The ob-
ject_name is the name of the specific object. message_text field is the text of the log mes-
sage.

3.3.9. Accounting

The PBS server maintains an accounting file. The file will be maintained under the path
name {PBS_SERVER_HOME}/ser ver_pr iv/accounting/day. Where day is the date in the form
yyyymmdd when the accounting file started (see the -A option in pbs_server(8B)).

The account file is a text file with each entry terminated by a new line. The format of an en-
try is:

date time;record_type;job_id;message_text

The date time field is a date and time stamp in the format: mm/dd/yyyy hh:mm:ss . The
job_id is the job identifier. The messge_text is ascii text. The content depends on the
record type. The message text format is blank separated keyword=value fields. The
record_type is a single character indicating the type of record. The types are:

A Job was aborted by the server.

D Job was deleted by request. The message_text will contain requestor= user@host
to identify who deleted the job.

E Job ended (terminated execution). The message_text field contains:
user= username - the user name under which the job executed.
group= groupname - the group name under which the job executed.
jobname= job_name - the name of the job.
queue= queue_name - the name of the queue from which the job is executed.
ctime= time - time in seconds when job was created (first submitted).
qtime= time - time in seconds when job was queued into current queue.
etime= time - time in seconds when job became eligable to run; no holds, etc.
start= time - time in seconds when job execution started.
exec_host= host - name of host on which the job is being executed.
Resource_List. resource=limit - list of the specified reource limits.
session= sesid - session number of job.
alt_id= id - Optional alternate job identifier. Will be included only for certain sys-
tems:

Irix 6.x with Array Services − The alternate id is the Array Session Handle
(ASH) assigned to the job.

end= time - time in secnds when job ended execution.
Exit_status= value - the exit status of the job. If the value is less than 10000 (dec-
imal) it is the exit value of the top level process of the job, typically the shell. If the
value is greater than 10000, the top process exited on a signal whose number is giv-
en by subtracting 10000 from the exit value.
Resources_used. resource=limit - list of the specified reource limits.

For Resource_List and Resources_used, there is one entry per resource.

C Job was checkpointed and held.

Q Job entered a queue. The message_text contains queue= name identifying the queue
into which the job was placed. There will be a new Q record each time the job is
routed or moved to a new (or the same) queue.

3-14 Chapt Revision: 2.3

PBS ERS Batch Server

R Job was rerun.

S Job execution started. The message_text field contains:
user= username - the user name under which the job executed.
group= groupname - the group name under which the job executed.
jobname= job_name - the name of the job.
queue= queue_name - the name of the queue from which the job is executed.
ctime= time - time in seconds when job was created (first submitted).
qtime= time - time in seconds when job was queued into current queue.
etime= time - time in seconds when job became eligable to run; no holds, etc.
start= time - time in seconds when job execution started.
exec_host= host - name of host on which the job is being executed.
Resource_List. resource=limit - list of the specified reource limits.
session= sesid - session number of job.

T Job was restarted from a checkpoint file.

3.4. Resource Management

PBS performs resource allocation at job initiation in two ways depending on the support pro-
vided by the host system. Resources are either reservable or non reservable.

3.4.1. Non Reservable Resources

Most Unix systems do not provide for resource reservation, only for limits. Resources, like
memory, disk space, and cpu time, are handed out by the kernel on a first come first served
basis. When a request exceeds the users limits, the request is denied or the job is signaled.
To add resource reservation to a system is generally a major undertaking. One example is
the Session Reservable File System, SRFS, extension to Unicos® developed at NAS. This ex-
tension required several additions to the kernel.

For resources which are not reservable, PBS manages resource allocation based on the
amount ‘‘allocated’’ to PBS by the administrator. This available amount of each resource is
maintained in the server attribute resources_available. The share of the resource "distributed"
to each queue are maintained in an attribute for each of those objects. This attribute limits
the aggregate total of the resources used by the jobs running under each object. This alloca-
tion is made by the batch system administrator. Most host systems do not provide support
for dynamically adjusting the allocation to the batch system. A site may build in a procedure
for adjusting the values of certain resources based on system load.

An example of non reservable resources is memory. The host operating system kernel man-
ages memory, dynamically assigning physical memory to running processes. A limit can be
set which the process cannot exceed, but memory cannot be reserved for a particular process
in advance.

The resources_max attribute for the server and queue declares the maximum amount of the
resource that a single job may be allocated. The server’s resources_max is examined if there
is not a resources_max value for the type of resource defined at the queue level.

PBS insures that the resources requested by a job fall with in the two groups of limits before
the job is initiated.

3.4.2. Reservable Resources

On some hosts, certain resources types may be requested and the amount guaranteed to the
process. Session Reservable File System, SRFS, is such a resource. For these types of re-
sources, PBS will attempt to reserve the requested amount before scheduling the job for exe-
cution.

When the request to reserve resources is denied by the system, the job selection function may
assist or expedite the job. In this case resources allocated to the job are not "released". PBS

Chapt Revision: 2.3 3-15

Batch Server PBS ERS

will attempt to acquire the remaining resources until it is successful and the job can be initi-
ated, or until a time limit, specified by the queue attribute reser ved_expedite, is reached. At
that point all the resources are released. If a job is being expedited, other jobs whose re-
sources do not conflict with the needs of the expedited job may be scheduled for execution.

When the reservable resources have been allocated to the job and the non reservable re-
sources fit into what PBS has available, the job will be placed into execution.

3.4.3. Resource Limits

When submitting a job, a user may specify the hard limit of usage for resources known to the
system on which the job will run. If the executing job usage of resources exceed the specified
limit, the job is aborted.

If the user does not specify a limit for a resource type, the limit may be set to a default estab-
lished by the PBS administrator. The default limit is taken from the first of the following at-
tributes which is set:

1. The current queue’s attribute resources_default.

2. The server ’s attribute resources_default.

3. The current queue’s attrbute resources_max.

4. The server ’s attrbute resources_max.

If the user does not specify a limit for a resource and a default is not established via one of
the above attributes, the usage of the resource is unlimited.

3.4.4. Types of Resources

The following table lists the names recommend for various resources. Not all types are sup-
ported on a single server, some are not yet implemented on any system. Following sub-sec-
tions will list the resources supported by each system.

Keyword Units Definition
cput time job cpu time
pcput time process cput time
mem size job memory size
pmem size process memory size
pf size Amount of file systems block for the job
ppf size Amount of file systems block for any process in job
file size Amount of space for any single file
filsys string:size Amount of space on a file system
fileexist string file exists and is readable
srfs size Session Reservable File System space
walltime time wall clock time running
memt size*time Maximum job memory * time

(byte_seconds)
ncpus unitary Number of cpus
typecpu string type of cpu
cpugroup string set of cpus
9trk unitary number of 9 track tape drives
3480 unitary number of 18 track tape drives
3490 unitary number of 36 track tape drives
8mm unitary number of 8mm tape drives

The attribute values take the following units:

3-16 Chapt Revision: 2.3

PBS ERS Batch Server

time specifies a maximum time period the resource can be used. Time is expressed in
seconds as an integer, or in the form:
[[hours:]minutes:]seconds[.milliseconds]
If specified, milliseconds are rounded to the nearest second.

size specifies the maximum amount in terms of bytes or words. It is expressed in the
form integer[suffix] The suffix is a multiplier defined in the following table,
‘‘b’’ means bytes (the default) and ‘‘w’’ means words. The size of a word is calculat-
ed on the execution server as its word size.

Suffix Multiplier
b w 1

kb kw 1024
mb mw 1,048,576
gb gw 1,073,741,824
tb tw 1,099,511,627,776

string of characters which must be interpreted by the execution server. It is frequently a
path name.

unitary The maximum amount of a resource which is expressed as a simple integer.

3.4.4.1. IBM AIX Version 4 Resources

cput Maximum amount of CPU time used by all processes in the job. Units: time.

file The largest size of any single file that may be created by the job. Units: size.

mem Maximum amount of physical memory (workingset) used by the job. Units: size.

vmem Maximum amount of virtual memory used by all concurrent processes in the job.
Units: size.

nice The nice value under which the job is to be run. Units: unitary.

pcput Maximum amount of CPU time used by any single process in the job. Units: time.

pmem Maximum amount of physical memory (workingset) used by any single process of
the job. Units: size.

pvmem Maximum amount of virtual memory used by any single process in the job. Units:
size.

walltime Maximum amount of real time during which the job can be in the running state.
Units: time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the
site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

nodes Number and/or type of nodes to be reserved for exclusive use by the job. The val-
ue is one or more node_specs joined with the ’+’ character,
"node_spec[+node_spec...]. Each node_spec is an number of nodes required of the
type declared in the node_spec and a name or one or more properity or properities
desired for the nodes. The number, the name, and each properity in the node_spec
are separated by a colon ’:’. If no number is specified, one (1) is assumed. Units:
string.

The name of a node is its hostname. The properities of nodes are:

Chapt Revision: 2.3 3-17

Batch Server PBS ERS

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your
administrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:serv-
er+14
The above consist of two node_specs "2:server" and "14".

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes
that are not servers, and (c) 3 nodes that have a large amount of memory an
have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one
red node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided
for use by the site’s scheduling policy. The allowable values and effect on job
placement is site dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

software Allows a user to specify software required by the job. This is useful if certain soft-
ware packages are only available on certain systems in the site. This resource is
provided for use by the site’s scheduling policy. The allowable values and effect on
job placement is site dependent. Units: string.

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

qsub -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb script
qalter -lcput=30:00,pmem=8mb 123.jobid

or in a qsub script as a directive:

#PBS -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb

3.4.4.2. Digital Unix Resources

cput Maximum amount of CPU time used by all processes in the job. Units: time.

file The largest size of any single file that may be created by the job. Units: size.

nice The nice value under which the job is to be run. Units: unitary.

pcput Maximum amount of CPU time used by any single process in the job. Units: time.

3-18 Chapt Revision: 2.3

PBS ERS Batch Server

pvmem Maximum amount of virtual memory used by any single process in the job. Units:
size.

vmem Maximum amount of virtual memory used by all concurrent processes in the job.
Units: size.

walltime Maximum amount of real time during which the job can be in the running state.
Units: time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the
site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

nodes Number and/or type of nodes to be reserved for exclusive use by the job. The val-
ue is one or more node_specs joined with the ’+’ character,
"node_spec[+node_spec...]. Each node_spec is an number of nodes required of the
type declared in the node_spec and a name or one or more properity or properities
desired for the nodes. The number, the name, and each properity in the node_spec
are separated by a colon ’:’. If no number is specified, one (1) is assumed. Units:
string.

The name of a node is its hostname. The properities of nodes are:

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your
administrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:serv-
er+14
The above consist of two node_specs "2:server" and "14".

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes
that are not servers, and (c) 3 nodes that have a large amount of memory an
have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one
red node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided
for use by the site’s scheduling policy. The allowable values and effect on job
placement is site dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

software Allows a user to specify software required by the job. This is useful if certain soft-
ware packages are only available on certain systems in the site. This resource is
provided for use by the site’s scheduling policy. The allowable values and effect on

Chapt Revision: 2.3 3-19

Batch Server PBS ERS

job placement is site dependent. Units: string.

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

qsub -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb script
qalter -lcput=30:00,pmem=8mb 123.jobid

or in a qsub script as a directive:

#PBS -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb

3.4.4.3. SGI Irix 5 Resources

cput Maximum amount of CPU time used by all processes in the job. Units: time.

file The largest size of any single file that may be created by the job. Units: size.

nice The nice value under which the job is to be run. Units: unitary.

pcput Maximum amount of CPU time used by any single process in the job. Units: time.

pmem Maximum amount of physical memory (workingset) used by any single process of
the job. Units: size.

pvmem Maximum amount of virtual memory used by any single process in the job. Units:
size.

vmem Maximum amount of virtual memory used by all concurrent processes in the job.
Units: size.

walltime Maximum amount of real time during which the job can be in the running state.
Units: time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the
site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

nodes Number and/or type of nodes to be reserved for exclusive use by the job. The val-
ue is one or more node_specs joined with the ’+’ character,
"node_spec[+node_spec...]. Each node_spec is an number of nodes required of the
type declared in the node_spec and a name or one or more properity or properities
desired for the nodes. The number, the name, and each properity in the node_spec
are separated by a colon ’:’. If no number is specified, one (1) is assumed. Units:
string.

The name of a node is its hostname. The properities of nodes are:

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your
administrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:serv-
er+14
The above consist of two node_specs "2:server" and "14".

3-20 Chapt Revision: 2.3

PBS ERS Batch Server

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes
that are not servers, and (c) 3 nodes that have a large amount of memory an
have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one
red node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided
for use by the site’s scheduling policy. The allowable values and effect on job
placement is site dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

software Allows a user to specify software required by the job. This is useful if certain soft-
ware packages are only available on certain systems in the site. This resource is
provided for use by the site’s scheduling policy. The allowable values and effect on
job placement is site dependent. Units: string.

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

qsub -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb script
qalter -lcput=30:00,pmem=8mb 123.jobid

or in a qsub script as a directive:

#PBS -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb

3.4.4.4. SGI Irix 6 Resources

cput Maximum amount of CPU time used by all processes in the job. Units: time.

file The largest size of any single file that may be created by the job. Units: size.

ncpus The number of processors requested. Units: unitary.

cpupercentThe maximum percentage of a cpu which the job used. A value of 100 means 1
cpu. This cannot be set, it is only reported. Units: percent.

nice The nice value under which the job is to be run. Units: unitary.

nodemask A bit mask specifying the nodes (a pair of processors) to be associated with this
job. This resource is intended for use by PBS to optimize processor allocation and
direct use of this field by the job owner is discourged. Units: bit mask.

pcput Maximum amount of CPU time used by any single process in the job. Units: time.

pmem Maximum amount of physical memory (workingset) used by any single process of
the job. Units: size.

Chapt Revision: 2.3 3-21

Batch Server PBS ERS

pvmem Maximum amount of virtual memory used by any single process in the job. Units:
size.

vmem Maximum amount of virtual memory used by all concurrent processes in the job.
Units: size.

walltime Maximum amount of real time during which the job can be in the running state.
Units: time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the
site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

nodes Number and/or type of nodes to be reserved for exclusive use by the job. The val-
ue is one or more node_specs joined with the ’+’ character,
"node_spec[+node_spec...]. Each node_spec is an number of nodes required of the
type declared in the node_spec and a name or one or more properity or properities
desired for the nodes. The number, the name, and each properity in the node_spec
are separated by a colon ’:’. If no number is specified, one (1) is assumed. Units:
string.

The name of a node is its hostname. The properities of nodes are:

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your
administrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:serv-
er+14
The above consist of two node_specs "2:server" and "14".

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes
that are not servers, and (c) 3 nodes that have a large amount of memory an
have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one
red node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided
for use by the site’s scheduling policy. The allowable values and effect on job
placement is site dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

software Allows a user to specify software required by the job. This is useful if certain soft-
ware packages are only available on certain systems in the site. This resource is
provided for use by the site’s scheduling policy. The allowable values and effect on

3-22 Chapt Revision: 2.3

PBS ERS Batch Server

job placement is site dependent. Units: string.

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

qsub -l cput=1:00:00,walltime=2:00:00,file=50gb,vmem=15mb script
qalter -lcput=30:00,pmem=8mb 123.jobid

or in a qsub script as a directive:

#PBS -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb

3.4.4.5. Linux Resources

cput Maximum amount of CPU time used by all processes in the job. Units: time.

file The largest size of any single file that may be created by the job. Units: size.

nice The nice value under which the job is to be run. Units: unitary.

pcput Maximum amount of CPU time used by any single process in the job. Units: time.

pmem Maximum amount of physical memory (workingset) used by any single process of
the job. Units: size.

pvmem Maximum amount of virtual memory used by any single process in the job. Units:
size.

vmem Maximum amount of virtual memory used by all concurrent processes in the job.
Units: size.

walltime Maximum amount of real time during which the job can be in the running state.
Units: time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the
site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

nodes Number and/or type of nodes to be reserved for exclusive use by the job. The val-
ue is one or more node_specs joined with the ’+’ character,
"node_spec[+node_spec...]. Each node_spec is an number of nodes required of the
type declared in the node_spec and a name or one or more properity or properities
desired for the nodes. The number, the name, and each properity in the node_spec
are separated by a colon ’:’. If no number is specified, one (1) is assumed. Units:
string.

The name of a node is its hostname. The properities of nodes are:

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your
administrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:serv-
er+14
The above consist of two node_specs "2:server" and "14".

Chapt Revision: 2.3 3-23

Batch Server PBS ERS

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes
that are not servers, and (c) 3 nodes that have a large amount of memory an
have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one
red node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided
for use by the site’s scheduling policy. The allowable values and effect on job
placement is site dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

software Allows a user to specify software required by the job. This is useful if certain soft-
ware packages are only available on certain systems in the site. This resource is
provided for use by the site’s scheduling policy. The allowable values and effect on
job placement is site dependent. Units: string.

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

qsub -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb script
qalter -lcput=30:00,pmem=8mb 123.jobid

or in a qsub script as a directive:

#PBS -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb

3.4.4.6. IBM SP-2 Resources

nice The nice value under which the job is to be run. Units: unitary.

walltime
Maximum amount of real time during which the job can be in the running state. Units:
time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the site’s
scheduling policy. The allowable values and effect on job placement is site dependent.
Units: string.

nodesNumber and/or type of nodes to be reserved for exclusive use by the job. The value is
one or more node_specs joined with the ’+’ character, "node_spec[+node_spec...]. Each
node_spec is an number of nodes required of the type declared in the node_spec and a
name or one or more properity or properities desired for the nodes. The number, the
name, and each properity in the node_spec are separated by a colon ’:’. If no number is

3-24 Chapt Revision: 2.3

PBS ERS Batch Server

specified, one (1) is assumed. Units: string.

The name of a node is its hostname. The properities of nodes are:

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your admin-
istrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:server+14
The above consist of two node_specs "2:server" and "14".

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes that
are not servers, and (c) 3 nodes that have a large amount of memory an have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one red
node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use by
the site’s scheduling policy. The allowable values and effect on job placement is site de-
pendent. Units: string.

software
Allows a user to specify software required by the job. This is useful if certain software
packages are only available on certain systems in the site. This resource is provided for
use by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

3.4.4.7. Sun SunOS Version 4 Resources

cput Maximum amount of CPU time used by all processes in the job. Units: time.

file The largest size of any single file that may be created by the job. Units: size.

nice The nice value under which the job is to be run. Units: unitary.

pcput Maximum amount of CPU time used by any single process in the job. Units: time.

pmem Maximum amount of physical memory (workingset) used by any single process of
the job. Units: size.

pvmem Maximum amount of virtual memory used by any single process in the job. Units:
size.

Chapt Revision: 2.3 3-25

Batch Server PBS ERS

vmem Maximum amount of virtual memory used by all concurrent processes in the job.
Units: size.

walltime Maximum amount of real time during which the job can be in the running state.
Units: time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the
site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

nodes Number and/or type of nodes to be reserved for exclusive use by the job. The val-
ue is one or more node_specs joined with the ’+’ character,
"node_spec[+node_spec...]. Each node_spec is an number of nodes required of the
type declared in the node_spec and a name or one or more properity or properities
desired for the nodes. The number, the name, and each properity in the node_spec
are separated by a colon ’:’. If no number is specified, one (1) is assumed. Units:
string.

The name of a node is its hostname. The properities of nodes are:

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your
administrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:serv-
er+14
The above consist of two node_specs "2:server" and "14".

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes
that are not servers, and (c) 3 nodes that have a large amount of memory an
have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one
red node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided
for use by the site’s scheduling policy. The allowable values and effect on job
placement is site dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

software Allows a user to specify software required by the job. This is useful if certain soft-
ware packages are only available on certain systems in the site. This resource is
provided for use by the site’s scheduling policy. The allowable values and effect on
job placement is site dependent. Units: string.

3-26 Chapt Revision: 2.3

PBS ERS Batch Server

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

qsub -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15mb script
qalter -lcput=30:00,pmem=8mb 123.jobid

or in a qsub script as a directive:

#PBS -l cput=1:00:00,walltime=2:00:00,file=50gb,mem=15

3.4.4.8. Sun Solaris Resources

cput Maximum amount of CPU time used by all processes in the job. Units: time.

file The largest size of any single file that may be created by the job. Units: size.

nice The nice value under which the job is to be run. Units: unitary.

pcput Maximum amount of CPU time used by any single process in the job. Units: time.

pmem Maximum amount of physical memory (workingset) used by any single process of
the job. Units: size.

pvmem Maximum amount of virtual memory used by any single process in the job. Units:
size.

vmem Maximum amount of virtual memory used by all concurrent processes in the job.
Units: size.

walltime Maximum amount of real time during which the job can be in the running state.
Units: time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the
site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

nodes Number and/or type of nodes to be reserved for exclusive use by the job. The val-
ue is one or more node_specs joined with the ’+’ character,
"node_spec[+node_spec...]. Each node_spec is an number of nodes required of the
type declared in the node_spec and a name or one or more properity or properities
desired for the nodes. The number, the name, and each properity in the node_spec
are separated by a colon ’:’. If no number is specified, one (1) is assumed. Units:
string.

The name of a node is its hostname. The properities of nodes are:

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your
administrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:serv-
er+14
The above consist of two node_specs "2:server" and "14".

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes
that are not servers, and (c) 3 nodes that have a large amount of memory an
have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

Chapt Revision: 2.3 3-27

Batch Server PBS ERS

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one
red node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided
for use by the site’s scheduling policy. The allowable values and effect on job
placement is site dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

software Allows a user to specify software required by the job. This is useful if certain soft-
ware packages are only available on certain systems in the site. This resource is
provided for use by the site’s scheduling policy. The allowable values and effect on
job placement is site dependent. Units: string.

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

qsub -l cput=1:00:00,walltime=2:00:00,file=50gb,vmem=15mb script
qalter -lcput=30:00 123.jobid

or in a qsub script as a directive:

#PBS -l cput=1:00:00,walltime=2:00:00,file=50gb,vmem=15mb

3.4.4.9. CRI Computers running Unicos version 8, 9, or 10

ncpus Maximum number of multitask processes in the job. If this is set the environment
variable NCPUS will be set to the given value. Units: unitary.

cput Maximum amount of CPU time used by all processes in the job. Root processes
are not limited, see limit(2). Units: time.

mem Maximum amount of physical memory used by all concurrent processes in the job.
Units: size.

mppe The number of processing elements used by a single process in the job. Units: uni-
tary.

mppt Maximum amount of wall clock time used on the MPP in the job. Units: time.

mta, mtb, mtc, ..., mth
Maximum number of magnetic tape drives required in the corresponding device
class of a, b, c, ..., h. Units: unitary.

nice The nice value under which the job is to be run. Units: unitary.

pncpus Maximum number of processors used by any single process in the job. Units: uni-
tary.

pcput Maximum amount of CPU time used by any single process in the job. Units: time.

3-28 Chapt Revision: 2.3

PBS ERS Batch Server

pf Maximum number of file system blocks that can be used by all process in the job.
Units: size.

pmem Maximum amount of physical memory used by any single process in the job.
Units: size.

pmppt Maximum amount of wall clock time used on the MPP by a single process in the
job. Units: time.

ppf Maximum number of file system blocks that can be used by a single process in the
job. Units: size.

procs Maximum number of processes in the job. Units: unitary.

psds Maximum number of data blocks on the SDS (secondary data storage) for any pro-
cess in the job.

sds Maximum number of data blocks on the SDS (secondary data storage) for the job.

srfs_tmp Session Reservable File System (SRFS) space in TMPDIR. Note, SRFS is not sup-
ported by Cray. Units: size.

srfs_wrk SRFS space in WRKDIR. Units: size.

srfs_big SRFS space in BIGDIR. Units: size.

srfs_fast SRFS space in FASTDIR. Units: size.

walltime Maximum amount of real time during which the job can be in the running state.
Units: time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the
site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

nodes Number and/or type of nodes to be reserved for exclusive use by the job. The val-
ue is one or more node_specs joined with the ’+’ character,
"node_spec[+node_spec...]. Each node_spec is an number of nodes required of the
type declared in the node_spec and a name or one or more properity or properities
desired for the nodes. The number, the name, and each properity in the node_spec
are separated by a colon ’:’. If no number is specified, one (1) is assumed. Units:
string.

The name of a node is its hostname. The properities of nodes are:

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your
administrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:serv-
er+14
The above consist of two node_specs "2:server" and "14".

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes
that are not servers, and (c) 3 nodes that have a large amount of memory an
have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

Chapt Revision: 2.3 3-29

Batch Server PBS ERS

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one
red node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided
for use by the site’s scheduling policy. The allowable values and effect on job
placement is site dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

software Allows a user to specify software required by the job. This is useful if certain soft-
ware packages are only available on certain systems in the site. This resource is
provided for use by the site’s scheduling policy. The allowable values and effect on
job placement is site dependent. Units: string.

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

qsub -l cput=1:00:00,pcput=20:00,file=50gb,mem=15mb,mta=2 script
qalter -lcput=30:00,pmem=8mb 123.jobid
qsub -lsrfs_tmp=50mb,srfs_big=2gw script

or in a qsub script as directives:

#PBS -l cput=1:00:00,pcput=20:00,file=50gb,mem=15mb,mta=2
#PBS -lsrfs_tmp=50mb,srfs_big=2gw

SPECIAL FEATURES
Cray Unicos supports checkpoint and restart. Any description of checkpoint features
in PBS are applicable to Unicos.

3.4.4.10. CRI Computers running Unicos MK version 2.

cput Maximum amount of CPU time used by all processes in the job. Root processes are not
limited, see limit(2). Units: time.

mem Maximum amount of physical memory used by all concurrent processes in the job.
Units: size.

mppeThe number of processing elements used by a single process in the job. Units: unitary.

mppt Maximum amount of wall clock time used on the MPP in the job. Units: time.

mta, mtb, mtc, ..., mth
Maximum number of magnetic tape drives required in the corresponding device class of
a, b, c, ..., h. Units: unitary.

nice The nice value under which the job is to be run. Units: unitary.

pncpus
Maximum number of processors used by any single process in the job. Units: unitary.

pcputMaximum amount of CPU time used by any single process in the job. Units: time.

pf Maximum number of file system blocks that can be used by all process in the job.
Units: size.

3-30 Chapt Revision: 2.3

PBS ERS Batch Server

pmemMaximum amount of physical memory used by any single process in the job. Units:
size.

pmpptMaximum amount of wall clock time used on the MPP by a single process in the job.
Units: time.

ppf Maximum number of file system blocks that can be used by a single process in the job.
Units: size.

procs Maximum number of processes in the job. Units: unitary.

psds Maximum number of data blocks on the SDS (secondary data storage) for any process
in the job.

sds Maximum number of data blocks on the SDS (secondary data storage) for the job.

srfs_tmp
Session Reservable File System (SRFS) space in TMPDIR. Note, SRFS is not supported
by Cray. Units: size.

srfs_wrk
SRFS space in WRKDIR. Units: size.

srfs_big
SRFS space in BIGDIR. Units: size.

srfs_fast
SRFS space in FASTDIR. Units: size.

walltime
Maximum amount of real time during which the job can be in the running state. Units:
time.

arch Specifies the administrator defined system architecture requried. This defaults to
whatever the PBS_MACH string is set to in "local.mk". Units: string.

host Name of host on which job should be run. This resource is provided for use by the site’s
scheduling policy. The allowable values and effect on job placement is site dependent.
Units: string.

nodesNumber and/or type of nodes to be reserved for exclusive use by the job. The value is
one or more node_specs joined with the ’+’ character, "node_spec[+node_spec...]. Each
node_spec is an number of nodes required of the type declared in the node_spec and a
name or one or more properity or properities desired for the nodes. The number, the
name, and each properity in the node_spec are separated by a colon ’:’. If no number is
specified, one (1) is assumed. Units: string.

The name of a node is its hostname. The properities of nodes are:

. ppn=# specifying the number of processors per node requested. Defaults to 1.

. arbitrary string assigned by the system administrator, please check with your admin-
istrator as to the node names and properities available to you.

Examples:

. To ask for 12 nodes of any type: -l nodes=12

. To ask for 2 "server" nodes and 14 other nodes (a total of 16): -l nodes=2:server+14
The above consist of two node_specs "2:server" and "14".

. To ask for (a) 1 node that is a "server" and has a "hippi" interface, (b) 10 nodes that
are not servers, and (c) 3 nodes that have a large amount of memory an have hippi:
-l nodes=server:hippi+10:noserver+3:bigmem:hippi

. To ask for three nodes by name:
-l nodes=b2005+b1803+b1813

. To ask for 2 processors on each of four nodes:
-l nodes=4:ppn=2

Chapt Revision: 2.3 3-31

Batch Server PBS ERS

. To ask for 4 processors on one node:
-l nodes=1:ppn=4

. To ask for 2 processors on each of two blue nodes and three processors on one red
node:
-l nodes=2:blue:ppn=2+red:ppn=3

host Allows a user to specify the desired execution location. This resource is provided for use
by the site’s scheduling policy. The allowable values and effect on job placement is site
dependent. Units: string.

other Allows a user to specify site specific information. This resource is provided for use by
the site’s scheduling policy. The allowable values and effect on job placement is site de-
pendent. Units: string.

software
Allows a user to specify software required by the job. This is useful if certain software
packages are only available on certain systems in the site. This resource is provided for
use by the site’s scheduling policy. The allowable values and effect on job placement is
site dependent. Units: string.

EXAMPLES
qsub -l nodes=15,walltime=2:00:00 script

or in a qsub script as a directive:

#PBS -l nodes=15,walltime=2:00:00

qsub -l cput=1:00:00,pcput=20:00,file=50gb,mem=15mb,mta=2 script
qalter -lcput=30:00,pmem=8mb 123.jobid
qsub -lsrfs_tmp=50mb,srfs_big=2gw script

or in a qsub script as directives:

#PBS -l cput=1:00:00,pcput=20:00,file=50gb,mem=15mb,mta=2
#PBS -lsrfs_tmp=50mb,srfs_big=2gw

SPECIAL FEATURES
Cray Unicos MK supports checkpoint and restart. Any description of checkpoint fea-
tures in PBS are applicable to Unicos MK.

3.4.5. Interactive Session Management

Author note:
This section is very incomplete. It is the beginnings of an idea based on the need
to know, and perhaps control, the resource utilization by interactive sessions. In
most implementations based on NQS, this is not done. A few implementations
have been extended to periodically monitor the proc table in the kernel. The dis-
advantage of this method is the makeup of the proc table varies greatly for each
kernel implementation.

To improve its ability to schedule jobs and manage resources, PBS must be aware of the load
of the system produced by interactive jobs. It would be an advantage to have the capability
to control the activities of interactive sessions.

One approach is to provide a communication capability between the login process and PBS.
The number of login sessions and the amount of resources ‘‘assigned’’ to each session, based
on the user limits, would be communicated to PBS. PBS would then be able to adjust the
amount of resources available to batch jobs.

If a site wished to restrict interactive sessions based on the availability of resources under
control of PBS, this capability would be extended such that PBS could direct the login pro-
cess to disallow the user login attempt.

3-32 Chapt Revision: 2.3

PBS ERS Batch Server

The sum of the resources (limits) used by all current interactive sessions would be treated as
those assigned to a job.

Chapt Revision: 2.3 3-33

Batch Server PBS ERS

[Page intentionally left bank.]

3-34 Chapt Revision: 2.3

PBS ERS Batch Server

4. Interface Library
Part of the PBS package is the Batch Interface Library , or IFL . This library provides a
means of building new batch clients. Any batch service request can be invoked through calls
to the batch interface library.

Users may have requirements to build jobs which could status itself or spawn off new jobs.
Or they may wish to customize the job status display rather than use qstat. Administrators
may use the interface library to build new control commands.

4.1. Interface Library Overview

The IFL provides a user callable function which corresponds to each batch client command.
There is (approximately) a one to one correlation between commands and batch service re-
quests. Additional routines are provided for network connection management. The user
callable routines are declared in the header file PBS_ifl.h .

Users open a connection with a batch server via a call to pbs_connect(). Multiple connections
are supported. Before a connection is established, pbs_connect() will fork and exec an Inter-
face Facility , IFF, as shown in figure 4−1. The purpose of the IFF is to provide the user a
credential which validates the user’s identity. This credential is included in each batch re-
quest. The IFF provided credential prevents a user from spoofing another user’s identity.
See chapter 10, Security, for more detail.

6. reply

2. local port number

4. Ack

3. local port, user, host

1. connect

5. request

reser ved port

any por t
pbs_connect()

client

pbs_iff

pbs_ser ver

Figure 4−1: Interface Between Client, IFF, and Server

After all requests have been made to a server, its connection is closed via a call to pbs_discon-
nect().

Users request service of a batch server by calling the appropriate library routine and passing
it the required parameters. The parameters correspond to the options and operands on the
commands. It is the user’s responsibility to insure the parameters are in the correct syntax.

Each function will return zero upon success and a non-zero error code on failure. These error
codes are available in the header file PBS_error.h .

The library routine will accept the parameters and build the corresponding batch request.
This request is then passed to the server communication routine.

Chapt Revision: 2.2 4-1

Interface Library PBS ERS

4.2. Interface Library Routines

The following "man" pages describe the user callable functions in the IFL. The functions are
found in files src/lib/Libifl/pbsD_*.c.

4-2 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.1. Alter Job

NAME
pbs_alterjob - alter pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_alterjob(int connect, char *job_id, struct attrl *attrib,
char *extend)

DESCRIPTION
Issue a batch request to alter a batch job.

A Modify Job batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The argument, job_id, identifies which job is to be altered, it is specified in the form:
sequence_number.server

The parameter, attrib, is a pointer to an attrl structure which is defined in pbs_ifl.h as:

struct attrl {
char *name;
char *resource;
char *value
struct attrl *next;

};

The attrib list is terminated by the first entry where next is a null pointer.

The name member points to a string which is the name of the attribute. The value
member points to a string which is the value of the attribute. The attribute names are
defined in pbs_ifl.h:

#define ATTR_a "Execution_Time"
Alter the job’s execution time.

#define ATTR_A "Account_Name"
Alter the account string.

#define ATTR_c "Checkpoint"
Alter the checkpoint interval.

#define ATTR_e "Error_Path"
Alter the path name for the standard error of the job.

#define ATTR_g "Group_List"
Alter the list of group names under which the job may execute.

#define ATTR_h "Hold_Types"
Alter the hold types.

#define ATTR_j "Join_Path"
Alter if standard error and standard output are joined (merged).

#define ATTR_k "Keep_Files"
Alter which output of the job is kept on the execution host.

#define ATTR_l "Resource_List"
Alter the value of a named resource.

Chapt Revision: 2.2 4-3

Interface Library PBS ERS

#define ATTR_m "Mail_Points"
Alter the points at which the server will send mail about the job.

#define ATTR_M "Mail_Users"
Alter the list of users who would receive mail about the job.

#define ATTR_N "Job_Name"
Alter the job name.

#define ATTR_o "Output_Path"
Alter the path name for the standard output of the job.

#define ATTR_p "Priority"
Alter the priority of the job.

#define ATTR_r "Rerunable"
Alter the rerunable flag.

#define ATTR_S "Shell_Path_List"
Alter the path to the shell which will interprets the job script.

#define ATTR_u "User_List"
Alter the list of user names under which the job may execute.

#define ATTR_v "Variable_List"
Alter the list of environmental variables which are to be exported to the job.

#define ATTR_depend "depend"
Alter the inter-job dependencies.

#define ATTR_stagein "stagein"
Alter the list of files to be staged-in before job execution.

#define ATTR_stageout "stageout"
Alter the list of files to be staged-out after job execution.

If attrib itself is a null pointer, then no attributes are altered.

Associated with an attribute of type ATTR_l (the letter ell) is a resource name indicated
by resource in the attrl structure. All other attribute types should have a pointer to a
null string ("") for resource .

If the resource of the specified resource name is already present in the job’s Re-
source_List attribute, it will be altered to the specified value. If the resource is not pre-
sent in the attribute, it is added.

Certain attributes of a job may or may not be alterable depending on the state of the
job; see qalter(1B).

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qalter(1B), qhold(1B), qrls(1B), qsub(1B), pbs_connect(3B), pbs_holdjob(3B), and pbs_rl-
sjob(3B)

DIAGNOSTICS
When the batch request generated by pbs_alterjob() function has been completed suc-
cessfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero error
is returned. The error number is also set in pbs_errno.

4-4 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.2. Connect with Server

NAME
pbs_connect - connect to a pbs batch server

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_connect(char *server)

extern char *pbs_server;

DESCRIPTION
A virtual stream (TCP/IP) connection is established with the server specified by server.

This function must be called before any of the other pbs_ functions. They will transmit
their batch requests over the connection established by this function. Multiple requests
may be issued over the connection before it is closed.

The connection should be closed by a call to pbs_disconnect() when all requests have
been sent to the server.

The parameter, server, is of the form host_name[:port] , see section 2.7.9. If port is
not specified, the standard PBS port number will be used.

If the parameter, server, is either the null string or a null pointer, a connection will be
opened to the default server. The default server is defined in section 2.7.4.

The variable pbs_server, declared in pbs_ifl.h, is set on return to point to the server
name to which pbs_connect() connected or attempted to connect.

SEE ALSO
qsub(1B), pbs_alterjob(3B), pbs_deljob(3B), pbs_disconnect(3B), pbs_geterrmsg(3B),
pbs_holdjob(3B), pbs_locate(3B), pbs_manager(3B), pbs_movejob(3B), pbs_msgjob(3B),
pbs_rerunjob(3B), pbs_rlsjob(3B), pbs_runjob(3B), pbs_selectjob(3B), pbs_selstat(3B),
pbs_sigjob(3B), pbs_statjob(3B), pbs_statque(3B), pbs_statserver(3B), pbs_submit(3B),
pbs_terminate(3B), pbs_server(8B), and the PBS External Reference Specification

DIAGNOSTICS
When the connection to batch server has been successfully created, the routine will re-
turn a connection identifier which is positive. Otherwise, a negative value is returned.
The error number is set in pbs_errno.

Chapt Revision: 2.2 4-5

Interface Library PBS ERS

4.2.3. Delete Job

NAME
pbs_deljob - delete a pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_deljob(int connect, char *job_id, char *extend)

DESCRIPTION
Issue a batch request to delete a batch job. If the batch job is running, the execution
server will send the SIGTERM signal followed by SIGKILL.

A Delete Job batch request is generated and sent to the server over the connection spec-
ified by connect which is the return value of pbs_connect().

The argument, job_id, identifies which job is to be deleted, it is specified in the form:
sequence_number.server

The argument, extend, is overloaded to serve two purposes. If the pointer extend points
to a string of the form:
deldelay= nnnn,
it is used to provide control over the delay between sending SIGTERM and SIGKILL
signals to a running job. The characters nnnn specify a unsigned decimal integer time
delay in seconds. If extend is the null pointer or points to a null string, the administra-
tor established default time delay is used.

If extend points to a string other than the above, it is taken as text to be appended to
the message mailed to to the job owner. This mailing occurs if the job is deleted by a
user other than the job owner.

SEE ALSO
qdel(1B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by the pbs_deljob() function has been completed
successfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero
error is returned. The error number is also set in pbs_errno.

4-6 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.4. Disconnect from Server

NAME
pbs_disconnect - disconnect from a pbs batch server

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_disconnect(int connect)

DESCRIPTION
The virtual stream connection specified by connect, which was established with a server
by a call to pbs_connect(), is closed.

SEE ALSO
pbs_connect(3B)

DIAGNOSTICS
When the connection to batch server has been successfully closed, the routine will re-
turn zero. Otherwise, a non zero error is returned. The error number is also set in
pbs_errno.

Chapt Revision: 2.2 4-7

Interface Library PBS ERS

4.2.5. Get Error Message Text

NAME
pbs_geterrmsg - get error message for last pbs batch operation

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

char *pbs_geterrmsg(int connect)

DESCRIPTION
Return the error message text associated with a batch server request.

Because different server implementations may have different error conditions, the
batch request - reply protocol allows for the server to include the text of an error mes-
sage in the reply to a batch request.

If the preceding batch interface library call over the connection specified by connect re-
sulted in an error return from the server, there may be an associated text message. If it
exists, this function will return a pointer to the null terminated text string.

SEE ALSO
pbs_connect(3B)

DIAGNOSTICS
If an error text message was returned by a server in reply to the previous call to a batch
interface library function, pbs_geterrmsg() will return a pointer to it. Otherwise,
pbs_geterrmsg() returns the null pointer.

4-8 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.6. Hold Job

NAME
pbs_holdjob - place a hold on a pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_holdjob(int connect, char *job_id, char *hold_type,
char *extend)

DESCRIPTION
Issue a batch request to place a hold upon a job.

A Hold Job batch request is generated and sent to the server over the connection speci-
fied by connect which is the return value of pbs_connect().

The argument, job_id, identifies which job is to be held, it is specified in the form: se-
quence_number.server

The parameter, hold_type, contains the type of hold to be applied. The possible values
are defined in pbs_ifl.h as:

#define USER_HOLD "u"
Available to the owner of the job, the batch operator, and the batch adminis-
trator.

#define OTHER_HOLD "o"
Available to the batch operator and the batch administrator.

#define SYSTEM_HOLD "s"
Available only to the batch administrator.

If hold_type is either a null pointer or points to a null string, USER_HOLD will be ap-
plied.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qhold(1B), pbs_connect(3B), pbs_alterjob(3B), and pbs_rlsjob(3B)

DIAGNOSTICS
When the batch request generated by pbs_holdjob() function has been completed suc-
cessfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero error
is returned. The error number is also set in pbs_errno.

Chapt Revision: 2.2 4-9

Interface Library PBS ERS

4.2.7. Locate Job

NAME
pbs_locjob - locate current location of a pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

char *pbs_locjob(int connect, char *job_id, char *extend)

DESCRIPTION
Issue a batch request to locate a batch job. If the server currently manages the batch
job, or knows which server does currently manage the job, it will reply with the location
of the job.

A Locate Job batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The argument, job_id, identifies which job is to be located, it is specified in the form:
sequence_number.server

The argument, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

The return value is a pointer to a character sting which contains the current location if
known. The syntax of the location string is: queue@server_name . If the location of
the job is not known, the return value is the NULL pointer.

SEE ALSO
qsub(1B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by the pbs_locjob() function has been completed
successfully by a batch server, the routine will return a non null pointer to the destina-
tion. Otherwise, a null pointer is returned. The error number is set in pbs_errno.

4-10 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.8. Manager Server

NAME
pbs_manager - administrator a pbs batch object

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_manager(int connect, int command, int obj_type, char *obj_name,
struct attropl *attrib, char *extend)

DESCRIPTION
Issue a batch request to perform administration functions at a server. With this re-
quest server objects such as queues can be created and deleted, and have their at-
tributes set and unset.

A Manage batch request is generated and sent to the server over the connection speci-
fied by connect which is the return value of pbs_connect(). This request requires full
batch administrator privilege.

The parameter, command, specifies the operation to be performed, see pbs_ifl.h:
#define MGR_CMD_CREATE 0
#define MGR_CMD_DELETE 1
#define MGR_CMD_SET 2
#define MGR_CMD_UNSET 3

The parameter, obj_type, declares the type of object upon which the command operates,
see pbs_ifl.h:

#define MGR_OBJ_SERVER 0
#define MGR_OBJ_QUEUE 1

The parameter, obj_name, is the name of the specific object.

The parameter, attrib, is a pointer to an attropl structure which are defined in pbs_ifl.h
as:

struct attropl {
char *name;
char *resource;
char *value;
enum batch_op op;
struct attropl *next;

};

The attrib list is terminated by the first entry where next is a null pointer.

The name member points to a string which is the name of the attribute.

If the attribute is one which contains a set of resources, the specific resource is specified
in the structure member resource . Otherwise, the member resource is pointer to a
null string.

The value member points to a string which is the new value of the attribute.

The op member defines the manner in which the new value is assigned to the attribute.
The operators are: enum batch_op { ..., SET, UNSET, INCR, DECR };

The full range of batch_op values is { SET, UNSET, INCR, DECR, EQ, NE, GE,
GT, LE, LT } Only the SET, UNSET, INCR, and DECR are allowed in a manager
call, others will be rejected by the server.

Chapt Revision: 2.2 4-11

Interface Library PBS ERS

The parameter extend is reserved for implementation defined extensions. It is not cur-
rently used by this function.

Functions MGR_CMD_CREATE and MGR_CMD_DELETE require PBS Manager privi-
lege. Functions MGR_CMD_SET and MGR_CMD_UNSET require PBS Manager or
Operator privilege.

SEE ALSO
qmgr(8B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_manager() function has been completed suc-
cessfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero error
is returned. The error number is also set in pbs_errno.

4-12 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.9. Move Job

NAME
pbs_movejob - move a pbs batch job to a new destination

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_movejob(int connect, char *job_id, char *destination,
char *extend)

DESCRIPTION
Issue a batch request to move a job to a new destination. The job is removed from the
present queue and instantiated in a new queue.

A Move Job batch request is generated and sent to the server over the connection speci-
fied by connect which is the return value of pbs_connect().

The job_id parameter identifies which job is to be moved; it is specified in the form: se-
quence_number.server

The destination parameter specifies the new destination for the job. It is specified as:
[queue][@server] . If destination is a null pointer or a null string, the destination
will be the default queue at the current server. If destination specifies a queue but not
a server, the destination will be the named queue at the current server. If destination
specifies a server but not a queue, the destination will be the default queue at the
named server. If destination specifies both a queue and a server, the destination is that
queue at that server.

A job in the Running, Transiting, or Exiting state cannot be moved.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qmove(1B), qsub(1B), and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_movejob() function has been completed suc-
cessfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero error
is returned. The error number is also set in pbs_errno.

Chapt Revision: 2.2 4-13

Interface Library PBS ERS

4.2.10. Message Job

NAME
pbs_msgjob - record a message for a running pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_msgjob(int connect, char *job_id, int file, char *message,
char *extend)

DESCRIPTION
Issue a batch request to write a message in an output file of a batch job.

A Message Job batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The argument, job_id, identifies the job to which the message is to be sent; it is speci-
fied in the form: sequence_number.server

The parameter, file, indicates the file or files to which the message string is to be writ-
ten. The following values are defined in pbs_ifl.h:

#define MSG_ERR 2
directs the message to the standard error stream of the job.

#define MSG_OUT 1
directs the message to the standard output stream of the job.

The parameter, message, is the message string to be written.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qmsg(1B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_msgjob() function has been completed suc-
cessfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero error
is returned. The error number is also set in pbs_errno.

4-14 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.11. Order Job

NAME
pbs_orderjob - reorder pbs batch jobs in a queue

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_orderjob(int connect, char *job_id1, char *job_id2,
char *extend)

DESCRIPTION
Issue a batch request to swap the order of two jobs with a single queue.

An Order Job batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The parameters job_id1 and job_id2 identify which jobs are to be swapped. They are
specified in the form: sequence_number.server .

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qorder(1B), qmove(1B), qsub(1M), and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_orderjob() function has been completed suc-
cessfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero error
is returned. The error number is also set in pbs_errno.

Chapt Revision: 2.2 4-15

Interface Library PBS ERS

4.2.12. Rerun Job

NAME
pbs_rerunjob - rerun a pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_rerunjob(int connect, char *job_id, char *extend)

DESCRIPTION
Issue a batch request to rerun a batch job.

A Rerun Job batch request is generated and sent to the server over the connection spec-
ified by connect which is the return value of pbs_connect().

If the job is marked as being not rerunable, the request will fail and an error will be re-
turned.

The argument, job_id, identifies which job is to be rerun it is specified in the form: se-
quence_number.server

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qrerun(1B), qsub(1B), and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_rerunjob() function has been completed
successfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero
error is returned. The error number is also set in pbs_errno.

4-16 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.13. Release Job

NAME
pbs_rlsjob - release a hold on a pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_rlsjob(int connect, char *job_id, char *hold_type, char *extend)

DESCRIPTION
Issue a batch request to release a hold from a job.

A Release Job batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The argument, job_id, identifies the job from which the hold is to be released, it is speci-
fied in the form: sequence_number.server

The parameter, hold_type, contains the type of hold to be released. The possible values
are defined in pbs_ifl.h as:

#define USER_HOLD "u"
Available to the owner of the job, the batch operator, and the batch adminis-
trator.

#define OTHER_HOLD "o"
Available to the batch operator and the batch administrator.

#define SYSTEM_HOLD "s"
Available only to the batch administrator.

If hold_type is either a null pointer or points to a null string, USER_HOLD will be re-
leased.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qrls(1B), qhold(1B), qalter(1B), pbs_alterjob(3B), pbs_connect(3B), and pbs_holdjob(3B)

DIAGNOSTICS
When the batch request generated by pbs_rlsjob() function has been completed suc-
cessfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero error
is returned. The error number is also set in pbs_errno.

Chapt Revision: 2.2 4-17

Interface Library PBS ERS

4.2.14. Run Job

NAME
pbs_runjob - run a pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_runjob(int connect, char *job_id, char *location, char *extend)

int pbs_asyrunjob(int connect, char *job_id, char *location, char *extend)

DESCRIPTION
Issue a batch request to run a batch job.

For pbs_runjob() a "Run Job" batch request is generated and sent to the server over the
connection specified by connect which is the return value of pbs_connect(). The server
will reply when the job has started execution unless file in-staging is required. In that
case, the server will reply when the staging operations are started.

For pbs_asyrunjob() an "Asynchronous Run Job" request is generated and set to the
server over the connection. The server will validate the request and reply before initi-
ating the execution of the job. This version of the call can be used to reduce latency in
scheduling, especially when the scheduler must start a large number of jobs.

These requests requires that the issuing user have operator or administrator privilege.

The argument, job_id, identifies which job is to be run it is specified in the form: se-
quence_number.server

The argument, location, if not the null pointer or null string, specifies the location
where the job should be run. The location is the name of a host in the the cluster man-
aged by the server. If the server does not understand the location, it will reject the re-
quest and return an error.

The argument, extend, is reserved for implementation defined extensions. It is not cur-
rently used by these functions.

SEE ALSO
qrun(8B), qsub(1B), and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by the pbs_runjob() or pbs_asyrunjob() functions
has been completed successfully by a batch server, the routines will return 0 (zero).
Otherwise, a non zero error is returned. The error number is also set in pbs_errno.

4-18 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.15. Select Job

NAME
pbs_selectjob - select pbs batch jobs

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

char **pbs_selectjob(int connect, struct attropl *attrib, char *extend)

DESCRIPTION
Issue a batch request to select jobs which meet certain criteria. pbs_selectjob() re-
turns a array of job identifiers which met the criteria.

Initially all batch jobs are selected for which the user is authorized to query status.
This set may be reduced or filtered by specifying certain attributes of the jobs.

A Select Jobs batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The argument, attrib, is a pointer to an attropl structure which is defined in pbs_ifl.h
as:

struct attropl {
struct attropl *next;
char *name;
char *resource;
char *value;
enum batch_op op;

};

The attrib list is terminated by the first entry where next is a null pointer.

The name member points to a string which is the name of the attribute. Not all of the
job attributes may be used as a selection criteria. The resource member points to a
string which is the name of a resource. This member is only used when name is set to
ATTR_l. Otherwise, resource should be a pointer to a null string. The value member
points to a string which is the value of the attribute or resource. The attribute names
are defined in pbs_ifl.h:

#define ATTR_a "Execution_Time"
Select based upon the job’s execution time.

#define ATTR_A "Account_Name"
Select (E) based upon the account string.

#define ATTR_c "Checkpoint"
Select based upon the checkpoint interval.

#define ATTR_e "Error_Path"
Select (E) based upon the name of the standard error file.

#define ATTR_g "Group_List"
Select (E) based upon the list of group names under which the job may exe-
cute.

#define ATTR_h "Hold_Types"
Select (E) based upon the hold types.

#define ATTR_j "Join_Paths"
Select (E) based upon the value of the join list.

Chapt Revision: 2.2 4-19

Interface Library PBS ERS

#define ATTR_k "Keep_Files"
Select (E) based upon the value of the keep files list.

#define ATTR_l "Resource_List"
Select based upon the value of the resource named in resource .

#define ATTR_m "Mail_Points"
Select (E) based upon the setting of the mail points attribute.

#define ATTR_M "Mail_Users"
Select (E) based upon the list of user names to which mail will be sent.

#define ATTR_N "Job_Name"
Select (E) based upon the job name.

#define ATTR_o "Output_Path"
Select (E) based upon the name of the standard output file.

#define ATTR_p "Rriority"
Select based upon the priority of the job.

#define ATTR_q "destination"
Select based upon the specified destination. Jobs selected are restricted to
those residing in the named queue. If destination is the null string, the de-
fault queue at the server is assumed.

#define ATTR_r "Rerunable"
Select (E) based upon the rerunable flag.

#define ATTR_session "session_id"
Select based upon the session id assigned to running jobs.

#define ATTR_S "Shell_Path_List"
Select (E) based upon the execution shell list.

#define ATTR_u "User_List"
Select (E) based upon the owner of the jobs.

#define ATTR_v "Variable_List"
Select (E) based upon the list of environment variables.

#define ATTR_ctime "ctime"
Select based upon the creation time of the job.

#define ATTR_depend "depend"
Select based upon the list of job dependencies.

#define ATTR_mtime "mtime"
Select based upon the last modification time of the job.

#define ATTR_qtime "qtime"
Select based upon the time of the job was placed into the current queue.

#define ATTR_qtype "queue_type"
Select (E) base on the type of queue in which the job resides.

#define ATTR_stagein "stagein"
Select based upon the list of files to be staged-in.

#define ATTR_stageout "stageout"
Select based upon the list of files to be staged-out.

#define ATTR_state "job_state"
Select based upon the state of the jobs. State is not a job attribute, but is in-
cluded here to allow selection.

The op member defines the operator in the logical expression:
value operator current_value

The logical expression must evaluate as true for the job to be selected. The permissible

4-20 Chapt Revision: 2.2

PBS ERS Interface Library

values of op are defined in pbs_ifl.h as: enum batch_op { ..., EQ, NE, GE, GT,
LE, LT, ... }; . The attributes marked with (E) in the description above may only
be selected with the equal, EQ, or not equal, NE, operators.

The full range of batch_op values is { SET, UNSET, INCR, DECR, EQ, NE, GE,
GT, LE, LT }. Only the relational operators are allowed in a select call, and others
will be rejected by the server.

If attrib itself is a null pointer, then no selection is done on the basis of attributes.

The return value is a pointer to a null terminated array of character pointers. Each
character pointer in the array points to a character string which is a job_identifier in
the form: sequence_number.server@server

The array is allocated by pbs_selectjob via malloc(). When the array is no longer need-
ed, the user is responsible for freeing it by a call to free(). The space for the array and
the job identifier strings is malloc-ed by pbs_selectjob() as one allocation. The array of
pointers starts at the address returned by malloc(), so free() will work.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qselect(1B), pbs_alterjob(3B), and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_selectjob() function has been completed suc-
cessfully by a batch server, the routine will return a pointer to the array of job identi-
fiers. If no jobs met the criteria, the first pointer in the array will be the null pointer.

If an error occurred, a null pointer is returned and the error is available in the global
integer pbs_errno.

Chapt Revision: 2.2 4-21

Interface Library PBS ERS

4.2.16. Status of Selected Jobs

NAME
pbs_selstat - obtain status of selected pbs batch jobs

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

struct batch_status *pbs_selstat(int connect, struct attropl *sel_list,
char *extend)

void pbs_statfree(struct batch_status *psj)

DESCRIPTION
Issue a batch request to examine the status of jobs which meet certain criteria.
pbs_selstat() returns a list of batch_status structures for those jobs which met the se-
lection criteria.

This function is a combination of pbs_selectjobs() and pbs_statjob(). It is an exten-
sion to the POSIX Batch standard.

Initially all batch jobs are selected for which the user is authorized to query status.
This set may be reduced or filtered by specifying certain attributes of the jobs.

A Select Status batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The parameter, sel_list, is a pointer to an attropl structure which is defined in pbs_ifl.h
as:

struct attropl {
struct attropl *next;
char *name;
char *resource;
char *value;
enum batch_op op;

};

The sel_list list is terminated by the first entry where next is a null pointer.

The name member points to a string which is the name of the attribute. Not all of the
job attributes may be used as a selection criteria. The resource member points to a
string which is the name of a resource. This member is only used when name is set to
ATTR_l, otherwise it should be a pointer to a null string. The value member points to
a string which is the value of the attribute or resource. The attribute names are de-
fined in pbs_ifl.h:

#define ATTR_a "Execution_Time"
Select based upon the job’s execution time.

#define ATTR_A "Account_Name"
Select (E) based upon the account string.

#define ATTR_c "Checkpoint"
Select based upon the checkpoint interval.

#define ATTR_e "Error_Path"
Select (E) based upon the name of the standard error file.

4-22 Chapt Revision: 2.2

PBS ERS Interface Library

#define ATTR_g "Group_List"
Select (E) based upon the list of group names under which the job may exe-
cute.

#define ATTR_h "Hold_Types"
Select (E) based upon the hold types.

#define ATTR_j "Join_Paths"
Select (E) based upon the value of the join list.

#define ATTR_k "Keep_Files"
Select (E) based upon the value of the keep files list.

#define ATTR_l "Resource_List"
Select based upon the value of the resource named in resource .

#define ATTR_m "Mail_Points"
Select (E) based upon the setting of the mail points attribute.

#define ATTR_M "Mail_Users"
Select (E) based upon the list of user names to which mail will be sent.

#define ATTR_N "Job_Name"
Select (E) based upon the job name.

#define ATTR_o "Output_Path"
Select (E) based upon the name of the standard output file.

#define ATTR_p "Priority"
Select based upon the priority of the job.

#define ATTR_q "destination"
Select based upon the specified destination. Jobs selected are restricted to
those residing in the named queue. If destination is the null string, the de-
fault queue at the server is assumed.

#define ATTR_r "Rerunable"
Select (E) based upon the rerunable flag.

#define ATTR_session "session_id"
Select based upon the session id assigned to running jobs.

#define ATTR_S "Shell_Path_List"
Select (E) based upon the execution shell list.

#define ATTR_u "User_List"
Select (E) based upon the owner of the jobs.

#define ATTR_v "Variable_List"
Select (E) based upon the list of environment variables.

#define ATTR_ctime "ctime"
Select based upon the creation time of the job.

#define ATTR_depend "depend"
Select based upon the list of job dependencies.

#define ATTR_mtime "mtime"
Select based upon the last modification time of the job.

#define ATTR_qtime "qtime"
Select based upon the time of the job was placed into the current queue.

#define ATTR_qtype "queue_type"
Select (E) base on the type of queue in which the job resides.

#define ATTR_stagein "stagein"
Select based upon the list of files to be staged-in.

Chapt Revision: 2.2 4-23

Interface Library PBS ERS

#define ATTR_stageout "stageout"
Select based upon the list of files to be staged-out.

#define ATTR_state "job_state"
Select based upon the state of the jobs. State is not a job attribute, but is in-
cluded here to allow selection.

The op member defines the operator in the logical expression:
value operator current_value

The logical expression must evaluate as true for the job to be selected. The permissible
values of op are defined in pbs_ifl.h as: enum batch_op { ..., EQ, NE, GE, GT,
LE, LT, ... }; . The attributes marked with (E) in the description above may only
be selected with the equal, EQ, or not equal, NE, operators. The full range of batch_op
values is SET, UNSET, INCR, DECR, EQ, NE, GE, GT, LE, and LT, Only the relational
operators are allowed in a selstat call, and others will be rejected by the server.

If sel_list itself is a null pointer, then no selection is done on the basis of attributes.

The return value is a pointer to a list of batch_status structures or the null pointer if no
jobs can be queried for status. The batch_status structure is defined in pbs_ifl.h as

struct batch_status {
struct batch_status *next;
char *name;
struct attrl *attribs;
char *text;

}

The entry, attribs , is a pointer to a list of attrl structures defined in pbs_ifl.h as:

struct attrl {
struct attrl *next;
char *name;
char *resource;
char *value;

};

It is up the user to free the list of batch_status structures when no longer needed, by
calling pbs_statfree().

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qselect(1B), pbs_alterjob(3B), pbs_connect(3B), pbs_statjob(3B), and pbs_selectjob(3B).

DIAGNOSTICS
When the batch request generated by pbs_selstat() function has been completed suc-
cessfully by a batch server, the routine will return a pointer to the list of batch_status
structures. If no jobs met the criteria or an error occurred, the return will be the null
pointer. If an error occurred, the global integer pbs_errno will be set to a non-zero val-
ue.

4-24 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.17. Signal Job

NAME
pbs_sigjob - send a signal to a pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_sigjob(int connect, char *job_id, char *signal, char *extend)

DESCRIPTION
Issue a batch request to send a signal to a batch job.

A Signal Job batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect(). If the batch job is in
the running state, the batch server will send the job the signal number corresponding
to the signal named in signal.

The argument, job_id, identifies which job is to be signaled, it is specified in the form:
sequence_number.server

If the name of the signal is not a recognized signal name on the execution host, no sig-
nal is sent and an error is returned. If the job is not in the running state, no signal is
sent and an error is returned.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qsig(1B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_sigjob() function has been completed suc-
cessfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero error
is returned. The error number is also set in pbs_errno.

Chapt Revision: 2.2 4-25

Interface Library PBS ERS

4.2.18. Stage In Files

NAME
pbs_stagein - request that files for a pbs batch job be staged in.

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_stagein(int connect, char *job_id, char *location,
char *extend)

DESCRIPTION
Issue a batch request to start the stage in of files specified in the stagein attribute of a
batch job.

A stage in batch request is generated and sent to the server over the connection speci-
fied by connect which is the return value of pbs_connect().

This request directs the server to begin the stage in of files specified in the job’s stage in
attribute. This request requires that the issuing user have operator or administrator
privilege.

The argument, job_id, identifies which job for which file staging is to begin. It is speci-
fied in the form: sequence_number.server

The argument, location, if not the null pointer or null string, specifies the location
where the job will be run and hence to where the files will be staged. The location is
the name of a host in the the cluster managed by the server. If the server does not un-
derstand the location, it will reject the request and return an error. If the job is then di-
rected to run at different location, the run request will be rejected.

The argument, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

SEE ALSO
qrun(8B), qsub(1B), and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_stagein() function has been completed suc-
cessfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero error
is returned. The error number is also set in pbs_errno.

4-26 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.19. Status Job

NAME
pbs_statjob - obtain status of pbs batch jobs

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

struct batch_status *pbs_statjob(int connect, char *id,
struct attrl *attrib, char *extend)

void pbs_statfree(struct batch_status *psj)

DESCRIPTION
Issue a batch request to obtain the status of a specified batch job or a set of jobs at a
destination.

A Status Job batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The parameter, id, may be either a job identifier or a destination identifier. If the string
starts with a number, it is a job identifier. If it starts with a alphabetic character, it is a
destination identifier.

If id is a job identifier, it is the identifier of the job for which status is requested. It is
specified in the form: sequence_number.server

If id is a destination identifier, it specifies that status of all jobs at the destination
(queue) which the user is authorized to see be returned. If id is the null pointer or a
null string, the status of each job at the server which the user is authorized to see is re-
turned.

The parameter, attrib, is a pointer to an attrl structure which is defined in pbs_ifl.h as:

struct attrl {
struct attrl *next;
char *name;
char *resource;
char *value;

};

The attrib list is terminated by the first entry where next is a null pointer. If attrib is
given, then only the attributes in the list are returned by the server. Otherwise, all the
attributes of a job are returned. When an attrib list is specified, the name member is a
pointer to a attribute name as listed in pbs_alter(3) and pbs_submit(3). The resource
member is only used if the name member is ATTR_l, otherwise it should be a pointer to
a null string. The value member should aways be a pointer to a null string.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

The return value is a pointer to a list of batch_status structures or the null pointer if no
jobs can be queried for status. The batch_status structure is defined in pbs_ifl.h as

struct batch_status {
struct batch_status *next;
char *name;
struct attrl *attribs;

Chapt Revision: 2.2 4-27

Interface Library PBS ERS

char *text;
}

It is up the user to free the structure when no longer needed, by calling pbs_statfree().

SEE ALSO
qstat(1B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_statjob() function has been completed suc-
cessfully and the status of each job has been returned by the batch server, the routine
will return a pointer to the list of batch_status structures. If no jobs were available to
query or an error occurred, a null pointer is returned. The global integer pbs_errno
should be examined to determine the cause.

4-28 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.20. Status Queue

NAME
pbs_statque - obtain status of pbs batch queues

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

struct batch_status *pbs_statque(int connect, char *id,
struct attrl *attrib,
char *extend)

void pbs_statfree(struct batch_status *psj)

DESCRIPTION
Issue a batch request to obtain the status of a batch queue.

A Status Queue batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The id is the name of a queue, in the form:
queue_name

or the null string. If queue_name is specified, the status of the queue named
queue_name at the server will be returned. If the id is a null string or null pointer, the
status of all queues at the server will be returned.

The parameter, attrib, is a pointer to an attrl structure which is defined in pbs_ifl.h as:

struct attrl {
struct attrl *next;
char *name;
char *resource;
char *value;

};

The attrib list is terminated by the first entry where next is a null pointer. If attrib is
given, then only the attributes in the list are returned by the server. Otherwise, all the
attributes of a job are returned. When an attrib list is specified, the name member is a
pointer to a attribute name as listed in pbs_alter(3) and pbs_submit(3). The resource
member is only used if the name member is ATTR_l, otherwise it should be a pointer to
a null string. The value member should aways be a pointer to a null string.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

The return value is a pointer to a list of batch_status structures, which is defined in
pbs_ifl.h as:

struct batch_status {
struct batch_status *next;
char *name;
struct attrl *attribs;
char *text;

}

It is up the user to free the structure when no longer needed, by calling pbs_statfree().

Chapt Revision: 2.2 4-29

Interface Library PBS ERS

SEE ALSO
qstat(1B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_statque() function has been completed suc-
cessfully by a batch server, the routine will return a pointer to the batch_status struc-
ture. Otherwise, a null pointer is returned and the error code is set in the global inte-
ger pbs_errno.

4-30 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.21. Status Server

NAME
pbs_statserver - obtain status of a pbs batch server

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

struct batch_status *pbs_statserver(int/ connect, struct/ attrl/ *attrib,
char/ *extend)

void pbs_statfree(struct batch_status *psj)

DESCRIPTION
Issue a batch request to obtain the status of a batch server.

A Status Server batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The parameter, attrib, is a pointer to an attrl structure which is defined in pbs_ifl.h as:

struct attrl {
struct attrl *next;
char *name;
char *resource;
char *value;

};

The attrib list is terminated by the first entry where next is a null pointer. If attrib is
given, then only the attributes in the list are returned by the server. Otherwise, all the
attributes of the server are returned. When an attrib list is specified, the name member
is a pointer to a attribute name as listed in pbs_alter(3) and pbs_submit(3). The re-
source member is only used if the name member is ATTR_l, otherwise it should be a
pointer to a null string. The value member should aways be a pointer to a null string.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

The return value is a pointer to a list of batch_status structures, which is defined in
pbs_ifl.h as:

struct batch_status {
struct batch_status *next;
char *name;
struct attrl *attribs;
char *text;

}

It is up the user to free the space when no longer needed, by calling pbs_statfree().

SEE ALSO
qstat(1B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_statserver() function has been completed
successfully by a batch server, the routine will return a pointer to a batch_status struc-

Chapt Revision: 2.2 4-31

Interface Library PBS ERS

ture. Otherwise, a null pointer is returned and the error code is set in pbs_errno.

4-32 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.22. Submit Job

NAME
pbs_submit - submit a pbs batch job

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

char *pbs_submit(int connect, struct attropl *attrib,
char *script, char *destination, char *extend)

DESCRIPTION
Issue a batch request to submit a new batch job.

A Queue Job batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect(). The job will be sub-
mitted to the queue specified by destination.

The parameter, attrib, is a list of attropl structures which is defined in pbs_ifl.h as:

struct attrl {
char *name;
char *resource;
char *value;
struct attrl *next;
enum batch_op op;

};

The attrib list is terminated by the first entry where next is a null pointer.

The name member points to a string which is the name of the attribute. The value
member points to a string which is the value of the attribute. The attribute names are
defined in pbs_ifl.h:

#define ATTR_a "Execution_Time"
Defines the job’s execution time.

#define ATTR_A "Account_Name"
Defines the account string.

#define ATTR_c "Checkpoint"
Defines the checkpoint interval.

#define ATTR_e "Error_Path"
Defines the path name for the standard error of the job.

#define ATTR_g "Group_List"
Defines the list of group names under which the job may execute.

#define ATTR_h "Hold_Types"
Defines the hold types, the only allowable value string is "u" .

#define ATTR_j "Join_Paths"
Defines whether standard error and standard output are joined (merged).

#define ATTR_k "Keep_Files"
Defines which output of the job is kept on the execution host.

#define ATTR_l "Resource_List"
Defines a resource required by the job.

Chapt Revision: 2.2 4-33

Interface Library PBS ERS

#define ATTR_m "Mail_Points"
Defines the points at which the server will send mail about the job.

#define ATTR_M "Mail_Users"
Defines the list of users who would receive mail about the job.

#define ATTR_N "Job_Name"
Defines the job name.

#define ATTR_o "Output_Path"
Defines the path name for the standard output of the job.

#define ATTR_p "Priority"
Defines the priority of the job.

#define ATTR_r "Rerunable"
Defines the rerunable flag.

#define ATTR_S "Shell_Path_List"
Defines the path to the shell which will interpret the job script.

#define ATTR_u "User_List"
Defines the list of user names under which the job may execute.

#define ATTR_v "Variable_List"
Defines the list of additional environment variables which are exported to
the job.

#define ATTR_depend "depend"
Defines the inter−job dependencies.

#define ATTR_stagein "stagein"
Defines the list of files to be staged in prior to job execution.

#define ATTR_stageout "stageout"
Defines the list of files to be staged out after job execution.

If an attribute is not named in the attrib array, the default action will be taken. It will
either be assigned the default value or will not be passed with the job. The action de-
pends on the attribute. If attrib itself is a null pointer, then the default action will be
taken for each attribute.

Associated with an attribute of type ATTR_l (the letter ell) is a resource name indicated
by resource in the attrl structure. All other attribute types should have a pointer to a
null string for resource .

The op member is forced to a value of SETby pbs_submit().

The parameter, script, is the path name to the job script. If the path name is relative, it
will be expanded to the processes current working directory. If script is a null pointer
or the path name pointed to is specified as the null string, no script is passed with the
job.

The destination parameter specifies the destination for the job. It is specified as:
[queue] If destination is the null string or the queue is not specified, the destination
will be the default queue at the connected server.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

The return value is a character string which is the job_identifier assigned to the job by
the server. The space for the job_identifier string is allocated by pbs_submit() and
should be released via a call to free() by the user when no longer needed.

SEE ALSO
qsub(1B) and pbs_connect(3B)

4-34 Chapt Revision: 2.2

PBS ERS Interface Library

DIAGNOSTICS
When the batch request generated by pbs_submit() function has been completed suc-
cessfully by a batch server, the routine will return a pointer to a character string which
is the job identifier of the submitted batch job. Otherwise, a null pointer is returned
and the error code is set in pbs_error.

Chapt Revision: 2.2 4-35

Interface Library PBS ERS

4.2.23. Terminate Server

NAME
pbs_terminate - terminate a pbs batch server

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_terminate(int connect, int manner, char *extend)

DESCRIPTION
Issue a batch request to shut down a batch server. This request requires the privilege
level usually reserved for batch operators and administrators.

A Server Shutdown batch request is generated and sent to the server over the connec-
tion specified by connect which is the return value of pbs_connect().

The parameter, manner, specifies the manner in which the server is shut down. The
available manners are defined in pbs_ifl.h as:

#define SHUT_IMMEDIATE 0
Shutdown is to be immediate, runnings jobs are checkpointed, requeued, or
deleted as required.

#define SHUT_DELAY 1
Jobs which can be checkpointed are checkpointed, terminated, and requeued.
Jobs which cannot be checkpointed but are rerunnable are terminated and
requeued. Shutdown is delayed until the remaining running jobs complete.
No new jobs will be started by the server.

The server will not respond to the batch request until the server has completed its ter-
mination procedure.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

This call requires PBS Operator or Manager privilege.

SEE ALSO
qterm(8B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_terminate() function has been completed
successfully by a batch server, the routine will return 0 (zero). Otherwise, a non zero
error is returned. The error number is also set in pbs_errno.

4-36 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.24. Query Resource Availability

While the following functions may be used by any user, they are intended for use in a batch
scheduler. They replace avail, totpool, and usepool calls made to pbs_mom in early versions
of PBS.

NAME
pbs_rescquery, avail, totpool, usepool - query resource availability

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_rescquery(int connect, char **resourcelist, int *arraysize,
int *available, int *allocated, int *reserved, int *down)

char *avail(int connect, char *resc)

int totpool(int connect, int update)

int usepool(int connect, int update)

DESCRIPTION

pbs_rescquery
Issue a request to the batch server to query the availability of resources. connect is the
connection returned by pbs_connect(). resourcelist is an array of one or more strings
specifying the resources to be queried. arraysize is the is the number of strings in re-
sourcelist. available, allocated, reserved, and down are integer arrays of size arraysize.
The amount of resource specified in the corresponding resourcelist string which is avail-
able, already allocated, reserved, and down/off-line is returned in the integer arrays.

At the present time the only resources which may be specified is "nodes". It may
be specified as

nodes
nodes=
nodes= specification

where specification is what a user specifies in the -l option arguement list for
nodes, see qsub(1B) and the various pbs_resource_* man pages.

Where the node resourcelist is a simple type, such as "nodes", "nodes=", or
"nodes=type", the numbers returned reflect the actual number of nodes (of the
specified type) which are available, allocated, reserved, or down.

For a more complex node resourcelist, such as "nodes=2" or "nodes=type1:type2",
only the value returned in available has meaning. If the number in available is
positive, it is the number of nodes requried to satisified the specification and that
some set of nodes are available which will satisify it, see avail (). If the number in
available is zero, some number of nodes requried to satisified the specification are
currently unavailable, the request might be satisifed at a later time. If the num-
ber in available is negative, no combination of known nodes can satisified the
specification.

avail
The avail () call is provided as conversion aid for scheduler written for early ver-
sions of PBS. The avail() routine uses pbs_rescquery() and returns a character
string answer. connect is the connection returned by pbs_connect(). resc is a sin-

Chapt Revision: 2.2 4-37

Interface Library PBS ERS

gle node=specification specification as discussed above. If the nodes to satisify the
specification are currently available, the return value is the character string yes.
If the nodes are currently unavailable, the return is the character string no. If
the specification could never be satified, the return is the string never. An error
in the specification returns the character string ?.

totpool
The totpool () function returns the total number of nodes know to the PBS server.
This is the sum of the number of nodes available, allocated, reserved, and down.
The parameter connection is the connection returned by pbs_connect(). The pa-
rameter update if non-zero, causes totpool() to issue a pbs_rescquery() call to ob-
tain fresh information. If zero, numbers from the prior pbs_rescquery() are used.

usepool
usepool () returns the number of nodes currently in use, the sum of allocated, re-
served, and down. The parameter connection is the connection returned by
pbs_connect(). The parameter update if non-zero, causes totpool() to issue a
pbs_rescquery() call to obtain fresh information. If zero, numbers from the prior
pbs_rescquery() are used.

SEE ALSO
qsub(1B), pbs_connect(3B), pbs_disconnect(3B), pbs_rescreserve(3B) and pbs_re-
sources(7B)

DIAGNOSTICS
When the batch request generated by the pbs_rescquery() function has been
completed successfully by a batch server, the routine will return 0 (zero). Other-
wise, a non zero error is returned. The error number is also set in pbs_errno.

The functions usepool() and totpool() return -1 on error.

4-38 Chapt Revision: 2.2

PBS ERS Interface Library

4.2.25. Make and Release Resource Reservations

The following functions require manager or operator privilege. They are intended for use in
a batch scheduler.

NAME
pbs_rescreserve, pbs_rescrelease - reserve/free batch resources

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

int pbs_rescreserve(int connect, char **resourcelist, int arraysize,
resource_t *resource_id)

int pbs_rescrelease(int connect, resource_t resource_id)

DESCRIPTION

pbs_rescreserver
Issue a request to the batch server to reserve specified resources. connect is the connec-
tion returned by pbs_connect(). resourcelist is an array of one or more strings specify-
ing the resources to be queried. arraysize is the is the number of strings in resourcelist.
resource_id is a pointer to a resource handle. The pointer cannot be null. If the present
value of the resource handle is RESOURCE_T_NULL, this request is for a new reser-
vation and if successful, a resource handle will be returned in resource_id.

If the value of resource_id as supplied by the caller is not RESOURCE_T_NULL,
this is a existing (partial) reservation. Resources currently reserved for this han-
dle will be released and the full reservation will be attempted again. If the caller
wishes to release the resources allocated to a partial reservation, the caller should
pass the resource handle to pbs_rescrelease().

At the present time the only resources which may be specified are "nodes". It
should be specified as nodes=specification where specification is what a user
specifies in the -l option arguement list for nodes, see qsub (1B).

pbs_rescrelease
The pbs_rescrelease() call releases or frees resources reserved with the resource
handle of resource_id returned from a prior pbs_rescreserve() call. connect is the
connection returned by pbs_connect().

Both functions require that the issuing user have operator or administrator privilege.

SEE ALSO
qsub(1B), pbs_connect(3B), pbs_disconnect(3B), pbs_rescquery(3B) and pbs_re-
sources(7B)

DIAGNOSTICS
pbs_rescreserve() and pbs_rescrelease() return zero on success. Otherwise, a non zero
error is returned. The error number is also set in pbs_errno.

PBSE_RMPART
is a special case indicating that some but not all of the requested resources could
be reserved; a partial reservation was made. The reservation request should ei-
ther be rerequested with the returned handle or the partial resources released.

Chapt Revision: 2.2 4-39

Interface Library PBS ERS

PBSE_RMBADPARAM
a parameter is incorrect, such as a null for the pointer to the resource_id.

PBSE_RMNOPARAM
a parameter is missing, such as a null resoruce list.

4.2.26. Node Status

The following function provides a means to query the status of PBS nodes. A node has a
name and two attributes. ATTR_NODE_state (state) may take the values of free or one or
more of the following "or-ed" together:

free The node is not being used by PBS and isfree to be allocated to a job.

downThe node is not responding to queries by the PBS job server.

offline
The node has been marked off-line by the administrator

reserve
The node has been reserved by the PBS job scheduler.

job-exclusive
The node has been assigned exclusively to a job, no other jobs can run on that
node.

job-sharing
The node has been assigned to one or more jobs. Other jobs willing to share nodes
may be allocated to it.

The attribute ATTR_NODE_proper ties (properties) is a list of alternative names which may be
used to identify sets or groups of nodes by some arbitrary criteria.

NAME
pbs_statnode - obtain status of pbs nodes

SYNOPSIS
#include <pbs_error.h>
#include <pbs_ifl.h>

struct batch_status *pbs_statnode(int connect, char *id, struct attrl *attrib,
char *extend)

void pbs_statfree(struct batch_status *psj)

DESCRIPTION
Issue a batch request to obtain the status of a PBS node or nodes.

A Status Node batch request is generated and sent to the server over the connection
specified by connect which is the return value of pbs_connect().

The id is the name of a node or the null string. If id specifies a node name, the status of
that node will be returned. If the id is a null string (or null pointer), the status of all
nodes at the server will be returned.

The parameter, attrib, is a pointer to an attrl structure which is defined in pbs_ifl.h as:

struct attrl {
struct attrl *next;

4-40 Chapt Revision: 2.2

PBS ERS Interface Library

char *name;
char *resource;
char *value;

};

The attrib list is terminated by the first entry where next is a null pointer. If attrib is
given, then only the attributes in the list are returned by the server. Otherwise, all the
attributes of a node are returned. When an attrib list is specified, the name member is
a pointer to a attribute name. The only supported attribute names relating to nodes
are "state" and "properties". The resource member is not used and must be a pointer
to a null string. The value member should aways be a pointer to a null string.

The parameter, extend, is reserved for implementation defined extensions. It is not cur-
rently used by this function.

The return value is a pointer to a list of batch_status structures, which is defined in
pbs_ifl.h as:

struct batch_status {
struct batch_status *next;
char *name;
struct attrl *attribs;
char *text;

}

It is up the user to free the structure when no longer needed, by calling pbs_statfree().

SEE ALSO
qstat(1B) and pbs_connect(3B)

DIAGNOSTICS
When the batch request generated by pbs_statnode() function has been completed suc-
cessfully by a batch server, the routine will return a pointer to the batch_status struc-
ture. Otherwise, a null pointer is returned and the error code is set in the global inte-
ger pbs_errno.

Chapt Revision: 2.2 4-41

Interface Library PBS ERS

[Page intentionally left bank.]

4-42 Chapt Revision: 2.2

PBS ERS Interface Library

5. User Commands
This section describes the commands available to the general user. Unless otherwise noted,
the command must conform to the POSIX 1003.2d specification of the command as to syntax
and functionality.

5.1. General Specifications of User Commands

The following specifications apply to all user commands.

5.1.1. Error Checking

All user commands will validate their invocation for the correct syntax. Any syntax error or
invalid option will terminate the command with an error message on standard error and an
exit status greater than zero.

5.1.2. Directing Requests to Correct Server

A command performs its function by sending the corresponding request for service to a batch
server. The choice of batch servers to which to send the request is governed by the following
ordered set of rules:

1. For those commands which require or accept a job identifier operand, if the server is spec-
ified in the job identifier operand as @server , then the batch requests will be sent to the
server named by server .

2. For those commands which require or accept a job identifier operand and the @server is
not specified, then the command will attempt to determine the current location of the job
by sending a Locate Job batch request to the server which created the job.

3. If a server component of a destination is supplied via the -q option, such as on qsub and
qselect, but not qalter, then the server request is sent to that server.

4. The server request is sent to the server identified as the default server, see section 2.7.4.

5.1.3. Operands

Unless noted, when more than one operand is specified on the command line, the command
processes each operand in turn. An error reply from a server on one operand will be noted in
the standard error stream. The command continues processing the other operands. If an er-
ror reply was received for any operand, the final exit status for the command will be greater
than zero.

Generally, the operands to commands will be job identifiers as described in section 2.7.6 or
destination identifiers described in section 2.7.3.

5.2. General User Commands

Chapt Revision: 2.2 5-1

User Commands PBS ERS

5.2.1. Alter Job

NAME
qalter − alter pbs batch job

SYNOPSIS
qalter [−a date_time] [−A account_string] [−c interval] [−e path] [−h hold_list] [−j join]
[−k keep] [−l resource_list] [−m mail_options] [−M user_list] [−N name] [−o path] [−p
priority] [−r c] [-S path] [−u user_list] [−W additional_attributes] job_identifier...

DESCRIPTION
The qalter command modifies the attributes of the job or jobs specified by job_identifier
on the command line. Only those attributes listed as options on the command will be
modified. If any of the specified attributes cannot be modified for a job for any reason,
none of that job’s attributes will be modified.

The qalter command accomplishes the modifications by sending a Modify Job batch re-
quest to the batch server which owns each job.

OPTIONS

−a date_time
Replaces the attribute Execution_Time time at which the job becomes eligible for
execution. The date_time argument syntax is: [[[[CC]YY]MM]DD]hh-
mm[.SS] .

If the month, MM, is not specified, it will default to the current month if the
specified day DD, is in the future. Otherwise, the month will be set to next
month. Likewise, if the day, DD, is not specified, it will default to today if the
time hhmmis in the future. Otherwise, the day will be set to tomorrow. This
date_time will be converted to the integer number of seconds since Epoch that
is equivalent to the local time on the system where the command is being exe-
cuted.

This attribute can be altered once the job has begun execution, but it will not
take affect until the job is rerun.

−A account_string
Replaces the the Account_Name attribute, the account string associated with the
job. The syntax of the account_string is defined in section 2.7.1. It is interpret-
ed by the server which executes the job.

This attribute cannot be altered once the job has begun execution.

−c interval
Replaces the Checkpoint attribute, the interval at which the job will be check-
pointed. If the job executes upon a host which does not support checkpoint,
this option will be ignored.

The interval argument is specified as:

n No checkpointing is to be performed. The job’s Checkpoint attribute is set to
the string "n" .

s Checkpointing is to be performed only when the server executing the job is
shutdown. The job’s Checkpoint attribute is set to the string "s" .

c Checkpointing is to be performed at the default minimum cpu time for the
queue from which the job is executing. The job’s Checkpoint attribute is set
to the string "c" .

c=minutes
Checkpointing is to be performed at an interval of minutes, which is the in-

5-2 Chapt Revision: 2.2

PBS ERS User Commands

teger number of minutes of CPU time used by the job. This value must be
greater than zero. If the number is less than the default checkpoint time,
the default time will be used. The Checkpoint attributes is set to the string
specified by "c=minutes".

This attribute can be altered once the job has begun execution, but the new
value does not take affect until the job is rerun.

−e path Replaces the Error_Path attribute, the path to be used for the standard error
stream of the batch job. The path argument is of the form:

[hostname:]path_name
where hostname is the name of a host to which the file will be returned and
path_name is the path name on that host in the syntax recognized by POSIX
1003.1. The argument will be interpreted as follows:

path_name
Where path_name is not an absolute path name, then the qalter com-
mand will expand the path name relative to the current working directo-
ry of the command. The command will supply the name of the host upon
which it is executing for the hostname component.

hostname:path_name
Where path_name is not an absolute path name, then the qalter com-
mand will not expand the path name. The execution server will expand it
relative to the home directory of the user on the system specified by host-
name.

path_name
Where path_name specifies an absolute path name, then qalter will sup-
ply the name of the host on which it is executing for the hostname.

hostname:path_name
Where path_name specifies an absolute path name, the path will be used
as specified.

This attribute can be altered once the job has begun execution, but it will not
take affect until the job is rerun.

−h hold_list
Updates the Hold_Types attribute, the types of holds on the job. The hold_list
argument is a string of one or more of the following characters:

u Add the USER type hold.

s Add the SYSTEM type hold if the user has the appropriate level of privi-
lege. [Typically reservered to the batch administrator.]

o Add the OTHER (or OPERATOR) type hold if the user has the appropri-
ate level of privilege. [Typically reservered to the batch administrator
and batch operator.]

n Set to none; that is clear the hold types which could be applied with the
users level of privilege.

Repetition of characters is permitted, but "n" may not appear in the same op-
tion argument with the other three characters. This attribute can be altered
once the job has begun execution, but the hold will not take affect until the job
is rerun.

−j join Declares which standard streams of the job will be merged together. The join
argument value may be the characters "oe" and "eo", or the single character
"n".

A argument value of oe directs that the standard output and standard error
streams of the job will be merged, intermixed, and returned as the standard

Chapt Revision: 2.2 5-3

User Commands PBS ERS

output. A argument value of eo directs that the standard output and standard
error streams of the job will be merged, intermixed, and returned as the stan-
dard error. The Join_Path job attribute is set to the value.

A value of n directs that the two streams will be two separate files. The
Join_Path attribute is set to "n". This attribute can be altered once the job has
begun execution, but it will not take affect until the job is rerun.

−k keep Defines which if either of standard output or standard error of the job will be
retained on the execution host. If set for a stream, this option overrides the
path name for that stream.

The argument is either the single letter "e", "o", or "n", or one or more of the
letters "e" and "o" combined in either order.

n No streams are to be retained. The Keep_Files attribute is set to
KEEP_NONE, "n".

e The standard error stream is to retained on the execution host. The
stream will be placed in the home directory of the user under whose user
id the job executed. The file name will be the default file name given by:
job_name. esequence where job_name is the name specified for the job,
and sequence is the sequence number component of the job identifier.
The attribute is set to include KEEP_ERROR, "e".

o The standard output stream is to be retained on the execution host. The
stream will be placed in the home directory of the user under whose user
id the job executed. The file name will be the default file name given by:
job_name. osequence where job_name is the name specified for the job,
and sequence is the sequence number component of the job identifier.
The Output_Path attribute is set to include KEEP_OUTPUT, "o".

eo Both the standard output and standard error streams will be retained.
The attribute is set to KEEP_OUTPUT | KEEP_ERROR.

oe Both the standard output and standard error streams will be retained.
The attribute is set to KEEP_OUTPUT | KEEP_ERROR.

Repetition of characters is permitted, but "n" may not appear in the same op-
tion argument with the other two characters. This attribute cannot be altered
once the job has begun execution.

−l resource_list
Modifies the Resource_List attribute, the list of resources that are required by
the job. The Resource_List argument is in the following syntax:
resource_name[=[value]][,resource_name[=[value]],...]

For each resource listed, if a resource with the specified name already exist in
the jobs resource attribute, the value for that resource will be updated. If the
named resource does not exist in the job resource attribute, the resource name
and value will be added. No white space is allowed in the value.

Because the list of supported resources vary from host to host, the command
will perform no validation of the name or value.

If a requested modification to a resource would exceed the resource limits for
jobs in the current queue, the server will reject the request.

If the job is running, only certain, resources can be altered. Which resources
can be altered in the run state is system dependent. A user may only lower the
limit for those resources. A PBS Manager or Operator may increase them.

−m mail_options
Replaces the set of conditions under which the execution server will send a
mail message about the job. The mail_options argument is a string which con-

5-4 Chapt Revision: 2.2

PBS ERS User Commands

sists of one or more repetitions of the single character "n", or one or more repe-
titions of the characters "a", "b", and "e".

If the character "n" is specified, no mail will be sent. The Mail_Points attribute
is set to NONE, "n".

For the letters "a", "b", and "e":

a mail is sent when the job is aborted by the batch system. The Mail_Points
attribute is set to ABORT, "a".

b mail is sent when the job begins execution. The Mail_Points attribute is set
to BEGINNING, "b".

e mail is sent when the job terminates. The Mail_Points attribute is set to
EXIT, "e".

−M user_list
Replaces the list of users to whom mail is sent by the execution server when it
sends mail about the job.

The user_list argument is of the form:
user[@host][,user[@host],...]

The Mail_Users attribute is set to the argument.

−N nameRenames the job. The name specified may be up to and including 15 charac-
ters in length. It must consist of printable, non white space characters with
the first character alphabetic. [See the discussion of the -N option under
qsub(1).] The Job_Name attribute is reset to the name value.

−o path Replaces the path to be used for the standard output stream of the batch job.
The path argument is of the form:

[hostname:]path_name
where hostname is the name of a host to which the file will be returned and
path_name is the path name on that host in the syntax recognized by POSIX.
The argument will be interpreted as follows:

path_name
Where path_name is not an absolute path name, then the qalter com-
mand will expand the path name relative to the current working directo-
ry of the command. The command will supply the name of the host upon
which it is executing for the hostname component.

hostname:path_name
Where path_name is not an absolute path name, then the qalter com-
mand will not expand the path name. The execution server will expand it
relative to the home directory of the user on the system specified by host-
name.

path_name
Where path_name specifies an absolute path name, then the qalter will
supply the name of the host on which it is executing for the hostname.

hostname:path_name
Where path_name specifies an absolute path name, the path will be used
as specified.

This attribute can be altered once the job has begun execution, but it will not
take affect until the job is rerun.

−p priority
Replaces the priority of the job. The priority argument must be a integer be-
tween -1024 and +1023 inclusive. The Pr ior ity attribute is set to this signed in-
teger value.

Chapt Revision: 2.2 5-5

User Commands PBS ERS

This attribute can be altered once the job has begun execution, but it will not
take affect until the job is rerun.

−r c Declares whether the job is rerunable. See the qrerun command. The option
argument c is a single character. PBS recognizes the following characters: y
and n. Also see rerunability in the glossary.

If the argument is "y", the job is marked rerunable. The Rer unable attribute is
set to ’y’. If the argument is "n", the job is marked as not rerunable. The Re-
runable attribute is set to ’n’.

−S path Declares the shell that interprets the job script.

The option argument path_list is in the form:
path[@host][,path[@host],...]

Only one path may be specified for any host named. Only one path may be
specified without the corresponding host name. The path selected will be the
one with the host name that matched the name of the execution host. If no
matching host is found, then if present the path specified without a host will be
selected.

If the −S option is not specified, the option argument is the null string, or no
entry from the path_list is selected, the execution will use the login shell of the
user on the execution host. The Shell_Path_List attribute is set to the path_list
argument if present, otherwise it is set to the null string.

This attribute can be altered once the job has begun execution, but it will not
take affect until the job is rerun.

−u user_list
Replaces the user name under which the job is to run on the execution system.

The user_list argument is of the form:
user[@host][,user[@host],...]

Only one user name may be given for per specified host. Only one of the user
specifications may be supplied without the corresponding host specification.
That user name will be used for execution on any host not named in the argu-
ment list. The User_List attribute is set to the value of User_List.

This attribute cannot be altered once the job has begun execution.

-W additional_attributes
The -W option allows for the modification of additional job attributes. The gen-
eral syntax of the -W is in the form:

-W attr_name=value[,attr_name=value...]
Note if white space occurs anywhere within the option argument string or the
equal sign, "=", occurs within an attribute_value string, then the string must be
enclosed with either single or double quote marks.

PBS currently supports the following attributes within the -W option.

depend=dependency_list
Redefines the depend attribute listing the dependencies between this and other
jobs. The dependency_list is in the form: type[:argument[:argu-
ment...][,type:argument...] .
The argument is either a numeric count or a PBS job id according to type . If
argument is a count, it must be greater than 0. If it is a job id and is not fully
specified in the form: seq_number.server.name , it will be expanded accord-
ing to the default server rules. If argument is null (the preceeding colon need
not be specified), the dependency of the cooresponding type is cleared (unset).

synccount: count
This job is the first in a set of jobs to be executed at the same time. Count
is the number of additional jobs in the set.

5-6 Chapt Revision: 2.2

PBS ERS User Commands

syncwith: jobid
This job is an additional member of a set of jobs to be executed at the same
time. Jobid is the job identifier of the first job in the set.

after: jobid[:jobid...]
This job may be scheduled for execution at any point after jobs jobid have
started execution.

afterok: jobid[:jobid...]
This job may be scheduled for execution only after jobs jobid have termi-
nated with no errors.

afternotok: jobid[:jobid...]
This job may be scheduled for execution only after jobs jobid have termi-
nated with errors.

afterany: jobid[:jobid...]
This job may be scheduled for execution after jobs jobid have terminated,
with or without errors.

on: count
This job may be scheduled for execution after count dependencies on other
jobs have been satisfied. This form is used in conjunction with one of the
before forms, see below.

before: jobid[:jobid...]
When this job has begun execution, then jobs jobid... may begin.

beforeok: jobid[:jobid...]
If this job terminates execution without errors, then jobs jobid... may be-
gin.

beforenotok: jobid[:jobid...]
If this job terminates execution with errors, then jobs jobid... may begin.

beforeany: jobid[:jobid...]
When this job terminates execution, jobs jobid... may begin.

If any of the before forms are used, the job referenced by jobid must have
been submitted with a dependency type of on .

The job specified in any of the before forms must have the same owner as
the job being altered.. Otherwise, the dependency will not take effect.

Error processing of the existance, state, or condition of the job on which the
newly submitted job is a deferred service, i.e. the check is performed after the
job is queued. If an error is detected, the new job will be deleted by the server.
Mail will be sent to the job submitter stating the error. These options are extensions
to the POSIX 1003.2d standard.

group_list=g_list
Alters the group_list attribute, which lists the group name under which the job
is to run on the execution system.

The g_list argument is of the form: group[@host][,group[@host],...]
Only one group name may be given per specified host. Only one of the group
specifications may be supplied without the corresponding host specification.
That group name will used for execution on any host not named in the argu-
ment list. This option is an extension to the POSIX 1003.2d standard.

stagein=file_list
stageout=file_list
Alters the stageout attribute or the stagein attribute, which list which files are
staged (copied) in before job start or staged out after the job completes execu-
tion. The file_list is in the form: local_file@hostname:re-

Chapt Revision: 2.2 5-7

User Commands PBS ERS

mote_file[,...]
The name local_file is the name on the system where the job executes. It
may be an absolute path or a path relative to the home directory of the user.
The name remote_file is the destination name on the host specified by
hostname . The name may be absolute or relative to the user’s home directory
on the destination host. These options are extensions to the POSIX 1003.2d standard.

OPERANDS
The qalter command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]
See the description under "Job Identifier" in section 2.7.6 in this ERS.

STANDARD ERROR
Any error condition, either in processing the options or the operands, or any error re-
ceived in reply to the batch requests will result in a error message being written to
standard error.

EXIT STATUS
Upon successful processing of all the operands presented to the the qalter command,
the exit status will be a value of zero.

If the qalter command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
qsub(1B), qstat(1B), pbs_alterjob(3B), pbs_statjob(3B), pbs_selectjob(3B), pbs_re-
sources_*(7B), where * is system type, and the PBS ERS.

5-8 Chapt Revision: 2.2

PBS ERS User Commands

5.2.2. Delete Job

NAME
qdel - delete pbs batch job

SYNOPSIS
qdel [−W delay] job_identifier ...

DESCRIPTION
The qdel command deletes jobs in the order in which their job identifiers are presented
to the command. A job is deleted by sending a Delete Job batch request to the batch
server that owns the job. A job that has been deleted is no longer subject to manage-
ment by batch services.

A batch job may be deleted by its owner, the batch operator, or the batch administrator.

A batch job being deleted by a server will be sent a SIGTERM signal following by a
SIGKILL signal. The time delay between the two signals is an attribute of the execu-
tion queue from which the job was run (settable by the administrator). This delay may
be overridden by the −W option.

See the PBS ERS section 3.1.3.3, "Delete Job Request", for more information.

OPTIONS

−W delay Specify the delay between the sending of the SIGTERM and SIGKILL
signals. The argument delay specifies a unsigned integer number of
seconds. This option is an extension to POSIX 1003.2d.

OPERANDS
The qdel command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]
See the description under "Job Identifier" in section 2.7.6 in this ERS.

STANDARD ERROR
The qdel command will write a diagnostic messages to standard error for each error oc-
currence.

EXIT STATUS
Upon successful processing of all the operands presented to the the qdel command, the
exit status will be a value of zero.

If the qdel command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
qsub(1B), qsig(1B), and pbs_deljob(3B)

Chapt Revision: 2.2 5-9

User Commands PBS ERS

5.2.3. Hold Job

NAME
qhold - hold pbs batch jobs

SYNOPSIS
qhold [−h hold_list] job_identifier ...

DESCRIPTION
The qhold command requests that a server place one or more holds on a job. A job that
has a hold is not eligible for execution. There are three supported holds: USER, OTHER
(also known as operator), and SYSTEM.

A user may place a USER hold upon any job the user owns. An "operator", who is a user
with "operator privilege," may place ether an USER or an OTHER hold on any job. The
batch administrator may place any hold on any job.

If no −h option is given, the USER hold will be applied to the jobs described by the
job_identifier operand list.

If the job identified by job_identifier is in the queued, held, or waiting states, then all
that occurs is that the hold type is added to the job. The job is then placed into held
state if it resides in an execution queue.

If the job is in running state, then the following additional action is taken to interrupt
the execution of the job. This is an extension to POSIX.2d. If checkpoint / restart is supported
by the host system, requesting a hold on a running job will (1) cause the job to be check-
pointed, (2) the resources assigned to the job will be released, and (3) the job is placed
in the held state in the execution queue.

If checkpoint / restart is not supported, qhold will only set the the requested hold at-
tribute. This will have no effect unless the job is rerun with the qrerun command.

The qhold command sends a Hold Job batch request to the server as described in the
general section.

OPTIONS

−h hold_list Defines the types of holds to be placed on the job.

The hold_list argument is a string consisting of one or more of the let-
ters "u", "o", or "s"in any combination or the character "n". The hold
type associated with each letter is:

u − USER

o − OTHER

s − SYSTEM

n − None

Repetition of characters is permitted, but "n" may not appear in the
same option argument with the other three characters.

OPERANDS
The qhold command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

See the description under "Job Identifier" in section 2.7.6 in this ERS.

STANDARD ERROR
The qhold command will write a diagnostic message to standard error for each error oc-

5-10 Chapt Revision: 2.2

PBS ERS User Commands

currence.

EXIT STATUS
Upon successful processing of all the operands presented to the the qhold command, the
exit status will be a value of zero.

If the qhold command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
qrls(1B), qalter(1B), qsub(1B), pbs_alterjob(3B), pbs_holdjob(3B), pbs_rlsjob(3B),
pbs_job_attributes(7B), pbs_resources_unicos8(7B)

Chapt Revision: 2.2 5-11

User Commands PBS ERS

5.2.4. Move Job

NAME
qmove − move pbs batch job

SYNOPSIS
qmove destination job_identifier ...

DESCRIPTION
To move a job is to remove the job from the queue in which it resides and instantiate
the job in another queue. The qmove command issues a Move Job batch request to the
batch server that currently owns each job specified by job_identifier.

A job in the Running, Transiting, or Exiting state cannot be moved.

OPERANDS
The first operand is the new destinationfor

queue
@server
queue@server

See the PBS ERS section 2.7.3, "Destination Identifiers".

If the destination operand describes only a queue, then qmove will move jobs into the
queue of the specified name at the job’s current server.

If the destination operand describes only a batch server, then qmove will move jobs into
the default queue at that batch server.

If the destination operand describes both a queue and a batch server, then qmove will
move the jobs into the specified queue at the specified server.

All following operands are job_identifiers which specify the jobs to be moved to the new
destination. The qmove command accepts one or more job_identifier operands of the
form:

sequence_number[.server_name][@server]
See the description under "Job Identifier" in section 2.7.6 in this ERS.

STANDARD ERROR
The qmove command will write a diagnostic messages to standard error for each error
occurrence.

EXIT STATUS
Upon successful processing of all the operands presented to the the qmove command,
the exit status will be a value of zero.

If the qmove command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
qsub(1B), pbs_movejob(3B)

5-12 Chapt Revision: 2.2

PBS ERS User Commands

5.2.5. Message Job

NAME
qmsg − send message to pbs batch jobs

SYNOPSIS
qmsg [-E] [-O] message_string job_identifier ...

DESCRIPTION
To send a message to a job is to write a message string into one or more output files of
the job. Typically this is done to leave an informative message in the output of the job.

The qmsg command writes messages into the files of jobs by sending a Message Job
batch request to the batch server that owns the job. The qmsg command does not di-
rectly write the message into the files of the job.

OPTIONS

-E Specifies that the message is written to the standard error of each job.

-O Specifies that the message is written to the standard output of each job.

If neither the -E nor the -O option is specified, the message will be written to the stan-
dard error of the job.

OPERANDS
The first operand, message_string, is the message to be written. If the string contains
blanks, the string must be quoted. If the final character of the string is not a newline, a
newline character will be added when written to the job’s file.

All following operands are job_identifiers which specify the jobs to receive the message
string. The qmsg command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]
See the description under "Job Identifier" in section 2.7.6 in this ERS.

STANDARD ERROR
The qmsg command will write a diagnostic message to standard error for each error oc-
currence.

EXIT STATUS
Upon successful processing of all the operands presented to the qmsg command, the ex-
it status will be a value of zero.

If the qmsg command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
qsub(1B), pbs_msgjob(3B)

Chapt Revision: 2.2 5-13

User Commands PBS ERS

5.2.6. Order Jobs

NAME
qorder − exchange order of two pbs batch jobs in a queue.

SYNOPSIS
qorder job_identifier job_identifier

DESCRIPTION
To order two jobs is to exchange the jobs positions in the queue or queues in which the
jobs resides. The two jobs must be located at the same server. The qorder command
issues an Order Jobs batch request to the batch server that currently owns the two jobs
specified by the two job_identifier operands. No attribute of the job, such as priority is
changed. The impact of interchanging the order with the queue(s) is dependent on local
job scheduled policy, contact your systems administrator.

A job in the running state cannot be reordered.

OPERANDS
Both operands are job_identifiers which specify the jobs to be exchanged. The qorder
command accepts two job_identifier operands of the form:

sequence_number[.server_name][@server]
The server specification for the two jobs must agree as to the current location of the two
job ids. See the description under "Job Identifier" in section 2.7.6 in this ERS.

STANDARD ERROR
The qorder command will write diagnostic messages to standard error for each error oc-
currence.

EXIT STATUS
Upon successful processing of all the operands presented to the the qorder command,
the exit status will be a value of zero.

If the qorder command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
qsub(1B), qmove(1B), pbs_orderjob(3B), pbs_movejob(3B)

5-14 Chapt Revision: 2.2

PBS ERS User Commands

5.2.7. Rerun Job

NAME
qrerun − rerun a pbs batch job

SYNOPSIS
qrerun job_identifier ...

DESCRIPTION
The qrerun command directs that the specified jobs are to be rerun if possible.

To rerun a job is is to terminate the session leader of the job and return the job to the
queued state in the execution queue in which the job currently resides.

The qrerun command sends a Rerun Job batch request to the server which owns the
job.

If a job is marked as not rerunable then the rerun request will fail for that job. See the
Rer unable attribute and the -r option on the qsub and qalter commands.

OPERANDS
The qrerun command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]
See the description under "Job Identifier" in section 2.7.6 in this ERS.

STANDARD ERROR
The qrerun command will write a diagnostic message to standard error for each error
occurrence.

EXIT STATUS
Upon successful processing of all the operands presented to the qrerun command, the
exit status will be a value of zero.

If the qrerun command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
qsub(1B), qalter(1B), pbs_alterjob(3B), pbs_rerunjob(3B)

Chapt Revision: 2.2 5-15

User Commands PBS ERS

5.2.8. Release Job

NAME
qrls − release hold on pbs batch jobs

SYNOPSIS
qrls [-h hold_list] job_identifier ...

DESCRIPTION
The qrls command removes or releases holds which exist on batch jobs.

A job may have one or more types of holds which make the job ineligible for execution.
The types of holds are USER, OTHER, and SYSTEM. The different types of holds may re-
quire that the user issuing the qrls command have special privilege. Typically, the own-
er of the job will be able to remove a USER hold, but not an OTHER or SYSTEM hold. An
Attempt to release a hold for which the user does not have the correct privilege is an er-
ror and no holds will be released for that job.

If no -h option is specified, the USER hold will be released.

If the job has no execution_time pending, the job will change to the queued state. If an
execution_time is still pending, the job will change to the waiting state.

If the sched_hint attribute is set, when the job is returned to queued state, it may be
given preference in selection for execution depending on site policy.

The qrls command sends a Release Job batch request to the server which owns the job.

OPTIONS

−h hold_list Defines the types of hold to be released from the jobs. The hold_list op-
tion argument is a string consisting of one or more of the letters "u",
"o", an "s" in any combination, or one or more of the letters "n. The
hold type associated with each letter is:

u − USER

o − OTHER

s − SYSTEM

n − None

Repetition of characters is permitted, but "n" may not appear in the
same option argument with the other three characters.

OPERANDS
The qrls command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]
See the description under "Job Identifier" in section 2.7.6 in this ERS.

STANDARD ERROR
The qrls command will write a diagnostic message to standard error for each error oc-
currence.

EXIT STATUS
Upon successful processing of all the operands presented to the qrls command, the exit
status will be a value of zero.

If the qrls command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO

5-16 Chapt Revision: 2.2

PBS ERS User Commands

qsub(1B), qalter(1B), qhold(1B), pbs_alterjob(3B), pbs_holdjob(3B), and pbs_rlsjob(3B).

Chapt Revision: 2.2 5-17

User Commands PBS ERS

5.2.9. Select Jobs

NAME
qselect − select pbs batch jobs

SYNOPSIS
qselect [-a [op]date_time] [-A account_string] [-c [op]interval] [-h hold_list] [-l re-
source_list] [-N name] [-p [op]priority] [-q destination] [-r rerun] [-s states] [-u user_list]

DESCRIPTION
The qselect command provides a method to list the job identifier of those jobs which
meet a list of selection criteria. The selection is accomplished by sending a Select Jobs
batch request to the default server or the server specified by the −qoption. Jobs are se-
lected from those owned by a single server.

When qselect successfully completes, it will have written to standard output a list of ze-
ro or more jobs which meet the criteria specified by the options. Each option acts as a
filter restricting the number of jobs which might be listed. With no options, the qselect
command will list all jobs at the server which the user is authorized to list (query sta-
tus of). The -u option may be used to limit the selection to jobs owned by this user or
other specified users. Operators and system administrators have the privilege to select
all jobs. Other uses access depends on the setting of the server attribute quer y_oth-
er_jobs.

OPTIONS
When an option is specified with a optional op component to the option argument, then
op specifies a relation between the value of a certain job attribute and the value compo-
nent of the option argument. If an op is allowable on an option, then the description of
the option letter will indicate the op is allowable. The only acceptable strings for the op
component, and the relation the string indicates, are shown in the following list:

.eq. the value represented by the attribute of the job is equal to the value repre-
sented by the option argument.

.ne. the value represented by the attribute of the job is not equal to the value
represented by the option argument.

.ge. the value represented by the attribute of the job is greater than or equal to
the value represented by the option argument.

.gt. the value represented by the attribute of the job is greater than the value
represented by the option argument.

.le. the value represented by the attribute of the job is less than or equal to the
value represented by the option argument.

.lt. the value represented by the attribute of the job is less than the value rep-
resented by the option argument.

-a [op]date_time
Restricts selection to a specific time, or a range of times.

The qselect command selects only jobs for which the value of the Execu-
tion_Time attribute is related to the date_time argument by the optional op
operator. The date_time argument is in the form of the date_time operand of
the touch(1) command: [[CC]YY]MMDDhhmm[.SS]
where the MM is the two digits for the month, DD is the day of the month,
hh is the hour, mm is the minute, and the optional SS is the seconds. CC is
the century and YY the year.

5-18 Chapt Revision: 2.2

PBS ERS User Commands

If op is not specified, jobs will be selected for which the Execution_Time and
date_time values are equal. If op is specified, jobs will be selected according
to the following definitions:

.eq. Execution_Time attribute is equal to the date_time argument.

.ne. Execution_Time attribute is not equal to the date_time argument.

.ge. execution_Time attribute is greater than (after) or equal to the date_time
argument.

.gt. Execution_Time attribute is greater than (after) the date_time argument.

.le. Execution_Time attribute is less than (before) or equal to the date_time
argument.

.lt. Execution_Time attribute is less than (before) the date_time argument.

-A account_string
Restricts selection to jobs whose Account_Name attribute matches the speci-
fied account_string.

-c [op] interval
Restricts selection to jobs whose Checkpoint interval attribute matches the
specified relationship.

The values of the Checkpoint attribute are defined to have the following or-
dered relationship:

n > s > c=minutes > c > u
If the optional op is not specified, jobs will be selected whose Checkpoint at-
tribute is equal to the interval argument. If op is specified, jobs will be se-
lected according to:

.eq. Checkpoint attribute of the job is equal to the interval argument.

.ne. Checkpoint attribute of the job is not equal to the interval argument.

.ge. Checkpoint attribute of the job is greater than or equal to the interval ar-
gument.

.gt. Checkpoint attribute of the job is greater than the interval argument.

.le. Checkpoint attribute of the job is less than or equal to the interval argu-
ment.

.lt. Checkpoint attribute of the job is less than the interval argument.

For an interval value of "u", only ".eq." and ".ne." are valid.

-h hold_listRestricts the selection of jobs to those with a specific set of hold types. Only
those jobs will be selected whose Hold_Types attribute exactly match the value
of the hold_list argument.

The hold_list argument is a string consisting of one or more occurrences the
single letter n, or one or more of the letters u, o, or s in any combination. If
letters are duplicated, they are treated as if they occurred once. The letters
represent the hold types:

n − none
u − user
o − other
s − system

-l resource_list
Restricts selection of jobs to those with specified resource amounts.

Only those jobs will be selected whose Resource_List attribute matches the
specified relation with each resource and value listed in the resource_list ar-
gument. The resource_list is in the following format:

Chapt Revision: 2.2 5-19

User Commands PBS ERS

resource_name opvalue[,resource_name opval,...]
The relation operator op must be present.

When comparing the values of resources, the following definitions for the op-
erator apply:

.eq. the resource value in the Resource_List attribute of the job equals the
value specified in resource_list.

.ne. the resource value in the Resource_List attribute of the job is not equal
to the value specified in resource_list.

.ge. the resource value in the Resource_List attribute of the job is greater
than or equal to the value specified in resource_list.

.gt. the resource value in the Resource_List attribute of the job is greater
than the value specified in resource_list.

.le. the resource value in the Resource_List attribute of the job is less than or
equal to the value specified in resource_list.

.lt. the resource value in the Resource_List attribute of the job is less than
the value specified in resource_list.

-N name Restricts selection of jobs to those with a specific name.

-p [op]priority
Restricts selection of jobs to those with a priority that matches the specified
relationship. If op is not specified, jobs are selected for which the job Pr ior ity
attribute is equal to the priority

If the op is specified, the relationship is defined as:

.eq. Pr ior ity attribute is equal to the value of the priority argument.

.ne. Pr ior ity attribute is not equal to the value of the priority argument.

.ge. Pr ior ity attribute is greater than or equal to the value of the priority ar-
gument.

.gt. Pr ior ity attribute is greater than the value of the priority argument.

.le. Pr ior ity attribute is less than or equal to the value of the priority argu-
ment.

.lt. Pr ior ity attribute is less than the value of the priority argument.

-q destination
Restricts selection to those jobs residing at the specified destination.

The destination may be of one of the following three forms:
queue
@server
queue@server

If the -q option is not specified, jobs will be selected from the default server.
See the ERS section 2.7.4 for a definition of the default server.

If the destination describes only a queue, only jobs in that queue on the de-
fault batch server will be selected.

If the destination describes only a server, then jobs in all queues on that
server will be selected.

If the destination describes both a queue and a server, then only jobs in the
named queue on the named server will be selected.

−r rerun Restricts selection of jobs to those with the specified Rer unable attribute. The
option argument must be a single character. The following two characters
are supported by PBS: y and n.

5-20 Chapt Revision: 2.2

PBS ERS User Commands

-s states Restricts job selection to those in the specified states.

The states argument is a character string which consists of any combination
of the characters: E, H, Q, R, T, and W. This set of state letters does not conform to the
POSIX 1003.2d standard. It requires the sames letters, but in lower case. A repeated char-
acter will be accepted, but no additional meaning is assigned to it.

The characters in the states argument have the following interpretation:

E the Exiting state.

H the Held state.

Q the Queued state.

R the Running state.

T the Transiting state.

W the Waiting state.

Jobs will be selected which are in any of the specified states.

-u user_listRestricts selection to jobs owned by the specified user names.

This provides a means of limiting the selection to jobs owned by one or more
users. The ability to select jobs owned by others is controllable by the server
attribute quer y_other_jobs. Mapping between user names on different hosts
and validation of privilege to access the specified user name is discussed un-
der the server. This option may also be used by batch operators and batch
administrators to select jobs belonging to other users.

The syntax of the user_list is:
user_name[@host][,user_name[@host],...]

Host names may be wild carded on the left end, e.g. "*.nasa.gov". Us-
er_name without a "@host" is equivalent to "user_name@*", that is at any
host. Jobs will be selected which are owned by the listed users at the corre-
sponding hosts.

STANDARD OUTPUT
The list of job identifiers of selected jobs is written to standard output. Each job identi-
fier is separated by white space. Each job identifier is of the form:

sequence_number.server_name@server
Where sequence_number.server is the identifier assigned at submission time, see
qsub. @server identifies the server which currently owns the job.

STANDARD ERROR
The qselect command will write a diagnostic message to standard error for each error
occurrence.

EXIT STATUS
Upon successful processing of all options presented to the qselect command, the exit
status will be a value of zero.

If the qselect command fails to process any option, the command exits with a value
greater than zero.

SEE ALSO
qsub(1B), qstat(1B), pbs_selectjob(3B), pbs_selstat(3B), pbs_statjob(3B)

Chapt Revision: 2.2 5-21

User Commands PBS ERS

5.2.10. Signal Job

NAME
qsig − signal pbs batch job

SYNOPSIS
qsig [-s signal] job_identifier ...

DESCRIPTION
The qsig command requests that a signal be sent to executing batch jobs. The signal is
sent to the session leader of the job.

If the −s option is not specified, ‘SIGTERM’ is sent. The request to signal a batch job
will be rejected if:

- The user is not authorized to signal the job.

- The job is not in the running state.

- The requested signal is not supported by the system upon which the job is execut-
ing.

The qsig command sends a Signal Job batch request to the server which owns the job.

OPTIONS

-s signal Declares which signal is sent to the job.

The signal argument is either a signal name, e.g. SIGKILL, the signal
name without the SIG prefix, e.g. KILL, or a unsigned signal number,
e.g. 9. The signal name SIGNULL is allowed; the server will send the
signal 0 to the job which will have no effect. Not all signal names will
be recognized by qsig. If it doesn’t recognize the signal name, try issu-
ing the signal number instead.

For Unicos on Cray systems only, two special signal names, "suspend"
and "resume", are used to suspend and resume jobs. When suspended,
a job continues to occupy system resources but is not executing and is
not charged for walltime. Manager or operator privilege is required to
suspend or resume a job.

If the server receives a Signal Job batch request with a signal that is
unsupported on the server host, the server will reject the request.

OPERANDS
The qsig command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]

See the description under "Job Identifier" in section 2.7.6 in this ERS.

STANDARD ERROR
The qsig command will write a diagnostic messages to standard error for each error oc-
currence.

EXIT STATUS
Upon successful processing of all the operands presented to the qsig command, the exit
status will be a value of zero.

If the qsig command fails to process any operand, the command exits with a value
greater than zero.

5-22 Chapt Revision: 2.2

PBS ERS User Commands

SEE ALSO
qsub(1B), pbs_sigjob(3B), pbs_resources_*(7B) where * is system type, and the PBS
ERS.

Chapt Revision: 2.2 5-23

User Commands PBS ERS

5.2.11. Status Jobs, Queues, or Server

NAME
qstat − show status of pbs batch jobs

SYNOPSIS
qstat [-f][-W site_specific] [job_identifier... | destination...]

qstat [-a|-i|-r] [-n] [-s] [-G|-M] [-R] [-u user_list] [job_identifier... | destination...]

qstat -Q [-f][-W site_specific] [destination...]

qstat -q [-G|-M] [destination...]

qstat -B [-f][-W site_specific] [server_name...]

DESCRIPTION
The qstat command is used to request the status of jobs, queues, or a batch server. The
requested status is written to standard out. The status is obtained by sending a Job
Status , a Queue Status , or a Server Status batch request to the appropriate server.

When requesting job status, synopsis format 1 or 2, qstat will output information about
each job_identifier or all jobs at each destination. The capability to request status of all jobs at a
destination is an extension to POSIX 1003.2d. Jobs for which the user does not have status priv-
ilege are not displayed.

When requesting queue or server status, synopsis format 3 through 5, qstat will output
information about each destination. The syntax using the [-a|-i|-r] line or the -q line
are extensions to POSIX.

OPTIONS

-f Specifies that a full status display be written to standard out.

-a "All" jobs are displayed in the alternative format, see the Standard Output
section. If the operand is a destination id, all jobs at that destination are dis-
played. If the operand is a job id, information about that job is displayed.

-i Job status is displayed in the alternative format. For a destination id
operand, status for jobs at that destination which are not running are dis-
played. This includeds jobs which are queued, held or waiting. If an
operand is a job id, status for that job is displayed regardless of its state.

-r If an operand is a job id, status for that job is displayed. For a destination id
operand, status for jobs at that destination which are running are displayed,
this includeds jobs which are suspended. If an operand is a job id, status for
that job is displayed.

-n In addition to the basic information, nodes allocated to a job are listed.

-s In addition to the basic information, any comment provided by the batch ad-
ministrator or scheduler is shown.

-G Show size information in giga-bytes.

-M Show size information, disk or memory in mega-words. A word is consid-
ered to be 8 bytes.

-R In addition to other information, disk reservation information is shown. Not
applicable to all systems.

-u Job status is displayed in the alternative format. If an operand is a job id,
status for that job is displayed. For a destination id operand, status for jobs

5-24 Chapt Revision: 2.2

PBS ERS User Commands

at that destination which are owned by the user(s) listed in user_list are dis-
played. The syntax of the user_list is:

user_name[@host][,user_name[@host],...]
Host names may be wild carded on the left end, e.g. "*.nasa.gov". Us-
er_name without a "@host" is equivalent to "user_name@*", that is at any
host.

-Q Specifies that the request is for queue status and that the operands are des-
tination identifiers.

-q Specifies that the request is for queue status which should be shown in the
alternative format.

-B Specifies that the request is for batch server status and that the operands
are the names of servers.

OPERANDS
If neither the -Q nor the -B option is given, the operands on the qstat command must be
either job identifiers or destinations identifiers.

If the operand is a job identifier, it must be in the following form:
sequence_number[.server_name][@server]

where sequence_number.server_name is the job identifier assigned at submittal
time, see qsub. If the .server_name is omitted, the name of the default server will be
used. If @server is supplied, the request will be for the job identifier currently at that
Server. See ERS sections 2.7.6 and 2.7.3 for more details on job identifiers and batch
destinations.

If the operand is a destination identifier, it is one of the following three forms:
queue
@server
queue@server

If queue is specified, the request is for status of all jobs in that queue at the default
server. If the @server form is given, the request is for status of all jobs at that server.
If a full destination identifier, queue@server , is given, the request is for status of all
jobs in the named queue at the named server.

If the -Q option is given, the operands are destination identifiers as specified above. If
queue is specified, the status of that queue at the default server will be given. If
queue@server is specified, the status of the named queue at the named server will be
given. If @server is specified, the status of all queues at the named server will be giv-
en. If no destination is specified, the status of all queues at the default server will be
given.

If the -B option is given, the operand is the name of a server.

STANDARD OUTPUT
Displaying Job Status

If job status is being displayed in the default format and the -f option is not specified,
the following items are displayed on a single line, in the specified order, separated by
white space:

- the job identifier assigned by PBS.

- the job name given by the submitter.

- the job owner

- the CPU time used

- the job state:
E - Job is exiting after having run.

Chapt Revision: 2.2 5-25

User Commands PBS ERS

H - Job is held.
Q - job is queued, eligable to run or routed.
R - job is running.
T - job is being moved to new location.
W - job is waiting for its execution time

(-a option) to be reached.
S - (Unicos only) job is suspend.
This set of state letters does not conform to the POSIX 1003.2d standard. It requires the
sames letters, but in lower case.

- the queue in which the job resides

If job status is being displayed and the -f option is specified, the output will depend on
whether qstat was compiled to use a Tcl interpreter. See the configuration section for
details. If Tcl is not being used, full display for each job consists of the header line:

Job Id: job identifier
Followed by one line per job attribute of the form:

attribute_name = value

The attribute name is indented 4 spaces. There is a single space on each side of the
equal sign. Long values wrap either at column 78 or following a comma beyond which
the next comma separated segment will not fit before column 79. Continuation lines
are indented by a tab (8 spaces). There is blank line following the last attribute.

If any of the options -a, -i, -r, -u, -n, -s, -G or -M are provided, the alternative display for-
mat for jobs is used. The following items are displayed on a single line, in the specified
order, separated by white space:

- the job identifier assigned by PBS.

- the job owner.

- The queue in which the job currently resides.

- The job name given by the submitter.

- The session id (if the job is running).

- The number of nodes requested by the job.

- The number of cpus or tasks requested by the job.

- The amount of memory requested by the job.

- Either the cpu time, if specified, or wall time requested by the job, (hh:mm).

- The job’s current state.

- The amount of cpu time or wall time used by the job (hh:mm).
If the -R option is provied, the line contains:

- the job identifier assigned by PBS.

- the job owner.

- The queue in which the job currently resides.

- The number of nodes requested by the job.

- The number of cpus or tasks requested by the job.

- The amount of memory requested by the job.

- Either the cpu time or wall time requested by the job.

- The job’s current state.

- The amount of cpu time or wall time used by the job.

- The amount of SRFS space requested on the big file sysstem.

- The amount of SRFS space requested on the fast file sysstem.

5-26 Chapt Revision: 2.2

PBS ERS User Commands

- The amount of space requested on the parallel I/O file system.
The last three fields may not contain useful information at all sites or on all sys-
tems.

Displaying Queue Status

If queue status is being displayed and the -f option was not specified, the following
items are displayed on a single line, in the specified order, separated by white space:

- the queue name

- the maximum number of jobs that may be run in the queue concurrently

- the total number of jobs in the queue

- the enable or disabled status of the queue

- the started or stopped status of the queue

- for each job state, the name of the state and the number of jobs in the queue
in that state.

- the type of queue, execution or routing.

If queue status is being displayed and the -f option is specified, the output will depend
on whether qstat was compiled to use a Tcl interpreter. See the configuration section
for details. If Tcl is not being used, the full display for each queue consists of the head-
er line:

Queue: queue_name
Followed by one line per queue attribute of the form:

attribute_name = value

The queue attributes are listed in the same format as job attributes.

If the -q option is specified, queue information is displayed in the alternative format:
The following information is displayed on a single line:

- the queue name

- the maximum amount of memory a job in the queue may request

- the maximum amount of cpu time a job in the queue may request

- the maximum amount of wall time a job in the queue may request

- the maximum amount of nodes a job in the queue may request

- the number of jobs in the queue in the running state

- the number of jobs in the queue in the queued state

- the maximum number (limit) of jobs that may be run in the queue concurrently

- the state of the queue given by a pair of letters:
- either the letter E if the queue is Enabled or D if Disabled, and
- either the letter R if the queue is Running (started) or S if Stopped.

Displaying Server Status

If batch server status is being displayed and the -f option is not specified, the following
items are displayed on a single line, in the specified order, separated by white space:

- the server name

- the maximum number of jobs that the server may run concurrently

- the total number of jobs currently managed by the server

- the status of the server

Chapt Revision: 2.2 5-27

User Commands PBS ERS

- for each job state, the name of the state and the number of jobs in the server
in that state

If server status is being displayed and the -f option is specified, the output will depend
on whether qstat was compiled to use a Tcl interpreter. See the configuration section
for details. If Tcl is not being used, the full display for the server consist of the header
line:

Server: server name
Followed by one line per server attribute of the form:

attribute_name = value

The server attributes are listed in the same format as job attributes.

STANDARD ERROR
The qstat command will write a diagnostic message to standard error for each error oc-
currence.

CONFIGURATION
If qstat is compiled with an option to include a Tcl interpreter, using the -f flag to get a
full display causes a check to be made for a script file to use to output the requested in-
formation. The first location checked is $HOME/.qstatrc. If this does not exist, the
next location checked is administrator configured. If one of these is found, a Tcl inter-
preter is started and the script file is passed to it along with three global variables. The
command line arguments are split into two variable named flags and operands. The
status information is passed in a variable named objects. All of these variables are Tcl
lists. The flags list contains the name of the command (usually "qstat") as its first ele-
ment. Any other elements are command line option flags with any options they use,
presented in the order given on the command line. They are broken up individually so
that if two flags are given together on the command line, they are separated in the list.
For example, if the user typed

qstat -QfWbigdisplay

the flags list would contain

qstat -Q -f -W bigdisplay

The operands list contains all other command line arguments following the flags.
There will always be at least one element in operands because if no operands are
typed by the user, the default destination or server name is used. The objects list con-
tains all the information retrieved from the server(s) so the Tcl interpreter can run once
to format the entire output. This list has the same number of elements as the
operands list. Each element is another list with two elements. The first element is a
string giving the type of objects to be found in the second. The string can take the val-
ues "server", "queue", "job" or "error". The second element will be a list in which each
element is a single batch status object of the type given by the string discussed above.
In the case of "error", the list will be empty. Each object is again a list. The first ele-
ment is the name of the object. The second is a list of attributes. The third element
will be the object text. All three of these object elements corespond with fields in the
structure batch_status which is described in detail for each type of object by the man
pages for pbs_statjob(3),pbs_statque(3), Each attribute in the second element list
whose elements correspond with the attrl structure. Each will be a list with two ele-
ments. The first will be the attribute name and the second will be the attribute value.

EXIT STATUS
Upon successful processing of all the operands presented to the qstat command, the exit
status will be a value of zero.

5-28 Chapt Revision: 2.2

PBS ERS User Commands

If the qstat command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
qalter(1B), qsub(1B), pbs_alterjob(3B), pbs_statjob(3B), pbs_statque(3B), pbs_statserv-
er(3B), pbs_submit(3B), pbs_job_attributes(7B), pbs_queue_attributes(7B), pbs_serv-
er_attributes(7B), pbs_resources_*(7B) where * is system type, and the PBS ERS.

Chapt Revision: 2.2 5-29

User Commands PBS ERS

5.2.12. Submit Job

NAME
qsub − submit pbs job

SYNOPSIS
qsub [-a date_time] [-A account_string] [-c interval] [-C directive_prefix] [-e path] [-h]
[-I] [-j join] [-k keep] [-l resource_list] [-m mail_options] [-M user_list] [-N name] [-o
path] [-p priority] [-q destination] [-r c] [-S path_list] [-u user_list] [-v variable_list] [-V]
[-W additional_attributes] [-z] [script]

DESCRIPTION
To create a job is to submit an executable script to a batch server. The batch server will
be the default server unless the −q option is specified. See discussion of PBS_DE-
FAULT under Environment Variables below. Typically, the script is a shell script which
will be executed by a command shell such as sh or csh.

Options on the qsub command allow the specification of attributes which affect the be-
havior of the job. The job is created by sending a Queue Job batch request to the batch
server.

The qsub command will pass certain environment variables in the Variable_List attribute
of the job. These variables will be available to the job. The value for the following vari-
ables will be taken from the environment of the qsub command: HOME, LANG, LOG-
NAME, PA TH, MAIL, SHELL, and TZ. These values will be assigned to a new name
which is the current name prefixed with the string "PBS_O_". For example, the job will
have access to an environment variable named PBS_O_HOME which have the value of
the variable HOME in the qsub command environment.

In addition to the above, the following environment variables will be available to the
batch job. (The values of the following environment variables are established by qsub.)

PBS_O_HOST
the name of the host upon which the qsub command is running.

PBS_O_QUEUE
the name of the original queue to which the job was submitted. (It is established
by the server which creates the job, not qsub.)

PBS_O_WORKDIR
the absolute path of the current working directory of the qsub command.

The following are established by the server executing the job, not the qsub command.

PBS_ENVIRONMENT
set to PBS_BATCHto indicate the job is a batch job, or to PBS_INTERACTIVE to in-
dicate the job is a PBS interactive job, see -I option.

PBS_JOBID
the job identifier assigned to the job by the batch system.

PBS_JOBNAME
the job name supplied by the user.

PBS_NODEFILE
the name of the file contain the list of nodes assigned to the job (for parallel and
cluster systems).

PBS_QUEUE
the name of the queue from which the job is executed.

OPTIONS

5-30 Chapt Revision: 2.2

PBS ERS User Commands

-a date_time
Declares the time after which the job is eligible for execution.

The date_time argument is in the form: [[[[CC]YY]MM]DD]hhmm[.SS]

Where CC is the first two digits of the year (the century), YY is the second two
digits of the year, MM is the two digits for the month, DD is the day of the
month, hh is the hour, mm is the minute, and the optional SS is the seconds.

If the month, MM, is not specified, it will default to the current month if the
specified day DD, is in the future. Otherwise, the month will be set to next
month. Likewise, if the day, DD, is not specified, it will default to today if the
time hhmmis in the future. Otherwise, the day will be set to tomorrow. For ex-
ample, if you sumit a job at 11:15am with a time of -a 1110 , the job will be eli-
gable to run at 11:10am tomorrow. See the date_time operand for the touch(1)
command defined by POSIX.2.

The Execution_Time job attribute will be set to the number of seconds since
Epoch which is equivalent to the Universal time expressed by the local time in
the date_time argument. If the −a option is not specified, the Execution_Time at-
tribute is unset which represents a time zero or no delay.

-A account_string
Defines the account string associated with the job. The account_string is an
undefined string of characters and is interpreted by the server which executes
the job. See section 2.7.1 of the PBS ERS. The Account_Name attribute is set to
the account string. If account_string is unset, it is not passed with the job to
the job executor.

-c interval
Defines the interval at which the job will be checkpointed. If the job executes
upon a host which does not support checkpoint, this option will be ignored.

The interval argument is specified as:

n No checkpointing is to be performed. The job’s Checkpoint attribute is set to
the string "n" .

s Checkpointing is to be performed only when the server executing the job is
shutdown. The job’s Checkpoint attribute is set to the string "s" .

c Checkpointing is to be performed at the default minimum time for the serv-
er executing the job. The job’s Checkpoint attribute is set to the string "c" .

c=minutes
Checkpointing is to be performed at an interval of minutes, which is the in-
teger number of minutes of CPU time used by the job. This value must be
greater than zero. The Checkpoint attribute is set to the string specified by
"c=minutes".

If -c is not specified, the Checkpoint attribute is set to the value "u" meaning
unspecified. Unless otherwise stated, "u" is treated the same as "s".

−C directive_prefix
Defines the prefix that declares a directive to the qsub command within the
script file. See the paragraph on script directives in the Extended Description
section.

If the -C option is presented with a directive_prefix argument that is the null
string, qsub will not scan the script file for directives. The directive prefix is
not a job attribute. It is used solely within the qsub command.

−e path Defines the path to be used for the standard error stream of the batch job. The
path argument is of the form:

[hostname:]path_name

Chapt Revision: 2.2 5-31

User Commands PBS ERS

where hostname is the name of a host to which the file will be returned and
path_name is the path name on that host in the syntax recognized by POSIX.
The argument will be interpreted as follows:

path_name
Where path_name is not an absolute path name, then the qsub command
will expand the path name relative to the current working directory of
the command. The command will supply the name of the host upon
which it is executing for the hostname component.

hostname:path_name
Where path_name is not an absolute path name, then the qsub command
will not expand the path name relative to the current working directory
of the command. On delivery of the standard error, the path name will be
expanded relative to the user’s home directory on the hostname system.

path_name
Where path_name specifies an absolute path name, then the qsub will
supply the name of the host on which it is executing for the hostname.

hostname:path_name
Where path_name specifies an absolute path name, the path will be used
as specified.

If the -e option is not specified, the default file name for the standard error
stream will be used. The default name has the following form:

job_name. esequence_number
where job_name is the name of the job, see -N option, and sequence_number
is the job number assigned when the job is submitted. This option sets the job
attribute Error_Path.

-h Specifies that a user hold be applied to the job at submission time. The
Hold_Types attribute will be set to USER, "u". If -h is not specified, then
Hold_Types is set to NONE, "n".

−I Declares that the job is to be run "interactively". The job will be queued and
scheduled as any PBS batch job, but when executed, the standard input, out-
put, and error streams of the job are connected through qsub to the terminal
session in which qsub is running. See the "Extended Description" paragraph
for addition information of interactive jobs. The −I option is a violation of the POSIX
1003.2d standard. Option key letters not defined by the standard, such as I, are reserved for fu-
ture revisions of the standard. PBS can be built with the symbol PBS_NO_POSIX_VIOLATION
defined, in which case the −I option is removed. The interactive attribute may still be specified via
the −W option.

−j join Declares if the standard error stream of the job will be merged with the stan-
dard output stream of the job.

An option argument value of oe directs that the two streams will be merged,
intermixed, as standard output. The Join_Path job attribute is set to "oe". An
option argument value of eo directs that the two streams will be merged, inter-
mixed, as standard error. The Join_Path job attribute is set to "eo".

If the join argument is n or the option is not specified, the two streams will be
two separate files. The Join_Path job attribute is set to "n".

−k keep Defines which (if either) of standard output or standard error will be retained
on the execution host. If set for a stream, this option overrides the path name
for that stream. If not set, neither stream is retained on the execution host.

The argument is either the single letter "e" or "o", or the letters "e" and "o"
combined in either order. Or the argument is the letter n. Repetition of char-
acters is permitted, but "n" may not appear in the same option argument with

5-32 Chapt Revision: 2.2

PBS ERS User Commands

the other two characters. The attribute Keep_Files is set to the argument.

e The standard error stream is to retained on the execution host. The
stream will be placed in the home directory of the user under whose user id
the job executed. The file name will be the default file name given by:
job_name. esequence where job_name is the name specified for the job,
and sequence is the sequence number component of the job identifier. The
attribute is set to KEEP_ERROR.

o The standard output stream is to retained on the execution host. The
stream will be placed in the home directory of the user under whose user id
the job executed. The file name will be the default file name given by:
job_name. osequence where job_name is the name specified for the job,
and sequence is the sequence number component of the job identifier. The
attribute is set to KEEP_OUTPUT.

eo Both the standard output and standard error streams will be retained. The
attribute is set to "KEEP_OUTPUT | KEEP_ERROR".

oe Both the standard output and standard error streams will be retained. The
attribute is set to "KEEP_OUTPUT | KEEP_ERROR".

n Neither stream is retained.

-l resource_list
Defines the resources that are required by the job and establishes a limit to the
amount of resource that can be consumed. If not set for a generally available
resource, such as CPU time, the limit is infinite. The resource_list argument is
of the form:

resource_name[=[value]][,resource_name[=[value]],...]

For each resource listed in the resource_list, one entry will be added to the Re-
source_List attribute of the job. The entry contains the resource name and its
requested value. No white space is allowed in the value. Other than syntax,
qsub performs no resource or value checking. The checking is performed by
the execution server.

−m mail_options
Defines the set of conditions under which the execution server will send a mail
message about the job. The mail_options argument is a string which consists
of either the single character "n", or one or more of the characters "a", "b", and
"e". Repeated letters are accepted, but n cannot be mixed with the other char-
acters.

If the character "n" is specified, no mail will be sent. The Mail_Points attribute
is set to NONE, "n".

For the letters "a", "b", and "e":

a mail is sent when the job is aborted by the batch system. The Mail_Points at-
tribute is set to ABORT, "a".

b mail is sent when the job begins execution. The Mail_Points attribute is set
to BEGINNING, "b".

e mail is sent when the job terminates. The Mail_Points attribute is set to EX-
IT, "e".

If the −m option is not specified, mail will be sent if the job is aborted. The
Mail_Points attribute is set to ABORT, "a".

−M user_list
Declares the list of users to whom mail is sent by the execution server when it
sends mail about the job.

Chapt Revision: 2.2 5-33

User Commands PBS ERS

The user_list argument is of the form:
user[@host][,user[@host],...]

If unset, the list defaults to the submitting user at the qsub host, i.e. the job
owner.

The Mail_Users attribute is set to the argument.

−N name
Declares a name for the job. The name specified may be up to and including 15
characters in length. It must consist of printable, non white space characters
with the first character alphabetic. [The POSIX 1003.2d Standard calls for on-
ly alphanumeric characters, but then calls for the use of the script file base
name as the job name if a name is not specified. The file name may contain
other than alphanumeric characters. Therefore I ‘‘interpret’’ the standard as
allowing printable characters.] Names taken from the script name may have a
non-alphabetic character first. If the script basename is greater than 15 char-
acters, it will be truncated to 15.

If the −N option is not specified, the job name will be the base name of the job
script file specified on the command line. If no script file name was specified
and the script was read from the standard input, then the job name will be set
to STDIN.

The Job_Name attribute is set to the name.

−o path Defines the path to be used for the standard output stream of the batch job.
The path argument is of the form:

[hostname:]path_name
where hostname is the name of a host to which the file will be returned and
path_name is the path name on that host in the syntax recognized by POSIX.
The argument will be interpreted as follows:

path_name
Where path_name is not an absolute path name, then the qsub command
will expand the path name relative to the current working directory of
the command. The command will supply the name of the host upon
which it is executing for the hostname component.

hostname:path_name
Where path_name is not an absolute path name, then the qsub command
will not expand the path name relative to the current working directory
of the command. On delivery of the standard output, the path name will
be expanded relative to the user’s home directory on the hostname sys-
tem.

path_name
Where path_name specifies an absolute path name, then the qsub will
supply the name of the host on which it is executing for the hostname.

hostname:path_name
Where path_name specifies an absolute path name, the path will be used
as specified.

If the -o option is not specified, the default file name for the standard output
stream will be used. The default name has the following form:

job_name. osequence_number
where job_name is the name of the job, see -N option, and sequence_number
is the job number assigned when the job is submitted. This option sets the job
attribute Output_Path.

−p priority
Defines the priority of the job. The priority argument must be a integer be-

5-34 Chapt Revision: 2.2

PBS ERS User Commands

tween -1024 and +1023 inclusive. The default is no priority which is equiva-
lent to a priority of zero. The Pr ior ity job attribute is set to this signed integer
value.

-q destination
Defines the destination of the job. The destination names a queue, a server, or
a queue at a server.

The qsub command will submit the script to the server defined by the destina-
tion argument. The server named by the destination is the one to which qsub
sends the Queue Job batch request. If the destination is a routing queue, the
job may be routed by the server to a new destination.

If the −q option is not specified, the qsub command will submit the script to the
default server. See PBS_DEFAULT under the Environment Variables section
on this man page and the PBS ERS section 2.7.4, "Default Server".

If the −q option is specified, it is in one of the following three forms:
queue
@server
queue@server

If the destination argument names a queue and does not name a server, the job
will be submitted to the named queue at the default server.

If the destination argument names a server and does not name a queue, the job
will be submitted to the default queue at the named server.

If the destination argument names both a queue and a server, the job will be
submitted to the named queue at the named server.

−r y|n Declares whether the job is rerunable. See the qrerun command. The option
argument is a single character, either y or n. Also see rerunable in the glos-
sary.

If the argument is "y", the job is rerunable. The Rer unable attribute is set to the
character ’y’. If the argument is "n", the job is not rerunable. The default val-
ue is ’y’, rerunable.

−S path_list
Declares the shell that interprets the job script.

The option argument path_list is in the form:
path[@host][,path[@host],...]

Only one path may be specified for any host named. Only one path may be
specified without the corresponding host name. The path selected will be the
one with the host name that matched the name of the execution host. If no
matching host is found, then the path specified without a host will be selected,
if present.

If the −S option is not specified, the option argument is the null string, or no
entry from the path_list is selected, the execution will use the user’s login shell
on the execution host. The Shell_Path_List attribute is set to the path_list argu-
ment if present, otherwise it is set to the null string.

−u user_list
Defines the user name under which the job is to run on the execution system.

The user_list argument is of the form:
user[@host][,user[@host],...]

Only one user name may be given per specified host. Only one of the user
specifications may be supplied without the corresponding host specification.
That user name will used for execution on any host not named in the argument
list. The User_List attribute is set to the value of user_list. If unset, the user

Chapt Revision: 2.2 5-35

User Commands PBS ERS

list defaults to the user who is running qsub.

-v variable_list
Expands the list of environment variables that are exported to the job.

In addition to the variables described in the "Description" section above, vari-
able_list names environment variables from the qsub command environment
which are made available to the job when it executes. The variable_list is a
comma separated list of strings of the form variable or variable=value .
These variables and their values are passed to the job. The Variable_List at-
tribute is appended with the variables in user_list and their values.

-V Declares that all environment variables in the qsub command’s environment
are to be exported to the batch job. The Variable_List attribute is appended with
the variables in the qsub command’s environment and their values.

-W additional_attributes
The -W option allows for the specification of additional job attributes. POSIX.2
reserves all undefined option letters for future versions of the standard. The single letter ’W’ is al-
lowed for extensions. PBS makes use of the -W to specify attributes which are extensions to
POSIX 1003.2d. The general syntax of the -W is in the form:

−W attr_name=attr_value[,attr_name=attr_value...]
Note if white space occurs anywhere within the option argument string or the
equal sign, "=", occurs within an attribute_value string, then the string must be
enclosed with either single or double quote marks.

PBS currently supports the following attributes within the -W option.

depend=dependency_list
Defines the dependency between this and other jobs. The dependency_list is in
the form:
type[:argument[:argument...][,type:argument...] .
The argument is either a numeric count or a PBS job id according to type . If
argument is a count, it must be greater than 0. If it is a job id and not fully
specified in the form seq_number.server.name , it will be expanded accord-
ing to the default server rules which apply to job ids on most commands. If ar-
gument is null (the preceeding colon need not be specified), the dependency of
the cooresponding type is cleared (unset).

synccount: count
This job is the first in a set of jobs to be executed at the same time. Count
is the number of additional jobs in the set.

syncwith: jobid
This job is an additional member of a set of jobs to be executed at the same
time. In the above and following dependency types, jobid is the job identi-
fier of the first job in the set.

after: jobid[:jobid...]
This job may be scheduled for execution at any point after jobs jobid have
started execution.

afterok: jobid[:jobid...]
This job may be scheduled for execution only after jobs jobid have termi-
nated with no errors. See the csh warning under "Extended Description".

afternotok: jobid[:jobid...]
This job may be scheduled for execution only after jobs jobid have termi-
nated with errors. See the csh warning under "Extended Description".

afterany: jobid[:jobid...]
This job may be scheduled for execution after jobs jobid have terminated,
with or without errors.

5-36 Chapt Revision: 2.2

PBS ERS User Commands

on: count
This job may be scheduled for execution after count dependencies on other
jobs have been satisfied. This form is used in conjunction with one of the
before forms, see below.

before: jobid[:jobid...]
When this job has begun execution, then jobs jobid... may begin.

beforeok: jobid[:jobid...]
If this job terminates execution without errors, then jobs jobid... may be-
gin. See the csh warning under "Extended Description".

beforenotok: jobid[:jobid...]
If this job terminates execution with errors, then jobs jobid... may begin.
See the csh warning under "Extended Description".

beforeany: jobid[:jobid...]
When this job terminates execution, jobs jobid... may begin.

If any of the before forms are used, the jobs referenced by jobid must
have been submitted with a dependency type of on .

The depend attribute is set to the value of the dependency option argument.

If any of the before forms are used, the jobs referenced by jobid must
have the same owner as the job being submitted. Otherwise, the depen-
dency is ignored.

Error processing of the existence, state, or condition of the job on which the
newly submitted job is a deferred service, i.e. the check is performed after the
job is queued. If an error is detected, the new job will be deleted by the server.
Mail will be sent to the job submitter stating the error.

Dependency examples:
qsub -W depend=afterok:123.big.iron.com /tmp/script
qsub -W depend=before:234.hunk1.com:235.hunk1.com /tmp/script

group_list=g_list
Defines the group name under which the job is to run on the execution system.
The g_list argument is of the form:
group[@host][,group[@host],...]
Only one group name may be given per specified host. Only one of the group
specifications may be supplied without the corresponding host specification.
That group name will used for execution on any host not named in the argu-
ment list. The group_list attribute is set to the value of g_list. If not set, the
group_list defaults to the primary group of the user under which the job will be
run.

interactive=true
If the interactive attribute is specified, the job is an interactive job. The −I op-
tion is a alternative method of specifying this attribute.

stagein=file_list
stageout=file_list
Specifies the stagein or stageout attribute, listing which files are staged (copied)
in before job start or staged out after the job completes execution. On comple-
tion of the job, all staged-in and staged-out files are removed from the execu-
tion system. The file_list is in the form
local_file@hostname:remote_file[,...]
regardless of the direction of the copy. The name local_file is the name of
the file on the system where the job executed. It may be an absolute path or
relative to the home directory of the user. The name remote_file is the des-
tination name on the host specified by hostname . The name may be absolute

Chapt Revision: 2.2 5-37

User Commands PBS ERS

or relative to the user’s home directory on the destination host. The use of
wildcards in the file name is not recommended. Since rcp (or scp) is run via
rsh, it will pick up matching names from the remote system. However,
pbs_mom will does not expand the wildcards and will fail to delete the staged
files on job termination. The file names map to a remote copy program (rcp)
call on the execution system in the follow manner:
For stagein: rcp hostname:remote_file local_file
For stageout: rcp local_file hostname:remote_file

-z Directs that the qsub command is not to write the job identifier assigned to the
job to the command’s standard output.

OPERANDS
The qsub command accepts a script operand that is the path to the script of the job. If
the path is relative, it will be expanded relative to the working directory of the qsub
command.

If the script operand is not provided or the operand is the single character "−", the qsub
command reads the script from standard input.

STANDARD INPUT
The qsub command reads the script for the job from standard input if the script
operand is missing or is the single character "−".

INPUT FILES
The script file is read by the qsub command. Qsub acts upon any directives found in the
script.

When the job is created, a copy of the script file is made and that copy cannot be modi-
fied.

STANDARD OUTPUT
Unless the −z option is set, the job identifier assigned to the job will be written to stan-
dard output if the job is successfully created.

STANDARD ERROR
The qsub command will write a diagnostic message to standard error for each error oc-
currence.

ENVIRONMENT VARIABLES
The values of some or all of the variables in the qsub command’s environment are ex-
ported with the job, see the -v and -V options.

The environment variable PBS_DEFAULT defines the name of the default server.
Typically, it corresponds to the system name of the host on which the server is running.
If PBS_DEFAULT is not set, the default is defined by an administrator established file.

The environment variable PBS_DPREFIX determines the prefix string which identi-
fies directives in the script.

EXTENDED DESCRIPTION

Script Processing:

A job script may consist of PBS directives, comments and executable statements. A
PBS directive provides a way of specifying job attributes in addition to the command
line options. For example:

:
#PBS -N Job_name

5-38 Chapt Revision: 2.2

PBS ERS User Commands

#PBS -l walltime=10:30,mem=320kb
#PBS -m be
#
step1 arg1 arg2
step2 arg3 arg4

The qsub command scans the lines of the script file for directives. An initial line in the
script that begins with the characters "#!" or the character ":" will be ignored and scan-
ning will start with the next line. Scanning will continue until the first executable line,
that is a line that is not blank, not a directive line, nor a line whose first non white
space character is "#". If directives occur on subsequent lines, they will be ignored.

A line in the script file will be processed as a directive to qsub if and only if the string of
characters starting with the first non white space character on the line and of the same
length as the directive prefix matches the directive prefix.

The remainder of the directive line consists of the options to qsub in the same syntax as
they appear on the command line. The option character is to be preceded with the "−"
character.

If an option is present in both a directive and on the command line, that option and its
argument, if any, will be ignored in the directive. The command line takes precedence.

If an option is present in a directive and not on the command line, that option and its
argument, if any, will be processed as if it had occurred on the command line.

The directive prefix string will be determined in order of preference from:

The value of the −C option argument if the option is specified on the command
line.

The value of the environment variable PBS_DPREFIX if it is defined.

The four character string #PBS.

If the −C option is found in a directive in the script file, it will be ignored.

User Authorization:

When the user submits a job from a system other than the one on which the PBS Server
is running, the name under which the job is to be executed is selected according to the
rules listed under the -u option. The user submitting the job must be authorized to run
the job under the execution user name. This authorization is provided if

(1) The host on which qsub is run is trusted by the execution host (see
/etc/hosts.equiv),

(2) The execution user has an .rhosts file naming the submitting user on the
submitting host.

C-Shell .logout File:

The following warning applies for users of the c-shell, csh. If the job is executed under
the csh and a .logout file exists in the home directory in which the job executes, the exit
status of the job is that of the .logout script, not the job script. This may impact any
inter-job dependencies. To preserve the job exit status, either remove the .logout file or
place the following line as the first line in the .logout file

set EXITVAL = $status
and the following line as the last executable line in .logout

exit $EXITVAL

Interactive Jobs:

Chapt Revision: 2.2 5-39

User Commands PBS ERS

If the −I option is specified on the command line or in a script directive, or if the "inter-
active" job attribute declared true via the −W option, -W interactive=true , either
on the command line or in a script directive, the job is an interactive job. The script
will be processed for directives, but will not be included with the job. When the job be-
gins execution, all input to the job is from the terminal session in which qsub is run-
ning.

When an interactive job is submitted, the qsub command will not terminate when the
job is submitted. Qsub will remain running until the job terminates, is aborted, or the
user interrupts qsub with an SIGINT (the control-C key). If qsub is interrupted prior to
job start, it will query if the user wishes to exit. If the user response "yes", qsub exits
and the job is aborted.

One the interactive job has started execution, input to and output from the job pass
through qsub. Keyboard generated interrupts are passed to the job. Lines entered that
begin with the tilde (’˜’) character and contain special sequences are escaped by qsub.
The recognized escape sequences are:

˜. Qsub terminates execution. The batch job is also terminated.

˜susp Suspend the qsub program if running under the C shell. "susp" is the sus-
pend character, usually CNTL-Z.

˜asuspSuspend the input half of qsub (terminal to job), but allow output to contin-
ue to be displayed. Only works under the C shell. "asusp" is the auxiliary
suspend character, usually CNTL-Y.

EXIT STATUS
Upon successful processing, the qsub exit status will be a value of zero.

If the qsub command fails, the command exits with a value greater than zero.

SEE ALSO
qalter(1B), qdel(1B), qhold(1B), qmove(1B), qmsg(1B), qrerun(1B), qrls(1B), qselect(1B),
qsig(1B), qstat(1B), pbs_connect(3B), pbs_job_attributes(7B), pbs_queue_attributes(7B),
pbs_resources_irix5(7B), pbs_resources_sp2(7B), pbs_resources_sunos4(7B), pbs_re-
sources_unicos8(7B), pbs_server_attributes(7B), and pbs_server(8B)

5-40 Chapt Revision: 2.2

PBS ERS User Commands

5.2.13. Convert NQS Scripts

NAME
nqs2pbs − convert NQS job scripts to PBS

SYNOPSIS
nqs2pbs nqs_script [pbs_script]

DESCRIPTION
This utility converts a existing NQS job script to work with PBS and NQS. The existing
script is copied and PBS directives, #PBS , are inserted prior to each NQS directive
#QSUB or #@$, in the original script.

Certain NQS date specification and options are not supported by PBS. A warning mes-
sage will be displayed indicating the problem and the line of the script on which it oc-
curred.

If any unrecognizable NQS directives are encounterred, an error message is displayed.
The new PBS script will be deleted if any errors occur.

OPERANDS

nqs_script
Specifies the file name of the NQS script to convert. This file is not changed.

pbs_script
If specified, it is the name of the new PBS script. If not specified, the new file
name is nqs_script.new .

NOTES
Converting NQS date specifications to the PBS form may result in a warning message
and an incompleted converted date. PBS does not support date specifications of "today",
"tomorrow", or the name of the days of the week such as "Monday". If any of these are
encountered in a script, the PBS specification will contain only the time portion of the
NQS specification, i.e. #PBS -a hhmm[.ss]. It is suggested that you specify the execu-
tion time on the qsub command line rather than in the script.

Note that PBS will interpret a time specification without a date in the following way:

- If the time specified has not yet been reached, the job will become eligible to run at
that time today.

- If the specified time has already passed when the job is submitted, the job will be-
come eligible to run at that time tomorrow.

PBS does not support time zone identifiers. All times are taken as local time.

SEE ALSO
qsub(1B)

Chapt Revision: 2.2 5-41

User Commands PBS ERS

5.2.14. BASL Compiler

NAME
basl2c − converts a BASL (BAtch Scheduling Language) code into a C scheduler code.

SYNOPSIS
basl2c [-d] [-l lexerDebugFile] [-p parserDebugFile] [-y symtabDebugFile] [-s
semanticDebugFile] [-g codegenDebugFile] [-c cFile] baslFile

DESCRIPTION
basl2c is the BASL to C compiler that produces an intermediate code that can be fed
into a regular C compiler, and linked with the PBS libraries to produce the scheduler
executable. Basl2c takes as input a baslFile, which is a program written in the BAtch
Scheduling Language, containing the main scheduling code. Basl2c then converts the
BASL constructs in the file into C statements, and it also attaches additional code to
produce the PBS scheduler source code. By default, the resulting C code is written into
the file pbs_sched.c.

The full pathname to the resulting C file is what needs to be specified in the
SCHD_CODE variable in local.mk before compiling the BASL scheduler to produce the
pbs_sched executable.

OPTIONS

-d Prints additional debugging messages to the lexer (see -l option), parser (see -p op-
tion), symbol table (see -y option), semantic analyzer (see -s option), and code gen-
erator (see -g option).

-l lexerDebugFile
lexerDebugFile is the name of a file to write into the debugging messages generat-
ed while scanning for tokens.

-p parserDebugFile
parserDebugFile is the name of a file to write into the debugging messages gener-
ated while putting together tokens in a usable way.

-y symtabDebugFile
symtabDebugFile is the name of a file to write into the debugging messages relat-
ed to the symbol table.

-s semanticDebugFile
semanticDebugFile is the name of a file to write into the debugging messages gen-
erated while checking to make sure variables and operators are used in a consis-
tent way.

-g codegenDebugFile
codegenDebugFile is the name of a file to write into the debugging messages gen-
erated while converting BASL statements to C statements.

-c cFile
cFile is the name of a file where the generated C code is written into.

MAIN STRUCTURE
The basic structure of a scheduler code written in BASL is as follows:

5-42 Chapt Revision: 2.2

PBS ERS User Commands

zero or more FUNCTIONS definitions
zero or more global VARIABLE DECLARATIONS
zero or more assignment statements (to initialize global variables)
sched_main()
{

one or more VARIABLE DECLARATIONS

zero or more STATEMENTS
}

For example,
% cat sched.basl
Int sum(Int a, Int b)
{

Int s;
s = a + b;
return(s);

}
Int glob;

sched_main()
{

Int c;

a = 3;
b = 4;
c = sum(a, b);
print(c);

glob = 5;
print(glob);
}

sched_main() is the function that gets called at every scheduling iteration.

FUNCTIONS
To define a function that can be called in subsequent functions, the syntax is:

ReturnType function-name (DATATYPE1 IDENTIFIER1,
DATATYPE2 IDENTIFIER2, ...)

{
one or more VARIABLE DECLARATIONS

zero or more STATEMENTS
}

For example,
Void printStuff(Dayofweek dow, DateTime t, String str,

Size sz, CNode cn)
{

print(dow);
print(t);
print(str);
print(sz);
print(cn);

}

Chapt Revision: 2.2 5-43

User Commands PBS ERS

Valid function ReturnType are: Void, Int, Float, Dayofweek, DateTime, String, Size,
Server, Que, Job, CNode, Set Server, Set Que, Set Job, Set CNode.

Valid data types (DATATYPE1, DATATYPE2, ...) for the parameter identifiers are:
Int, Float, Dayofweek, DateTime, String, Size, Server, Que, Job, CNode, Set Server, Set
Que, Set Job, Set CNode, Range Int, Range Float, Range Dayofweek, Range DateTime,
Range Size, Fun Int, Fun Float, Fun Void, Fun Dayofweek, Fun DateTime, Fun String,
Fun Size, Fun Server, Fun Que, Fun Job, Fun CNode, Fun Set Server, Fun Set Que,
Fun Set Job, Fun Set CNode. These data types will be discussed in the next topic.

Functions are invoked by their name and their arguments as in:

printStuff(MON, (5|1|1997@14:32:00), "sched begins",
30gb, node);

basl2c will actually add a "basl_" prefix to the function name given by the scheduler
writer to minimize chance of name collision, which can result when the resulting C code
is linked with the PBS, BASL libraries. For example, if you look at the generated C
code for printStuff, you would see,

basl_printStuff(MON, (5|1|1997@14:32:00),
"sched begins", 30gb, node);

As in C, all function calls must have been previously defined. The BASL compiler will
check to make sure that arguments in the function call match up exactly (in terms of
types) with the parameters in the function definition.

Two kinds of functions exist in BASL: user-defined functions and predefined functions.
User-defined functions are those that the scheduler writer provided a definition for,
while predefined functions are those that can immediately be called without a need for
defining it. For a list of predefined functions, see section on PREDEFINED FUNC-
TIONS.

VARIABLE DECLARATIONS
Like in C, all variables in a BASL code must be explicitly declared before use. Those
variables declared outside of any function are referred to as global variables, while vari-
ables that are declared within a function body are called local variables. Global vari-
ables are usable anywhere within the BASL code, while local variables are readable on-
ly within the function from which they were declared.

The syntax of a variable declaration is:

DATATYPE IDENTIFIER ;

where DATATYPE can be: Int, Float, Dayofweek, DateTime, String, Size, Server, Que,
Job, CNode, Set Server, Set Que, Set Job, Set CNode, Range Int, Range Float, Range
Dayofweek, Range DateTime, Range Size.

DATA TYPE

Void used for functions that don’t return a value.

Int signed, whole numbers given in base 10.

Sample constants:
5, +1, -3, SUCCESS (=1), FAIL (=0), TRUE (=1), FALSE (=0)

5-44 Chapt Revision: 2.2

PBS ERS User Commands

Float real numbers which are represented as doubles in the translated C code.
Sample constants: 4.3, +1.2, -2.6

Dayofweek
constant values: SUN, MON, TUE, WED, THU, FRI, SAT, internally repre-
sented as integer valued constants with SUN=0, MON=1, and so on.

DateTime
specify in one of 3 formats:

[1] (m|d|y) where 1 <= m <= 12, 1 <= d <= 31, 0 <= y, ex. (4|4|1997);

[2] (hh:mm:ss) where 0 <= hh <= 23, 0 <= mm <= 59, 0 <= ss <= 61, ex.
(12:01:00);

[3] (m|d|y@hh:mm:ss), ex. (4|4|1997@12:01:00)
During dates/times comparison, "now" time is substituted if the time por-
tion is not given (format [1]); the "now" date is substituted if the date por-
tion is not given (format [2]). Also, the full year portion must be given
(i.e. 1997 instead of 97) in dates to avoid ambiguity.

String A string is enclosed in quotes (") and it can contain anything except another
quote, a newline, and left and right parentheses.
Sample constants: "a sample string", NULLSTR

Size format: <integer><suffix> where suffix is a multiplier of the form: <multipli-
er><unit>:

multiplier unit (bytes or words)
=================== =====================
k,m,g,t,p,K,M,G,T,P b,B,w,W

where k=K=1024, m=M=1,048,576, g=G=1,073,741,824,
t=T=1,099,511,627,776, p=P=1,125,899,906,842,624, b=B=1, and word size
w=W is locally defined (i.e. 4 bytes in a 32-bit machine).

When operating on 2 size operands that are of different suffixes, the suffix of
the "lower" of the two will be the resultant suffix. For example,

10mb + 10gb = 10250mb
Sample constants: -1b, 2w, 1kb, 2mw, +3gb, 4tw, 6Pb

Range Int

format: (low Int value, high Int value)
where low Int value <= high Int value. Sample constant: (1,3)

Range Float

format: (low Float value, high Float value)
where low value <= high value. Sample constant: (2.3, 4.6)

Range Dayofweek

format: (earlier day, later day)
where earlier day <= later day. Sample constant: (WED, FRI)

Range DateTime

format: (earlier date/time, later date/time)
where earlier date/time <= later date/time.
NOTE: if range contains only time portions, and earlier time "ap-
pears" to be > later time as in "((18:0:0), (6:0:0))", then during
date/time comparisons, the "later" time will be adjusted by one day so
that it will look like: "((<now date>@18:0:0), (<tomorrow date>@6:0:0)

Chapt Revision: 2.2 5-45

User Commands PBS ERS

)"

Sample constants:
((4|4|1997), (4|10|1997)), ((12:01:00), (12:30:00)), ((4|4|1997@12:01:00),
(4|10|1997@12:30:00))

Range Size

format: (low size, high size)
where low size <= high size. Sample constants: (23gb, 50gb)

Server Maps directly to the PBS server object. A Server manages one or more Que
objects.
Sample constant: NOSERVER

CNode for computational node consisting of a single OS image, a shared memory, and
a set of cpus. CNode runs 1 PBS MOM.
Sample constant: NOCNODE

Que Maps directly to the PBS queue object. A Que object spools one or more Job
objects.
Sample constant: NOQUE

Job Maps directly to the PBS job object. A Job object carries some attributes and
resource requirements.
Sample constant: NOJOB

Set Server
list of Server objects.
Sample constant: EMPTYSETSERVER

Set CNode
list of CNode objects.
Sample constant: EMPTYSETCNODE

Set Quelist of Que objects.
Sample constant: EMPTYSETQUE

Set Job list of Job objects.
Sample constant: EMPTYSETJOB

BASL-DEFINED CONSTANTS
These are constants that cannot be used for naming an identifier (see next topic).
These are always in uppercase.

DATA TYPE BASL-DEFINED CONSTANT
=================== ===
Dayofweek SUN, MON, TUE, WED, THU, FRI, SAT

Int SUCCESS, FAIL, FALSE, TRUE, SYNCRUN, ASYNCRUN,
DELETE, RERUN, HOLD, RELEASE, SIGNAL,
MODIFYATTR, MODIFYRES, SERVER_ACTIVE,
SERVER_IDLE, SERVER_SCHED, SERVER_TERM,
SERVER_TERMDELAY, QTYPE_E, QTYPE_R,
SCHED_DISABLED, SCHED_ENABLED, TRANSIT,
QUEUED, HELD, WAITING, RUNNING, EXITING,
CNODE_OFFLINE, CNODE_DOWN, CNODE_FREE,
CNODE_RESERVE, CNODE_INUSE_EXCLUSIVE,
CNODE_INUSE_SHARED, CNODE_TIMESHARED,
CNODE_CLUSTER, CNODE_UNKNOWN, OP_EQ, OP_NEQ,
OP_LE, OP_LT, OP_GE, OP_GT, OP_MAX, OP_MIN,

5-46 Chapt Revision: 2.2

PBS ERS User Commands

ASC, DESC

Server NOSERVER
Set Server EMPTYSETSERVER

CNode NOCNODE
Set CNode EMPTYSETCNODE

Que NOQUE
Set Que EMPTYSETQUE

Job NOJOB
Set Job EMPTYSETJOB

String NULLSTR

IDENTIFIER
Identifiers (used for variable names and function names) are in alphanumeric for-
mat, with the special underscore (_) character allowed. Currently, BASL can only
handle identifiers with length of up to 80 chars. Also, you cannot use the BASL-
defined constant names for naming an identifier.

STATEMENTS
In BASL(2), you can have a single statement terminated by a semi-colon, or a
group of statements (called compound statement or block) delimited by ’{’ and ’}’.
The different kinds of statements that can appear in a BASL code are:

1. expression statement
Expression statements are anything of the form:

expr ;

where expr can be:

a) Arithmetic expressions

lexpr + rexpr (add)
lexpr - rexpr (subtract)
lexpr * rexpr (multiply)
lexpr / rexpr (divide)
lexpr % rexpr (modulus or remainder)

NOTE: Adding, subtracting, multiplying, dividing, and remaindering
will only be allowed for proper types and if the left and right expres-
sions are of consistent types. The table below illustrates what types are
consistent among the various operators:

For +:

lexpr rexpr
============ ============
Int or Float Int or Float
Size Size
String String

Chapt Revision: 2.2 5-47

User Commands PBS ERS

For -, *, /:

lexpr rexpr
============ ============
Int or Float Int or Float
Size Size

For %:

lexpr rexpr
============ ============
Int or Float Int or Float

Here are some sample arithmetic expressions statements:
Int i1;
Int i2;
Float f1;
Float f2;
Size sz1;
Size sz2;
String str1;
String str2;

i1 + i2;
f1 - i2;
sz1 * sz2 * 2b;
sz1 / 1024b;

str1 = "basl";
str2 = " cool";

// the following is a string concatenation
// operation resulting in the string:
// "basl cool"
str1 + str2;

i1 % 10;

b) Unary expressions

+expr // positive - multiplies by 1 an
// expression that is
// of Int, Float, or
// Size type

-expr // negative - multiplies by -1 an
// expression that is
// of Int, Float, or
// Size type

!expr // not - converts a non-zero expr
// value into 0, and a
// zero expr value into 1
// where expr type must be
// of type Int or Float

5-48 Chapt Revision: 2.2

PBS ERS User Commands

Some sample unary expressions:
Int i;

+3;
-(i + 4);
!i;

c) Logical expressions

lexpr EQ rexpr
lexpr NEQ rexpr
lexpr LT rexpr
lexpr LE rexpr
lexpr GT rexpr
lexpr GE rexpr
lexpr AND rexpr
lexpr OR rexpr

lexpr and rexpr must have types that are mutually consistent as
shown in the following table:

lterminal-expr rterminal-expr
============== ==============
Int or Float Int or Float
Dayofweek Dayofweek
DateTime DateTime
String String
Size Size
Server Server
Que Que
Job Job
CNode CNode
Set Server Set Server
Set Que Set Que
Set Job Set Job
Set CNode Set CNode

For AND, OR operators, the lexpr, rexpr consistent types are Int or
Float.

Some sample logical expressions:

i1 EQ i2;
i1 NEQ f2;
dow1 LE dow2;
d1 LT d2;
str1 GT str2;
sz1 GE sz2;

d) Post-operator expressions
These are expressions that are merely shortcut to assignment state-
ments.

IDENTIFIER++; // identifier=identifier+1
IDENTIFIER--; // identifier=identifier-1

Chapt Revision: 2.2 5-49

User Commands PBS ERS

IDENTIFIER must be of Int or Float type.

Example:
Int i;
Float f;

i++;
f--;

e) Function call

function-name (arg1 ,arg2 ... , argN)

where arg1, ..., argN can be any constant or variable. You can’t have
another function call as an argument.
Example:

Void pr(Int a) {
print(a);

}

pr(5);

There are certain predefined functions that a scheduler writer can au-
tomatically call in his/her BASL code without a need to define it. These
functions are referred to as assist functions (or helper functions) and
they are discussed under PREDEFINED FUNCTIONS topic.

f) Constants
Some valid constant expressions are given in the following:

5;
+1.2;
SUN;
MON;
TUE;
WED;
THU;
FRI;
SAT;
(4|4|1997);
(12:01:00);
(4|4|1997@12:01:00);
"wonderful";
-1b;
SYNCRUN;
ASYNCRUN;
DELETE;
RERUN;
HOLD;
RELEASE;
SIGNAL;
MODIFYATTR;
MODIFYRES;
(1, 3);
(2.3, 4.6);
(WED, FRI);
((4|4|1997), (4|10|1997));

5-50 Chapt Revision: 2.2

PBS ERS User Commands

((12:01:00), (12:30:00));
((4|4|1997@12:01:00), (4|10|1997@12:30:00));
(23gb, 50gb);
NOSERVER;
NOCNODE;
NOQUE;
NOJOB;
EMPTYSETSERVER;
EMPTYSETCNODE;
EMPTYSETQUE;
EMPTYSETJOB;
NULLSTR;
SUCCESS;
FAIL;
SERVER_ACTIVE;
SERVER_IDLE;
SERVER_SCHED;
SERVER_TERM;
SERVER_TERMDELAY;
QTYPE_E;
QTYPE_R;
SCHED_DISABLED;
SCHED_ENABLED;
FALSE;
TRUE;
TRANSIT;
QUEUED;
HELD;
WAITING;
RUNNING;
EXITING;
CNODE_OFFLINE;
CNODE_DOWN;
CNODE_FREE;
CNODE_RESERVE;
CNODE_INUSE_EXCLUSIVE;
CNODE_INUSE_SHARED;
CNODE_TIMESHARED;
CNODE_CLUSTER;
CNODE_UNKNOWN;
OP_EQ;
OP_NEQ;
OP_LE;
OP_LT;
OP_GE;
OP_GT;
OP_MAX;
OP_MIN;

g) Identifier

Example:
Int i;

i;

Chapt Revision: 2.2 5-51

User Commands PBS ERS

2. Assignment statement

IDENTIFIER = expr ;

IDENTIFIER and expr must have types that are mutually consistent as il-
lustrated in the following table:

identifier expr
=============== ===============
Int Int, Float
Float Int, Float
Dayofweek Dayofweek
DateTime DateTime
String String
Size Size
Que Que
Job Job
CNode CNode
Server Server
Dayofweek Dayofweek
DateTime DateTime
Set Server Set Server
Set Que Set Que
Set Job Set Job
Set CNode Set CNode
Range Int Range Int
Range Float Range Float
Range Dayofweek Range Dayofweek
Range DateTime Range DateTime
Range Size Range Size

3. if...else statement
The format of an if statement is similar to that in C with the delimiting "{"
and "}" always present:

if(expr) {
zero or more (true) STATEMENTS

}

if(expr) {
zero or more (true) STATEMENTS

} else {
zero or more (false) STATEMENTS

}

The expr’s type must be either Int or Float, and after evaluation if its value
is non-zero, then the true statements are executed. On the second form, if
the expr evaluates to zero, then the false statements are executed.

Some sample if statements are given below:

if (2 * x)
{

y = y + 3;
print(y);

5-52 Chapt Revision: 2.2

PBS ERS User Commands

}

if (2 * x) {
y = y + 3;

} else {
if(3 * x) {

y = 4;
} else {

y = 5;
}

}

4. for loop statement
The format of a for statement is as follows:

for(start; test; action) {
zero or more STATEMENTS

}

Just like in C, for first executes start, then evaluates the test condition to
see if it returns a non-zero value. If it does, the for statements are executed.
After the for statements are executed, then action is evaluated, and then it
checks the test condition again in the same manner as before. start and ac-
tion can be a simple assignment expression or a post-operator expression.
test is a logical/relational expression. Some sample for statements are given
in the following:

for (i = 0; i LT 3 ; i = i + 1)
{

print(i);
}

for (i = 0; i LT 2 * x; i++)
{

if (x GT 3)
{

y = 99;
} else
{

x = 73;
}

}

5. foreach loop statement
This statement is primarily used for successively retrieving each element of
a Set data type: Set Server, Set CNode, Set Job, Set Que. The syntax is:

foreach (IDENTIFIER1 in IDENTIFIER2) {
zero or more STATEMENTS

}

where the following pairing of types for the identifiers are allowed:

IDENTIFIER1 IDENTIFIER2

Chapt Revision: 2.2 5-53

User Commands PBS ERS

=========== ===========
Server Set Server
Que Set Que
Job Set Job
CNode Set CNode

Example:
Server s;
Que q;
Job j;
CNode c;

Set Server ss;
Set Que sq;
Set Job sj;
Set CNode sc;

foreach(s in ss){
print(s);

}
foreach(q in sq){

print(q);
}
foreach(j in sj){

print(j);
}
foreach(c in sc){

print(c);
}

6. while loop statement
The syntax of a while loop is:

while (expr) {
zero or more STATEMENTS

}

where expr must be of Int or Float type. If expr is non-zero, then the zero or
more STATEMENTSare executed and expr is re-evaluated.

Example:
Int i;
i = 3;
while(i) {

if(i EQ 0) {
print("break on i = 1");
break;

}
i--;

}

7. switch statement
The switch statement is a mult-way decision that tests whether an identifi-
er ’s value matches one of a number of values, and branches to a group of
statements accordingly.

5-54 Chapt Revision: 2.2

PBS ERS User Commands

The syntax for a switch statement is:

switch(IDENTIFIER) {
case constant-expr :

{
zero or more STATEMENTS

}
case constant-expr :

{
zero or more STATEMENTS

}
...

case in constant-rangeOrSet-expr :
{

zero or more STATEMENTS
}

case in IDENTIFIER-rangeOrSettype :
{

zero or more STATEMENTS
}

default :
{

zero or more STATEMENTS
}

}

where constant-expr is an expr of type Int, Float, Dayofweek, DateTime,
Size, String, Server, Que, Job, or CNode. constant-rangeOrSet-expr and
IDENTIFIER-rangeOrSettype can be of type Set Server, Set CNode, Set
Que, Set Job, Range Int, Range Float, Range Dayofweek, Range DateTime,
or Range Size.

IDENTIFIER cannot be of type Void. IDENTIFIER’s type must be consis-
tent with constant-expr’s, constant-rangeOrSet-expr’s, and IDENTIFI-
ER-rangeOrSettype’s type as illustrated in the following table:

Chapt Revision: 2.2 5-55

User Commands PBS ERS

IDENTIFIER constant-range-expr, IDENTIFIER-rangetype
=========== ===
Server Set Server
Que Set Que
Job Set Job
CNode Set CNode
Int Range Int
Float Range Float
Dayofweek Range Dayofweek
DateTime Range DateTime
Size Range Size

If a case expression matches the IDENTIFIER’s value, then the correspond-
ing block of statements are executed. Unlike in C, execution does NOT fall
through to the next case statement. The reason for this is that basl2c will
translate this switch statement into if-elseif-else construct. The case labeled
default is executed if none of the other cases are satisfied. The default is op-
tional; if it isn’t there, and if none of the cases match, no action takes place.

Example:
Dayofweek dow;

switch(dow)
{

case MON:
{

print("case MON");
}
case TUE:
{

print("case TUE");
}
case WED:
{

print("case WED");
}
case THU:
{

print("case THU");
}
case FRI:
{

print("case FRI");
}
case SAT:
{

print("case SAT");
}
case SUN:
{

print("case SUN");
}
default:
{

5-56 Chapt Revision: 2.2

PBS ERS User Commands

print("case defaulted");
}

}

Int a;
Range Int ri;
ri = (10, 12);
switch(a)
{

case in (1,5):
{

print("case 1,5");
}
case in (6,9):
{

print("case 6,9");
}
case in ri:
{

print("case ri");
}

}

8. print statement
Print statement is capable of printing to stdout the value of any identifier
or constant of type Int, Float, Dayofweek, DateTime, String, Size, Que, Job,
CNode, Server, Range Int, Range Float, Range Dayofweek, Range DateTime,
Range Size.
The syntax is as follows:

print (IDENTIFIER);
print (constant);

Example:
DateTime dt;
CNode cn;

dt = (4|4|1997@12:13:36);
cn = AllNodesLocalHostGet();

print(dt);
print(cn);

For Set types, use foreach to go through each element and print as in:

Server s;
Set Server ss;

ss = AllServersGet();

foreach(s in ss) {
print(s);

}

Chapt Revision: 2.2 5-57

User Commands PBS ERS

9. continue statement

continue ;

The continue statement must have been invoked within a for, foreach,
and while loop. It causes the next iteration of the enclosing loop to begin.

10. break statement

break ;

The break statement must have been invoked within a for, foreach, and
while loop. It provides an early exit from the enclosing loop.

11. return statement

return(IDENTIFIER) ;
return(constant) ;
return() ;

The return statement provides the value (if any) to be returned by a func-
tion. The type returned by IDENTIFIER and constant must match the
calling function’s return type. constant types allowed are anything except
Set and Range types. The last format, return() is usually called within a
function that doesn’t return any value (like sched_main()).

12. exit statement

exit(constant);

where constant is of type Int. Calling this will terminate the scheduler.

13. Comment statement
These are statements prefixed by "//" and they are ignored by the BASL com-
piler.

// this line is ignored
Int i; // string following the slashes is ignored

OPERATOR PRECEDENCE AND ASSOCIATIVITY
The following table shows the various operator precedence levels and associativity
defined in the BASL language. The operators are listed in the order of decreasing
precedence. The higher the precedence of an operator, the earlier it gets executed.
The order in which the operators on the same level are executed depends on the
associativity: left means the operators are seen from left to right, while right
means they are seen from right to left.

Operator Associativity
======================================= =============
! ++ -- + (unary plus) - (unary minus) right
* / % left
+ - left
LT LE GT GE left

5-58 Chapt Revision: 2.2

PBS ERS User Commands

EQ NEQ left
AND left
OR left
= right

PREDEFINED FUNCTIONS
In BASL(2), a Server data type maps directly to a batch server object. Similarly,
CNode is to mom/resmom, Job is to batch job, and Que is to batch queue. Howev-
er, not all attributes to the PBS objects can be accessed from BASL. Only a subset
of attributes, those that seemed to make sense in the context of a scheduler, are
made available, and values to these attributes can be accessed by calling the fol-
lowing predefined functions, known also as assist/helper functions.

(1) Server-related functions

Set Server AllServersGet(void)
Returns the list of servers specified in the configuration file for which
the scheduler writer wants the system to periodically check for status,
queues and jobs info. See pbs__sched__basl(8B) for a discussion on
the format of the configuration file.
CAUTION: This function must be called from inside sched_main() so
that at every scheduling iteration, the most up to date Set Server
structure is returned.

Server AllServersLocalHostGet(void)
Returns the Server object that represents the local host. unset value:
NOSERVER. This is a simple function to call for non-cluster environ-
ments where only one server host exists.
CAUTION: This function must be called from inside sched_main() (or
from within function called by sched_main) so that at every scheduling it-
eration, the most up to date Server structure is returned.

String ServerInetAddrGet(Server s)
Returns name for Server s. unset value: NULLSTR

String ServerDefQueGet(Server s)
Returns the default_queue attribute of Server s. unset value: NULLSTR

Int ServerStateGet(Server s)
Returns server_state attribute of Server s.

Return value:
SERVER_ACTIVE, SERVER_IDLE, SERVER_SCHED, SERV-
ER_TERM, SERVER_TERMDELAY, -1 (unset value)

Int ServerMaxRunJobsGet(Server s)
Returns max_running attribute of Server s. unset value: 0

Int ServerMaxRunJobsPerUserGet(Server s)
Returns max_user_run attribute of Server s. unset value: 0

Int ServerMaxRunJobsPerGroupGet(Server s)
Returns max_group_run attribute of Server s. unset value: 0

Set Que ServerQueuesGet(Server s)
Returns list of queues managed by Server s.

Set Job ServerJobsGet(Server s)
Returns list of jobs managed by Server s. For obtaining a subset of this
list, see QueJobsGet().

Int ServerIntResAvailGet(Server s, String name)
Returns the value to resource specified in name that is available to jobs
run by this server (Server resources_available.name attribute). Call this

Chapt Revision: 2.2 5-59

User Commands PBS ERS

function for resources with values that are of Int type. Sample resource
names are: cput, pcput, walltime, mppt, pmppt, nice, procs, mppe, ncpus,
pncpus, nodect, srfs_assist, mta,..., mth. For a description of these re-
source names, see pbs_resources_irix5(7B), pbs_resources_sp2(7B),
pbs_resources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

Example:
Int cpuAvail;
// return the # of cpus currently available in
// the server
cpuAvail = ServerIntResAvailGet(server, "ncpus");

Size ServerSizeResAvailGet(Server s, String name)
Returns the value to resource specified in name that is available to jobs
run by this server (Server resources_available.name attribute). Call this
function for resources with values that are of Size type. Sample resource
names are: file, mem, pmem, workingset, pf, ppf, srfs_tmp, srfs_wrk,
srfs_big, srfs_fast, sds, psds. For a description of these resource names,
see pbs_resources_irix5(7B), pbs_resources_sp2(7B), pbs_re-
sources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

Example:
Size memAvail;
// return the amount of available memory in
// the server
memAvail = ServerSizeResAvailGet(server, "mem");

String ServerStringResAvailGet(Server s, String name)
Returns the value to resource specified in name that is available to jobs
run by this server (Server resources_available.name attribute). Call this
function for resources with values that are of String type. Sample re-
source names are: nodes, arch, neednodes. For a description of these re-
source names, see pbs_resources_irix5(7B), pbs_resources_sp2(7B),
pbs_resources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

Example:
String type;
// return the architecture (or os type) of
// the server
type = ServerStringResAvailGet(server, "arch");

Int ServerIntResAssignGet(Server s, String name)
Returns the value to resource specified in name that is allocated to run-
ning jobs (Server resources_assigned.name attribute). Call this function for
resources with values that are of Int type. Sample resource names are:
cput, pcput, walltime, mppt, pmppt, nice, procs, mppe, ncpus, pncpus,
nodect, srfs_assist, mta,..., mth. For a description of these resource
names, see pbs_resources_irix5(7B), pbs_resources_sp2(7B), pbs_re-
sources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

Example:
Int cpuAssn;
// return the # of cpus currently assigned in

5-60 Chapt Revision: 2.2

PBS ERS User Commands

// the server
cpuAssn = ServerIntResAssignGet(server, "ncpus");

Size ServerSizeResAssignGet(Server s, String name)
Returns the value to resource specified in name that is allocated to run-
ning jobs (Server resources_assigned.name attribute). Call this function for
resources with values that are of Size type. Sample resource names are:
file, mem, pmem, workingset, pf, ppf, srfs_tmp, srfs_wrk, srfs_big,
srfs_fast, sds, psds. For a description of these resource names, see pbs_re-
sources_irix5(7B), pbs_resources_sp2(7B), pbs_resources_sunos4(7B),
pbs_resources_unicos8(7B), pbs_server_attributes(7B), pbs_resources_ir-
ix6(7B), pbs_resources_linux(7B).

Example:
Size sdsAssn;
// return the amount of sds space currently assigned
// in the server
sdsAssn = ServerSizeResAssignGet(server, "sds");

String ServerStringResAssignGet(Server s, String name)
Returns the value to resource specified in name that is allocated to run-
ning jobs (Server resources_assigned.name attribute). Call this function for
resources with values that are of String type. Sample resource names are:
nodes, arch, neednodes. For a description of these resource names, see
pbs_resources_irix5(7B), pbs_resources_sp2(7B), pbs_re-
sources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

Set CNode ServerNodesGet(Server s)
Returns the set of nodes managed by server s. unset value: EMPTY-
SETCNODE.
NOTE: You can usually call the following functions for the nodes returned
by this call: CNodeStateGet(), CNodePropertiesGet(), and CNodeType-
Get().

Int ServerNodesQuery(Server s, String spec)
Issues a request to the specified server to query the availability of re-
sources specified in spec. At the present time, the only resource specifi-
cation allowed is one that involves "nodes" and it can be of the format
"nodes", "nodes=", or "nodes=<type>". The query results can be accessed
by calling the following functions: ServerNodesNumAvailGet(), ServerN-
odesNumAllocGet(), ServerNodesNumRsvdGet(), ServerNodesNum-
DownGet().
NOTE: This is a wrapper to the pbs_rescquery(3B) server function.

Return value:
SUCCESS, FAIL

Int ServerNodesNumAvailGet(Server s)
Returns the number of nodes available for those managed by the specified
server, or as reflected by the most recent query specified by ServerNodes-
Query(). If the return value is zero, then this means that some number of
nodes currently needed to satisfy the specification of ServerNodesQuery()
are currently unavailable. The request maybe satisfied at some later
time. If the result is negative, no combination of known nodes can satisfy
the specification.

Int ServerNodesNumAllocGet(Server s)
Returns the number of nodes allocated for those managed by the specified

Chapt Revision: 2.2 5-61

User Commands PBS ERS

server, or as reflected by the most recent query specified by ServerNodes-
Query().

Int ServerNodesNumRsvdGet(Server s)
Returns the number of nodes reserved for those managed by the specified
server, or as reflected by the most recent query specified by ServerNodes-
Query().

Int ServerNodesNumDownGet(Server s)
Returns the number of nodes down for those managed by the specified
server, or as reflected by the most recent query specified by ServerNodes-
Query().

Int ServerNodesReserve(Server s,String spec,Int resId)
Issues a request to the specified server to reserve the resources specified
in spec. A value of 0 for resId means that this is for doing a new reser-
vation. Otherwise, the number will represent an existing (partial) reser-
vation. Resources currently reserved for this resId will be released and
the full reservation will be attempted again. At the present time the on-
ly resources which may be specified are "nodes". It should be speci-
fied as nodes=specification where specification is what a user speci-
fies in the -l option arguement list for nodes, see qsub (1B).
NOTE: This is a wrapper to the pbs_rescreserve(3B) server function.

Return value:
a reference number to a successful or partially-successful reserva-
tion, or FAIL

Int ServerNodesRelease(Server s, Int resId)
This releases or frees resources reserved with the reference number spec-
ified in resId.
NOTE: This is a wrapper to the pbs_rescrelease(3B) server function.

Return value:
SUCCESS, or FAIL

(2) Que-related functions:

String QueNameGet(Que que)
Returns name of Que que. unset value: NULLSTR

Int QueTypeGet(Que que)
Returns queue_type attribute of Que que.
Return value: QTYPE_E (Execution), QTYPE_R (Routing), -1 (unset
value)

Int QueNumJobsGet(Que que)
Returns number of jobs residing in Que que. unset value: 0

Int QueMaxRunJobsGet(Que que)
Returns max_running attribute of Que que. unset value: 0

Int QueMaxRunJobsPerUserGet(Que que)
Returns max_user_run attribute of Que que. unset value: 0

Int QueMaxRunJobsPerGroupGet(Que que)
Returns max_group_run attribute of Que que. unset value: 0

Int QuePriorityGet(Que que)
Returns Priority attribute of Que que. unset value: 0

Int QueStateGet(Que que)
Returns started attribute of Que que - the job execution selection state
of the que: SCHED_DISABLED, SCHED_ENABLED. unset value:
SCHED_DISABLED

5-62 Chapt Revision: 2.2

PBS ERS User Commands

Set Job QueJobsGet(Que que)
Returns the list of jobs currently residing in que.

Int QueIntResAvailGet(Que q, String name)
Returns the value to resource specified in name that is available to
jobs running from this q (Que resources_available.name attribute). Call
this function for resources with values that are of Int type. Sample re-
source names are: cput, pcput, walltime, mppt, pmppt, nice, procs,
mppe, ncpus, pncpus, nodect, srfs_assist, mta,..., mth. For a description
of these resource names, see pbs_resources_irix5(7B), pbs_re-
sources_sp2(7B), pbs_resources_sunos4(7B), pbs_resources_uni-
cos8(7B), pbs_server_attributes(7B), pbs_resources_irix6(7B), pbs_re-
sources_linux(7B).

Size QueSizeResAvailGet(Que q, String name)
Returns the value to resource specified in name that is available to
jobs running from this q (Que resources_available.name attribute). Call
this function for resources with values that are of Size type. Sample re-
source names are: file, mem, pmem, workingset, pf, ppf, srfs_tmp,
srfs_wrk, srfs_big, srfs_fast, sds, psds. For a description of these re-
source names, see pbs_resources_irix5(7B), pbs_resources_sp2(7B),
pbs_resources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

String QueStringResAvailGet(Que q, String name)
Returns the value to resource specified in name that is available to
jobs running from this q (Que resources_available.name attribute). Call
this function for resources with values that are of String type. Sample
resource names are: nodes, arch, neednodes. For a description of these
resource names, see pbs_resources_irix5(7B), pbs_resources_sp2(7B),
pbs_resources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

Int QueIntResAssignGet(Que q, String name)
Returns the value to resource specified in name that is allocated to
jobs running from this queue (Que resources_assigned.name attribute).
Call this function for resources with values that are of Int type. Sample
resource names are: cput, pcput, walltime, mppt, pmppt, nice, procs,
mppe, ncpus, pncpus, nodect, srfs_assist, mta,..., mth. For a description
of these resource names, see pbs_resources_irix5(7B), pbs_re-
sources_sp2(7B), pbs_resources_sunos4(7B), pbs_resources_uni-
cos8(7B), pbs_server_attributes(7B), pbs_resources_irix6(7B), pbs_re-
sources_linux(7B).

Size QueSizeResAssignGet(Que q, String name)
Returns the value to resource specified in name that is allocated to
jobs running from this q (Que resources_assigned.name attribute). Call
this function for resources with values that are of Size type. Sample re-
source names are: file, mem, pmem, workingset, pf, ppf, srfs_tmp,
srfs_wrk, srfs_big, srfs_fast, sds, psds. For a description of these re-
source names, see pbs_resources_irix5(7B), pbs_resources_sp2(7B),
pbs_resources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

String QueStringResAssignGet(Que q, String name)
Returns the value to resource specified in name that is allocated to
jobs running from this q (Que resources_assigned.name attribute). Call
this function for resources with values that are of String type. Sample
resource names are: nodes, arch, neednodes. For a description of these

Chapt Revision: 2.2 5-63

User Commands PBS ERS

resource names, see pbs_resources_irix5(7B), pbs_resources_sp2(7B),
pbs_resources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

(3) Job-related functions

String JobIdGet(Job job)
Returns job identifier of Job job. unset value: NULLSTR

String JobNameGet(Job job)
Returns Job_Name attribute of Job job. unset value: NULLSTR

String JobOwnerNameGet(Job job)
Returns Job_Owner attribute of Job job. unset value: NULLSTR

String JobEffectiveUserNameGet(Job job)
Returns euser attribute of Job job.

String JobEffectiveGroupNameGet(Job job)
Returns egroup attribute of Job job. unset value: NULLSTR

Int JobStateGet (Job job)
Returns job_state attribute of Job job.

Return value:
TRANSIT, QUEUED, HELD, WAITING, RUNNING, EXITING,
-1 (unset value)

Int JobPriorityGet(Job job)
Returns Priority attribute of Job job. unset value: 0

Int JobRerunFlagGet(Job job)
Returns Rerunable attribute of Job job.
Return value: FALSE, TRUE, -1 (unset value)

Int JobInteractiveFlagGet(Job job)
Returns interactive attribute of Job job.
Return value: FALSE, TRUE. unset value: FALSE

DateTime JobDateTimeCreatedGet(Job job)
Returns the ctime attribute of Job job. unset value: (0|0|0@-1:-1:-1)

String JobEmailAddrGet(Job job)
Returns the Mail_Users attribute of Job job. unset value: NULLSTR

String JobStageinFilesGet(Job job)
Returns the stagein attribute of Job job. unset value: NULLSTR

String JobStageoutFilesGet(Job job)
Returns stageout attribute of Job job. unset value: NULLSTR

Int JobIntResReqGet(Job job, String name)
Returns the value to resource specified in name as required by the job
(Job Resource_List.name attribute). Call this function for resources with
values that are of Int type. Sample resource names are: cput, pcput,
walltime, mppt, pmppt, nice, procs, mppe, ncpus, pncpus, nodect,
srfs_assist, mta,..., mth. For a description of these resource names, see
pbs_resources_irix5(7B), pbs_resources_sp2(7B), pbs_re-
sources_sunos4(7B), pbs_resources_unicos8(7B), pbs_server_at-
tributes(7B), pbs_resources_irix6(7B), pbs_resources_linux(7B).

Example:
Int cputReq;
// returns the cput requirement of the job
cputReq = JobIntResReqGet(job, "cput");

5-64 Chapt Revision: 2.2

PBS ERS User Commands

Size JobSizeResReqGet(Job job, String name)
Returns the value to resource specified in name as required by the job
(Job Resource_List.name attribute). Call this function for resources with
values that are of Size type. Sample resource names are: file, mem,
pmem, workingset, pf, ppf, srfs_tmp, srfs_wrk, srfs_big, srfs_fast, sds,
psds. For a description of these resource names, see pbs_resources_ir-
ix5(7B), pbs_resources_sp2(7B), pbs_resources_sunos4(7B), pbs_re-
sources_unicos8(7B), pbs_server_attributes(7B), pbs_resources_ir-
ix6(7B), pbs_resources_linux(7B).

Example:
Size memReq;
// returns the memory requirement of the job
memReq = JobSizeResReqGet(job, "mem");

String JobStringResReqGet(Job job, String name)
Returns the value to resource specified in name as required by the job
(Job Resource_List.name attribute). Call this function for resources with
values that are of String type. Sample resource names are: nodes, arch,
neednodes. For a description of these resource names, see pbs_re-
sources_irix5(7B), pbs_resources_sp2(7B), pbs_resources_sunos4(7B),
pbs_resources_unicos8(7B), pbs_server_attributes(7B), pbs_re-
sources_irix6(7B), pbs_resources_linux(7B).

Example:
String nodes;
// returns the nodes requirement property of
// the job
nodes = JobStringResReqGet(job, "nodes");

Int JobIntResUseGet(Job job, String name)
Returns the value to resource specified in name used by the job (Job re-
sources_used.name attribute). Call this function for resources with val-
ues that are of Int type. Sample resource names are: cput, pcput, wall-
time, mppt, pmppt, nice, procs, mppe, ncpus, pncpus, nodect, srfs_as-
sist, mta,..., mth. For a description of these resource names, see pbs_re-
sources_irix5(7B), pbs_resources_sp2(7B), pbs_resources_sunos4(7B),
pbs_resources_unicos8(7B), pbs_server_attributes(7B), pbs_re-
sources_irix6(7B), pbs_resources_linux(7B).

Example:
Int walltUse;
// returns the amount of walltime used by
// the job
walltUse = JobIntResUseGet(job, "walltime");

Size JobSizeResUseGet(Job job, String name)
Returns the value to resource specified in name used by the job (Job re-
sources_used.name attribute). Call this function for resources with val-
ues that are of Size type. Sample resource names are: file, mem, pmem,
workingset, pf, ppf, srfs_tmp, srfs_wrk, srfs_big, srfs_fast, sds, psds.
For a description of these resource names, see pbs_resources_irix5(7B),
pbs_resources_sp2(7B), pbs_resources_sunos4(7B), pbs_resources_uni-
cos8(7B), pbs_server_attributes(7B), pbs_resources_irix6(7B), pbs_re-
sources_linux(7B).

Example:

Chapt Revision: 2.2 5-65

User Commands PBS ERS

Size srfsUse;
// returns the amount of srfs_fast used by
// the job
srfsUse = JobSizeResUseGet(job, "srfs_fast");

String JobStringResUseGet(Job job, String name)
Returns the value to resource specified in name used by the job (Job re-
sources_used.name attribute). Call this function for resources with val-
ues that are of String type. Sample resource names are: nodes, arch,
neednodes. For a description of these resource names, see pbs_re-
sources_irix5(7B), pbs_resources_sp2(7B), pbs_resources_sunos4(7B),
pbs_resources_unicos8(7B), pbs_server_attributes(7B), pbs_re-
sources_irix6(7B), pbs_resources_linux(7B).

(4) CNode-related functions

Set CNode AllNodesGet(void)
Returns list of nodes that are managed by the server running on the lo-
cal host. This could also include those nodes that were specified in the
scheduler configuration file for which the scheduler writer wants the
system to periodically check for information like state, property, and so
on. See pbs_sched_basl(8B) for a discussion of configuration file for-
mat.
CAUTION: This function must be called from inside sched_main() so
that at every scheduling iteration, the most up to date Set CNode
structure is returned. Do not call this from an assignment statement
intended to initialize a global variable, as the statement will only be
called once.

CNode AllNodesLocalHostGet(void)
Returns the CNode object that represents the local host. This is a sim-
ple function to call for non-clustered systems where only 1 CNode ex-
ists. unset value: NOCNODE
CAUTION: This function must be called from inside sched_main() (or
from within functions called by sched_main) so that at every scheduling
iteration, the most up to date CNode structure is returned. Do not call
this from an assignment statement intended to initialize a global vari-
able, as the statement will only be called once.

String CNodeNameGet(CNode node)
Returns the unique (official) name of the node (i.e. ResMom hostname
in a 1 mom/node model). This returns the same string that was speci-
fied in the configuration file. unset value: NULLSTR

String CNodeOsGet(CNode node)
Returns the os architecture of the node (i.e. "irix5", "sp2"). unset value:
NULLSTR

Int CNodeStateGet(CNode node)
Returns the node’s state.

Return value:
CNODE_OFFLINE, CNODE_DOWN, CNODE_FREE, CN-
ODE_RESERVE, CNODE_INUSE_EXCLUSIVE, CN-
ODE_INUSE_SHARED, CNODE_UNKNOWN

Int CNodeTypeGet(CNode node)
Returns the node’s type.

Return value:
CNODE_TIMESHARED, CNODE_CLUSTER, CNODE_UN-

5-66 Chapt Revision: 2.2

PBS ERS User Commands

KNOWN

String CNodePropertiesGet(CNode node)
Returns the comma-separated list of other names the node is known by
(properties, other network name). For example, "bab-
bage.nas.nasa.gov" maybe the node name, but it could also be known
via "babbage1, babbage2". unset value: NULLSTR

String CNodeVendorGet(CNode node)
Returns the name of the vendor for the hardware of the machine (i.e.
"sgi", "ibm"). unset value: NULLSTR

Int CNodeNumCpusGet(CNode node)
Returns the number of processors attached to the node. unset value: -1

Size CNodeMemTotalGet(CNode node, String type)
Returns total memory of type for the node. type is an arbitrary string
that the scheduler writer defines in the scheduler configuration file. un-
set value: -1b
Example:

// get total physical memory
CNodeMemTotalGet(node, "real")
// get total virtual memory
CNodeMemTotalGet(node, "virtual")

Size CNodeMemAvailGet(CNode node, String type)
Returns available memory of type for the node. type is an arbitrary
string that the scheduler writer defines in the scheduler configuration
file. unset value: -1b
So sample calls will be:

// get available physical memory
CNodeMemAvailGet(node, "real")
// get available virtual memory
CNodeMemAvailGet(node, "virtual")

Int CNodeIdletimeGet(CNode node)
Returns number of seconds in which no keystroke or mouse movement
has taken place on any terminal connected to the node. unset value: -1

Float CNodeLoadAveGet(CNode node)
Returns node’s load average for all cpus. unset value: -1.0

Int CNodeCpuPercentIdleGet(CNode node)
Returns the percent of idle time that all the processors of the node have
experienced.

Int CNodeCpuPercentSysGet(CNode node)
Returns the percent of time that all the processors of the node have
spent running kernel code.

Int CNodeCpuPercentUserGet(CNode node)
Returns the percent of time that all the processors of the node have
spent running user code.

Int CNodeCpuPercentGuestGet(CNode node)
Returns the percent of time that all the processors of the node have
spent running a guest operating system.

Int CNodeNetworkBwGet(CNode node, String type)
Returns the bandwidth of the node’s network of type in bytes/second.
type is defined by the scheduler writer in the scheduler configuration
file. unset value: -1
Some sample calls are:

Chapt Revision: 2.2 5-67

User Commands PBS ERS

CNodeNetworkBwGet(node, "hippi");
CNodeNetworkBwGet(node, "fddi");

Size CNodeDiskSpaceTotalGet(CNode node, String name)
Returns the node’s total space on disk identified by name where name
is the device name arbitrarily defined by the scheduler writer in the
scheduler configuration file. unset value: -1b
Example:

CNodeDiskSpaceTotalGet(node, "/scratch2");

Size CNodeDiskSpaceAvailGet(CNode node, String name)
Returns the node’s available space on disk identified by name where
name is arbitrarily defined by the scheduler writer in the scheduler
configuration file. unset value: -1b
Example:

CNodeDiskSpaceAvailGet(node, "/scratch1");

Size CNodeDiskSpaceReservedGet(CNode node, String name)
Returns the node’s reserved space on disk (user quota?) identified by
name where name is arbitrarily defined by the scheduler writer in the
scheduler configuration file. unset value: -1b
Example:

CNodeDiskSpaceReservedGet(node, "/scratch1");

Int CNodeDiskInBwGet(CNode node, String name)
Returns the write bandwith (bytes/sec) of the node’s disk identified by
name. unset value: -1
Example:

CNodeDiskInBwGet(node, "/fast");

Int CNodeDiskOutBwGet(CNode node, String name)
Returns read bandwith (bytes/sec) of the node’s disk identified by
name. unset value: -1
Example:

CNodeDiskOutBwGet(node, "/big");

Size CNodeSwapSpaceTotalGet(CNode node, String name)
Returns the node’s total space on swap identified by name where
name is arbitrarily defined by the scheduler writer in the scheduler
configuration file. unset value: -1b
Example:

CNodeSwapSpaceTotalGet(node, "primary");

Size CNodeSwapSpaceAvailGet(CNode node, String name)
Returns node’s available space on swap identified by name where
name is the device name arbitrarily defined by the scheduler writer in
the scheduler configuration file. unset value: -1b
Example:

CNodeSwapSpaceAvailGet(node, "secondary");

Int CNodeSwapInBwGet(CNode node, String name)
Returns swapin rate of the node’s swap device identified by name.
Example:

CNodeSwapInBwGet(node, "secondary");

Int CNodeSwapOutBwGet(CNode node, String name)
Returns the swapout rate of the node’s swap device identified by
name. unset value: -1
Example:

CNodeSwapOutBwGet(node, "primary");

5-68 Chapt Revision: 2.2

PBS ERS User Commands

Size CNodeTapeSpaceTotalGet(CNode node, String name)
Returns the node’s total space on tape identified by name where name
is arbitrarily defined by the scheduler writer in the scheduler configu-
ration file. unset value: -1b
Example:

CNodeTapeSpaceTotalGet(node, "4mm");

Size CNodeTapeSpaceAvailGet(CNode node, String name)
Returns the node’s available space on tape identified by name where
name is arbitrarily defined by the scheduler writer in the scheduler
configuration file. unset value: -1b
Example:
CNodeTapeSpaceAvailGet(node, "8mm");

Int CNodeTapeInBwGet(CNode node, String name)
Returns the write bandwith (bytes/sec) of the node’s tape identified by
name. unset value: -1
Example:

CNodeTapeInBwGet(node, "4mm");

Int CNodeTapeOutBwGet(CNode node, String name)
Returns the read bandwith (bytes/sec) of the node’s tape identified by
name. unset value: -1
Example:
CNodeTapeOutBwGet(node, "8mm");

Size CNodeSrfsSpaceTotalGet(CNode node, String name)
Returns the node’s total space on srfs device identified by name where
name is arbitrarily defined by the scheduler writer in the scheduler
configuration file. unset value: -1b
Example:

CNodeSrfsSpaceTotalGet(node, "/fast");

Size CNodeSrfsSpaceAvailGet(CNode node, String name)
Returns the node’s available space on srfs device identified by name
where name is arbitrarily defined by the scheduler writer in some con-
figuration file. unset value: -1b
Example:

CNodeSrfsSpaceAvailGet(node, "/big");

Size CNodeSrfsSpaceReservedGet(CNode node, String name)
Returns the node’s total amount of reserved space on srfs device identi-
fied by name where name is arbitrarily defined by the scheduler writ-
er in the scheduler configuration file. unset value: -1b
Example:

CNodeSrfsSpaceReservedGet(node, "/fast");

Int CNodeSrfsInBwGet(CNode node, String name)
Returns the write bandwith (bytes/sec) of the node’s srfs device identi-
fied by name. unset value: -1
Example:
CNodeSrfsInBwGet(node, "/fast");

Int CNodeSrfsOutBwGet(CNode node, String name)
Returns the read bandwith (bytes/sec) of the node’s srfs device identi-
fied by name. unset value: -1
Example:
CNodeSrfsOutBwGet(node, "/big");

(5) Miscellaneous Functions

Chapt Revision: 2.2 5-69

User Commands PBS ERS

DateTime datetimeGet()
gets the current date/time.

Int datetimeToSecs(DateTime dt)
returns the # of seconds since epoch (beginning of UNIX time -
00:00:00, January 1, 1970) for the given date/time dt.

Int JobAction(Job job, Int action, String param)
Performs action on job with a param specified depending on the ac-
tion. action can be: SYNCRUN, ASYNCRUN, DELETE, RERUN,
HOLD, RELEASE, SIGNAL, MODIFYATTR, MODIFYRES where:

Action Description
=============== ==========================
SYNCRUN runs the job synchronously,

meaning the call to
JobAction() will only
return when the job has
started running or when
an error has been
encountered.
Param value:

name of host(s) to run
job under.

ASYNCRUN runs the job asynchronously,
meaning the call to
JobAction() will return
immediately as soon as
the run request is
validated by the PBS server,
and not necessarily when
the job has started
execution.
Param value:

name of host(s) to run
job under.

DELETE deletes the job.
Param value:

"deldelay=<# of secs>"
- delay # of seconds

between the sending
of SIGTERM and SIGKILL
to the job before
getting deleted.

RERUN reruns the running job,
which involves terminating
the session leader of the
job and returning the job
to the queued state.

HOLD places one or more holds
on the job.
Param value:

"u", "o", "s", "uo", "os",

5-70 Chapt Revision: 2.2

PBS ERS User Commands

"uos"
- type of holds to place

on job: u(ser), o(ther),
s(ystem).

RELEASE removes or releases
holds placed on jobs.
Param value:

"u", "o", "s", "uo", "os",
"uos"
- type of holds to remove

from job: u(ser), o(ther),
s(ystem).

SIGNAL sends a signal to the
executing job.
Param value:

"HUP", "SIGHUP",...

MODIFYATTR modifies the specified
attribute of the job to
the given value, when
the attrib_name is
!= "Resource_List" or
"resources_used".
Param value:

"attrib_name=value"

MODIFYRES modifies the job’s
Resource_List
attribute given the
res_name and the
res_value:
Resource_List.res_name=

res_value
Param value:

"res_name=res_val"
param value depends on the action. Specify NULLSTR if
no value for this parameter is desired.
Return value: SUCCESS or FAIL.
NOTE: Any unrecognized action is ignored.
Example:

// run Job j synchronously
JobAction(j, SYNCRUN, NULLSTR);

// run Job j asynchronously on host "db"
JobAction(j, ASYNCRUN, "db");

// delete Job j
JobAction(j, DELETE, NULLSTR);

// delete Job j with a delay of 5 secs
// between the sending of SIGTERM and
// SIGKILL

Chapt Revision: 2.2 5-71

User Commands PBS ERS

JobAction(j, DELETE, "deldelay=5");

// rerun Job j
JobAction(j, RERUN, NULLSTR);

// place a u(ser) hold on Job j
JobAction(j, HOLD, "u");

// place an o(ther) hold on Job j
JobAction(j, HOLD, "o");

// place a s(ystem) hold on Job j
JobAction(j, HOLD, "s");

// place a default hold (u) on Job j
JobAction(j, HOLD, NULLSTR);

// release u(ser) hold from Job j
JobAction(j, RELEASE, "u");

// release o(ther) hold from Job j
JobAction(j, RELEASE, "o");

// release s(ystem) hold from Job j
JobAction(j, RELEASE, "s");

// release default hold (u) from Job j
JobAction(j, RELEASE, NULLSTR);

// send SIGHUP signal to Job j
JobAction(j, SIGNAL, "SIGHUP");

// update the comment attribute of Job
// j to "a message".
// The param format is: attribute_name=new_value
// Consult PBS documentation for a list of job
// attribute names that can be specified.
JobAction(j, MODIFYATTR, "comment=a message");
// update the Resource_List.cput attribute of Job
// j to 3600 seconds.
// The param format is: resource_name=new_value
// See pbs_resources* man page for a list of
// resource_names that can be specified.
JobAction(j, MODIFYRES, "cput=3600");

QueJobFind(Que que,Fun Int func,Int cpr,Int value);

QueJobFind(Que que,Fun String func,Int cpr,String value);

QueJobFind(Que que,Fun DateTime func,Int cpr,DateTime value);

QueJobFind(Que que,Fun Size func,Int cpr,Size value);

where cpr is one of: OP_EQ, OP_NEQ, OP_LE, OP_LT, OP_GE,
OP_GT. func is a function whose ONLY argument is of Job type. Job
is the return type.

5-72 Chapt Revision: 2.2

PBS ERS User Commands

Description: Applies func to every job in que, and return the first job
that satisfies the logical comparison: func(job) cpr value

Example:

Size JobVirtualMemAvailGet(Job job)
{

Size sz;

sz = JobSizeResReqGet(job, "mem");
return(sz);

}
Int JobWallTimeReqGet(Job job)
{

Int wallt;

wallt = JobIntResReqGet(job, "walltime");
return(wallt);

}

Int JobCpuTimeUsedGet(Job job)
{

Int cput;

cput = JobIntResUseGet(job, "cput");
return(cput);

}

Que findQueByName(Set Que queues, String qname)
{

Que q;

foreach(q in queues) {
if(QueNameGet(q) EQ qname) {

return(q);
}

}
return(NOQUE);

}
sched_main()
{

Server s;
Que que;
Set Que sq;

// get local server
s = AllServersLocalHostGet();

// get the queues of the Server s
sq = ServerQueuesGet(s);

// get the queue named "fast" from the
// local server
que = findQueByName(sq, "fast");

Chapt Revision: 2.2 5-73

User Commands PBS ERS

// Find the 1st job whose walltime requirement
// is == 300s:
QueJobFind(que, JobWallTimeReqGet, OP_EQ, 300);

// Find the 1st job whose email address to
// notify about job activity != "bayucan":
QueJobFind(que, JobEmailAddrGet, OP_NEQ,

"bayucan");

// Find the 1st job that was created after
// or on 3/3/1997:
QueJobFind(que, JobDateTimeCreatedGet, OP_GE,

(3|3|1997));

// Find the 1st job that was created after
// 3:3:44:
QueJobFind(que, JobDateTimeCreatedGet, OP_GT,

(3:3:44));

// Find the 1st job that was created after
// 3:3:44 on 3/3/1997:
QueJobFind(que, JobDateTimeCreatedGet, OP_GT,

(3|3|1997@3:3:44));

// Find the 1st job whose cpu time used < 1600s:
QueJobFind(que, JobCpuTimeUsedGet, OP_LT, 1600);

// Find the 1st job whose virtual memory
// requirement <= 300mb:
QueJobFind(que, JobVirtualMemAvailGet, OP_LE,

300mb);
}

Job QueJobFind(Que que, Fun Int func, Int cpr)

Job QueJobFind(Que que, Fun String func, Int cpr)

Job QueJobFind(Que que, Fun DateTime func, Int cpr)

Job QueJobFind(Que que, Fun Size func, Int cpr)

where cpr can be one of the following: OP_MAX, OP_MIN, func is a
function whose only argument is of Job type.

Description: Returns the Job with the max or min value found for
func(job) as it is applied to every job in que.

Example:
Int JobCpuTimeReqGet(Job job)
{

Int cput;

cput = JobIntResReqGet(job, "cput");
return(cput);

}
sched_main()
{

5-74 Chapt Revision: 2.2

PBS ERS User Commands

Que que;
Job job;

// Find the Job with the highest cpu time
// requirement:
job = QueJobFind(que, JobCpuTimeReqGet, OP_MAX);

// Find the Job with the minimum cpu time
// requirement:
job = QueJobFind(que, JobCpuTimeReqGet, OP_MIN);

}

Que QueFilter(Que que,Fun Int func,Int cpr,Int value)

Que QueFilter(Que que,Fun String func,Int cpr,String value)

Que QueFilter(Que que,Fun DateTime func,Int cpr,Date value)

Que QueFilter(Que que,Fun Size func,Int cpr,Size value)

where cpr can be one of the following: OP_EQ, OP_NEQ, OP_LE,
OP_LT, OP_GE, OP_GT, func is a function whose only argument is of
Job type.

Description: Applies func to every job in que, and returns a new que
containing all jobs that satisfies the comparison condition: func(job)
cpr value

Example:
Int JobWallTimeReqGet(Job job)
{

Int wallt;

wallt = JobIntResReqGet(job, "walltime");
return(wallt);

}
sched_main()
{

Que que;
Que newq;

// Returns a new que containing all jobs in "que"
// with a walltime requirement == 300s:
newq = QueFilter(que, JobWallTimeReqGet, OP_EQ, 300);

// Returns a new que containing all jobs in "que"
// with an email address != "bayucan":
newq = QueFilter(que, JobEmailAddrGet, OP_NEQ, "bayucan");

// Returns a new que containing all jobs in "que"
// created after or on 3/3/1997:
newq = QueFilter(que, JobDateTimeCreatedGet, OP_GE,

(3|3|1997));

// Returns a new que containing all jobs in "que"
// created after 3:3:44:
newq = QueFilter(que, JobDateTimeCreatedGet, OP_GT,

Chapt Revision: 2.2 5-75

User Commands PBS ERS

(3:3:44));

// Returns a new que containing all jobs in "que"
// created after 3:3:44 on 3/3/1997:
newq = QueFilter(que, JobDateTimeCreatedGet, OP_GT,

(3|3|1997@3:3:44));

// NOTE: The original "que" is not modified
// whatsoever.

}

Int Sort(Set Job s, Fun Int key, Int order)

Int Sort(Set Job s, Fun String key, Int order)

Int Sort(Set Job s, Fun Float key, Int order)

Int Sort(Set Job s, Fun DateTime key, Int order)

Int Sort(Set Job s, Fun Size key, Int order)

where s the set of jobs to sort. key is the sorting key which is a func-
tion whose only argument is of Job type, order is the sorting order:
ASC, DESC.

Description: sorts the elements of s, in either ASCending or DESCend-
ing order of values that were returned by the key function, as applied
to every member of the set of jobs. The s object is modified with this
call. This returns SUCCESS or FAIL depending on outcome of the sort.

Examples:
Size JobMemReqGet(Job job)
{

Size mem;

mem = JobSizeResReqGet(job, "mem");
return(mem);

}

sched_main()
{

Server master;

Set Job jobs;

Int order;

// get local server
master = AllServersLocalHostGet();

jobs = ServerJobsGet(master);
Sort(jobs, JobPriorityGet, ASC);
Sort(jobs, JobIdGet, DESC);
order = ASC;
Sort(jobs, JobDateTimeCreatedGet, order);
order = DESC;
Sort(jobs, JobMemReqGet, order);

}

5-76 Chapt Revision: 2.2

PBS ERS User Commands

Int Sort(Set Que s, Fun Int key, Int order)

Int Sort(Set Que s, Fun String key, Int order)

Int Sort(Set Que s, Fun Float key, Int order)

Int Sort(Set Que s, Fun DateTime key, Int order)

Int Sort(Set Que s, Fun Size key, Int order)

where s the set of queues to sort. key is the sorting key which is a
function whose only argument is of Que type, order is the sorting or-
der: ASC, DESC.

Description: sorts the elements of s, in either ASCending or DESCend-
ing order of values that were returned by the key function, as applied
to every member of the set of queues. The s object is modified with this
call. This returns SUCCESS or FAIL depending on outcome of the sort.

Examples:
Size QueMemAvailGet(Que que)
{

Size mem;

mem = QueSizeResAvailGet(que, "mem");
return(mem);

}

sched_main()
{

Server master;

Set Que ques;
Int order;

// get local server
master = AllServersLocalHostGet();

ques = ServerQueuesGet(master);
Sort(ques, QuePriorityGet, ASC);
Sort(ques, QueNameGet, ASC);
order = DESC;
Sort(ques, QueMemAvailGet, order);

}

Int Sort(Set Server s, Fun Int key, Int order)

Int Sort(Set Server s, Fun String key, Int order)

Int Sort(Set Server s, Fun Float key, Int order)

Int Sort(Set Server s, Fun DateTime key, Int order)

Int Sort(Set Server s, Fun Size key, Int order)

where s the set of servers to sort. key is the sorting key which is a
function whose only argument is of Server type, order is the sorting or-
der: ASC, DESC.

Description: sorts the elements of s, in either ASCending or DESCend-
ing order of values that were returned by the key function, as applied

Chapt Revision: 2.2 5-77

User Commands PBS ERS

to every member of the set of servers. The s object is modified with this
call. This returns SUCCESS or FAIL depending on outcome of the sort.

Examples:
Size ServerMemAvailGet(Server serv)
{

Size mem;

mem = ServerSizeResAvailGet(serv, "mem");
return(mem);

}

sched_main()
{

Set Server sserver;

Int order;

Int ret;

sserver = AllServersGet();

ret = Sort(sserver, ServerMaxRunJobsGet, ASC);
Sort(sserver, ServerInetAddrGet, ASC);

order = DESC;
Sort(sserver, ServerMemAvailGet, order);

}

Int Sort(Set CNode s, Fun Int key, Int order)

Int Sort(Set CNode s, Fun String key, Int order)

Int Sort(Set CNode s, Fun Float key, Int order)

Int Sort(Set CNode s, Fun DateTime key, Int order)

Int Sort(Set CNode s, Fun Size key, Int order)

where s the set of nodes to sort. key is the sorting key which is a func-
tion whose only argument is of CNode type, order is the sorting order:
ASC, DESC.

Description: sorts the elements of s, in either ASCending or DESCend-
ing order of values that were returned by the key function, as applied
to every member of the set of nodes. The s object is modified with this
call. This returns SUCCESS or FAIL depending on outcome of the sort.

Examples:
Size CNodeMyMemAvailGet(CNode cn)
{

Size mem;

mem = CNodeMemAvailGet(cn, "virtual");
return(mem);

}

sched_main()

5-78 Chapt Revision: 2.2

PBS ERS User Commands

{
Set CNode scnode;

Int order;

scnode = AllNodesGet();

Sort(scnode, CNodeIdletimeGet, ASC);
Sort(scnode, CNodeNameGet, ASC);
order = DESC;
Sort(scnode, CNodeMyMemAvailGet, order);

}

CNode..Get() FUNCTIONS
The return values of the CNode..Get() functions discussed in the previous section
are obtained by sending resource queries to the CNode’s MOM at every scheduling
iteration. For example, CNodeLoadAveGet(node) will return the value obtained
from some <host resource> query (this could be the string "loadave") as sent to the
node’s MOM. The "<host resource> -> CNode..Get()" mappings are established in-
ternally, but they can be modified or more mappings can be added via the sched-
uler configuration file. The config file is discussed in pbs_sched_basl(8B).
Mappings already established are given in the following:

For all architectures:

CNode..Get() actual call host resource
======================== =============
CNodeOsGet(node) arch
CNodeLoadAveGet(node) loadave
CNodeIdletimeGet(node) idletime

SEE ALSO
pbs_sched_basl(8B) pbs_job_attributes(7B), pbs_queue_attributes(7B), pbs_re-
sources_irix5(7B), pbs_resources_sp2(7B), pbs_resources_sunos4(7B), pbs_re-
sources_unicos8(7B), pbs_server_attributes(7B), and pbs_server(8B), pbs_re-
sources_irix6(7B), pbs_resources_linux(7B).

Chapt Revision: 2.2 5-79

User Commands PBS ERS

Figure 5−2 shows how the BASL data types Server, Set Server, Que, Set Que, Job, Set
Job relate to one another. The items in italics are the predefined functions that must be
called in a BASL program in order to instantiate the data types. The figure also illus-
trates the PBS framework: in a scheduling system, one or more server hosts exist, and
each server manages one or more queues, and one or more jobs are spooled inside a
queue. Jobs are run on one or more computational nodes (machines). A machine could
act both as a server and a computation node.

Server
. . .

.

CNode CNode CNode CNode

. . .

AllServersGet()

Server
s1

Set Job

jn
Job

j2
Job

j1
Job

q1

Que

j2
Job

j1
JobQue

q2

qn

Que

2erverQueuesGet(s1)

AllNodesGet()

cn1 cn2 cn3 cnn

Set CNode

sn

Set Server

Set Que

ServerQueuesGet(s1)

ServerJobsGet(s1)

QueJobsGet(q1)

AllServersLocalHostGet()

AllNodesLocalHostGet()

Figure 5−2: BASL Complex Data Types

5-80 Chapt Revision: 2.2

PBS ERS User Commands

5.2.15. Graphical User Interface: xpbs

xpbs is the graphical user interface to PBS user and operator commands. The current im-
plementation will actually call the PBS commands like qsub, qstat, qselect, and so on. In ad-
dition, 2 new commands were created specifically for xpbs: xpbs_scriptload, and xpbs_datad-
ump. These 2 binaries are compiled using the same libraries used by the standard PBS com-
mands.

xpbs is written in Tcl/Tk. The way it works is that a main driver script/program called
"xpbs" is what a user invokes, and this script calls other programs found in XPBS_LIB direc-
tory (as set in Makefile).

NAME
xpbs − GUI front end to PBS commands

SYNOPSIS
xpbs [-admin]

DESCRIPTION
The xpbs command provides a user-friendly point-and-click interface to PBS com-
mands. Please see the sections below for a tour and tutorials. Also, within every dialog
box, a Help button can be found for assistance.

OPTIONS

-admin A mode where additional buttons are made available for terminating PBS
servers, starting/stopping/disabling/enabling queues, and running/rerunning
jobs.

GETTING STARTED
Running xpbs will initialize the X resource database from various sources in the follow-
ing order:

1. The RESOURCE_MANAGER property on the root window (updated via xrdb)
with settings usually defined in the .Xdefaults file

2. Preference settings defined by the system administrator in the global xpbsrc file

3. User’s ˜/.xpbsrc file - this file defines various X resources like fonts, colors, list of
PBS hosts to query, criteria for listing queues and jobs, and various view states.
See PREFERENCES section below for a list of resources that can be set.

RUNNING XPBS

To run xpbs as a regular, non-privileged user, type:

setenv DISPLAY <display_host>:0
xpbs

To run xpbs with the additional purpose of terminating PBS servers, stopping and
starting queues, or running/rerunning jobs, then run:

xpbs -admin

NOTE: Be sure to appropriately set ˜/.rhosts file if you’re planning to submit jobs to
some remote server, and expecting output files to be returned to the local host (where
xpbs was run). Usually, adding the PBS hostname running the server to your .rhosts
file locally, and adding the name of the local machine to the .rhosts file at remote host,

Chapt Revision: 2.2 5-81

User Commands PBS ERS

should be sufficient.

Also, be sure that the PBS client commands are in the default PATH because xpbs will
call these commands.

THE XPBS DISPLAY
This section describes the main parts of the xpbs display. The main window is com-
posed of 5 distinct areas (subwindows) arranged vertically (one on top of another) in the
following order:

1) Menu
2) Hosts
3) Queues
4) Jobs
5) Info

Menu. The Menu area is composed of a row of command buttons that signal some ac-
tion with a click of the left mouse button. The buttons are:

Manual Update to update the information on hosts, queues, and jobs.

Auto Update same as Manual Update except updating is done auto-
matically every <some specified> number of minutes.

Track Job for periodically checking for returned output files of jobs.

Preferences for setting certain parameters such as the list of server
host(s) to query.

Help contains some help information.

About tells of the author and who to send comments, bugs, sug-
gestions to.

Close for exiting xpbs plus saving the current setup informa-
tion (if anything had changed) in the user’s $HOME/.xpb-
src file. Information saved include the selected host(s),
queue(s), job(s), the different jobs listing criteria, the
view states (i.e. minimized/maximized) of the Hosts,
Queues, Jobs, and INFO regions, and anything in the
Preferences section.

Hosts. The Hosts area is composed of a leading horizontal HOSTS bar, a listbox, and a
set of command buttons. The HOSTS bar contains a minimize/maximize button, identi-
fied by a dot or a rectangular image, for displaying or iconizing the Hosts region. The
listbox displays information about favorite server host(s), and each entry is meant to be
selected via a single left mouse button click, shift key + mouse button 1 click for con-
tiguous selection, or cntrl key + mouse button 1 click for non-contiguous selection. The
command buttons represent actions on selected host(s), and commonly found buttons
are:

detail for obtaining detailed information about selected server host(s). This
functionality can also be achieved by double clicking on an entry in
the Hosts listbox.

Submit for submitting a job to any of the queues managed by the selected
host(s).

terminate for terminating PBS servers on selected host(s). (-admin only)

The server hosts can be chosen by specifying in the ˜/.xpbsrc file (or .Xdefaults) the re-
source:

*serverHosts: hostname1 hostname2 ...

5-82 Chapt Revision: 2.2

PBS ERS User Commands

Another way of specifying the host is to click on the Preferences button in the Menu re-
gion, and manipulate the server Hosts entry widget from the preferences dialog box.

Queues. The Queues area is composed of a leading horizontal QUEUES bar, a listbox,
and a set of command buttons. The QUEUES bar lists the hosts that are consulted
when listing queues; the bar also contains a minimize/maximize button for displaying
or iconizing the Queues region. The listbox displays information about queues managed
by the server host(s) selected from the Hosts listbox; each listbox entry is meant to be
selected (highlighted) via a single left mouse button click, shift key + mouse button 1
click for contiguous selection, or cntrl key + mouse button 1 click for non-contiguous se-
lection. The command buttons represent actions for operating on selected queue(s), and
commonly found buttons are:

detail for obtaining detailed information about selected queue(s). This func-
tionality can also be achieved by double clicking on a Queues listbox en-
try.

stop for stopping the selected queue(s). (-admin only)

start for starting the selected queue(s). (-admin only)

disable for disabling the selected queue(s). (-admin only)

enable for enabling the selected queue(s). (-admin only)

Jobs. The Jobs area is composed of a leading horizontal JOBS bar, a listbox, and a set
of command buttons. The JOBS bar lists the queues that are consulted when listing
jobs; the bar also contains a minimize/maximize button for displaying or iconizing the
Jobs region. The listbox displays information about jobs that are found in the queue(s)
selected from the Queues listbox; each listbox entry is meant to be selected (highlight-
ed) via a single left mouse button click, shift key + mouse button 1 click for contiguous
selection, or cntrl key + mouse button 1 click for non-contiguous selection. The region
just above the Jobs listbox shows a collection of command buttons whose labels describe
criteria used for filtering the Jobs listbox contents. The list of jobs can be selected ac-
cording to the owner of jobs (Owners), job state (Job_States), name of the job
(Job_Name), type of hold placed on the job (Hold_Types), the account name associated
with the job (Account_Name), checkpoint attribute (Checkpoint), time the job is eligible
for queueing/execution (Queue_Time), resources requested by the job (Resources), prior-
ity attached to the job (Priority), and whether or not the job is rerunnable (Rerunnable).
The selection criteria can be modified by clicking on any of the appropriate command
buttons to bring up a selection box. The criteria command buttons are accompanied by a
Select Jobs button, which when clicked, will update the contents of the Jobs listbox
based on the new selection criteria. Please see qselect(1B) for more details on how the
jobs are filtered.

Finally, to the right of the listbox, the Jobs region is accompanied by the following com-
mand buttons, for operating on selected job(s):

detail for obtaining detailed information about selected job(s). This functional-
ity can also be achieved by double clicking on a Jobs listbox entry.

modify for modifying attributes of the selected job(s).

delete for deleting the selected job(s).

hold for placing some type of hold on selected job(s).

release for releasing held job(s).

signal for sending signals to selected job(s) that are running.

Chapt Revision: 2.2 5-83

User Commands PBS ERS

msg for writing a message string into the output streams of the selected
job(s).

move for moving selected job(s) into some specified destination queue.

order for exchanging order of two selected jobs in a queue.

run for running selected job(s). (-admin only)

rerun for requeueing selected job(s) that are running. (-admin only)

Info. The Info Area shows the progress of the commands’ executed by xpbs. Look into
this box for errors. The INFO bar also contains a minimize/maximize button for display-
ing or iconizing the Info region.

WIDGETS USED IN XPBS
Some of the widgets used in xpbs and how they are manipulated are described in the
following:

1. listbox - can be multi-selectable (a number of entries can be selected/highlighted us-
ing a mouse click) or single-selectable (one entry can be highlighted at a time). For a
multi-selectable listbox, the following operations are allowed:

a. single click with mouse button 1 to select/highlight an entry.

b. shift key + mouse button 1 to contiguously select more than one entry.

c. cntrl key + mouse button 1 to non-contiguously select more than one entry.
NOTE: For systems running Tk < 4.0, the newly selected item is reshuffled to ap-
pear next to already selected items.

d. click the Select All/Deselect All button to select all entries or deselect all entries
at once.

e. double clicking an entry usually activates some action that uses the selected en-
try as a parameter.

2. scrollbar - usually appears either vertically or horizontally and contains 5 distinct
areas that are mouse clicked to achieve different effects:

top arrow Causes the view in the associated widget to shift up by one unit (i.e.
the object appears to move down one unit in its window). If the but-
ton is held down the action will auto-repeat.

top gap Causes the view in the associated window to shift up by one less than
the number of units in the window (i.e. the portion of the object that
used to appear at the very top of the window will now appear at the
very bottom). If the button is held down the action will auto-repeat.

slider Pressing button 1 in this area has no immediate effect except to
cause the slider to appear sunken rather than raised. However, if
the mouse is moved with the button down then the slider will be
dragged, adjusting the view as the mouse is moved.

bottom gap Causes the view in the associated window to shift down by one less
than the number of units in the window (i.e. the portion of the ob-
ject that used to appear at the very bottom of the window will now
appear at the very top). If the button is held down the action will
auto-repeat.

bottom arrow Causes the view in the associated window to shift down by one unit
(i.e. the object appears to move up one unit in its window). If the but-
ton is held down the action will auto-repeat.

5-84 Chapt Revision: 2.2

PBS ERS User Commands

3. entry - brought into focus with a click of the left mouse button. To manipulate this
widget, simply type in the text value. Use of arrow keys, mouse selection of text for
deletion or overwrite, copying and pasting with sole use of mouse buttons are per-
mitted. This widget is usually accompanied by a scrollbar for horizontally scanning
a long text entry string.

4. matrix of entry boxes - usually shown as several rows of entry widgets where a
number of entries (called fields) can be found per row. The matrix is accompanied by
up/down arrow buttons for paging through the rows of data, and each group of fields
gets one scrollbar for horizontally scanning long entry strings. Moving from field to
field can be done using the <Tab>, <Cntrl-f>, or <Cntrl-b> (move backwards) keys.

5. spinbox - a combination of an entry widget and a horizontal scrollbar. The entry
widget will only accept values that fall within a defined list of valid values, and in-
crementing through the valid values is done by clicking on the up/down arrows.

6. button - a rectangular region appearing either raised or pressed that invokes an ac-
tion when clicked with the left mouse button. When the button appears pressed,
then hitting the <RETURN> key will automatically select the button.

7. text - an editor like widget. This widget is brought into focus with a click of the left
mouse button. To manipulate this widget, simply type in the text. Use of arrow keys,
backspace/delete key, mouse selection of text for deletion or overwrite, copying and
pasting with sole use of mouse buttons are permitted. This widget is usually accom-
panied by a scrollbar for vertically scanning a long entry.

SUBMITTING JOBS
Submitting a PBS job requires only to manipulate the widgets found in the Sub-
mit window. The submit dialog box is composed of 4 distinct regions:

1) Job Script
2) OPTIONS
3) OTHER OPTIONS
4) Command Buttons

The Job Script file region is at the upper left, the OPTIONS region containing var-
ious widgets for setting job attributes is scattered all over the dialog box, the
OTHER OPTIONS is located just below the Job Script file region, and Command
Buttons region is at the bottom.

The job script region is composed of a header box, the text box, FILE entry box,
and a couple of buttons labeled load and save. If you have a script file containing
PBS options and executable lines, then type the name of the file on the FILE entry
box, and then click on the load button. The various widgets in the Submit window
will get loaded with values found in the script file. The script file text box will only
be loaded with executable lines (non-PBS) found in the script. The job script head-
er box has a Prefix entry box that can be modified to specify the PBS directive to
look for when parsing a script file for PBS options. If you don’t have a script file,
you can start typing the executable lines of the job in the file text box.

To submit a job, perform the following steps:

1. Select a host from the HOSTS listbox in the main xpbs display.

2. Click on the Submit button located in the Menu bar.

Chapt Revision: 2.2 5-85

User Commands PBS ERS

3. Specify the script file containing the job execution lines and job property val-
ues, or simply type in the execution lines in the FILE textbox.

4. Start manipulating the various widgets in the Submit window. Particularly,
pay close attention to the Destination listbox. This box lists all the queues
found in the host that you selected. A special entry called "@host" refers to
the default queue at host. Select appropriately the destination queue of the job.
More options can be found by clicking the OTHER OPTIONS buttons.

5. At the bottom of the Submit window, click confirm submit. You can also click
on interactive to run the job interactively. Running a job interactively will open
an xterm window to your display host containing the session.

NOTE: The script FILE entry box is accompanied by a save button that you
click to save the current widget values to the specified file in a form that can
later be read by xpbs or by the qsub command.

MODIFYING ATTRIBUTES OF JOBS
Modifying a PBS job requires only to manipulate the widgets found in the Modify
window. To modify a job or jobs, do the following steps:

1. Select one or more jobs from the JOBS listbox in the main xpbs display.

2. Click on the modify button located to the right of the listbox.

3. The Modify window is structured similarly to the Submit window. Simply ma-
nipulate the widgets to specify replacement or additional values of job at-
tributes.

4. Click on the confirm modify button located at the bottom of the dialog box.

DELETING JOBS
Deleting a PBS job requires only to manipulate the widgets found in the Delete
window. To delete a job or jobs, do the following steps:

1. Select one or more jobs from the JOBS listbox in the main xpbs display.

2. Click on the delete button located to the right of the listbox.

3. Manipulate the spinbox widget to set the kill delay signal interval.

4. Click on the delete button located at the bottom of the dialog box.

TRACKING RETURNED OUTPUT FILES
If you want to be informed of returned output files of current jobs, and be able to
quickly see the contents of those files, then enable the "track job" feature as
follows:

1. Submit all the jobs that you want monitored.

2. Click on the Track Job button located in the Menu bar to bring up the Track
Job dialog box.

3. Specify the list of user names, whose jobs are to be monitored for returned
output files, in the matrix located at the upper left of the dialog box.

4. Manipulate the minutes spinbox, located just below the user names matrix,
to specify the interval value when output files will be periodically checked.

5. Specify the location of job output files (whether locally or remotely) by click-
ing on one of the radio buttons located at the upper right of the dialog box.
Returned locally means the output files will be returned back to the host
where xpbs was run. If the output files are returned to some remote host,
then xpbs will execute an

RSH <remote_host> test -f <output_files>

5-86 Chapt Revision: 2.2

PBS ERS User Commands

to test the existence of the files. RSH is whatever you set the remote shell
command to in the corresponding entry box.

NOTE: Be sure the files are accessible from the host where xpbs was run
(i.e. .rhosts appropriately set).

6. Click start/reset tracking button located at the bottom of the dialog box to:

- cancel any previous tracking

- build a new list of jobs to be monitored for returned output files based on
currently queued jobs.

- start periodic tracking.

7. Click on close window button.

When an output file for a job being monitored is found, then the Track Job button
(the one that originally invoked the Track Job dialog box) will turn into a different
color, and the Jobs Found Completed listbox, located in the Track Job dialog box,
is then loaded with the corresponding job id(s). Then double click on a job id to see
the contents of the output file and the error file. Click stop tracking if you want to
cancel tracking.

LEAVING XPBS
Click on the Close button located in the Menu bar to leave xpbs. If anything had
changed, it will bring up a dialog box asking for a confirmation in regards to sav-
ing state information like the view states (minimize/maximize) of the HOSTS,
QUEUES, JOBS, and INFO subwindows, and various criteria for listing queues
and jobs. The information is saved in ˜/.xpbsrc file.

PREFERENCES
The resources that can be set in the X resources file, ˜/.xpbsrc, are:

*serverHosts
list of server hosts (space separated) to query by xpbs.

*timeoutSecs
specify the number of seconds before timing out waiting for a connection to a PBS
host.

*xtermCmd
the xterm command to run driving an interactive PBS session.

*labelFont
font applied to text appearing in labels.

*fixlabelFont
font applied to text that label fixed-width widgets such as listbox labels. This must
be a fixed-width font.

*textFont
font applied to a text widget. Keep this as fixed-width font.

*backgroundColor
the color applied to background of frames, buttons, entries, scrollbar handles.

*foregroundColor
the color applied to text in any context (under selection, insertion, etc...).

*activeColor
the color applied to the background of a selection, a selected command button, or a
selected scroll bar handle.

Chapt Revision: 2.2 5-87

User Commands PBS ERS

*disabledColor
color applied to a disabled widget.

*signalColor
color applied to buttons that signal something to the user about a change of state.
For example, the color of the Track Job button when returned output files are de-
tected.

*shadingColor
a color shading applied to some of the frames to emphasize focus as well as decora-
tion.

*selectorColor
the color applied to the selector box of a radiobutton or checkbutton.

*selectHosts
list of hosts (space separated) to automatically select/highlight in the HOSTS list-
box.

*selectQueues
list of queues (space separated) to automatically select/highlight in the QUEUES
listbox.

*selectJobs
list of jobs (space separated) to automatically select/highlight in the JOBS listbox.

*selectOwners
list of owners checked when limiting the jobs appearing on the Jobs listbox in the
main xpbs window. Specify value as "Owners: <list_of_owners>". See -u option in
qselect(1B) for format of <list_of_owners>.

*selectStates
list of job states to look for (do not space separate) when limiting the jobs appear-
ing on the Jobs listbox in the main xpbs window. Specify value as "Job_States:
<states_string>". See -s option in qselect(1B) for format of <states_string>.

*selectRes
list of resource amounts (space separated) to consult when limiting the jobs ap-
pearing on the Jobs listbox in the main xpbs window. Specify value as "Re-
sources: <res_string>". See -l option in qselect(1B) for format of <res_string>.

*selectExecTime
the Execution Time attribute to consult when limiting the list of jobs appearing on
the Jobs listbox in the main xpbs window. Specify value as "Queue_Time: <ex-
ec_time>". See -a option in qselect(1B) for format of <exec_time>.

*selectAcctName
the name of the account that will be checked when limiting the jobs appearing on
the Jobs listbox in the main xpbs window. Specify value as "Account_Name: <ac-
count_name>". See -A option in qselect(1B) for format of <account_name>.

*selectCheckpoint
the checkpoint attribute relationship (including the logical operator) to consult
when limiting the list of jobs appearing on the Jobs listbox in the main xpbs win-
dow. Specify value as "Checkpoint: <checkpoint_arg>". See -c option in qse-
lect(1B) for format of <checkpoint_arg>.

*selectHold
the hold types string to look for in a job when limiting the jobs appearing on the
Jobs listbox in the main xpbs window. Specify value as "Hold_Types:
<hold_string>". See -h option in qselect(1B) for format of <hold_string>.

*selectPriority
the priority relationship (including the logical operator) to consult when limiting

5-88 Chapt Revision: 2.2

PBS ERS User Commands

the list of jobs appearing on the Jobs listbox in the main xpbs window. Specify
value as "Priority: <priority_value>". See -p option in qselect(1B) for format of
<priority_value>.

*selectRerun
the rerunnable attribute to consult when limiting the list of jobs appearing on the
Jobs listbox in the main xpbs window. Specify value as "Rerunnable: <re-
run_val>". See -r option in qselect(1B) for format of <rerun_val>.

*selectJobName
name of the job that will be checked when limiting the jobs appearing on the Jobs
listbox in the main xpbs window. Specify value as "Job_Name: <jobname>". See
-N option in qselect(1B) for format of <jobname>.

*iconizeHostsView
a boolean value (true or false) indicating whether or not to iconize the HOSTS re-
gion.

*iconizeQueuesView
a boolean value (true or false) indicating whether or not to iconize the QUEUES
region.

*iconizeJobsView
a boolean value (true or false) indicating whether or not to iconize the JOBS re-
gion.

*iconizeInfoView
a boolean value (true or false) indicating whether or not to iconize the INFO re-
gion.

*jobResourceList
a curly-braced list of resource names as according to architecture known to xpbs.
The format is as follows:
{ <arch-type1> resname1 resname2 ... resnameN }
{ <arch-type2> resname1 resname2 ... resnameN }
. . .
{ <arch-typeN> resname1 resname2 ... resnameN }

XPBS AND PBS COMMANDS
xpbs calls PBS commands as follows:

Command Button PBS Command

detail (Hosts) qstat -B -f <selected server_host(s)>

terminate qterm <selected server_host(s)>

detail (Queues) qstat -Q -f <selected queue(s)>

stop qstop <selected queue(s)>

start qstart <selected queue(s)>

enable qenable <selected queue(s)>

disable qdisable <selected queue(s)>

detail (Jobs) qstat -f <selected job(s)>

modify qalter <selected job(s)>

delete qdel <selected job(s)>

hold qhold <selected job(s)>

release qrls <selected job(s)>

run qrun <selected job(s)>

Chapt Revision: 2.2 5-89

User Commands PBS ERS

rerun qrerun <selected job(s)>

signal qsig <selected job(s)>

msg qmsg <selected job(s)>

move qmove <selected job(s)>

order qorder <selected job(s)>

EXIT STATUS
Upon successful processing, the xpbs exit status will be a value of zero.

If the xpbs command fails, the command exits with a value greater than zero.

SEE ALSO
qalter(1B), qdel(1B), qhold(1B), qmove(1B), qmsg(1B), qrerun(1B), qrls(1B), qselect(1B),
qsig(1B), qstat(1B), qorder(1B), qsub(1B), qdisable(8B), qenable(8B), qrun(8B), qs-
tart(8B), qstop(8B), qterm(8B).

5.2.16. Graphical User Interface: xpbsmon

xpbsmon is the graphical user interface for displaying, monitoring the nodes/execution
hosts under PBS.

xpbsmon is also written in Tcl/Tk. The way it works is that a main driver script/program
called "xpbsmon" is what a user invokes, and this script calls other programs found in XPB-
SMON_LIB directory (as set in Makefile).

NAME
xpbsmon − GUI for displaying, monitoring the nodes/execution hosts under PBS

SYNOPSIS
xpbsmon

DESCRIPTION
The xpbsmon command provides a way to graphically display the various nodes that
run jobs. A node or execution host can be running a pbs_mom daemon, or not running
the daemon. For the latter case, it could just be a nodename that appears in a nodes file
that is managed by a main pbs_server running on another host. This utility also pro-
vides the ability to monitor values of certain system resources by posting queries to the
pbs_mom of a node. With this utility, you can see what job is running on what node,
who owns the job, how many nodes assigned to a job, status of each node (color-coded
and the colors are user-modifiable), how many nodes are available, free, down, reserved,
offline, of unknown status, in use running multiple jobs or executing only 1 job. Please
see the sections below for a tour and tutorials of xpbsmon. Also, within every dialog box,
a Help button can be found for assistance.

GETTING STARTED
Running xpbsmon will initialize the X resource database from various sources in the
following order:

1. The RESOURCE_MANAGER property on the root window (updated via xrdb)
with settings usually defined in the .Xdefaults file

2. Preference settings defined by the system administrator in the global xpbsmonrc
file

5-90 Chapt Revision: 2.2

PBS ERS User Commands

3. User’s ˜/.xpbsmonrc file - this file defines various X resources like fonts, colors, list
of colors to use to represent the various status of the nodes, list of PBS sites to
query, list of server hosts on each site, list of nodes/execution hosts on each server
host, list of system resource queries to send to the nodes’ pbs_mom, and various
view states. See PREFERENCES section below for a list of resources that can be
set.

RUNNING XPBSMON

xpbsmon can be run either as a regular user or superuser. If you run it with less privi-
lege, you may not be able to see all the information for a node. If it is executed as a reg-
ular user, you should still be able to see what jobs are running on what nodes, possibly
state and properties as these information are obtained by xpbsmon talking directly to
the specified server. If you want other system resource values, it may require special
privilege since xpbsmon will have to talk directly to the pbs_mom of a node. In addition,
the host where xpbsmon was running must also have been given explicit access permis-
sion by the mom (unless the GUI is running on the same host where mom is running).
This is done done by updating the $clienthost and/or the $restricted parameter on the
mom’s configuration file.

To run xpbsmon, type:

setenv DISPLAY <display_host>:0
xpbsmon

If you are running the GUI and only interested in jobs data, then be sure to set all the
nodes’ type to NOMOM in the Pref dialog box.

THE XPBSMON DISPLAY
This section describes the main parts of the xpbsmon display. The main window is
composed of 3 distinct areas (subwindows) arranged vertically (one on top of another)
in the following order:

1) Menu
2) Site Information
3) Info

Menu. The Menu area is composed of a row of command buttons that signal some ac-
tion with a click of the left mouse button. The buttons are:

Site.. displays a popup menu containing the list of PBS sites that have
been added using the Sites Preferences window. Simply drag your
mouse and release to the site name whose servers/nodes informa-
tion you would like to see.

Pref.. brings up various dialog boxes for specifying the list of sites,
servers on each site, nodes that are known to a server, and the
system resource queries to be sent to a node’s pbs_mom daemon.

Auto Update.. brings up another window for specifying whether or not to do auto
updates of nodes information, and also for specifying the interval
number of minutes between updates.

Help contains some help information.

About tells who the author is and who to send comments, bugs, sugges-
tions to.

Close for exiting xpbsmon plus saving the current setup information (if
anything had changed) in the user’s $HOME/.xpbsmonrc file. In-
formation saved include the the specified list of sites, servers on

Chapt Revision: 2.2 5-91

User Commands PBS ERS

each site, nodes known to each server, and system resource
queries to send to node’s pbs_mom.

Minimize Buttonshows the iconized view of Site Information where nodes are rep-
resented as tiny boxes, where each box is colored according to sta-
tus. In order to get more information about a node, you need to
double click on the colored box.

Maximize buttonshows the full view of Site Information where nodes are repre-
sented in bigger boxes, still colored depending on the status, and
some information on it is displayed.

Site Information. Only one site at a time can be displayed. This area (shown as one
huge box referred to as the site box) can be further sub-divided into 3 areas: the site
name label at the top, server boxes in the middle, and the color status bar at the bot-
tom. The site name label shows the name of the site as specified in the Pref.. window.
At the middle of the site box shows a row of big boxes housing smaller boxes.

The big box is an abstraction of a server host (called a server box), showing its server
display label at the top of the box, a grid of smaller boxes representing the nodes that
the server knows about (where jobs are run), and summary status for the nodes under
the server. Status information will show counters for the number of nodes used, avail-
able, reserved, offline, or of unknown status and even # of cpus assigned. For a cleaner
display, some counters with a value of zero are not displayed. The server boxes are
placed in a grid, with a new row being started when either *siteBoxMaxNumServer-
BoxesPerRow or *siteBoxMaxWidth limit has been reached.

The smaller boxes represent the nodes/execution hosts where jobs are run (referred to
as node boxes). Each node box shows the name at the top, and a sub-box (a smaller
square) that is is colored according to the status of the node that it represents, and if
the view type is FULL, it will will display some node information according to the sys-
tem resource queries specified on the Pref.. window. Clicking on the sub-box will show
a much bigger box (called the MIRROR view) with bigger fonts containing nodes infor-
mation. Another view is called ICON and this shows a tiny box with a colored area. The
node boxes are arranged in a grid, where a new row is created if either the *serverBox-
MaxNumNodeBoxesPerRow or *serverBoxMaxWidth limit has been reached. ICON
view of the node boxes will be constrained by the *nodeBoxIconMaxHeight and *node-
BoxIconMaxWidth pixel values; FULL view of the node boxes will be bounded by *node-
BoxFullMaxWidth and *nodeBoxFullMaxHeight; the mirror view of the node boxes has
its size be *nodeBoxMirrorMaxWidth, and *nodeBoxMirrorMaxHeight.

Horizontal and vertical scrollbars for the site box, server box, and node box will be dis-
played as needed.

Finally, the color bar information shows a color chart displaying what the various colors
mean in terms of node status. The color-to-status mapping can be modified by setting
the X resources: *nodeColorNOINFO, *nodeColorFREE, *nodeColorINUSEshared,
*nodeColorINUSEexclusive, *nodeColorDOWN, *nodeColorRSVD, *nodeColorOFFL.

Info. The Info Area shows the progress of some of the background actions performed by
xpbsmon. Look into this box for errors.

WIDGETS USED IN XPBSMON
Some of the widgets used in xpbsmon and how they are manipulated are described in
the following:

5-92 Chapt Revision: 2.2

PBS ERS User Commands

1. listbox - the ones found in this GUI are only single-selectable (one entry can be
highlighted/selected at a time via a mouse click).

2. scrollbar - usually appears either vertically or horizontally and contains 5 distinct
areas that are mouse clicked to achieve different effects:

top arrow Causes the view in the associated widget to shift up by one unit (i.e.
the object appears to move down one unit in its window). If the but-
ton is held down the action will auto-repeat.

top gap Causes the view in the associated window to shift up by one less than
the number of units in the window (i.e. the portion of the object that
used to appear at the very top of the window will now appear at the
very bottom). If the button is held down the action will auto-repeat.

slider Pressing button 1 in this area has no immediate effect except to
cause the slider to appear sunken rather than raised. However, if
the mouse is moved with the button down then the slider will be
dragged, adjusting the view as the mouse is moved.

bottom gap Causes the view in the associated window to shift down by one less
than the number of units in the window (i.e. the portion of the ob-
ject that used to appear at the very bottom of the window will now
appear at the very top). If the button is held down the action will
auto-repeat.

bottom arrow Causes the view in the associated window to shift down by one unit
(i.e. the object appears to move up one unit in its window). If the but-
ton is held down the action will auto-repeat.

3. entry - brought into focus with a click of the left mouse button. To manipulate this
widget, simply type in the text value. Use of arrow keys, mouse selection of text for
deletion or overwrite, copying and pasting with sole use of mouse buttons are per-
mitted. This widget is usually accompanied by a scrollbar for horizontally scanning
a long text entry string.

4. box - made up of 1 or more listboxes displayed adjacent to each other giving the ef-
fect of a "matrix". Each row from the listboxes makes up an element of the box. In
order to add items to the box, you need to manipulate the accompanying entry wid-
gets, one for each listbox, and then clicking the add button. Removing items from
the box is done by selecting an element, and then clicking delete.

5. spinbox - a combination of an entry widget and a horizontal scrollbar. The entry
widget will only accept values that fall within a defined list of valid values, and in-
crementing through the valid values is done by clicking on the up/down arrows.

6. button - a rectangular region appearing either raised or pressed that invokes an ac-
tion when clicked with the left mouse button. When the button appears pressed,
then hitting the <RETURN> key will automatically select the button.

UPDATING PREFERENCES

CASE 1: Time Sharing

Suppose you have a time-sharing environment where the front-end is called bower
and you have 4 nodes: bower1, bower2, bower3, bower4. bower is the host that
runs the server; jobs are submitted to host bower where it enqueues it for future
execution. Also, a pbs_mom daemon is running on each of the execution hosts. If
the server bower also maintains a nodes list containing information like state,

Chapt Revision: 2.2 5-93

User Commands PBS ERS

properties for the 4 nodes, then this will also be reported. Then to setup xpb-
smon, do the following:

1. Click the Pref.. button on the Menu section.

2. On the Sites Preference dialog, enter any arbitrary site name, for example
"Local". Then click the add button.

3. On the Server_Host entry box, enter "bower", and on the DisplayLabel entry
box, put an arbitrary label (as it would appear on the header of the server
box) like "Bower", and then click add.

4. Click the nodes.. button that is accompanying the Servers box. This would
bring up the Server Preference dialog.

5. Now add the entries "bower1", "bower2", "bower3", "bower4" specifying type
MOM for each on the Nodes box.

6. If you need to monitor certain system resource parameters for each of the
nodes, you need to specify query expressions containing resource queries to
be sent to the individual PBS moms. For example, if you want to obtain
memory usage, then select a node from the Nodes list, click on the query..
button that accompanies the Nodes list, and this would bring up the Query
Table dialog. Specify the following input:

Query_Expr: (availmem/totmem) * 100
Display_Info: Memory Usage:
Display_Type: SCALE

The above says to display the result of the "Query_Expr" in a scale widget
calibrated over 100. The queries "availmem" and "totmem" will be sent to the
PBS mom, and the expression is evaluated upon receiving all results from
the mom. If you want to display the result of another query, say "loadave",
directly, then specify the following:

Query_Expr: loadave
Display_Info: Load Average:
Display_Type: TEXT

NOTE: For a list of queries that can be sent to a pbs_mom, please click on
the Help button on the Query table window.

CASE 2: Jobs Exclusive Environment
Supposing you have a "space non-sharing" environment where the server main-
tains a list of nodes that it runs jobs on exclusively (one job at a time outstanding
per node). Let’s call this server b1. Simply update Preferences information as fol-
lows:

1. Click the Pref.. button on the Menu section.

2. On the Sites Preference dialog, enter a site name, for example "B System".
Then click the add button.

3. On the Server_Host entry box, enter "b1", DisplayLabel entry box type "B1"
(or whatever label that you would like to appear on the header of the server
box), and then click add.

CASE 3: Hybrid Time Sharing/Space Sharing Environment
A cluster of heterogeneous machines, time-sharing or jobs exclusive, could easily
be represented in xpbsmon by combining steps in CASE 1 and CASE 2.

5-94 Chapt Revision: 2.2

PBS ERS User Commands

LEAVING XPBSMON
Click on the Close button located in the Menu bar to leave xpbsmon. If anything
had changed, it will bring up a dialog box asking for a confirmation in regards to
saving preferences information about list of sites, their view types, list of servers
on each site, the list of nodes known to each server, and the list of queries to be
sent to the pbs_mom of each node. The information is saved in ˜/.xpbsmonrc file.

PREFERENCES
The resources that can be set in the X resources file, ˜/.xpbsmonrc, are described in
the following:

Node Box Properties

Resource names beginning with "*small" or "*node" apply to the properties of the
node boxes. A node box is made of an outer frame where the node label sits on top,
the canvas (smaller box) is on the middle, and possibly some horizontal/ vertical
scrollbars.

nodeColorNOINFO
color of node box when information for the node it represents could not be ob-
tained.

*nodeColorFREE
color of canvas when node it represents is up.

*nodeColorINUSEshared
color when node it represents has more than 1 job running on it, or when node has
been marked by the server that manages it as "job-sharing".

*nodeColorINUSEexclusive
list of colors to assign to a node box when host it represents is running only 1 job,
or when node has been marked by the server that manages it as "time-sharing".
xpbsmon will use this list to assign 1 distinct color per job unless all the colors
have been exhausted, in which case, colors will start getting assigned more than
once in a round-robin fashion.

*nodeColorDOWN
color when node it represents is down.

*nodeColorRSVD
color when node it represents is reserved.

*nodeColorOFFL
color when node it represents is offline.

*smallForeground
applies to the color of text inside the canvas.

*smallBackground
applies to the color of the frame.

*smallBorderWidth
distance (in pixels) from other node boxes.

*smallRelief
how node box will visually appear (style).

*smallScrollBorderWidth
significant only in FULL mode, this is the distance of the horizontal/vertical scroll-
bars from the canvas and lower edge of the frame.

*smallScrollBackground
background color of the scrollbars

Chapt Revision: 2.2 5-95

User Commands PBS ERS

*smallScrollRelief
how scrollbars would visually appear (style).

*smallCanvasBackground
color of the canvas (later overridden depending on status of the node it represents)

*smallCanvasBorderWidth
distance of the canvas from the frame and possibly the scrollbars.

*smallCanvasRelief
how the canvas is visually represented (style).

*smallLabelBorderWidth
the distance of the node label from the canvas and the topmost edge of the frame.

*smallLabelBackground
the background of the area of the node label that is not filled.

*smallLabelRelief
how the label would appear visually (style).

*smallLabelForeground
the color of node label text.

*smallLabelFont
the font to use for the node label text.

*smallLabelFontWidth
font width (in pixels) of *smallLabelFont

*smallLabelFontHeight
font height (in pixels) of *smallLabelFont

*smallTextFont
font to use for the text that appear inside a canvas.

*smallTextFontWidth
font width (in pixels) of *smallTextFont.

*smallTextFontHeight
font height (in pixels) of *smallTextFont.

*nodeColorTrough
color of trough part (the /100 portion) of a canvas scale item.

*nodeColorSlider
color of slider part (value portion) of a canvas scale item.

*nodeColorExtendedTrough
color of extended trough (over 100 portion when value exceeds max) of a canvas
scale item.

*nodeScaleFactor
tells how much bigger you want the scale item on the canvas to appear. (1 means
to keep size as is)

*nodeBoxFullMaxWidth

*nodeBoxFullMaxHeight
maximum width and height (in pixels) of a node box in FULL mode.

*nodeBoxIconMaxWidth

*nodeBoxIconMaxHeight
maximum width and height (in pixels) of a node box in ICON mode.

*nodeBoxMirrorMaxWidth

*nodeBoxMirrorMaxHeight
maximum width and height (in pixels) of a node box displayed on a separate win-
dow (after it has been clicked with the mouse to obtain a bigger view)

5-96 Chapt Revision: 2.2

PBS ERS User Commands

*nodeBoxMirrorScaleFactor
tells how much bigger you want the scale item on the canvas to appear while the
node box is displayed on a separate window (1 means to keep size as is)

Server Box Properties

Resource names beginning with "*medium" apply to the properties of the server boxes.
A server box is made of an outer frame where the server display label sits on top, a can-
vas filled with node boxes is on the middle, possibly some horizontal/vertical scrollbars,
and a status label at the bottom.

*mediumLabelForeground
color of text applied to the server display label and status label.

*mediumLabelBackground
background color of the unfilled portions of the server display label and status la-
bel.

*mediumLabelBorderWidth
distance of the server display label and status label from other parts of the server
box.

*mediumLabelRelief
how the server display label and status label appear visually (style).

*mediumLabelFont"
font used for the text of the server display label and status label.

*mediumLabelFontWidth
font width (in pixels) of *mediumLabelFont.

*mediumLabelFontHeight
font height (in pixels) of *mediumLabelFont.

*mediumCanvasBorderWidth
the distance of the server box’s canvas from the label widgets.

*mediumCanvasBackground
the background color of the canvas.

*mediumCanvasRelief
how the canvas appear visually (style).

*mediumScrollBorderWidth
distance of the scrollbars from the other parts of the server box.

*mediumScrollBackground
the background color of the scrollbars

*mediumScrollRelief
how the scrollbars appear visually.

*mediumBackground
the color of the server box frame.

*mediumBorderWidth
the distance of the server box from other boxes.

*mediumRelief
how the server box appears visually (style).

*serverBoxMaxWidth

*serverBoxMaxHeight
maximum width and height (in pixels) of a server box.

*serverBoxMaxNumNodeBoxesPerRow
maximum # of node boxes to appear in a row within a canvas.

Chapt Revision: 2.2 5-97

User Commands PBS ERS

Miscellaneous Properties

Resource names beginning with "*big" apply to the properties of a site box, as well as to
widgets found outside of the server box and node box. This includes the dialog boxes
that appear when the menu buttons of the main window are manipulated. The site box
is the one that appears on the main region of xpbsmon.

*bigBackground
background color of the outer layer of the main window.

*bigForeground
color applied to regular text that appear outside of the node box and server box.

*bigBorderWidth
distance of the site box from the menu area and the color information area.

*bigRelief
how the site box is visually represented (style)

*bigActiveColor
the color applied to the background of a selection, a selected command button, or a
selected scroll bar handle.

*bigShadingColor
a color shading applied to some of the frames to emphasize focus as well as deco-
ration.

*bigSelectorColor
the color applied to the selector box of a radiobutton or checkbutton.

*bigDisabledColor
color applied to a disabled widget.

*bigLabelBackground
color applied to the unfilled portions of label widgets.

*bigLabelBorderWidth
distance from other widgets of a label widget.

*bigLabelRelief
how label widgets appear visually (style)

*bigLabelFont
font to use for labels.

*bigLabelFontWidth
font width (in pixels) of *bigLabelFont.

*bigLabelFontHeight
font height (in pixels) of *bigLabelFont.

*bigLabelForeground
color applied to text that function as labels.

*bigCanvasBackground
the color of the main region.

*bigCanvasRelief
how the main region looks like visually (style)

*bigCanvasBorderWidth:
distance of the main region from the menu and info regions.

*bigScrollBorderWidth
if the main region has a scrollbar, this is its distance from other widgets appearing
on the the region.

5-98 Chapt Revision: 2.2

PBS ERS User Commands

*bigScrollBackground
background color of the scrollbar appearing outside a server box and node box.

*bigScrollRelief
how the scrollbar that appears outside a server box and node box looks like visual-
ly (style)

*bigTextFontWidth
the font width (in pixels) of *bigTextFont

*bigTextFontHeight
the font height (in pixels) of *bigTextFont

*siteBoxMaxWidth
maximum width (in pixels) of the site box.

*siteBoxMaxHeight
maximum height (in pixels) of the site box.

*siteBoxMaxNumServerBoxesPerRow
maximum number of server boxes to appear in a row inside the site box.

*autoUpdate
if set to true, then information about nodes is periodically gathered.

*autoUpdateMins
the # of minutes between polling for data regarding nodes when *autoUpdate is
set.

*siteInView
the name of the site that should be in view

*rcSiteInfoDelimeterChar
the separator character for each input within a curly-bracketed line of input of
*siteInfo.

*sitesInfo
{<site1name><sep><site1-display-type><sep><server-name><sep><server-dis-
play-label><sep><nodename><sep><nodetype><sep><node-query-expr>}
. . .
{<site2name><sep><site2-display-type><sep><server-name><sep><server-dis-
play-label><sep><nodename><sep><nodetype><sep><node-query-expr>}

information about a site where <site1-display-type> can be either {FULL,ICON},
<nodetype> can be {MOM, NOMOM}, and <node-query-expr> has the format:

{ {<expr>} {expr-label} <output-format>}

where <output-format> could be {TEXT, SCALE}. It’s probably better to use the
Pref dialog boxes in order to specify a value for this.

Example:

*rcSiteInfoDelimeterChar ;
*sitesInfo: {NAS;ICON;newton;Newton;newton3;NOMOM;} {Lang-
ley;FULL;db;DB;db.nas.nasa.gov;MOM;{{ (availmem / totmem) * 100} {Memory
Usage:} SCALE} {{ (loadave / ncpus) * 100} {Cpu Usage:} SCALE} {ncpus {Num-
ber of Cpus:} TEXT} {physmem {Physical Memory:} TEXT} {idletime {Idle Time
(s):} TEXT} {loadave {Load Avg:} TEXT}} {NAS;ICON;newton;Newton;new-
ton4;NOMOM;} {NAS;ICON;newton;Newton;newton1;NOMOM;} {NAS;ICON;new-
ton;Newton;newton2;NOMOM;} {NAS;ICON;b0101;DB;aspa-
sia.nas.nasa.gov;MOM;{{ (availmem / totmem) * 100} {Memory Usage:} SCALE} {{

Chapt Revision: 2.2 5-99

User Commands PBS ERS

(loadave / ncpus) * 100} {Cpu Usage:} SCALE} {ncpus {Number of Cpus:} TEXT}
{physmem {Physical Memory:} TEXT} {idletime {Idle Time (s):} TEXT} {loadave
{Load Avg:} TEXT}} {NAS;ICON;newton;Newton;newton7;NOMOM;}

EXIT STATUS
Upon successful processing, the xpbsmon exit status will be a value of zero.

If the xpbsmon command fails, the command exits with a value greater than zero.

If xpbsmon is querying a host running a server with an incompatible version, you may
see the following messages:

Internal error: pbsstatnode: End of File (15031)

The above message can be safely ignored.

SEE ALSO
pbs_sched_tcl(8B), pbs_mom(8B), the PBS External Reference Specification, and the
PBS Internal Design Specification.

5-100 Chapt Revision: 2.2

PBS ERS User Commands

6. Operator Commands
A batch operator is a user of the system who is granted privilege to perform actions be-
yond those available to the normal user. Typical of those actions are starting and stop-
ping of individual queues and the server itself, and modification or deleting the jobs of
other users.

The operator will be able to use the following general user commands with increased
privilege: qalter, qdel, qhold, qmove, qmsg, qrerun, qrls, qsig, and qstat. Additionally,
the operator will have access to the new commands described in this section: qdisable,
qenable, qrun, qstart, qstop, qterm, pbs_mom, pbs_sched, pbs_server, and pbsnodes.

Chapt Revision: 2.1 6-1

Operator Commands PBS ERS

6.1. Initiate Server Operation

NAME
pbs_server − start a pbs batch server

SYNOPSIS
pbs_server [-a active] [-d config_path] [-p port] [-A acctfile] [-L logfile] [-M mom_port]
[-R momRPP_port] [-S scheduler_port] [-t type]

DESCRIPTION
The pbs_server command starts the operation of a batch server on the local host. Typ-
ically, this command will be in a local boot file such as /etc/rc.local . If the batch server
is already in execution, pbs_server will exit with an error. To insure that the
pbs_server command is not runnable by the general user community, the server will
only execute if its real and effective uid is zero.

The server will record a diagnostic message in a log file for any error occurrence. The
log files are maintained in the server_logs directory below the home directory of the
server. If the log file cannot be opened, the diagnostic message is written to the system
console.

OPTIONS

-a active Specifies if scheduling is active or not. This sets the server attribute
scheduling. If the option argument is "true" ("True", "t", "T", or "1"), the
server is active and the PBS job scheduler will be called. If the argu-
ment is "false" ("False", "f", "F", or "0), the server is idle, and the sched-
uler will not be called and no jobs will be run. If this option is not spec-
ified, the server will retain the prior value of the scheduling attribute.

-d config_path Specifies the path of the directory which is home to the servers configu-
ration files, PBS_HOME. A host may have multiple servers. Each
server must have a different configuration directory. The default con-
figuration directory is given by the symbol $PBS_SERVER_HOME
which is typically /usr/spool/PBS .

-p port Specifies the port number on which the server will listen for batch re-
quests. If multiple servers are running on a single host, each must
have its own unique port number. This option is for use in testing with
multiple batch systems on a single host.

-A acctfile Specifies an absolute path name of the file to use as the accounting file.
If not specified, the file is named for the current date in the
PBS_HOME/server_priv/accounting directory.

-L logfile Specifies an absolute path name of the file to use as the log file. If not
specified, the file is one named for the current date in the
PBS_HOME/server_logs directory, see the -d option.

-M mom_port Specifies the host name and/or port number on which the server should
connect the job executor, MOM. The option argument, mom_conn, is
one of the forms: host_name, [:]port_number, or host_name:port_num-
ber. If host_name not specified, the local host is assumed. If
port_number is not specified, the default port is assumed. See the -M
option for pbs_mom(8).

-R mom_RPPport
Specifies the port number on which the the server should query the
up/down status of Mom. See the -R option for pbs_mom(8).

6-2 Chapt Revision: 2.1

PBS ERS Operator Commands

-S scheduler_port
Specifies the port number to which the server should connect when con-
tacting the Scheduler. The option argument, scheduler_conn, is of the
same syntax as under the -M option.

-t type Specifies the impact on jobs which were in execution, running, when
the server shut down. If the running job is not rerunnable or
restartable from a checkpoint image, the job is aborted. If the job is re-
runnable or restartable, then the actions described below are taken.
When the type argument is:

hot All jobs are requeued except non-rerunnable jobs that were ex-
ecuting. Any rerunnable job which was executing when the
server went down will be run immediately. This returns the
server to the same state as when it went down. After those
jobs are restarted, then normal scheduling takes place for all
remaining queued jobs.

warm All rerunnable jobs which were running when the server went
down are requeued. All other jobs are maintained. New selec-
tions are made for which jobs are placed into execution. Warm
is the default if -t is not specified.

cold All jobs are deleted. Positive confirmation is required before
this direction is accepted.

create The server will discard any existing configuration files, queues
and jobs, and initialize configuration files to the default values.
The server is idled.

FILES

$PBS_SERVER_HOME/server_priv
default directory for configuration files, typically /usr/spool/pbs/serv-
er_priv

$PBS_SERVER_HOME/server_logs
directory for log files recorded by the server.

Signal Handling
On receipt of the following signals, the server performs the defined action:

SIGHUP
The current server log and accounting log are closed and reopened. This allows
for the prior log to be renamed and a new log started from the time of the signal.

SIGINT
Causes an orderly shutdown of pbs_server, identical to "qterm".

SIGTERM
Causes an orderly shutdown of pbs_server, identical to "qterm".

SIGSHUTDN
On systems (Unicos) where SIGSHUTDN is defined, it also causes an orderly
shutdown of the server.

SIGPIPE, SIGUSR1, SIGUSR2
These signals are ignored.

All other signals have their default behavior installed.

EXIT STATUS
If the server command fails to begin batch operation, the server exits with a value

Chapt Revision: 2.1 6-3

Operator Commands PBS ERS

greater than zero.

SEE ALSO
qsub (1B), pbs_connect(3B), pbs_mom(8B), pbs_sched_basl(8B), pbs_sched_tcl(8B), pb-
snodes(8B), qdisable(8B), qenable(8B), qmgr(8B), qrun(8B), qstart(8B), qstop(8B),
qterm(8B), and the PBS External Reference Specification.

6-4 Chapt Revision: 2.1

PBS ERS Operator Commands

6.2. Initiate Execution Mini-server (MOM) Operation

NAME
pbs_mom − start a pbs batch execution mini-server

SYNOPSIS
pbs_mom [-C chkdirectory] [-c config] [-d directory] [-L logfile] [-M MOMport]
[-R RPPport] [-p|-r] [-x]

DESCRIPTION
The pbs_mom command starts the operation of a batch Machine Oriented Mini−serv-
er, MOM, on the local host. Typically, this command will be in a local boot file such as
/etc/rc.local . To insure that the pbs_mom command is not runnable by the general us-
er community, the server will only execute if its real and effective uid is zero.

One function of pbs_mom is to place jobs into execution as directed by the server, estab-
lish resource usage limits, monitor the job’s usage, and notify the server when the job
completes. If they exist, pbs_mom will execute a prologue script before executing a job
and an epilogue script after executing the job. The next function of pbs_mom is to re-
spond to resource monitor requests. This was done by a separate process in previous
versions of PBS but has now been combined into one process. The resource monitor
function is provided mainly for the PBS scheduler. It provides information about the
status of running jobs, memory available etc. The next function of pbs_mom is to re-
spond to task manager requests. This involves communicating with running tasks over
a tcp socket as well as communicating with other MOMs within a job (aka a "sister-
hood").

Pbs_mom will record a diagnostic message in a log file for any error occurrence. The log
files are maintained in the mom_logs directory below the home directory of the server.
If the log file cannot be opened, the diagnostic message is written to the system console.

OPTIONS

-C chkdirectory Specifieds the path of the directory used to hold checkpoint files. [Cur-
rently this is only valid on Cray systems.] The default directory is
PBS_HOME/spool/checkpoint, see the -d option. The directory speci-
fied with the -C option must be owned by root and accessible (rwx) on-
ly by root to protect the security of the checkpoint files.

-c config Specify a alternative configuration file, see description below. If this is
a relative file name it will be relative to PBS_HOME/mom_priv, see
the -d option. If the specified file cannot be opened, pbs_mom will
abort. If the -c option is not supplied, pbs_mom will attempt to open
the default
configuration file "config" in PBS_HOME/mom_priv. If this file is not
present, pbs_mom will log the fact and continue.

-d directory Specifies the path of the directory which is the home of the servers
working files, PBS_HOME. This option is typically used along with
-M when debugging MOM. The default directory is given by
$PBS_SERVER_HOME which is typically /usr/spool/PBS .

-L logfile Specify an absolute path name for use as the log file. If not specified,
MOM will open a file named for the current date in the
PBS_HOME/mom_logs directory, see the -d option.

-M port Specifies the port number on which the mini-server (MOM) will listen
for batch requests.

Chapt Revision: 2.1 6-5

Operator Commands PBS ERS

-R port Specifies the port number on which the mini-server (MOM) will listen
for resource monitor requests, task manager requests and inter-MOM
messages. Both a UDP and a TCP port of this number will be used.

-p Specifies the impact on jobs which were in execution when the mini-
server shut down. On any restart of MOM, the new mini-server will
not be the parent of any running jobs, MOM has lost control of her off-
spring (not a new situation for a mother). With the -p option, Mom
will allow the jobs to continue to run and monitor them indirectly via
polling. The -p option is mutually exclusive with the -r option.

-r Specifies the impact on jobs which were in execution when the mini-
server shut down. With the -r option, MOM will kill any processes be-
longing to jobs, mark the jobs as terminated, and notify the batch
server which owns the job. The -r option is mutual exclusive with the
-p option.

Normally the mini-server is started from the system boot file without
the -p or the -r option. The mini-server will make no attempt to signal
the former session of any job which may have been running when the
mini-server terminated. It is assumed that on reboot, all processes
have been killed.

If the -r option is used following a reboot, process ids (pids) may be
reused and MOM may kill a process that is not a batch session.

-a alarm Used to specify the alarm timeout in seconds for computing a resource.
Every time a resource request is processed, an alarm is set for the giv-
en amount of time. If the request has not completed before the given
time, an alarm signal is generated. The default is 5 seconds.

-x Disables the check for privileged port resource monitor connections.
This is used mainly for testing since the privileged port is the only
mechanism used to prevent any ordinary user from connecting.

CONFIGURATION FILE
The configuration file may be specified on the command line at program start with the
-c flag. The use of this file is to provide several types of run time information to
pbs_mom: static resource names and values, external resources provided by a program
to be run on request via a shell escape, and values to pass to internal set up functions
at initialization (and re-initialization).

Each item type is on a single line with the component parts separated by white space.
If the line starts with a hash mark (pound sign, #), the line is considered to be a com-
ment and is skipped.

Static Resources
For static resource names and values, the configuration file contains a list of re-
source names/values pairs, one pair per line and separated by white space. An
Example of static resource names and values could be the number of tape drives of
different types and could be specified by

tape3480 4
tape3420 2
tapedat 1
tape8mm 1

Shell Commands
If the first character of the value is an exclamation mark (!), the entire rest of the
line is saved to be executed through the services of the system(3) standard library
routine.

6-6 Chapt Revision: 2.1

PBS ERS Operator Commands

The shell escape provides a means for the resource monitor to yield arbitrary in-
formation to the scheduler. Parameter substitution is done such that the value of
any qualifier sent with the query, as explained below, replaces a token with a per-
cent sign (%) followed by the name of the qualifier. For example, here is a configu-
ration file line which gives a resource name of "escape":

escape !echo %xxx %yyy

If a query for "escape" is sent with no qualifiers, the command executed would be
"echo %xxx %yyy". If one qualifier is sent, "escape[xxx=hi there]", the command
executed would be "echo hi there %yyy". If two qualifiers are sent, "es-
cape[xxx=hi][yyy=there]", the command executed would be "echo hi there". If a
qualifier is sent with no matching token in the command line, "escape[zzz=snafu]",
an error is reported.

Initialization Value
An initialization value directive has a name which starts with a dollar sign ($) and
must be known to MOM via an internal table. The entries in this table now are:

clienthost
which causes a host name to be added to the list of hosts which will be al-
lowed to connect to MOM as long as they are using a privilaged port. For ex-
ample, here are two configuration file lines which will allow the hosts "fred"
and "wilma" to connect:

$clienthost fred
$clienthost wilma

Two host name are always allowed to connection to pbs_mom, "localhost" and
the name returned to pbs_mom by the system call gethostname(). These
names need not be specified in the configuration file. The hosts listed as
"clienthosts" comprise a "sisterhood" of machines. Any one of the sisterhood
will accept connections from a server from within the sisterhood. They will
also accept Resource Monitor (RM) requests and Internal MOM (IM) mes-
sages from within the sisterhood. For a sisterhood to be able to communicate
IM messages to each other, they must all share the same RM port.

restricted
which causes a host name to be added to the list of hosts which will be al-
lowed to connect to MOM without needing to use a privilaged port. These
names allow for wildcard matching. For example, here is a configuration file
line which will allow queries from any host from the domain "ibm.com".

$restricted *.ibm.com

The restriction which applies to these connections is that only internal
queries may be made. No resources from a config file will be found. This is
to prevent any shell commands from being run by a non-root process.

logevent
which sets the mask that determines which event types are logged by
pbs_mom. For example:

$logevent 0x1fff
$logevent 255

The first example would set the log event mask to 0x1ff (511) which enables
logging of all events including debug events. The second example would set
the mask to 0x0ff (255) which enables all events except debug events.

cputmult
which sets a factor used to adjust cpu time used by a job. This is provided to
allow adjustment of time charged and limits enforced where the job might
run on systems with different cpu performance. If Mom’s system is faster

Chapt Revision: 2.1 6-7

Operator Commands PBS ERS

than the reference system, set cputmult to a decimal value greater than 1.0.
If Mom’s system is slower, set cputmult to a value between 1.0 and 0.0. For
example:

$cputmult 1.5
$cputmult 0.75

wallmult
which sets a factor used to adjust wall time usage by to job to a common ref-
erence system. The factor is used for walltime calculations and limits the
same as cputmult is used for cpu time.

The configuration file must be "secure". It must be owned by a user id and group id less
than 10 and not be world writtable.

FILES

$PBS_SERVER_HOME/mom_priv
the default directory for configuration files, typical (/usr/spool/pbs)/mom_priv.

$PBS_SERVER_HOME/mom_logs
directory for log files recorded by the server.

$PBS_SERVER_HOME/mom_priv/prologue
the administrative script to be run before job execution.

$PBS_SERVER_HOME/mom_priv/eiplogue
the administrative script to be run after job execution.

Signal Handling
Pbs_mom handles the following signals:

SIGHUP
causes pbs_mom to re-read its configuration file, close and reopen the log file, and
reinitialize resource structures.

SIGALRM
results in a log file entry. The signal is used to limit the time taken by certain chil-
dren processes, such as the prologue and epilogue.

SIGINT and SIGTERM
Result in pbs_mom terminating all running children and exiting. This is the ac-
tion for the following signals as well: SIGXCPU, SIGXFSZ, SIGCPULIM, and
SIGSHUTDN.

SIGPIPE, SIGUSR1, SIGUSR2, SIGINFO
are ignored.

All other signals have their default behavior installed.

EXIT STATUS
If the mini-server command fails to begin operation, the server exits with a value
greater than zero.

SEE ALSO
pbs_server(8B), pbs_scheduler_basl(8B), pbs_scheduler_tcl(8B), the PBS External Ref-
erence Specification, and the PBS Administrator’s Guide.

6-8 Chapt Revision: 2.1

PBS ERS Operator Commands

6.3. Disable Queue

NAME
qdisable − disable input to a pbs destination

SYNOPSIS
qdisable destination ...

DESCRIPTION
The qdisable command directs that a destination should no longer accept batch jobs.

The qdisable command sends a Manage request to the batch server specified by desti-
nation. The enabled queue attribute is set to FALSE. If the batch request is accepted,
the server will no longer accept Queue Job requests which specified the disabled queue.
Jobs which already reside in the queue will continue to be processed. This allows a
queue to be "drained."

In order to execute qdisable, the user must have PBS Operation or Manager privilege.

OPERANDS
The qdisable command accepts one or more destination operands. The operands are
one of three forms:

queue
@server
queue@server

If queue is specified, the request is to disable that queue at the default server. If the
@server form is given, the request is to disable all the queues at that server. If a full
destination identifier, queue@server , is given, the request is to disable the named
queue at the named server.

STANDARD ERROR
The qdisable command will write a diagnostic message to standard error for each error
occurrence.

EXIT STATUS
Upon successful processing of all the operands presented to the qdisable command, the
exit status will be a value of zero.

If the qdisable command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
pbs_server(8B), qmgr(8B), and qenable(8B)

Chapt Revision: 2.1 6-9

Operator Commands PBS ERS

6.4. Enable Queue

NAME
qenable − enable input to a pbs destination

SYNOPSIS
qenable destination ...

DESCRIPTION
The qenable command directs that a destination should accept batch jobs.

The qenable command sends a Manage request to the batch server specified by destina-
tion. The enabled queue attribute is set to TRUE. If the request is accepted, that server
will accept Queue Job requests which specified the queue.

In order to execute qenable, the user must have PBS Operation or Manager privilege.

OPERANDS
The qenable command accepts one or more destination operands. The operands are one
of three forms:

queue
@server
queue@server

If queue is specified, the request is to enable that queue at the default server. If the
@server form is given, the request is to enable all the queues at that server. If a full
destination identifier, queue@server , is given, the request is to enable the named
queue at the named server.

STANDARD ERROR
The qenable command will write a diagnostic message to standard error for each error
occurrence.

EXIT STATUS
Upon successful processing of all the operands presented to the qenable command, the
exit status will be a value of zero.

If the qenable command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
pbs_server(8B), qdisable(8B), and qmgr(8B)

6-10 Chapt Revision: 2.1

PBS ERS Operator Commands

6.5. Run Job

NAME
qrun − run a pbs batch job

SYNOPSIS
qrun [-H host] job_identifier ...

DESCRIPTION
The qrun command is used to force a batch server to initiate the execution of a batch
job. The job is run regardless of scheduling position, resource requirements, or state.

In order to execute qrun, the user must have PBS Operation or Manager privilege.

OPTIONS

-H host Specifies the host within the cluster on which the job(s) are to be run.
The host argument is the name of a host that is a member of the cluster
of hosts managed by the server. If the option is not specified, the server
will select the "worst possible" host on which to execute the job.

OPERANDS
The qrun command accepts one or more job_identifier operands of the form:

sequence_number[.server_name][@server]
See the description under "Job Identifier" in section 2.7.6 in the ERS.

STANDARD ERROR
The qrun command will write a diagnostic message to standard error for each error oc-
currence.

EXIT STATUS
Upon successful processing of all the operands presented to the qrun command, the exit
status will be a value of zero.

If the qrun command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
pbs_server(8B), pbs_sched(8B), qmgr(8B)

Chapt Revision: 2.1 6-11

Operator Commands PBS ERS

6.6. Start Queue

NAME
qstart − start pbs batch job processing at a destination

SYNOPSIS
qstart destination ...

DESCRIPTION
The qstart command directs that a destination should process batch jobs. If the desti-
nation is an execution queue, the server will begin to schedule jobs that reside in the
queue for execution. If the destination is a routing queue, the server will begin to route
jobs from that queue.

The qstart command sends a Manage request to the batch server specified by destina-
tion. The star ted queue attribute is set to TRUE.

In order to execute qstart, the user must have PBS Operation or Manager privilege.

OPERANDS
The qstart command accepts one or more destination operands. The operands are one
of three forms:

queue
@server
queue@server

If queue is specified, the request is to start that queue at the default server. If the
@server form is given, the request is to start all queues at that server. If a full desti-
nation identifier, queue@server , is given, the request is to start the named queue at
the named server.

STANDARD ERROR
The qstart command will write a diagnostic message to standard error for each error oc-
currence.

EXIT STATUS
Upon successful processing of all the operands presented to the qstart command, the
exit status will be a value of zero.

If the qstart command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
pbs_server(8B), qstop(8B), and qmgr(8B)

6-12 Chapt Revision: 2.1

PBS ERS Operator Commands

6.7. Stop Queue

NAME
qstop − stop pbs batch job processing at a destination

SYNOPSIS
qstop destination ...

DESCRIPTION
The qstop command directs that a destination should stop processing batch jobs. If the
destination is a execution queue, the server will cease scheduling jobs that reside in the
queue for execution. If the destination is a routing queue, the server will cease routing
jobs from that queue.

The qstop command sends a Manage request to the batch server specified by destina-
tion. The star ted queue attribute is set to FALSE.

In order to execute qstop, the user must have PBS Operation or Manager privilege.

OPERANDS
The qstop command accepts one or more destination operands. The operands are one of
three forms:

queue
@server
queue@server

If queue is specified, the request is to stop that queue at the default server. If the
@server form is given, the request is to stop all the queues at that server. If a full des-
tination identifier, queue@server , is given, the request is to stop the named queue at
the named server.

STANDARD ERROR
The qstop command will write a diagnostic message to standard error for each error oc-
currence.

EXIT STATUS
Upon successful processing of all the operands presented to the qstop command, the ex-
it status will be a value of zero.

If the qstop command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
pbs_server(8B), qstart(8B), and qmgr(8B)

Chapt Revision: 2.1 6-13

Operator Commands PBS ERS

6.8. Terminate Server Operation

NAME
qterm − terminate processing by a pbs batch server

SYNOPSIS
qterm [-t type] [server...]

DESCRIPTION
The qterm command terminates a batch server. The command sends a Server Shut-
down batch request to the server. When a server receives a Shutdown request, The
server will go into Terminating state. No new jobs will be allowed to be started into ex-
ecution nor enqueued into the server. The impact on jobs currently being run by the
server depends on the type of shut down requested as described below. The qterm com-
mand will not exit until the server has completed it shutdown procedure.

In order to execute qterm, the user must have PBS Operation or Manager privilege.

OPTIONS

-t type Specifies the type of shut down. The types are:

immediate
This is the default action if the -t option is not specified. All running
jobs are to immediately stop execution. The value passed in the Shut-
down request is {SHUT_IMMEDIATE }.

If checkpoint is supported, running jobs that can be checkpointed are
checkpointed, terminated, and requeued. If checkpoint is not support-
ed or the job cannot be checkpointed, running jobs are requeued if the
rer unable attribute is true. Otherwise, jobs are killed.

Normally the server will not shutdown until there are no jobs in the
running state. If the server is unable to contact the MOM of running
job, the job is still listed as running. The server may be forced down by
a second ‘‘qterm -t immediate’’ command.

delay If checkpoint is supported, running jobs that can be checkpointed are
checkpointed, terminated, and requeued. If a job cannot be checkpoint-
ed, but can be rerun, the job is terminated and requeued. Otherwise,
running jobs are allowed to continue to run. Note, the operator or ad-
ministrator may use the qrerun and qdel commands to remove running
jobs. The value passed in the Shutdown request is {SHUT_DELAY}.

quick This option is used when you wish that running jobs be left running
when the server shuts down. The server will cleanly shutdown and can
be restarted when desired. Upon restart of the server, jobs that contin-
ue to run are shown as running; jobs that terminated during the serv-
er ’s absence will be placed into the exiting state. The value passed in
the Shutdown request is

OPERANDS
The server operand specifies which servers are to shutdown. If no servers are given,
then the default server will be terminated.

STANDARD ERROR
The qterm command will write a diagnostic message to standard error for each error oc-
currence.

6-14 Chapt Revision: 2.1

PBS ERS Operator Commands

EXIT STATUS
Upon successful processing of all the operands presented to the qterm command, the ex-
it status will be a value of zero.

If the qterm command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
pbs_server(8B), qmgr(8B), pbs_resources_aix4(7B), pbs_resources_irix5(7B), pbs_re-
sources_sp2(7B), pbs_resources_sunos4(7B), and pbs_resources_unicos8(7B)

Chapt Revision: 2.1 6-15

Operator Commands PBS ERS

6-16 Chapt Revision: 2.1

PBS ERS Administrator Commands

7. Administrator Commands
A batch administrator is a user of the system who is granted the highest level of privilege in
the batch system. The batch administrator is able to perform all operator functions and ad-
ditionally modify queue and server configurations.

In addition to the general user commands available to an operator with increased privilege
and the special operator commands, the administrator has access to the qmgr command. In-
formation on the Resource Monitor and Schedulers are also provided for the administrator.

There are three different schedulers provided with PBS. The yacc/lex based scheduler is
driven by a procedure written in a ‘‘C - like language.’’ This BAtch Scheduler Language
(BASL) scheduler is sometimes referred to (incorrectly) as the ‘‘rules’’ based scheduler.

Another scheduler based on Tcl1 another is a C language framework. is provided for sites
which wish a different approach. The third scheduler is a framework (main program) writ-
ten in the C language. The site must supply the primary function (in C) which implements
the scheduling policy.

1 Tool Control Langague - see ‘‘Tcl and the Tk Toolkit’’ by John K. Ousterhout.

Chapt Revision: 2.1 7-1

Administrator Commands PBS ERS

7.1. PBS Job Schedulers

7.1.1. C Based Job Scheduler

NAME
pbs_sched_cc − pbs C scheduler

SYNOPSIS
pbs_sched [-a alarm] [-d home] [-L logfile] [-p file] [-S port] [-R port] [-c file]

DESCRIPTION
The pbs_sched program runs in conjunction with the PBS server. It queries the server
about the state of PBS and communicates with pbs_resmon to get information about
the status of running jobs, memory available etc. It then makes decisions as to what
jobs to run.

pbs_sched must be executed with root permission.

OPTIONS

-a alarm This specifies the time in seconds to wait for a schedule run to finish. If
a script takes too long to finish, an alarm signal is sent, and the sched-
uler is restarted. If a core file does not exist in the current directory,
abort() is called and a core file is generated. The default for alarm is
180 seconds.

-d home This specifies the PBS home directory, PBS_HOME. The current work-
ing directory of the scheduler is PBS_HOME/sched_priv. If this option
is not given, PBS_HOME defaults to $PBS_SERVER_HOME as defined
during the PBS build procedure.

-L logfile Specifies an absolute path name of the file to use as the log file. If not
specified, the scheduler will open a file named for the current date in
the PBS_HOME/sched_logs directory (see the -d option).

-p file This specifies the "print" file. Any output from the C code which is
written to standard out or standard error will be written to this file. If
this option is not given, the file used will be
PBS_HOME/sched_priv/sched_out . See the -d option.

-S port This specifies the port to use. If this option is not given, the default
port for the PBS scheduler is used.

-R port This specifies the resource monitor port to use. If this option is not giv-
en, the default port for the PBS mom is used. NOTE: this option only
makes the mom port available to the scheduler writer. It doesn’t force
them to use it.

-c file Specify a configuration file, see description below. If this is a relative
file name it will be relative to PBS_HOME/sched_priv, see the -d op-
tion. If the -c option is not supplied, pbs_sched will not attempt to open
a configuration file.

The options that specify file names may be absolute or relative. If they are relative,
their root directory will be PBS_HOME/sched_priv.

USAGE
This version of the scheduler requires knowledge of the C language and the PBS API.
Source code is provided for a main program for the scheduler. The site must supply the
heart of the program. When invoked, the main program performs general initialization

7-2 Chapt Revision: 2.1

PBS ERS Administrator Commands

and housekeeping chores. Then a locally supplied function, schedinit() is called to per-
form site specific initialization.

In the main loop, a locally supplied function, schedule() is called to make the scheduling
decisions and perform any required actions. Information about jobs and queues is ob-
tained from the Server through the standard PBS API as found in libifl.a. Information
about the execution host(s) is obtained from the Resource Monitor. Routines to commu-
nicate with the Resource Monitor are found in libnet.a.

If the processing takes more than the allotted time, the scheduler will restart itself.
The default amount of time is three minutes. This can be changed with the -a option.

On receipt of a SIGHUP signal, the scheduler will close and reopen its log file and
reread its configuration file (if any).

CONFIGURATION FILE
A configuration file may be specified with the -c option. This file may be used to specify
the hosts (servers) which are allowed to connect to pbs_sched. The hosts are specified
in the configuration file in a manor identical to that used in pbs_mom. There is one line
per host with the syntax:
$clienthost hostname
where clienthost and hostname are separated by white space.

Two host names are always allowed to connection to pbs_sched, "localhost" and the
name returned to pbs_sched by the system call gethostname(). These names need not
be specified in the configuration file.

The configuration file must be "secure". It must be owned by a user id and group id less
than 10 and not be world writable.

FILES

$PBS_SERVER_HOME/sched_priv
the default directory for configuration files, typically
(/usr/spool/pbs)/sched_priv.

Signal Handling
A C based scheduler will handle the following signals:

SIGHUP
The server will close and reopen its log file and reread the config file if one exists.

SIGALRM
If the site supplied scheduling module exceeds the time limit, the Alarm will cause
the scheduler to attempt to core dump and restart itself.

SIGINT and SIGTERM
Will result in an orderly shutdown of the scheduler.

All other signals have the default action installed.

EXIT STATUS
Upon normal termination, an exit status of zero is returned.

SEE ALSO
pbs_sched_rule(8B), pbs_sched_tcl(8B), pbs_server(8B), pbs_mom(8B), the PBS Exter-
nal Reference Specification, and the PBS Internal Design Specification.
PBS Internal Design Specification

Chapt Revision: 2.1 7-3

Administrator Commands PBS ERS

7.1.2. Yacc/lex Based Job Scheduler

NAME
pbs_sched_basl − pbs BASL scheduler

SYNOPSIS
pbs_sched [-d home] [-L logfile] [-p print_file] [-a alarm] [-S port] [-c configfile]

DESCRIPTION
The pbs_sched command starts the operation of a batch scheduler on the local host. It
runs in conjunction with the PBS server. It queries the server about the state of PBS
and communicates with pbs_mom to get information about the status of running jobs,
memory available etc. It then makes decisions as to what jobs to run.

Typically, this command will be in a local boot file such as /etc/rc.local .

pbs_sched must be executed with root permission.

OPTIONS

-d home
Specifies the name of the PBS home directory, PBS_HOME. If not specified, the
value of $PBS_SERVER_HOME as defined at compile time is used. Also see the
-L option.

-L logfile
Specifies an absolute path name of the file to use as the log file. If not specified,
the scheduler will open a file named for the current date in the
PBS_HOME/sched_logs directory. See the -d option.

-p print_file
This specifies the "print" file. Any output from the scheduler code which is written
to standard out or standard error will be written to this file. If this option is not
given, the file used will be $PBS_HOME/sched_priv/sched_out. See the -d option.

-a alarm
This specifies the time in seconds to wait for a schedule run to finish. If a schedul-
ing iteration takes too long to finish, an alarm signal is sent, and the scheduler is
restarted. If a core file does not exist in the current directory, abort() is called and
a core file is generated. The default for alarm is 180 seconds.

-S port
Specifies a port on which to talk to the server. This option is not required. It mere-
ly overides the default PBS scheduler port.

-c configfile
Specify a configuration file, see description below. If this is a relative file name it
will be relative to PBS_HOME/sched_priv, see the -d option. If the -c option is not
supplied, pbs_sched will not attempt to open a configuration file. In BASL, this
config file is almost always needed because it is where the list of servers, nodes,
and host resource queries are specified by the administrator.

USAGE
This version of the scheduler requires knowledge of the BASL language. The site must
first write a function called sched_main() (and all functions supporting it) using BASL
constructs, and then translate the functions into C using the BASL compiler basl2c ,
which would also attach a main program to the resulting code. This main program per-
forms general initialization and housekeeping chores such as setting up local socket to
communicate with the server running on the same machine, cd-ing to the priv directory,

7-4 Chapt Revision: 2.1

PBS ERS Administrator Commands

opening log files, opening configuration file (if any), setting up locks, forking the child to
become a daemon, initializing a scheduling cycle (i.e. get node attributes that are static
in nature), setting up the signal handlers, executing global initialization assignment
statements specified by the scheduler writer, and finally sitting on a loop waiting for a
scheduling command from the server. When the server sends the scheduler an appropri-
ate scheduling command {SCH_SCHEDULE_NEW, SCH_SCHEDULE_TERM, SCH_SCHED-
ULE_TIME, SCH_SCHEDULE_RECYC, SCH_SCHEDULE_CMD, SCH_SCHEDULE_FIRST }, infor-
mation about server(s), jobs, queues, and execution host(s) are obtained, and then
sched_main() is called.

SCHEDULING LANGUAGE
The BAtch Scheduling Language (BASL) is a C-like procedural language. It provides a
number of constructs and predefined functions that facilitate dealing with scheduling
issues. Information about a PBS server, the queues that it owns, jobs residing on each
queue, and the computational nodes where jobs can be run, are accessed via the BASL
data types Server, Que, Job, CNode, Set Server, Set Que, Set Job, and Set CNode.

The following simple sched_main() will cause the server to run all queued jobs on the lo-
cal server:

sched_main()
{

Server s;
Que q;
Job j;
Set Que queues;
Set Job jobs;

s = AllServersLocalHostGet(); // get local server
queues = ServerQueuesGet(s);

foreach(q in queues) {
jobs = QueJobsGet(q);
foreach(j in jobs) {

JobAction(j, SYNCRUN, NULLSTR);
}

}

}

For a more complete discussion of the Batch Scheduler Language, see basl2c(1B).

CONFIGURATION FILE
A configuration file may be specified with the -c option. This file is used to specify the
(1) hosts which are allowed to connect to pbs_sched, (2) the list of server hosts for which
the scheduler writer wishes the system to periodically check for status, queues, and jobs
info, (3) list of execution hosts for which the scheduler writer wants the system to peri-
odically check for information like state, property, and so on, and (4) various queries to
send to each execution host.

(1) specifying client hosts:
The hosts allowed to connect to pbs_sched are specified in the configuration file
in a manner identical to that used in pbs_mom. There is one line per host using
the syntax:

$clienthost hostname

Chapt Revision: 2.1 7-5

Administrator Commands PBS ERS

where clienthost and hostname are separated by white space. Two host
names are always allowed to connection to pbs_sched: "localhost" and the name
returned to pbs_sched by the system call gethostname(). These names need not
be specified in the configuration file.

(2) specifying list of servers:
The list of servers is specified in a one host per line manner, using the syntax:

$serverhost hostname port_number
or where $server_host, hostname, and port_number are separated by white
space.

If port_number is 0, then the default PBS server port will be used.

Regardless of what has been specified in the file, the list of servers will always in-
clude the local server - one running on the same host where the scheduler is run-
ning.

Within the BASL code, access to data of the list of servers is done by calling
AllServersGet(), or AllServersLocalHostGet() which returns the local server on
the list.

(3) specifying the list of execution hosts:
The list of execution hosts (nodes), whose MOMs are to be queried from the
scheduler, is specified in a one host per line manner, using the syntax:

$momhost hostname port_number

where $momhost, hostname, and port_number are separated by white space.

If port_number is 0, then the default PBS MOM port will be used.

The BASL function AllNodesGet() , or ServerNodesGet(AllServersLocalHostGet())
is available for getting the list of nodes known to the local system.

(4) specifying the list of host resources:
For specifying the list of host resource queries to send to each execution host’s
MOM, the following syntax is used:

$node node_name CNode..Get host_resource

node_name should be the same hostname string that was specified in a
$momhost line. A node_name value of "*" (wildcard) means to match any node.

Please consult section 9 of the PBS ERS (Resource Monitor/Resources) for a list
of possible values to host_resource parameter.

CNode..Get refers to the actual function name that is called from the scheduler
code to obtain the return values to host resource queries. The list of CN-
ode..Get function names that can appear in the configuration file are:

7-6 Chapt Revision: 2.1

PBS ERS Administrator Commands

STATIC:
================================
CNodePropertiesGet
CNodeVendorGet
CNodeNumCpusGet
CNodeOsGet
CNodeMemTotalGet[type]
CNodeNetworkBwGet[type]
CNodeSwapSpaceTotalGet[name]
CNodeDiskSpaceTotalGet[name]
CNodeDiskInBwGet[name]
CNodeDiskOutBwGet[name]
CNodeTapeSpaceTotalGet[name]
CNodeTapeInBwGet[name]
CNodeTapeOutBwGet[name]
CNodeSrfsSpaceTotalGet[name]
CNodeSrfsInBwGet[name]
CNodeSrfsOutBwGet[name]

DYNAMIC:
================================
CNodeIdletimeGet
CNodeLoadAveGet
CNodeMemAvailGet[type]
CNodeSwapSpaceAvailGet[name]
CNodeSwapInBwGet[name]
CNodeSwapOutBwGet[name]
CNodeDiskSpaceReservedGet[name]
CNodeDiskSpaceAvailGet[name]
CNodeTapeSpaceAvailGet[name]
CNodeSrfsSpaceReservedGet[name]
CNodeSrfsSpaceAvailGet[name]
CNodeCpuPercentIdleGet
CNodeCpuPercentSysGet
CNodeCpuPercentUserGet
CNodeCpuPercentGuestGet

STATIC function names return values that are obtained only during the first
scheduling cycle, or when the scheduler is instructed to reconfig; whereas, DY-
NAMIC function names return attribute values that are taken at every subse-
quent scheduling cycle.

name and type are arbitrarily defined. For example, you can choose to have
name defined as "$FASTDIR" for the CNodeSrfs* calls, and a sample configura-
tion file entry would look like:

$node unicos8 CNodeSrfsSpaceAvailGet[$FASTDIR]
quota[type=ares_avail,dir=$FASTDIR]

So in a BASL code, if you call CNodeSrfsSpaceAvailGet(node, "$FASTDIR"), then
it will return the value to the query "quota[type=ares_avail,dir=$FASTDIR]" (3rd
parameter) as sent to the node’s MOM.

By default, the scheduler has already internally defined the following mappings,

Chapt Revision: 2.1 7-7

Administrator Commands PBS ERS

which can be overriden in the configuration file:

keyword node_name CNode..Get host_resource
======= ========= ================ =============
$node * CNodeOsGet arch
$node * CNodeLoadAveGet loadave
$node * CNodeIdletimeGet idletime

The above means that for all declared nodes (via $momhost), the host queries
arch, loadave, and idletime will be sent to each node’s MOM. The value to
arch is obtained internally by the system during the first scheduling cycle be-
cause it falls under STATIC category, while values to loadave and idletime
are taken at every scheduling iteration because they fall under the DYNAMIC
category. Access to the return values is done by calling CNodeOsGet(node), CN-
odeLoadAveGet(node), and CNodeIdletimeGet(node), respectively. The following
are some sample $node arguments that you may put in the configuration file.

7-8 Chapt Revision: 2.1

PBS ERS Administrator Commands

node_name CNode..Get host res
================== ========================= ==========
<sunos4_nodename> CNodeIdletimeGet idletime
<sunos4_nodename> CNodeLoadAveGet loadave
<sunos4_nodename> CNodeMemTotalGet[real] physmem
<sunos4_nodename> CNodeMemTotalGet[virtual] totmem
<sunos4_nodename> CNodeMemAvailGet[virtual] availmem

<irix5_nodename> CNodeNumCpusGet ncpus
<irix5_nodename> CNodeMemTotalGet[real] physmem
<irix5_nodename> CNodeMemTotalGet[virtual] totmem
<irix5_nodename> CNodeIdletimeGet idletime
<irix5_nodename> CNodeLoadAveGet loadave
<irix5_nodename> CNodeMemAvailGet[virtual] availmem

<linux_nodename> CNodeNumCpusGet ncpus
<linux_nodename> CNodeMemTotalGet[real] physmem
<linux_nodename> CNodeMemTotalGet[virtual] totmem
<linux_nodename> CNodeIdletimeGet idletime
<linux_nodename> CNodeLoadAveGet loadave
<linux_nodename> CNodeMemAvailGet[virtual] availmem

<solaris5_nodename> CNodeIdletimeGet idletime
<solaris5_nodename> CNodeLoadAveGet loadave
<solaris5_nodename> CNodeNumCpusGet ncpus
<solaris5_nodename> CNodeMemTotalGet[real] physmem

<aix4_nodename> CNodeIdletimeGet idletime
<aix4_nodename> CNodeLoadAveGet loadave
<aix4_nodename> CNodeMemTotalGet[virtual] totmem
<aix4_nodename> CNodeMemAvailGet[virtual] availmem

<unicos8_nodename> CNodeIdletimeGet idletime
<unicos8_nodename> CNodeLoadAveGet loadave
<unicos8_nodename> CNodeNumCpusGet ncpus
<unicos8_nodename> CNodeMemTotalGet[real] physme
<unicos8_nodename> CNodeMemAvailGet[virtual] availmem
<unicos8_nodename> CNodeSwapSpaceTotalGet[primary] swaptotal
<unicos8_nodename> CNodeSwapSpaceAvailGet[primary] swapavail
<unicos8_nodename> CNodeSwapInBwGet[primary] swapinrate
<unicos8_nodename> CNodeSwapOutBwGet[primary] swapoutrate
<unicos8_nodename> CNodePercentIdleGet cpuidle
<unicos8_nodename> CNodePercentSysGet cpuunix
<unicos8_nodename> CNodePercentGuestGet cpuguest
<unicos8_nodename> CNodePercentUsrGet cpuuser
<unicos8_nodename> CNodeSrfsSpaceAvailGet[$FASTDIR] quota[type

=ares_avail,
dir=$FASTDIR]

<unicos8_nodename> CNodeSrfsSpaceAvailGet[$BIGDIR] quota[type
=ares_avail,
dir=$BIGDIR]

<unicos8_nodename> CNodeSrfsSpaceAvailGet[$WRKDIR] quota[type

Chapt Revision: 2.1 7-9

Administrator Commands PBS ERS

=ares_avail,
dir=$WRKDIR]

<sp2_nodename> CNodeLoadAveGet loadave

Suppose you have an execution host that is of irix5 os type, then the <ir-
ix5_node_name> entries will be consulted by the scheduler. The initial schedul-
ing cycle would involve sending the STATIC queries ncpus , physmem, totmem to
the execution host’s MOM, and access to return values of the queries is done via
CNodeNumCpusGet(node) , CNodeMemTotalGet(node, "real") , CNodeMem-
TotalGet(node, "virtual") respectively, where node is the CNode represen-
tation of the execution host. The subsequent scheduling cycles will only send DY-
NAMIC queries idletime , loadave , and availmem , and access to the return
values of the queries is done via CNodeIdleTimeGet(node) , CNodeLoadAveG-
et(node) , CNodeMemAvailGet(node, "virtual") . respectively.

"Later" entries in the config file take precedence.

The configuration file must be "secure". It must be owned by a user id and group id less than
10 and not be world writable.

On receipt of a SIGHUP signal, the scheduler will close and reopen its log file and reread its
configuration file (if any).

FILES

$PBS_SERVER_HOME/sched_priv
the default directory for configuration files, typically
(/usr/spool/pbs)/sched_priv.

Signal Handling
A C based scheduler will handle the following signals:

SIGHUP
The server will close and reopen its log file and reread the config file if one exists.

SIGALRM
If the site supplied scheduling module exceeds the time limit, the Alarm will cause
the scheduler to attempt to core dump and restart itself.

SIGINT and SIGTERM
Will result in an orderly shutdown of the scheduler.

All other signals have the default action installed.

EXIT STATUS
Upon normal termination, an exit status of zero is returned.

SEE ALSO
basl2c(1B), pbs_sched_tcl(8B), pbs_server(8B), pbs_mom(8B), the PBS External Refer-
ence Specification, and the PBS Internal Design Specification.
PBS Internal Design Specification

7-10 Chapt Revision: 2.1

PBS ERS Administrator Commands

7.1.3. Tcl Based Job Scheduler

NAME
pbs_sched_tcl − pbs Tcl scheduler

SYNOPSIS
pbs_sched [-a alarm] [-b file] [-d home] [-i file] [-L logfile] [-p file] [-S port] [-t file] [-v]
[-c file]

DESCRIPTION
The pbs_sched program runs in conjunction with the PBS server. It queries the server
about the state of PBS and communicates with pbs_mom to get information about the
status of running jobs, memory available etc. It then makes decisions as to what jobs to
run.

pbs_sched must be executed with root permission.

OPTIONS

-a alarm This specifies the time in seconds to wait for a schedule run to finish. If
a script takes too long to finish, an alarm signal is sent, and the sched-
uler is restarted. If a core file does not exist in the current directory,
abort() is called and a core file is generated. The default for alarm is
180 seconds.

-b file This specifies the "body" file. The file given is read into memory once at
program start or after the program receives a SIGHUP and executed
each time the scheduler is awakened by the server. If this option is not
given, the file "sched_tcl" in the directory PBS_HOME/sched_priv is
read for the body code.

-d home This specifies the PBS home directory, PBS_HOME. The current work-
ing directory of the scheduler is PBS_HOME/sched_priv. If this option
is not given, PBS_HOME defaults to $PBS_SERVER_HOME as defined
during the PBS build procedure.

-i file This specifies the "initialize" file. The file given is executed once before
the main processing loop is entered. If this option is not given, no ini-
tialization code is executed.

-L logfile Specifies an absolute path name of the file to use as the log file. If not
specified, the scheduler will open a file named for the current date in
the PBS_HOME/sched_logs directory (see the -d option).

-p file This specifies the "print" file. Any output from the Tcl code which is
written to standard out or standard error will be written to this file. If
this option is not given, the file used will be
PBS_HOME/sched_priv/sched_out. See the -d option.

-S port This specifies the port to use. If this option is not given, the default
port for the PBS scheduler is used.

-t file This specifies the "terminator" file. If a QUIT command is sent from
the server, this code is executed before the scheduler exits. If this op-
tion is not given, no special termination handling is done.

-v This puts the scheduler into "verbose" mode. Any errors will be shown
no matter what this may be set to, but some "uninteresting" events
may be logged by using this flag. An example is a message each time
the server contacts the scheduler.

Chapt Revision: 2.1 7-11

Administrator Commands PBS ERS

-c file Specify a configuration file, see description below. If this is a relative
file name it will be relative to PBS_HOME/sched_priv, see the -d op-
tion. If the -c option is not supplied, pbs_sched will not attempt to open
a configuration file.

The options that specify file names may be absolute or relative. If they are relative,
their root directory will be PBS_HOME/sched_priv.

USAGE
This version of the scheduler requires knowledge of the Tcl language. A set of functions
to communicate with the PBS server and resource monitor have been added to those
normally available with Tcl. All these calls will set the Tcl variable "pbs_errno" to a val-
ue to indicate if an error occured. In all cases, the value "0" means no error. If a call to
a Resource Monitor function is made, any error value will come from the system sup-
plied errno variable. If the function call communicates with the PBS Server, any error
value will come from the error number returned by the server.

openrm host ?port?
Creates a connection to the PBS Resource Monitor on host using port as the port
number or the standard port for the resource monitor if it is not given. A connec-
tion handle is returned. If the open is successful, this will be a non-negative inte-
ger. If not, an error occurred.

closerm connection
The parameter connection is a handle to a resource monitor which was previous-
ly returned from openrm. This connection is closed. Nothing is returned.

downrm connection
Sends a command to the connected resource monitor to shutdown. Nothing is re-
turned.

configrm connection filename
Sends a command to the connected resource monitor to read the configuration file
given by filename. If this is successful, a "0" is returned, otherwise, "-1" is re-
turned.

addreq connection request
A resource request is sent to the connected resource monitor. If this is successful,
a "0" is returned, otherwise, "-1" is returned.

getreq connection
One resource request response from the connected resource monitor is returned.
If an error occurred or there are no more responses, an empty string is returned.

allreq request
A resource request is sent to all connected resource monitors. The number of
streams acted upon is returned.

flushreq
All resource requests previously sent to all connected resource monitors are
flushed out to the network. Nothing is returned.

activereq
The connection number of the next stream with something to read is returned. If
there is nothing to read from any of the connections, a negative number is re-
turned.

fullresp flag
Evaluates flag as a boolean value and sets the response mode used by getreq to

7-12 Chapt Revision: 2.1

PBS ERS Administrator Commands

full if flag evaluates to "true". The full return from a resource monitor includes
the original request followed by an equal sign followed by the response. The de-
fault situation is only to return the response following the equal sign. If a script
needs to "see" the entire line, this function may be used.

pbsstatserv
The server is sent a status request for information about the server itself. If the
request succeeds, a list with three elements is returned, otherwise an empty
string is returned. The first element is the server’s name. The second is a list of
attributes. The third is the "text" associated with the server (usually blank).

pbsstatjob
The server is sent a status request for information about the all jobs resident
within the server. If the request succeeds, a list is returned, otherwise an empty
string is returned. The list contains an entry for each job. Each element is a list
with three elements. The first is the job’s jobid. The second is a list of attributes.
The attribute names which specify resources will have a name of the form "Re-
source_List:name" where "name" is the resource name. The third is the "text" as-
sociated with the job (usually blank).

pbsstatque
The server is sent a status request for information about all queues resident
within the server. If the request succeeds, a list is returned, otherwise an empty
string is returned. The list contains an entry for each queue. Each element is a
list with three elements. This first is the queue’s name. The second is a list of
attributes similar to pbsstatjob. The third is the "text" associated with the
queue (usually blank).

pbsstatnode
The server is sent a status request for information about all nodes defined within
the server. If the request succeeds, a list is returned, otherwise an empty string
is returned. The list contains an entry for each node. Each element is a list with
three elements. This first is the nodes’s name. The second is a list of attributes
similar to pbsstatjob. The third is the "text" associated with the node (usually
blank).

pbsselstat
The server is sent a status request for information about the all runnable jobs
resident within the server. If the request succeeds, a list similar to pbsstatjob is
returned, otherwise an empty string is returned.

pbsrunjob jobid ?location?
Run the job given by jobid at the location given by location. If location is not giv-
en, the default location is used. If this is successful, a "0" is returned, otherwise,
"-1" is returned.

pbsasyrunjob jobid ?location?
Run the job given by jobid at the location given by location without waiting for a
positive response that the job has actually started. If location is not given, the
default location is used. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

pbsrerunjob jobid
Re-runs the job given by jobid. If this is successful, a "0" is returned, otherwise,
"-1" is returned.

pbsdeljob jobid
Delete the job given by jobid. If this is successful, a "0" is returned, otherwise,

Chapt Revision: 2.1 7-13

Administrator Commands PBS ERS

"-1" is returned.

pbsholdjob jobid
Place a hold on the job given by jobid. If this is successful, a "0" is returned, oth-
erwise, "-1" is returned.

pbsmovejob jobid ?location?
Move the job given by jobid to the location given by location. If location is not
given, the default location is used. If this is successful, a "0" is returned, other-
wise, "-1" is returned.

pbsqenable queue
Set the "enabled" attribute for the queue given by queue to true. If this is suc-
cessful, a "0" is returned, otherwise, "-1" is returned.

pbsqdisable queue
Set the "enabled" attribute for the queue given by queue to false. If this is suc-
cessful, a "0" is returned, otherwise, "-1" is returned.

pbsqstart queue
Set the "started" attribute for the queue given by queue to true. If this is suc-
cessful, a "0" is returned, otherwise, "-1" is returned.

pbsqstop queue
Set the "started" attribute for the queue given by queue to false. If this is suc-
cessful, a "0" is returned, otherwise, "-1" is returned.

pbsalterjob jobid attribute_list
Alter the attributes for a job specified by jobid. The parameter attribute_list is
the list of attributes to be altered. There can be more than one. Each attribute
consists of a list of three elements. The first is the name, the second the resource
and the third is the new value. If the alter is successful, a "0" is returned, other-
wise, "-1" is returned.

pbsrescquery resource_list
Obtain information about the resources specified by resource_list. This will be a
list of strings. If the request succeeds, a list with the same number of elements
as resource_list is returned. Each element in this list will be a list with four
numbers. The numbers specify available, allocated, reserved, and down in that
order.

pbsrescreserve resource_id resource_list
Make (or extend) a reservation for the resources specified by resource_list which
will be given as a list of strings. The parameter resource_id is a number which
provides a unique identifier for a reservation being tracked by the server. If re-
source_id is given as "0", a new reservation is created. In this case, a new identi-
fier is generated and returned by the function. If an old identifier is used, that
same number will be returned. The Tcl variable "pbs_errno" will be set to indi-
cate the success or failure of the reservation.

pbsrescrelease resource_id
The reservation specified by resource_id is released.

The two following commands are not normally used by the scheduler. They are includ-
ed here because there could be a need for a scheduler to contact a server other than the
one which it normally communicates with. Also, these commands are used by the Tcl
tools.

pbsconnect ?server?
Make a connection to the named server or the default server if a parameter is not

7-14 Chapt Revision: 2.1

PBS ERS Administrator Commands

given. Only one connection to a server is allowed at any one time.

pbsdisconnect
Disconnect from the currently connected server.

The above Tcl functions use PBS interface library calls for communication with the
server and the PBS resource monitor library to communicate with pbs_mom.

datetime ?day? ?time?
The number of arguments used determine the type of date to be calculated. With
no arguments, the current POSIX date is returned. This is an integer in seconds.

With one argument there are two possible formats. The first is a 12 (or more)
character string specifying a complete date in the following format:
YYMMDDhhmmss

All characters must be digits. The year (YY) is given by the first two (or more)
characters and is the number of years since 1900. The month (MM) is the num-
ber of the month [01-12]. The day (DD) is the day of the month [01-32]. The
hour (hh) is the hour of the day [00-23]. The minute (mm) is minutes after the
hour [00-59]. The second (ss) is seconds after the minute [00-59]. The POSIX
date for the given date/time is returned.

The second option with one argument is a relative time. The format for this is
HH:MM:SS

With hours (HH), minutes (MM) and seconds (SS) being separated by colons ":".
The number returned in this case will be the number of seconds in the interval
specified, not an absolute POSIX date.

With two arguments a relative date is calculated. The first argument specifies a
day of the week and must be one of the following strings: "Sun", "Mon", "Tue",
"Wed", "Thr", "Fri", or "Sat". The second argument is a relative time as given
above. The POSIX date calculated will be the day of the week given which fol-
lows the current day, and the time given in the second argument. For example, if
the current day was Monday, and the two arguments were "Fri" and "04:30:00",
the date calculated would be the POSIX date for the Friday following the current
Monday, at four-thirty in the morning. If the day specified and the current day
are the same, the current day is used, not the day one week later.

strftime format time
This function calls the POSIX function strftime(). It requires two arguments.
The first is a format string. The format conventions are the same as those for the
POSIX function strftime(). The second argument is POSIX calendar time in sec-
ond as returned by datetime. It returns a string based on the format given. This
gives the ability to extract information about a time, or format it for printing.

The Tcl interpreter is started at program initialization and after a reset (the receipt of a
SIGHUP signal). It is not deleted between scheduling runs so variables which are set
in one can be accessed later.

The "initialize" and "terminator" files are run with no supplied connection to the server.
This means that none of the above functions which talk to the server will work unless
pbsconnect is called first. The "body" file is run with a connection to the server al-
ready established.

CONFIGURATION FILE
A configuration file may be specified with the -c option. This file may be used to specify

Chapt Revision: 2.1 7-15

Administrator Commands PBS ERS

the hosts (servers) which are allowed to connect to pbs_sched. The hosts are specified
in the configuration file in a manor identical to that used in pbs_mom. There is one line
per host with the syntax:
$clienthost hostname
where clienthost and hostname are separated by white space.

Two host names are always allowed to connection to pbs_sched, "localhost" and the
name returned to pbs_sched by the system call gethostname(). These names need not
be specified in the configuration file.

The configuration file must be "secure". It must be owned by a user id and group id less
than 10 and not be world writable.

FILES

$PBS_SERVER_HOME/sched_priv
the default directory for configuration files, typically
(/usr/spool/pbs)/sched_priv.

Signal Handling
A C based scheduler will handle the following signals:

SIGHUP
The server will close and reopen its log file and reread the config file if one exists.

SIGALRM
If the site supplied scheduling module exceeds the time limit, the Alarm will cause
the scheduler to attempt to core dump and restart itself.

SIGINT and SIGTERM
Will result in an orderly shutdown of the scheduler.

All other signals have the default action installed.

EXIT STATUS
Upon normal termination, an exit status of zero is returned.

SEE ALSO
pbs_scheduler_cc(8B), pbs_scheduler_rule(8B), pbs_server(8B), pbs_mom(8B), the PBS
External Reference Specification, and the PBS Internal Design Specification.
PBS Internal Design Specification

7-16 Chapt Revision: 2.1

PBS ERS Administrator Commands

7.2. Node Management

NAME
pbsnodes − pbs node manipulation

SYNOPSIS
pbsnodes [-{c|o|r}] [-s server] [nodename ...]
pbsnodes -{a|l} [-s server]

DESCRIPTION
The pbsnodes command is used to mark nodes down, free or off line. It can also be
used to list nodes and their state. Node information is obtained by sending a request to
the PBS job server.

If pbsnodes is run without options (other than −s), the nodes specified as operands are
marked DOWN and unavailable to run jobs. It is importaint that all the nodes known
to be down are given as arguments on the command line. This is because nodes which
are not listed are assumed to be UP and will be indicated as such if they were previous-
ly marked DOWN. None of the other options will change the marking for nodes which
are not given on the command line.

In order to execute pbsnodes with other than the −a or −l options, the user must have
PBS Manager or Operator privilege.

OPTIONS

-a All nodes and their attributes are listed. The attributes include "state"
and "properities".

-c Clear OFFLINE or DOWN from listed nodes. The listed nodes are
"free" to be allocated to jobs.

-l List all nodes marked in any way.

-o Mark listed nodes as OFFLINE even if currently in use. This is differ-
ent from being marked DOWN. An automated script that checks nodes
being up or down and calls pbsnodes with a list of nodes down will not
change the status of nodes marked OFFLINE. This gives the adminis-
trator a tool to hold a node out of service without changing the auto-
matic script.

-r clear OFFLINE from listed nodes.

-r specify the PBS server to which to connect.

SEE ALSO
pbs_server(8B) and the PBS External Reference Specification

Chapt Revision: 2.1 7-17

Administrator Commands PBS ERS

7.3. Manage Server

NAME
qmgr − pbs batch system manager

SYNOPSIS
qmgr [-a] [-c command] [-e] [-n] [-z] [server...]

DESCRIPTION
The qmgr command provides an administrator interface to the batch system.

The command reads directives from standard input. The syntax of each directive is
checked and the appropriate request is sent to the batch server or servers.

The list or print subcommands of qmgr can be executed by general users. Creating or
deleting a queue requries PBS Manager privilege. Setting or unsetting server or queue
attributes requires PBS Operator or Manager privilege.

OPTIONS

-a Abort qmgr on any syntax errors or any requests rejected by a server.

-c command Execute a single command and exit qmgr.

-e Echo all commands to standard output.

-n No commands are executed, syntax checking only is performed.

-z No errors are written to standard error.

OPERANDS
The server operands identify the name of the batch server to which the administrator
requests are sent. Each server conforms to the following syntax:

host_name[:port]
where host_name is the network name of the host on which the server is running and
port is the port number to which to connect. If port is not specified, the default port
number is used.

If server is not specified, the administrator requests are sent to the local server.

STANDARD INPUT
The qmgr command reads standard input for directives until end of file is reached, or
the exit or quit directive is read.

STANDARD OUTPUT
If Standard Output is connected to a terminal, a command prompt will be written to
standard output when qmgr is ready to read a directive.

If the -e option is specified, qmgr will echo the directives read from standard input to
standard output.

STANDARD ERROR
If the -z option is not specified, the qmgr command will write a diagnostic message to
standard error for each error occurrence.

EXTENDED DESCRIPTION
If qmgr is invoked without the -c option and standard output is connected to a termi-
nal, qmgr will write a prompt to standard output and read a directive from standard in-
put.

7-18 Chapt Revision: 2.1

PBS ERS Administrator Commands

Commands can be abbreviated to their minimum unambiguous form. A command is
terminated by a new line character or a semicolon, ";", character. Multiple commands
may be entered on a single line. A command may extend across lines by escaping the
new line character with a back-slash "\".

Comments begin with the # character and continue to end of the line. Comments and
blank lines are ignored by qmgr.

DIRECTIVE SYNTAX
A qmgr directive is one of the following forms:

command server [names] [attr OP value[,attr OP value,...]]
command queue [names] [attr OP value[,attr OP value,...]]
command node [names] [attr OP value[,attr OP value,...]]

Where,

command is the command to perform on a object. Commands are:

active sets the active objects. If the active objects are specified, and the
name is not given in a qmgr cmd the active object names will be
used.

create is to create a new object, applies to queues and nodes.

delete is to destroy an existing object, applies to queues and nodes.

set is to define or alter attribute values of the object.

unset is to clear the value of attributes of the object. Note, this form
does not accept an OP and value, only the attribute name.

list is to list the current attributes and associated values of the object.

print is to print all the queue and server attributes in a format that will
be usable as input to the qmgr command.

names is a list of one or more names of specific objects The name list is in the form:
[name][@server][,queue_name[@server]...]

with no intervening white space. The name of an object is declared when the
object is first created. If the name is @server, then all the objects of specified
type at the server will be effected.

attr specifies the name of an attribute of the object which is to be set or modified.
The attributes of objects are described in section 2 of the ERS. If the at-
tribute is one which consist of a set of resources, then the attribute is speci-
fied in the form:

attribute_name .resource_name

OP operation to be performed with the attribute and its value:

= set the value of the attribute. If the attribute has a existing value, the
current value is replaced with the new value.

+= increase the current value of the attribute by the amount in the new
value.

-= decrease the current value of the attribute by the amount in the new
value.

value the value to assign to an attribute. If the value includes white space, com-
mas or other special characters, such as the # character, the value string
must be inclosed in quote marks (").

The following are examples of qmgr directives:

Chapt Revision: 2.1 7-19

Administrator Commands PBS ERS

create queue fast priority=10,queue_type=e,enabled = true,max_running=0
set queue fast max_running +=2
create queue little
set queue little resources_max.mem=8mw,resources_max.cput=10
unset queue fast max_running
set node state = "down,offline"
active server s1,s2,s3
list queue @server1
set queue max_running = 10 - uses active queues

EXIT STATUS
Upon successful processing of all the operands presented to the qmgr command, the ex-
it status will be a value of zero.

If the qmgr command fails to process any operand, the command exits with a value
greater than zero.

SEE ALSO
pbs_server(8B), pbs_queue_attributes(7B), pbs_server_attributes(7B), qstart(8B),
qstop(8B), qenable(8B), qdisable(8), and the PBS External Reference Specification

7-20 Chapt Revision: 2.1

PBS ERS Administrator Commands

8. The PBS Job Scheduler

The PBS Job Scheduler is a daemon that performs job scheduling for a particular PBS server.

8.1. Scheduler Overview

The PBS Scheduler performs job scheduling upon request from a PBS Server. Except for the
initial message, which is transmitted through a normal socket connection, the Server and
Scheduler communicate by using functions defined in the pbs_ifl (PBS interface library).

The entity which is given the role of scheduler for PBS may be a special purpose program or
even a shell script. The fundamental parts have been provided to offer maximum flexability.
Two example schedulers have been included. One scheduler is based on yacc and lex and
creates its own language BASL, for BAtch Scheduler Language. The other scheduler is
based on One is based on tcl and augments an already existing language with some new
commands that give access to PBS functions. The other is a C language framework.

8.2. The Scheduling Cycle

If the scheduler has been asked to initiate a scheduling cycle, it first reverses the sense of the
connection between the scheduler and server, and requests information concerning the cur-
rent job pool from the server, and possibly, information about the queues that the server has
defined. The scheduler then evaluates the job set according to the procedure expressed in the
language file, and determines if any action should be taken concerning any jobs in the pool.
At the end of the cycle, the scheduler once more resumes listening on the designated port.

The scheduler may also request information from one or more Resource Monitors. Resource
Monitors are daemons that provide information about the state of the resources of particular
machines, or collections of processors, such as clusters or MPP partitions. Communication
between the scheduler and resource Monitors is conducted over a well-known port. The pro-
tocol used between the scheduler and a resource Monitor is described in the PBS Scheduler
IDS.

8.3. The Tcl Scheduler

Tcl is a flexable language which can be extended fairly easily. The library to communicate
with the Resource Monitor and the regular PBS Interface Library have been wrapped into
Tcl commands to create a special purpose tcl interpreter which waits to be awakened by the
PBS server before swinging into action. The indispensable book for dealing with Tcl is Tcl
and the Tk Toolkit by John K. Ousterhout.

The Tcl scheduler man page gives all the particulars about the functions which are available
to access the PBS Resource Monitor and Server. The section of the ERS which describes the
Resource Monitor discusses the information available to the script writter for a particular
type of system.

8.4. The C Scheduler

This is a skeleton program designed as a starting point for someone to use to create a com-
plete C language scheduler program. It consists of a main program that processes options
and sets up the network connection to the server. It was patterned after the Tcl scheduler
main program in the hope it would not need to be chaneged yet the scheduler algorithm
could still modified easily. A directory of examples is included that show the required entry
points for the scheduler writter.

Chapt Revision: 2.1 8-21

Job Scheduler PBS ERS

[Page intentionally left bank.]

8-22 Chapt Revision: 2.1

PBS ERS Job Scheduler

9. Resource Monitor
This section describes the PBS resource monitor functions of the Machine Oriented Miniserv-
er (MOM). MOM is the part of PBS which is machine dependent rather than pure POSIX.
The resource monitor communicates with the world (mainly the PBS scheduler) over the net-
work. All the resource requests discussed below should be sent in as large a group as practi-
cal. This helps reduce the impact on the machine answering the request because pbs_mom
tries to gather information only once for each request. Each resource reported within each
request will then also be consistent with all others.

Each resource request to pbs_mom is sent with a command number telling what the rest of
the request will contain. For the command "tell me about these resources", the following
strings are each a separate resource request. These consist of a resource name with parame-
ters inclosed in square brackets. Each parameter has a parameter name followed by an
equal sign and then a value. For example size[fs=/tmp] .

9.1. Resources

The machines and operating systems supported by pbs_mom are

- Cray systems using Unicos 8, 9 or 10, or Unicos MK 2

- IBM 590 Workstations using AIX 4

- IBM SP using AIX 4 with PSSP 2.1 or PSSP 3.1.

- Silicon Graphics systems using IRIX 5.x or 6.x,

- Sun Sparc using SunOS 4.1.xor Solaris 2.5 (5.5),

- Fujitsu VPP300 systems using UXP/V 4.1 ES,

- AMD/Intel/Cyrix systems using Linuxor FreeBSD

All of these machines will support a standard list of resources.

arch This returns a string which specifies the machine architecture of the host being
queried. By default, it will be one of: "aix4", "irix5", "fujitsu", "irix6", "irix6array", "lin-
ux", "freebsd", "solaris5", "sunos4", "unicos8" or "unicosmk2". The string returned may
be changed by adding a static resource or shell command to Mom’s configuration file.
The value of the configuration file entry will override that of the standard return for
arch.

Note, an configure file entry with the same name as any standard resource will override
the standard value when reported to a resource request from a privileged port on a
client host . A resource request from an unprivileged port on a restricted host will re-
ceive the standard value; the configure file entries are ignored.

cput This reports cpu time in seconds. Two different parameters are accepted. One is proc
which can be used to specify a process, the other is session which can be used to specify
a session. For example: cput[proc=8765] and cput[session=4567] .

idletime
This is the time in seconds in which no keystroke or mouse movement has taken place
on any terminal connected to the system.

loadave
This reports the smoothed system loadave (number of processes in the kernel run
queue).

mem This reports memory usage in bytes. The proc and session parameters are accepted.
For example: mem[proc=8765] and mem[session=4567] .

Chapt Revision: 2.4 9-1

Resource Monitor PBS ERS

ncpus Returns the number of processors that are available.

nsessions
Returns the number of sessions which exist in the system. Sessions owned by root are
excluded. No parameters are allowed.

nusers
Reports the number of users who have processes running in the system, excluding root.
No parameters are allowed.

pids Reports a list of processes for a session. A parameter session must be given. For exam-
ple pids[session=34615] .

physmem
Returns the physical (main) memory size in kilobytes.

sessions
This will return a list of the sessions which exist in the system. This is different from
PBS ‘‘jobs’’ and the sessions listed may not be part of any PBS job. Sessions owned by
root are excluded. No parameters are allowed. (Was ‘‘jobs’’ in prior versions)

size Reports the size of file system objects in kilobytes. Two different parameters may be
given. One is file which specifies a filename whose size is returned. The other is fs
which specifies a directory in a file system which is examined to find the amount of free
space available.

uname
This returns a string with the POSIX specified information returned from the uname()
function spearated by spaces. The strings are in order: sysname , nodename , release ,
version and machine .

validuser
This function returns a string of either yes or no if the user name is valid, i.e. has a
password entry. A parameter of user= name must be given. For example: validus-
er[user=joe] .

walltime
Reports the time in seconds which a proc or session has existed in the system.

The following resources formerly were available under prior versions of PBS built with
{NEEDNODES } from pbs_mom: avail, reserve, totpool, and usepool.

They are now available from the job server, pbs_server, via the standard PBS API. See the
man page for pbs_rescquery () for more information.

The following are general examples of resource queries to pbs_mom:
pids[session=456]
mem[proc=123]
size[file=/etc/passwd]
idletime

In the given order, these resource requests would return a list of pid’s for the session "456",
the memory usage for process "123", the size of the file "/etc/passwd", and the idletime of the
system.

9.1.1. SunOS Resources

On a Sun system running SunOS, PBS supports several resources in additon to
the above list.

availmem
Returns the virtual memory available to be used.

quota Returns information about disk quotas. Several parameters are used. The first must
be type which can have a value of harddata, softdata, currdata, hardfile, softfile, cur-

9-2 Chapt Revision: 2.4

PBS ERS Resource Monitor

rfile, timedata or timefile. The second must be dir which is used to specify the directory
of the file system for which quota information is desired. The last parameter must be
user which is used to specify the user name or id number whose quota information is to
be retrieved. The type "harddata" returns the hard limit for data storage in kilobytes.
The type "softdata" returns the warning limit for data storage in kilobytes. The type
"currdata" returns the current usage of data storage in kilobytes. The type "hardfile"
returns the hard limit for the number of files. The type "softfile" returns the warning
limit for the number of files. The type "currfile" returns the current number of files.
The type "timedata" returns the number of seconds that a user has left in the grace pe-
riod for excessive disk use, or zero if the grace period is not active. The type "timefile"
returns the number of seconds that a user has left in the grace period for having an ex-
cessive number of files, or zero if the grace period is not active.

resi Returns the resident memory size in kilobytes for a proc or session.

totmem
Returns the total virtual memory which exists in the system in kilobytes.

9.1.2. Digital Unix

The resources for systems running Digital Unix include the standard set plus:

platform
Returns the cpu type as a string.

9.1.3. FreeBSD Resources

The FreeBSD resources include the standard set plus all those supported by the Sun under
SunOS except totmem and availmem.

9.1.4. SGI Resources

The Silicon Graphics resources for either Irix 5 or 6 include the standard set plus all those
supported by the Sun under SunOS. If the MOM is built for "irix6array", an additional re-
source is available:

availmask
Return a MAXCNODES-bit string with a ’1’ in each position where there are two CPUs
available for a node.

9.1.5. Solaris Resources

The Sun Solaris resources include the standard set with the addition of the following.

platform
Returns the cpu type as a string, for example SUNW,Ultra-1 .

9.1.6. Fujitsu Resources

The Fujitsu UXP/V resources include the standard set with the addition of the following.

totmem
Returns the total virtual memory which exists in the system in kilobytes.

availmem
Returns the virtual memory available to be used.

9.1.7. Cray Unicos Resources

Cray Unicos has some fundamental differences from both the Sun and SGI. It does not use
virtual memory and it has a much more sophisticated quota system. Some of the same re-
source names are used with slightly different meanings. All of the standard resources are in-
cluded as well as all the resources of the SGI except "walltime". Unicos uses a periodic data
gathering routine to calculate swap rate and cpu idle values. The time period that is used for

Chapt Revision: 2.4 9-3

Resource Monitor PBS ERS

each calculation is SAMPLE_DELTA which is set to 10 seconds by default.

availmem
Returns the memory which is available for use by programs.

cpuidle
This is the percent of idle time that all the processors have experienced within the pre-
vious SAMPLE_DELTA seconds. This is a time filtered value.

cpuguest
This is the percent of time that all the processors have spent running a guest operating
system within the previous SAMPLE_DELTA seconds. This is a time filtered value.

cpusysw
This is the percent of time that all the processors have spent in system wait within the
previous SAMPLE_DELTA seconds. This is a time filtered value.

cpuunix
This is the percent of time that all the processors have spent running kernel code with-
in the previous SAMPLE_DELTA seconds. This is a time filtered value.

cpuuser
This is the percent of time that all the processors have spent running user code within
the previous SAMPLE_DELTA seconds. This is a time filtered value.

totmem
Returns the total memory in kilobytes minus what is taken by the kernel.

swapavail
The number of characters of free space in the swap device(s).

swapinrate
The swap in activity within the previous SAMPLE_DELTA seconds in characters per
second. This is also a time filtered value.

swapoutrate
The swap out activity within the previous SAMPLE_DELTA seconds in characters per
second. This is also a time filtered value.

swaprate
The swap activity within the previous SAMPLE_DELTA seconds in characters per sec-
ond. This includes both swap in and swap out transfers and is time filtered such that
previous values of swaprate are used to smooth the current calculated value.

swaptotal
The total number of characters in the swap device(s).

swapused
The number of characters of active data in the swap device(s).

quota The same quota types as the Sun and SGI are supported by the C90. The cray sup-
ports several others as well. The additional types only operate if the resource monitor
is compiled with the symbol SRFS. They are "snap_avail", "ares_avail", "res_total",
"soft_res", "delta" and "reserve". Additionally, if SRFSis defined, the "dir" attribute can
specify one of several special directories by starting with a dollar sign ($) character.
The allowed special names are $TMPDIR, $BIGDIR , $FASTDIR or $WRKDIR. These
names are read from the file /etc/tmpdir.conf so in theory they could be changed
but in practice they have been hardwired into MOM and the Server as resources. The
file just gives the administrator the ability to change the actual directory where space
will be allocated for a user making a SRFS request.

If the "type" attribute is one of the SRFS values, there can be no other parameters. If
the "type" attribute is one of the standard values, there must be one more parameter. It
can have a name of "user", "group" or "account" and a value of a name or id number.

9-4 Chapt Revision: 2.4

PBS ERS Resource Monitor

The standard types have the same meaning as the other machines. The meanings of
the SRFS types are very UNICOS specific. They are snap_avail, ares_avail, res_total,
soft_res, delta, and reserve. The type "snap_avail" returns the amount of total space, in
characters. The type "ares_avail" returns snap_avail less unused job reserved space.
The type "res_total" returns the total amount of space reserved for jobs. The type
"soft_res" returns "true" if soft reservation is allowed and "false" otherwise. The type
"delta" returns the setting of over or under commitment. The type "reserve" returns the
number of characters committed to "srfs_assist" mode jobs. For more information, see
the UNICOS SRFS documentation.

srfs_reserve
This gives the ability to set the number of characters committed to "srfs_assist" mode
jobs. The number is not a delta value so if there is more than one job in "srfs_assist"
mode, their requests must be added together before making this call.

9.1.8. Cray Unicos MK 2 Resources

Cray Unicos MK 2 has some of the same resources as Unicos. Quite a few are missing be-
cause Unicos MK 2 typically comes in a "binary" release that does not include header files
that allow programs such as PBS’s MOM to retrieve information about processes in a general
way. The resources available are "cput", "totmem", "availmem", "ncpus" (the comment for
this says "Number of started processors" but it does not show the number of PEs), "phys-
mem", "size", "idletime" and "quota".

In addition to these, PBS under Unicos/MK2 support the following resources:

mppe_app
The number of application PEs currently configured.

mppe_free
The total number of application PEs currently unallocated.

mppe_avail
The size of largest contiguous block of application PEs.

mppe_info
Returns the above three resources at the same time (intended to provide a scheduler in-
terface with lower overhead).

9.1.9. IBM SP

Basically, the SP is a special case of AIX. However, because the SP Parallel Operating Envi-
ronment works outside of PBS PBS does not have access to memory usage or cpu time of
tasks other than serial processes run from the job script.

9.2. Libraries

A number of libraries exist to communicate with MOM. One is specialized as a Resource
Monitor interface and another as a Task Manager interface. There is also a general network
interface that uses UDP. These libraries are described below.

9.2.1. Resource Monitor Library

The resource monitor library contains functions to facilitate communication with the re-
source monitor. It is set up to make it easy to connect to several resource monitors and han-
dle the network communication efficiently. See the IDS for details.

9.2.2. Task Management Library

Chapt Revision: 2.4 9-5

Resource Monitor PBS ERS

tm_init, tm_nodeinfo, tm_poll, tm_notify, tm_spawn, tm_kill, tm_obit, tm_taskinfo,
tm_atnode, tm_rescinfo, tm_publish, tm_subscribe, tm_finalize − task management
API

#include <tm.h>

int tm_init(info, roots)
void ∗info;
struct tm_roots ∗roots;

int tm_nodeinfo(list, nnodes)
tm_node_id 2*list;
int ∗nnodes;

int tm_poll(poll_event, result_event, wait, tm_errno)
tm_event_t poll_event;
tm_event_t ∗result_event;
int wait;
int ∗tm_errno;

int tm_notify(tm_signal)
int tm_signal;

int tm_spawn(argc, argv, envp, where, tid, event)
int argc;
char ∗∗argv;
char ∗∗envp;
tm_node_id where;
tm_task_id ∗tid;
tm_event_t ∗event;

int tm_kill(tid, sig, event)
tm_task_id tid;
int sig;
tm_event_t 3event;

int tm_obit(tid, obitval, event)
tm_task_id tid;
int ∗obitval;
tm_event_t 4event;

int tm_taskinfo(node, tid_list, list_size, ntasks, event)
tm_node_id node;
tm_task_id ∗tid_list;
int list_size;
int ∗ntasks;
tm_event_t 5event;

int tm_atnode(tid, node)
tm_task_id tid;
tm_node_id ∗node;

int tm_rescinfo(node, resource, len, event)
tm_node_id node;
char ∗resource;
int len;
tm_event_t 6event;

int tm_publish(name, info, len, event)
char ∗name;
void ∗info;
int len;

9-6 Chapt Revision: 2.4

PBS ERS Resource Monitor

tm_event_t 7event;

int tm_subscribe(tid, name, info, len, info_len, event)
tm_task_id tid;
char ∗name;
void ∗info;
int len;
int ∗info_len;
tm_event_t 8event;

int tm_finalize()

These functions provide a partial implementation of the task management interface part of
the PSCHED API. In PBS, MOM provides the task manager functions. This library opens a
tcp socket to the MOM running on the local host and sends and receives messages using the
DIS protocol (described in the PBS IDS).

The PSCHED Task Management API description used to create this library was commited to
paper on Novermber 15, 1996 and was given the version number 0.1. Changes may have
taken place since that time which are not reflected in this library.

The API description uses several data types that it purposefully does not define. This was
done so an implementaion would not be confined in the way it was written. For this specific
work, the definitions follow:

typedef int tm_node_id; /* job-relative node id */
#define TM_ERROR_NODE ((tm_node_id)-1)

typedef int tm_event_t; /* event handle, > 0 for real events */
#define TM_NULL_EVENT ((tm_event_t)0)
#define TM_ERROR_EVENT ((tm_event_t)-1)

typedef unsigned long tm_task_id;
#define TM_NULL_TASK (tm_task_id)0

There are a number of error values defined as well: TM_SUCCESS, TM_ESYSTEM, TM_ENO-
EVENT, TM_ENOTCONNECTED, TM_EUNKNOWNCMD, TM_ENOTIMPLEMENTED, TM_EBADEN-
VIRONMENT, TM_ENOTFOUND.

tm_init() initializes the library by opening a socket to the MOM on the local host and send-
ing a TM_INIT message, then waiting for the reply. The info paramenter has no use and is
included to conform with the PSCHED document. The roots pointer will contain valid data
after the function returns and has the following structure:

struct tm_roots {
tm_task_id tm_me;
tm_task_id tm_parent;
int tm_nnodes;
int tm_ntasks;
int tm_taskpoolid;
tm_task_id *tm_tasklist;

};

tm_me The task id of this calling task.

tm_parent The task id of the task which spawned this task or TM_NULL_TASK if
the calling task is the initial task started by PBS.

Chapt Revision: 2.4 9-7

Resource Monitor PBS ERS

tm_nnodes The number of nodes allocated to the job.

tm_ntasks This will always be 0 for PBS.

tm_taskpoolid PBS does not support task pools so this will always be -1.

tm_tasklist This will be NULL for PBS.

The tm_ntasks , tm_taskpoolid and tm_tasklist fields are not filled with data specified by the
PSCHED document. PBS does not support task pools and, at this time, does not return in-
formation about current running tasks from tm_init. There is a separate call to get informa-
tion for current running tasks called tm_taskinfo which is described below. The return val-
ue from tm_init be TM_SUCCESS if the library initialization was successful, or an error re-
turn otherwise.

tm_nodeinfo() places a pointer to a malloc’ed array of tm_node_id’s in the pointer pointed
at by list . The order of the tm_node_id’s in list is the same as that specified to MOM in the
"exec_host" attribute. The int pointed to by nnodes contains the number of nodes allocated
to the job. This is information that is returned during initialization and does not require
communication with MOM. If tm_init has not been called, TM_ESYSTEM is returned, oth-
erwise TM_SUCCESS is returned.

tm_poll() is the function which will retrieve information about the task management sys-
tem to locations specified when other routines request an action take place. The bookkeeping
for this is done by generating an event for each action. When the task manager (MOM)
sends a message that an action is complete, the event is reported by tm_poll and informa-
tion is placed where the caller requested it. The argument poll_event is meant to be used to
request a specific event. This implementation does not use it and it must be set to
TM_NULL_EVENT or an error is returned. Upon return, the argument result_event will
contain a valid event number or TM_ERROR_EVENT on error. If wait is zero and there are
no events to report, result_event is set to TM_NULL_EVENT. If wait is non-zero an there
are no events to report, the function will block waiting for an event. If no local error takes
place, TM_SUCCESS is returned. If an error is reported by MOM for an event, then the ar-
gument tm_errno will be set to an error code.

tm_notify() is described in the PSCHED documentation, but is not implemented for PBS
yet. It will return TM_ENOTIMPLEMENTED.

tm_spawn() sends a message to MOM to start a new task. The node id of the host to run
the task is given by where . The parameters argc , argv and envp specify the program to run
and its arguments and environment very much like exec(). The full path of the program ex-
ecutable must be given by argv[0] and the number of elements in the argv array is given by
argc . The array envp is NULL terminated. The argument event points to a tm_event_t
variable which is filled in with an event number. When this event is returned by tm_poll,
the tm_task_id pointed to by tid will contain the task id of the newly created task.

tm_kill() sends a signal specified by sig to the task tid and puts an event number in the
tm_event_t pointed to by event .

tm_obit() creates an event which will be reported when the task tid exits. The int pointed
to by obitval will contain the exit value of the task when the event is reported.

tm_taskinfo() returns the list of tasks running on the node specified by node . The
PSCHED documentation mentions a special ability to retrieve all tasks running in the job.
This is not supported by PBS. The argument tid_list points to an array of tm_task_id’s
which contains list_size elements. Upon return, event will contain an event number. When
this event is polled, the int pointed to by ntasks will contain the number of tasks running on
the node and the array will be filled in with tm_task_id’s. If ntasks is greater than list_size ,
only list_size tasks will be returned.

tm_atnode() will place the node id where the task tid exists in the tm_node_id pointed to
by node .

9-8 Chapt Revision: 2.4

PBS ERS Resource Monitor

tm_rescinfo() makes a request for a string specifying the resources available on a node giv-
en by the argument node . The string is returned in the buffer pointed to by resource and is
terminated by a NUL character unless the number of characters of information is greater
than specified by len . The resource string PBS returns is formated as follows:

A space separated set of strings from the uname system call followed by a colon (:). The or-
der of the strings is sysname, nodename, release, version, machine.

A comma spearated set of strings giving the components of the "Resource_List" attribute of
the job. Each component has the resource name, an equal sign, and the limit value.

For example, a return for a task running on an SGI workstation might look like:

IRIX golum 6.2 03131015 IP22:cput=20:00,mem=400kb

tm_publish() causes len bytes of information pointed at by info to be sent to the local MOM
to be saved under the name given by name .

tm_subscribe() returns a copy of the information named by name for the task given by tid .
The argument info points to a buffer of size len where the information will be returned. The
argument info_len will be set with the size of the published data. If this is larger than the
supplied buffer, the data will have been truncated.

tm_finalize() may be called to free any memory in use by the library and close the connec-
tion to MOM.

pbs_mom, PSCHED:An http://parallel.nas.nasa.gov/Psched/psched-api-report.ps

9.2.3. Reliable Packet Protocol Library

rpp_open, rpp_bind, rpp_poll, rpp_io, rpp_read, rpp_write, rpp_close, rpp_getaddr,
rpp_flush, rpp_terminate, rpp_shutdown, rpp_rcommit, rpp_wcommit, rpp_eom,
rpp_getc, rpp_putc − reliable packet protocol

#include <sys/types.h>
#include <netinet/in.h>
#include <rpp.h>

int rpp_open(addr)
struct sockadd_in ∗addr;

int rpp_bind(port)
int port;

int rpp_poll()

int rpp_io()

int rpp_read(stream, buf, len)
u_int stream;
char ∗buf;
int len;

int rpp_write(stream, buf, len)
u_int stream;
char ∗buf;
int len;

int rpp_close(stream)
u_int stream;

Chapt Revision: 2.4 9-9

Resource Monitor PBS ERS

struct sockadd_in ∗rpp_getaddr(stream)
u_int stream;

int rpp_flush(stream)
u_int stream;

int rpp_terminate()

int rpp_shutdown()

int rpp_rcommit(stream, flag)
u_int stream;
int flag;

int rpp_wcommit(stream, flag)
u_int stream;
int flag;

int rpp_eom(stream)
u_int stream;

int rpp_getc(stream)
u_int stream;

int rpp_putc(stream, c)
u_int stream;
int c;

These functions provide reliable, flow-controlled, two-way transmission of data. Each data
path will be called a "stream" in this document. The advantage of RPP over TCP is that
many streams can be multiplexed over one socket. This allows simultaneous connections
over many streams without regard to the system imposed file descriptor limit.

Data is sent and received in "messages". A message may be of any length and is either re-
ceived completely or not at all. Long messages will cause the library to use large amounts of
memory in the heap by calling malloc(3V).

rpp_open() initializes a new stream connection to addr and returns the stream identifier.
This is an integer with a value greater than or equal to zero. A negative number indicates an
error. In this case, errno will be set.

rpp_bind() is an initialization call which is used to bind the UDP socket used by RPP to a
particular port . The file descriptor of the UDP socket used by the library is returned.

rpp_poll() returns the stream identifier of a stream with data to read. If no stream is ready
to read, a -2 is returned. A -1 is returned if an error occurs.

rpp_io() processes any packets which are waiting to be sent or resceived over the UDP sock-
et. This routine should be called if a section of code could be executing for more than a few
(˜10) seconds without calling any other rpp function. A -1 is returned if an error occurs, 0
otherwise.

rpp_read() transfers up to len characters of a message from stream into buf . If all of a
message has been read, the return value will be less than len . The return value could be ze-
ro if all of a message had previously been read. A -1 is returned on error. A -2 is returned if
the peer has closed its connection. If rpp_poll() is used to determine the stream is ready for
reading, the call to rpp_read() will return immediately. Otherwise, the call will block wait-
ing for a message to arrive.

rpp_write() adds information to the current message on a stream . The data in buf num-
bering len characters is transfered to the stream. The number of characters added to the
stream are returned or a -1 on error. In this case, errno will be set. A -2 is returned if the
peer has closed its connection.

9-10 Chapt Revision: 2.4

PBS ERS Resource Monitor

rpp_close() disconnects the stream from its peer and frees all resources associated with the
stream. The return value is -1 on error and 0 otherwise. rpp_getaddr() returns the address
which a stream is connected to. If the stream is not open, a pointer is returned.

rpp_flush() marks the end of a message and commits all the data which has been written to
the specified stream . A zero is returned if the message has been successfully committed. A
-1 is returned on error.

rpp_terminate() is used to free all memory associated with all streams and close the UDP
socket. This is done without attempting to send any final messages that may be waiting. If a
process is using rpp and calls fork(), the child must call rpp_terminate() so it will not cause
a conflict with the parent’s communication.

rpp_shutdown() is used to free all memory associated with all streams and close the UDP
socket. An attepmt is made to send all outstanding messages before returning.

rpp_rcommit() is used to "commit" or "de-commit" the information read from a message. As
calls are made to rpp_read() , the number of characters transfered out of the message are
counted. If rpp_rcommit() is called with flag being non-zero (TRUE), the current position in
the message is marked as the commit point. If rpp_rcommit() is called with flag being zero
(FALSE), a subsequent call to rpp_read() will return characters from the message following
the last commit point. If an entire message has been read, rpp_read() will continue to return
zero as the number of bytes transfered until rpp_eom() is called to commit the complete mes-
sage.

rpp_wcommit() is used to "commit" or "de-commit" the information written to a stream. As
calls are made to rpp_write() , the number of characters transfered into the message are
counted. If rpp_wcommit() is called with flag being non-zero (TRUE), the current position in
the message is marked as the commit point. If rpp_wcommit() is called with flag being zero
(FALSE), a subsequent call to rpp_write() will transfer characters into the stream following
the last commit point. A call to rpp_flush() does an automatic write commit to the current
position.

rpp_eom() is called to terminate processing of the current message.

tcp(4P), udp(4P)

Chapt Revision: 2.4 9-11

Resource Monitor PBS ERS

[Page intentionally left bank.]

9-12 Chapt Revision: 2.4

PBS ERS Resource Monitor

10. Security
Security in PBS is composed of two facets, authorization and authentication. Any user mak-
ing a request of a batch server must be authorized to request that service. To provide the ba-
sis for authorization, each request contains the identity of the user making the request. To
insure the user identity is correct, the identity must be authenticated in some manner.

10.1. Authorization

There is an authorization method, usually an access control list , or ACL, to control access to
each object managed by a batch server, jobs, queues, and the server itself.

While the exact format of the entries in access control lists varies depending upon the list,
they have several properties in common. Each list is maintained by the server as an editable
text file. Each list entry consists of a single text line. Entries in the list may be prefixed
with a single ‘‘+’’ or ‘‘-’’ character to indicate allowing or denying access. If neither character
is present, allowing access is assumed. For example, a list containing:

-Kenneth
+Lora
-Julie
-Bob

Would explicitly grant access to Lora and explicitly deny access to Kenneth, Julie, and Bob.

Note that while each entry in the list is maintained in the file as a separate line, when en-
tering the entries through qmgr, the entries are comma separated on a single line. For ex-
ample:

set server some_list="-Kenneth,Lora,-Julie,-Bob"

The quote marks are required to correctly parse the string as a single value for the keyword
‘‘some_list’’ as the string contains commas. Also be aware that when entered via qmgr, en-
tries for ACLs which contain a host−domain part are sorted such that the more restrictive
(fully specified, least wild carded) entries occur first. This is important to the comparison al-
gorithm used when checking privilege. If the file is edited by hand, the order should be
maintained.

10.1.1. Server Access

Server access is controlled by a host access control list, and by two lists which grant special
privilege to certain users.

10.1.1.1. Server Host ACL

Each server has an access control list that specifies which hosts are allowed, or not allowed,
to send requests to the server. The server depends on the network to identify the host which
originated the connection (request). The entries in this list are fully specified host-domain
names:

+host_one.domain.name.one
-host_two.domain.name.one
host_three.another.domain
*.my.domain
*.edu
-*

As shown in the last three entries, fields on the left, host, sub-domain, or domain names, may
be ‘‘wild carded’’ by the use of a single asterisk. Thus any host in the domain my.domain or

Chapt Revision: 2.2 10-1

Security PBS ERS

any host in any subdomain under the top level edu domain is granted access, while the last
line denies access to any other host.

10.1.1.2. Managers and Operators

Each server has a list of ‘‘users at hosts’’ who have the privilege to request services restricted
to operators and managers (administrators). Requests for those services from other users
will be rejected. Requests from the named users on hosts other than the named host will al-
so be rejected. The format of these lists is:

user_name@host.domain.name

As above, the host, sub-domain, or domain name may be wild carded.

10.1.2. Queue Access

Queue access is controlled by three levels: host, group, and user. Unlike other ACLs, the us-
er and group list may have an extra first entry which determines the default for unnamed
members. This entry in the list consists solely of a single ‘‘+’’ or ‘‘-’’ character with no addi-
tional characters. Any name, user or group, not specified will implicitly be granted or denied
access based on this line. If multiple default lines, single + or -, appear in a list, it is unde-
fined as to which takes precedence.

10.1.2.1. Queue Host Access

As with the server, queue access can also be controlled by originating host. Each queue has
an Host ACL identifying hosts from which jobs may or may not be entered into the particular
queue. The format of the list entries is the same as the server’s host list.

10.1.2.2. Queue Group Access

An access control list can be established which limits access to jobs run under certain group
names. This is the group name under which the job would be executed. It may be different
than the group name under which the user submitted the job, see the job attribute group_list.
The format of this list is

[+|-]
[+|-]group_name

The optional first line of a single ’+’ or ’-’ establishes the default privilege for unlisted groups.
If the first line is ’-’, any unlisted group is denied access. If the first line is ’+’ or contains ad-
ditional characters, any unlisted group is allowed access.

10.1.2.3. Queue User Access

The user identification in each request may also control queue access. Each queue has an ac-
cess control list identifying the users who are permitted or denied the ability to enter jobs in-
to the queue. The format of this list is:

[+|-]
[+|-]user[@host.domain]

The optional first line is identical to the group ACL. The ‘‘host.domain’’ may be wild carded
as described under the Server Host ACL. If a user name is given without a ‘‘@host.domain’’,
then it is equivalent to that user name at any host, ‘‘user@*’’.

10.1.3. Job Access

The owner of a job is allowed full access to his or her own job. Operators and administrators
also have access to all jobs.

10-2 Chapt Revision: 2.2

PBS ERS Security

Users without special privilege, manager or operator, are not allowed to modify or delete a
job that they do not own. The ability to query the status of a job of another user is deter-
mined by the server attribute quer y_other_jobs. If true, users may query the status of any us-
er ’s jobs.

10.1.4. Root Jobs

Generally, the super user, root, is not allowed to submit batch jobs. This prevents someone
who has cracked the system from doing additional damage. However, there is a build time
option to allow root on the server’s local system to submit jobs. This option is controlled by
the symbol PBS_ROOT_JOBS. Please see the server_limits.h section of the PBS Administra-
tor Guide for more information.

10.2. Authentication

There must be a guarantee that the identity of the user making a batch request is correct. A
basic method described below is provided with PBS. It is called the PBS Interface Facility,
or pbs_iff (also known as Identify, Friend or Foe). The method of authenticating the user is
somewhat modular. It can be removed and replaced by other authentication methods such as
Kerberos with a bit of work in the server.

In the basic method provided with PBS, an Authentication Batch Request is sent to the serv-
er from a privileged port. This request contains the user’s true identity, the name of the host
on which the client is running, and the port name to which the client is bound and will be
communicating with the server. This information is obtained by the pbs_iff program. This
program is a ‘‘setuid root’’ program allowing it to access privileged ports (those requiring root
privilege) and thus giving some amount of credence to its claims.

The PBS user application programmable interface (API) library, libpbs.a, is the client side of
the credential process. Whenever a user requests an open connection with a batch server
through the API, the pbs_connect(3B) routine will open a connection to the PBS server on
a non-privileged port. It will then fork () and exec () pbs_iff passing it the server’s name and
the port to which pbs_connect() is bound. The authentication type is returned by pbs_iff to
the pbs_connect routine over a pipe.

When the server receives the authentication request, it associates the user and host name
with the network connection established by the client and identified by in the request. If the
request is accepted by the server, the connection is considered authenticated for the remain-
der of its life.

Chapt Revision: 2.2 10-3

Security PBS ERS

10-4 Chapt Revision: 2.2

PBS ERS Network Protocol

11. Network Protocol
The batch system fits into a client - server model, with a batch client making a request of a
batch server and the server replying. This client - server communication necessitates an in-
terprocess communication method and a data exchange (data encoding) format. Since the
client and server may reside on different systems, the interprocess communication must be
supportable over a network.

As new batch processing features will become part of the base, and as vendors will extend
the product, the data exchange format must be extensible.

As the batch system will run on many systems within a complex, the data exchange format
must provide for interoperability among systems with:

Different architectures, including word size and byte order.
Non uniform extensions to the batch systems.

While the basic PBS system fits nicely into the client - server model, it also has aspects of a
transaction system. When jobs are being moved between servers, it is critical that the jobs
are not lost or replicated. Updates to a batch job must be applied once and only once. Thus
the operation must be atomic.

Most of the client to server requests consist of a single message. Treating these requests as
an atomic operation is simple. One request, "Queue Job", is more complex and involves sev-
eral messages, or subrequests, between the client and the server. Any of these subrequests
might be rejected by the server. It is important that either side of the connection be able to
abort the request (transaction) without losing or replicating the job. The network connection
also might be lost during the request. Recovery from a partially transmitted request se-
quence is critical. The sequence of recovery from lost connections is discussed in the Queue
Job Request description.

The batch system data exchange protocol must be built on top of a reliable stream connection
protocol. PBS uses TCP/IP and the socket interface to the network. Either the Simple Net-
work Interface, SNI, or the Detailed Network Interface, DNI, as specified by POSIX.12, Pro-
tocol Independent Interfaces, could be used as a replacement.

PBS originally used the ISO standard ASN.1 data encoding between all pieces of PBS exe-
cept for the Scheduler to Resource Monitor communication. A public domain package,
ISODE, provided for quick implementation and it was believed that ASN.1 would be required
by POSIX when the batch protocol was standardized. In release 1.1.9, the user and adminis-
trative command utilities still used the ASN.1 encoding and the Job Server, pbs_server, still
accepted ASN.1 encoded requests from clients (user commands or other servers), but ASN.1
has being phased out in favor of the Data Is Strings , or DIS, encoding and is no longer used
or supported.

11.1. General DIS Data Encoding

The purpose of the ‘‘Data is Strings’’ encoding is to provide a simple, fast, small, machine in-
dependent form for encoding data to a character string and back again. Because data can be
decoded directly into the final internal data structures, the number of data copy operations
are reduced. Human readability was a secondary goal and considered only when it would not
cost.

Data are represented as people thing of them, but preceded with a count of the length of each
data item. For small positive integers, it is impossible to tell from the encoded data whether
they came from signed or unsigned chars, shorts, ints, or longs. Similarly, for small negative
numbers numbers, the only thing that can be determined from the encoded data is that the
source datum was not unsigned. It is impossible to tell the word size of the encoding ma-
chine, or whether it uses 2’s complement, one’s complement or sign − magnitude representa-
tion, or even if it uses binary arithmetic.

Chapt Revision: 2.2 11-1

Network Protocol PBS ERS

All of the basic C data types are handled. Signed and unsigned chars, shorts, ints, longs pro-
duce integers. NULL terminated and counted strings produce counted strings (with the ter-
minating NULL removed). Floats, doubles, and long doubles produce real numbers.

Complex data must be built up from the basic types. Note that there is no type tagging, so
the type and sequence of data to be decoded must be known in advance.

The crux of the the encoding is the integer. It’s BNF is:
integer =: <count><sign><decimal string> | <count><integer>
count =: <decimal string>
sign =: ’+’ | ’-’
decimal string =: <digit> | <digit><decimal string>
digit =: ’0’ | ’1’ | ’2’ | ’3’ |’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Single digit numbers do not require a count, just a sign followed by the one digit. Otherwise,
the left most count is one digit long. Each count gives the number of digits in the decimal
string to its right. The last decimal string is the actual integer value. The following table
shows some examples of values and their encoding.

Value Encoded String

1 +1
2 +2
-3 -3
12 2+12
-13 2-13
1234567890 210+1234567890

The last value may take some explaining, the first digit, ’2’, is the first count and there for
the length of the following integer. That integer, ’10’ is the second count. Since it is followed
by a sign, its value follows and is therefore ’10’ digits in length.

Counted character strings (or simply strings) are defined as:
counted string =: <integer><characters>
characters =: <character> | <character><characters>

The number of characters in the ‘‘characters’’ value is given by ‘‘integer ’’. Some examples:

Value Encoded String

"abc" +3abc
"This is a long string." 2+22This is a long string.

Real numbers are defined as:
real number =: <integer><integer>

The first integer is a real number is the coefficient, with no leading or trailing zeros and with
the decimal point to its right. The second integer of a real number is the exponent to the
base 10.

PBS provides a collection of the functions to perform the encoding/decoding of the basic data
types. The collection is in the source tree under lib/Libdis. The objects are placed into the
API library, libpbs.a, for ease of linking. This library may be used outside of PBS if desired.
The routines are described (briefly) in the PBS Internal Design Specification.

Layered on top of the above routines, PBS makes use of a set of batch request and reply rou-
tines which use the DIS routines to encode/decode the data specific to the request or reply.
This routines are called by the public PBS API routines defined in chapter 4 of this docu-
ment.

11-2 Chapt Revision: 2.2

PBS ERS Network Protocol

11.2. DIS Encoded Batch Requests

The following describes the format of the PBS batch requests and replies using the DIS en-
coding. These requests are the basis of all communication between the client commands (qal-
ter, qsub, ...) and the server, between two servers, and between the server and MOM. The
Job Scheduler uses a different message format when talking with the Resource Manager side
of MOM.

11.2.1. Batch Requests

Each request is encoded as a Message Header , a Message Body , and an Message Extension .
The format of the Message Header and the Message Extension is the same for all batch re-
quests. The Message Body varies for each request.

11.2.1.1. Message Header

unsigned integer: Batch Protocol Type Identifier (=2)
unsigned integer: Batch Protocol Version Identifier (=1)
unsigned integer: Batch Request Identifier
string: User Name

11.2.1.2. Message Body

Copy Files Request

string: Job Id
string: Job Owner (may be null string)
string: Execution User Name
string: Execution Group Name (may be null string)
unsigned integer: direction
unsigned integer: number of file pairs that follow
array of file pairs:

unsigned integer: file type flag
string: local (to mom) path name
string: remote path name

Job Credential Request

unsigned integer: credential type
string: opque data

Job Files Move Request

unsigned integer: file block number
unsigned integer: file type (stdout, stderr, checkpoint, ...)
unsigned integer: amount of data in this block
string: Job Id
string: file data block

Job Obituary (Notice) Request

string: Job Id
unsigned integer: exit status
array of Attributes

Manager Request

Chapt Revision: 2.2 11-3

Network Protocol PBS ERS

This request is used for a number of operations including Alter Job, Delete Job, Hold Job,
and Release Job, as well as the request associated with the qmgr command.

unsigned integer: command (create, delete, set, unset, increment, decr)
unsigned integer: object type
string: object name
array of Attributes
unsigned integer: object type
string: object name
array of Attributes

Message Job Request

string: Job Id
unsigned integer: which file (stderr, stdout, default)
string: message text

Move Job Request

string: Job Id
string: Destination

Queue Job Request

string: Job Id
string: Destination (queue name, null string implies default)
array of Attributes

Register Dependency Request

string: Job Owner
string: Parent Job Id
string: Child Job Id
unsigned integer: dependency type
unsigned integer: operation
signed long: dependency cost

Run Job Request

string: Job Id
string: Destination (where to run it)

Shut Down Server Request

unsigned integer: manner of shutdown

Signal Job Request

string: Job Id
string: Signal name

Status Job, Queue, or Server Request

string: Object Id (or null string)

11-4 Chapt Revision: 2.2

PBS ERS Network Protocol

array of Attributes

Track Job (Notice) Request

string: Job Id
unsigned integer: hop count
string: location
unsigned character: current job state

11.2.1.3. Complex Data Encoding

Certain data items are complex, such as the array of attributes, and require special encoding
as a set.

Array of Attributes − An array or list of attributes, regardless for job, queues, or a server, is
encoded as follows:

unsigned integer: number of attributes in array (list)

followed by the attributes (if the above integer is non-zero):

unsigned integer: sum of length of the name, resource, and value strings,
including the terminating null characters

string: attribute name
unsigned integer: flag if resource name is present (1=yes, 0=no)
optional string: resource name (if above flag is 1)
string: value
unsigned integer: operation

Status Object (see Batch Reply)

Each status object in an array there of is encoded as:

unsigned integer: object type (server, queue, job)
string: object name
array of Attributes

11.2.1.4. Message Extension

unsigned integer: flag indicates presence of extension string (1=yes, 0=no)
optional string: extension string (present only if above flag is 1)

11.2.2. Batch Reply Format

The PBS batch reply is in two parts, a fixed header and a body which depends on the type of
reply indicated in the header.

11.2.2.1. Reply Header

The reply header is encoded as:

unsigned integer: Batch Protocol type (2)
unsigned integer: Batch Protocol version (1)
unsigned integer: return code
unsigned integer: auxiliary code
unsigned integer: body type indicator

Chapt Revision: 2.2 11-5

Network Protocol PBS ERS

11.2.2.2. Reply Body

The reply bodies are encoded depending on type as:

Null body − no additional data

Job Id Reply − (used for Queue, Ready to Commit, and Commit requests

string: Job Id

Select Reply

unsigned integer: count of job id strings to follow
string: job id, repeated as required

Status Reply

unsigned integer: count of status objects:
array of status objects

Text Reply

string: text

Locate reply

string: location of job

11.3. Description of Data Exchange Format

A batch client makes a service request of a batch server. The request consists of one or more
subrequests from the client to the server. For each subrequest, the server returns a reply to
the client. As a minimum, the reply indicates success or failure of the subrequest. For some
subrequests, such as a status request, additional information is included in the reply.

11.4. Request Format

A general request consists of two required parts, a fixed header and a variable body , and an
optional third part, a request extension byte string. The header contains three (3) fields:

request code which is a number identifying the type of request.

request user a string which is the effective user name of the user making the
request,

request credential an "any" structure which contains client authentication creden-
tials.

The format and content of the request body depends on the type of request. The body is de-
coded separately from the header and after the header identifies the type of body.

The request extension byte string is intended to allow portable extensions to the batch com-
mand parameters. PBS makes use of this capability for the qhold and qdel commands.
When a server receives a request extension that it does not recognize, it is free to abort the
request.

11-6 Chapt Revision: 2.2

PBS ERS Network Protocol

11.5. Reply Format

The reply returned by a server to a client consists of a fixed header and an optional variable
body . The body is only required in replies to certain types of requests.

The header contains the following integer numbers:

reply code which contains the primary success or failure code.

auxiliary code which contains extended status or failure information.

The optional body format depends on the type of request to which the reply is being returned.
The format of the reply will be discussed under those requests which require the additional
information contained in a body.

11.6. Sequence of Subrequests

The following sequence of requests is followed in the client - server communication.

11.6.1. Open Connection

The client opens a reliable stream connection with the server. The PBS mechanism for open-
ing the connection is the connect(2) call to connect to an address associated with the re-
quested server.

11.6.2. Service Requests

The client sends one or more service requests to the server.

The server returns a reply following processing of each request. The client does not send an
additional request until it has received a reply to the prior request.

11.6.3. Connection Closure

The client closes the connection to the server to indicate that there are no more requests.
The server may close the connection. If this occurs before the reply is sent, the client treats
this as error condition.

11.7. Description of Service Request

The following sections describe the data items in each request.

11.7.1. Queue Job Request

Queue Job is a complex request, made up of four or more sub-requests:

− Queue Job (subrequest)

− Job Credentials

− Job Script, zero or more sub-requests.

− Ready to Commit.

− Commit ownership.

The server must respond to each of the subrequests with a reply. The request may be abort-
ed without the job being queued by the server at any point prior to receiving the Commit re-
quest.

11.7.1.1. Queue Job

The Queue Job subrequest informs the server that the client wishes the server to accept
and enqueue a batch job.

The DestinationID field identifies the destination of the job. It is a string in the form:
[queue][@server] If queue is not specified, the default queue is assumed. If @server is
specified, it is ignored.

Chapt Revision: 2.2 11-7

Network Protocol PBS ERS

If the optional field JobIdentifier is present, the job is an existing job being moved from one
server to another. The JobIdentifier field contains the job identifier assigned to the job by
the creating server. If JobIdentifier is not present, the job is being newly submitted by a
client qsub. The receiving server will assign a job identifier to the job. The server, in either
case, replies with the job identifier.

Also specified in the Queue Job subrequest are the batch job’s private and public attributes,
including required resources and the inherited environment variables, the Variable_List .

11.7.1.2. Job Credential

The Job Credential is an optional subrequest. The request is provided as a means of passing
service credentials or tickets for use by the batch job. These services are system or network
services unrelated to the batch system. An example is a ticket authenticating the batch job
to AFS (Andrew File System).

If present, the server will just decode the data from the network presentation. Sites or ven-
dors must add the additional functions to the server to present the credentials to the system
when the job is placed into execution.

11.7.1.3. Job Script

The body of the Job Script request consists of sections of the job script file supplied to the
qsub command. Each section contains up to 8192 bytes of the file. The last section may be
shorter than 8192 bytes. The sections are send in order and each must be acknowledged be-
fore the next is sent.

Each Job Script sub-request also contains a sequence number. This integer starts with one
(1) and is incremented by one for each additional Job Script sub-request.

11.7.1.4. Ready to Commit

Upon receipt of the Ready to Commit, the receiving server must record the job to permanent
storage before acknowledging.

The reply to the Ready to Commit, contains the job identifier. This is provided to assist in
the recovery of a server or network failure.

If the client is another batch server which had the batch job queued, upon receipt of a ac-
knowledgment to the Ready to Commit, the client removes the job from its queue and perma-
nent storage, deleting the job.

11.7.1.5. Commit

When the sending client has received a positive reply to the Ready to Commit request and
had deleted the job locally, then and only then should the client send a Commit sub-request
to the server. This ensures the job cannot be duplicated.

When the server receives the commit sub-request, the server assumes ownership of the job
and perform the steps required to place the job into a queue. The server does not reply to
the client following the commit sub-request.

11.7.1.6. Error Recovery

The following procedures are used to ensure the job is not lost or duplicated if the event of a
communication failure between the sending client and the receiving server:

Client Side Recovery - Failure of Server
The follow procedures should be followed by the client attempting to send a job to a
server when communications are lost with the server.

1. If the communication link is lost before the client sends the Ready to Commit , it is
to assume the job is lost and restart from the beginning. The server will replace

11-8 Chapt Revision: 2.2

PBS ERS Network Protocol

the job with the new copy when the client re-established the connection.

2. If the communication link is lost after the client sends the Ready to Commit but be-
fore sending the Commit , the client can assume that prior job information is at the
server. Upon re-establishment of a connection with the server, the client re-sends
the Ready to Commit followed by the Commit .

3. If the communication is lost after sending the Ready to Commit and at a later time
the client receives a positive acknowledgement to the Ready to Commit , even if one
has already been received, the client sends or resends the Commit . Note, the job
identifier is required in the acknowledgement for this purpose. Also note that at
this point the client should not have and does not need a copy of the job.

4. If the client is a temporary process, for example qsub, rather than restarting the
Queue Job request, it may abort and issue an error message to the user. If the
problem occurs after the Ready to Commit is sent but before an acknowledgement
is received, it is unclear if the server has the complete job. The user should be
warned to check for the job before attempting to resubmit it. Once the acknowl-
edgement for the Ready to Commit has been received by the temporary client, the
client may safely assume the job has been queued by the server.

Client Side Recovery - Failure of Client
Should the client side crash, upon recovery a permanent process (a sending server) per-
forms the actions described in 1 through 3 above.

Server Side Recovery - Failure of Client
The following recovery procedures should be followed by a server receiving a job upon
loss of communications with the client.

1. If the failure occurs before the Ready to Commit is received, the server discards the
job. The client must restart from the beginning.

2. If the failure occurs after the Ready to Commit is received, the server should have
recorded the job in permanent storage. The server keeps the job until (a) a request
is received to delete it, or (b) the client resends the Read to Commit, Commit se-
quence. If after a ‘‘site defined’’ period of time, the server has not received any di-
rections, it may notify the batch administrator and request instruction.

Server Side Recovery - Failure of Server
Should the receiving server crash, it should perform the following actions upon being
restarted.

1. If the server detects a job for which a Ready to Commit had not been received, the
server purges the job.

2. If the server detects a job for which the Ready to Commit has been received, and
the sending client was a permanent process (another server), the server sends an
acknowledgement of the Ready to Commit to the client. The acknowledge will in-
clude the job identifier. This will trigger the client to resend the the commit se-
quence. In transaction terminology, this is called a restart message.

The send — receive — recovery steps are show in figure 11−1.

Chapt Revision: 2.2 11-9

Network Protocol PBS ERS

Have a Job to Send

create job structure, assign job id if new

SENDING CLIENT RECEIVING SERVER

queue job

queue reply

[job credentials (tickets)]

job script block 1

scr ipt reply 1

job script block 2

scr ipt reply 2

job script block N

scr ipt reply N

Ready to Commit

RtC reply

Commit

Commit reply

create script file, record block 1

record script block 2

record script blcok 3

mar k job Read for Commit
record on permanent storage (disk)

Enqueue job

If failure,
recovery A

Recovery C

Recovery B

Recovery D

Recovery Proceedures
A. If sender is a server, restart from top, else abort.
B. Discard job.
C. Resend ‘‘Ready to Commit’’.
D. Commit (enqueue) job.

Figure 11−2: Two Phase Commit and Error Recovery

11.7.2. Delete Job Request

The Delete Job request is used by a client, such as the qdel command, to request that a job
be deleted. The request is a manage request with the object type set to ‘‘job’’, the name set to
the job id, and the operation is ‘‘delete’’.

11.7.3. Hold Job Request

The Hold Job request is used by a client, such as the qhold command, to request that a
hold be placed on a job.

The request is a manage form with the object type set to ‘‘job’’, the name set to the job identi-
fier, the operation set to ‘‘set’’, and the attribute list contains the Hold_Types attribute with the

11-10 Chapt Revision: 2.2

PBS ERS Network Protocol

value being the holds to apply to the job.

PBS will use the request extension to pass the re-execution preference information, see
pbs_holdjob(3B).

11.7.4. Modify Job Request

A Modify Job request is sent by a client such as the qalter command to a server to request
that certain attributes of the job be altered or modified.

The request is a manage form with the object type set to ‘‘job’’, the name set to the job identi-
fier, the operation set to ‘‘set’’, and the attribute list contains each of the attributes to be mod-
ified.

11.7.5. Move Job Request

The Move Job request is used by a client, such as the qmove command, to request that a
server route the specified job to another destination.

The jobid field specifies the job to be routed. The destin field specifies the destination to
which the job is to be routed.

11.7.6. Message Job Request

The Message Job request is used by a client, such as the qmsg command, to ask a server to
write a message into an output file of a running job.

The jobid field specifies the id of the running job for which the message is destined. The des-
tination file for the message is defined by the fileopt ; if either the {oflg } bit and / or the {eflg }
bit is set, the message will be written in the standard output and / or standard error file of
the job. If neither bit is set, the message will be written to an file determined by the imple-
mentation of the server.

The message string will be in the message field.

11.7.7. Rerun Job Request

The Rerun Job request is used by a client such as qrerun, to request that a server termi-
nate and re-queue a currently running job.

The request specifies the job identifier of the running job which is to be rerun.

11.7.8. Select Jobs Request

The Select Jobs request, issued by the command qselect, requests that the server return job
identifiers for all jobs which meet the specified criteria.

The attribute list specifies the attributes which are to be used in filtering jobs. Resources,
the job state (even though not a true attribute) and destination may be included in the at-
tribute set.

The server replies to the client with the special reply select-reply. The count of jobs select-
ed in response to the request is returned in reply-auxcode . The list of job identifiers selected
is returned in SelectReply .

11.7.9. Signal Job Request

The Signal Job request, used by a client such as qsig, requests that the server send a signal
to a running batch job. The jobid field indicates which job is to be sent the signal. The sig-
nal field contains the name or value of the signal to be sent.

Chapt Revision: 2.2 11-11

Network Protocol PBS ERS

11.7.10. Status Job Request

A Status Job request directs a server to return status information about either a job whose
job identifier is in id or the set of jobs in a destination given by id .

If the server owns the job or destination specified and the client is entitled to see the status
information, the server replies with a stat reply. The stat reply is a list of zero or more objs-
tat structures, one per job. Each objstat structure includes:

- The type of object, i.e ‘‘job’’.

- The job name

- All public attributes of the job, see next paragraph.

- Optionally, a general text string for messages, implementation defined.

If the status request includes a set of specified attributes, only those attributes are included
in the reply.

11.7.11. Status Queue Request

A Status Queue request directs the server to return status information about the queue
identified in the destination specified in the request.

If a queue with the specified name exists at the server, the server returns a stat reply con-
taining the attribute information about that queue.

If a queue name is not specified, is null, then the server will return status about all queues.

11.7.12. Status Server Request

A Status Server request directs the server to return status information about itself. The
server responds with a stat reply.

11.7.13. Server Shutdown Request

The Server Shutdown request directs a batch server to terminate batch service and exit.
The integer value is used to indicate the manner of shutdown: {immediate } or {delay}.

11.7.14. Locate Job Request

The Locate Job request is used by a client to search for the current location of a job. The
job identifier is specified in the request.

A server who receives a Locate Job Request for a job which the server owns or knows the
name of the server which owns the job, replies with a locate reply. If the server does not
know the location, it replies with a failure code.

The locate reply is a expanded form of reply which contains the locate-reply field. This field
contains the name of the batch server currently owning the job.

11.7.15. Track Job Request

Job tracking is an optional implementation feature in POSIX 1003.2d. Its purpose is to pro-
vide a method for recording the current location and status of jobs in a central location to fa-
cilitate job status reporting.

Job tracking is supported by PBS. When the server accepts a job for queuing, it sends a
Track Job request to the server which originated the job and optionally to one or more "loca-
tion servers" as configured by the batch system administrator.

When a server receives the Track Job request, that server records the current location, speci-
fied in the location field, of the job identified in the jobid field. The hopcount is a count of
the current number of routes or hops made by the job. This is used to insure proper sequenc-
ing of the information.

11-12 Chapt Revision: 2.2

PBS ERS Network Protocol

The jobstate field is provided to allow for an abbreviated status following job completion.

11.7.16. Run Job

The Run Job request is used to direct a server to schedule a batch job immediately for exe-
cution regardless of its state, required resources, or the servers scheduling parameters.

11.7.17. Manage Request

The Manage request is used by the qmgr command (and others) to create, delete, or alter
managed objects.

The command field specifies the operation: create, delete, set, or unset. The objtype field
identifies the type of object and the objname field names the specific object. Attributes and
associated values of the object are listed in the field attrib .

11.7.18. Register Dependent Job

This request is used to communicate job dependency requirements between servers.

The parentid field specifies the parent or master job identifier. The childid field specifies the
id of the child job the server is registering with the parent.

The dependtype specifies the type of dependency.

The op field is mostly meaningful on synchronization request. It indicates if the child job
has reserved its resources and is ready to run.

Chapt Revision: 2.2 11-13

Network Protocol PBS ERS

[Page intentionally left bank.]

11-14 Chapt Revision: 2.2

PBS ERS Network Protocol

12. Tools
This section describes the PBS tools. These are programs or scripts designed to make life
easier for administrators and users of PBS. The existence of the PBS interface libraries pro-
vides the basis for a rich functionality. The tools give a higher level access to this functionali-
ty.

Right now only two tools exist. Both are based on Tcl so if your system doesn’t have Tcl, it
doesn’t have these tools either. As PBS becomes more accepted and widely used, it is hoped
that programs that various sites come up with will find there way into this section of the dis-
tribution (hint hint).

12.1. Pbs_tclsh

This is a Tcl shell program which includes the same extra commands as the Tcl scheduler.
These can be found in the man page for pbs_sched_tcl.

12.2. Pbs_wish

This is a Tk window shell program with the same additional commands as pbs_tclsh. This
program should make it possible to write an X11 interface program to PBS.

Chapt Revision: 2.1 12-1

Tools PBS ERS

[Page intentionally left bank.]

12-2 Chapt Revision: 2.1

PBS ERS Tools

13. Task Manger
This section describes the PBS task manager functions of the Machine Oriented Miniserver
(MOM). This is a new feature of PBS and is an attempt to follow the emerging "PSCHED"
API. For more information on PSCHED, please see the web page:

http://parallel.nas.nasa.gov/Psched/index.html

A paper (which can be found on the web site above) shows the current state of the effort:
"PSCHED: An API for Parallel Job/Resource Management".

In the past, a running job under the control of a MOM was a single POSIX session. Now,
multiple sessions may be spawned, each one called a "task", and tracked separately within
the job by MOM. When the job is run, one task is started with the user selected shell run-
ning the job script as the program. This is the equivalent of the single session of the past.
New variables are included in the job’s environment which give it information needed to call
back to MOM for task management service.

MOM will use another tcp port to listen for task management requests from its children.
This communication will be handled by a library which sends and receives messages over a
tcp socket to MOM using the DIS protocol.

Chapt Revision: 2.1 13-1

Task Manager PBS ERS

[Page intentionally left bank.]

13-2 Chapt Revision: 2.1

PBS ERS Task Manager

Chapt Revision: 2.1 13-3

