

Biotic Assessment of the Beaver Creek Watershed in the Southern Yukon Flats

40 acre lake (#14) in the proposed exchange area

Mark Bertram and Delia Person U.S. Fish and Wildlife Service Yukon Flats National Wildlife Refuge 101 12th Avenue, Room 264, Box 14 Fairbanks, Alaska 99701 YukonFlats@fws.gov (907) 456-0446 (800) 531-0676

January 20, 2005

SUMMARY

The Yukon Flats National Wildlife Refuge (Refuge) is currently in negotiations with Doyon, Limited (Doyon) to consider exchanging approximately 44,515 hectares (110,000 acres) (proposed land exchange area or PLE) of Refuge lands in the southern Yukon Flats for an equal dollar value of Doyon lands in the region. Since there was limited biological information about this exchange parcel, the Refuge staff collected additional data to better describe the parcel's resources. Between June 16-24 and July 21-25, 2003, and July 12-20, 2004, baseline information on vegetation, water, fish, and bird resources was collected from the PLE and adjacent lands. We sampled 23 sites for plant resources and collected 594 specimens representing 45 families and 121 genera. One plant species, Scheuchzeria palustris, ranked as rare by the Alaska Natural Heritage Program, has been identified in the PLE. Other rare species, Douglasia gormanii, Phlox hoodii, and Minuartia yukonensis were identified in areas adjacent to the PLE. Plant identification is ongoing. Baseline water chemistry data collected from eight lakes within the PLE characterized most lakes as having summer surface waters not limited by oxygen saturation, dissolved oxygen levels in the bottom waters capable of supporting fish, conductivities which did not reflect chemically stratified waters, and water hardness levels indicative of soft water systems. Bathymetric data indicated that most lakes had steep gradients with maximum depths ranging from 3.2 to 24m and lake volumes ranging from .3 to 27 million cubic meters. The majority of lakes sampled were classified as dimictic and cold monomictic systems. Northern pike (Esox lucius) were present in all sampled lakes and Beaver Creek. A sample of 17 pike was collected from five locations and all tested positive for presence of methylmercury. Mean level of mercury was 1.92 parts per million (ppm) dry weight with four of the 17 pike in excess of 2 ppm (range 2.44–6.69). The fish with the highest mercury level was sampled from Beaver Creek. Birds were surveyed using point counts at nine locations including six lakes, two alpine sites, and Beaver Creek. A total of 1,231 birds representing 61 species was detected during the survey period. The five bird species that were most common included whitecrowned sparrow (Zonotrichia leucophrys), Swainson's thrush (Catharus ustulatus), dark-eyed junco (Junco hyemalis), American robin (Turdus migratorius), and fox sparrow (Passerella *iliaca*). Although we sampled many of the larger lakes in the PLE we did not have uniform geographic coverage and we recommend further baseline inventories. Specific locations to target include proposed pipeline access corridors outside the PLE and the Beaver Creek drainage which includes a high diversity of resource values.

ACKNOWLEDGMENTS

We thank A. Larson, National Park Service; S. Jewett, Northern Pacific Biological Research; B. Carter, L. Devaney, K. Mueller and K. Russell, Fairbanks Fish and Wildlife Field Office for assistance in data collection and analysis. S. Dufford and J. Akaran, Yukon Flats NWR, assisted in data collection and produced maps for this report. Pilots K. Kelpe and D. Jones, Air Logistics, provided safe access to sample plots. M. Vivion provided air transport from the study area to Fairbanks. B. Carter, S. Dufford and K. Mueller assisted with preparation of this report. Thanks to E. Taylor, FWS, for review of this report. All photos taken by the authors.

Biotic Assessment of the Beaver Creek Watershed in the southern Yukon Flats

TABLE OF CONTENTS

SUMMARY1
ACKNOWLEDGMENTS
INTRODUCTION
OBJECTIVES
STUDY AREA AND BACKGROUND
METHODS
Sample Site Selection
Access
Plant Inventory10
Water Inventory11
Fish Inventory12
Bird Inventory12
RESULTS AND DISCUSSION
Plant Inventory
Water Inventory15
Fish Inventory
Bird Inventory
RECOMMENDATIONS
LITERATURE CITED
Appendix A. Area (acres), perimeter (miles), and locations (latitude/longitude) of lakes
located in the proposed land exchange area
Appendix B. Summary of vascular plants collected within and adjacent of the proposed land
exchange area, Yukon Flats National Wildlife Refuge and White Mountains Recreation
Area, Alaska, June-July,200328
Appendix C. Descriptive statistics of plant inventory sites within and adjacent of the
proposed land exchange area, Yukon Flats National Wildlife Refuge and White Mountains
Recreation Area, Alaska, June-July,
Appendix D. Figures of 14 plant inventory sites within and adjacent of the proposed land
exchange area, Yukon Flats National Wildlife Refuge and White Mountains National
Recreation Area, Alaska, June-July, 2003
Appendix E. Temperature and dissolved oxygen depth profiles for Lakes 3, 8, 9, 10, 14, 26,
C and Burman, Yukon Flats National Wildlife Refuge, Alaska,
June 2003 and July 200435
Appendix F. Length and weights of northern pike collected at Burman Lake, Yukon Flats
National Wildlife Refuge, Alaska, July, 2004
Appendix G. Numbers of birds and species observed by sample plot during point count
survey in the proposed land exchange area, Yukon Flats National Wildlife Refuge, Alaska,
June, 2003
Appendix H. Numbers of bird and mammal species observed at Burman Lake, Yukon Flats
National Wildlife Refuge, Alaska, July 12-20, 200443

LIST OF FIGURES

Figure 1. Location of the proposed land exchange area and surrounding features, Yukon	
Flats National Wildlife Refuge, Alaska	7
Figure 2. Location of sample sites in and adjacent to the proposed land exchange area, Yukon	
Flats National Wildlife Refuge, Alaska	.13
Figure 3. Levels of dry mercury in northern pike in the proposed land exchange area, Yukon	
Flats National Wildlife Refuge, Alaska, June, 2003	.18
Figure 4. Number of total birds detected by sample plot during point count surveys in and adjacent to the proposed land exchange area, Yukon Flats National Wildlife Refuge, June,	
2003	21
Figure 5. Number of bird species detected by sample plot during point count surveys in and adjacent to the proposed land exchange area, Yukon Flats National Wildlife Refuge, June,	
2003	21
Figure 6. Five most common species detected by plot in point counts in and adjacent to the proposed land exchange area, Yukon Flats National Wildlife Refuge, Alaska, June, 20032	22

LIST OF TABLES

Table 1. Sites sampled by landform type in the proposed land exchange area and adjacent ar	eas,
Yukon Flats National Wildlife Refuge and White Mountains National Recreation	
Area, Alaska, June-July, 2003	14
Table 2. Surface water quality measurements at lakes sampled in the Yukon Flats National	
Wildlife Refuge, Alaska, June, 2003	16
Table 3. Surface area, average depth, and volume of sampled lakes in the proposed land	
exchange area, Yukon Flats National Wildlife Refuge, Alaska, June, 2003	17
Table 4. Capture statistics and mercury levels for northern pike sampled at Lakes 8, 10, 14,	
and Beaver Creek, Yukon Flats National Wildlife Refuge, Alaska, June, 2003	.19

INTRODUCTION

Doyon, Limited (Doyon) has proposed to exchange certain lands Doyon owns within the Yukon Flats National Wildlife Refuge (Refuge) for approximately 44,515 hectares (110,000 acres) of Refuge lands (proposed land exchange area or PLE). The purposes of this proposed land exchange area are: 1) to facilitate oil and gas exploration and development by Doyon, and 2) protect high-quality wildlife habitats within the Refuge that are currently owned by Doyon. A separate environmental evaluation will be conducted to address this proposed exchange. Specific information concerning location of possible oil and gas support facilities has not yet been identified; however, two potential pipeline and access corridors have been identified by Doyon (Figure 1). Although biological data does exist over portions of the Yukon Flats region, there is little information available to land managers to assess resource values specific to the PLE.

OBJECTIVES

The following inventories were conducted to better describe resource features of the PLE:

- 1) Conduct a survey of the vascular flora focusing on the alpine, upland lakes and Beaver Creek wetland habitats.
 - a) Document sensitive or rare vascular species
 - b) Collect, process, and submit a permanent voucher collection of vascular flora to the University of Alaska Museum Herbarium, Fairbanks
 - c) Create a database of plant voucher collection information for archival at the Refuge and make available to the Alaska Natural Heritage Program (ANHP)
- 2) Collect baseline water chemistry data and determine lake volumes and depths on a sample of lakes.
- 3) Document presence of fish on a sample of lakes and measure mercury levels on a sample of northern pike.
- 4) Characterize avian presence in habitats representative of the PLE.

STUDY AREA AND BACKGROUND

The PLE is situated in the southern Yukon Flats, about 24 km southwest of Birch Creek Village, and lies in the foothills of the White Mountains (Figure 1). The area encompasses the Beaver Creek watershed, includes approximately 40 km of Beaver Creek, and borders an additional 26 km of the Beaver Creek National Wild River corridor (USDI 1983). The area includes upland habitats ranging in elevations from 244 to 305 m and 196 lakes and ponds ranging from 0.4 to 304 hectares. The southern one-quarter of the PLE was proposed for wilderness designation in 1987 (USDI 1987).

The landscape is underlain by discontinuous permafrost and is heavily influenced by wildland fire. In addition the Beaver Creek floodplain is subjected to seasonal flooding. Due to the area's low annual rainfall, high summer temperatures, and high incidence of lightning, fire activity is often intense and widespread. The area includes portions of three old burns that, in total, burned over 50,000 acres between 1987 and 1999 (Fires A633, B510, B200, Alaska Fire Service records). It is estimated that Fire A633 burned over 40% of the area in 1996.

The area is characterized by mixed forests dominated by white spruce (*Picea glauca*), black spruce (*P. mariana*), paper birch (*Betula papyrifera*), quaking aspen (*Populus tremuloides*), and balsam poplar (*P. balsamifera*). Shrub communities of alder (*Alnus* spp.) and willow (*Salix* spp.) are most common in riparian sites and edges surrounding lakes and meadows. Dwarf shrubs such as shrub birch (*Betula nana*), Labrador tea (*Ledum palustre spp.*), crowberry (*Empetrum nigrum*), and blueberry (*Vaccinium uliginosum*) are common in the uplands.

The climate is continental sub-arctic which includes large seasonal extremes of temperature and daylight. Summer temperatures can exceed 38°C and are warmer than any other comparable latitude in North America. The mean minimum January temperature is -33°C with winter temperatures reaching -59°C or lower. Although the area has a short growing season of about 81 days, the long hours of sunlight during the spring and summer months produce abundant vegetation. The mean annual precipitation is 16.7 cm, ranging from 9.1 to 27.2 cm. Snow accumulations rarely exceed 76 cm.

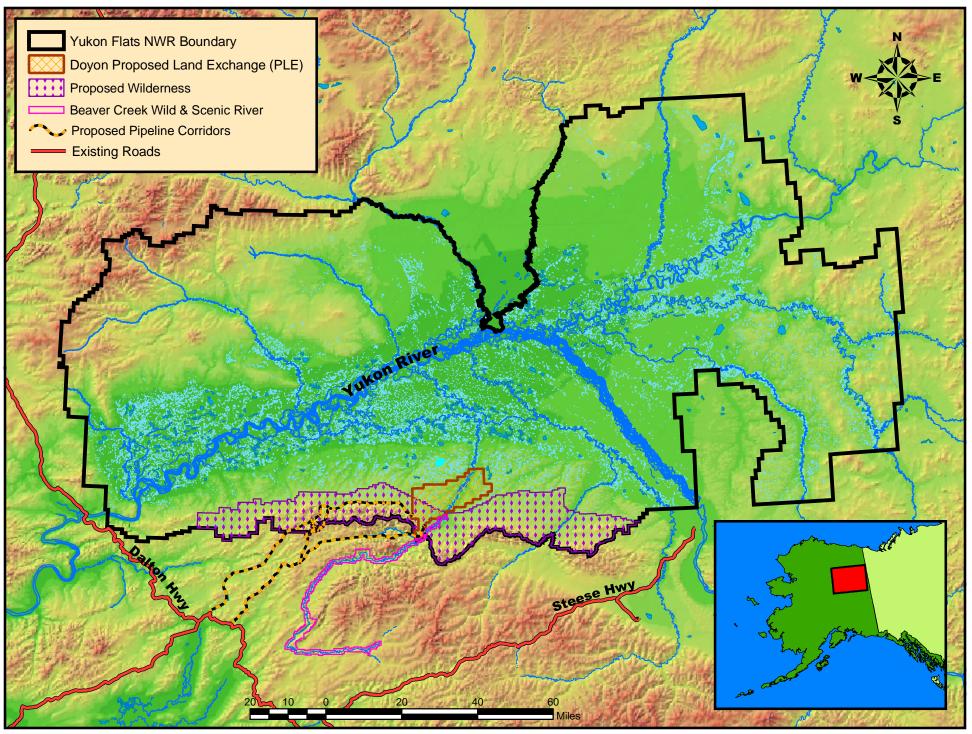


Figure 1. Location of the proposed land exchange area and surrounding features, Yukon Flats National Wildlife Refuge, Alaska.

The following is a summary of known previous resource data collected in the PLE.

Birds - The Division of Migratory Birds, U.S. Fish and Wildlife Service (Service), conducted aerial waterfowl breeding pair surveys over much of the PLE during June 11-14, 2000 (Hodges et al. 2001). Six north/south transects spaced at 5.6 km intervals were flown in the PLE. Timing of the survey was ideal for diving ducks but about two weeks late for dabbling ducks. Estimated birds per square kilometer were: American wigeon 0.50-1.48 (highest densities on Beaver Creek), mallard 0.62 - 1.25, white-winged scoter 3.0-7.0, and scaup species 0.62 - 1.25. The uplands were observed to have widely dispersed deep water lakes, and flying transect lines was found to be an inefficient method for obtaining detailed information in this region compared to lowland habitats.

On June 21, 2000 Refuge biologists conducted aerial surveys of 51 of 196 lakes in the PLE and documented bird use (Bertram and Vivion 2000). An Aviat Husky was used to circle the perimeter of lakes at an altitude of about 61-123 m above ground level. Waterbirds were observed on approximately 50% of lakes surveyed and included red-necked grebe (*Podiceps grisegena*), white-winged scoter (*Melanitta fusca*), lesser scaup (*Aythya affinis*), and pacific loon(*Gavia pacifica*). The most notable observation of this survey was the relatively uniform distribution of pacific loons occurring on 37% of lakes surveyed.

Mammals –Movement data sets are available for moose (*Alces alces*) and black bear (*Ursus americanus*) in the PLE (Nowlin and McLean 1985, Bertram and Vivion 2002). A moose telemetry study conducted between 1983 and 1986 included two bull moose that were captured on Glacier Creek, a tributary to Victoria Creek. The home ranges of these two bull moose were in the PLE and included heavy use of the Beaver Creek drainage. Twenty-nine black bears were radio-collared approximately 24 km north of the PLE. The PLE was used as denning and feeding habitat and a travel corridor for four of the marked bears.

Fish and water resources - Fisheries data have been collected on Beaver Creek at a weir site near the mouth of Victoria Creek and upstream on Bureau of Land Management (BLM) lands in the White Mountains Recreation Area (Kretsinger 1986, Carufel 1990, Fleming and McSweeny 2001, Collin et al. 2002). Salmon passage was monitored between 1998 and 2000 at a site approximately two miles upstream of the confluence of Victoria Creek and three miles upstream of the PLE. Both summer chum (*Onchorhynchus keta*) and chinook salmon (*Onchorhynchus tshawytscha*) passed through the weir in 1999 (75 summer chum, 128 chinook) and 2000 (11 summer chum and 114 chinook salmon).

Stock assessment of Arctic grayling (*Thymallus arcticus*) was conducted in 2000 in upper Beaver Creek, upstream from the Big Bend, about 32 km south of the PLE. The population was estimated at 1,325 fish per river mile, which is significantly higher than in any other reported studies on summer feeding populations of Arctic grayling in Alaskan rivers. Annual sport-fish harvest data have been collected by the Division of Subsistence, Alaska Department of Fish and Game since 1986 (Burr, pers. comm).

The Service has filed water rights applications for two lakes (Lake No. 17, i.e., PLE Lake 2 and Lake M) in the PLE (Bayha and Wolfe 1999). In 1995, the Service conducted a survey to measure both the true water surface elevation and true elevation of the outer perimeter of the wet meadow zone on both of these lakes.

The BLM operated an automated water level recorder stream gaging station near the confluence of Victoria and Beaver creeks from 1988 to 2000. Mean monthly discharges (June to August) in Beaver Creek ranged from 22 to 98 cubic meters per second between 1998 and 2000 (Collin et al. 2002). Currently, gaging stations are limited to the headwaters of Beaver Creek (Jon Kostohrys pers. comm.). Stream discharge information was collected on Beaver Creek at a water gauge site in the northeastern portion (N 66°03.28', W 146° 08.61') of the PLE about 20 miles downstream from the Victoria Creek confluence between 1994 and 1998 (Trawicki 2000). A stream gaging station was installed which measured water stage at 15 minutes intervals and downloaded data to a field recorder. Stream discharge estimates were calculated. Peak discharge occurred in late May with high flow events occurring in June and July due to short duration thunderstorms.

Subsistence and recreation use - Subsistence use of the Beaver Creek drainage in the PLE has historically been by Birch Creek and Beaver village residents. Sumida et al. (1985, 1986), Caulfield (1983), and Caulfield et al. (1983) conducted household interviews that indicate moose and bear hunting and trapping were the dominant activities. Currently there is one active trapper in the PLE that maintains a series of trails and cabins. There are five cabins registered in the PLE.

Although the area is roadless, there is light public use on Beaver Creek from June through September. Sheep hunters access the area by boat and plane primarily in August. Recreation use of the Beaver Creek drainage by floaters is between June and September. About 300 parties boat the stretch of upper Beaver Creek and pull out at Victoria Creek. An additional 50 parties float the 180-mile stretch of Beaver Creek through the refuge that drains into the Yukon (Cogley, pers. comm.).

In summary, historical data that have been collected are not sufficient to adequately describe the PLE. Funding to examine resource values associated with the PLE was made available to the Refuge through a congressional add-on appropriation in March 2003. A variety of resources were inventoried in the PLE during June 16-26 and July 21-25, 2003 by a team of 9 biologists from the Fish and Wildlife Field Office, National Park Service, North Pacific Biological Research, and the Refuge. An additional inventory was conducted on Burman Lake July 12-19, 2004. This report summarizes these findings.

METHODS

Sample Site Selection

Topographic and surficial geology maps and color infrared photography were used to examine potential plant, fish/water, and bird inventory sites within the PLE. Decimal latitude and longitude locations for all inventory sample sites (and alternates) and potential camps were generated in ArcView 3.2 (Datum WGS 84). A reconnaissance helicopter flight was conducted on June 16, 2003 to identify potential landing sites, assess water depths, and identify alternate sample sites. Sampling dates were selected to take advantage of peak landbird detection by song and flowering phenology.

Plant inventory sampling regions were delineated in ArcView 3.2 by elevation and landform type: alpine (750-1,000 m), upland lakes (200-300 m), and active/inactive (150-180 m) and abandoned floodplains (180-220 m) along the Beaver Creek drainage. Due to the variety of Beaver Creek floodplain types, we had the opportunity to sample plant communities from different successional stages.

Lake surface areas within each watershed were located, measured and ranked using ArcGis to evaluate sample sites for water, fish and bird inventories (Appendix A). Sample sites were selected from lakes representative of different water basins and large enough for helicopter access. Additional bird sample sites were also selected from helicopter accessible areas in alpine habitats.

Access

A Bell 206 Jet Ranger helicopter was used to ferry three inventory teams (plant, bird, and fish/water) to various areas in the PLE. The fish/water crew and helicopter were based in Fort Yukon and traveled daily to sample sites. The bird and plant crews camped on-site at sample plots and were ferried daily to new sample sites. The bird and plant crews alternated daily use of the helicopter to visit multiple sample sites. In this fashion an inventory could be completed over a broad geographic area.

Zodiak and sampling gear being transported by sling between sampling sites.

Plant Inventory

An aerial reconnaissance of each sample area was conducted prior to landing to identify different plant community types to aid in locating unique plant species. Alpine landscapes exhibiting different lithologies, disturbance (wildlife use such as dall sheep forage areas and grizzly bear diggings; rock slides), mesic sites, and differential aspects and slope were selected. Upon landing, a location was recorded with a Garmin Global Positioning System (GPS, decimal degree format, NAD 27 datum). An "informed meander" technique (Larsen 2002) was used to maximize the number of unique species encountered along a given travel route. This technique required that crew members sample independently, working in different directions away from the helicopter, one sampling north-facing mesic areas below a saddle and the other person sampling a south-facing talus slope. Each person tried to encounter as many different community types as possible before returning to the helicopter. Sampling times ranged from one to three hours at each site. Specific locations were recorded with a GPS along the travel route.

All observed plants species were recorded and representatives of many species were collected for voucher specimens. Scientific name, species associations, aspect and habitat type were recorded in field notebooks. Plant specimens were placed in rigid plastic containers to protect from crushing. Voucher specimens were pressed at the end of each sampling day. Multiple specimens of the same species were combined on the same sheet if collected in the same habitat type and site. Each sheet was assigned a unique number (e.g. DVP1) to catalog species collected at each site.

Plant specimens were identified using Hulten (1968) and Cody (2000) regional plant identification keys, and Harris and Harris (2003) illustrated plant terminology glossary. Questionable voucher specimens were submitted to the University of Alaska (UA) Museum Herbarium for final verification. The final plant inventory species list will be compared to the Alaska Natural Heritage Program (ANHP) vascular plant tracking list (refer to website: http://enri.uaa.Alaska.edu/aknhp/biodiversity/botanical/vascular_species_concern_species_table/ images/AKNHP_Plt_Trking_List_2003% 20.pdf) to document the occurrence of rare species in the PLE and adjacent areas. Rare species were described using the following state ranking criteria: S1 = critically imperiled in state, S2 = imperiled in state, or S3 = rare or uncommon in state.

Data were entered into a Filemaker Pro 5 database and include date, location, collector, taxonomic identification, and habitat type. The distribution of plant inventory sites is located in ArcView 3.2, file: 2003_plant collections.apr).

Water Inventory

Water temperature, conductivity, and dissolved oxygen were measured at each sample site using a Hydrolab Minisonde 4 Probe and Surveyor 4 Meter. Dissolved oxygen and conductivity meters were calibrated prior to going into the field. Conductivity standards were used to check meter performance prior to the measurement series in the field.

Triplicate one liter surface grab and bottom grab water quality samples were collected in plastic bottles. Bottom water samples were collected using a Wildco alpha bottle. Water quality sample containers were triple-rinsed in the water to be sampled prior to sampling. Sample bottles were filled to the top to minimize gaseous exchange. Each sample bottle was labeled prior to collection and placed in a cooler for transport to a field laboratory for analysis. Samples were analyzed for pH, total alkalinity, total hardness, and turbidity. Hardness and alkalinity were determined using Hach digital titrators and Hach (2002) methods. Measurements of pH were made using an Orion model 290A pH meter equipped with an Orion Triode combination electrode with automatic temperature compensation. Prior to each measurement series, two or three buffer calibrations were performed using pH buffers accurate to $\forall 0.02$ pH units which bracketed the pH of the samples. Turbidity was measured using a Hach Model 2100P Portable Turbidity Meter which was calibrated prior to going into the field and checked daily prior to sample analysis with Hach Stablcal standards. Nitrate and phosphate concentrations were measured in selected samples at the Fish and Wildlife Field Office laboratory in Fairbanks using a Hach 2100 Single-Beam Spectrophotometer. Nitrate and phosphate were analyzed using Hach methods 8171 and 8048, respectively.

A GPS Map 168 Sounder was used to measure water depths on a series of transects extending perpendicular to the long axis of each lake. Mean water depths were multiplied by the surface area of each lake to estimate a general volume.

Fish Inventory

Fish were sampled in lakes and streams by hook and line and variable mesh gill nets. Juveline fish were captured with minnow traps. A ten foot zodiac with an 8 hp outboard was used to facilitate sampling. Fork lengths, total lengths, weights, a tissue sample, and an otolith were taken from each fish. Otoliths were used to estimate age and a muscle sample was used to test for presence of mercury (Chilton and Beamish 1982). Muscle samples were analyzed by the College of Veterinary Medicine at Texas A & M University, College Station, Texas.

A ten foot zodiac was used for water and fish sampling, lake measurements, and bird surveys.

Bird Inventory

Observers identified birds by sight, song, and call using standard Alaska Off-Road Breeding Bird Survey methods at each site along a 12 point transect between 0345 and 0730 (Handel 2002).

Point counts were conducted by walking or by using a zodiac and outboard on the perimeter of waterbodies depending on the ruggedness of terrain. Bird species, behavior, sky condition, wind, temperature, latitude and longitude, and length of survey were recorded. Distribution and abundance of bird species were also monitored daily using the Alaska National Wildlife Refuge Checklist Project guidelines (USFWS 1999). These additional sightings were recorded as incidental detections observed at each sample site outside the scope of the point count surveys. We included all bird detections in the final summary.

Birds were monitored with standard point count methods.

RESULTS AND DISCUSSION

Plant Inventory

We visited 23 sites (Figure 2, Table 1) within or adjacent to the PLE between June 16-24 and July 21-25, 2003. We sampled three days each in the riparian, Beaver Creek wetlands, and upland lake habitats and four days in the alpine landforms. Upland lake WS19 and the alpine sites were located west and southwest (respectively) of the PLE area (Figure 2).

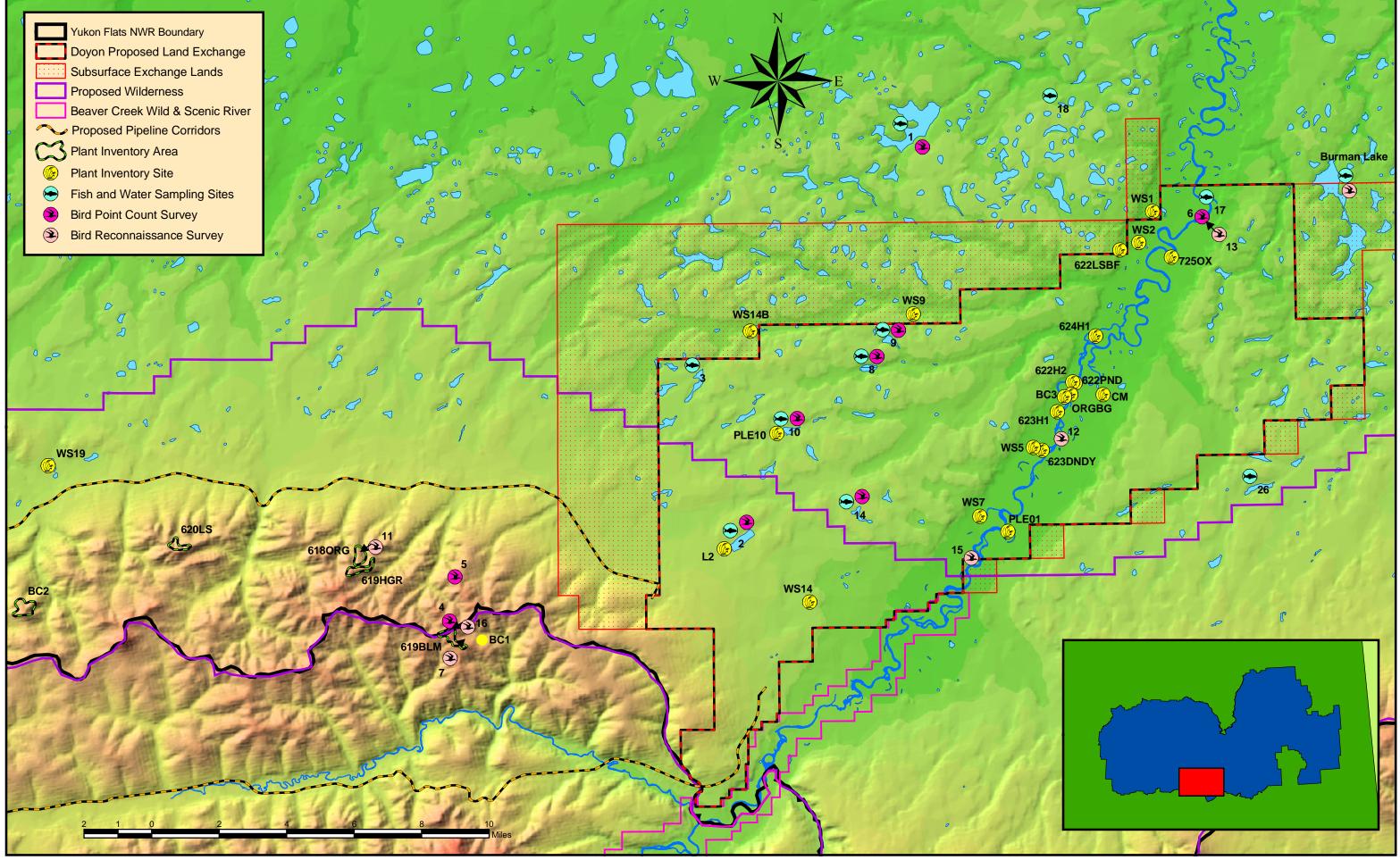


Figure 2. Location of sample sites in and adjacent to the proposed land exchange area, Yukon Flats National Wildlife Refuge, Alaska.

Table 1. Sites sampled by landform type in the PLE and adjacent areas June – July, 2003, Yukon
Flats NWR, Alaska. Sites are listed in sample order within each landform type.

Beaver Creek active floodplain	Beaver Creek inactive floodplain	Beaver Creek abandoned floodplain	Upland lakes	Alpine
622BC3 622PND 622Hop2	623H1 623DNDY 725OX	622LSBF WS7 WS1	L2 WS14 WS14B	BC1 618ORG 619FWS
624H1		WS2 WS5 ORGBG	WS9 WS19	619HGR 620LS BC2

We collected 594 specimens representing 45 families and 121 genera. A species list is presented in Appendix B. Appendix C includes descriptive statistics for each sample site and appendix D includes a sample of photos from collection sites.

Sampling effort was generally distributed evenly among landform types (Jorgenson et al. 1999). However, a review of the upland lake and Beaver Creek wetland landforms indicates sampling gaps in the central and eastern PLE (west and east of Beaver Creek). Narrow lake margins with dense shrubs or trees prevented safe landing at many of the desired upland lake sample sites. Upland lakes L2 and WS19 and Beaver Creek wetland sites WS7 and WS5 where located in the 1996 burn. Upland lake WS14 was situated in the 1999 burn.

Plants collected from the alpine and Beaver Creek gravel bar plant communities were in peak flower. An examination of plant phenology in other landforms is in progress.

Alpine plant communities situated in the White Mountains were represented by 29 families and 61 genera (Appendix C) and were the most floristically diverse. Wetland sites in the Beaver Creek floodplain (active, inactive and abandoned) and wetlands in the upland region were represented by 22 and 25 families (respectively); the most common families at these sites were Cyperaceae, Poaceae and Salicaceae.

Although our examination of plant specimens is not complete, according to the vascular plant tracking list for Alaska (ANHP 2003), three of the species collected are considered rare (S3) and include *Douglasia gormanii*, *Minuartia yukonensis*, and *Scheuchzeria palustris*. *Phlox hoodii* is ranked as imperiled (S1, S2) in Alaska. The wetland associated Scheuchzeria palustris was collected in late July and the remaining alpine species were collected June 18-19. *Douglasia gormanii* was collected outside of the PLE in the White Mountains, on BLM lands west of Base Camp 1 (BC1, Figure 2). *Minuartia yukonensis*t was collected in the vicinity of Base Camp 1 (BC1, Figure 2), outside of the PLE in the

White Mountains. It was found growing at the base of a shale rock outcropping (southwest aspect), with *Dryas*, *Anemone*, and *Cetraria*. *Phlox hoodii* was also collected outside of the PLE in the same area as *Douglasia*. *Scheuchzeria palustris* was collected within the PLE in a wetland adjacent to Beaver Creek at Orange Bog site (ORGBG), (see Figure 2 and photo above) in late July. It was found growing along the northwest edge with *Sphagnum*, *Equisetum* and *Carex*.

Following initial species determinations, questionable voucher specimens will be submitted to the UA Museum Herbarium for final verification. The occurrence of additional plant range extensions or rare or imperiled species will be included in a future amendment to this report.

Water Inventory

Surface water temperatures were within a small range (16.2-20.8°C) for all lakes measured (Table 2, Figure 2). Temperatures varied among depths due to thermal stratification (see Appendix E for figures of temperature by depth). The deepest lakes sampled (Lakes 1, 9, and Burman Lake) were characertized with an established stable thermocline and greater than 10° C difference in temperature between the epilimnion and the hypolimnion. The shallowest lakes (Lakes 8, 10, and 26) had not established the magnitude of thermocline as in the deeper lakes, although a temperature difference was detected between top and bottom waters. The greater thermal separation between top and bottom waters of shallow lakes likely occurred as the summer progressed. Bottom temperatures in shallow lakes were between 15° C and 16° C compared to between 4° C and 5° C for all other lakes (Table 2). This indicates a longer period of whole-lake mixing for shallower lakes (Wetzel 1975).

Lake 8 contained the lowest surface levels of dissolved oxygen.

Lake 14 was representative of steep walled lakes with maximum depths to 15 m.

Wetzel (1975) stresses that individuality in lake thermal regime is common. Lake thermal structure of lakes is governed by climatic variations, volume of inflow and outflow in relation to the volume of the basin, basin configuration, surface area, position of the basin in relation to wind action, and other factors. Based on latitude and elevation, Wetzel (1975) characterizes lakes from the PLE as transitional between dimictic and cold monomictic lake types. Dissolved oxygen concentrations of surface waters ranged from 6.5 mg/L at Lake 8 to 8.5 mg/L at Lake 26 and diminish with depth (Appendix E). Percent saturation of oxygen in surface waters ranged from 71 to 96% indicating that no major oxygen-consuming event, such as a decomposing algae bloom or certain types of contamination, was occurring in the epilimnion of these lakes. Bottom waters of the shallowest lakes (8, 10, and 26) had between 4.5 mg/L and 6.4 mg/L of dissolved oxygen. For all other lakes, dissolved oxygen is necessary to support salmonid fish except Arctic grayling (*Thymallus arcticus*) which can survive much lower dissolved oxygen concentrations.

			Collection	pНC	Conduct. ²	Temp ²	DO ² (mg/l	Hardnes	Alkalinit y ¹	y ¹		PO₄ _(mg/L
Lake	e Location	Depth (m)	Date	' (<i>µ</i> S/cm)	(°C))	s ¹ (mg/L)) (mg/L)	(NTU)))
1 ³ 1 ³	WQ1 WQ1	Surface 26	6/25/2003 6/25/2003	8.4	301 300	18.3 5	9 5.4	159	168	1	0.1	0.02
2	WQ1	Surface		7.3	60	17.1	8.1	37.1	27.6	0.9		
3	WQ1	Surface		7.2	109	17.6	8.1	63.3	44.5	0.6		
3	WQ1	7	6/20/2003		101	7.1	3.2	63	1110	4.5		
3	WQ2	Surface	6/20/2003		103	17.1	7.8					
3	WQ2	12	6/20/2003		103	4.2	0.8					
8	WQ1	Surface		7.5	108	18.9	6.6	70.3	47.3	2		
8	WQ1	3	6/21/2003		107	15.9	6.4					
8	WQ2	Surface	6/21/2003		106	18.4	6.5					
8	WQ2	2	6/21/2003		106	17	6.7					
9	WQ1	Surface	6/22/2003	7.5	141	18.8	8.5	66.5	49.5	1.8	0.8	0.05
9	WQ1	16	6/22/2003		135	4.3	1.9					
9	WQ2	Surface	6/22/2003		141	19	8.2					
10	WQ1	Surface	6/19/2003	7.2	125	16.2	7	74.3	52.3	2.1		
10	WQ1	4	6/19/2003		125	15.4	5.6					
10	Dam	Surface	6/19/2003		138	16.4	5.7					
10	WQ2	Surface	6/19/2003		124	16.6	7.4					
10	WQ3	Surface	6/19/2003		126	17.6	7.7					
14	WQ1	Surface	6/18/2003		120	17.4	7.8					
14	WQ1	11	6/18/2003		139	4.3	0.1					
14	WQ2	Surface	6/18/2003		126	17	8					
14	WQ2	10	6/18/2003		122	5	1.9					
14	WQ3	Surface	6/18/2003		129	17.6	7.8					
14	WQ3	6	6/18/2003		123	5.9	1.5					
14	WQ4	Surface	6/18/2003	7.8				72.3	54	1		
14	WQ4	11	6/18/2003	6.2				77.7	58.7	10.8		
26	WQ1	Surface		7.7	103	20.8	8.5	58.7	38	10.6	0.6	0.06
26	WQ1	5	6/24/2003		99	15.1	4.5					
26	WQ2	Surface		8.2				59	37.7	2.3		
18 ³	4	Surface	6/21/2003	9.3					682		2.2	0.18
Burn	nan⁺	Surface	7/13/2004	8	187	18.5	8	92	98		0.2	0.001
Burn	nan⁴	24	7/13/2004	9.7	181	4.4	4.7					

Table 2. Surface water quality measurements at lakes in Yukon Flats NWR, Alaska, June, 2003.

¹ Mean of three samples collected at the same time. ² Measured on-site. ³ Located adjacent to the

PLE ⁴ Surface measurements are mean of 3 samples collected at

3 basins

Conductivities of surface waters ranged from 60 μ S/cm at Lake 2 to 301 μ S/cm at Lake 1. Most conductivities were between 105 μ S/cm and 130 μ S/cm. Conductivity at Lake 18 was likely far greater than at other lakes based on the alkalinity measurement; however, conductivity was not measured at this lake. Based on the consistent conductivities at depth, none of these lakes are meromictic lakes, i.e., chemically stratified lakes, such as Pingo Lake (Likens and Johnson 1966) near Circle, Alaska, in the Birch Creek drainage.

Values of mean hardness and alkalinity varied between 37.0-159 mg/L and 27.6-168 mg/L, respectively, for surface water samples (Table 2). These values characterized all lakes except Lake 1 and Lake 18 as soft water systems (Hem 1992). Values of these measures were two to three times greater at Lake 1 than at other lakes. Lake 18 is in a class by itself among lakes sampled with alkalinity of 682 mg/L.

Nitrate and phosphate concentrations were conducted on samples of surface water from five lakes. Lakes 9 and 26 had similar values for nitrate and phosphate while Burman Lake and Lake 1 had lesser values for these constituents. Lake 18 had nitrate concentrations twice that and phosphate concentrations three times that of Lakes 9 and 26. The causative factors of high hardness, alkalinity, and nutrients at Lake 18 are unknown, however, these high levels explain why a rich algal bloom was present on the lake at the time of sampling.

Lake 18 had high nitrate and phosphate levels.

Most lakes in the PLE were characterized by steep gradients; the exceptions were Lakes 2 and 3, and 26. Maximum depths ranged from 3.2 to 24 m. Lake volumes ranged from .3 to 27 million cubic m. Area, mean and maximum depth, and volume for each sampled lake is given in Table 3.

Sample plot (Lake)	Surface area (m ²)	Average depth (m)/ Maximum Depth	Volume (m ³)
1 ¹	2,855,461	9.18 / 30.6	26,210,764
2	500,470	2.70 / 6.4	1,351,058
3	344,249	1.96 / 3.2	674,154
8	199,643	3.96 / 9.5	791,085
9	195,973	8.90 / 17.8	1,744,718
10	195,629	1.61 / 4.9	314,839
14	159,353	5.99 / 14.9	954,000
26	268,448	1.91 / 5.4	513,427
Burman Lake ²	3,035,119	9.0 ³ / 24	27,316,071 ³

Table 3.	Surface area, average depth, and volume of sampled lakes in the proposed land
	exchange area, Yukon Flats NWR, Alaska, June, 2003.

1 not located in the PLE

2 located in lands adjacent to the PLE

3 average depth and volume are estimates

Fish Inventory

Northern pike were present in all sampled lakes and Beaver Creek. Fishing intensity varied by lake and ranged from 5 to 147 fish. We captured all fish by hook and line except in Lakes 2, 14, and Burman where we also captured fish by variable mesh gill nets and minnow traps. Two pacific loons were captured as by-catch in Lake 2 and later mounted for public display. Appendix F includes data collected from 147 northern pike at Burman Lake, July 12-20, 2004.

A sample of 22 pike was collected from seven locations and were tested for presence of mercury. Morphological measurements, ages, and mercury levels are presented in Figure 3, Table 4. One sample came from Lake 1 which is about two miles north of the PLE. Mean level of mercury was 1.92 parts per million (ppm) dry weight with four of the 22 pike in excess of 2 ppm (range 2.44 - 6.69). Five of the 22 pike were tested for methylmercury; all results displayed high levels. The fish with the highest mercury level was sampled from Beaver Creek. Five fish were sampled for mercury levels from Burman Lake; the results have not been received.

According to the U.S. Federal Drug Administration (FDA) nearly all fish contain some level of methylmercury, and it is especially common in predator fish such as northern pike who occupy a niche at the top of their food chain. Although the FDA does not recommend consumption of fish with levels of methylmercury in excess of 1ppm, they also purposely set this level 10 times lower than the lowest level associated with human health problems. These findings are similar to mercury levels in northern pike sampled in other regions of interior Alaska (Mueller et al. 1995, 1996)

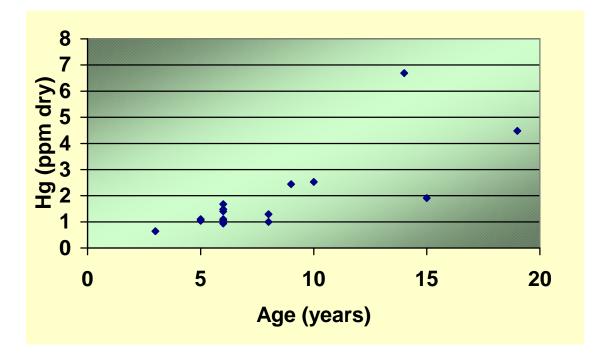


Figure 3. Levels of dry mercury in northern pike in the PLE, Yukon Flats NWR, 2003.

Lake No.	Sample ID	Age	Weight (g)	Fork Length (mm)	Total Length (mm)	Hg (ppm) dry	MeHg	% MeHg
				()	()			
14	YF141EPM	3	785	461	481	0.643	-	-
10	YF101APM	5	1055	504	524	1.1	1.06	0.96
10	YF101CPM	5	1635	573	598	1.04	-	-
10	YF101BPM	6	1060	479	528	0.939	-	-
14	YF141CPM	6	1325	561	595	1.05	-	-
14	YF141FPM	6	1075	528	550	1.1	-	-
14	YF141GPM	6	1680	598	630	1.68	-	-
14	YF141IPM	6	1785	590	628	1.48	-	-
14	YF141KPM	6	1510	605	-	1.44	-	-
14	YF141APM	8	975	500	530	1	0.982	0.98
14	YF141DPM	8	945	492	519	1.29	-	-
8	YF081APM	9	1325	526	558	2.44	2.41	0.99
1^1	YF0C1APM	10	1935	667	-	2.53	2.62	1.04
BC	YFBC1APC	14	1900	625	-	6.69	-	-
14	YF141HPM	15	1785	628	-	1.91	-	-
14	YF141BPM	19	3320	778	815	4.48	3.92	0.88
2	YF021APM	-	-	-	-	1.76	-	-
Burman ²	1	-	1000	-	520	-	-	-
Burman ²	2	-	1500	-	605	-	-	-
Burman ²	3	-	1900	-	665	-	-	-
Burman ²	4	-	1500	-	600	-	-	-
Burman ²	5 adiagant to the	-	2200	-	665	-	-	-

Table 4. Capture statistics and mercury levels for northern pike sampled at Lakes 1, 2, 8, 10, 14, and Beaver Creek (BC), Yukon Flats NWR, Alaska, June 2003.

¹ Located adjacent to the PLE

² Located adjacent to the PLE, results from Burman fish are pending

Bird Inventory

Point counts were conducted at nine locations including six lakes, two alpine sites, and Beaver Creek between June 18-26, 2003 (Figure 2). The two alpine sites and one lake (Lake 1) were located adjacent to the PLE. Lake 1, situated about two miles northwest of the PLE, was selected for floatplane access to transport crews back to Fairbanks at the end of the survey period. Alpine sites and Lake 1 are thought to include avian habitats representative of habitats in the southern.

The 1996 burn burned over 40% of the PLE.

Three point count plots (2, 14, 10) were located within the 1996 burn, and plots 8, 9, and Beaver Creek were adjacent to the burn and included 50% of transects in the burn. All plots included water edge except alpine habitats.

A total of 1,231 birds representing 61 species was observed during the survey period, including 1,090 birds observed from fifty-five species during point counts (Appendix G). Fewer birds and species were observed in alpine plots compared to lake plots (Figure 4). Beaver Creek (photo

below) included more bird species than any other plot (Figure 5).

The five bird species that were most common included white-crowned sparrow, Swainson's thrush, dark-eyed junco, American robin, and fox sparrow (Figure 6). All five of these species are attracted to recently burned, early succession habitats associated with lake edge. Of these species, white-crowned sparrows were the most widely distributed and in all plots except Beaver Creek and Lake 1. The five most common species detected by plot are given in Figure 6.

Beaver Creek

A reconnaissance flight of Victoria and Beaver creeks was conducted June 23, 2003 on those creek segments in or adjacent to the PLE. Two bald eagle were observed in flight; however, no nests sites were located.

Bird observations were recorded on daily checklists at Burman Lake between July 12-20, 2004 (Appendix H).

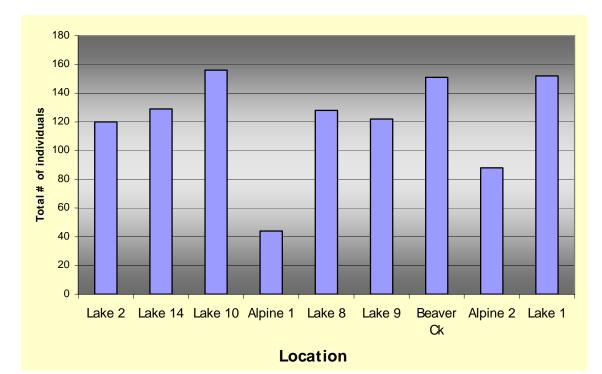


Figure 4. Number of individual birds detected during point count surveys in and adjacent to the proposed land exchange area, Yukon Flats National Wildlife Refuge, Alaska, June, 2003.

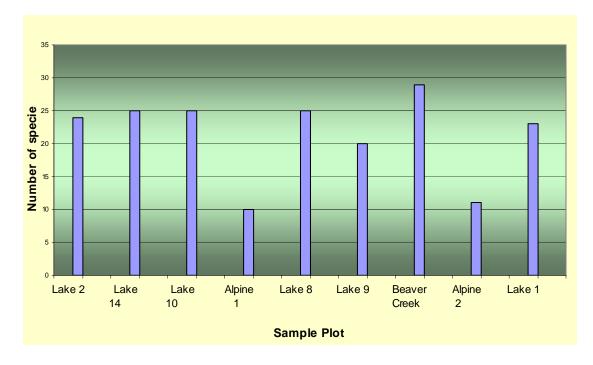


Figure 5. Number of bird species detected during point count surveys in and adjacent to the proposed land exchange area, Yukon Flats National Wildlife Refuge, Alaska, June, 2003.

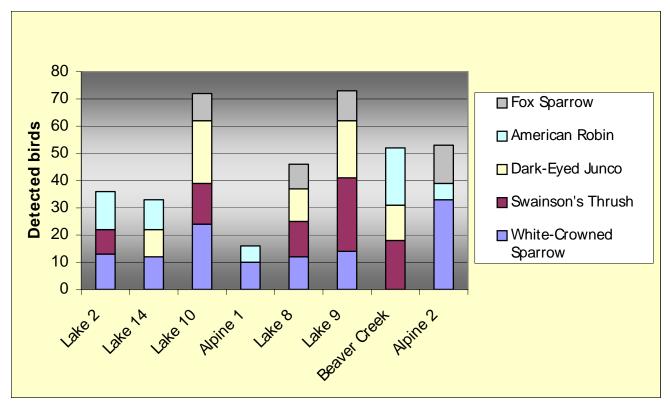


Figure 6. Five most common species detected in point counts in the PLE, Yukon Flats NWR, Alaska, June, 2003.

RECOMMENDATIONS

If funds become available to conduct additional sampling we recommend the following:

- Although we sampled many of the larger lakes we only sampled about 4% of available lakes in the PLE. We did not investigate lakes in the northwest region and avoided all lakes less than 40 acres due to access constraints of the charter aircraft. In future sampling efforts, a Bell Jet Long Ranger with floats could be used to access many of these areas. We recommend that similar surveys (plant, water, fish, bird) be conducted at these sites in an effort to effectively describe a broader and less biased geographic area.
- 2) Future botanical work in the eastern and central PLE and western adjacent areas should focus on wetland bogs of different seral stages, upland lakes (aquatics and terrestrial), and a revisit to the White Mountains (Refuge and BLM lands) with particular attention paid to areas that may be used as a pipeline access corridor to the PLE.
- 3) We directed little time on the Beaver Creek corridor during our sampling efforts. This region contains the highest diversity in fauna and should be investigated more thoroughly. Particular attention should be given to fish inventories and a systematic inventory should be conducted on the 25 mile stretch in the PLE. If funds are available additional methylmercury tests on fish tissues should be conducted.

4) Baseline data should also be collected from regions that have been identified as potential pipeline access corridors. Similar inventories are also recommended for lands that the Service would acquire in the proposed exchange.

LITERATURE CITED

- Bayha, K.D. and C.A.Wolfe. 1999. Criteria for instream water rights for selected lakes in the southern portion of the Yukon Flats National Wildlife Refuge. WRB99-1. Water Resources Branch, U.S. Fish and Wildlife Service, Anchorage, Alaska.
- Bertram, M.R. and M.T.Vivion. 2002. Black bear monitoring in eastern interior Alaska. Yukon Flats National Wildlife Refuge, U.S. Fish and Wildlife Service, Fairbanks, Alaska. URSUS 13:69-77.
- Bertram, M.R. and M.T.Vivion. 2000. Waterfowl breeding pair survey-southern Yukon Flats. Yukon Flats National Wildlife Refuge, U.S. Fish and Wildlife Service, Fairbanks, Alaska. Unpublished report. 17pp.
- Carufel, L. 1990. Fisheries investigations in the Beaver Creek drainage, White Mountains National Recreation Area, Alaska, 1989. BLM-Alaska Open File Report 31. Bureau of Land Management, Anchorage, Alaska. 19pp.
- Caulfield, R.A. 1983. Subsistence Land Use in Upper Yukon-Porcupine Communities, Alaska. Subsistence Division, Alaska Department of Fish and Game. Technical Paper No. 16.
- Caulfield, R.A., W.J. Peter, and C.L. Alexander. 1983. Gwich'in Athabaskan Place Names of the Upper Yukon-Porcupine Region, Alaska: A Preliminary Report. Subsistence Division, Alaska Department of Fish and Game. Technical Paper No. 83.
- Chilton, D.E. and R.J. Beamish. 1982. Age determination methods for fish studies by the groundfish program at the Pacific Biological Station. Can. Spec. Publ. Fish. Aquat. Sci.60:1029
- Cody, W.J. 2000. Flora of the Yukon Territory Second Edition. NRC Research Press, Ottawa, Ontario, Canada. 669 pp.
- Collin, N., L. Kelly and J. Kostohrys. 2002. Adult salmon runs and streamflow data at a resistance board weir on Beaver Creek, Alaska, 1998-2000. BLM-Alaska Open File Report 85. Bureau of Land Management, Anchorage, Alaska. 15pp.
- Fleming, D.F. and I. McSweeny. 2001. Stock assessment of Arctic grayling in Beaver and Nome creeks. Alaska Department of Fish and Game, Fishery Data Series No. 01-28, Anchorage, Alaska. 38pp.
- Hach. 2002. Water Analysis Handbook. Hach Company, Loveland, CO. 1255 pp.

- Handel, C. 2002. Alaska Off-Road Breeding Bird Survey: instructions for conducting point counts. Boreal Partners in Flight in cooperation with: Alaska Science Center, USGS, Anchorage, AK. 5pp.
- Harris, J.G. and M.W. Harris. 2003. Plant identification terminology, an illustrated glossary. Spring Lake Publishing, Spring Lake, Utah. 206 pp.
- Hem, J.D. 1992. Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey Water-Supply Paper 2254. 263 pp.
- Hodges, J.I., D.J.Groves and B. Platte. 2001. Intensive transect aerial survey for breeding waterfowl on the southern Yukon Flats-June 2000. Waterfowl Management Branch, U.S. Fish and Wildlife Service, Juneau, Alaska. Unpublished report. 9pp.
- Hulten, E. 1968. Flora of Alaska and neighboring territories. Stanford University Press, Stanford. 1008 pp.
- Jewett, S.C., X. Zhang, A.S. Naidu, J.J. Kelley, D. Dasher, L.K. Duffy. 2003. Comparison of mercury and methylmercury in northern pike and Arctic grayling from western Alaska rivers. Chemosphere 50: 383-392.
- Jorgenson, M.T., J.E. Roth, M.K. Raynolds, M.D. Smith, W. Lentz, A.L. Zusi-Cobb, and C.H. Racine. 1999. An ecological land survey for Fort Wainwright, Alaska. USA Cold Regions Research and Engineering Laboratory, CRREL Report 99-9. U.S. Army Corps of Engineers. 83pp.
- Kretsinger, C. 1986. An investigation of arctic grayling spawning activity within the headwater tributaries of Beaver Creek. Unpublished Technical Report. 6pp.
- Larsen, A. 2002. Annual report: CAKN vascular plant inventory project, Fiscal Year 2002, Yukon-Charley Rivers National Preserve Inventory. National Park Service, in house report.
- Likens, G.E. and P.L. Johnson. 1966. A chemically stratified lake in Alaska. Science 153:875-877.
- Mueller, K., Snyder-Conn, E., and Bertram, M. 1996. Water quality and metal and metalloid contaminants in sediments and fish of Koyukuk, Nowitna and the Northern Unit of Innoko National Wildlife refuges, Alaska, 1991. Ecological services, U.S. Fish and Wildlife Service, <u>NAES-TR-96-03</u>. 79 pp. (pdf)

- Mueller, K.A., Snyder-Conn, E., and Scannell, P.O. 1995. Metal and Metalloid Contaminants in Water, Sediments, Fish and Mammals of Kanuti National Wildlife Refuge, Alaska, 1985-1990. U.S. Fish and Wildlife Service, Northern Alaska Ecological Services. Technical Report <u>NAES-TR-95-02</u>. 125 pp. (pdf)
- Nowlin, R. and L.S. McLean. 1985. Moose distribution, movement, patterns, and habitat use in the Yukon Flats National Wildlife Refuge. Unpublished report. Alaska Department of Fish and Game/Yukon Flats National Wildlife Refuge, Fairbanks, Alaska. 19pp.
- Sumida, V.A. and C.L. Alexander. 1985. Moose Hunting by Residents of Beaver Birch Creek, Fort Yukon, and Stevens Village in the Western GMU 25D Permit Moose Hunt Area, 1984-85. Subsistence Division, Alaska Department of Fish and Game. Technical Paper No. 121.
- Sumida, V.A. and C.L. Alexander. 1986. Patterns of Land and Resource Use in Beaver, Alaska. Subsistence Division, Alaska Department of Fish and Game. Technical Paper No. 140.
- Trawicki, J. 2000. Water resources inventory and assessment-Yukon Flats National Wildlife Refuge. Water Resources Branch, U.S. Fish and Wildlife Service, Anchorage, Alaska. 84pp.
- U.S. Department of the Interior. 1983. River Management Plan for the Beaver Creek National Wild River. Bureau of Land Management and U.S. Fish and Wildlife Service. Fairbanks, Alaska.
- U.S. Department of the Interior. 1987. Yukon Flats National Wildlife Refuge Comprehensive Conservation Plan. U.S. Fish and Wildlife Service, Anchorage, AK. 421pp.
- U.S. Department of the Interior. 1999. Alaska National Wildlife Refuge Checklist Project. U.S. Fish and Wildlife Service, Anchorage, AK.

Wetzel, R.G. 1975. Limnology. W.B. Saunders Co., Philadelphia, PA. 743 pp.

1 181.189 2.644 66.071 -146.262 51 13.367 0.743 65.975 -146.616 101 10.381 0.33 2 123.669 2.110 65.926 -146.01 52 13.367 0.597 66.031 -146.095 102 4.548 0.35 3 85.066 2.768 65.993 -146.650 53 13.075 0.577 65.942 -146.682 103 4.449 0.62 4 58.589 1.608 65.991 -146.678 54 12.862 0.513 66.065 -146.333 104 4.357 0.32 5 53.532 1.659 66.017 -146.585 55 12.847 0.617 65.975 -146.336 105 4.237 0.88	65.911 -146.490 65.990 -146.249 65.980 -146.395 65.958 -146.310 65.977 -146.244 66.070 -146.320 65.973 -146.250
3 85.066 2.768 65.993 -146.650 53 13.075 0.577 65.942 -146.682 103 4.449 0.62 4 58.589 1.608 65.991 -146.678 54 12.862 0.513 66.065 -146.333 104 4.357 0.32 5 53.532 1.659 66.017 -146.585 55 12.847 0.617 65.975 -146.336 105 4.237 0.88	65.990 -146.249 65.980 -146.395 65.958 -146.310 65.977 -146.244 66.070 -146.320 65.973 -146.250 66.032 -146.195
4 58.589 1.608 65.991 -146.678 54 12.862 0.513 66.065 -146.333 104 4.357 0.32 5 53.532 1.659 66.017 -146.585 55 12.847 0.617 65.975 -146.333 105 4.237 0.88	65.980 -146.395 65.958 -146.310 65.977 -146.244 66.070 -146.320 65.973 -146.250 66.032 -146.195
5 53.532 1.659 66.017 -146.585 55 12.847 0.617 65.975 -146.336 105 4.237 0.880	65.958 -146.310 65.977 -146.244 66.070 -146.320 65.973 -146.250 66.032 -146.199
	65.977-146.24466.070-146.32065.973-146.25066.032-146.199
	66.070 -146.320 65.973 -146.250 66.032 -146.199
6 59.239 1.280 65.960 -146.060 56 11.291 0.481 66.065 -146.225 106 4.187 0.37	65.973 -146.250 66.032 -146.199
7 53.121 1.728 65.977 -146.678 57 11.153 0.502 65.991 -146.456 107 4.110 0.316	66.032 -146.199
8 49.333 2.185 66.000 -146.466 58 11.058 0.539 66.024 -146.096 108 4.071 0.33	
9 48.426 1.424 66.011 -146.443 59 10.898 0.497 66.056 -146.241 109 4.057 0.51	65.991 -146.226
10 48.341 1.539 65.973 -146.550 60 11.558 0.538 66.024 -146.684 110 3.735 0.32	
11 47.288 1.786 65.956 -146.573 61 10.598 0.478 66.060 -146.315 111 3.603 0.30	66.002 -146.430
12 45.158 1.537 65.980 -146.593 62 10.472 0.464 66.075 -146.322 112 3.500 0.33	65.947 -146.164
13 40.962 1.260 65.964 -146.526 63 9.726 0.776 66.059 -146.063 113 3.499 0.27	65.968 -146.660
14 39.377 1.545 65.937 -146.478 64 12.513 0.483 66.032 -146.637 114 3.482 0.324	65.980 -146.080
15 35.730 1.305 66.038 -146.092 65 9.700 0.962 65.978 -146.521 115 3.353 0.60	
16 34.471 1.484 65.980 -146.472 66 9.563 0.473 66.072 -146.250 116 3.273 0.32	
17 32.701 1.194 66.059 -146.260 67 11.084 0.482 66.049 -146.367 117 3.188 0.27	
18 31.825 0.873 66.055 -146.232 68 9.408 0.706 66.052 -146.176 118 2.817 0.45	
19 28.297 0.892 66.029 -146.537 69 9.282 0.646 65.948 -146.155 119 80.302 0.43	66.066 -146.368
20 27.922 0.827 66.029 -146.566 70 8.977 0.450 66.067 -146.194 120 9.897 0.35	
21 26.172 1.439 66.001 -146.674 71 8.974 0.560 66.016 -146.366 121 2.379 0.22	
22 26.147 0.823 66.070 -146.237 72 8.931 0.472 65.934 -146.413 122 2.325 0.22	
23 24.518 1.019 66.068 -146.302 73 8.867 0.465 66.010 -146.105 123 2.280 0.21	
24 24.148 1.056 65.945 -146.448 74 8.393 0.449 66.031 -146.355 124 2.158 0.31	66.001 -146.397
25 35.727 1.171 65.947 -146.676 75 8.230 0.472 66.028 -146.437 125 2.145 0.43	
26 66.335 1.064 65.947 -146.060 76 7.969 0.657 65.898 -146.428 126 2.104 0.31	
27 22.092 0.871 66.028 -146.475 77 7.940 1.109 65.927 -146.315 127 2.015 0.24	66.044 -146.182
28 21.369 1.267 66.018 -146.104 78 7.819 0.452 66.025 -146.598 128 4.260 0.28 20 21.369 1.267 66.018 -146.104 78 7.819 0.452 66.025 -146.598 128 4.260 0.28	
29 21.354 0.921 66.072 -146.317 79 19.912 unk unk unk 129 1.726 0.35	
30 21.275 1.265 66.065 -146.153 80 7.710 0.582 65.902 -146.530 130 1.667 0.18 21 20.754 0.022 60.002 440.237 84 7.200 0.402 60.002 440.247 404 4.002 0.223	
31 20.751 0.832 66.003 -146.277 81 7.386 0.468 66.062 -146.347 131 1.608 0.23 32 32.885 1.222 66.010 -146.061 82 7.043 0.389 66.031 -146.553 132 69.123 0.21	
34 19.712 0.883 66.068 -146.333 84 6.870 0.485 66.025 -146.212 134 1.528 0.24 35 19.648 0.759 66.072 -146.347 85 6.605 0.398 66.012 -146.372 135 1.480 0.24	
	66.049 -146.194
36 19.502 0.725 66.027 -146.265 86 6.561 0.440 66.016 -146.625 136 1.392 0.23 37 18.803 0.690 65.986 -146.498 87 6.483 0.366 66.005 -146.646 137 1.377 0.29	65.964 -146.267
38 18.566 0.670 66.067 -146.291 88 6.429 0.446 65.907 -146.492 138 1.327 0.304	
38 18.360 0.670 66.007 140.291 38 0.449 0.397 140.492 138 1.327 0.30 39 17.282 0.693 66.006 -146.561 89 6.272 0.534 66.073 -146.220 139 1.322 0.29	
40 17.215 1.209 65.987 -146.584 90 6.042 0.461 66.015 -146.460 140 1.318 0.172	
41 17.067 0.796 66.069 -146.213 91 6.009 0.887 65.964 -146.297 141 1.270 0.31	
42 16.803 0.632 65.991 -146.201 92 6.008 0.389 65.934 -146.467 142 1.261 0.31	
43 16.655 0.686 66.061 -146.327 93 5.383 0.671 65.863 -146.525 143 1.188 0.188	
44 16.090 0.630 66.052 -146.072 94 5.306 0.412 66.025 -146.200 144 1.121 0.27	
45 15.330 0.817 65.996 -146.059 95 5.130 0.395 65.954 -146.598 145 1.084 0.31	
46 14.948 0.574 66.015 -146.403 96 5.070 0.353 66.050 -146.235 146 1.017 0.18	
47 13.797 0.603 66.011 -146.540 97 5.003 0.356 65.992 -146.611 147 1.006 0.256	
48 23.732 0.558 66.075 -146.364 98 4.876 0.322 66.005 -146.191 148 4.106 0.213	
49 13.571 0.737 65.989 -146.448 99 4.751 0.341 66.018 -146.542 149 0.993 0.18	65.992 -146.246
50 17.713 0.642 66.031 -146.668 100 4.619 0.428 65.966 -146.294 150 0.992 0.15	

Appendix A. Area (acres), perimeter (miles), and locations (latitude/longitude) of lakes located in the proposed land exchange area.

Appendix A. cont...

Lake No	Acres	Perimeter (miles)	Latitude	Longitude	Lake No	Acres	Perimeter (miles)	Latitude	Longitude	Lake No	Acres	Perimeter (miles)	Latitude	Longitude
151	0.972	0.196	65.982	-146.079	167	0.442	0.102	66.061	-146.162	183	0.240	0.094	65.978	-146.272
152	0.890	0.139	65.979	-146.391	168	0.407	0.096	66.069	-146.280	184	0.218	0.073	66.012	-146.483
153	0.804	0.181	65.945	-146.320	169	0.388	0.102	66.049	-146.189	185	0.197	0.068	65.971	-146.218
154	0.782	0.149	66.012	-146.227	170	0.364	0.097	66.072	-146.137	186	0.191	0.080	65.997	-146.251
155	0.780	0.188	65.980	-146.259	171	0.362	0.104	66.054	-146.121	187	0.184	0.066	65.876	-146.470
156	0.778	0.202	65.964	-146.301	172	0.345	0.089	66.046	-146.201	188	0.182	0.064	65.948	-146.395
157	0.758	0.233	66.025	-146.164	173	0.329	0.090	65.964	-146.600	189	0.125	0.053	65.967	-146.222
158	9.351	0.182	66.076	-146.356	174	0.326	0.086	65.985	-146.271	190	29.496	0.067	66.033	-146.380
159	0.574	0.113	66.056	-146.124	175	0.320	0.084	66.020	-146.203	191	0.108	0.048	65.984	-146.267
160	0.563	0.126	65.934	-146.312	176	0.300	0.086	65.921	-146.309	192	0.092	0.046	65.972	-146.219
161	0.557	0.144	65.957	-146.282	177	0.282	0.091	66.071	-146.140	193	1.075	0.074	66.004	-146.688
162	0.534	0.117	65.965	-146.599	178	0.279	0.087	65.939	-146.273	194	0.060	0.037	65.967	-146.222
163	0.533	0.115	65.966	-146.644	179	0.275	0.112	65.998	-146.252	195	7.863	0.630	66.002	-146.686
164	0.487	0.109	65.823	-146.601	180	10.198	0.140	66.048	-146.052	196	0.014	0.035	65.946	-146.167
165	0.478	0.113	65.946	-146.509	181	0.259	0.075	66.043	-146.161					
166	0.456	0.136	65.875	-146.490	182	0.254	0.084	65.965	-146.601					

Appendix B. Summary of vascular plant species collected within and adjacent of the proposed land exchange area, Yukon Flats National Wildlife Refuge and White Mountains Recreations Area, Alaska, June-July, 2003.

Achillea Adoxa moschatellina Agrostis scabra Alnus tenuifolia Alnus viridis Andromeda polifolia Androsace chamaejasme Androsace septentrionalis Anemone drummondii Anenome narcissiflora Anenome parviflora Antennaria friesiana Arabis Arctagrostis latifolia Arctophila fulva Arctostaphylos rubra Arctostaphylos uva-ursi Arnica griscomii Arnica lessingii Artemesia Aster sibiricus Astragalus umbellatus Beckmannia erucaeformis Betula nana Bromus Bupleurum arcticum Calamagrostis Caltha natans Caltha palustris Cardamine pratensis Cardamine purpurea Carex aquatilis Carex bigelowii Carex canascens Carex capillaris Carex chordorrhiza Carex diandra Carex eleusinoides Carex magellanica Carex media Carex saxatilis Carex scirpoidea Carex utriculata Cassiope tetragona Castillega caudata Castilleja hyperborea Cerastrium beeringianum Chamaedaphne calyculata Chenopodium capitatum Chrysosplenium trandrum Cicuta mackenzieana

Comarum palustris Corallorrhiza trifida Corydalis pauciflora Crepis elegans Cystopteris fragilis Diapensia lapponica Dodecatheon pulchellum Douglasia gormanii Draba borealis Drosera anglica Drosera rotundifolia Dryas alaskensis Dryas integrifolia Dryas octopetela Dryopteris fragrans Eleocharis acicularis Eleocharis palustris Elymus trachycaulus Epilobium angustifolium Epilobium latifolium Epilobium palustre Equisetum arvense Equisetum fluviatile Equisetum palustre Equisetum pratense Equisetum scirpoides Erigeron Eriophorum angustifolium Eritrichium splendens . Eutrema edwardsii Festuca brachyphylla Galium boreale Galium trifidum Gentiana propingua Glyceria Hedysarum alpinum Hedysarum boreal Hierochloe alpine Hierochloe oderata Hippuris vulgaris Juncus arcticus Juncus castaneus Juncus filiformis Lesquerella arctica Lloydia serotina Loiseleuria procumbens Lupinus arcticus Luzula rufescens Lycopodium selago Melandrium Menyanthes trifoliata

Mertensia paniculata Minuartia arctica Minuartia elegans Minuartia obtusiloba Minuartia rubella Minuartia yukonensis Moehringia lateriflora Myrica gale Myriophyllum spicatum Nuphar polysepalum Nymphaea tetragona Oxycoccus microcarpus Oxytropis bryophila Oxytropis campestris Oxytropis maydelliana Oxytropis scammaniana Papaver Parnassia kotzebuei Parnassia palustris Parrya nudicaulis Pedicularis capitata Pedicularis labradorica Pedicularis lanata Pedicularis langsdorffii Pedicularis lapponica Pentstemon gormani Petasites hyperboreus Phleum pratense Phlox hoodii Pinguicula vulgaris Platanthera hyperborea Platanthera obtusata Poa alpina Polemonium boreale Polygonum aviculare Polygonum vivaparum Potamogeton subsibiricus Potentilla hookeriana Potentilla norvegica Potentilla pennsylvanica Potentilla uniflora Puccinellia Pyrola asarifolia Pyrola grandiflora Ranunculus aquatilis Ranunculus gmelini Ranunculus lapponicus Ranunculus trichophyllus Rhododendron lapponicum Ribes hudsonianum Ribes triste

Rorippa hispida Rosa acicularis Rubus arcticus Rubus idaeus Rumex Salix alaxensis Salix arbusculoides Salix arctica Salix commutata Salix glauca Salix interior Salix pulchra Salix rotundifolia Saussurea Saxifraga caespitosa Saxifraga hieracifolia Saxifraga oppositifolia Saxifraga punctata Saxifraga reflexa Saxifraga spicata Saxifraga tricuspidata Scheuchzeria palustris Selaginella sibirica Senecio atropurpureus Senecio congestus Senecio triangularis Senecio yukonensis Shepherdia canadensis Silene Solidago canadensis Sparganium minimum Stellaria Taraxacum officinale Thalictrum alpinum Thalictrum sparsiflorum Tofieldia coccinea Trientalis europaea Trisetum Valeriana capitata Viburnum edule Wilhelmsia physodes Woodsia

Appendix C. Descriptive statistics of plant inventory sites located within and adjacent of the proposed land exchange area,
Yukon Flats National Wildlife Refuge and White Mountains Recreation Area, Alaska, June-July, 2003.

			GPS locations (de	cimal degrees)
Site name	Date	Site description	Latitude	Longitude
L2 * (Lake 2)	6-17-03	Uplands; shoreline of northeast-southwest oriented lake; surrounding area burned in 1996; abundant willows	65.9228	-146.61903
BC1 (Base Camp 1)	6-18-03	Alpine; flattened ridge top; Dryas dwarf scrub	65.88435	-146.90483
618ORG * (Orange Gravel Slope)	6-18-03	Alpine; knob (north to south orientation) north of Hogback Ridge, separated by lower saddle; orange rocky shale (small substrate) leading up to rocky outcroppings; evidence of dall sheep use on west side of rock outcropping	65.91838	-147.00503
619BLM *	6-19-03	Alpine; hike from Base Camp 1, Dryas dwarf scrub, mesic	65.88440	-146.90743
619FWS (C6 Corydalis)	6-19-03	Alpine; below and west of peak 3655'	65.88711	-146.91301
619HGR * (Hogback Ridge)	6-19-03	Alpine; this ridge is to the south of Orange Gravel Slope site, with a northeast to southwest orientation; six miles east and north of Mt. Schwatka	65.91333	-147.01272
620LS * (Limestone Crags)	6-20-03	Alpine; three miles northeast of Mt. Schwatka; ridge oriented east-west; inventoried large north face of rocky slope	65.92384	-147.18081
BC2 * (Base Camp 2)	6-21-03	Alpine; 3041' north-south oriented knob with orange shale, rocky outcropping at top; hiked east and west side of knob	65.90026	-147.35827
622PND * (Beaver Ck Hop 1)	6-22-03	Active floodplain; small wetland adjacent to Beaver Creek; willow fringe and <i>Equisetum</i>	65.99237	-146.24956
622H2 (6-22 Hop 2)	6-22-03	Active floodplain, oxbow shoreline	65.99288	-146.24198
622LSBF*(Beaver Ck Loess Bluff and wetland; Hop 3)	6-22-03	Abandoned floodplain; 1 mile west of Beaver Creek; loess bluff above wet shrub/graminoid meadow	66.04921	-146.20074
623H1 (Beaver Ck Hop 1)	6-23-03	Inactive floodplain; Beaver Creek oxbow	65.96494	-146.2795
623DNDY * (Beaver Ck Hop 2)	6-23-03	Inactive floodplain; Beaver Creek older gravel bar	65.96383	-146.28492
624H1 * (BC BVR Pond)	6-24-03	Active floodplain; modified wetland due to beaver activity; moist mud canals	66.01249	-146.22736

			GPS locations (de	ecimal degrees)
Site name	Date	Site description	Latitude	Longitude
WS14 * (Lily Pond)	7-21-03	Upland; lake surface covered with pond lilies and other emergent vegetation, low shrub/graminoid shoreline	65.89983	-146.52973
WS7 * (Gravel Bridge)	7-21-03	Abandoned Beaver Creek floodplain, small pond and ephemeral pools in old channel; surrounding area burned in 1996; graminoids dominant along wetland margins; willows revegetating among downed, burned logs above wetland	65.93594	-146.3511
WS1 *	7-22-03	Abandoned floodplain; long lake east west orientation with shrub/graminoid shoreline and 9 m tall loess bluff	66.06552	-146.16566
WS2 *	7-22-03	Abandoned floodplain; wetland with beaver lodge; shoreline has a red hue to it	66.0522	-146.18054
WS5 *	7-22-03	Inactive floodplain; pond connected to oxbow of Beaver Creek; surrounding area burned in 1996; shoreline littered with downed logs	66.04587	-146.14653
WS14B *	7-24-03	Upland; clumps of <i>Eleocharis acicularis</i> and <i>Rorippa</i> growing on mud/moss shoreline; spruce forest on raised ridge 2 m above shoreline at east end	66.01593	-146.59023
WS9 * (Tussock Basin)	7-24-03	Upland; in drainage surrounded by uplands; tussock meadow with shrub birch and willow	66.02278	-146.4187
ORGBG * (Orange Bog)	7-24-03	Abandoned floodplain; <i>Sphagnum</i> bog, a few standing spruce trees near edge, very saturated, some standing water; graminoid/ <i>Equisetum</i> on Beaver Creek end of bog; adjacent to open spruce forest	65.9875	-146.25428
WS19 *	7-25-03	Upland lake north of the White Mountains; saturated moss shoreline with clumps of <i>Carex</i> ; loess bluff at east end of lake	65.95852	-147.32755
725OX * (Beaver Ck Oxbow) * sites displayed i	7-25-03	Inactive floodplain; east of Beaver Creek; gravel bar with <i>Salix</i> , mudshore with newly emerging vegetation	66.04587	-146.14653

(* sites displayed in Figure 1).

Appendix D. Figures of 15 of the 24 plant inventory sites. Figures 1-5, 14 and 15 are adjacent to the PLE. Figures 6-13 and 19 are within the proposed land exchange area, Yukon Flats National Wildlife Refuge and White Mountains Recreation Area, Alaska, June – July, 2003.

Figure 1. Hike from Base Camp 1 to site 619FWS. Photo taken from 3655' hill looking west along Spine Rock site; Mt. Schwatka in background, left side of photo.

Figure 3. View of Hogback Ridge (right center of photo); sampled both north and south slopes and walked along grassy ridge to north (see arrow).

Figure 5. Base Camp 2 hike; looking up at knob from western saddle.

Figure 2. Looking north up at Orange Gravel Slope; lupines were in peak flower.

Figure 4. View of the north side of Limestone Crags; inventoried area to right of snowfield (left side of photo) across to area on right side of photo, to base of slope.

Figure 6. Looking northwest at NW14 (Lily Pond). Sampled aquatic plants in south-eastern lobe (center of photo), peninsula and shoreline.

Appendix D. cont.

Figure 7. WS14 (Gravel Bridge); old channel of Beaver Creek; low lying area with grasses, sedges and aquatic plants; surrounding land w/ dense willow and downed logs from 1996 fire.

Figure 10. Looking southwest at WS5 (in center) – sampled west shoreline of pond in from western side of outlet stream and along north shore of oxbow in the background. Surrounding area burned in 1996.

Figure 12. WS9 (Tussock Basin) located 5 miles east of the WS14-east site, in same drainage; looking north (see arrow).

Figure 8. Looking northwest at WS1 site; bluff (in background) and west end of shoreline sampled.

Figure 11. Looking east at site 14B; sampled shoreline visible in left center of photo and aquatic vegetation towards the eastern end of the lake.

Figure 13. Orange Bog site with Beaver Creek in the background; sampled far end of bog and along top and left edge.

Appendix D. cont.

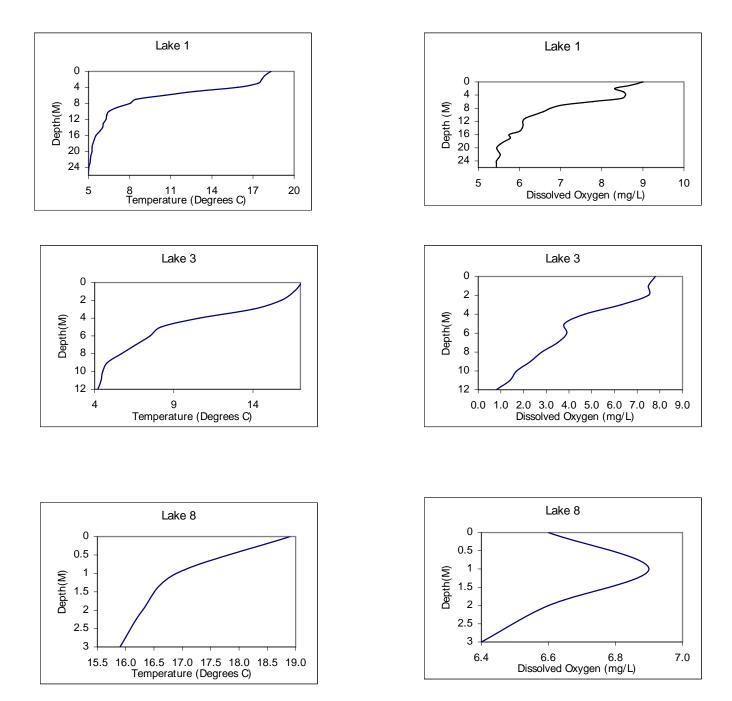

Figure 14. WS19 – looking south towards the White Mountains; photo taken from loess bluff. Sampled eastern and southern shoreline and bluff.

Figure 15. WS19 looking towards loess bluff on north end of lake.

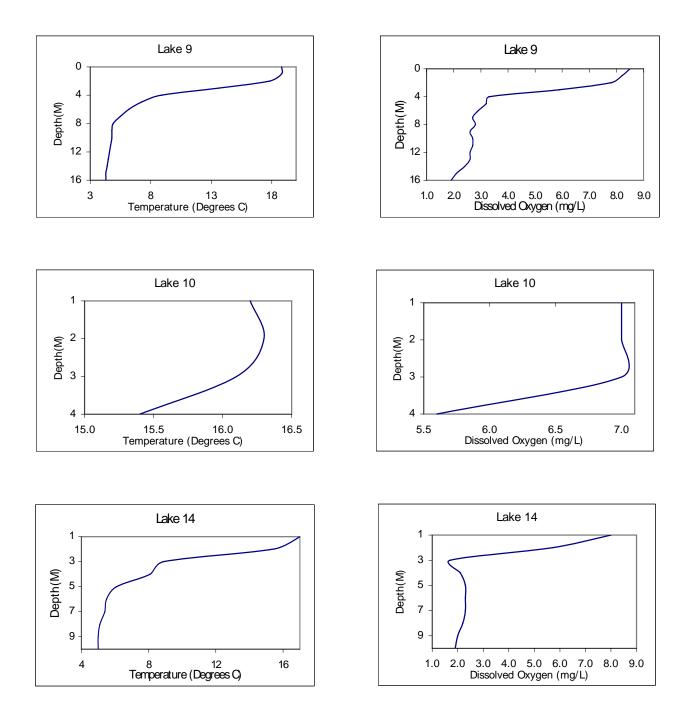
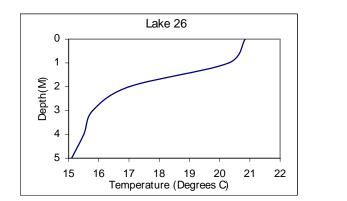
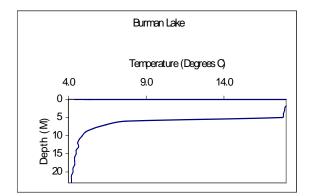
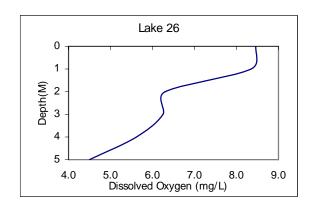
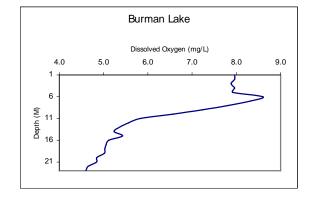


Figure 16. WS Beaver Creek Oxbow, looking south. Sampled far end of oxbow shore and shrub zone (center) and gravel area in between (left center).




Appendix E. Temperature and dissolved oxygen depth profiles for Lakes 1, 3, and 8, Yukon Flats National Wildlife Refuge, Alaska, June 2003, July, 2004.


Appendix E. cont. Temperature and dissolved oxygen depth profiles for Lakes 9,10, and 14, Yukon Flats National Wildlife Refuge, Alaska, June 2003, July, 2004.



Appendix E. cont. Temperature and dissolved oxygen depth profiles for Lakes 26 and Burman, Yukon Flats National Wildlife Refuge, Alaska, June, 2003, July, 2004.

Date	Length (mm)		Date	Length (mm)		Date	Length (mm)	
7/12/04	685	2.7	7/15/04	390	0.5	7/19/04	575	1.4
7/13/04	570	1.7	7/15/04	635	2.0	7/19/04	610	1.8
7/14/04	88	-	7/15/04	645	2.0	7/19/04	630	1.7
7/14/04	85	-	7/15/04	610	2.2	7/19/04	650	2.2
7/14/04	75	-	7/15/04	-		7/19/04	610	1.8
7/14/04	85	-	7/16/04	730	2.7	7/19/04	725	3.0
7/14/04	86	-	7/16/04	525	0.7	7/19/04	630	1.7
7/14/04	74	-	7/16/04	630	1.5	7/19/04	450	0.7
7/14/04	87	-	7/16/04	660	2.1	7/19/04	680	2.5
7/14/04	95	-	7/17/04	585	1.4	7/19/04	625	1.7
7/14/04	95	-	7/17/04	620	1.9	7/19/04	625	2.0
7/14/04	100	-	7/17/04	690	2.7	7/19/04	640	2.1
7/14/04	87	-	7/17/04	585	1.6	7/19/04	645	2.0
7/14/04	83	-	7/17/04	705	2.5	7/19/04	580	1.5
7/14/04	94	-	7/17/04	610	1.2	7/19/04	580	1.7
7/14/04	98	-	7/17/04	585	1.6	7/19/04	580	1.5
7/14/04	90	-	7/17/04	630	1.9	7/19/04	515	1.0
7/14/04	95	-	7/17/04	640	1.7	7/19/04	580	1.1
7/14/04	560	-	7/17/04	630	1.8	7/19/04	620	1.9
7/14/04	670	-	7/17/04	650	2.0	7/19/04	595	1.6
7/14/04	590	1	7/17/04	600	1.6	7/19/04	655	1.8
7/14/04	570	-	7/17/04	520	1.0	7/19/04	630	1.0
7/14/04	675	2.3	7/17/04	560	1.2	7/19/04	780	2.5
7/14/04	530	1.2	7/17/04	605	1.5	7/19/04	690	2.5
7/14/04	610	1.7	7/17/04	665	1.9	7/19/04	575	2.5 1.6
7/14/04	480	0.9	7/17/04	470	0.4	7/19/04	595	1.3
7/14/04	400 540	1.1	7/17/04	650	2.1	7/19/04	660	1.6
7/14/04	695	2.2	7/17/04	550	1.5	7/19/04	500	0.9
7/14/04	690	-	7/18/04	630	2.0	7/19/04	725	
7/14/04	605	- 1.6	7/18/04	550	1.3	7/19/04	690	2.6 2.8
7/14/04	570	1.4	7/18/04	630	1.8	7/19/04	600	1.5
7/14/04	675	2.4	7/18/04	610	1.7	7/19/04	570	1.2
7/14/04	600	1.3	7/18/04	650	2.2	7/19/04	670	2.3
7/14/04	495	1.1	7/18/04	630	1.8	7/20/04	630	1.3
7/14/04	540	1.2	7/18/04	650	2.1	7/20/04	600	1.7
7/15/04	590	1.5	7/18/04	690	2.7	7/20/04	640	1.8
7/15/04	630	1.7	7/18/04	580	1.5	7/20/04	600	1.8
7/15/04	590	1.4	7/18/04	665	2.3	7/20/04	420	. –
7/15/04	670	2.2	7/18/04	710	2.75	7/20/04	570	1.5
7/15/04	570	2.4	7/18/04	680	2.2	7/20/04	665	2.2
7/15/04	630	1.5	7/18/04	550	1.3	7/20/04	610	1.7
7/15/04	610	1.2	7/18/04	520	1.0	7/20/04	710	2.2
7/15/04	670	-	7/18/04	280	-	7/20/04	580	1.2
7/15/04	610	1.7	7/18/04	550	1.1	7/20/04	560	1.5
7/15/04	610	1.4	7/18/04	470	0.7	7/20/04	585	1.3
7/15/04	495	1.0	7/18/04	600	1.5	7/20/04	630	1.7
7/15/04	430	0.4	7/18/04	665	2.2	7/20/04	670	2.2
7/15/04	600	1.8	7/19/04	670	2.2	7/20/04	590	1.8
7/15/04	380	0.5	7/19/04	540	1.5	7/20/04	590	1.8
						7/20/04	570	1.3

Appendix F. Length and weights of northern pike collected at Burman Lake, Yukon Flats National Wildlife Refuge, Alaska, July 12-20, 2004.

Appendix G. Numbers of birds and species observed in lakes 2, 8, 10, 14 and alpine 1 during point count surveys in the proposed land exchange area, Yukon Flats National Wildlife Refuge, Alaska, June, 2003.

		_ake 2 5/18/03		ake 14 5/19/03	_	ake 10 /20/03		lpine 1 /21/03	Lake 8 6/22/03	
Species	# Birds	# Points	# Birds	# Points	# Birds	# Points	# Birds	# Points	# Birds	# Points
Alder Flycatcher	3	3	10	8	5	4	0	0	8	5
American Pipit	0	0	0	0	0	0	10	6	0	0
American Robin	14	11	11	10	6	5	6	6	7	6
American Tree Sparrow	1	1	5	4	2	2	0	0	0	0
American Wigeon	0	0	0	0	0	0	0	0	1	1
Arctic Tern	0	0	0	0	0	0	0	0	9	3
Bank Swallow	0	0	0	0	2	1	0	0	0	0
Bohemian Waxwing	2	1	1	1	2	1	0	0	0	0
Bufflehead	0	0	0	0	0	0	0	0	0	0
Chipping Sparrow	0	0	1	2	0	0	0	0	0	0
Common Goldeneye	0	0	0	0	0	0	0	0	0	0
Common Loon	0	0	0	0	0	0	0	0	0	0
Common Raven	0	0	0	0	0	0	0	0	2	2
Common Redpoll	2	2	2	2	4	4	4	4	11	8
Dark-eyed Junco	3	3	10	7	23	11	0	0	12	8
ox Sparrow	5	4	7	5	10	8	2	2	9	7
Gray Jay	0	0	2	2	0	0	0	0	3	2
Gray-cheeked Thrush	0	0	0	0	0	0	0	0	0	0
Great-horned Owl	0	0	0	0	0	0	0	0	0	0
lammond's Flycatcher	0	0	0	0	0	0	0	0	0	0
lorned Grebe	3	1	1	1	8	2	0	0	0	0
apland Longspur	0	0	0	0	0	0	2	1	0	0
esser Scaup	0	0	3	2	4	2	0	0	0	0
.esser Yellowlegs	21	8	8	3	8	7	0	0	8	6
incoln's Sparrow	1	1	0	1	3	3	0	0	2	2
Nallard	2	1	0	0	5	1	0	0	0	0
vlew Gull	0	0	0	0	0	0	0	0	3	2
Ayrtle Warbler	3	3	8	5	7	6	0	0	2	2
Northern Flicker	1	1	2	2	0	0	0	0	2	2
lorthern Goshawk	0	0	0	0	0	0	0	0	0	0
Jorthern Waterthrush	12	7	7	5	1	1	0	0	0	0
Jorthern Wheatear	0	0	0	0	0	0	1	1	0	0
Dive-sided Flycatcher	0	0	2	2	2	2	0	0	0	0
Drange-crowned Warbler	2	2	0	0	1	1	0	0	1	1
acific Loon	4	3	2	2	6	1	0	0	1	1
rine Grosbeak	0	0	0	0	0	0	0	0	0	0
Red-tailed Hawk	0	0	4	3	0	0	0	0	0	0
Ruby-crowned Kinglet	0	0	2	2	0	0	0	0	1	1
Rusty Blackbird	1	1	_ 14	6	0	0	0	0	0	0
Savannah Sparrow	0	0	0	0	1	1	1	1	0	0

		_ake 2 5/18/03		ake 14 /19/03		ake 10 5/20/03		lpine 1 //21/03		_ake 8 /22/03
Species	# Birds	# Points	# Birds	# Points	# Birds	# Points	# Birds	# Points	# Birds	# Points
Semi-palmated Plover	0	0	0	0	0	0	0	0	0	0
Spotted Sandpiper	0	0	0	0	0	0	0	0	0	0
Surf Scoter	0	0	0	0	0	0	0	0	0	0
Swainson's Thrush	9	8	6	5	15	9	1	1	13	10
Townsend's Solitaire	0	0	0	0	0	0	7	7	0	0
Free Swallow	0	0	1	1	0	0	0	0	1	1
/aried Thrush	2	2	0	0	0	0	0	0	3	3
/iolet-green Swallow	0	0	0	0	0	0	0	0	0	0
Western Wood-pewee	2	2	3	3	7	7	0	0	7	6
White-crowned Sparrow	13	7	12	7	24	11	10	9	12	10
White-winged Crossbill	0	0	0	0	3	3	0	0	2	1
White-winged Scoter	4	1	0	0	0	0	0	0	0	0
Wilsons Snipe	3	2	0	0	2	2	0	0	5	5
Wilson's Warbler	0	0	0	0	0	0	0	0	0	0
Yellow Warbler	7	7	5	4	5	3	0	0	3	3
Fotals ¹	120	82	129	95	156	98	44	38	128	98
	24	species	25	species	25	species	10	species	25	species

¹Numbers include flyovers within the point count boundary that were observed during each count.

Appendix G. cont. Numbers of birds and species observed in lakes 1, 9, Beaver Creek, and alpine 2 during point count surveys in the proposed land exchange area, Yukon Flats National Wildlife Refuge, Alaska, June, 2003.

		.ake 9 /23/03		ver Creek /24/03	Alpine 2	2 6/25/03		.ake 1 /26/03		Total
Species	# Birds	# Points	# Birds	# Points	# Birds	# Points	# Birds	# Points	# Birds	# Points
Alder Flycatcher	1	1	15	10	0	0	5	3	47	34
American Pipit	0	0	0	0	13	7	0	0	23	13
American Robin	6	4	21	10	6	6	9	7	86	65
American Tree Sparrow	0	0	0	0	0	0	0	0	8	7
American Wigeon	0	0	0	0	0	0	0	0	1	1
Arctic Tern	0	0	2	1	0	0	0	0	11	4
Bank Swallow	0	0	17	3	0	0	0	0	17	3
Bohemian Waxwing	1	1	3	3	1	1	0	0	10	8
Bufflehead	0	0	5	1	0	0	0	0	5	1
Chipping Sparrow	0	0	0	0	0	0	0	0	1	2
Common Goldeneye	0	0	1	1	0	0	1	1	2	2
Common Loon	0	0	0	0	0	0	5	4	5	4
Common Raven	0	0	1	1	0	0	0	0	3	3
Common Redpoll	0	0	3	3	13	7	4	4	43	34
Dark-eyed Junco	21	9	13	8	4	3	19	9	105	58
Fox Sparrow	11	9	1	1	14	9	7	5	66	50
Gray Jay	4	4	3	3	0	0	7	3	19	14
Gray-cheeked Thrush	0	0	0	0	1	1	1	1	2	2
Great-horned Owl	0	0	1	1	0	0	0	0	1	1
Hammond's Flycatcher	0	0	1	1	0	0	0	0	1	1
Horned Grebe	0	0	0	0	0	0	0	0	12	4
apland Longspur	0	0	0	0	1	1	0	0	3	2
_esser Scaup	0	0	0	0	0	0	0	0	7	4
esser Yellowlegs	0	0	1	1	0	0	0	0	46	25
incoln's Sparrow	1	1	0	0	0	0	1	1	8	9
Mallard	0	0	0	0	0	0	0	0	7	2
Mew Gull	3	2	1	1	0	0	0	0	7	5
Myrtle Warbler	11	8	5	4	0	0	13	8	49	36
Northern Flicker	3	3	4	4	0	0	1	1	13	13
Northern Goshawk	1	1	0	0	0	0	0	0	1	1
Northern Waterthrush	0	0	0	0	0	0	0	0	20	13
Northern Wheatear	0	0	0	0	0	0	0	0	1	1
Dlive-sided Flycatcher	0	0	0	0	0	0	0	0	4	4
Drange-crowned Warbler	0	0	10	7	0	0	5	3	19	14
Pacific Loon	3	2	0	0	0	0	4	2	20	11
Pine Grosbeak	0	0	0	0	0	0	1	1	1	1
Red-tailed Hawk	0	0	1	1	0	0	0	0	5	4
Ruby-crowned Kinglet	4	3	0	0	0	0	4	3	11	9
Rusty Blackbird	0	0	0	0	0	0	0	0	15	7
Savannah Sparrow	0	0	0	0	0	0	0	0	2	2

		.ake 9 /23/03		ver Creek 5/24/03	Alpine 2	2 6/25/0		.ake 1 /26/03		Total
Species	# Birds	# Points	# Birds	# Points	# Birds	# Points	# Birds	# Points	# Birds	# Points
Semi-palmated Plover	0	0	2	1	0	0	0	0	2	1
Spotted Sandpiper	0	0	8	6	0	0	0	0	8	6
Surf Scoter	0	0	0	0	0	0	3	1	3	1
Swainson's Thrush	27	12	18	10	1	1	28	12	118	68
Townsend's Solitaire	0	0	0	0	0	0	0	0	7	7
Tree Swallow	0	0	0	0	0	0	0	0	1	1
Varied Thrush	3	3	2	2	1	1	4	3	15	14
/iolet-green Swallow	1	1	0	0	0	0	0	0	1	1
Nestern Wood-pewee	5	5	1	1	0	0	0	0	25	24
White-crowned Sparrow	14	7	4	3	33	11	2	2	124	67
White-winged Crossbill	0	0	0	0	0	0	0	0	5	4
White-winged Scoter	0	0	0	0	0	0	17	3	21	4
Wilson's Snipe	1	1	3	3	0	0	1	1	15	14
Wilson's Warbler	0	0	1	1	0	0	0	0	1	1
Yellow Warbler	1	1	3	3	0	0	10	5	34	26
Totals ¹	122	78	151	95	88	48	152	83	1090	715
	20	species	29	species	11	species	23	species	55	species

¹Additional sightings recorded as incidental detections include: 7 Alder Flycatcher, 8 American Pipit, 13 American Robin, 2 American Tree Sparrow, 1 Bank Swallow, 2 Bohemian Waxwing, 1 Common Goldeneye, 1 Common Merganser, 5 Common Redpoll, 1 Common Snipe, 1 Dark-eyed Junco, 1 Gray-crowned Rosy Finch, 7 Gray Jay, 1 Horned Grebe, 3 Horned Lark, 1 Lapland Longspur, 2 Lesser Scaup, 11 Lesser Yellowlegs, 2 Lincoln's Sparrow, 9(?) Mallards, 1 Mew Gull, 5 Myrtle Warbler, 2 Northern Flicker, 3 Northern Waterthrush, 2 Northern Wheatear, 5 Orange-crowned Warbler, 1 Olive-sided Flycatcher, 9 Pacific Loon, 2 Peregrine Falcon, 4 Red-tailed Hawk, 2 Rusty Blackbird, 1 Say's Phoebe, 4 Spotted Sandpiper, 1 Sharp-shinned Hawk, 2 Surf Scoter, 4 Swainson's Thrush, 3 Townsend's Solitaire, 9 White-crowned Sparrow, 1 Western Wood-pewee, 1 Yellow Warbler

Avian species	#Adults	# Males	#Females	Comments
Alder Flycatcher	4			
American Robin	3			
American Wigeon	3			brooding hen
Arctic Tern	9			
Bald Eagle	2			mature, immature
Bank Swallow	2			
Bufflehead	2		1	
Common Goldeneye	1			
Common Loon	20			
Common Raven	1			
Common Redpoll	1			
Common Snipe	1			
Gray Jay	2			
Lesser Scaup	3		1	
Lesser Yellowlegs	1			
Mallard	34			
Mew Gull	4			
Mew Gull	2 (plus 2 young)			1 adult w/ 2 young; 1 lone adult
Northern Flicker	3			
Northern Shoveler	15			
Northern Waterthrush	4			
Osprey	2			
Pacific Loon	10			
Peregrine Falcon	2			
Peregrine Falcon	1			
Phalarope	200-300			
Redhead	1			
Red-tailed Hawk	1			
Rusty Blackbird	3			
Surf Scoter		7	5	5 pairs
Trumpeter Swan	3			-
White-crowned Sparrow	2			
White-winged Scoter	175	112	22	mixed flock
Mammals, other spp.				
Red Squirrel	1			
Moose	3	lone bull	cow w/ calf	
Muskrat	1			
Beaver	2			
Black Bear	2			
Wood Frog	3			

Appendix H. Numbers of bird, and mammal species observed at Burman Lake, July 12-20, 2004.