

Status of World Spherical Torus Research

Martin Peng

NSTX Program Director ORNL@PPPL

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Fusion Power Associates Annual Meeting and Symposium: Fusion and Energy Policy

October 11-12, 2005, Washington, DC

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec Status of World ST Research

World Spherical Torus Research Is Expanding – 22 "Concept Exploration" and "Proof of Principle" Experiments

World Spherical Torus Research Is Addressing Important Issues in Fusion

- Active collaboration
- "Concept Exploration" STs
- "Proof of Principle" STs
- Contributions in world fusion programs

World Spherical Torus Research Has a Tradition of Strong Collaboration

- Active bilateral exchanges
 - UK-US on NSTX and MAST START collaboration in 1997
 - Japan-US on STs active exchanges since 2000; contributed to formation of All-Japan ST Program in 2004
 - RF-US on NSTX and Globus-M since 1997
 - Brazil-US on initiation of ETE collaboration since 2000
- Annual International ST Workshop since 1994; IAEA TM on ST since 1999
- Special international journal issues on progress of ST research
 - IEEJ journal issue to appear in November
 - NF issue under preparation
- Progressing toward more coordination in research

CDX-U Have Carried out Liquid Lithium Tray Limiter Experiments

- 34 cm major radius, 10 cm wide,
 0.64 cm deep
- Two halves with toroidal break
- Heaters for T_{max} ≈500°C

Liquid lithium in tray after ~40 discharges.

- Argon glow discharge cleaning and tray heating removed surface coatings
- Lithium remains in tray with currents to ground ≈100A at B_p≈0.1T for ≈10ms

Impurity Control with Liquid Lithium Indicated by Reduction of Oxygen Emission

Pegasus Is an Innovative ST to Explore Plasma Limits as $A \rightarrow 1$

Pegasus is an extremely low-aspect ratio facility exploring quasi-spherical high-pressure plasmas with the goal of minimizing the central column while maintaining good confinement and stability

Original Goals:

- Stability and confinement at high Ip/Itf
 - Extension of tokamak studies
- Limits on β_t and I_p/I_{tf} (kink) as A \rightarrow 1

- Overlap between the tokamak and the spheromak

Future Emphases:

- Support ST program movement to next stages
 - *EBW tests for heating & CD (w/PPPL)* - *Noninductive startup & CD tests Discussed in this talk*
 - Diagnostic development
 - High-pressure gas puff for deep fueling

Garstka 3rd IAEA TCM & 2005 ST Workshop FI October 5, 2005

Pegasus Is Exploring Innovative Startup via Electron Beam Injection

- · Nature of produced plasma changes as bias increased:
 - Low bias voltage:
 - = $I_{toroidal} = (I_{gun}) x (geometric windup)$
 - *= plasma appears as separate streams* High bias voltage:
 - - $= I_{toroidal} = (I_{gun}) x$ (geometric windup) x (additional multiplication)
 - = streams merge into uniform-appearing plasma
- No evidence yet of closed flux surfaces
- Two guns found to add to I_{toroidal} linearly

400 V bias: plasma streams appear to reconnect

1 ms per frame 3rd IAEA TCM & 2005 ST Workshop

Pegasus Toroidal Experiment University of Wisconsin-Madison

October 5, 2005 FP/

Garstka

Spontaneous formation of closed field equilibrium via rapid current rise under steady Bv field

Status of World ST Research

After spontaneous formation Ip can be ramped-up by a slow ramp of Bv for equilibrium at larger plasma current (2.45GHz Experiment).

FPA Meeting, 10/11-12/05

QUEST

QUEST : <u>Q</u>-shu <u>U</u>niversity <u>E</u>xperiment on <u>S</u>teady State Spherical <u>T</u>okamak

Research Region of QUEST

Ip(MA)

U. Tokyo UTST-(TS&TST) Experiment for High-ß ST Startup and RF Sustainment

Strategy of the All-Japan ST Research Program (Prof. Yuichi Takase, June 2005)

New Capabilities in NSTX

Goal of Achieved Novel j(r) diagnostics for **Advanced physics** 2005 2004 **MSE-CIF** Layout on NSTX Nova Photonics, Inc. leutral Beam (3 sources) **Collection Optics** Fiber Array Edge Center **Direct Measurement of Electron Turbulence**

EF/RWM coils to extend β limits

Columbia

New PF1A coil for advanced shaping

New

Old

Status of World ST Research

(a)

Tangential scattering UCD

Enhanced CXRS ($\Delta_R \sim \rho_{Li}$) in MAST

- □ Spectrometer coupled to 224 chords
- 64 toroidal chords on each NBI
- □ 32 passive toroidal chords
- □ 64 poloidal chords (32 32 on/off-beam) being commissioned

FPA Meeting, 10/11-12/05

 $\chi_e \sim \chi_i$ around mid-radius & close to χ_i^{Z-CH} [Chang & Hinton]

TRANSP modelling

UKAEA Fusion **

FPA Meeting, 10/11-12/05

Start-up Schemes – Double-Null Merging

Status of World ST Research

- compatible with future
 ST design
- Double-null merging
 (DNM) involves
 breakdown at a
 quadrupole null
- between pairs of poloidal coils in upper and lower divertor
- Modelling predicts merging of plasma rings as current in coils ramped to zero

Ø

Status of World ST Research

After some optimisation, plasma current up to 340kA formed and plasma sustained for 0.3sec with zero current in central solenoid

In HIT-II, nearly all Transient CHI produced closed flux current couples to the subsequent inductive drive

Both discharges have identical loop voltage programming

NSTX Produced Sustained ST Plasmas via Coaxial Helicity Injection (Introduced by HIT-II)

- Rapid turn-off of injector current → closure of plasma surface → 60 kA, ~2 m² volume
- First demonstrated on HIT-II (U Wash)
- Important progress for attractive ST and Tokamak fusion systems

Univ. of Hiroshima camera: NSNishingrid STKaitach

ELM Spatial Structure (Experiment + Theory)

Image simulation of the expected structure with q_{95} =4 and n=10

Filaments are consistent with the structures expected from the theory of the non-linear evolution of ballooning modes [Wilson and Cowley]

FPA Meeting, 10/11-12/05

Unique ST Properties and Approaches Advance Boundary Physics

Turbulence imaging: large ρ_i slow dynamics enable good resolution

Pedestal stability: strong shaping, low A: magnetic geometry pedestal stability & SOL transport

Heat, particle fluxes: Detached regimes, lithium coatings & liquid targets

FPA Meeting, 10/11-12/05

NSTX Accesses High β, **High Bootstrap Plasmas**

Substantially Expanded the Spherical Torus Operating Space to Clarify Future ST Options

- Improved divertor coils
- Extended plasma to stronger shapes
- High triangularity at high elongation leads to quiescent core and edge conditions

MAST Upgrades: Proposed NBI Systems

- Investigating bold options for NBI current profile control
- Flexible system 4 PINIs, up to 10 MW (1 counter- and 3 co-current)
- Off-axis NBCD optimised with 2 off-axis co- and 2 on-axis co/counter PINIs

BUTTRESSES \Rightarrow Reduce Risk/Acceleration (Sir. Chris Llewellyn Smith, FPA meeting 2005)

- Multi-beam material test facility study damage from irradiation with heavy ions to material samples with implanted Helium (+ hydrogen?)
- Satellite tokamak to be operated in parallel with ITER, as part of ITER programme, to test new modes of operation, plasma technologies,...
- Component Test Facility (CTF) to test engineering structures (joints, ...) in neutron fluences typical of fusion power stations

We assume that a 'fast track CTF' (possibly a small spherical tokamak that would not need to breed tritium?) could be operating with D-T in 2026

Assuming successful development, it would speed up the advent of fusion power significantly **and** reduce risks (note that in 'Pillars only' model DEMO phase 1 is effectively a very expensive and large CTF)

ST Research Contributes to Major Components of Office of Science 20-Year Strategic Plan for Fusion

World Spherical Torus Research Is Expanding and Addressing Important Issues in Fusion

- Growing in breadth and depth 22 experiments in active collaboration
- "Concept Exploration" STs push the ST scientific envelope
 - Explore high leverage innovations
 - Establish basis for "Proof of Principle" testing
- "Proof of Principle" STs
 - Contribute to resolve issues important to ITER burning plasma performance
 - Establish scientific feasibility for ST "performance extension," CTF volume neutron source, & Demo Optimization
- STs are part of plans in world fusion programs