
Highly Parallel Sparse Triangular Solution

Fernando L. Alvarado, Alex Pothen, and Robert Schreiber

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported in part by the NAS Systems Division of NASA via Cooperative Agree-

ment NCC 2-387 between NASA and the University Space Research Association (USRA). Work was per-

formed at the Research Institute for Advanced Computer Science (RIACS), NASA Ames Research Center,

Moffett Field, CA 94035.

I

HIGHLY PARALLEL SPARSE TRIANGULAR SOLUTION "

FERNANDO L. ALVARADO t, ALEX POTHENt AND ROBERT SCHREIBERI

Abstract. In thispaper we survey a recentapproach forsolvingsparsetriangularsystems of equations

on highly parallelcomputers. This approach employs a partitionedrepresentationof the inverseof the

triangularmatrix so that the solutioncan be computed by matrix-vectormultiplication.The number of

factorsin the partitionedinverseisproportionaltothe number ofgeneralcommunication steps(routersteps

on a CM-2) required in a highly parallelalgorithm. We describepartitioningalgorithms that minimize

the number of factorsin the partitionedinverseover allsymmetric permutations of the triangularmatrix

such that the permuted matrix continues to be triangular. For a Cholesky factorwe describe an O(n)

time and space algorithm to solvethe partitioningproblem above, where n isthe order ofthe matrix. Our

computational resultson a CM-2 demonstrate the potentialsuperiorityof the partitionedinverseapproach

over the conventionalsubstitutionalgorithm forhighly parallelsparsetriangularsolution.Finallywe lista

few directionsforextending these results.

AMS(MOS) subject classifications: 65F50, 65F25, 68R10.

Keywords. directed acyclic graph, elimination tree, massively parallel computers, par-

titioned inverse, reordering algorithm, sparse Cholesky factorization, sparse triangular sys-
tems.

1. Introduction. We survey some recent developments in the solution of sparse tri-

angular linear systems of equations on a highly parallel computer. For concreteness, we

consider a unit lower triangular system L__z = b, but the results in the paper apply in a

straightforward manner to upper triangular systems as well. We discuss the situation when

there are multiple right-hand side vectors b, and all these vectors are not necessarily avail-

able at once. Such situations occur in finite element applications, preconditioned iterative

solvers for linear systems, solution of initial value problems by implicit methods, variants of

Newton's method for the solution of nonlinear equations, and in numerical optimization.

There are two possible approaches to the parallel solution of triangular systems of equa-

tions. The usual approach is to exploit whatever limited parallelism is available in the usual

substitution algorithm [4, 8]. The second approach requires preprocessing, and works with

a partitioned representation of L -1.

To begin we review the partitioned inverse approach to parallel triangular solution.

Any unit lower triangular matrix L can be expressed as a product of elementary matrices:

L = I'I_=1 Li, where the elementary matrix L_ is Unit lower triangular and nonzero below the

diagonal only in column i. Hence it has the representation Li = I + rni e_ T, where rn/has its

* Written May 1992. A part of this work was done while the authors were visiting the Institute for

Mathematics and its Applications (IMA) at the University of Minnesota. We thank the IMA for its support.
t Electrical and Computer Engineering Department, 1425 Johnson Drive, The University of Wisconsin,

Madison, WI 53706 (alvarado@ece.wisc.edu). The work of this author was supported in part under NSF
Contracts ECS-8822554 and ECS-8907391.

Department of Computer Science, Whitmore Lab, The Pennsylvania State University, University Park,

PA 16802 (pothen@cs.psu.edu, na.pothen@na-net.ornl.gov). The research of this author was supported by

NSF grant CCR-9024954 and by U. S. Department of Energy grant DE-FG02-91ER25095.

§ RIACS, MS T045-1, NASA Ames Research Center, Moffett Field, CA 94035 (schreiber@riacs.edu). The

work of this author was supported by the NAS Systems Division under Cooperative Agreement NCC 2-387

between NASA and the University Space Research Association (USRA).

1

first i components zero, and _c.e,is the i-th coordinate vector. (Here it will be convenient to

include L,, _ I among the elementary matrices.) The elementary lower triangular matrices

can be grouped together to form m unit lower triangular factors L = l-Ii_l P_, where each

factor P, has the property that p(1 can be represented in the same space as P/. (Here m < n

r.te,÷l-1Lk, with el ___l < e2 < . <era<is a number to be determined.) Each factor Pi = llk=_, . •

e,,+l = n + 1. The factor P_ is lower triangular and is zero below its diagonal in all columns

except columns el through ei+l -- 1. This leads to a partitioned representation of the inverse
of L of the form L -1 1= l-I_== p/--1 (each p f1 is explicitly stored) that can be stored in just

the space required for L.

It follows that the solution to L_x = b can be computed by means of m matrix-vector

products

I

_x= L-lb = H Pi -lb-

By using as many virtual processors as there are nonzeros in Pi and summing the products

{(P,--_)kebt I (P,-l)k_ _ 0} in logarithmic time, we may exploit parallelism fully in computing

the matrix-vector products.

We consider the problem of computing partitioned inverses with the fewest factors in this

paper, since in practice the complexity of highly parallel triangular solution is determined

by the number of factors. There are two variations of this problem, and we describe them

next after introducing some notation.

The matrix X is invertible in place if xij _ 0 ¢* (X-_)ij _ O. Since the elementary

lower triangular matrices are invertible in place, there is always at least one partition of L

with factors that invert in place. A partition in which the factors 19/are invertible in place

is called a no-fill partition. A no-fill partition of L with the fewest factors is a best no-fill

partition, An adm_issible permutation II of L is a symmetric permutation of the rows and

columns of L such that the permuted matrix IILH T is lower triangular. A best reordered

partition of L is a best no-fill partition of HLI-I r with the fewest factors over all admissible

permutations of L.

An overview of this survey is as follows. We shall outline a theory of efficient algorithms

for computing best no-fill and best reordered partitions of lower triangular matrices. Then

we shall show that if L is restricted to be the unit lower triangular matrix from an LDL T

(Cholesky) factorization, there is an even more efficient algorithm for computing these par-

titions that makes use of the elimination tree. Next we demonstrate the usefulness of these

ideas in practice by comparing the partitioned inverse approach with a conventional trian-

gular solution algorithm on a Connection Machine CM-2. We conclude by summarizing our

findings and describing ways in which this work can be extended.

2. Two partitioning problems. We begin by providing formal statements anf graph

models of the best no-fill and best reordered partitioning problems, and then describe al-

gorithms for computing the partitions when L is obtained from unsymmetric, symmetric

indefinite, or incomplete factorizations.

2.1. Graph models. A formal statement of the best no-fill partitioning problem is as

follows:

2

12

7
9

3 5

FIG. 1. A directed acyclic graph G(L) corresponding to a Cholesky factor L. The numbers outside the

vertices represent a reordering.

(P1) Given a unit lower triangular matrix L = I-[__-ix Li, find a partition into factors

L = 1-I_=1Pi, where
vr"_÷'-I Lk, with el = 1 < e2 < -" e_ < e,,+l = n,1. each Pi = l tk=,_

2. each Pi inverts in place, and

3. m is minimum over all partitions satisfying the given conditions.

It is helpful to consider a graph model of (P1) and the other partitioning problems. Let

G(L) denote a directed graph with vertices V = {1,...,n} corresponding to the columns

of L and edges E = {(j, i) : i > j and lij # 0}. The edge (j, i) is directed from the lower-

numbered vertex j to the higher-numbered vertex i. It follows that G(L) is a directed acyclic

graph (DAG). If there is a directed path from a vertex j to a vertex i in G(L), we will say

that j is a predecessor of i, and that i is a successor of j. In particular, if (j, i) E E, then j

is a predecessor of i and i is a successor of j.

Given a subset P of the columns of L, the column subgraph of G(L) induced by P is the

graph which contains all edges that are directed from vertices in P to all vertices in G(L),

and all the vertices which are the endpoints of such edges. Thus the column subgraph of P

contains all edges corresponding to nonzeros in the column set P.

In what follows, we identify a subset of columns P with the factor formed by multiplying,

in order of increasing column number, the elementary matrices corresponding to columns

in P. The condition that the nonzero structure of a factor P should be the same as the

structure of its inverse corresponds in the graph model to the requirement that the column

subgraph of P should be transitively closed [7]. (A DAG G is transitively closed if for every

pair of vertices j and i such that there is a directed path in G from j to i, the edge (j, i) is

present in G.)

Hence a graph model of (P1) is as follows:

(PI') Find an ordered partition P1 -_ P_ "_"" -4 Pm of the vertices of G(L) such that

1. for every v E V, if v E Pi then all vertices numbered less than v belong to P1,

• • o, PI,

2. the column subgraph of each Pi is transitively closed, and

3. rn is minimum over all partitions satisfying the given conditions.

We illustrate these concepts by means of an example. Consider the matrix L with graph

G(L) illustrated in Fig. 1. L has a best no-fill partition with six factors:

L = (LI)(L2LaL4)(Ls)(L6.." Lg)(L_o)(LHL_2).

It is possible to symmetricMly permute the rows and columns of L such that L remains

lower triangular; this corresponds to a permutation of the vertices of G(L). If in Fig. 1

we reorder the vertices with the numbers shown outside the vertices, then the best no-fill

partition of the permuted L is

L = (LI... L6)(LrLsLg)(LloL_L12),

which has only three factors.

A formal statement of the best reordered partitioning problem is as follows:

(P2) Given a unit lower triangular matrix L = I-I_'_s_L_, find an admissible permutation

Ln = IILII r and a partition Ln = I'l_=l Pi, where

r_÷1-1 Lk, with e_ = 1 < e2 < .'-era < em+l = n,1. each Pi = 1 lk=_,

2. each Pi is invertible in place, and

3. m is minimum over all permutations II such that Ln is lower triangular.

In (P2), the action of the permutation II on L is to reorder the elementary matrices whose

product is L; however, these elementary matrices cannot be arbitrarily reordered, since we

require the resulting matrix Ln to be lower triangular. From the equation Li = I + rni e_r-

it can be verified that the elementary matrices Li and Li+l can be permuted if and only if

li+l,i = 0. These precedence constraints on the order in which the elementary matrices may

appear is nicely captured in a graph model of (P2).

A topological ordering of G(L) is an ordering of its vertices in which predecessors are

numbered lower than successors; i.e., for every edge (j, i) E E, i > j. By construction, the

original vertex numbering of G(L) is a topological ordering: A permutation II that leaves

Ln lower triangular corresponds to a topological reordering of the vertices of G(L).

The graph model of (P2) is:

(P2') Find an ordered partition P_ -_ P2 -q ... -_ P,,, of the vertices of G(L) numbered in

a topological ordering such that

1. for every v E {1,2,... ,n - 1}, ifv E Pi then all predecessors of v belong to P1,

"'', Pi,

2. the column subgraph of each Pi is transitively closed, and

3. m is minimum over all topological orderings of G(L).

The permutation II in (P2) can be obtained by renumbering the vertices in the ordered

partition P1 to P,,, in increasing order, and in topological order within each subset Pi.

2.2. Partitioning algorithms. We now describe "greedy" algorithms for solving the

best no-fill and best reordered partitioning problems.

Input: A unit lower triangular matrix L = L1L2.'. L,_ and its DAG G(L).

Output: A best no-fill partition of L.

i _ 1; {Li is the highest-numbered elementary matrix not included in a factor yet}

k _ 1; {P, is the factor being computed}

while (i < n) do

{Find the largest integer r > i such that Li'" Lr is invertible in place.}

r_i;

while r < n and every successor of the vertex r is a successor of all predecessors

of r in G(L) do r _ r + 1; od

Pk_Li...Lr; k_k+l; i_r+l;

od

Fro. 2. Algorithm P1.

Best no-fill partitions. Algorithm P1, shown in Fig. 2, was proposed by Alvarado, Yu

and Betancourt [3]. This algorithm greedily tries to include as many elementary matrices in

the current factor as possible, while maintaining the property that a factor should invert in

place, and obeying the 'left-to-right' precedence constraint in problem (P1). The condition

that in the graph G(L) every successor of a vertex r is also a successor of every predecessor of

r ensures that inclusion of Lr in the current factor P_ will continue to make G(Pk) transitively
closed, and thus Pk will be invertible in place. Alvarado, Yu, and Betanc0urt did not consider

the issue of optimality, but later it was proved by Alvarado and Schreiber [2] that Algorithm

P1 solves problem (P1). =.......

Best reordered partitions. Now we describe Algorithm RP1 that solves the reordered

partitioning problem (P2). A vertex v in the DAG G(L) is a source if there are no edges

directed into v: i.e., there are no edges (u,v). The level of a vertex v is the length of a

longest directed path into v. It follows that if v is a source, then level(v) = 0; furthermore,

if v is not a source, then level(v) is the length of a longest path from a source to v. The level

5

valuesof all the verticesof G(L) can be computed in O(e) time. We define the set hadj(v)

to be the set of all vertices adjacent to v and numbered higher than v.

Input: A lower triangular matrix L = L1 ... L, and its DAG G(L).

Output: A permutation II : V _ {1,...,n} and a partition of the permuted matrix Ln
into factors.

Compute level(v) for all v E V;

max_level ,.-- max,,ev(leveI(v));

i _ O; {i elementary matrices have been included in factors}
k ,-- 1; {Pk is the factor being computed}

eo *-- 0;

while i < n do

Pk_0;

ek _ i; _ _ min{j I there is an unnumbered vertex at level j};

repeat

for every vertex v at level _ do

if (([Condition la] v is unnumbered) and

([Condition lb] Every predecessor of v has been numbered) and

([Condition 2] Every successor of v is a successor of all

u E Pk such that u is a predecessor of v)) then

i _ i + 1; II(v) _ i;

Pk*--PkU{v}; ek_ek+l;
fi

od

_ _--- g+ 1;

until _ > maz_leveI or no vertices at level _ - 1 were included in Pk;

k_k+l;

od

FIG. 3. Algorithm RP1.

Algorithm RP1, shown in Fig. 3, renumbers the elementary matrices during the course

of its execution since it computes an appropriate symmetric permutation II to minimize the
number of factors.

Conditions la and lb in the algorithm ensure that the first condition of problem (P2)

is satisfied; similarly condition 2 ensures that the column subgraphs of the factors are tran-

sitively closed

Alvarado and Schreiber [2] proved that Algorithm RP1 finds a best reordered partition.

The time complexity of the algorithm is dominated by the checking .of condition 2: in

the worst-case, this cost is __,,,eyd1(v)do(v), where di(v) is the indegree and do(v) is the

outdegree of v. Since d1(v) < n - 1, and _,_y do(v) = e, the time complexity of the

algorithm is O(ne). If we assume that the indegrees and outdegrees are bounded by d, then

the complexity is O(d2n). The space complexity is O(e).

At the expense of additional space, in most cases we can reduce the running time required

by Algorithm RP1 by incorporating two enhancements.

The first improvement is that a vertex need not be tested for inclusion into a factor Pk

until all of its predecessors have been numbered. To accomplish this, in count(v) we count

the number of unnumbered predecessors of each vertex v; initially, this is its indegree, and

when the count reaches zero, we include it in a set £ of vertices eligible for inclusion in a

factor.

The second improvement is to reduce the cost of checking condition 2 in Algorithm RP1.

If u and v are both numbered vertices which have been included in the current factor Pk,

and v is a successor of u, then hadj(v) C_ hadj(u), otherwise v would have failed condition 2.

Thus we need not consider vertex u when applying the requirements of condition 2 to a vertex

that is also a successor of v. We make use of this in the faster implementation by keeping

track in pred(v) the set of predecessors of each vertex v that may need to be examined in

checking condition 2. In the situation above, when v is included in Pk we remove u from the

predecessor sets of v's successors, thus avoiding the unnecessary checking.

Fig. 4 contains a description of Algorithm RP2 that incorporates these improvements.

The worst-case time complexity of Algorithm RP2 is O(ne) as well (and there are DAGs

which attain this bound), though practically the above improvements should reduce the

running times in many cases.

3. Cholesky factorization. Now we consider the restriction of (P2) to Cholesky fac-

tors. Then the graph G(L) viewed as an undirected graph is chordal; i.e., every cycle with

more than three edges has a chord, an edge joining two nonconsecutive vertices on the cy-

cle. The chordality of G(L) simplifies the problem a great deal since it sumces to consider

the transitive reduction of G(L), the elimination tree, instead of G(L). This simplification

enables the design of an O(n)-time and space Mgorithm for computing the partition.

The elimination tree of L (equivalently G(L)) is a directed tree T = (V, ET), whose

vertices are the columns of L, with a directed edge (j, i) E ET if and only if the lowest-

numbered row index of a subdiagonal nonzero in the j-th column of L is i. (The edge is

directed from j to i.) The vertex i is the parent of j, and j is a child of i. If (j, i) is an

edge in the elimination tree, the lowest-numbered vertex in hadj(j) is i. A comprehensive

survey of the role of elimination trees in sparse Cholesky factorization has been provided by

Liu [10].

Our partitioning algorithm will require as input the elimination tree with vertices num-

bered in a topological ordering. It also require s the subdiagonal nonzero counts of each

column v of L, stored in an array hd(v) (the higher degree of v). The algorithm uses a

variable member to partition the vertices; member(v) = _ implies that v belongs to the set

Pt.
Unlike Algorithms RP1 and RP2 which compute the factors/°1, ..., Pm in that sequence

by examining vertices according to their level values, Algorithm RPtree examines the vertices

of the elimination tree in increasing order of their numbers. If a vertex v is a leaf of the

tree, then it is included in the first member (the vertices in P1). Otherwise, it divides the

children of v into two sets: Ca is the subset of the children u such that the column subgraph

7

of G(L) induced by u and v is transitively closed, and C2 denotes the subset of the remaining

children. Let ml denote the maximum member value of a child in C1 and m_ denote the

maximum member value of a child in C2. Set mi -- 0 if Ci = $. If C1 is empty, or if ml < m2,

then we will show that v cannot be included in the same member as any of its children, and

hence v begins a new member (m2+ 1). Otherwise, ml > m2, and v can be included together

with some child u E C1 such that member(u) = ml.

We now describe the details of an implementation. The vertices of the elimination

tree are numbered in a topological ordering from 1 to n. The descendant relationships in

the elimination tree are represented by two arrays of length n, child and sibling, child(v)

represents the first child of v, and slbling(v) represents the right sibling of v, where the

children of each vertex are ordered arbitrarily. If child(v) = O, then v has no child and is a

leaf of the elimination tree; if sibling(v) = O, then v has no right sibling. Algorithm RPtree

is shown in Fig. 5.

The reader can verify that P_ = {1,3,4,7,8,9}, P2 = {2,5, 10}, and/>3 = {6,11,12} for

the graph in Fig. 1. The time and space complexities of the algorithm are easily shown to

be O(n). We turn to a discussion of the the correctness of the algorithm.

Condition 1 of problem (P2) requires that if a vertex v belongs to Pt, then all predecessors

of v must belong to P1, ..., Pt. The elimination tree T, being the transitive reduction of the

DAG G(L), preserves path structure: i.e., there exists a directed path from v to w in G(L)

if and only if there is a (possibly some other) directed path from v to w in the elimination

tree T. Hence the predecessors of a vertex in G(L) remain its predecessors in the elimination

tree. Further, since we assign member values in a topological ordering of the vertices in

the elimination tree, to satisfy Condition 1 we need consider only the children of a vertex

v among its predecessors. Now since Algorithm RPtree assigns member values such that

member(v) is greater than or equal to member(u) for any child u, the condition is satisfied.

Condition 2 requires that each factor Pt be transitively closed. An important property

of the elimination tree [10] is that if v is the parent of a vertex u in the elimination tree,

then hadj(u) C_ v + hadj(v). Hence hd(u) < 1 + hd(v). On the other hand, if u and v can

be included in the same transitively closed column subgraph, then hadj(u) D_ v + hadj(v).

It then follows that u and v can be possibly included in the same column subgraph only if

hadj(u) = {v} tA hadj(v), or equivalently, hd(u) = 1 + hd(v). Furthermore, if v has a child

u not satisfying the degree condition, then v but not u is adjacent to some higher numbered

vertex x, and hence v cannot belong to the same member as u. Thus we partition the

children of v into two subsets: C1 consists of children u such that u and v can be included

in the same column subgraph; C2 includes the rest of its children. It follows that if mi is

the maximum member value among vertices in Ci, then the inclusion of v into a column

subgraph containing a child preserves transitivity only if ml > m2.

It can be established by induction that Algorithm RPtree solves (P2) by partitioning

G(L) into the minimum number of factors over all topological orderings [12].

4. Experimental Results. In this Section we provide experimental results to demon-

strate the superiority of the partitioned inverse approach over the conventional substitution

algorithm for highly parallel triangular solution. First we describe the performance of the

various partitioning algorithms, and then we report results for triangular solution on a CM-2.

8

4.1. Partitioning algorithms. We implemented Algorithms RP1, RP2, and RPtree

and compared their performances on eleven problems from the Boeing-Harwell collection [6].

All the algorithms were implemented in C, within Alvarado's Sparse Matrix Manipulation

System [I]. Each problem was initially ordered using the Multiple-Minimum-Degree ordering

of Liu [9], and the structure of the resulting lower triangular factor L was computed. We

call this the primary ordering step. Then Algorithms RP1, RP2, or RPtree were used in

a secondary ordering step to reorder the structure of L to obtain the minimum number of

partitions over reorderings that preserve the DAG G(L). All three algorithms lead to the

same number of factors in the partition since they solve the same problem.

The experiments were performed on a Sun SPARCstation IPC with 24 Mbytes of main

memory and a 100 Mbyte swap space running the SunOS 4.1 version of the Unix operating

system. The unoptimized standard system compiler was used to compile the code. Let r(A)

denote the number of nonzeros in the strict lower triangle of A; r(L) is then e, the number of

edges in G(L). We scale these numbers by a thousand for convenience. In Table 1, we report

the scaled values of r(A) and r(L), the CPU times taken by the primary and secondary

ordering algorithms (in seconds), and the height of the elimination tree obtained from the

primary ordering.

Table 1 also reports the number of factors in the partitioned inverse of L. The number

in the column 'Factors(P1)' corresponds to the number of factors in the solution of prob-

lem (P1), i.e., the best no-fill partition problem. The number in the column 'Factors(P2)'

indicates the number of factors in the solution of problem (P2), i.e., the best reordered par-

titioning problem. Note the substantial decrease in the number of factors obtained by the

permutation.

TABLE 1

Comparison of execution times on a Sun SPARCstation IPC for three secondary reordering schemes with

the MMD primary ordering. The parameters r(A) and r(L) have been scaled by a thousand for convenience.

Problem

BCSPWR10

BCSSTK13

BCSSTM13

BLCKHOLE

CAN1072

DWT2680

LSHP3466

NASA1824

NASA4704

39x39 9pt

79x79 9pt

Original Data

n r(A)

5,300 8.27

2,003 40.9

2,003 9.97

2,132 6.37

1,072 5.69

2,680 11.2

3,466 10.2

1,824 18.7

4,704 50.0

1,521 10.9

6,241 45.9

MMD

time r(L)

1.72 23.2

4.74 264

1.12 42.6

0.73 53.8

0.72 19.4

1.82 49.9

1.03 81.2

1.42 72.2

3.92 275

0.50 31.6

2.17 190

etree

height

128

654
261

224

151

371

341

259

553

185

429

Later results in this section will show that when

a highly parallel computer, the number of factors in

CPU time (sec

RP1 RP2 RPtree

1.07 1.26 0.10

61.1 22.1 0.05

5.08 2.63 0.03

3.15 2.58 0.05

0.78 0.92 0.02

2.43 2.45 0.05

4.48 4.14 0.07

6.01 3.88 0.03

33.8 16.1 0.12

1.35 1.50 0.02

12.7 11.4 0.12

Factors

(P1) (P2)

70 32

53 24

25 16

24 15

21 16

50 36

37 25

34 16

41 17

19 15

30 23

the partitioned inverse is employed on

the partitioned inverse determines the

complexity of parallel triangular solution. On the other hand, the complexity of a conven-
tional triangular solutionalgorithm is governedby the height of the elimination tree. Table 1
showsboth thesequantities, and it is seenthat the numberof factors in the partitioned in-
verseis severalfold smaller (by a factor of sixteenon the average)than the elimination tree
height. Hencethe useof the partitioned inversepotentially leads to much faster parallel
triangular systemsolution on massivelyparallel computers.

For the k x k model grid problem ordered by the optimal nested dissection ordering, the

height of the elimination tree is 3k + _(1), while the number of factors (in (P1) and (P2))

is 2log 2 k + e(1). The results in Table 1 show that the number of factors for these irregular

problems is only weakly dependent on the order of A, compatible with logarithmic growth.

The RPtree algorithm has O(n) time complexity while RP1 and RP2 are both O(nr(L))

algorithms. This is confirmed by the experiments: on the average problem in this test

set, RPtree is more than a hundred times faster than RP1 or RP2, and the advantage

increases with increasing problem size. From a practical perspective, the time needed by

the RPtree algorithm is quite small when compared to the cost of computing the initial

MMD ordering. An equally important advantage of the RPtree algorithm is that it requires

only O(n) additional space, whereas both RP1 and RP2 require O(r(L)) additional space.

However, Algorithms RP1 and RP2 can be used to partition triangular factors arising from

approximate or incomplete Cholesky factorizations as well as unsymmetric and symmetric

indefinite factorizations.

We have also experimented with a variant of the Minimum-Length-Minimum-Degree

(MLMD) ordering [5] as the primary ordering, but we do not report detailed results here. The

MLMD ordering incurs a great deal more fill in L than the MMD algorithm, and its current,

fairly straightforward implementation is quite slow compared to the MMD algorithm. We

believe an implementation comparable in sophistication to the MMD algorithm should not

be significantly slower than MMD, and may also reduce fill. In spite of the greater fill, the

MLMD ordering is more effective in almost all cases than MMD in reducing the number

of factors in the partition of both L and Ln. In some cases, the initial number of factors

obtained when MLMD is used as the primary ordering is lower than the final number of

levels obtained with MMD after the secondary reordering (H in problem (P2)). However,

because of the increased fill, choosing between MMD and MLMD as the primary ordering is

not straightforward.

4.2. Triangular solution on a CM-2. Now we compare the performance of the parti-

tioned inverse approach with the conventional substitution algorithm for triangular solution

on a CM-2.

An efficient parallel substitution algorithm was implemented in CM Fortran, a dialect

of Fortran 90. The data structure consists of several arrays of length equal to r(L). We

associate, at least conceptually, a set of r(L) virtual processors, one with each position

in these arrays. We store the factors L and D where L = LD and L is unit triangular,

and solve L_x = b via Lx. = D-lb, since this removes a multiplication from the inner loop.

The matrix L is stored as a one-dimensional array containing its nonzeros in column-major

order. In addition, the level of vertex j in G(L) is stored along with L_j. The elements of

b are stored at the processors containing the corresponding diagonal elements of]_,. The

10

solution x_.overwrites b. Finally, a Boolean vector indicates the location of the diagonal

elements in the arrays. This vector thus segments the arrays into columns of differing

lengths--in other words, the matrix is stored as a ragged array of columns of nonzeros. The

Connection Machine software provides some operations for such data structures. It allows

broadcast of values from diagonal elements to all elements of the corresponding column

(called a segmented copy scan) and summation of the values in a column (with a segmented

add scan). Also, the Connection Machine router allows processors to send data to any other

processor or read from any other processor; this is expressed using a vector-valued subscript

in CM Fortran. Calls to utility library routines were used for the scan operations, which are

not part of CM Fortran.

The substitution algorithm for triangular solution loops sequentially over levels of G(L)

starting with the source vertices (level zero). At the beginning of step _, those elements xj

for which level(j) = e are known. Recall that xj is stored in the processor holding Ljj. AThese

known values of _x are sent to the processors holding the corresponding column of L by a

segmented copy scan. These processors then multiply their Z value by the element of x they

receive. The router is then used to permute all these products into row-major order, so that

the elements of each set Ri = {L,jxj [Lij -¢ 0 and level(j) = g} are stored in consecutive

locations. The vector-valued subscript used to accomplish this permutation is computed in

a preprocessing step. The rows Ri now form a ragged array. A segmented add scan forms

the sums of these partial results within rows. Finally, the router is used to send the sum of

the elements of Pq to the processor holding L,ii and bi where it can be subtracted from hi. (In

fact, our code avoids this last subtraction entirely, doing it as part of the add scan above.)

Thus an iteration of the loop involves one parallel multiplication, one copy scan and one

add scan, and two uses of the router for permutation of data. The time required to set up

and load the data structure, including the computation of the permutation used, the loading

of b and extraction of __z,was not timed.

The sequential algorithm for solving a triangular system is quite similar to the algorithm

for computing a matrix-vector product involving a triangular matrix. Hence the code for

triangular solution using the partitioned inverse approach is nearly identical to that for our

substitution method in that the inner loop involves the same operations. But the number of

executions of the loop in the partitioned inverse approach is equal to the number of factors

in the partition of L rather than the number of levels in its graph.

We report the CM performance of these two methods for an n × n, dense, unit lower-

triangular matrix L. Our results are obtained with CM Fortran in the 'slice-wise' execution

model, which treats each Weitek chip of the CM-2 as a processor. For this experiment we

used 256 Weitek processors on the Connection Machine at NASA Ames. Results are given

in Table 2. Clearly, the partitioned method is superior, by a factor roughly equal to the ratio

of the number of levels in G(L) (which is n in this case) to the number of factors (one) in

the partition of L.

Next, we performed an experiment using a sparse matrix A of order 4037 obtained from

a triangular mesh in the region around a three-element airfoil. Three unit lower triangular

matrices L1, L_, and L3 were obtained by approximate factorization. L1 is obtained by an

incomplete LU factorization of A; we carry out the Gaussian elimination process, but we

11

n r(L) Levels

in G(L)

256

512 131,328

Substitution

Time

32,896 256 7.34

512 50.22

TABLE 2

Factors Partitioned

soln. time

1 0.04

1 0.21

CM-2 times (seconds) for full matrix substitution and partitioned solution.

Matrix Ordering Factor-

ization

L3

r(L) Levels

in G(L)

Substitution Factors

Time

118,504

Partitioned

soln. time

L, RCM ILU 23,526 823 19.22 816 11.66

L2 MLMD ILU 26,793 78 1.38 66 1.20

MLMD exact 311 16.78 16 0.87

TABLE 3

CM-2 times (seconds)]or sparse triangular substitution and partitioned solution.

allow nonzeros in L (and U) only where there is a nonzero in A 2. The ordering of A is

obtained from a lexicographic sort of the (x, y) coordinates of the grid which leads to the

matrix; this ordering produces a large number of levels in G(L). L2 is the incomplete LU

factor obtained when a variant of MLMD is used as the primary ordering of A. L3 is the

exact lower-triangular factor of A, with the same primary ordering as for L2.

In Table 3 we give the size of these factors, the number of levels (this is proportional to

the time required for our parallel substitution algorithm), and the number of factors, which

is in practice proportional to the time required by the partitioned inverse approach.

These results confirm that the time required to solve a triangular system by partitioning

of the inverse is quite well predicted by the number of factors in the partition. It also

shows that the number of levels in G(L) is a good predictor of the time required for solution

by substitution methods. We see that when L has a fairly rich structure the partitioned

inverse approach is much better than the substitution method, but when L is very sparse

there is little gained. The use of an MLMD primary ordering improves both substitution and

partitioned methods. However, with the introduction of the additional fill in the exact factor

L3 (compared with L2), the number of levels in G(L) increases sharply (as does the time for

substitution) while the number of factors in the best reordered partition drops dramatically.

The difference in the solution time, even for this problem of modest size, is about a factor of

twenty. Thus we conclude that the method can be quite useful in highly parallel machines

when the matrix L has a rich enough structure, as happens when it is an exact triangular

factor.

5. Concluding remarks. We have considered several issues associated with highly

parallel sparse triangular solution. We have described algorithms for minimizing the number

of factors in the partitioned inverse over symmetric permutations of a lower triangular matrix

L. When L is obtained from unsymmetric, symmetric indefinite, or incomplete factorization,

Algorithms RP1 and RP2 may be used to compute the partitions. When L is a Cholesky

factor, Algorithm RPtree is an extremely efficient O(n) time and space algorithm for com-

12

puting the partitions. We believe that the results in this paper demonstrate the potential

superiority of the partitioned inverse approach over the conventional substitution algorithm

for sparse triangular solution on highly parallel computers.

There are several directions to explore in future work.

One issue is to reduce the number of factors in the partitioned inverse further by permit-

ting some fill. Another is to partition the original matrix A into a block triangular matrix

ensuring only that the diagonal blocks incur no fill upon inversion. Then the subdiagonal

blocks of A need not be inverted, since the solution to the triangular system can be decom-

posed in the usual way into the solution of several subsystems. The solution vector associated

with each subsystem can be computed using the partitioned inverse of its diagonal block,

and then by block back-substitution the contribution this solution vector makes to higher

numbered subsystems can be eliminated. Thirdly, it may be possible to design partitioning

algorithms which are more efficient in practice by using the transitive reduction of the DAG

G(L).

A fourth issue concerns sparse Cholesky factors. Given the factorization A -- LDL T

of a symmetric, positive definite matrix, consider the filled matrix F = L ÷ L T and the

corresponding undirected graph G(F) which is chordal. In problem (P3) we ask for the

minimum number of factors m in the partitioned inverse representation of L over all vertex

orderings that preserve the structure of the filled graph G(F) (rather than preserving the

structure of the DAG G(L) as (P2) does). Such an ordering would have to be applied to

the original matrix A, before the computation of the factorization. This problem turns out

to be much harder than (P2), but can be solved by developing a theory of transitive perfect

elimination orderings: i.e., perfect elimination orderings of subgraphs of chordal graphs

which make them transitively closed subgraphs as well. An efficient algorithm to solve (P3)

by means of the clique tree data structure will be reported in [11].

REFERENCES

[1] F. L. ALVARADO, Manipulation and visualization of sparse matrices, ORSA J. Comput., 2 (1990),
pp. 180-207.

[2] F. L. ALVARADO AND R. SCHREIBER, Optimal parallel solution of sparse triangular systems. SIAM
J. Sei. Stat. Comput., to appear, 1992.

[3] F. L. ALVARADO, D. C. Yu, AND R. BETANCOURT, Partitioned sparse A -1 methods, IEEE Trans.
Power Systems, 5 (1990), pp. 452-459.

[4] E. ANDERSON AND Y. SAAD, Solving sparse triangular systems on parallel computers, International
Journal of High Speed Computing, 1 (1989), pp. 73-95.

[5] R. BETANCOURT, An etyicient heuristic ordering algorithm for partial matrix refactorization, IEEE

Trans. Power Systems, 3 (1988), pp. 1181-1187.

[6] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matrix test problems, ACM Trans. Math. Softw.,
15 (1989), pp. 1-14.

[7] J. R. GILBERT, Predicting structure in sparse matrix computations, Tech. Report 86-750, Computer
Science, Cornell University, 1986.

[8] S. W. HAMMOND AND R. SCHREIBER, Ejfficient ICCG on a shared memory multiprocessor. Interna-

tional Journal of High-Speed Computing, to appear, 1992.

[9] J. W. H. LIu, Modification of the minimum-degree algorithm by multiple elimination, ACM Trans.

Math. Softw., 11 (1985), pp. 141-153.

13

[10] _, The role of elimination trees in sparse factorization, SIAM J. Mat. Anal. Appl., 11 (1990),

pp. 134-172.
[11] B. W. PEYTON, A. POTHEr, A_D X. YUAN, Transitive perfect elimination of chordal graphs and

sparse triangular solution. Work in preparation, 1992.

[12] A. POTHEN AND F. L. ALVARADO, A fast reordering algorithm for parallel sparse triangular solution,
SIAM J. Sei. Stat. Comput., 13 (1992), pp. 645-653.

14

Input: A lower triangular matrix L = L1 .-. L, and its DAG G(L).

Output: permutation II : V _ {1,..., n} and a partition of L into factors.

forall v E V do

pred(v) _-- {u: L_ _ 0}; count(v) _ indegree(v); compute level(v);
od

maz_level ,- max,,ev(level(v));

i *-- O; {i elementary matrices have been included in factors)

k _ 1; { Pk is the factor being computed)

e0 _ 0;

g *- i v E Y : count(v) = 0); {vertices with no unnumbered predecessors)
while i < n do

Pk_0; ek_i;

_ min{j I there is an unnumbered vertex at level j);

repeat

for every vertex v E E at level _ do

if ([Condition 2'] Every successor of v is a successor of all

u • pred(v)) then

i*--i+l; II(v)_-i;

Pk_P,U{v); ek_ek+l;

for every successor w of v do

pred(w) _ pred(w) \ pred(v);

count(w) ,-- count(w)- 1;

if count(w)=OthenE_£U{w}; fi
od

fi

od

g*-g+ 1;

until _ > max_level or no vertices at level _ - 1 were included in Pk;

k_k+l;

od

FIG. 4. Algorithm RP$.

15

Input: The elimination tree of a DAG G(L) and the higher degrees of the vertices.

Output: A mapping of the vertices such that member(v) = t implies that v _ Pt.

for v := 1 to n ---.

if child(v) = 0 then {v is a leaf}

member(v) := 1;

else {v is not a leaf}

u := child(v); ml := 0; rn2 := 0;

while u # 0 do

if hd(u) = 1 + hd(v) then

m, := max(m1,member(u)};
else (hd(u) < i+ hd(v)}

rna := max{m2, member(u)};

fi

u := sibling(u);
od

if ml < m2 then {v begins a new factor}

member(v) := rn2 + 1;

else {ml > ms, v can be included in a factor which includes a child}

member(v) := rnl;

fi

fi

rof

FIc. 5. Algorithm RPtree.

16

