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BACKGROUND

c CONSULTANTS TO AIR BAG INDUSTRY

● MODELING WORK

m developed general-purpose gas
generator models

9 validated performance of numerous
inflators

- used in design of new inflators

. EXPERIMENTAL WORK

. cold-flow test apparatus
D combustion test apparatus
m ignition test apparatus
9 design of experiments (DOE)

● ADVANCED CONCEPTS

9 next-generation inflator designs
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AIRBAG COMPONENTS

* CRASH SENSORS AND COMPUTER LOGIC

* BAG HOLDER AND EXTER1OR PADDING

* NYLON AIRBAG ASSEMBLY
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ENGINEERING CHALLENGES

● IGNITOR RELIABILITY (output history, is it
repeatable ?)

● TIMING OF EVENTS (pressure-time profiles)

● PRODUCT CHEMICAL COMPOSITION
w tank gas
. tank particulate
. inflator slag (multi-phase mixture)

● AM BlENT OPERATING ENVIRONMENT
. temperature
. pressure

● AIR BAG DEPLOYMENT
- dynamics of bag filling
9 thermal and mechanical response of bag

as it opens

● PROPELLANT LIFE (>15 years)

● PROPELLANT DISPOSAL
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PHYSICAL MODEL
OF

GAS GENERATOR AND DISCHARGE TANK
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COMPUTER SIMULATION

E# ignition time delay (flame spreading)
. tracks individual species with time (g, s, 1)
m grain geomet~ (form function)
86 nozzledischargeflowrates
M filtercollectionprocessandgasflow

restriction

* MODEL PREDICTING

ml heat exchangti iates
m hardware temperatures
m propellant propeflies per time
m flow propetiies at exit nozzle

~ EXPERIMENTAL VAL1DATION DATA

* NUMERICAL PROCEDURE

. large systemofODE’S (dT~dt, dm~/dt, etc.)

. solved using DVODE

. CPU timek 0=1=1 minute on HP-735
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MODEL DESCRIPTION

● BASED ON FUNDAMENTAL CONSERVATION
LAWS (MASS, ENERGY)

c TWO MAJOR SUBSYSTEMS CONSIDERED:

m gas generator assembly
w discharge tank

● GAS GENERATOR ASSEMBLY INCLUDES:

9 body (metal hardware)
9 propellant grains
9 igniter assembly
- filter screen
. thin metal foil for environmental seal and

burst strength

● DISCHARGE TANK INCLUDES:

. tank walls (heat loss)
9 mass discharged from inflator

● DIFFERENT MODES OF HEAT TRANSFER
ARE CONSIDERED
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MODEL ASSUMPTIONS

* FILTERDOES NOT COLLECT GAS SPEC[ES

~ FILTER DOES COLLECT SOLID AND LIQU D
PRODUCTSOF COMBUSTION

t, collectionefficiencydepends cm filter
design (mass, fiber size, etc.)

* GAS MIXTURE 1S:

multiple species
cp[T)
well-mixed, petiect gas
can be chemically reactive

~ CONDENSED SPECIES ARE:

. multiple species
m cp(T)
. not compressible
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THERMODYNAMIC
DATA BASE

●

●

●

✎✎

●

Treats multiple chemical species in propellant
grains and products of reaction

Gaseous as weil as condensed-phase species
are possible

Uses NASA/CHEMKIN thermodynamic data
base for C~k(T)

C;k(T)
=alk+a2k T+... +aNk T

(N-1)
R

C~k(T) used to assemble enthalpy HE(T)

——
b

NL_— —

T(K) 2s00
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GAS-PHASE CHEMISTRY

<<<<<<< GAS-PHASE REACTIONS >>>>>>>

Rxn number Symbolic representation
----- ----- ----- ----- _________ .- —___ _—_ —-- ------- --------- ----- ------ -

;:
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

C+02<=>CO+0
C+OH<=>CO+H
HCO+OH<=>H20+C0
HCO+M<=>H+CO+M
HCO+H<=>CO+H2
HCO+O<=>CO+OH
HCO+O<=>C02+H
HCO+02<=>H02+C0
CO+O+M<=>C02+M
CO+OH<=>C02+H
CO+02<=>C02+0
H02+CO<=>C02+OH
H2+02<=>20H
0+OH<=>02+H
O+H2<=>OH+H
H+02+M<=>H02+M
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CONSTITUTIVE RELATIONS

●

●

Burn-rate

Flow

dmeX
dt

b(T) nP}

d
T

rL

Ck

at the exit ports is choked-flow

17 Aex Pi
Ci t%b%

k“//--

where r is
of the exit

a function of the specific heat
gas,

r=y l—
y+1

* ‘(y-’)

c0

e

ratio

● Instantaneous surface area (form function)

AL(t) = function grain geometry
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PARTICLE FILTER

..—.

@ FILTER FLOW LOSS

FILTER COLLECTION EFFICIENCY

mc ~
i?i =ril ~
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mg ~,
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mSULTS =COMPUTER SIMULATION
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RESULTS - SENSITIVITY STUDY
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RESULTS - SENSITIVITY STUDY
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NECESSARY FOR MEANINGFUL INFLATOR
SIMULATION PROGRAM

●

●

●

●

●

●

●

●

DESCRIPTIONOF PROPELLANTAND PRODUCTS
CHEMICAL COMPOSITION

TEMPERATURE-DEPENDENT SPECIFIC HEAT
FUNCTIONS FOR ALL POSSIBLESPECIES

PRECISE SOLID PHASE PROPERTIES (V, DENSITY)

SURFACE REGRESSION RATE ( = F(P,T) )

SURFACE/VOLUME RATIO OF PROPELLANT DURING
BURN

lGNITIONSEQUENCE OF THE pROPELLANT
(cOATING, SQUIB SIZE, TEMPERATURE, ETc.)

FRACTURE OF GRAINS DURING RAPID
PRESSURIZATION

SOLID-PHASETHERMAL PROPERTIES(MODEL SLAG
FORMATION)

NOZZLE OPENING PROCESS (INCLUDED MULTIPLE
NOZZLE SIZES TO AVOID SADDLING EFFECT)

HEAT LOSS TO SCREENS

DYNAMIC MASS-FLOW DISCHARGE COEFFICIENTS

DEVELOPMENT OF EXPERIMENTAL PLAN IN PARALLEL
WITH MODEL DEVELOPMENT
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EXPERIMENTAL REQUIREMENTS

e OF PROPELLANT

‘a

‘@

@

DESCRIPTION

m chemical
86+ grain geomet~
. burn-ratefunction

ANALYSIS OF SPECIESREMAINING [N
INFLATOR AFTER FIRING

THE

m inflator body
= discharge tank

AFTER-FIRING INSPECTION OF
HARDWARE FOR CONDENSED PARTICLES

INDEPENDENT STUDIES OF THE FILTER.—

COLLECTION EFFICIENCY- --

INDEPENDENT STUDIES
PROPELLANT IGNITION

OF THE
SEQUENCE
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PROPELLANT CONCERNS

● PRODUCT CHEMICAL COMPOSITION
- tank gas
9 tank partlculates
9 inflator slag (multi-phase mixture)

Q LIFE (>115 years)

● DISPOSAL

● PROPELLANT OUTPUT

1
9 hot vs. cold firing
9 sqluib can fracture propellant grains

● LABORATORY COMBUSTION STUDIES
SHOULD REPLICATE ACTUAL GAS
GENERATOR OPERATING ENVIRONMENT

w hi!ghconfinement (solids loading)
m pressure variations (14.7 -4,000 psi)
m possible slag build-up
. fla~mespreading
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IGNITION CONCERNS

c ACTIONI TIME

9 hot vs. cold firing
m uniform performance of “similar” squibs
9 some “good” gas-generating

propellants require accelerant coatings

s IGNITOIR OUTPUT

9 hot vs. cold firing
9 uniformity in performance of “similar”

sc~uibs
m can fracture propellant grains

● IGNITOR LIFE

m uniform performance after storage

● INDEPENDENT STUDIES OF IGNITOR AND
PROPELLANT IGNITION SEQUENCE ARE
NECESSARY UNDER ALL OPERATING
CONDITIONS

119



-

wg.
v

i-

......
----------
.—

-----
......
--....

G-t-- t,-
L.-

!IIII1

P
d

I

I

120

I

-
t
-

1

-------
-......

-...
—

-
....<

.-.-..
.-......

-------
~

-----._--
....<

-.--.-
b--...-[

T
I

E
.



CONCLUSIONS

●

●

●

●

●

e

COMPREHENSIVE GAS GENERATOR MODEL
WAS DEVELOPED

MODEL HAS BEEN APPLIED TO

m conventional pyrotechnic inflators
- hybrid inflators

AGREEMENT WITH DATA IS EXCELLENT

MODEL IS A USEFUL TOOL FOR DESIGN AND
DEVELOPMENT OF:

9 new inflators (material properties, size, etc.)
9 new pyrotechnic compositions
w propellant grain modifications
m ignit~ors
w new filter designs

EXPERIENCE SHOWS THAT A RELIABLE
EXPERIMENTAL DATABASE IS

WE RECOMMEND THAT SOLID

ESSENTIAL

PROPELLANT
FIRE EXTINGUISHMENT PROGRAM FOLLOW
SAME METHODOLOGY
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ALTERNATIVE DESIGNS

Propellant

/
Cooling ~ilkr

/

a.) Smdmd scheme

Granular

L-4

b.) Self-tooting scheme
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