
NISTIR 5703R2

The NIST
ATM/HFC Network Simulator

Operation and Programming Guide

Version 4.0

Nada Golmie
Frederic Mouveaux
Lance Hester
Yves Saintillan
Alfred Koenig
David Su

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards and Technology
Information Technology Laboratory
Advanced Networks Technologies Division
High-Speed Networks Technologies Group
Gaithersburg, MD 20899

December 1998

i

TABLE OF CONTENTS

Introduction 1
Purpose 2
Terminology in this Manual 2

1 User's Manual 3
1.1 Objectives and Overview 3
1.2 Component Descriptions 4

1.2.1 Switch. 4
1.2.2 Broadband Terminal Equipment (B-TE). 4
1.2.3 Hybrid Fiber Coax Network (HFC). 4
1.2.4 ATM Application. 4
1.2.5 Physical Link. 5

1.3 Executing the Program 6
1.4 The Display 7

1.4.1 The Network Window 8
1.4.2 The Text Window 8
1.4.3 The Control Panel 8

1.4.3.1 Analog Clock. 8
1.4.3.2 Digital Clock. 9
1.4.3.3 Control Buttons. 9

1.5 Operating the Simulator 11
1.5.1 Loading a Network Configuration 11
1.5.2 Creating a Network Configuration 11

1.5.2.1 Creating Components. 11
1.5.2.2 Linking Components. 12
1.5.2.3 Creating Routes. 12

1.6 Operational Features 14
1.6.1 Displaying Information about the Network 14

1.6.1.1 Component Information Windows. 14
1.6.1.2 Meters. 15
1.6.1.3 Logging Data. 16
1.6.1.4 Log File Format. 16

1.6.2 Making Modifications 17
1.6.2.1 Modifying Components. 17
1.6.2.2 Deleting Components. 17

1.6.3 Manipulating the Network Display 18
1.6.3.1 Raising/Lowering Windows. 18
1.6.3.2 Moving Windows. 18
1.6.3.3 Resizing Windows. 18
1.6.3.4 Resizing Information Windows. 18

1.6.4 Saving a Network Configuration 18
1.6.5 Post Simulation Analysis using the Log File 19

1.6.5.1 The Filter script. 19
1.6.5.2 The Minimum script. 20
1.6.5.3 The Maximum script. 20
1.6.5.4 The Mean script. 20
1.6.5.5 The Sum script. 20
1.6.5.6 The Last script. 21
1.6.5.7 The Count script. 21

ii

1.6.5.8 The Countlimit script. 21
1.6.5.9 The Numsent script. 21
1.6.5.10 The Probe script. 22

1.7 Simulator Concepts 23
1.7.1 Simulation Clock 23
1.7.2 ATM Switch 23
1.7.3 Broadband Terminal Equipment (B-TE) 24
1.7.4 Hybrid Fiber Coax (HFC) network. 24
1.7.5 ATM Applications 24
1.7.6 Link Components 25

2 Programmer's Guide 26
2.1 Objectives and Overview 26
2.2 Components 27

2.2.1 Classes and Types 27
2.2.2 Component Data Structures 28
2.2.3 Parameters 29
2.2.4 Neighbors 32
2.2.5 Relationship of Data Structures 33
2.2.6 Action Routines 33

2.3 Events 35
2.3.1 Command Set (EV_CLASS_CMD) 35
2.3.2 Regular Events (EV_CLASS_EVENT) 36
2.3.3 Private Events 37
2.3.4 The Event Manager 37

2.4 ATM Network-Related Issues 39
2.4.1 ATM Cell Definition 39
2.4.2 Setting Up the ATM Virtual Channel 40

2.5 Tools 41
2.5.1 Lists and Queues 41
2.5.2 Other Tools 43
2.5.3 Debugging 43

2.6 Creating New Versions 44
APPENDIX A: Parameter Information 45

A.1 ATM Switches 45
A.1.1 Generic Switches 46
A.1.2 Rate-Based Switches 47
A1.3 Quantum Flow Control Switches 53
A.1.4 Credit Based Switches 54

A.2 Broadband Terminal Equipment (B-TE) 55
A.2.1 Generic B-TE 55
A.2.2 Rate-Based Broadband Terminal Equipment (RB-B-TE) 56
A.2.3 HFC (Hybrid Fiber Coax) 58
A.2.4 Quantum Flow Control (QFC) B-TE 64
A.2.5 Credit Based (CB) B-TE 65

A.3 ATM Applications 66
Constant Bit Rate (CBR) Information Window 66
Variable Bit Rate (VBR) (Poisson) Information Window 67
Variable Bit Rate (VBR) (Batch) Information Window 67
Variable Bit Rate (VBR) (CBatch) Information Window 67
Available Bit Rate (Self-Similar) Information Window 68
Variable Bit Rate (MPEG) Information Window 69

iii

Variable Bit Rate (GOP GBAR) Information Window 69
Available Bit Rate (ABR) (Constant) Information Window 72
Available Bit Rate (ABR) (Poisson) Information Window 72
Available Bit Rate (ABR) (Batch) Information Window 73
TCP/IP (ABR or UBR) Information Window 74

A.4 Link Components 76
APPENDIX B: Meter Types 77
APPENDIX C: Configuration File Formats 79

C.1 Format of the SAVE file. 79
C.2 Format of the SNAP File. 80

1

The NIST ATM/HFC Network Simulator

Operation and Programming

Version 4.0

ABSTRACT

An Asynchronous Transfer Mode (ATM)/Hybrid Fiber Coax (HFC) network
simulator has been developed to provide a means for researchers and network
planners to analyze the behavior of ATM and HFC networks without the expense
of building a real network. The simulator is a tool that gives the user an interactive
modeling environment with a graphical user interface. With this tool the user may
create different network topologies, control component parameters, measure
network activity, and log data from simulation runs. Part 1 of this document is the
user's manual for the simulator; it includes instructions for creating network
configurations, specifying component parameters, manipulating the display,
logging and saving measurements, and post-processing of data. Part 2 has been
prepared as a guide for the user who wishes to modify the simulator software to
accommodate network components not previously defined or to change the
behavior of components already defined.

Introduction

The ATM/HFC Network Simulator was developed at the National Institute of Standards and
Technology (NIST) to provide a flexible testbed for studying and evaluating the performance of
ATM and HFC networks. The simulator is a tool that gives the user an interactive modeling
environment with a graphical user interface. NIST has developed this tool using both C language
and the X Window System running on a UNIX platform. This tool is based on a network
simulator developed at MIT1 that provides support for discrete event simulation techniques and
has graphic user interface (GUI) representation capabilities.

The ATM/HFC Network Simulator allows the user to create different network topologies, set the
parameters of component operation, and save/load the different simulated configurations. While
the simulation is running, various instantaneous performance measures can be displayed in
graphical/text form on the screen or saved to files for subsequent analysis.

1A. Heybey, "The Network Simulator," Laboratory of Computer Science, Massachusetts Institute of Technology, October 1989.

2

Purpose

The ATM/HFC network simulator is a tool to analyze the behavior of ATM and HFC networks
without the expense of building a real network. There are two major uses for the simulator: as a
tool for ATM network planning and as a tool for ATM or HFC protocol performance analysis.
As a planning tool, a network planner can run the simulator with various network configurations
and traffic loads to obtain statistics such as utilization of network links and throughput rates of
virtual circuits. It could be used to answer questions such as: where will be the bottlenecks in the
planned network, what is the effect of changing the speed of a link, will adding a new application
cause congestion, etc. Statistics are reported directly to the screen or logged in a data file for
further processing.

As a protocol analysis tool, a researcher or protocol designer could study the total system effect
of a particular protocol. For example, one could investigate the effectiveness of various flow
control mechanisms for ATM networks and address such issues as: mechanisms for fair
bandwidth allocation, protocol overhead, bandwidth utilization, etc. One could also study the
performance of Multiple Access protocols for HFC networks and the interoperation of HFC
networks with ATM services. In order to conduct experiments, an investigator must first change
or add additional codes to implement the protocol to be studied. The simulator is designed in
such a way that modules simulating components of an ATM network can be easily changed,
added, or deleted. Activities can be recorded on a cell by cell basis for subsequent analysis.

Terminology in this Manual

The network to be simulated consists of several components sending messages to one another.
The components available include ATM Switches, Broadband Terminal Equipment (B-TE),
Hybrid Fiber Coax (HFC) network and ATM Applications. Switches and B-TE components are
interconnected with Physical Links; a Physical Link is also considered a component. The ATM
Applications are logical entities that run on B-TE (hosts). The Applications may be considered as
traffic generators that are capable of emulating variable or constant bit rate traffic sources. ATM
Applications are connected to each other over a route that uses a selected list of adjacent
components to form an end-to-end virtual connection. The HFC component can replace the B-TE
and simulate a set of hosts contending on a shared HFC channel subject to collisions.

All components are characterized by one or more parameters. Parameters fall into two
categories, input and output; both kinds are listed in information windows which appear next to
the applicable component when the user so desires. All input parameters may be specified by the
user at the time of component creation or they may be modified later. Network activity may be
observed by opening meter windows to display selected parameters. There are various types of
meter windows available and they can be placed anywhere on the screen. Parameter information
may also be logged, i.e., stored on disk in a file named sim_log.xxxx where xxxx is the process ID
of the simulator.

3

1 User's Manual

1.1 Objectives and Overview

This part of the document provides information for the simulator user to create network
topologies using simulated ATM switches, terminal equipment, HFC networks, and physical links.
The manual includes instructions for display manipulation, component linking and routing,
parameter setting, data logging, and post-simulation analyses.

The user may select from a variety of applications, the behavior of which will determine the kind
of traffic generated for transmission through the network. The user may control the parameters
associated with these components, define the routes, and specify many details concerning the
logging and display of performance data. The primary user interface to the simulator is through
an X Windows display screen. The screen simultaneously displays the network configuration, a
control panel for running the simulation, and parameter information. The display contains a text
window for user prompts which also provides a place for parameter data entry. Output parameter
values may be be displayed in numerical form in "information windows" or as graphical "meters".
Output parameter values may also be tagged for logging to a file; the data logging frequency is
determined by the user.

4

1.2 Component Descriptions

The following are brief, general descriptions of the major building blocks of the simulated
network. For more detailed functional descriptions, see 1.7 Simulator Concepts and 2.2
Components. A complete list of input and output parameters available for each component can
be found in Appendix A.

1.2.1 Switch.

This is the component used to switch or route cells over several virtual channel links. When a
switch accepts an incoming cell from a Physical Link it looks in its routing table to determine
which outgoing link should send it. If the outgoing link is busy, the switch will queue the cells
destined for that link and not send them until free cell slots are available for transmission. The
user may specify the processing delay time, maximum output queue size, and queue size
thresholds. The parameters that can be monitored for a switch include the number of cells
received, number of cells in an output queue, number of cells dropped, and the status of
congestion flags.

1.2.2 Broadband Terminal Equipment (B-TE).

This is a component to simulate a broadband ISDN node, e.g., host computer, workstation, etc.
A B-TE component has one or more ATM Applications on one side and a physical link on the
other side. Cells received from the Application side are forwarded to the physical link; if the link
is busy the cells go into a queue. The user can specify the maximum output queue size. The
parameters that can be monitored are the number of cells in an output queue and the number of
cells dropped.

1.2.3 Hybrid Fiber Coax Network (HFC).

The HFC is a Cable TV (CATV) network using coax and fiber technology to provide high speed
digital services to subscriber premises. The CATV networks are characterized by a tree and
branch topology. At the root of the tree, the CATV headend broadcasts data to the customers and
controls the traffic on the shared upstream channel (from the customers to the Headend). In this
simulator, the HFC component simulates an HFC network with a single trunk topology. Like the
B-TE, the HFC component is connected to one or more customers stations (or Applications) on
one side and to an ATM link on the other side. It emulates the MAC layers of each station it is
connected to, the cable trunk subject to collisions, and the Headend Controller (HC) unit at the
top of the cable. Once the cells reach the HC, they are forwarded to the physical link of the ATM
network.

1.2.4 ATM Application.

This is a component to emulate the behavior of an ATM application at the end-point of a link. It
can be considered as a traffic generator, either with a constant or variable bit rate. The user
specifies the bit rate for constant bit rate (CBR) applications. For variable bit rate (VBR)

5

applications the user sets the burst length, interval between bursts, and the mean rate. For lower
priority traffic, the user may create an available bit rate (ABR) application. For all of the
application types, the user sets the start time and the number of megabytes to be sent. Other
application types that can be simulated include TCP/IP, VBR MPEG, and VBR self-similar traffic
applications.

1.2.5 Physical Link.

This component simulates the physical medium (copper wire or optical fiber) on which cells are
transmitted. The user may choose the link speed from a list of several different standard rates.
The user also specifies the length of the link. The output parameter reported by the simulator is
link utilization in terms of bit rate (Mbits/s).

6

1.3 Executing the Program

To execute the ATM/HFC Network Simulator, the following is typed at the command line :

sim [-i] [-v] [-x] [-s seed] [-w warmuptime] [configfile [stoptime]]

where:

-i Install a private Colormap. This option was added to avoid colormap problems
when launching the interface mode with older versions of the simulator (version
3.0 or less). If you have some color troubles with the GUI of the simulator, try to
start it with this option.

-v Verbose mode. Display some information on your standard output during the
simulation. This switch is really usefull when you want to launch a simulation
without any interface (see the switch -x). The verbose mode print a progress
counter of the simulation and an indicator of the process live.

 -x Used for running the simulator in background mode. With this option the
simulator will not use X Windows; it will run on a machine that does not have X
Windows. When using this option a configfile must be specified, otherwise the
simulator will have no network to simulate and will produce no meaningful results.
Also, the configfile specified should be a "snapshot" that has some parameters
logged to disk so that the simulator run produces some results.

-s Allows the user to specify the seed for the random number generator. If this option
is omitted the current time (in UNIX format) is used as the seed. The seed actually
used is printed at the beginning of each simulator run, and is saved as a comment
in any log files produced by the simulator. Specifying a particular seed is useful if
identical results are expected from successive simulator runs.

-w Used to enter the length of time (in microseconds) the simulator will run before
statistics are collected. If not specified, the warmup time is set to zero.

 configfile A file describing the configuration of the network to simulate. Such a file is
produced by the SAVE and SNAP commands in the simulator.

 stoptime Length of time (in microseconds of simulated time) for the simulator to run. Most
useful when running non-interactively (with the-x option). When the simulator
stops, it will automatically produce a "snap" file of its current state.

7

1.4 The Display

The display is composed of three major parts:

 · A network window to display ATM/HFC network configurations. This window is used
both while creating the configurations and to show network activity while the simulation is
running.

 · A text window for messages that will prompt the user, and to provide a place for the user
to input text or parameter values.

 · A control panel that consists of a clock and several control buttons, such as START,
QUIT, etc..

Figure 1. Typical Simulator Screen

8

1.4.1 The Network Window

Figure 1 is an example of the simulator screen seen by the user once a network configuration has
been created. The entire area not otherwise occupied by clock and control buttons is the
Network Window. If the program is started with no configfile this area is blank. The network is
represented as a collection of components connected to each other in the desired configurations.
ATM switches, broadband terminals (B-TEs), and HFC networks are represented by rectangular
boxes while ATM Applications are represented by ellipses; both shapes contain the name of the
component. ATM switches and B-Tes (or HFCs) are interconnected by Physical Links. The
Links are also considered components and are identified by name, but they are represented on the
figure by straight lines. The connection between a B-TE and an ATM Application is also
represented by a line but is not considered a component, i.e., it is not a physical entity and has no
associated parameters.

Other information (not shown on the figure) is displayed in the Network Window as required.
When creating or modifying a component an information window appears beside its symbol,
displaying the component's parameters. When a virtual connection is established between ATM
applications a dotted line appears denoting the path of the information flow. When a simulation is
running, one or more meters may appear on the screen to display information about selected
parameters.

1.4.2 The Text Window

The text window appears as a bar at the bottom of the screen. The text window allows the
program to present various messages to the user. In addition, any keyboard input is displayed in
the text window. The cursor does not need to be in the text window when entering information
with the keyboard. When entering information using the keyboard, pressing "Return" without
entering any text will tell the program to accept a default value or to abort that operation.

1.4.3 The Control Panel

The control panel appears on the right hand portion of the screen. It contains an analog clock, a
digital clock, and an array of control buttons.

1.4.3.1 Analog Clock.

The analog clock indicates the passage of simulator time in a graphic style. The intent is not a
precise timer but to give the user an indication of how busy the simulator is. A tick is a
movement of 6 degrees around the circle. Each tick of the big hand represents 1 millisecond.
Each tick of the small hand represents one revolution of the big hand (60 milliseconds).

9

1.4.3.2 Digital Clock.

The digital clock provides a display of current simulator time accurate to the nearest 10
nanoseconds.

1.4.3.3 Control Buttons.

The following is a description of the function of each control button. All of the functions are
initiated by clicking with the middle mouse button.

START Clicking on this button will start the simulation with simulated time
initialized to zero. The simulation can be restarted as many times as the
user wishes; each click on the button will initialize the simulation.

PAUSE/RUN This button toggles between two modes. When the simulation is running
the word PAUSE will be displayed. Clicking on the button will then stop
all activity with all parameter and time information held in place. With the
simulation stopped, the button label will change to RUN; clicking on it will
cause the simulation to resume running with current settings.

DELAY This button allows the user to slow down the simulation by setting a delay
between each event firing. The text window will appear asking for the
desired delay (in microseconds).

UPDATE Clicking on this button will toggle screen updating on or off. The
simulation will run faster with screen updating turned off. The clock will
continue to be displayed with updating turned off. Clicking on a
component while updating is off will cause the parameter window for that
component to appear with current data. Clicking on the component a
second time will make the window disappear.

KILL This button may be used to stop a simulation in progress or to eliminate
components. Clicking on the KILL button while a simulation is in progress
stops all activity. If a simulation is not running, clicking on a component
after KILL has been clicked will delete that component. In either case, the
QUIT button must be used to leave the KILL mode.

LOAD This button allows the user to load a network configuration. The text
window appears asking for the name of the file to be loaded. Note that this
erases whatever configuration was being displayed on the screen at the
time.

SAVE The SAVE control button allows the user to save the present configuration
in a specially formatted text file which is readable by the simulator at
LOAD time. The text window appears asking for a filename under which

10

to save the configuration. Present values of the components' parameters
are not saved.

SNAP This is similar to SAVE, but in addition it saves the present arrangement of
meters and information windows on the display. The text window appears
asking for a filename under which to save the configuration. Present values
of the components' parameters are saved.

PRINT Prints out the network topology into a postscript file.

QUIT This is the normal exit from the simulator program. Note that clicking on
the QUIT button while in KILL mode merely causes an exit from that
mode; it does not cause an exit from the program.

11

1.5 Operating the Simulator

1.5.1 Loading a Network Configuration

There are three ways to specify a network configuration for the program to simulate.

 1. Specify the name of a configfile describing the network on the command line. This
network will be automatically loaded when the programs begins.

 2. Use the LOAD command while in the simulator program. This is accomplished by
clicking on the LOAD control button; a prompt will then appear in the text window asking
for a file name. After the user enters the name of the file, the network configuration is
loaded. Note that this erases whatever configuration was being displayed on the screen at
the time.

 3. Create a network while in the simulator program using the tools the program provides.
Using this process, the user decides on the appropriate components, their characteristics
and interconnections.

1.5.2 Creating a Network Configuration

The process of creating a network for simulation starts with the creation of components.

1.5.2.1 Creating Components.

Creating components (except for links) is achieved by holding the shift key down and clicking the
right mouse button on the background. The initial location of the component will be the location
of the mouse when the right button is released. (Components may be repositioned after they are
created; see 1.6.3.2 Moving Windows below). After the right button is released a menu of
component types will appear; this menu contains the items shown.

After the user clicks on the desired component type, a
component information window will appear on the background.
The user will be prompted (in the text window) to enter certain
information about the component. The first item requested is
always the component's name. Next, the user is prompted to
enter values for "input" parameters, i.e., the parameters that will
define the component's behavior in the network. For a

comprehensive list of these parameters see Appendix A. After all the required parameter values
are entered, the component will be created. The information window also has elements that
control data display and recording; these will be discussed below.

SWITCH

B-TE

ATM APPLICATION

ABORT

12

1.5.2.2 Linking Components.

After the ATM switches and B-TE components have been created they are connected into a
network by creating physical links. A physical link is also considered to be a network component
and has a name and parameters associated with it. A link may connect any two ATM switches or
one switch and one B-TE. The procedure for creating a link is as follows:

Select the first component to be linked by clicking on it with the middle mouse button
while holding down the shift key.

Select the second component to be linked by the same method. At this point a line will
appear and the physical link component will be created. As with other components, an
information window will appear and the user will be prompted to enter a name and some
input parameters.

To complete the linking process the ATM Application components must be connected to the B-
TE components. The process is like creating the physical link (shift, click middle button on
component) but in this case only a line linking the components will appear, no information
window. This is because this type of connection is not considered a component.

1.5.2.3 Creating Routes.

A Route is an ATM Permanent Virtual Connection, a path over which the cells travel through the
network. In the simulator, a Route is a list of adjacent components beginning and ending with
ATM Applications. To create a Route, hold the shift key down and click the left mouse button
on each component in the route. A message will appear briefly in the text window after each click
to affirm (or reject) the addition of the component to the route. The first and last components in
this process must be ATM Applications. When the user clicks on the final Application on the
path, the route is created. Only one route going out of an ATM Application is assumed, although
multiple routes may be coming in.

Performing a shift/left-click on anything other than a component aborts route creation. However,
any other commands or button clicks that are not shift/left-clicks can take place at any time in the
route creation process. If the user attempts to include a component in the route which cannot be
included (perhaps because it is not a neighbor) it will not be included, but the route creation
process will not be aborted. To abort an incomplete route creation process and start over,
shift/left-click twice on the window background.

Once routes have been created they cannot be deleted. All desired routes should be created at
one session, i.e., do not try to add routes to a loaded file that has been previously configured and
contains routes.

CAUTION: Any attempt to start or run a simulation before routes have been created will cause a
program crash.

13

1.6 Operational Features

The simulator provides several features which may be used to enhance the display of information,
modify the network that was created, save existing configurations, and log data from the
simulation runs.

1.6.1 Displaying Information about the Network

1.6.1.1 Component Information Windows.

These are the same windows that appear when a component is created. They are used during the
process of setting values of input parameters but may also be used to modify those values, display
output parameter values, and to control data logging. The figure below is an example of an
information window. The first line shows the component name, the second line an input
parameter. The two shaded blocks are output parameters with current parameter values
displayed. (Note: This shading does not appear on the screen).

To bring the information window onto the screen, click the middle mouse button on the
component's symbol; a window similar to the one above will appear. To the left of each
parameter's information line are two small boxes. Clicking the middle mouse button on the left-
hand box toggles a meter display on and off for that parameter; clicking on the right-hand box
toggles data logging on and off for the parameter. The box will become white when its function is
turned on and revert back to its background color when it is toggled off. The example above
shows a meter created for "Link 1 output ..." and data logging selected for "Number of cells
dropped ..." Both box types are valid only for output parameters; clicking on either box for any
other parameter will have no effect.

When defining a component for the first time, a prompt will appear in the text window
automatically, asking for the required information. Each entry is terminated by a RETURN. No
other action is possible until all requested information has been entered. To modify a parameter at
any other time, click the middle mouse button on the desired line. Once again the prompt will
appear in the text window and the value may be entered, terminated by a RETURN. A RETURN
with no entry will accept the current value. In the edition mode, you can erase the value entered
by pressing the DELETE key. Each press on DELETE will erase the last character of the field.

switch1

Max. Output Queue Size (-1=inf): -1

Link 1 output queue has 25 cells

Number of cells dropped on route = 0

14

To remove the information window from the screen, click the middle button on the component's
symbol, and the information window will disappear.

1.6.1.2 Meters.

To display information about a parameter in graphical form, a meter is created for that parameter.
To create a meter for a particular parameter of a component, click the middle button of the
mouse on the left-most box next to the parameter on the component's information window. This
box will become white, and the meter will be created. This meter will remain on the screen even if
the component's information window is not displayed. Meters are stacked below the component
box whose parameters' values they display. They consist of rectangular boxes of varying lengths
and heights. The location and size of the meter box can be modified by +the user. (See 1.6.3.3
Resizing Windows below.)

When a meter has been created, clicking on the meter symbol with the middle button will cause
the following meter setup window to appear.

Select the desired line in the window by clicking on it
with the middle button, then make the desired entry
from the keyboard. The meter name may be anything
the user desires. The component name is entered
automatically; it is always the name of the component
selected for monitoring (but it may be changed). The X
and Y axis scales may or may not be adjustable,
depending on the meter type. The Histogram type meter
requires some additional entries. (See Meter Types in
Appendix B.) "Display meter name" and "Display scale"
are options that may be toggled on or off by a click on
the line. When "Display scale" is on, horizontal lines will
appear on the meter as the program adjusts the Y-axis
scale.

When a meter is created, a type considered to be appropriate will
be selected by default. The user may, however, change the meter
type if so desired. To do this, click the middle mouse button on
the Meter Type line; at this point the meter select window shown
will appear. Click the middle mouse button on the desired line to
select the type. The most desirable meter type will depend on the
parameter that is to be monitored. For example, a binary meter is
best for a congestion flag, a bar graph for percentage of link
utilization, Time History A for packets in an output queue, etc.

Meter name:

Component name:

Meter type:

Y-axis scale:

X-axis scale: microseconds

Display meter name: yes

Display scale: no

Histogram Min: 0

Histogram Max: 0

Histogram Cells: 0

Histogram Samples: 0

BINARY METER

BAR GRAPH

LOG

TIME HISTORY A

TIME HISTORY D

DELTA METER

HISTOGRAM

15

(See Meter Types in Appendix B for a full description of available meters.)

To delete a meter, click the middle mouse button on the box in the component information
window used to create the meter. The meter will disappear, and the box will revert to its normal
color.

Meters are not cleared at the restart of a simulation. To start with a clear meter, delete it and
create a new one.

1.6.1.3 Logging Data.

Data logging is a method of recording the values of a parameter while the simulation is running.
Logging for a parameter is toggled on and off by clicking the middle mouse button on the right-
hand box on the information window line for that parameter. When logging for a particular
parameter is turned on, its box in the information window becomes white, and every new value of
that parameter with a corresponding time stamp is saved in a file. The file is created in the current
directory with the name sim_log.xxxx where xxxx is the process ID of the simulator. The file
created by this process will contain an entry for every value change of every parameter that was
tagged for data logging. Every entry will consist of parameter number, time tick, and parameter
value at that tick. The parameter number will be identified by name in the file header.

For Switch and B-TE components, clicking on the right-hand box next to the component name in
an information window results in the arrival of each cell (on n cells) into that component being
logged into the sim_log file. For these components there is an input parameter, "Logging every
(n) ticks," that lets the user decide on the frequency of the data logging.

When operating without X Windows (-x switch on) in addition to the sim_log file, a file named
sim_snap.xxxx is created when the simulation is finished. This file is actually a snapshot file
containing the component status and parameter values at the time the simulation stopped.

1.6.1.4 Log File Format.

The following brief example shows the format of a sim_log file:

1 'switch3' 'Name'
2 'switch2' 'Cells in VBR Q to link22'
3 'switch2' 'Cells dropped in VBR Q to link22'
2 3003 1
2 3003 2
2 3043 3
1 3277 switch3 link22 4
2 4095 3
3 4175 1
…

16

The lines at the head of the file starting with pound sign (#) are a listing of all of the parameters
that were marked for data logging when the simulator was running. The number immediately
following the # is the ID number that will be used in the remainder of the file to identify the
parameter. The rest of the line gives the component name and parameter name respectively.

All lines following the ones marked with # are the actual data recorded during the simulation.
The first column is the parameter ID, the second column is the time (in ticks), and the third
column is the value of the parameter at that time. A slightly different format is used for the case
where the data logged represents cell arrival at a switch or B-TE component. (This is the logging
enabled with the box on the component's name line.) In this case the third column is the name of
the component on which the data is collected (switch3 in the example). The fourth column is the
name of the link from where the cell arrived (link 22), and the fifth column is the route number.

1.6.2 Making Modifications

1.6.2.1 Modifying Components.

After it is created, a component can be modified by editing its input parameters. To edit a
parameter, pop up the component's information window by clicking on the symbol with the
middle mouse button, then click on the parameter to be edited. A prompt will appear in the text
window, at which time the new value of the parameter can be entered.

1.6.2.2 Deleting Components.

Deleting components is done with the KILL control button. After clicking on KILL, any
component that the user clicks on is deleted. When finished deleting components, the user clicks
on QUIT to get out of this mode. CAUTION: Failing to click on QUIT after deleting can be
harmful to your configuration; inadvertent deletion of components may result if the middle button
is used for selection without QUITing the delete mode. Also note that clicking on QUIT while in
KILL mode does not cause an exit from the simulator program, but a second click on QUIT will
end the session.

It is not possible to delete components once they have been placed in a route (an ATM Virtual
channel). Furthermore, it is not possible to delete a route, thus the user should make every effort
to insure that the configuration is constructed as desired before creating the routes.

17

1.6.3 Manipulating the Network Display

1.6.3.1 Raising/Lowering Windows.

Clicking the right mouse button on a window will raise (bring forward) that window so that
nothing else on the display will obscure that window. Clicking the left mouse button on a
window will lower (push back) that window so that it does not obscure any other windows.

1.6.3.2 Moving Windows.

Any of the windows in the network display may be repositioned, including components, meters,
and information windows. Even the control buttons and clock may be moved, but only as a
group. To accomplish a move, click and hold the right mouse button on the window, drag the
box outline which appears to the new location for the window, and release the mouse button.

1.6.3.3 Resizing Windows.

It is possible to resize meter windows. To do this, click and hold the middle mouse button on
one corner of the window. A box outline will appear which can be resized by moving the mouse
with the button still depressed. When the box outline is the desired shape and size, release the
mouse button and the window will be resized.

It is also possible to resize the entire simulator window. Its initial size is the full size of the
screen. To change the size or location of the window, use the standard X Window manager
(uwm). You must have the line resizerelative in your .uwmrc file for this to work, however.

1.6.3.4 Resizing Information Windows.

Clicking and holding the middle mouse button anywhere inside the information window will
cause its dimensions and text to get larger. To return to the normal size, the information window
must be closed and reopened.

1.6.4 Saving a Network Configuration

There are two ways to save a network configuration.

The SAVE command allows the user to save the present network configuration. Clicking
on the SAVE control button causes the program to prompt the user for a filename under
which to save the configuration.

The SNAP command does the same thing as SAVE except that it also saves the present
arrangement of meters and information windows on the display. The SNAP command
saves the temporary values of the components' parameters.

A detailed description of the formats of both these file types is given in Appendix C.

18

1.6.5 Post Simulation Analysis using the Log File

In many cases the user will find it desirable to have data on one or more network components
plotted or otherwise presented for further analysis.

1.6.5.1 The Filter script.

One way of doing this is to parse the sim_log file in order to get a data file with two columns (X,
Y) that can be fed into any datasheet program such as Lotus 1-2-3, GnuPlot, etc.2 A "filter"
program is provided with the simulator package for this purpose. The usage for the filter is as
follows:

filter.sh sim_log.xxxx component_name parameter_name

The above line will send the filter output to the standard output device; to redirect the output to a
file type;

filter.sh sim_log.xxxx component_name parameter_name > output_file

The filter program can be easily modified to do other post-processing tasks such as to change the
time from ticks to milliseconds, or to obtain a throughput rate from the cell arrival data.
The figure below is an example of a parameter plot obtained by post-processing a sim_log file.
This figure represents the allowed cell rate for a particular ABR source and was parsed out of the
sim log file.

2 Trade names mentioned in the text are meant only to identify typical products. Such identification does not imply recommendation
or endorsement by the National Institute of Standards and Technology, nor does it imply the products are necessarily the best availble
for the purpose.

19

After filtering the results with the ‘filter’ script, and in order to analyse more accuratly the
results, some other scripts are provided to apply some basic calculation over filtered files.

1.6.5.2 The Minimum script.

This script calculate and print the minimum value encountered in the filtered file. It can be used as
follow:

minimum.sh filtered_file

This will send the result to the standard output. Another possiblility is to store the result in a file,
and it can be done as follow:

minimum.sh filtered_file > minimum_file

1.6.5.3 The Maximum script.

The maximum script calculate and print the maximum value encountered in a filtered file. The use
is basically the same than for the minimum script:

maximum.sh filtered_file
or

maximum.sh filtered_file > maximum_file

depending on the way you want to print or store the results of the script.

1.6.5.4 The Mean script.

This script allow you to calculate the mean value over all the simulation for a paramater already
filtered. Use it as follow:

mean.sh filtered_file
or

mean.sh filtered_file > mean_file

depending on the way you want to print or store the results of the script in a file.

1.6.5.5 The Sum script.

The sum script calculate the sum of all the values found in a filtered file.

sum.sh filtered_file
or

sum.sh filtered_file > sum_file

20

depending on the way you want to print or store the results of the script in a file.

1.6.5.6 The Last script.

This script allow the user to get the last value of a file already filtered.

last.sh filtered_file
or

last.sh filtered_file > last_file

depending on the way you want to print or store the results of the script.

1.6.5.7 The Count script.

The count script count the number of values in the filtered file and print or store the results
depending on the way you are using it.

count.sh filtered_file
or

count.sh filtered_file > count_file

1.6.5.8 The Countlimit script.

As the count script, this script calculate the number of values contains in the filtered file, but only
if the value is strictly less than the limit chosen. The script print or store the results depending on
the way you are using it.

countlimit.sh filtered_file limit
or

countlimit.sh filtered_file limit > countlimit_file

1.6.5.9 The Numsent script.

This script must be applied on a snap file. It scans the snap file in order to find all the sources used
in your configuration, and calculate the total number of cells generated by your sources. This
number is only available if the source component that you are using support the snap of the cells
sent. You can use the script as follow:

numsent.sh snap_file
or

numsent.sh snap_file > totalsent_file

depending on the way you want to print or store the results of the script.

21

1.6.5.10 The Probe script.

This script is destined to clarify a file already filtered. On some simulations, a big filtered file can
be generated depending on the duration of the simulation. The probe script allow you to remove
some intermediate data in order to plot or print the results in an easier way. Use the probe script
as follow:

probe.sh filtered_file time_interval
or

probe.sh filtered_file time_interval > new_filtered_file

Sample from the filtered file will be taken every time_interval. This parameter is the time interval
in ticks you want to jump in order to get the next sample.

22

1.7 Simulator Concepts

1.7.1 Simulation Clock

The simulator is event driven. Components send each other events in order to communicate and
send cells through the network. The software contains an event manager which provides a
general facility to schedule and send or "fire" an event. An event queue is maintained in which
events are kept sorted by time. To fire an event, the first event in the queue is removed, the
global time is set to the time of that event and any action scheduled to take place is undertaken.
Events can be scheduled at the current time or at any time in the future. Scheduling events for the
past is considered illogical. Events scheduled at the same time are not guaranteed to fire in any
particular order.

Simulator time is maintained by the event manager in units of ticks. The time is maintained as an
unsigned 32-bit value. The simulator time represented by one tick can be changed by software
modification (see section 2.3.4), but not by the simulator user. For the present, a tick represents
10 nanoseconds. With that value, a total of 42 seconds of simulated time is available for one run
of the program.

1.7.2 ATM Switch

The switch is the component that switches or routes cells over several virtual channel links. A
local routing table is provided for each switch. This table contains a route number (that is read
from incoming cell structure and is the equivalent of the cell's virtual channel identifier), a next
link entry, and a next switch/next B-TE entry. Let's consider a cell arriving at the switch from a
physical link. At the next switching slot time, after some delay (set by user), the switch looks in
its local routing table to determine which outgoing link it should redirect the cell to. At this point,
if the link has an empty slot available, the switch puts the cell on the link. If a link slot is not
available, the cell awaits transmission in one of the priority queues, namely, the CBR/VBR queue,
the ABR queue or the UBR queue, depending on the type of service provided by this virtual
channel. Cells in the CBR/VBR queue have priority over cells in the ABR queue, i.e., it is only
when the CBR/VBR queue is empty that the ABR traffic is sent, and cells in the ABR queue have
priority over cells in the UBR queue. If either queue exceeds a High Threshold value set by the
user, a congestion flag for that port is set to True. The three queues must be below a Low
Threshold value for the congestion flag to be reset to False. The Output Queue Size (set by the
user) determines the available buffer space for each type of queue (CBR/VBR, ABR, or UBR). If
any queue exceeds the set limit, cells are dropped and this is recorded as a percentage of the total
number of cells received by the switch. Also, there is a per port cell drop parameter recorded for
each queue. Several switch flow control mechanisms for ABR, and UBR buffer management
schemes in relation to TCP/IP are available.

23

1.7.3 Broadband Terminal Equipment (B-TE)

The B-TE component simulates a Broadband ISDN node, e.g., a host computer, workstation, etc.
A B-TE has one or more ATM Applications at the user side and a physical link on the network
side. Cells received from the Application side are forwarded to the physical link. If no slot is
available for immediate transmission a cell queued in one of three queues, a VBR/CBR queue, an
ABR queue, or a UBR queue. The user can specify the maximum output queue size; if either
queue exceeds this limit cells will be dropped. The parameters that can be monitored for a B-TE
are the number of cells in an output queue and the number of cells dropped at each queue. Also,
the total number of cells received from the network may be monitored. The BTE implements rate-
based flow control algorithm for ABR connections. In this case, the cells are enqueued in a special
queue (called Input Queue) to control their transmission on the network.

1.7.4 Hybrid Fiber Coax (HFC) network.

This component simulates a broadband residential Hybrid Fiber Coax network with a single trunk
topology. Although the component represents an entire network rather than a single node, it
shares some of the functions used in the BTE module (rate-based mechanisms). Each source
attached to the HFC module represents one station on the HFC network. Note that the user
MUST link an ATM switch to the HFC module and all routes must follow a path similar to this:
Connection->HFC->Link->ATM switch->(any Link)…The HFC module has the following
functionalities:

- The rate-based behavior of each ABR source. Like the BTE, it uses one Input Queue
per source to store incoming ABR cells in order to regulate their transmission rate on
the network.

- A MAC layer for each station. We assume ranging and intialization procedures are
already done. For each station, the Middle Queue store cells to be transmitted on the
shared medium. ABR cells move from their Input Queue to their Middle Queue at
their ACR rate, whereas VBR/UBR cells are directly put on the Middle Queue.

- A main HFC branch, divided into two channels, namely the upstream and downstream
channels.

- A Headend Controller (HC) unit at the end of the branch controls the traffic on the
channels and forwards cells to the ATM link.

More details about the MAC layer protocols simulated and the traffic control by the HC are given
in Appendix A.

1.7.5 ATM Applications

The ATM application at the end-point of a link is a traffic generator. The traffic source emulated
by this component may be a constant bit rate (CBR) source or a variable bit rate (VBR) source.
Either source type may generated at one of three priority levels: a CBR/VBR level (highest

24

priority) , the Available Bit Rate (ABR) level where cells are sent on the transmission bandwidth
that is available after the higher level traffic has been sent, and the Unspecified Bit Rate (UBR),
the lowest priority traffic. For the CBR/VBR and ABR classes there are three types of traffic
generators:

 1. A constant rate traffic where the user specifies the bit rate. Cells will be generated at the
specified rate for the duration of the simulation.

 2. Variable Bit Rate - Poisson. This type of traffic has an ON-OFF source. Both the burst
period (ON) and the silence period (OFF) are drawn from an exponential distribution.
The user specifies the mean burst length, the mean interval between bursts, and the bit rate
at which cells are generated during the ON period.

 3. Variable Bit Rate - Batch. For this traffic source the user specifies the mean number of
cells generated during a burst and the mean interval between bursts.

For all of the traffic types, the user specifies the start time and the number of megabits to be sent.

Another ATM Application type that can be simulated is a TCP/IP application. This application
can be used with either the ABR or UBR service. Two other ATM applications, the MPEG and
self-similar traffic applications, exist only on the VBR service in this version of the simulator. See
Appendix A for a list of input and output parameters.

1.7.6 Link Components

This component simulates the physical medium (copper wire or optical fiber) on which cells are
transmitted. The user may choose the link speed from a list of several different standard rates.
The user also specifies the length of the link. The output parameter reported by the simulator is
link utilization in terms of bit rate (Mbits/s). The measurement of link rate is averaged over a
period of 10 cells.

25

2 Programmer's Guide

2.1 Objectives and Overview

This part of the document briefly describes the ATM/HFC Network Simulator Software and the
procedures necessary to make user modifications, such as the creation of new components or to
change the behavior of existing components. It is assumed that the reader is familiar with C
Language programming techniques, conventions, and notations, and has the source code of the
ATM/HFC Network Simulator available for reference.

The simulator can simulate anything that can be modeled by a network of components that send
messages to one another. The components schedule events for one another to cause things to
happen. The model being simulated and the action of the components is entirely determined by
the code controlling the components, not by the framework of the simulator. The person who
implements the components can decide how they will go about having components send messages
to one another; the simulator framework only provides the means to schedule events and to
communicate with the user.

The simulator program includes a graphical user interface which provides the user with a means to
display the topology of the network, define the parameters and connectivity of the network, log
data, and to save and load the network configuration. In addition to the user interface, the
simulator has an event manager, I/O routines, and various tools that can be used to build
components.

26

2.2 Components

The component is the basic building block of the simulator. There are different classes of
components; examples are switches, physical links, terminal equipment, and ATM applications.
Some classes allow different types within the class in order to accommodate the simulation of a
variety of implementations. For example, an ATM application may generate traffic at a constant
bit rate, or a variable bit rate that is governed by some particular distribution function.
Every component consists of an action routine and a data structure. All components of the same
type share the same action routine; this routine is called for each event that happens to a
component. Each instance of a component has its own data structure which is used to store
information that characterizes the component plus some standard information required by the
simulator for every component.

2.2.1 Classes and Types

Every component has a class and a type. A particular class of component may contain several
different types of components. The following are the different classes of components currently
defined and, in parentheses, the way the names appear in the source file comptypes.h:

· Links (LINK_CLASS)

· ATM Switches (SWITCH_CLASS)

· Broadband Terminal Equipment (BTE_CLASS)

· ATM Applications (CONNECTION_CLASS)

For now, the Link, Switch, and B-TE classes contain only one type each. Respectively, they are
(as defined in comptypes.c and comptypes.h):

· Physical Link (ATMLINK)

· ATM Switch (SWITCH)

The B-TE class contains, however, the two following types:

. Rate-based B-TE (B-TE)

. Hybrid Fiber-Coax network (HFC)

Note that the HFC component belongs to the same class of the BTE due to functionalities (rate-
based mechanisms) and properties (location between ATM applications and physical links) it
shares with the BTE.

27

The ATM Applications class contains many types; these are defined as follows:

· Constant Bit Rate (CBRCONNECTION)

· Variable Bit Rate - Poisson (VBRCONNECTION)

· Variable Bit Rate - Batch (BATCHCONNECTION)

· Variable Bit Rate – Constant Batch (CBATCHCONNECTION)

· Available Bit Rate - Constant (ABRCONNECTION1)

· Available Bit Rate - Poisson (ABRCONNECTION2)

· Available Bit Rate - Batch (ABRCONNECTION3)

. Available Bit Rate – Self-Sim (SSCONNECTION)

· Unspecified Bit Rate - TCP/IP (TCPCONNECTION)

. Available Bit Rate – TCP/IP (ATCPCONNECTION)

. Variable Bit Rate – MPEG (MPEGCONNECTION)

. Variable Bit Rate – MPEG GGBAR (GGBARCONNECTION)

When creating a new type of component, comptypes.c and comptypes.h must be modified to
contain a new constant for the new component type, and a new entry must be made in the
comp_types[] array.

2.2.2 Component Data Structures

Each instance of a component has a data structure that is used to store any information needed by
the component, as well as standard information needed by the simulator for every component.
Component structures are kept in a list; the order of the list depends on the order of creation of
the component. Each different type of component has its own structure which is defined in the
header (.h) file for that type, but the beginning of every component structure is the same. This
generic structure is as follows (actual listing can be found in component.h):

typedef struct _Component {
 struct _Component *co_next, *co_prev; /* Links to other components in list */
 short co_class; /* Class of component */
 short co_type; /* Type of component */
 char co_name[40] /* Name to appear on screen */
 PFP co_action /* Main function, called with each event */
 COMP_OBJECT co_picture; /* Graphics object to be displayed on screen */

28

 list *co_neighbors; /* Points to a list of neighbors of this component */

/* Parameters -- data that will be displayed on the screen */

 short co_menu_up; /* If true, then text window is up */
 queue *co_params; /* Variable-length queue of parameters */

/* Any other info that a component needs to keep will vary */

 } Component;

2.2.3 Parameters

Any information about a component that needs to be displayed on the screen, logged to disk, or
saved in a configuration file must be stored in a parameter. A parameter is a data structure that
(besides storing a value) stores information needed to display, save, or load the parameter. The
information stored includes pointers to functions to convert the parameter to and from a string;
the name of the parameter; and flags describing how to save and/or display the parameter. The
Param structure is defined in component.h; for the readers convenience it is listed below.

typedef struct _Param {
 struct _Param *p_next, *p_prev; /* So that these can be put in a queue */
 char p_name[40]; /* Name of this parameter for display */
 PFD p_calc_val; /* Computes a value to be displayed in a meter */
 PFP p_make_text; /* Makes a string containing the current value */
 PFP p_make_short_text; /* As above, but only the value, no text */
 PFI p_input; /* Routine to input this parameter */
 GRAF_OBJECT p_my_picture; /* The graphics object to display this */
 Int p_display_type; /* Type of meter for display */
 int p_log; /* Integer associated with this param for logging */
 double p_scale; /* Scale to use for meters */
 struct { /* Structure to store data in */
 int i; /* Commonly used value types */
 int vpi; /* Only need to use one of these types */
 double d;
 caddr_t p;
 struct { /* Structure describing parameter value (if needed) */

caddr_t p;
int vpi;
int i;

 } pi;
 tick_t sample; /* Keeps track of time parameter value was updated */
 } u; /* This structure is used and maintained by the simulator */
 } Param

A component may have as many parameters as needed. They are stored in a doubly linked list
pointed to by co_params. The I/O routines iterate through this list to display the parameters as
described below. The action routine may reference the parameters any way it wants. In addition
to the linked parameter list, there is a set of pointers in the component that point to the individual
parameters. As the parameter is initialized and added to the list, the pointer is set to point to it.

29

Then the action routine can use a named variable to refer to the parameter rather than trying to
search through the list.

The actual value of a parameter is stored in a structure at the end of the Param structure.
Currently, the structure has room for an integer, a double, or a pointer. A new value type can be
added just by changing the definition of the structure. This value is not used by any part of the
simulator except for the action routine of the component that contains the parameter. The I/O
routines read and change the value only by calling one of the functions pointed to in the parameter
structure.

A parameter is initialized by calling param_init() with arguments containing values for various
fields in the parameter structure. The values for the arguments calc_val, make_text,
make_short_text, and input are pointers to predefined functions in subr.c, which consists of a set
of routines that calculate the parameter's value, display it, etc., for a variety of types of the
parameter, such as int, double, boolean and more. The following is a listing of the param_init()
routine.

Param *
param_init(c, name, calc_val, make_text, make_short_text, input,
 display_type, flags, scale)
 Component *c; /* Pointer to the component */
 char *name; /* Name of parameter */
 PFD calc_val; /* Function to update the parameter value for display */
 PFP make_text,make_short_text; /* Function to convert value to a string */
 PFI input; /* Function to read input string and convert into param value. */
 int display_type; /* Type of display: bar graph, histogram, etc. */
 int flags; /* How to display -- look below for details */
 double scale; /* Scale for meter */

The names of arguments listed below correspond to fields in the parameter, which in most cases
have the same name, beginning with the prefix p_. For example, the argument calc_val is
for p_calc_val, flags is for p_flags, etc.

p_calc_val This element points to a routine that is called to produce a value to be
displayed in a meter. Each unit of this number represents one division on
the scale of the displayed meter. For example, the function for a cell queue
length parameter might return the length of the queue divided by ten, so
that each division of the displayed meter represents ten cells in the queue.

p_make_text Used to generate text for parameter display, this element returns a pointer
to a string. The string is expected to contain some meaningful, human-
readable representation (i.e., with some sort of label) of the value of the
parameter.

p_make_short_text Also returns a pointer to a string, but the string contains only the value of
the parameter (no labels). Used primarily for logging data to disk.

30

p_input Points to a function that will read an input string from either the keyboard
or from a file. This routine will convert the string to an appropriate value
and store it into the parameter. This is used for the initialization of values
that affect the operation of the component, and that can vary from one
instance of the component to another. For example, hosts have a
"Processing delay" parameter that is the time needed to process a cell.

p_display_type This element sets the default meter type for the display of parameter values.
The constants are defined in simx.h; currently the possibilities are
BAR_GRAPH, BINARY, LOG, TIME_HISTORY,
TIME_HISTORY_D, DELTA or HISTOGRAM. Obviously, if the
CanHaveMeterMask flag is not set, no value needs to be put into this
element.

p_flags Contains flags that control the display. The constants (masks) are defined
in the file simx.h with the following names:

InputMask When set, the simulator will call the function pointed to by
p_input. Parameters that have this flag set will also have their values
saved (using the p_make_short_text routine) when the configuration of
the simulator is saved.

CanHaveMeterMask When set, the parameter can be displayed in a
graphic "meter" using values pointed to by p_calc_val.

DisplayMask When this flag is set, the parameter will be displayed in the
information window ("infowindow") that appears when the user clicks on a
component. The text displayed is pointed to by p_make_text.

CanHaveLogMask If the parameter has this flag set, the user can cause
the parameter values to be written to a file on the disk as the values
change.

To update screen displays (either meters or infowindows) or to cause data
to be logged to a disk file, the action routine for the parameter must call
log_param(c,p) every time the value changes. The variables c and p are
pointers to the component and parameter, respectively. (The log_param()
function is found in the log.c file.)

p_scale This is a scaling factor for the meter. If p_scale > 0, the value returned by
p_calc_val is multiplied by this number. The scale factor is disabled
(multiplier = 1) if p_scale is zero.

31

2.2.4 Neighbors

Neighbors are stored as a list of Neighbor structures; this list is pointed to from component
structures. Each neighbor structure contains a pointer to the neighboring component, a queue in
which to store cells (if needed), a busy flag, and a pointer to a parameter to display anything that
might be associated with the neighbor. The definition of the Neighbor structure is listed below; it
can be also be found in component.h.

typedef struct_Neighbor {
 struct_Neighbor

*n_next, *n_prev; /* Links for the list */
 Component *n_c; /* Pointer to the neighboring component */
 /* The next values will vary from network to network, and from component to component.

For example, only switches and hosts have queues in the current application. */
 queue *n_pq; /* Queue of packets to be sent */
 short n_busy; /* True if neighbor is busy */
 double n_prev_sample; /* Previous sample time used for utilization calculation in links */
 Param *n_p; /* Index of parameter to display whatever */

Param *n_pp; /* Index of parameter to display whatever */
Param *n_ppp;

 list *n_vpi /* List of parameters related to vpi number of the different routes */
 caddr_t n_data; /* If a component wants to store arbitrary data for each neighbor, put

 it here. */
} Neighbor;

When a neighbor is added, the component must create and initialize a neighbor structure, and put
it on its neighbors list. If there is some piece of information associated with the neighbor that
must be displayed, a parameter structure must be allocated, initialized appropriately, and added to
the queue of parameters in the component structure. See the function b_neighbor() in bte.c for
an example of usage. The following is defined in subr.c and can be used when writing a new
routine to give it the capability to add neighbors.

Neighbor *
add_neighbor(c, neighc, max_num_neighbors, num_classes)
 Component *c; /* Comp to add neighbor to */
 Component *neighc; /* New neighbor */
 int max_num_neighbors; /* Max number neighbors allowed (0=infinite) */
 int num_classes; /* How many classes follow */

Similarly, the following is also defined in subr.c and can be used to provide a routine with the
capability to remove neighbors.

remove_neighbor(c, neighc)
 Component *c, *neighc;

32

2.2.5 Relationship of Data Structures

 As stated in the preceding sections, the component data structure contains the doubly-linked
parameter list and a set of pointers that point to the individual components. When a neighbor is
added, the component creates a neighbor structure and puts it on its neighbors list. Each neighbor
structure then contains a pointer to a neighboring component. When all of the components in the
network are created and linked together then "list_of_components" will be completed and will
include all elements in a network topology, e.g., link1, bb1, switch2, ABR2, etc.,

2.2.6 Action Routines

As previously stated, every component contains an action routine. This routine is called for each
event that happens to a component. (Events are explained in a later section of this document.)
The action routine is called (usually not by the event manager, but rather by the action routine that
scheduled the event), to execute a set of commands that will give the component its unique
behavior. The writer of a component can create components with any sort of behavior.
Components can send any type of events to one another. However, in order to allow the
simulator to do various housekeeping functions, every action routine must respond to a minimum,
fixed set of commands. A synopsis of the action routine and the commands it is expected to
perform is as follows:

/* All of these include files may not be needed, but they are the
 common ones. */
#include <sys/types.h>
#include <stdio.h>
#include "sim.h"
#include "log.h"
#include "q.h"
#include "list.h"
#include "simx.h" /* X window stuff & also component.h */
#include "comptypes.h" /* The types of components */
#include "cell.h"
#include "eventdefs.h" /* Types of events & commands defined here */
#include "event.h"
#include "this_component_type.h"

/* ------ Definition of some Local Events, if needed -------- */
caddr_t
action(src, comp, type, cell, vpi, arg)
Component *src; /* Component that sent this event. Null for cmds. */
Component *comp; /* Component to which this event/cmd applies. */
int type; /* Type of event or cmd that is happening. */
Cell *cell; /* A cell. */
VPI *vpi; /* VPI number of data cell wherever it is applicable. */
caddr_t arg; /* Whatever */
{

/* Usually a large switch statement on the event type */
}

An example of the "large switch statement" referred to in the last comment line above is shown in
the code below which is extracted from the action routine for BTE (bte.c). The switch statement

33

contains a "case" for every type of event to which the component is expected to respond. These
include the events for component creation, routing, and initialization, as well as the basic function
of giving the component the ability to pass cells. The example demonstrates the usual way to
transmit a cell, that is, to pass it with an EV_RECEIVE event to another component. The
transmitting component calls ev_enqueue (EV_RECEIVE, src, dest, time, rtn, ce, arg) which
has as one of its parameters a pointer to the cell, ce. When the resulting event, after being queued
in the event list, gets "fired," the action routine of the destination component is called and the
pointer to the cell structure is passed as an argument in that call. The destination action routine
executes the portion of the code that describes the behavior of the destination component when it
receives a cell. The above is still true even when no cells are passed and the component is merely
sending events to itself of various housekeeping tasks.

switch (type) {
case EV_RESET: /* Case for receiving the command EV_RESET*/

result = b_reset(b); /* Call the routine "b_reset" */
break;

case LINK_SLOT: /* Case for receiving the private event LINK_SLOT */
result = b_ready(b, src); /* Call the routine "b_ready" */
break;

case EV_CREATE: /* Case for receiving the command EV_CREATE */
result = b_create((char*)arg); /* Call the routine "b_create" */
break;

case EV_DEL: /* NOTE */
result = b_delete(b) /* This pattern of calling a routine for each */
break; /* case of an event received continues for all */

case EV_NEIGHBOR: /* of the switch statement. When a routine is */
result = b_neighbor(b, (Component *)arg);
break; /* called, the portion of the code that defines */

case EV_UNEIGHBOR: /* the behavior of the BTE for that event is executed */
result = b_uneighbor(b, (Component *)arg);
break;

case EV_LEGAL_NEXT_HOPS:
result = b_hops(b, (list *)arg);
break;

case EV_MAKE_ROUTE:
#ifdef DEBUG

dbg_write(debug_log, DBG_INFO, (Component *)b,
"processed EV_MAKE_ROUTE event");

#endif
result = b_route(b, (list *)arg, vpi);
break;

case EV_START:
#ifdef DEBUG

dbg_write(debug_log, DBG_info, (Component *)b,
"started (a no-op)");

#endif
break;

case EV_RECEIVE:
result = b_receive(b, src, cell);
break;

case EV_READY:
result = b_ready(b, src);
break;

default:

34

break;
} /* end switch statement */

2.3 Events

The simulator is event driven. The event queue is a queue of events kept sorted by time. To fire
an event, the first event in the queue is removed, the global time is set to the time of that event,
and the action routine pointed to in the event structure is called. When the user clicks on the
START button, each component is sent a reset command followed by a start command, then the
simulator enters a loop. The loop processes any X events, updates the display, then fires all the
events at the head of the event queue that have the same time.

Currently, there are three classes of events: commands, regular events, and private events.
Commands and regular events are defined in eventdefs.h. Commands are those events which
perform some action such as reset, start, create, etc., while regular events are those which are
concerned with the actual running of the simulation, e.g., receive, ready, busy. Private events are
events that components send to themselves, therefore they are defined in the source files of the
components, rather than in a central location.

2.3.1 Command Set (EV_CLASS_CMD)

All components must accept the following commands. The component need not actually use the
command but should respond in an orderly and predictable way when the command is received.
When used in an action routine, the action routine should return NULL if an error occurs during a
command, and something that is non-NULL otherwise.

EV_CREATE Create a new instance of a component. The comp variable must be NULL, arg
points to the name of the new component, and the action routine returns either a pointer to a new
data structure or NULL for error. The action routine must allocate the correct amount of
memory for the new component's data structure, create its (empty) neighbor list, create the queue
of parameters, create any cell queues, etc. This command must also initialize all the private data
in the component as necessary. The only information that need not be initialized are any
parameters with the InputMask flag set. They will be initialized by the simulator as specified in
the Parameters section of this document.

EV_DEL Delete an instance of component. This command will detach the component from any
neighbors it has, free any storage associated with the component, including its data structure, and
perform any other necessary clean-up.

EV_RESET Reset the state of the component and clear out any cell queues, forget about any
cells being processed, etc. When the START button of the simulator is hit, EV_RESET is called
first for all components and then EV_START.

35

EV_START Start operations for example, start a cell generator sending cells. For many
components, this will be a no-op.

EV_NEIGHBOR Attach another component as a new neighbor. The component to be made a
neighbor is pointed to by arg. A component should only allow legal neighbors. For example, an
ATM Application will not allow an ATM Switch to be attached as a neighbor the ATM
Application can only be connected to a B-TE (Broadband-ISDN Terminal).

EV_UNEIGHBOR Remove the neighbor pointed to by arg from the list of neighbors, and free
any memory used to keep track of the neighbor (such as a cell queue and the neighbor structure
itself). If there is a parameter associated with this neighbor, it must be removed from the queue of
parameters and freed. This is a no-op if the component is not a neighbor.

EV_LEGAL_NEXT_HOPS arg points to an l list (see the section 2.5.1, Lists and Queues, for
an explanation of an l list) that contains a virtual channel connection being constructed (not
including comp). The list contains only the components in the path so far. comp is the
component being considered as the next step in the connection. The action routine must return a
new list of the components that are legal in the path after comp. A NULL list indicates an error,
an empty list means that comp is not legal for the virtual channel connection so far, that there is
no legal next virtual channel link, or that comp is the end of the channel. The caller will lq_delete
the returned list after it is done with it.

This command is used by the X I/O routines to allow the user to build only legal connections.
The X routines know that a component of type ATM Application must be at the beginning of a
virtual channel. When the user picks an ATM Application, the X routine calls that component
action routine with this command to find out which components are allowed to be next on the
path. As the user picks more components, the process continues until he/she picks another ATM
Application to end the path.

EV_MAKE_ROUTE This command is a no-op for some components like physical links. ATM
Applications and B-TEs use it to store the route number in the VCI field of their component
structures. The ATM Switch component creates a local routing table and stores the previous and
next component and the VCI number of the route.

2.3.2 Regular Events (EV_CLASS_EVENT)

The following events are those which are directly involved in the running of the simulation. It is
necessary to have a set of regular events that are understood by all components in order to
facilitate global communication within the simulator. Additional regular events may be defined if
needed. To define a new event, just put a new #define statement into the eventdefs.h file.

EV_RECEIVE Receive a cell event.

EV_READY Component ready signal.

36

EV_BUSY Component busy signal.

2.3.3 Private Events

Private events are events that have only local significance, i.e., they are defined within action
routine for use by that routine only. Private events are the means by which an action routine can
send events to itself.

2.3.4 The Event Manager

Components send each other events in order to communicate and send cells through the network.
The event manager provides a general facility to schedule and send events. The primary functions
of this facility are the maintenance of simulator time and the control of event queueing.

Simulator time is maintained by the event manager in units of ticks. Currently, ONE tick is 10
nanoseconds. Once a tick is defined in microseconds or in nanoseconds it is easy to convert this
value to seconds, milliseconds, etc. To convert from ticks to microseconds, use the
TICKS_TO_USECS macro defined in sim.h. To convert from microseconds to ticks, use
USECS_TO_TICKS. In sim.h there is a typedef called tick_t which has the tick definition in
microseconds. For the current definition of 10 nanoseconds, the definition line is #define
USECS_PER_TICK 0.01. Analogous macros exist for nanoseconds and full seconds
(represented as doubles). The time is maintained as a double and its current value (in ticks) is
returned by the function ev_now().

The only other event-related function that a component needs to know about is ev_enqueue().
This function creates a new event and places it in the event queue to be fired at the proper time.
ev_enqueue() returns a pointer to the newly created event. The arguments correspond to the
ones passed to the action routine that will receive the event. The syntax of ev_enqueue() is as
follows:

Event *
ev_enqueue(type, src, dest, time, rtn, ce, vpi, arg)
 int type; /* Type of event -- e.g EV_RECEIVE,EV_CREATE etc */
 Component *src; /* Component which issues this command */
 Component *dest; /* Component on which command applies */
 tick_t time; /* Time at which the event should be scheduled */
 PFP rtn; /* The action routine of the destination component */
 Cell *ce; /* Pointer to a cell*/
 VPI vpi; /* Route number if a cell is passed */
 caddr_t arg; /* Can be anything */

Note: PFP is a Pointer to a Function that returns a Pointer, and is defined in component.h; rtn
is therefore the action routine to call when the event is fired. The arguments ce and arg are
optional they may be replaced by NULL if no cell is being sent and no information needs to be
passed.

37

You may schedule events at the current time or at any future time. (Scheduling events for the
past is considered illogical.) There is no control over the order, e.g. FIFO or LIFO, of execution
of events that are scheduled to fire at the same time. Hence, events scheduled at the same time
are not guaranteed to fire in any particular order.

There also exists a function to unschedule events, i.e., remove events from the queue. Selection
of events to be removed may be done according to source and destination components and type,
or according to a particular event expiration time.

void
ev_dequeue_by_comp_and_type(src, dest, type)
 Component *src, *dest;
 Evtype type;
{
 /* Remove from the queue any subset of events with particular
 source and destination components and type.
 A NULL source or destination matches all components. */
}

void
ev_dequeue_by_time(t)
 tick_t t;
{
 /* Remove from the queue all events due to expire at a particular time t. */
}

Again, it should be noted that the designer of components for the simulator is free to use
whatever convention he/she desires for communication between components. The simulator just
provides the ability to send events what the events mean is up to you. See the section on
Components for the conventions now used.

38

2.4 ATM Network-Related Issues

2.4.1 ATM Cell Definition

Since the simulator is designed to simulate ATM networks, a cell data type has been defined. A
cell constitutes a very important data type in the simulator because it contains the route number
needed for routing by ATM switches. A cell is a data structure, defined in the file cell.h. The
structure may contain different elements to tailor the cell for different applications, but must
always contain the route number. For switching or routing purposes, an ATM switch reads off
the route number found in the cell, then looks up its routing table to forward the cell via the next
link to the next switch (or to the next B-TE if at the end of a connection).

The cell data structure is not constrained to be any particular format. Of course, if you are only
modifying some existing components you should not remove any elements from the structure, but
if you are writing a set of components from scratch, a cell can contain anything. To change the
contents of a cell, just change the definition in cell.h and recompile. The following is a simple
example of a cell structure:

typedef struct_Cell { /* Define cell structure */
struct _Cell *cell_next; /* Pointer for use by the queue the cells will be stored in */
VPI vpi; /* Route number (virtual path identifier) */
PTI pti; /* Payload type identifier */
struct cell_payload { /* Structure for the payload portion */
Packet *tcp_ip_info; /* The payload will */
AAL5_Trailer len; /* be any one of */
RM rm; /* these three types */
} u; /* Structure */
} Cell

An event may include a cell, and most simulation events (as opposed to housekeeping commands)
do so. Normally, cells are transmitted from one component to another by having the transmitting
component call a routine (ev_enqueue) which creates a new event and places it in a queue to be
fired at the appropriate time. The receiving component must be able to process the event in order
to receive the cell. This process is explained in more detail in the Events section of this
document.

A module to handle the allocation and deallocation of cells is provided in the package. The
module keeps track of all the cells, so that when the simulator is reset all cells can be freed in one
step. cell_alloc() returns a new cell, cell_free() frees a cell, and cell_free_all() frees all cells.

The simulator obeys the convention that all components must dispose of all cells that they receive
in one way or another. In other words, a component that receives a cell must either call
cell_free() on the cell or send the cell to someone else, but not both. Furthermore, a component
that sends a cell to someone else should no longer refer to that cell. If it wants to save the cell for
some reason (if the cell might be retransmitted, for example), the component must call cell_alloc()
and make a copy of the cell.

39

2.4.2 Setting Up the ATM Virtual Channel

The simulator implements static connections. An ATM channel begins and ends with a
component of the type ATM APPLICATION. A particular Application can have a route to only
one other Application. When the user clicks on an ATM Application that is at the other end of
the virtual channel (this is done while making the route), the routing table at each ATM Switch is
updated and information about the next link and the next ATM Switch found on the path is
stored.

The file route.c contains a couple of functions to manipulate connections. To determine where to
route a cell next, the function

Route_info *
rt_lookup(some arguments)
/* ..
*/

can be called from an ATM Switch action routine; this should return the next link and next switch.
The routing process starts when io() within IO.c calls make_route_event_handler(bevent)
which is found in routes.c. The routing process involves creating a route_list, which is a list of
components. When finally the user clicks on a component of type ATM APPLICATION which
is at the end of a route, all switches found in route_list call their respective action_routines to
update their local routing modules.

40

2.5 Tools

2.5.1 Lists and Queues

Lists (doubly-linked lists) and queues (singly-linked lists) are used extensively throughout the
simulator. Lists and queues contain variables to store the current, maximum and minimum length
of the list/queue. A list has the following structure:

typedef struct list { /* list header */
 l_elt *l_head; /* first element in list */
 l_elt *l_tail; /* last element in list */
 int l_len; /* number of elements in queue */
 int l_max; /* maximum length */
 int l_min; /* minimum length */
} list;

An element in the list, l_elt, has the following structure:

typedef struct l_elt { /* list element */
 struct l_elt *le_next, *le_prev; /* Links */
 caddr_t le_data;
} l_elt;

Because both lists that were efficient and lists that were flexible were needed, there are two kinds
of lists. One kind requires that the item being placed on the list contain the pointers needed to
link it into the list. This means that no extra memory is needed to put the new item into the list.
However, this also means that the item being placed on the list must include room for one or two
pointers at the beginning, and it can only be on one list at a time. Since the item itself contains the
pointers, the pointers for the first list will be overwritten when it is placed on a second list. This
type of list we have chosen to call an le list (or a qe queue). The le stands for list element, and it
means that the items being placed in the list already have the pointers for a list element built in.
As an example, the global list of components is an le list and the component structure contains
two pointers (the structure elements co_next and co_prev).

The other kind of list allocates a small area of memory in which to store the pointers every time a
new element is added to a list. This means that adding and removing items from the list is slower,
but any type of data structure (even ones that don't have pointers at the beginning) can be placed
on any number of lists any number of times. This type of list is called an l list (or a q queue).

Functions (and macros) that start with le_ and qe_ are the faster routines, and the ones that start
with l_ and q_ are the more general ones. (With one exception: l_create() serves both types of
list.) In the arguments to the functions, l and q indicate a list and a queue, respectively, and any
other arguments are elements on which to operate. Here is a summary of the available list and
queue commands:

l_create() Create a new, empty list and return it. Returns NULL on error.

41

l{e}_addh(l, elt) Add elt to the head of the list l. The le version does not return
anything (it is a macro); the l type returns NULL on error (couldn't
allocate memory to hold the pointers), non-NULL otherwise.

l{e}_addt(l, elt) As above, but add elt to the tail of the list l.

l{e}_remh(l) Remove the item at the head of the list and return it.

l{e}_remt(l) Remove the item at the tail of the list and return it.

l{e}_adda(l, prev, new) Add new to the list after prev, which must already be in the list.
Again, the le is a macro that doesn't return anything, and l_adda()
returns NULL on error.

l{e}_del(l, elt) Delete elt from the list l.

l_find(l, elt) Search for elt in the list. Returns a pointer to the l_elt that contains
elt. An l_elt is the structure that contains the pointers used to add
something to an l list. See list.h for the definition.

lq_delete(l) This function works for both lists and queues. It also works for
both flavors of each, although the effect is slightly different. For le
lists, lq_delete() frees the list and the elements that were stored in
the list. For l lists, the function does not free the items stored in the
list, just the list and associated extra garbage.

lq_clear(l) As with lq_delete(), this function works for both lists and queues.
This function removes all the items from a list or queue. If it is a le
list or qe queue, the memory for the items is also freed, otherwise
they are merely removed from the list or queue.

l_obliterate() This function is only for l lists. It frees the list, the l_elts used by
the list, and the data blocks (which must have been allocated using
malloc() or calloc()).

The following functions perform the same actions on queues as the similarly-named functions for
lists:

q_create()
q{e}_addh(q, elt)
q{e}_addt(q, elt)
q{e}_adda(q, prev, new)

42

q{e}_del(q, elt)
q_find(q, elt)

Finally, queues have the following operations of their own:

q{e}_deq(q) Removes and returns the item at the head of the queue.

qe_find(q, qe) Looks for the item qe in the queue. Returns qe if found, NULL
otherwise.

qe_dela(q, prev) Removes the element after prev in q. This operation is O(1), unlike
q{e}_del() which is O(n).

2.5.2 Other Tools

In addition to lists and queues, the simulator includes a hash table module and a module to control
allocation of fixed-size memory blocks. The functions for these modules are contained in hash.c,
hash.h, mempool.c, and mempool.h.

The hash table is fairly straight-forward. Its functions are described in comments at the beginning
of hash.c.

The "mempool" was originally written to try to speed up the simulator by avoiding calloc() and
free() calls. However, no real speed advantage was noted. This module is still useful though,
because it makes it possible to free all allocated memory chunks with one call. Cells and events
are allocated using this module, and of course anyone else may use it as well. The functions of
the mempool module are relatively easy to understand and are described at the beginning of
mempool.c.

2.5.3 Debugging

There are several ways to do debugging. There are two ways that are convenient to use with the
simulator:

 · Include additional code for debugging which is enclosed between #ifdef DEBUG
#endif DEBUG, define the flag DEBUG for the C-compiler, and set the debug-level by
dbg_set_level(DBG_ERR) or dbg_set_level(DBG_INFO) to trace certain actions.

 · The arrival of cells at a certain component can be recorded by calling log_a_cell(c, p, ce)
defined in log.c. In order to properly print the contents of a cell, it might be necessary to
modify this function according to the type of cell that is displayed.

43

2.6 Creating New Versions

To create a new version of the simulator by adding your own component to it, all you need is
libsim.a, any simulator header files that your new component needs, comptypes.c, and the source
to your component.

In brief, you must take the following steps to create a new type of component. (It is assumed that
you have already built the simulator library libsim.a and the executable with the distributed
components to make sure that it all works.)

 1. Modify comptypes.c and comptypes.h to contain a new constant for the new type of
component, a new entry in the component_types[] array, and a declaration of the action
routine.

 2. Create a new component structure, putting it in its own .h file, say newcomp.h. The
easiest way to do this is to look at one of the existing component structures and modify it
as necessary. Be sure to read component.h for a description of the common component
structure that all simulator components must share. This shared part of the structure must
exist and be the same for all components. Parameters and the private part of the structure
can be modified as desired.

 3. Create an action routine for the component. Again, the easiest way to do this is to use the
code from an existing component as a model. Also see the descriptions in this document
of the various commands that an action routine must perform. If the new component will
interact with the components that are already written, it must deal with the events that
they will send it, and it must send them events that they are expecting. Otherwise, it can
act in whatever way it wants.

 4. Add an object picture (or choose one from among the object pictures provided). When a
component is created the routine create_component (found in edit.c) is called from IO.c.

This routine, given the type of component to be created, will call the appropriate routine to
draw the component on the screen. To change the shape of the component, one needs to
write the routine that will draw the component (for example, see pop_comp_window in
components.c).

 5. Change the Makefile, to make sure the new components are compiled and linked into the
simulator. For a simple component, it should suffice to add newcomp.o to the
ADDLOBJS macro in the makefile. In fact, the following command line should be able
to build a new simulator without modifying the Makefile:

make ADDLOBJS=newcomp.c custom_sim

If you want dependencies on header files and/or any special rules for making your new
component, you will have to change the makefile.

44

APPENDIX A: Parameter Information

The purpose of this appendix is to present detailed information about ATM and HFC system
parameters that the user is required to define as inputs or monitor as simulator outputs.

In all the information windows, name appears on the first line. The user may choose any name
desired for the component, but it is helpful if the name has some relation to the component type,
e.g., link1, bte2, etc. As soon as the name is entered it will appear on the first line of the
information window and inside the component symbol.

The figures in this appendix designate output parameters by shading; this shading does not appear
on the actual screen. It is not possible to enter information on the lines that are designated for
outputs. Similarly, it is not possible to select an input for metering or data logging.

The window that appears when a component is first created does not necessarily have any of the
output parameters that are shown here; these are added automatically when the components are
all linked together in a network.

A.1 ATM Switches

In its current version, the simulator is compiled by default with switch and b-te components
implementing rate-based traffic management algorithms for ABR service, and several buffer
management schemes for UBR. However, a version of the simulator with generic switches can be
obtained by replacing “rbswitch.c(ho)” in the Makefile with “switch.c(ho)” and/or replacing
“rbbte.c(ho)” by “bte.c(ho)” and recompiling. This section describes the parameters of both types
of switches.

When selecting the creation of a SWITCH in the creation menu,
this new window appears. It allows you to select between
several types of switches. The Regular switch can be a rate-
based or a generic switch depending your executable. All of the
information concerning the switches are described in this
section.

Regular SWITCH (RB)

QFC

CB

ABORT

45

A.1.1 Generic Switches

Delay to process a cell. An increment of time
after the arrival of a cell at the switch before the
switch places the cell on the outgoing link.

Slot time. The rate at which cells are switched
from an input port to an output port. The program
calculates the cell slot time from the bit rate entered.
The actual switching of a cell from input port to
output port occurs at the beginning of a slot period.

Output queue size. Available buffer space for a
queue; the same value is used for every queue in the
switch. When a cell is ready for transmission but a
slot on that link is not available it waits in a queue
at that port.

High Threshold, Q congestion flag. If the
number of cells in any queue exceeds this value the
congestion flag is set.

Low Theshold, Q congestion flag. The congestion flag is cleared when the number of cells in all queues fall
below this value.

Logging every n ticks. If n is set to 1, data will be logged for a parameter anytime there is a change in its
value. Potentially, this could occur at every tick. Since this may result in an extremely large data file, it may be
desirable to set n to a larger number. For example, if n = 100, logging will occur only if a change occurred and
100 ticks had gone by since the last logging activity.

Cells Received. Total number of cells received by the switch.

Percent cell drop. Number of cells dropped by the switch as a percentage of the total cells received.

Cells in xBR Q to link n. Cells awaiting transmission in a given priority queue. There are two types of queues
for each port - a CBR/VBR queue and an ABR queue. Cells in the CBR/VBR queue have top priority; a cell from
the ABR queue will be sent only if the CBR/VBR queue is empty.

Cells dropped in xBR Q to link n. Cells dropped at a port when a queue exceeds its maximum size.

Congestion for link n. There is one congestion flag for each port. The flag is set when a queue exceeds its
High Threshold value, cleared when both queues fall below the Low Threshold.

Name:

Delay to process a cell (usec): 0

Slot time (Mbits/sec): 0

Output queue size (cells, -1=inf): 0

High Threshold, Q cong. flag (cells): 0

Low Threshold, Q cong. flag (cells): 0

Logging every (n ticks) (e.g., 1, 100): 0

Cells received: 0

Percent cell drop: 0

Cells in VBR Q to link n: 0

Cells dropped in VBR Q to link n: 0

Cells in ABR Q to link n: 0

Cells dropped in ABR Q to link n: 0

Congestion for link n: FALSE

46

A.1.2 Rate-Based Switches

Buffer Management: EPD (0), FBA (1),
RED (2), FQ (3). The buffer management
algorithm for the UBR service:

0-EPD algorithm
1-Fair Buffer Allocation algorithm
(described in the paper by Goyal and al.3).
2-Random Early Detection (described in
the paper by Elloumi and Affifi4).
3-Fair Queueing Algorithm.

EPD Threshold (Cells). EDP algorithm
threshold used for cell discarding. If the value of the
threshold is equal to the output buffer size, the EPD
discard algorithm is not triggered.

MIN threshold for RED. Minimum threshold
for RED algorithm. When the average queue size in
the output buffer reaches this value, packets are
randomly discarded according to the RED
algorithm.

Linear scale factor Z for FBA. Linear scale
factor for RED algorithm. See reference to FBA
given above for more details.

1 (EFCI), 2 (NIST ER), 3 (EPRCA), 4
(ERICA) 5(PHANTOM) 6(DERA). The
siwtch ABR mechanism.

1-EFCI: the EFCI bit of ATM cells is set to
1 when the ABR output queue is congested
(congestion flag set).
2-NIST ER: switch algorihtm proposed by
Golmie et al.5.
3-EPRCA: Enhanced Proportional Rate-
Control Algorithm proposed by Roberts.6

4- ERICA: Explicit Rate Indication for
Congestion Avoidance7 and 8.

5- PHANTOM9

3 Goyal, R. et al., “UBR+: Improving performance of TCP over ATM UBR service”, Proc. of IEEE ICC’97, Montreal, Canada.
4 Elloumi, O., Affifi, H., “Red Algorithm in ATM Networks”, Proc. of IEEE ATM’97, Lisboa, Portugal.
5 Golmie, N., Chang, Y., Su, D., “NIST ER Switch Mechanism (An Example)”, ATM Forum/95-695.
6 Roberts, L., “Enhanced PRCA (Proportional Rate-control Algorithm)”, ATM Forum/94-0735R1.
7 Kalyanaraman, S. et al., “The ERICA Switch Algorithm for ABR Traffic Management in ATM Networks” Submitted to
IEEE/ACM Transactions and Networking.
8 Jain, R. et al., “ERICA Switch Algorithm: A complete description”, ATM Forum/96-1172, August 1996.

Name:

Delay to process a cell (usec): 0

Slot time (Mbits/sec): 0

Output queue size (cells, -1=inf): 0

High Threshold, Q cong. flag (cells): 5

Low Threshold, Q cong. flag (cells): 5

buf mgmtEPD(0),FBA(1),RED(2),FQ(3)

EPD Threshold (Cells): 0

MIN threshold for RED: 0

Linear scale factor Z for FBA: 0

Logging every (n ticks) (e.g., 1, 100): 0

1 (EFCI), 2 (NIST ER), 3 (EPRCA)
4 (ERICA) 5(PHANTOM) 6(DERA): 2

MACR Additive Increase Rate (Mbits/s):

Target Rate (Mbits/s): 142

Explicit Reduction Factor (ERF): 0.9375

Measurement Interval in cells (N): 100

Congestion Tolerance in cells (tau): 0

VC Separator: 0.875

Average Factor (AV): 0.0625

DQT (Cells): 2000

Major Reduction Factor (MRF): 0.95

Down Pressure Factor (DPF): 0.875

Congestion (True/False): 0

% cell drop

47

6- DERA: Distributed Explicit Rate
Allocation10

The pseudocodes of the NIST ER and EPRCA
schemes can be found at the end of this subsection.

MACR Additive Increase Rate (Mbits/s).
This parameter is used by the NIST ER algorithm
to control the increase of the MACR (see
pseudocode for more details).

Target Rate (Mbits/s). Used only by the NIST
ER algorithm. Usually set to 95 % of the rate of
the outgoing link, it is used for load monitoring.
When the ABR input rate becomes larger than the
Target Rate, the link is consered overloaded.

Explicit Reduction Factor (ERF). Used only
by the EPRCA algorithm. It controls the
proportion of the MACR which may be set in the
ER field of backward RM when the link is
congested (normal congestion).

Measurement Interval in Cells (N).
Measurement Interval of the NIST ER algorithm
between each estimation of the input rate and
update of the state of the output queue.

Congestion tolerance in cells (tau). Used
only by NIST ER algorithm. The state of the
output queue is set to the congested state if more
than <tau> cells arrive during one measurement
interval.

VC Separator. This factor is used for the
EPRCA algorithm to trigger the calculation of
MACR when the link is not congested.

Average Factor (AV). Average factor used in
the NIST ER and EPRCA algorithms in the
calculation of the Mean Allowed Cell Rate
(MACR) – the exponential weighted average of
the CCR values read from each forward RM cells.

DQT (Cells). Very Congested Queue Threshold
used in EPRCA.

9 Afek, Y. et al., “Phantom: A simple and Effective Flow Control Sheme”, Proceeding of SIGCOMM ’96 pp. 169-182, California,
August 1996.
10 Charny, A. and Ramakrishnan, K.K., “Time Scale Analysis of Explicit Rate Allocation in ATM Networks”, Proceedings of IEEE
INFOCOM ’96, Vol 3 pp. 1182-1189, San Francisco, March 1996.

HFC Backward RM Cells(True/False): 0

Max BRM rate (cells/s): 0

Delta [0.05…1]: 0.1

T0 (in usecs): 1500

Factor a: 1.15

Factor b: 1

Queue Drain Limit Factor (QDLF): 0.5

Decay Factor: 0.9

Alpha: 0.8

Averaging Interval in usecs (AI): 5000

Phantom Tau: 500

Phantom Alpha: 0.0625

Beta: 0.125

Decreasing Factor: 0.75

H: 0.0625

Utilization Factor: 1

Initial Portion: 0.1

Cells in VBR Q to linkn: 0

Cells dropped in VBR Q to linkn: 0

Cells in UBR Q to linkn: 0

Cells dropped in UBR Q to linkn: 0

Cells in ABR Q to linkn: 0

Cells dropped in ABR Q to linkn: 0

ERS for Q to linkn: 0

MACR rate for Q to linkn: 0

Phantom MACR rate for Q to linkn: 0

Delta for Q to linkn: 0

Alpha Inc for Q to linkn: 0

Alpha Dec for Q to linkn: 0

Fast MACR rate for Q to linkn: 0

48

Major Reduction Factor (MRF). Factor
used by NIST ER and EPRCA to reduce the
explicit rate if the link is congested (NIST
algorithm) or very congested (EPRCA).

Down Pressure Factor (DPF). Factor used
in EPRCA to trigger the reduction of the explicit
rate under normal congestion, i.e when the
output queue size is below DQT but above the
High Threshold.

Congestion (True/False). Indicate the congestion status of the switch.

% cell drop. Number of cells dropped by the switch as a percentage of the total cells received.

HFC Backward RM Cells (True/False). This parameter indicates if backward RM cells are generated by the
switch. This may occur when the neighboring component of the switch is an HFC11

Max BRM rate (cells/sec). Maximum rate at which backward RM cells may be generated.

Delta [0.05…1]. δ parameter of the ERICA algorithm. δ is a small fraction, and it determines the use of the
basic ERICA algorithm and allocation scheme or the attempt to make all the rate allocations equal:

If z > 1+ δ ER = Max(FairShare, VCShare) (basic ERICA)
If z <= 1+ δ ER = Max(FairShare, VCShare, MaxAllocPrevious)

T0 (in usecs). T0 parameter used in ERICA, defined as the threshold value which limit the queueing delay (Tq).

Factor a and b. a and b are the intercepts of the a-hyperbola and b-hyperbola. b determines how much excess
capacity would be allocated when the queueing delay is zero. Larger values of a and b make the scheme very
sensitive to the queueing delay, whereas, smaller values increase the time required to reach the desired operating
point.

Queue Drain Limit Factor (QDLF). This parameter ensure that there is enough drain capacity to drain out
the transcient queues.

Decay Factor. The Decay Factor used in decaying the contribution of each VC is a value between 0 and 1. The
decay Factor is usually close to 1 (typ. 0.9).

Alpha. [0..1] This parameter is used in the ERICA algorithm to regulate the average ABR capacity.

Averaging Interval in usecs (AI). If a VC is seen during an interval, its activity level is reset to one (and not
decayed). The averaging interval must be set to be sufficiently long to avoid the problem of underestimating the
number of active VCs.

Phantom Tau. The amount of residual bandwith, ∆, is measured in fixed time intervals of length τ (cell time)

Phantom Alpha. [0..1] used in the calculation of the MACR (see Decreasing Factor).

11 Golmie , N., Corner, M., Liebeherr, J., Su, D., “Improving the Effectiveness of ATM Traffic Control over Hybrid Fiber-Coax
Networks”, Proc. of IEEE Globecom 1997.

ABR Traffic for Q to linkn: 0

ABR/VBR Traffic for Q to linkn: 0

VBR Traffic for Q to linkn: 0

ERR for Q to linkn: 0

Sigma Neg for Q to linkn: 0

Sigma Pos for Q to linkn: 0

Ratio for Q to linkn: 0

49

Beta. [0..1] Similar to α, but larger than α. The β parameter is used in the calculation of the Fast MACR.

Decreasing Factor. [0..1] Prevent MACR from dropping sharply. The MACR has to be computed as follow:
MACR = Max(MACR*(1-α) + ∆*α, MACR * Decreasing Factor)

H. [0..1] used in the calculation of σ as follow: σ = σ*(1-H) + |ERR|*h

Utilization Factor. Restrict the sessions by this factor times MACR. If the utilization factor is set to 3, and 3
sessions are sharing a 100Mbs link, then each session is allocated 30Mbs, and the Phantom session gets 10Mbs.

Initial Portion.

Cells in xBR Q to link n. Cells awaiting transmission in a given priority queue. There are two types of queues
for each port - a CBR/VBR queue and an ABR queue. Cells in the CBR/VBR queue have top priority; a cell from
the ABR queue will be sent only if the CBR/VBR queue is empty.

Cells dropped in xBR Q to link n. Cells dropped at a port when a queue exceeds its maximum size.

ERS for Q to linkn. The value written in the ER field of returning RM cells for a given port. This output
parameter is used for the NIST ER algorithm only.

MACR rate for Q to linkn. The current value of the MACR (Mean Allowed Cell Rate) for a given port. This
output parameter is used for both NIST ER and EPRCA algorithms.

Phantom MACR rate for Q to linkn. The current value of the MACR (Mean Allowed Cell Rate) for a given
port. This output parameter is used by the Phantom algorithm only.

Delta for Q to linkn. Delta as been defined to be the unused link capacity of the link (in Phantom algorithm
only).

Alpha Inc for Q to linkn. Used in the Phantom algorithm instead of α when ∆ > Phantom MACR.

Alpha Dec for Q to linkn. Used in the Phantom algorithm instead of αwhen ∆ <= Phantom MACR.

Fast MACR rate for Q to linkn. Used in the Phantom algorithm to monitor the bandwith more accuratly than
the MACR. It is computed in the same way as MACR but use the β factor which is larger than α:

Fast MACR = Fast MACR*(1-β) + ∆*β

xBR Traffic for Q to linkn. Current traffic of the queue. The ABRVBR tarffic is the sum of the ABR and the
VBR traffic.

ERR for Q to linkn. The standard deviation is approximate by the mean deviation as ERR = MACR – ∆ in the
Phantom algorithm.

Sigma Neg for Q to linkn. Used in the Phantom algorithm instead of σ when ∆ >= Phantom MACR.

Sigma Pos for Q to linkn. Used in the Phantom algorithm instead of σ when ∆ <= Phantom MACR.

Ratio for Q to linkn. This ratio can be computed from the value of σ as follow

50

σ <= MACR Ratio = 1
MACR < σ <= 2*MACR Ratio = 1/2
2*MACR < σ <= 4*MACR Ratio = 1/4
4*MACR < σ <= 8*MACR Ratio = 1/8
8*MACR < σ Ratio = 1/16

NIST scheme pseudocode:
if receive ABR cell

if queue-length < output-queue-size
add cell to output queue
count = count + 1
if (count % N) = 0

if output-queue-size > (old-output-queue-size + tau)
congested = TRUE

else if output-queue-size < LT
congested = FALSE

old-output-queue-size = output-queue-size
rate = N * 424 / (now – time-last-cell)
time-last-cell = now

else drop cell
if schedule ABR cell to link

if queue-length < LT
congested = FALSE

if cell is RM(DIR=forward, CCR, ER, CI, NI, . . .)
if (congested and MACR > CCR) or
 (no congested and MACR < CCR)

MACR = MACR + (CCR-MACR)*AV
if (TR/rate) > 1 and congested

MACR = MACR + MAIR
if MACR > TR

MACR = TR
if cell is RM(DIR=backward, CCR, ER, CI, NI, . . .)

if NI = 0 and congested
NI = 1

if congested
ER = min(MACR*MRF, ER)

else
ER = min(MACR, ER)

EPRCA scheme pseudocode:
if receive ABR cell

if queue-length < output-queue-size
add cell to output queue
if queue-length > DQT

very-congested = TRUE
if queue-lentgh > HT

congested = TRUE
else drop cell

if schedule ABR cell to link
if queue-length < LT

congested = FALSE
if queue-length < DQT

very_congested = FALSE
if cell is RM(DIR=forward, CCR, ER, CI, NI, . . .)

if (congestion and MACR > CCR) or
 (no congestion and MACR*VCS < CCR)

MACR = MACR + (CCR-MACR)*AV
if cell is RM(DIR=backward, CCR, ER, CI, NI, . . .)

if congested
if very_congested

ER = min(ER, MACR*MRF)
else if CCR > MACR*DPF

ER = min(ER, MACR*ERF)

51

A1.3 Quantum Flow Control Switches
1-QFC 2-ER/QFC.

1-QFC: Quantum Flow Control,
implementation of the Model A12.
2-ER/QFC: ER at the edges and Quantum
Flow Control inside.

% Cell Drop. Percentage of the cells dropped by
the switch.

Ext Factor % Cell Drop. Probability of dropping
cells due to external factors.

Ext Factor Cells Dropped. Number of cells
dropped because if the external factors.

Cells Transmitted. Number of cells successfully
sent.

Cells Received. Total number of cells received by
the switch.

Cells in xBR Q to link n. Cells awaiting
transmission in a given priority queue. There are
two types of queues for each port - a CBR/VBR
queue and an ABR queue. Cells in the CBR/VBR
queue have top priority; a cell from the ABR queue
will be sent only if the CBR/VBR queue is empty.

Cells dropped in xBR Q to link n. Cells
dropped at a port when a queue exceeds its
maximum size.

N2 link(#fwd cells/BSU) of link n. Quantum-Count delay. This factor is used to reduce the reverse direction
QFC BSU bandwidth overhead to 1/N2.

N4 (#updates/BSU) of link n. Quantum update packing delay, used when packing more than one update
record into a BSU message. It reduce the reverse direction QFC BSU bandwidth overhead to 1/(N2*N4).

N5 (processing delay) of link n. Control Update Pipeline Delay. Summation of all the receiver and transmitter
control system pipeline processing delays.

Link (0:SL 1:LL) of link n. Set the link option to Short Link (LAN) or Long Link (WAN). This influence the
counters of the Cell Forwarding Criteria and limit the number of bits used in the calculation of the transmitter
constraints.

12 Floyd E. Ross, Quantum Flow Control, General release version 2.0.5, March 26, 97

Name:

Delay to process a cell (usec): 0

Slot time (Mbits/sec): 0

Output queue size (cells, -1=inf): 0

High Threshold, Q cong. flag (cells): 5

Low Threshold, Q cong. flag (cells): 5

Logging every (n ticks) (e.g., 1, 100): 1

1-QFC 2-ER/QFC: 1

% cell drop

Ext Factor Target % Cell Drop: 0

Ext Factor Cells Dropped: 0

Cells Transmitted: 0

Cells Received: 0

Cells in VBR queue to link n: 0

Cells dropped in VBR queue to link n: 0

Cells in ABR queue to link n: 0

Cells dropped in ABR queue to link n: 0

N2 link(#fwd cells/BSU <8) of link n: 0

N4 (#updates/BSU < 8) of link n : 0

N5 (processing delay) of link n: 0

Link (0:SL 1:LL) of link n: 0

M (min of 17) of link n: 17

52

M (min of 17) of link n. M Factor used to autoconfigure N2VC. It is the nominal spacing in cells between
successive BSU cells.

A.1.4 Credit Based Switches

N2 (Cells). N2 factor from the “N23 Scheme” of
the Credit Base Flow Control 13. The N2 value is set
for all the VCs and can be an engeneering choice or
designed

Rho. Constant factor used to divide the shared
buffer between the VCs.

Alpha. The Alpha parameter defines a single pole
low-pass IIR filter, which insulates target N3 values
from noise in the egress traffic.

Number of cells in Shared Queue. This is the
number of cells present in the queue shared by all the
VCs.

N3T. “N3 Total”, represent the size of the memory
that the VCs share in the receiver less N2.

% Cell Drop. Percentage of the cells dropped by the switch.

Cells in VBR Q to link n. Cells awaiting transmission in the CBR/VBR queue.

Cells dropped in VBR Q to link n. Cells dropped at the network port when a queue exceeds its maximum
size.

13 H.T. Kung, T. Blackwell, and A. Chapman. Credit-Based Flow Control dor ATM Networks: Credit Update Protocol, Adaptive
Credit Allocation, and Statistical Multiplexing. ACM SIGCOMM 94.

Name:

Delay to process a cell (usec): 0

Slot time (Mbits/sec): 0

Output queue size (cells, -1=inf): 0

N2 (cells): 10

Rho (integer, e.g. 2): 2

Alpha (<1.0, e.g. 0.9): 1

Number of cells in sh_q: 0

N3T Requiered (cells): 0

% Cell Drop: 0

Cells in VBR Q to link n: 0

Cell Dropped in VBR Q to link n: 0

Random Number link n: 0

53

A.2 Broadband Terminal Equipment (B-TE)

When creating a BTE component, the user is prompted with this
menu offering a choice between two components:

- the regular BTE, which implements the traffic
management for ABR conforming to the example
given in the ATM Forum Traffic Management
Specification Version 4.0.

- the HFC (Hybrid Fiber Coax), which simulates the
MAC layer of an HFC network with rate-based
capabilities (regular BTE).

As for the switch, a generic version of the regular BTE can be obtained by replacing
“rbswitch.c(ho)” in the Makefile with “switch.c(ho)” and recompiling. The following subsections
describe the parameters of the generic regular BTE, its rate-based counterpart, and the HFC
component.

A.2.1 Generic B-TE

Unlike a switch, there can be only one physical link attached to a B-TE component. Cells
received from the Application side (there may be multiple Applications) are queued in one of two
priority queues if no link slot is available for transmission. If either queue exceeds its size limit
cells will be dropped.

Maximum Output Queue Size. Available
buffer space for each type of queue.

Logging every n ticks. If n is set to 1, data will
be logged for a parameter anytime there is a change
in its value. Potentially, this could occur at every
tick. Since this may result in an extremely large
data file, it may be desirable to set n to a larger
number. For example, if n = 100, logging will occur
only if a change occurred and 100 ticks had gone by
since the last logging activity.

Cells Received. Total number of cells received by
the B-TE.

Cells in xBR Q to link n. Cells awaiting transmission in a given priority queue. There are two types of queues
- a CBR/VBR queue and an ABR queue. Cells in the CBR/VBR queue have top priority; a cell from the ABR
queue will be sent only if the CBR/VBR queue is empty.

Cells dropped in xBR Q to link n. Cells dropped at the network port when a queue exceeds its maximum
size.

Regular BTE

HFC

QFC

CB

ABORT

Name:

Max. Output Queue Size (-1=inf): 0

Logging every (n ticks) (e.g. 1, 100): 0

Cells Received: 0

Cells in VBR Q to link n: 0

Cell Dropped in VBR Q to link n: 0

Cells in ABR Q to link n: 0

Cell Dropped in ABR Q to link n: 0

54

A.2.2 Rate-Based Broadband Terminal Equipment (RB-B-TE)

Maximum Output Queue Size. Available
buffer space for each type of queue. There is one
output queue for class of service (CBR/VBR, ABR,
UBR). There is one Input Queue for each ABR
ATM application, and it is used to store incoming
ABR cells. The ABR cells move from their Input
Queue to the ABR Output Queue at their ACR rate.

Cells Received. Total number of cells received by
the B-TE.

Logging every n ticks. If n is set to 1, data will
be logged for a parameter anytime there is a change
in its value. Potentially, this could occur at every
tick. Since this may result in an extremely large
data file, it may be desirable to set n to a larger
number. For example, if n = 100, logging will occur
only if a change occurred and 100 ticks had gone by
since the last logging activity.

Stop sending at. Time (in usecs) at which the
BTE stops forwarding cell to the outgoing ATM
link.

Cells in xBR Q to link n. Cells awaiting
transmission in a given output priority queue. There
are three types of queues - a CBR/VBR queue, an
ABR queue and a UBR queue. Cells in the
CBR/VBR queue have top priority; a cell from the
ABR queue will be sent only if the CBR/VBR queue
is empty, and a cell from the UBR queue will be sent
only of the ABR queue is empty.

Cells dropped in xBR Q to link n. Cells
dropped at the network port when a queue exceeds
its maximum size.

Peak Cell Rate. Maximum allowed cell rate. This
value should be entered in Mbits/s.

Nrm. Number of data cells between each RM cell.

ICR (Initial Cell Rate). Rate (in Mbits/s) at which the source should send initially and after an idle period.

MCR (Minimum Cell Rate). Minimum allowed cell rate (in Mbits/s).

RIF (Rate Increase Factor). Proportion of the PCR that may be added to the ACR when an RM cell is
received with congestion indication bit CI = 0.

Name:

Max. Output Queue Size (-1=inf): 0

Max Input Queue Size (-1=inf): 0

Cells Received: 0

Logging every (ticks)(e.g. 1, 100): 0

Stop sending at: 0

Cells in xBR Q to link n: 0

Cells dropped in xBR Q to link n: 0

Peak Cell Rate of ABR1: 149.76

Nrm of ABR1: 32

ICR of ABR1: 7.49

MCR of ABR1: 1.49

RIF of ABR1: 0.0625

RDF of ABR1:0.0625

CRM (Cells) of ABR1: 32

CDF of ABR1: 0.0625

MRM of ABR1: 2

TRM (in us) of ABR1: 100000

TCR (in Mbit/s) of ABR1: 0.00424

ADTF (in usecs) of ABR1: 500000

ACR (in Mbit/s) for ABR ABR1:

Received count (in cells) for ABR1:

Cells Dropped ABR Input Q from ABR 1:

Cells in ABR Input Q from ABR 1:

55

RDF (Rate Decrease Factor). Proportion by which the ACR may be reduced when an RM cell is received
with congestion indication bit CI = 1.

CRM (Missing RM-cell count). Threshold on the number of forward RM cells sent in the absence of
backward RM cells. When the threshold is reached, the ACR is decreased (see CDF factor).
CRM should take into account the round-trip delay of the flow control loop.

CDF (Cutoff Decrease Factor). Factor used to decrease the ACR when more than CRM RM cells have been
forwarded in the absence of backward RM cells.

MRM. Minimum number of data cell separating each forward RM cell when at least TRM time has elapsed. The
ATM Forum specification requires the use of a constant value of 2.

TRM. Upper bound of the time between forward RM cells.

TCR (Tagged Cell Rate). The rate (in Mbits/s) used for out-of-rate RM cells. The ATM Forum specification
requires the use of a constant value of 10 cells/second (0.00424 Mbits/s).

ADTF (ACR Decrease Time Factor). Interval between forward RM cells which, when exceeded, triggers a
reset of ACR to ICR.

ACR. Allowed Cell Rate (in Mbits/s)

Received count (in cells) for X. Number of ABR cells received whose destination is X.

Cells Dropped ABR Input Queue. Number of ABR Cells awaiting to be fowarded to the ABR Output Queue.

Cells in ABR Input Queue. Cells dropped at the input when the queue exceeds its maximum size.

56

A.2.3 HFC (Hybrid Fiber Coax)

This section gives an overview of the parameters of the HFC that differ from the BTE, and
explain some of important design issues and implementation choices. Note that a detailed
description of HFC networks and MAC protocols can be found in the references given in this
section.

1. In the module all stations are considered logically connected to the HFC branch at the same
point, chosen as the physical location of the farthest station from the Headend. This
assumption has no effect on the MAC performance since in a real network a MAC reservation
cycle is the same for all stations and is set with respect to the farthest station from the HC in
order to prevent unfairness due to the relative location of the stations. The user need to
specify, not the individual locations of the stations, but the propagation time on the channel
(which is proportional to the distance of the farthest station).

2. The upstream channel is divided into fixed size slots, also called mini-slots (MS). There are
two kind of mini-slots: contention mini-slots (CMS), used to carry station requests in
contention mode, and data mini-slots (DMS), used to carry data in reservation mode. Here it
is assumed, as in the IEEE802.14 draft specification, that data is carried via ATM cells.
Several DMSs are concatenated to form a Data Slot (DS) that carries an ATM cell plus MAC
(1 byte) and PHY (10 bytes or depending on the system implementation) overhead. The user
needs to specify the transmission time of a mini-slot, and the size of a data slot in terms of
number of mini-slots.

3. The distribution of CS and DS on the upstream channel is decided by the HC depending on
the MAC collision resolution algorithm (clustered or continuous) and the bandwith allocation
scheme (fixed or variable). For clustered mode algorithms, the upstream channel is divided
into frames. In this case, the contention slots are grouped at the beginning of the frames. For
continuous mode algorithms, no frame is defined and the HC may allocate successively data
slots and contention slots. See the parameter descriptions for more details.

4. When a station has data to transmit in the middle queue, it sends a request in a contention
slots conforming to the First Transmission Rule (FTR) which governs the access of newcomer
stations. For continuous mode protocols, there is no backoff and stations transmit their
request on the first contention slot. However several FTR strategies are defined for cluster
mode protocols:

- For Ternary Tree Blocking, the contention slots grouped at the beginning of a cluster
are divided into two regions: region A is reserved for the retransmission of collided
requests, and region B is open for newcomer requests. The FTR consists of
transmitting the request at random in one of the CMS region B.

- For Ternary Tree Free Access, there is no control on newcomer stations entry in the
system. Requests to be retransmitted and new requests share the entire region of
contention slots in the cluster. Newcomer stations select randomly one of these
contention slots to transmit their request.

57

- For Ternary Tree Unblocking, two regions are defined, as for Ternary Tree Blocking.
However, newcomer stations can transmit region B only with some probability. See
parameter description for more details.

- For One Stage p-Persistent, a single region of CMS is defined and the probability for
the first transmission and retransmissions is the same.

- For Two-Stage p-Persistent, two regions of CMS are defined and each with a different
probability of transmission/retransmission.

5. For continuous mode protocols using ternary tree algorithm, the management of the collision
stack may be set to LIFO or FIFO order.

6. For cluster mode protocols, a station that receives a cell in the middle of a frame may send a
request in the same frame.

7. The HC allocates the Data slots for the stations in Round-Robin order.

8. The cells received by the HC from the ATM link are forwarded to the application without
consideration of the downstream propagation delay. It is assumed to be negligible. However,
the downstream propagation time is taken into account in the feedback resolution cycle.

58

Max. Queue Size. Available buffer space
for each type of queue.There are three queues.
The Input queue is used for ABR cells.resides
between the source and the HFC network..
The middle queue, associated to each
application connected to the HFC, is used to
store cells from the station awaiting
transmission on the upstream channel. Cells
received from VBR sources are directly put in
the middle queue, whereas cells received from
ABR sources are first put in their Input
Queue, then moved to the middle queue at the
Allowed Cell Rate (ACR). The VBR output
queue buffers cells between the HFC headend
and the ATM link. Note that ABR and UBR
queues are not used in this version of the
module.

Limit Requests to x. When stations
request data slots in the upstream channel
they may only have one outstanding request at
a time. The stations are limited to requesting
this many data slots at a time.

Collision Multiplicity. This is the number
of users that transmitted in the most recent
contention slot. 0=empty, 1= sucessful
request, >2 is a collision.

Access Delay. This is the delay from the
time that the cell is received at the middle
queue to the time it is successfully received at
the HC.

Collision Resolution Delay. This is the
delay from the time a station receives a
collision feedback to the time it receives its
successful feedback.

Head-End Processing Time. This is the
time that the head-end uses to process
requests and collisions.

Cluster Size. Used only for cluster mode
protocols, the cluster size is the number of
minislots in a frame (or cluster).

Congestion Thresholds. When the
average grant queue size exceeds the high
threshold a message is sent to the ATM
switch that congestion is present in the HFC
network. When the average drops below the

Name:

Max. Output Queue Size (-1=inf): 0

Max. Input Queue Size (-1=inf): 0

Max. Middle Queue Size (-1=inf): 0

Cells Received: 0

Logging Every (ticks) (e.g. 1, 100)

Stop Sending at (usecs): 0

Limit Requests to (cells –1=inf): 0

Collision Multiplicity: 0

Access Delay: (In Out):0

Collision Resolution Delay: 0

Head-End Processing Time: 0

Cluster Size: 0

Upstream Low Congestion Threshold: 0

Upstream High Congestion Threshold: 0

Grant Queue Length: 0

Average Grant Queue Length: 0

Dropped Packets: 0

Interelaving Factor: 0

MAC Protocol: 0

CS/DS ratio (if <=0 variable allocation): 2

Maximum Number of CS (if <= 0 computed)

Newcomer Range (R) (if <= 0 variable)

Retry Range (P) (if <= 0 variable)

Noise factor (fractional): 0

Bitmap Density (Stations/MS): 0

Upstream Trans. Time (usecs): 0

Upstream Prop. Time (usecs): 0

Downstream Trans. Time (usecs): 0

Downstream Prop. Time (usecs): 0

CS per DS: 0

59

low threshold a message is sent to indicate no
congestion.

Grant Queue Length. This is the number
of data cells (over all stations) granted by the
Head-End, but not yet transmitted on the
upstream channel.

Average Grant Queue Length. This is
a Weighted Moving Average of the Grant
Queue size. It uses a constant of 1/16 to
compute the average.

Dropped Packets. Number of packets dropped due to 16 unsuccessful retransmitions after reaching the
Maximum Backoff (in MCNS only).

Interlaving Factor. Separate colllision resolution engines can be used in the same system. This can increase the
number of contention slots that can be used in a frame during cluster mode operation. The normal value of this
parameter is 1.

MAC Protocol. This is the MAC and collision resolution protocol used by the system. Only some of the
parameters apply to each protocol. The protocols are as follows:

0- Ternary Tree Blocking (Cluster Mode)14

1- Ternary Tree Free Access (Cluster Mode)15

2- Ternary Tree Unblocking (Cluster Mode) (IEEE 802.14 Standard)
3- One Stage P-Persistance (Cluster Mode)16

4- Two Stage P-Persistance (Cluster Mode)17

5- Bitmap (Cluster Mode)
6- Ternary Tree Free Access (Continuous Mode) – based on the parallelized tree described by Jacquet18

7- One Stage P-Persistance (Continuous Mode)
8- MLAP
9- MCNS19

CS/DS ratio (if <= 0 variable allocation). Specifies the ratio of the number of contention slot over the
number of data slots. If it is set to<= 0, a variable allocation is used.
- Case where CS/DS >0 (fix allocation): The cluster mode protocols use the CS/DS ratio together with the number
of slots per frame to determine the number of contention slots allocated at beginning of each frame. For the
continuous mode protocols, where no frame is explicitely defined, <CS/DS ratio> is the number of contention slots
attached to each data slot (the upstream channel corresponds to a succession of one data slot and <CS/DS ratio>
contention slots).
- Case where CS/DS <=0 (variable allocation): the CS/DS ratio is calculated periodically and is set to: 2/k, where
k is the average request size. This formula is similar to the one by Sriram20, but does not use the estimated

14 Bisdikian, C., “A Review of Random Access Algorithms”, IEEE802.14-96/019.
15 Van Driel, C.-J. L. et al., “The (R)evolution of Access Networks for the Information Superhighway”, IEEE Communications
Magazine, June 1997.
16 Citta, R., et al., “Phase 2 Simulation Results for Adaptive Random Access Protocol”, IEEE802.14-94/114.
17 Citta, R., Xia, J., “Adaptive P-Persistence with Soft-Blocking for Contention Resolution”, IEEE802.14-97/037.
18 Jacquet, P., et al, “Performant implementations of tree collision resolution on CATV network”, IEEE802.14-96/115.
19 MCNS Holdings L.P. Data-Over-Cable Service Interface Specifications, Radio Frequency Interface Specification. SP-RFI-I02-
9710008, October 1997.

Upstream Cells Received: 0

Piggy Backing (1=yes 0=no): 0

Newcomer Backoff for TTUB (0(T),1(R):0)

CMTT stack management: (0(LIFO),1(FIF0)

Initial Backoff for MCNS (typ.: 4): 0

Maximum Backoff for MCNS (typ.: 16): 0

Concat MCNS (0=off 1=on): 0

60

piggybacking load as suggested by Sala. Unused data slots are converted into contention slots as suggested by
Sala21. In addition, for cluster mode protocols only, the number of contention slots in the frame is set to zero when
the following condition is satisfied:

DSA >= Alpha*(MAX_DATA-Nds)
where DSA is the number of data slots that needs to be allocated by the Head End, Alpha is a design
parameter set to 2.5, and Nds is the number of data slots to be converted into contention slots.

Maximum Number of CS (if <= 0 computed). The Maximum number of contention slots per frame is used
only for Cluster mode MAC protocols. This is ignored if the number of CS is fixed. If it is less than 0, it is
computed to be the max it can be without violating the rule that the feedback must arrive before the next cluster
starts.

Newcomer Range (R) (if <= 0 variable). The Range parameter R can be fixed to a value or it can be
optimized by an algorithm (see code).

Retry Range (P) (if <= 0 variable). For P-persistance, retrys use this number in place of R. Can be
computed in the same manner as R.

Noise factor (fractional). This fraction of succesful requests will be interpreted as collisions by the headend.

Bitmap Density (Stations/MS). Only used by the bitmap MAC protocol. The density is the number of
stations than can transmit requests per contention slot.

Upstream/Downstream Trans. Time (usecs). The time it takes to transmit one minislot on the channels. It
should depend on the desired mini-slot size and channel speed. The default value of 42.6667 usecs for the upstream
channel corresponds to a mini-slot of 16 bytes transmitted on a 3 Mbps channel. The default value of 4.2667 usecs
for the downstream corresponds to a mini-slot with same size transmitted on a 30 Mbps channel.

Upstream/Downstream Prop. Time (usecs). Propagation time from the farthest station (respectively HC) to
the HC controller (respectively farthest station). The default Upstream/Downstream Propagation Time (400usecs)
correponds to a maximum distance of 80km.

CS per DS. The size of the data slots in terms of contention slots. Typical value would be 4.

Piggy Backing (1=Yes, 0=no). Wether the stations are allowed to use piggy backed requests.

Newcomer Backoff for TTUB (0(T),1(R)). Newcomer backoff type for Ternary Tree Unblocking:
-T (T_bound Access): method of Bisdikian22

-R (R Access):method of Citta et al.23

CMTT Stack Management (0(LIFO), 1(FIFO)). Stack management discipline for Ternay Tree Free
Access Continuous mode (MAC protocol no. 6).

Initial Backoff for MCNS. Initial backoff window used for the transmission of a request. The station select
randomly a number within its backoff window in order to wait for a contention transmit opportunity.

20 Sriram, K., “HFC MAC Protocol with Dynamically vs. Fixed Number of Request Mini-Slots: Performance and Capacity
Comparison”, IEEE802.14-96/120.
21 Sala, D., Limb, J., Khaunte, S., “Adaptive Control Mechanism for Cable Modems MAC Protocols”, Proc. of IEEE INFOCOM’98.
22 Bisdikian, C., “Enhancing the Collision Resolution algorithm: Comments to d2R2”, IEEE802.14-97/121.
23 Citta, R., et al, “The tree-based Algorithm with Soft Blocking”, IEEE802.14-96/244.

61

Maximum Backoff for MCNS. Used in the collision resolution process. When a collision occurs, the station
increment its backoff window by a factor of two as long as it is less than the Maximum Backoff window. When this
limit is reached, the station retries the collision resolution process, and discard the request after 16 unsuccessful
tries.

Concat MCNS (0=off 1=on). Concatenation mode in MCNS only. This mode packs the ATM cells together
with only one MAC header to reduce the overhead.

62

A.2.4 Quantum Flow Control (QFC) B-TE

Link n. Name of the link connected to the BTE.

Cells in xBR Q to link n. Cells awaiting
transmission in a given output priority queue. There
are three types of queues - a CBR/VBR queue, an
ABR queue and a UBR queue. Cells in the
CBR/VBR queue have top priority; a cell from the
ABR queue will be sent only if the CBR/VBR queue
is empty, and a cell from the UBR queue will be sent
only of the ABR queue is empty.

Cells dropped in xBR Q to link n. Cells
dropped at the network port when a queue exceeds
its maximum size.

N2 link(#fwd cells/BSU) of link n. Quantum-
Count delay. This factor is used to reduce the
reverse direction QFC BSU bandwidth overhead to
1/N2.

N4 (#updates/BSU) of link n. Quantum update
packing delay, used when packing more than one
update record into a BSU message. It reduce the
reverse direction QFC BSU bandwidth overhead to
1/(N2*N4).

N5 (processing delay) of link n. Control Update Pipeline Delay. Summation of all the receiver and transmitter
control system pipeline processing delays.

Link (0:SL 1:LL) of link n. Set the link option to Short Link (LAN) or Long Link (WAN). This influence the
counters of the Cell Forwarding Criteria and limit the number of bits used in the calculation of the transmitter
constraints.

M (min of 17) of link n. M Factor used to autoconfigure N2VC. It is the nominal spacing in cells between
successive BSU cells.

Name:

Max. Output Queue Size (-1=inf): 0

Cells Received from Link: 0

Logging every (ticks) (e.g. 1, 100): 100

Stop sending at (usecs): -1

Link n

Cells in VBR queue to link n: 0

Cells dropped in VBR queue to link n: 0

Cells in ABR queue to link n: 0

Cells dropped in ABR queue to link n: 0

N2 link(#fwd cells/BSU) of link n: 0

N4 (#updates/BSU < 8) of link n : 0

N5 (processing delay) of link n: 0

Link (0:SL 1:LL) of link n: 0

M (min of 17) of link n: 17

63

A.2.5 Credit Based (CB) B-TE

N2 (Cells). N2 factor from the “N23 Scheme” of
the Credit Base Flow Control. The N2 value is set
for all the VCs and can be an engeneering choice or
designed

Rho. Constant factor used to divide the shared
buffer between the VCs.

Alpha. The Alpha parameter defines a single pole
low-pass IIR filter, which insulates target N3 values
from noise in the egress traffic.

Number of cells in Shared Queue. This is the
number of cells present in the queue shared by all
the VCs.

N3T. “N3 Total”, represent the size of the memory
that the VCs share in the receiver less N2.

% Cell Drop. Percentage of the cells dropped by the switch.

Cells in VBR Q to link n. Cells awaiting transmission in the CBR/VBR queue.

Cells dropped in VBR Q to link n. Cells dropped at the network port when a queue exceeds its maximum
size.

Name:

Max. Output Queue Size (-1=inf): 0

N2 (cells): 0

Rho (integer, e.g. 2): 0

Alpha (<1.0, e.g. 0.9): 1

Number of cells in sh_Q: 0

N3T requiered (cells): 0

% Cell Dropped: 0

Cells Received: 0

Cells in VBR Q to link n: 0

Cell Dropped in VBR Q to link n: 0

64

A.3 ATM Applications

Creation of an Application component results in the appearance
of this menu window since there are several types of such
components. Selection of a type will result in the appearance of
one the information windows shown below.

For these information windows, the shaded line is not an output
parameter; it is the name of the ATM Application at the other end
of the route. The name is filled in automatically when the route is
created.

All ATM Applications have an input parameter labeled Start
Time. This is the number of microseconds after the program
starts that the Application will begin generating cells. By setting
the start time to a different value for each Application the user
can ensure that they all do not start at once.

Constant Bit Rate (CBR) Information Window

Cells are generated at a constant rate for the
duration of the simulation.

CBR

VBR (Poisson)

VBR (Batch)

VBR (CBatch)

ABR (Constant)

ABR (Poisson)

ABR (Batch)

ABR (Self-Sim)

UBR (TCP/IP)

ABR (ATCP/IP)

VBR (MPEG)

VBR (GOP GGBAR)

ABORT

Name:

Bit Rate (Mbits/sec): 0

Start time (usec): 0

Number of Mbits to be sent: 0

Other End Connection: Name

65

Variable Bit Rate (VBR) (Poisson) Information Window

Traffic is generated as an ON - OFF source.
Cells are generated at the specified bit rate
during a burst. Mean burst length and mean
interval between bursts are user specified,
but the actual periods of both are drawn
from an exponential distribution.

Variable Bit Rate (VBR) (Batch) Information Window

The user specifies a mean number of cells
that are to be sent in each burst and the
mean interval between bursts; the actual
numbers are drawn from an exponential
distribution. Bit rate is not an input; the
number of cells to be transmitted are ready
to be sent as a "batch" by the time burst
interval begins.

Variable Bit Rate (VBR) (CBatch) Information Window

Name

Bit Rate (Mbits/s): 0

Mean Burst Length (usecs): 0

Mean Interval Between Bursts(usecs): 0

Start Time (usecs): 0

Number of Mbits to be sent: 0

Other End Connection: Name

Name

Mean Number of cells generated: 0

Mean Interval Between Bursts (usec): 0

Start time (usec): 0

Number of Mbits to be sent: 0

Other End Connection: Name

Name

Mean Bit Rate (Mbits/s): 0

Start time (usec): 0

Number of Mbits to be sent: 0

Other End Connection: Name

66

Available Bit Rate (Self-Similar) Information Window

An approximation of self-similar traffic is
generated, based on the sample path FFT
method of Vern Paxson24. In this module
(implemented by A. Polak and C. Van
Boven25), the following choices are made in
order to transform the FGN sample path to
the actual cell arrival process:
The FGN sample path X(k), with zero mean
and variance σ^2, is scaled using the linear
transformation:

A(k)=m+m*X(k)/(c*σ)

where:
- m is the Mean Bit Rate specified by the user.
- c is a scaling parameter set to 2 to ensure that 95% of the values of A(k) - which has a

normal Gaussian distribution - will belong to the interval [0,2*m].
After this transformation, the negative values are set to zero and the values greater than 2*m are
set to 2*m, so that all the values of the new trace are within the interval [0,2*m]. Each rate of the
trace is used to calculate the number of cell arrivals during one bin, whose duration is specified by
the user. Finally, within each bin, the cells are generated with constant interarrivals. Note that the
duration of one bin should always be set larger than the smallest possible interrival, that is
1/(2*MeanBitRate), to avoid having empty bins. Also in this version of the module, the trace
contains 4096 points. If the duration of a bin is <Timegran>, the correct running time for this
application is thus <Timegran>*4096 usecs. If this time is exceeded, the same trace will be re-
used. The output rate is logged every <Timegran> usecs. The mean output rate may correspond
to the actual input rate only if the trace is considered in its entirety.

24 Paxson, V., “Fast Approximation of Self-Similar Network Traffic”, Laurence Berkeley Laboratory, University of California,
Berkeley, LBL-36750, April 1995.
25 Polak, A., Van Boven, C., Gagnaire, M., “ABR Traffic Management in ATM networks: Comparison of the Rate-based and credit-
based approaches”, First IFIP WG6.2 Workshop on ATM Traffic Management, Paris, 1995.

Name

Mean Bit Rate: 0

Timegran (e.g. 500) (usecs): 0

Start time (usec): 0

Hurst param H (0.5<H<1): 0.7

Num Sent: 0

Output Rate (Mbps): 0

Other End Connection: Name

67

Variable Bit Rate (MPEG) Information Window
This application26 requires that the user
provides an MGEP trace stored as a file
in the current directory. The file name
should be “mpeg<num>”, where <num>
is entered in the Information Window.
The expected format for the file is a two-
dimensional array: the number of cells in
each frame in the first column, and the
start time of the frames in the second
column. When the application runs out of
samples it wraps at the beginning of the
file. The start time, and the rate at which
the cells of each frame are sent are user
specified.

Variable Bit Rate (GOP GBAR) Information Window

Frame rate. which is usually 25 or 30 Hz
(frames/sec).

I Frame spacing N. The user inputs the
Group of Picture (GOP) by setting the N.
Parameter N represents the number of frames
between successive I-frames. M is the number of
frames between successive ``anchor'' (I- or P-)
frames. N should be a multiple of M. For
example, if the group of pictures is
IBBPBBPBBIBBPBBPBB… then M = 3 and N
= 9.

Average I-Frame size E[XI] the average size
of a I-frame in Kilobits.

Average P-Frame size E[XP] the average size
of a P-frame in Kilobits.

Average B-Frame size E[XB] the average
size of a B-frame in Kilobits.

Standard deviation of the size of a I-
frame is the][IXVar in Kilobits.

Standard deviation of the size of a P-

26 Walthall, R., Clement, M., “Simulation and Analysis of the Performance of EPRCA in a Wide Area ATM Network Consisting of
Both ER and EFCI Switch Mechanisms”, Technical Report BYU-NCL-95-109, Brigham Young University.

Name

Bit Rate 1 (Mbits/s): 0

Initial Start time (usecs): 0

File number for MPEG data: 0

Num Sent: 0

Num Rec: 0

Logging every (ticks) (e.g. 1, 100): 0

Link rate (Mbit/s): 0

Other End Connection: Name

Name

Frame Rate 25 or 30 Hz: 0

I Frame Spacing N of GOP (N,M): 0

Average I-Frame size (in Kbits): 0

Average P-Frame size (in Kbits): 0

Average B-Frame size (in Kbits): 0

Std. Dev. of I-Frame (in Kbits): 0

Std. Dev. of P-Frame (in Kbits): 0

Std. Dev. of B-Frame (in Kbits): 0

Interframe correlation of I-Frame: 0

Interframe correlation of P-Frame: 0

Interframe correlation of B-Frame: 0

Start time (usecs): 0

Number of frames to be sent: 0

68

frame is the][PXVar in Kilobits.

Standard deviation of the size of a B-frame is the][BXVar in Kilobits.

ρI lag-1 correlation for I-frames. ρN
I is the correlation between the sizes of corresponding I-frames in

successive GOP’s.

ρP lag-1 correlation for P-frames. ρN
P is the correlation between the sizes of corresponding P-frames in

successive GOP’s.

ρB lag-1 correlation for B-frames. Correlation between successive B-frames. While in general, correlations
may be negative, the three correlation parameters in this model must satisfy 0 ≤ ρi ≤1, i= I, P, B. Based on the
videos studied in 27 and 28. A typical value for all three of these parameters is 0.7.

Start time refers to the time you start constructing frames and thereby essentially start sending the cells.

Number of Frames to be sent tells the generator exactly how many frames you want to create. This number
does not correspond to the number of ATM cells that will actually be sent through the network to simulate the flow
of the number of frames that you have requested.

Once these parameters have been entered. GGB will compute the length in bits of a frame (I, P, or B). Each frame
is computed one at a time. The creation of a frame continues until the Number of Frames requested for generation
has been met.

The GGBARCONNECTION module is used to generate a variable-rate MPEG video sequence using a Group of
Picture GBAR Model. When a user creates a GGBARCONNECTION MPEG source, he is prompted to enter a
series of parameters. The first of the parameters to be entered is the Frame Rate, which is usually 25 or 30 Hz.
These values are the only values allowed for this module.
The user is asked to enter in the Group of Picture (GOP) parameters N and M. These parameters determine the I,
P, B frame sequence. N should be a multiple of M. Next, based on prior knowledge of the video sequence
statistics , the user must enter in the various mean and standard deviation values for the I, P, and B frames in
kilobits. With these statistics, we can calculate the various frame size model parameters:

][

][
1

B

B

XE
XVar

=λ
][][

][][
2

BP

BP

XEXE
XVarXVar

−
−

=λ
][][

][][
3

PI

PI

XEXE
XVarXVar

−
−

=λ

][

][2

1
B

B

XVar
XE

=α
][][

])[][(2

2
BP

BP

XVarXVar
XEXE

−
−

=α
][][

])[][(2

3
PI

pI

XVarXVar

XEXE

−

−
=α

27 M.R. Frey, S. Nguyen-Quang, and D. Su, “A Gamma-based Framework for Modeling Variable-rate MPEG Video Sources: The
GOP GBAR Model”, NIST internal Report, May 1, 1998.
28 Heyman, D.P., “The GBAR Source Model for VBR Videoconferences,” IEEE/ACM Trans. on Networking, Vol. 5, No. 4, pp.
554-560, August 1997.

69

Next, the user is prompted to enter the inter-frame correlations of the various frames. These include ρI, ρP, and ρB

. Using these inter-frame correlations, model correlation parameters are created. These are:

Bρρ =1
M

BP

M
BB

M
PP

XVarXVar
XVarXVar 1

2)
][][

][][
(

−
−

=
ρρρ

N

PI

N
BB

N
BP

N
II

XVarXVar
XVarXVarXVarXVar 1

2
2)

][][

][])[][(][
(

−
−−−

=
ρρρρ

With all the various calculated values and the entered parameters we start to generate MPEG Video frames (i.e.
frame sizes) one frame at a time until we reach the Number of Frames requested requirement. The very first frame
that is sent is an I-frame. The size of the frame is:

3132121111 ZZZX λλλ ++=

Where 3,2,1),1,(~1 =iGamZ ii α are independent Gamma-distributed variates. The Gamma variates are

generated in conformance with the Gamma p.d.f. below

0,
)(

)(
1

>
Γ

=

−

−

y
ey

yf
ii

y

i

ii

αλα

λα

Successive frame sizes X1, X2, … are generated recursively. To generate the kth frame size Xk, first calculate

3,2,1, =iZ ik .

 To do this, first generate three independent Gamma variates 3,2,1),1,)1((~ =− iGamW iiik αρ and three

independent Beta variates 3,2,1),)1(,(~ =−Β iGam iiiiik αρρα . The beta variates are obtained using the

following equation.

),(~ yxBeta
YX

X
+

=Β

where the Beta variate, Β, has been generated from two independent Gamma variates)1,(~ xGamX and

)1,(~ yGamY . We calculate the Zik’s using

3,2,1,1, =+= − iWZBZ ikkiikik

70

Then the size of Xk of the kth frame is (recall the first frame computed will be an I-frame)

XK =

The input parameters for the Constant, Batch, and Poisson Available Bit Rate Applications are
exactly like their CBR/VBR counterparts.

Available Bit Rate (ABR) (Constant) Information Window

Available Bit Rate (ABR) (Poisson) Information Window

Name

Bit Rate (Mbits/s): 0

Mean Burst Length (usecs): 0

Mean Interval Between Bursts(usecs): 0

Start Time (usecs): 0

Number of Mbits to be sent: 0

Other End Connection: Name

Name

Bit Rate (Mbits/sec): 0

Start time (usec): 0

Number of Mbits to be sent: 0

Other End Connection: Name

N, mod 1 k If ,3322111 =++ kk ZZZ λλλ

 M,mod 1 k but N, mode 1k If ,22111 =≠+ kZZ λλ

Otherwise. ,111 Zλ

71

Available Bit Rate (ABR) (Batch) Information Window

Name

Mean Number of cells generated: 0

Mean Interval Between Bursts (usec): 0

Start time (usec): 0

Number of Mbits to be sent: 0

Other End Connection: Name

72

TCP/IP (ABR or UBR)
Information Window

The TCP/IP Application sends data in
large packets. These packets must be
segmented to fit into the ATM cell
structure before being put on the
network. A rather extensive set of
parameters are provided that give the
user flexibility in controlling and
monitoring this type of application.

Input Parameters.

Bit Rate. The bit rate for the cells on the
ATM route.

Buffer Size. The size of the user's buffer,
large enough to hold many packets, but a
fraction of the total transmission size.

Transmitter's State. A TRUE/FALSE
control. If FALSE, no transmission will take
place, but the Application can still receive.

Start Time. When this is a positive
number, it is the number of microseconds
after the program starts that the Application
will begin to generate traffic. If a negative
value is placed here the Random Start feature
will be activated (see below).

Random Start Period. If Start Time is
negative, the value entered here is the mean
for a random start time.

Transmission Size. The total number of
data bytes (payload) to be sent.

Mean Packet Processing Time. The
mean delay to process the packet.

Name:

Bit Rate (Mbits/sec): 0

Buffer Size (bytes): 0

Transmitter's State: FALSE

Start Time (usec): 0

Start Random Period (sec): 0

Transmission Size (bytes): 0

Number of bytes unsent: 0

Sender sequence number logging

Sender ACK sequence number logging

Receiver sequence number logging

Mean packet processing time (usec): 0

Packet processing time variation (usec): 0

TCP open time (usec): 0

TCP close time (usec): 0

Connection Busy: FALSE

Packet input queue has 0 pkts

Max segment size (octets): 0

My Receive Window size (octets): 0

Peer Receive Window size (octets): 0

Tahoe (0), Reno (1), standard (2): 0

timer granu. in us (e.g 100000,500000): 0

RTT (usecs): 0

Forward Trip Time FTT (uSecs): 0

cwnd in bytes: 0

RTO (usecs): 0

RTO (current): 0

Average throughput (bytes/sec): 0

Retransmission percentage: 0

Other end connection: Name

73

Packet Processing Time Variation. A computation based on a random perturbation in the processing delay
in the range [-Packet Processing Time Variation, +Packet Processing Time Variation].

Maximum Segment Size. The maximum size of the TCP/IP packet, whether it is being sent or being received.

My Receive Window Size. This number determines how many packets are going to be sent without waiting
for an acknowledgment.

Tahoe (0), Reno (1), standard (2). Version of the TCP congestion avoidance and control algorithm. Three
possible values can be specified.

-0 corresponds to TCP-Tahoe
-1 corresponds to TCP-Reno
-2 corresponds to Standard TCP (without fast retransmit fast recovery)

A detailed description of TCP Tahoe and Reno can be found in RFC 2001.

Timer granu. The TCP time granularuty is the minimum time separating the release of a TCP packet and the
expiry of the associated timer. Most TCP implementations use a coarse grained timer of 500 ms.

Output Parameters

Number of Bytes Unsent. This is the number of bytes remaining from the total specified under
Transmission Size.

Every TCP/IP packet has a sequence number, including the ACK packets. The following three
parameters let the user enable the logging of these numbers as the packets are sent or received.
Note that only the logging function applies, no metering is possible.
Sender Sequence Number Logging
Sender ACK Sequence Number Logging
Receiver Sequence Number Logging.

TCP Open Time. The time that the first TCP packet was sent.

TCP Close Time. The end of the TCP transmission (all bytes have been sent).

Connection Busy. Activity flag for TCP processing; TRUE = busy, FALSE = not busy.

Packet input queue has n packets. This queue contains packets waiting for TCP processing, both for
transmission (before segmentation) and for reception (after reassembly).

Peer Receive Window Size. This is the other-end companion to My Receive Window Size.

RTT. Round Trip Time - time from packet sent to ACK received. This is set to a default value at the beginning
of a simulation run, then actual measurements are made and Jacobson's29 algorithm is used to "smooth" the result.

29Jacobson, V., "Congestion Avoidance and Control", Proceedings of the ACM SIGCOMM '88, August 1988.

74

Forward Trip Time (FTT). gives the time separating the release of a TCP packet and its reception by the
Receiver. This is done using TCP timestamps option (see RFC1323).

cnwd in bytes. The TCP congestion window size which gives the maximum number of bytes that TCP can send
before waiting for an acknowledgement.

RTO. Retransmission Time Out - the time interval to wait before deciding an unacknowledged packet has been
lost. At the start of a simulation this is set equal to RTT (a default value) then, as measurements of RTT are
accumulated, Karn's exponential backoff multiplier is incorporated to calculate this parameter.

RTO (current). This is the Retransmission Time Out interval currently being used.

Average Throughput. This is based on the average number of packets successfully transmitted.

Retransmission Percentage. Retransmissions as a percentage of total packets sent.

A.4 Link Components

There are only two input parameters for a
Physical Link, link speed and distance.
The link speeds shown in the window are
not selectable with the mouse; the desired
speed (in Mbits/s) must be typed into the
text window. However, the bit rate typed
in need not be exact; the software will
accept a round number near the standard
rate and make the necessary adjustment.
The bit rates shown include overhead bits.
The simulator maps the entry into the
correct payload rate when doing
calculations for bits transmitted. One
exception: if the entry is less than 40
Mbits/s, the entered rate is accepted
directly with no mapping.The link output
parameter is link utilization (in each
direction) in terms of bit rate (Mbits/s).

Name

Link Speed (Mbits/sec): 0

STS-1 51.840 Mbits/sec

STS-3C 155.520 Mbits/sec

STS-12C 622.080 Mbits/sec

STS-24C 1244.160 Mbits/sec

DS-3 44.736 Mbits/sec

ATM-F Multimode Fiber 100 Mbits/sec

Distance (km):

Link Rate (Mbits/sec) to Switch n:

Link Rate (Mbits/sec) to B-TE n:

75

APPENDIX B: Meter Types

The Binary meter type is most useful for true/false indicators such as
flags. If assigned to a parameter with numerical values, the rectangle
will be shaded with one of five colors to differentiate it from a binary
parameter.

This meter consists of a horizontal bar whose length is
proportional to the parameter value. This type is most useful
for parameters that are expressed as a percentage of some
maximum value. The Y-axis scale setting applies to the
horizontal dimension in this case. In the example shown, if the
Y-axis scale is 100, then the value indicated is approximately

40. The X-axis scale for this meter is undefined and cannot be set. (This reversal of axes is
unintended; it will be corrected in future versions.)

The log meter type is like the bar graph except that the
horizontal scale is logarithmic. Like the bar graph, the Y-axis
scale setting applies to the horizontal dimension. In the
example shown, if the Y-axis scale is 10, the value indicated is
approximately 5. The X-axis scale is undefined and cannot be
set.

The TIME HISTORY A meter displays parameter values that
have been averaged over an interval of time. When setting the
X-axis scale, the user is asked to enter a sampling interval (in
microseconds). This is the minimum interval between lines
drawn on the screen, i.e., the minimum update interval. The
meter will not be updated unless the parameter value is changing.
When an update does occur, the value is the average value since
the last update.

The Y-axis scale is set by the user, but the full scale range will be
adjusted by the program as necessary. For example, if the user
sets the Y-scale to 1000 and the parameter values begin to
exceed 1000, the full scale range will be doubled to 2000. A

horizontal line will be drawn at the midpoint of the meter to indicate the scale change. This
process of doubling the range will be repeated as often as necessary, resulting in many horizontal
lines on the face of the meter. The vertical distance between these lines will always represent the
Y-axis value set by the user.

True

False

Binary Meters

Bar Graph

Log Graph

Time History A

76

The TIME HISTORY D meter is similar to the A type, but the
update of the meter occurs every time the parameter value
changes. The value displayed is the actual value of the
parameter and not an average. Since X dimension of the meter
is dependent on the rate of change of the parameter, the X-axis
scale cannot be set by the user. The Y-axis scale behavior is
the same as for the TIME HISTORY A meter.

The Delta meter type indicates the absolute value of the change
in the value of a parameter. The meter is updated every time a
change occurs. Since the X dimension of the meter is
dependent on the rate of change of the parameter, the X-axis
scale cannot be set by the user. In this example, the Y-axis
scale is 5; the parameter value changes by an increment of one
several times, then two several times, then three, etc. The Y-
axis scale behavior is the same as for the TIME HISTORY A
meter.

To use the Histogram meter the user must make four entries
in the meter setup window:

Histogram Min:
Histogram Max:
Histogram Cells:
Histogram Samples:

Histogram Min and Max define the X-axis range of the meter.
The value of Histogram Cells determines how many cells (or
"classes") the histogram will have. The total number of

samples to be included in the figure is entered in Histogram Samples. The Y-axis represents the
number of occurances of the parameter value in the specified range. For example, if Min = 0,
Max = 100, Histogram Cells = 4, and Histogram Samples = 50, then the meter is divided into four
cells representing value ranges of 1-25, 26-50, 51-75, and 76-100. Occurances of 10, 20, 5, and
15 in these ranges, respectively, will result in a figure like that shown. The total Y-axis scale is
50, the same as the total number of samples included.

Time History D

Delta

Delta

77

APPENDIX C: Configuration File Formats

Network configurations that have been created with the simulator program may be saved in files
for future use. The SAVE and SNAP commands, described briefly in sections 4.3.3 and 6.4, are
used to create these files. This appendix gives a detailed description of the file formats.

C.1 Format of the SAVE file.

The SAVE file conserves information about the components, including their screen position, the
values of their input parameters, their interconnection with neighboring components, and the
established routes (virtual circuits). Note that it does not preserve values of output parameters,
status of information windows, meters, or data logging instructions; for these features use the
SNAP file described below.

The listing below is an example of a SAVE file. There are three distinct types of information in
the file - component descriptions, linkages, and route definitions.

The component descriptions come first. The first line of each description begins with the
keyword component, followed by the component's name in single quotes, then the component
type in capital letters, and finally the x and y coordinates of the screen position of the component.
The lines immediately following are a listing of the input parameters and their values. Any text on
a line after a pound sign (#) is a comment; the comment identifies the parameter.

Following all the component descriptions are the linkages. Each line of this group begins with the
keyword neighbor1, followed by a component's name in single quotes, and then either a physical
link name or another component name in single quotes. In the example, 'switch1' has two physical
links attached, while the B-TE named 'host1' is connected to the ATM Application named 'tcp1'.

The last group of lines in the file is the route listing. Each line begins with the keyword route1,
which is followed by the names of all components in the route. Each component name is in
quotes. The component list always begins and ends with an ATM Application component.

Sample SAVE file:
component 'switch1' SWITCH 417 341
param 'switch1' # switch
param 0 # Delay to process a cell (uSec): 0
param 155 # Switching Slot time (Mbit/s): 155
param 10000 # Output q_size (cells, -1=inf): 10000
param 550 # High Threshold for Q Congestion Flag: 550
param 450 # Low Threshold for Q Congestion Flag: 450
param 1 # Logging every (ticks) (e.g., 1, 100): 1

component 'host1' BTE 331 452
param 'host1' # host1param 50 # Max Output Queue Size(-1=inf): 50

78

param 1 # Logging every (ticks) (e.g. 1, 100): 1
 .
 .
 .
neighbor1 'switch1' 'link1'
neighbor1 'switch1' 'link2'
neighbor1 'host1' 'tcp1')
 .
 .
 .

route1 'tcp1' 'host1' 'link1' 'switch1' 'link2' 'host2' 'tcp2'

C.2 Format of the SNAP File.

The SNAP file contains all the configuration information of a SAVE file plus additional
information that reveals the status of the simulated network at a particular point in time, i.e., when
a "snapshot" of the simulation has been made.

At the top of the file are two lines starting with the pound sign (#). The first line records the seed
used for that particular simulation run. (This line will not be loaded or used if the file is used as a
configuration file.) The second line records the time (in ticks) when thesnapshot was taken.

Following the two lines starting with the pound sign is a listing of all the components in the
network. The format of the component listing is the same as for the SAVE file, but with some
additions. If component had an open information window when the snapshot was taken, the
keyword infowindow appears immediately after the line with the component keyword. Next
comes the input parameter listing, each line beginning with the word param and followed
immediately with a number indicating the parameter's value. Following the value are two other
numbers. The first number indicates whether or not the log box is active; any number between 0 -
41 means it is inactive, 42 -77 indicates an active log box. (For input parameters, an active log
box means that the parameter line will be recorded once in the log file. The box can only be
activated by changing this number in the SNAP file, not by clicking on the box in the window.)
The final number on these lines is unused and is always a zero.

Following the param lines is a list of all output parameters, each line beginning with the keyword
pflags. The text on each of these lines following the pound sign is a comment that contains the
parameter description and value. (Output parameter values are not used when the SNAP file is
used as a configuration file.)On each output parameter line, following the pflags keyword, there is
a 2 or a 4 with the letter 'a' or 'b' appended. This is a code that reveals whether the output
parameter has its data logging box in the active mode, and/or its meter window open. The
different combinations are as follows:

2a = the log box is not active, the meter window is closed.
2b = the log box is active, the meter window is closed.

79

4a = the log box is inactive, the meter window is open.
4b = the log box is active, the meter window in open.

Following the above is another entry consisting of a single digit with the value of 1 through 7.
This digit represents the type of meter used for the graphical display. The types are identified as
follows:
1 = Binary meter
2 = Bar graph
3 = Log graph
4 = time history A
5 = time history D
6 = Delta meter
7 = Histogram

If the meter window for an output parameter is open, the coordinates of its position on the screen
and its dimensions are given immediately following the meter type entry. For example, for the line
pflags 2b 4 562 424 159 93, the x and y coordinates of the window are 562 and 424, and 159 and
93 are the height and width, respectively.

The remainder of the SNAP file contains linkage and route definition; these are in a format
identical to the SAVE file.

Sample SNAP file:

Seed 776093072
Time of snapshot (ticks) 0
component 'switch1' SWITCH 417 341
infowindowparam 'switch1' 32 0 # switch1
param 0 12 0 # Delay to process a cell (uSec): 0
param 155 12 0 # Switching Slot time (Mbit/s): 155
param 10000 12 0 # Output q_size (cells, -1=inf): 10000
param 550 12 0 # High Threshold for Q Congestion Flag: 550
param 450 12 0 # Low Threshold for Q Congestion Flag: 450
param 1 12 0 # Logging every (ticks) (e.g. 1, 100): 1
pflags 2a 4 #Cells Received: 0
pflags 2a 4 #Cell Drop %: 0
pflags 2a 4 #Cells in VBR Q to link1: 0
pflags 2a 4 #Cells dropped in VBR Q to link1: 0
flags 2a 4 #Cells in ABR Q to link1: 0
pflags 2a 4 #Cells Dropped in ABR Q to link1: 0
pflags 2a 1 #Congestion for Link link1: FALSE
pflags 2a 4 #Cells in VBR Q to link2: 0
pflags 2a 4 #Cells dropped in VBR Q to link2: 0
pflags 2a 4 #Cells in ABR Q to link2: 0
pflags 2a 4 #Cells Dropped in ABR Q to link2: 0
pflags 2a 1 #Congestion for Link link2: FALSE

80

component 'host2' BTE 562 460
param 'host2' 32 0 # host2
param 50 12 0 # Max Output Queue Size(-1=inf): 50
param 1 12 0 # Logging every (ticks) (e.g. 1, 100): 1
pflags 2b 4 562 424 159 93 #Cells Received: 0
pflags 2a 4 #Cells in VBR Q to link2: 0
pflags 2a 4 #Cells dropped in VBR Q to link2: 0
pflags 2a 4 #Cells in ABR Q to link2: 0
pflags 4b 1 446 547 130 55 #Cells Dropped in ABR Q to link2:

