[U. S. Geological Survey]

Chapter 17

Carbon Cycling in Terrestrial Environments

Yang Wang, Thomas G. Huntington, Laurie J. Osher, Leonard I. Wassenaar,
Susan E. Trumbore, Ronald G. Amundson, Jennifer W. Harden, Diane M. McKnight,
Sherry L. Schiff, George R. Aiken, W. Berry Lyons, Ramon O. Aravena and Jill S. Baron



Isotope Tracers in Catchment Hydrology (1998), C. Kendall and J. J. McDonnell (Eds.)
Elsevier Science B.V., Amsterdam, pp. 577-610.



References

Aiken, G.R., McKnight, D.M., Thorn, K.A. and Miller, L., 1991. Evidence for the diffusion of aquatic fulvic acids from the sediments of Lake Fryxell, Antarctica. In: R.A. Baker (Editor), Organic substances and sediments in water. Lewis, Boca Raton, Florida, pp. 75-88.

Aiken, G.R., McKnight, D.M., Wershaw, R.L. and MacCarthy, P., 1985. Humic Substances in Soil, Sediment, and Water. John Wiley and Sons, New York. 692 p.

Aiken, G., McKnight, D., Harnish, R. and Wershaw, R., 1995. Geochemistry of aquatic humic substances in the Lake Fryxell Basin, Antarctica. Biogeochemistry, 34: 157-188.

Amundson, R., Wang, Y., Chadwick, O., Trumbore, S., McFadden, L., McDonald, E., Wells, S. and DeNiro, M., 1994. Factors and processes governing the carbon-14 content of carbonate in desert soils. Earth and Planetary Science Letters, 125: 385-405.

Anderson, D.W. and Paul, E.A., 1984. Organomineral complexes and their study by radiocarbon dating. Soil Science Society of America Journal, 48: 298-301.

Appelo, C.J. and Postma, D., 1993. Geochemistry, groundwater and pollution. A.A. Balkema, Rotterdam, 536 p.

Aravena, R., Schiff, S.L., Warner, B.G. and Trumbore, S.E., 1997. Carbon dynamics in a small boreal forest peatland: Importance of hydrology. Biogeochemistry (submitted).

Aravena, R., Warner, B.G., Charman, D.J., Belyea, L.R., Nathur, S.P. and Dinel, H., 1993. Carbon isotope composition of deep carbon gases in an ombrogeneous peatland, Northwestern Ontario, Canada. Radiocarbon, 35: 271-276.

Aravena, R. and Wassenaar, L.I., 1993. Dissolved organic carbon and methane in a regional confined aquifer: Carbon isotopic evidence for associated subsurface sources. Appl. Geochem., 8: 483-493.

Aravena, R., Wassenaar, L.I. and Plummer, L.N., 1995. Estimating 14C groundwater ages in a methanogenic aquifer. Water Resour. Res., 31: 2307-2317.

Artinger, R., Buckau, G., Kim, J.I., Geyer, S. and Wolf, M., 1996. The influence of sedimentary organic matter on dissolved fulvic acid in groundwater: significance for groundwater dating with 14C in dissolved organic matter. Proceedings of IAEA International Symposium on Isotopes in Water Resource Management, March 1995, Vienna, IAEA-SM-336-26.

Baldock, J.A., Oades, J.M., Water, A.G., and Peng, X., 1992. Aspects of the chemical structure of soil organic materials as revealed by solid-state C-13 NMR spectroscopy. Biogeochemistry, 16(1): 1-42.

Balesdent, J., Mariotti, A. and Boisgontier, D., 1990. Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. Jour. of Soil Science, 41: 587-596.

Balesdent, J., Mariotti, A. and Guillet, B., 1987. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry, 19: 25-30.

Balesdent, J., Wagner, G.H. and Mariotti, A., 1988. Soil organic matter turnover in long term field experiments as revealed by Carbon-13 natural abundance. Soil Science Society of America Journal, 52: 118-124.

Baron, J.S., 1992. Biogeochemistry of a Subalpine Ecosystem. Springer-Verlag, NY, 247 p.

Baron, J.S., McKnight, D.M. and Denning, A.S., 1991. Sources of dissolved and particulate organic material in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA. Biogeochemistry, 15: 89-110.

Bauer, J.E., Haddad, R.I. and DesMarais, D.J., 1991. Method for determining stable isotope ratios of dissolved organic carbon in interstitial and other natural marine waters. Marine Chem., 33: 335-351.

Birdsey, R., Plantinga, A. and Heath, L., 1993. Past and prospective carbon storage in United States forests. For. Ecol. Manage., 58: 33-40.

Cambardella, C.A. and Elliott, E.T., 1992. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56: 777-783.

Campbell, C.A., Paul, E.A., Rennie, D.A. and McCallum, K.J., 1967a. Applicability of the carbon-dating method of analysis to soil humus studies. Soil Science, 104: 217-227.

Campbell, C.A., Paul, E.A., Rennie, D.A. and McCallum, K.J., 1967b. Factors affecting the accuracy of the carbon dating method of analysis to soil humus studies. Soil Science, 104: 81-84.

Chanton, J.P., Whiting, G.J., Showers, W.J. and Crill, P., 1992. Methane flux form Peltandra virginica: Stable isotope tracing and chamber effects. Global Biogeochem. Cycles, 2: 289-298.

Chanton, J.P., Whiting, G.J., Happell, J.D. and Gerard, G., 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic botany, 46: 111-128.

Cherkinsky, A.E. and Brovkin, V.A., 1991. A model of humus formation in soils based on radiocarbon data of natural ecosystems. International radiocarbon conference, Tucson, Arizona. Radiocarbon, 33: 186-187.

Ciais, P., Tans, P., White, J.W., Trolie, M., Francey, R., Berry, J., Randall, D., Sellers, P., Collatz, J. and Schimel, D., 1995. Partitioning of ocean and land uptake of CO2 as inferred by 13C measurements from NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Jour. of Geophysical Res., 100: 5051-5070.

Clymo, R.S., 1984. The limits to peat bog growth. Phylosophical Trans. Royal Soc. London, 303: 605-654.

Davidson, E.A. and Ackerman, I.L., 1993. Changes in soil carbon inventory following cultivation of previously untilled soil. Biogeochemistry, 20: 161-194.

Deck, B., Whalen, M., Roulet, N., Kelly, C. and Southon, J., 1992. 13C, D and 14C in methane from tundra sites. EOS, 7: 3-14.

Deines, P., 1980. The isotopic composition of reduced organic carbon. In: P. Fritz and J.C. Fontes (Editors), Handbook of Environmental Isotope Geochemistry, 1. The Terrestrial Environment, Elsevier, Amsterdam, pp. 329-406.

Desjardins, T., Andreux, F., Volkoff, B. and Cerri, C., 1994. Organic carbon and 13C contents in soils and soil size fractions, and their changes due to deforestation and pasture installation in eastern Amazonia. Geoderma, 61: 103-118.

Detwiler, R.O. and Hall, C.A.S., 1988. Tropical forests and the global carbon cycle. Science, 239: 43-47.

Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C. and Wisniewski, J., 1994. Carbon pools and flux of global forest ecosystems. Science, 263: 185-190.

Dzurec, R.S., Boutton, T.W., Caldwell, M.M. and Smith, B.N., 1985. Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Curlew Valley, Utah. Oecologia, 66: 17-24.

Eswaran, H., V.d. Berg, E. and Reich, P., 1993. Organic carbon in soils of the world. Soil Science Society of America Journal, 57: 192-194.

Farquhar, G.D., Ehleringer, J.R. and Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis: Annu. Rev. Plant Physiol. Plant Mol. Bio., 40: 503-537.

Fisher, M.J., Rao, I.M., Ayarza, M.A., Lascano, C.E., Sanz, J.I., Thomas, R.J. and Vera, R.R., 1994. Carbon storage by introduced deep-rooted grasses in the south american savannas. Nature, 371: 236-238.

Francois, R.A., 1987. A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. Geochim. et Cosmochim. Acta, 51: 17-27.

Frey, S., Elliott, E.T. and Palm, C.A., 1993. The role of texture and clay mineralogy on organic matter content of soil aggregates from tropical forest soils. In: Proceedings of the SSSA Annual Meeting, November, Cincinnati, OH, p. 248.

Gates, W.L., Mitchell, J., Boer, G.J., Cubasch, U. and Meleshko, V.P., 1992. Climate modelling, climate prediction and model validation. In: J.T. Houghton, B.A. Callander and S.K. Varney (Editors), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, England, pp. 97-134.

Gerasimov, I.P. and Chichagova, O.A., 1971. Some problems in the radiocarbon dating of soil. Soviet Soil Sciences, 3: 519-527.

Geyer, S., Wolf, M., Wassenaar, L.I., Fritz, P., Bukau, G. and Kim, J.J., 1994. Isotopic investigations on fractions of dissolved organic carbon for 14C groundwater dating. International Atomic Energy Agency SM-329, Vienna. pp. 359-380.

Gilet-Blein, N., Marien, G. and Evin, J., 1980. Unreliability of 14C dates from organic matter of soils. Radiocarbon, 22: 919-929.

Goh, K.M., 1991. Carbon Dating. In: D.C. Coleman and B. Fry (Eds), Carbon isotope techniques, Academic Press, INC, Harcourt Brace Jovanovich, Publishers, San Diego, pp. 125-145.

Goh, K.M. and Stout, J.D., 1972. Radiocarbon enrichment and the turnover of soil organic matter in a chronosequence of soils developed on wind-blown sand in New Zealand. Proceedings of the 8th International Conference on Radiocarbon Dating. Vol. 1. Wellington, New Zealand: pp. 449-463.

Goh, K.M., Stout, J.D. and O'Brien, B.J., 1984. The significance of fractionation dating in dating the age and turnover of soil organic matter. New Zealand Jour. of Soil Science, 35: 69-72.

Goh, K.M., Molloy, B.P.J. and Rafter, T.A., 1977a. Radiocarbon dating of Quaternary loess deposits, Banks Peninsula, Canterbury, New Zealand. Quaternary Res., 7: 177-196.

Goh, K.M., Stout, J.D. and Rafter, T.A., 1977b. Radiocarbon enrichment of soil organic matter fractions in New Zealand soils. Soil Science, 123: 385-391.

Goh, K.M., Rafter, T.A., Stout, J.D. and Walker, T.W., 1976. The accumulation of soil organic matter and its carbon isotope content in a chronosequence of soils developed on aeolian sand in New Zealand. New Zealand Jour. of Soil Science, 27: 89-100.

Gorham, E., 1991. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecological Applications, 1: 182-195.

Grant-Taylor, T.L., 1972. The extraction and use of plant lipids as a material for radiocarbon dating. Proceedings of the 8th International Conference on Radiocarbon Dating. pp. 439-447.

Grøn, C., Wassenaar, L.I. and Krog, M., 1996. Origin and structure of aquatic humic substances from three Danish aquifers. Environment International, 22(5): 519-534.

Guillet, B., Faivre, P., Mariotti, A. and Khobzi, J., 1988. The 14C dates and 13C/12C ratios of soil organic matter as a means of studying the past vegetation in intertropical regions: examples from Colombia (South America). Paleogeography, Paleoclimatology, Paleoecology, 65: 51-58.

Hamilton, J.D, Kelly, C.A., Rudd, J.W.M., Hesslein, R.H. and Roulet, N.T., 1994. Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay Lowlands (HBLs). Jour. of Geophysical Res., 99: 1495-1510.

Hammond, A.P., Goh, K.M. and Tonkin, P.J., 1991. Chemical pretreatments for improving the radiocarbon dates of peats and organic silts in a gley podzol environment: Grahams Terrace, North Westland. New Zealand Journal of Geology and Geophysics, 34: 191-194.

Harden, J.W., Sundquist, E.T., Stallard, R.F. and Mark, R.K., 1992. Dynamics of soil carbon during the deglaciation of the Laurentide Ice Sheet. Science, 258: 1921-1924.

Harden, J.W., Trumbore, S.E. and O'Neill, K.P., 1994. Dynamics of peat accumulation in response to fire near Thompson, Manitoba. In "Amer. Quaternary Association, Biannual meeting June 17-22.", Minneapolis.

Harden, J.W., Trumbore, S.E. and O'Neill, K.P., 1997. Soil carbon storage: a comparison of three models. Biogeochemistry (submitted).

Harkness, D.D., Harrison, H.A.F. and Bacon, P.J., 1986. The temporal distribution of 'bomb' 14C in a forest soil. Radiocarbon, 28: 328-337.

Harrison, K. and Broecker, W., 1993. A strategy for estimating the impact of CO2 fertilization on soil carbon storage, Global Biogeochemical Cycles, 7: 69-80.

Harrison, K., Broecker, W. and Bonani, G., 1993. The effect of changing land use on soil radiocarbon. Science, 262: 725-726.

Hass, H. and Dalbey, T., 1991. Absolute radiocarbon chronology of the Aubrey Clovis site, Texas, based on soil humate stratigraphy. International radiocarbon conference, Tucson, Arizona. Radiocarbon, 33: 204.

Herrera, R. and Tamers, M.A., 1971. Radiocarbon dating of tropical soil associations in Venezuela. In: D.H. Yaalon (Ed), Paleopedology--Origin, Nature and Dating of Paleosols. International Society of Soil Science and Israel University Press. Jerusalem, pp. 109-115.

Houghton, R.A., Skole, D.L. and Lefkowitz, D.S., 1991. Changes in the landscape of Latin America between 1850 and 1980. II. A net release of CO2 to the atmosphere, Forest Ecol. Manage., 38: 235-262.

Huntington, T.G., 1995. Carbon sequestration in an aggrading forest ecosystem in the southeastern USA. Soil Science Society of America Journal. 59: 1459-1467.

Hsieh, Y.-P., 1993. Radiocarbon signatures of turnover rates in active soil organic carbon pools, Soil Science Society of America Journal, 57: 1020-1022.

Jenkinson, D.S., Adams, D.E. and Wild, A., 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature, 351: 304-306.

Jenkinson, D.S., 1968. Radiocarbon dating of soil organic matter. In: "Rothmansted Experimental Station - Report for 1968", p. 73.

Jenkinson, D.S., Harkness, D.D., Vance, E.D., Adams, D.E. and Harrison, A.F., 1992. Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter, Soil Biology and Biochemistry, 24: 295-308.

Johnson, D.W., Henderson, G.S. and Todd, D.E., 1988. Changes in nutrient distribution in forests and soils of Walker Branch Watershed, Tennessee, over an eleven year period. Biogeochemistry, 5: 275-293.

Johnson, D.W., 1992. Effects of Forest Management on Soil Carbon Storage. Water, Air, and Soil Pollution, 64: 83-120.

Keeling, C.D., Bacstow, R.B., Carter, A.F., Piper, S.C., Whorf, T.P., Heimann, M., Mook, W.G. and Roeloffzen, H., 1989. A three-dimensional model of CO2 transport based on observed winds. I. Analysis of observational data. American Geophysical Union Monograph, 55: 165-234.

Kelly, E.F., Chadwick, O.A., Olson, C.G., Capo, R.C., Gavenda, R., Laird, W., Smith, C. and Hendricks, D.M.. 1993. Quantifying Pedogenic Responses to Climate Hawaii: II Biological and Chemical Transformations. Proceedings of the SSSA Annual Meeting, November, Cincinnati, OH, p. 146.

Lansdown, J.M., Quay, P.D. and King, S.L., 1992. CH4 production via CO2 reduction in a temperate bog: A source of 13C depleted CH4. Geochim. et Cosmochim. Acta, 56: 3493-3503.

Lashof, D., 1989. The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases in climatic changes, Climatic Change, 14: 213-222.

Lekkerkerk, J.J.A., VanDeGeijn, S.C. and VanVeen, J.A., 1990. Effects of elevated atmospheric CO2-Levels on the carbon economy of a soil planted with wheat. In: A.F. Bouwman (Editor), Soils and the Greenhouse Effect, John Wiley and Sons, New York, pp. 422-429.

Letolle, R., 1980. Nitrogen-15 in the natural environment. In: P. Fritz and J.Ch. Fontes (Editors), Handbook of Environmental Geochemistry, Elsevier Scientific Publishing Company, New York, pp. 407-433.

Levin, I., Kromer, B., Schoch-Fischer, H., Berdau, D., Vogel, J. and Munnich, K.O., 1985. 25 years of tropospheric 14C observations in central Europe. Radiocarbon, 27: 1-19.

Long, A., Murphy, E.M., Davis, S.N. and Kalin, R.M., 1994. Natural radiocarbon in dissolved organic carbon in groundwater. In: R.E. Taylor, A. Long and R. Kra (Editors), Radiocarbon after four decades: an interdisciplinary perspective. Springer-Verlag, pp. 288-308.

Luken, J.O., Billings, W.D. and Peterson, K.M., 1985. Succession and biomass allocation as controlled by Sphagnum in an Alaskan Peatland. Canadian Journal of Botany, 63: 1500-1505.

Malmer, N., 1992. Peat accumulation and the global carbon cycle. Catena Suppl. 22. Catena-Verlag Cremling - Desdedt, Germany, pp. 97-110.

Manning, M.R., Melhuish, W.H., Wallace, G., Brenninkmeijer, C.A. and McGill, G., 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon, 32: 37-58.

Martel, Y.A. and Paul, E.A., 1974. The use of radiocarbon dating of organic matter in the study of soil genesis. Soil Science Society of America Proc., 38: 501-506.

Martin, A., Mariotti, A., Balesdent, J., Lavelle, P. and Vuattoux, R., 1990. Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biology and Biochemistry, 22(4): 517-523.

Mary, B., Mariotti, A. and Morel, J.L., 1992. Use of 13C variations at natural abundance for studying the biodegradation of root mucilage, roots and glucose in soil. Soil Biology and Biochemistry, 24(10): 1065-1072.

Matthews, E. and Fung, I., 1987. Methane emission from a natural wetlands: global distribution, area and environmental characteristics of sources. Global Biogeochem. Cycles, 1: 61-86.

McGuire, A.D., Melillo, J.M., Joyce, L.A., Kicklighter, D.W., Grace, A.L., Moore, B. and Vorosmarty, C.J., 1992. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochemical Cycles, 6: 101-124.

McKnight, D.M., Aiken, G.R., Andrews, E.D., Bowles, E.C. and Harnish, R.A., 1993. Dissolved organic material in dry valley lakes: A comparison of Lake Fryxell, Lake Hoare, and Lake Vanda. In: W.J. Green and E.I. Friedmann (Editors), Physical and biogeochemical processes in antarctic lakes. Am. Geophys. Union Antarct. Res. Ser., 59: 119-133.

McKnight, D.M., Harnish, R., Wershaw, R.L., Baron, J.S. and Schiff, S., 1995. Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park. Biogeochemistry, 36: 99-124.

Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Moore III, B., Vorosmarty, C.J. and Schloss, A.L., 1993. Global climate change and terrestrial net primary production. Nature, 363: 234-240.

Minagawa, M., Winter, D.A. and Kaplan, I.R., 1984. Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Analytical Chemistry, 56: 1859-1861.

Murphy, E.M., Davis, S.N., Long, A., Donahue, D. and Jull, A.J.T.,1989a. Characterization and isotopic composition of organic and inorganic carbon in the Milk River Aquifer. Water Resour. Res., 25(8): 1893-1905.

Murphy, E.M., Davis, S.N., Long, A., Donahue, D. and Jull, A.J.T.,1989b. 14C in fractions of dissolved organic carbon in groundwater. Nature, 337: 153-155.

Musselman, R.C. and Fox, D.G., 1991. A review of the role of temperate forests in the global CO2 balance. Jour. Air Waste Manage. Assoc., 41: 798-807.

O'Brien, B.J. and Stout, J.D., 1978. Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biology and Biochemistry, 10: 309-317.

O'Brien, B.J., 1986. The use of natural anthropogenic 14C to investigate the dynamics of soil organic carbon, Radiocarbon, 28: 358-362.

Ode, D.J. and Tieszen, L.L., 1980. The seasonal contribution of C3 and C4 Plant species to primary production in a mixed prairie. Ecology, 61: 1304-1311.

Oeschel, W.C., Hastings, S.J., Vourlitis, G., Jenkins, M., Riechers, G. and Grulke, N., 1993. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source, Nature, 361: 520-523.

O'Leary, M., 1988. Carbon isotopes in photosynthesis. Bioscience, 38: 328-335.

Osher, L., Newman, J. and Amundson, R.G., 1994a. Fractionation of soil organic matter in Andisols for carbon turnover studies. Agronomy Abstracts, Soil Science Society of America, Seattle, WA. p. 339.

Osher, L.J., Matson, P.A. and Amundson, R.G., 1994b. Isotopic records of vegetation change in Hawaii. EOS Transactions, 75(44), Nov. 1 Supplement, AGU. San Francisco, CA.

Paul, E.A., Campbell, C.A., Rennie, D.A. and McCallum, K.J., 1964. Investigations of the dynamics of soil humus utilizing carbon dating techniques. Int. Congr. Soil Sci. Trans. 8th, 0: 201-208.

Parton, W.J., Stewart, J.W.B. and Cole, C.V., 1988. Dynamics of C, N, P, and S in grassland soils: A model. Biogeochemistry, 5: 109-131.

Perrin, R.M.S., Willis, E.H. and Hodge, D.A.H., 1964. Dating of humus podzols by residual radiocarbon activity. Nature, 202: 165-166.

Petterson, C., Arsenie, I., Ephraim, J., Boren, H. and Allard, B., 1989. Properties of fulvic acids from deep groundwaters, The Science of the Total Environment, 81: 287-296.

Petterson, C. and Allard, B., 1991. Dating of groundwaters by C-analysis of dissolved humic substances. In: B. Allard, H. Boren and A. Grimvall (Editors), Humic substances in the aquatic and terrestrial environment, Springer-Verlag, pp. 135-141.

Post, W.M., Emanuel, W.R., Zinke, P.J. and Stangenberger, A.C., 1982. Soil carbon pools and world life zones. Nature, 298: 156-159.

Post, W.M., Pastor, J., King, A.W. and Emanuel, W.R., 1992. Aspects of the Interaction Between Vegetation and Soil Under Global Change. Water, Air and Soil Pollution, 64: 345-363.

Prentice, K.C. and Fung, I.Y., 1990. The sensitivity of terrestrial carbon storage to climate change. Nature, 346: 48-51.

Purdy., C.B., Burr, G.S., Rubin, M., Helz, G.R. and Mignerey, A.C., 1992. Dissolved organic carbon and inorganic 14C concentrations and ages for coastal plain aquifers in southern Maryland. Radiocarbon, 34: 654-663.

Quay, P.D., Tilbrook, B. and Wong, C.S., 1992. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science, 256: 74-79.

Raich, J.W., 1983. Effects of forest conversion on the carbon budget of a tropical soil. Biotropica, 15(3): 177-184.

Raich, J.W. and Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44: 81-99.

Reader, R.J. and Stewart, J.M., 1972. The Relationship Between Net Primary Production and Accumulation for a Peatland in Southeastern Manitoba. Ecology, 53: 1024-1037.

Scharpenseel, H.W., 1971a. Radiocarbon dating of soils. Soviet Soil Sciences, 3: 76-83.

Scharpenseel, H.W., 1971b. Radiocarbon dating of soils-problems, troubles, hopes. In: D.H. Yaalon (Editor), Paleopedology--Origin, Nature and Dating of Paleosols, International Society of Soil Science and Israel University Press, Jerusalem, pp. 77-87.

Scharpenseel, H.W., 1972. Natural radiocarbon measurement on soil organic matter fractions and on soil profiles of different pedogenesis. Proceedings of the 8th International Conference on Radiocarbon Dating, Volume 1, Wellington, New Zealand, pp. 382-394.

Scharpenseel, H.W., 1976. Soil fraction dating. In: R. Berger and H.E. Suess (Editors), Radiocarbon Dating, Proceedings of the Ninth International Conference, University of California Press., Berkeley, pp. 277-283.

Scharpenseel, H.W. and Becker-Heidmann, P., 1991. 25 years of radiocarbon dating soils: a paradigm of erring and learning. International radiocarbon conference, Tucson, Arizona. Radiocarbon, 33: 238.

Schell, D.M. and Ziemann, P.J., 1983. Accumulation of peat carbon in the Alaska coastal plain and is role in biological productivity. In: Pewe, T.L. (Editor), Permafrost: Fourth International Conference Proceedings, National Academy Press, Fairbanks, Alaska, pp. 1105-1110.

Schiff, S.L., Trumbore, S.E. and Dillon, P.J., 1990. Dissolved organic carbon cycling in forested watersheds: A carbon isotope approach. Water Resour. Res., 26: 2949-2957.

Schimel, D.S., Braswell, B.H., Holland, E.A., MnKeown, R., Ojima, D.S., Pinter, T.H., Parton, W.J. and Townsend, A.R., 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 8: 279-294.

Schleser, G.H, 1982. The response of CO2 evolution from soils to global temperature changes. Z. Naturforsch, 37a: 287-291.

Schlesinger, W.H., 1977. Carbon balance in terrestrial detritus. Annual Review of Ecological Systems, 8: 51-81.

Schlesinger, W., 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 348: 232-234.

Schlesinger, W.H., 1991. Biogeochemistry: An analysis of global change. Academic Press, Inc. San Diego, CA. 443 p.

Schlesinger, W.H., 1993. Response of the terrestrial biosphere to global climate change and human perturbation. Vegetation, 104: 295-305.

Schwartz, D., Mariotti, A., Lanfranchi, R. and Guillet, B., 1986. 13C/12C ratios of soil organic matter as indicators of vegetation changes in the Congo. Geoderma, 39: 97-103.

Sedjo, R.A., 1992. Temperate Forest Ecosystems in the Global Carbon Cycle. Ambio, 21: 274-277.

Skjemstad, J.O., LeFeuvre, R.P. and Prebble, R.E., 1990. Turnover of soil organic matter under pasture as determined by 13C natural abundance. Australian Jour. of Soil Res., 28: 267-276.

Skjemstad, J.O., Catchpool, V.R. and LeFeuvre, R.P., 1994. Carbon dynamics in Vertisols under several crops as assessed by natural abundance 13C. Australian Jour.of Soil Res., 32: 11-321.

Smith, T.M. and Shugart, H.H., 1993. The transient response of terrestrial carbon storage to a perturbed. Nature, 361: 523-526.

Smith, T.M., Weishampel, J.F., Shugart, H.H. and Bonan, G.B., 1992. The Response of Terrestrial C Storage to Climate Change - Modeling C-Dynamics at Varying Temporal and Spatial Scales. Water, Air and Soil Pollution, 64: 307-326.

Spalding, R.F., Gormly, J.R. and Nash, K.G., 1978. Carbon contents and sources in groundwaters of the Central Platte Region in Nebraska. Jour. Environmental Quality, 7(3): 428-434.

Spiker, E.C. and Rubin, M., 1975. Petroleum pollutants in surface and groundwater as indicated by the carbon-14 activity of dissolved organic carbon. Science, 187: 61-64.

Stocks, B.J., Lawson, B.D., Alexander, M.E., Van Wagner, C.E., McAlpine, R.S., Lynham, T.J. and Dube, D.E., 1989. The Canadian Forest Fire Danger Rating System: An Overview. The Forestry Chronicle, 65: 258-265.

Stuiver, M., 1965. Carbon-14 content of 18th- and 19th-century wood: variations correlated with sunspot activity. Science, 149: 533-535.

Stuiver, M. and Polache, H., 1977. Reporting of 14C data. Radiocarbon, 19: 355-363.

Suess, H., 1955. Radiocarbon concentration in modern wood. Science, 122: 415-417.

Sun, L., Perdue, E.M. and McCarthy, J.F., 1995, Using reverse osmosis to obtain organic matter from surface and ground waters. Wat. Resour. Res., 29: 1471-1477.

Sundquist, E.T., 1993. The global carbon dioxide budget. Science, 259: 935-941.

Tans, P.P., Fung, I.Y. and Takahashi, T., 1990. Observational constraints on the global atmospheric CO2 budget. Science, 247: 1431-1438.

Tate, K.R., 1972. Radiocarbon dating in studies of soil organic matter-vegetation relationships. Proceedings of the 8th International Conference on Radiocarbon Dating. Wellington, New Zealand, pp. 408-419.

Teeri, J.A. and Stowe, L.G., 1976. Climatic patterns and the distribution of C4 grasses in North America. Oecologia, 23: 1-12.

Thurman, E.M., 1985a. Organic geochemistry of natural waters. New York, Martinus Nijhof/Dr W Junk Publishers, 497 p.

Thurman, E.M., 1985b. Humic substances in groundwater. In: G.R. Aiken, P. McCarthy, D. McKnight and R. Wershaw (Editors), Humic substances in soil, sediment, and water. New York, John Wiley and Sons, pp. 87-103.

Thurman, E.M. and Malcolm, R.L., 1981. Preparative isolation of aquatic humic substances. Environ. Sci. Tech., 15: 463-466.

Tornqvist, T.E., De Jong, A.F.M., Osterbaan, W.A. and V.d. Borg, K., 1991. New perspectives for radiocarbon dating organic deposits by accelerator mass spectrometry. International radiocarbon conference, Tucson, Arizona. Radiocarbon, 33: 251.

Townsend, A.R., Vitousek, P.M. and Turmbore, S.E., 1995. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology, 76(3): 721-733.

Trumbore, S.E., Vogel, J.S. and Southon, J.R., 1989. AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon, 31: 644-654.

Trumbore, S.E., Bonani, G. and Wolfli, W., 1990. The rates of carbon cycling in several soils from AMS 14C measurements of fractionated soil organic matter. In: A.F. Bouwman (Editor), Soils and the Greenhouse Effect, John Wiley and Sons, pp. 405-414.

Trumbore, S.E., 1993. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles, 7: 275-290.

Trumbore, S.E., Davidson, E.A., de Camargo, P.B., Nepstad, D.C. and Martinelli, L.A., 1995. Below-ground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles, 9: 515-528.

Trumbore, S.E., Chadwick, O.A. and Amundson, R., 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 272: 393-396.

Veldcamp, E., 1994. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58: 175-180.

Vitorello. V.A., Cerri, C.C., Andreaux, F., Feller, C. and Victoria, R.L., 1989. Organic mater and natural carbon-13 abundance in forested and cultivated Oxisols. Soil Science Society of America Journal, 53: 773-778.

Vitt, D.H., 1990. Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Bot. Jour. Linnean Soc., 104: 35-39.

Wang, Y., Cerling, T.E. and Effland, W.R., 1993. Stable isotope ratios of soil carbonate and soil organic matter as indicators of forest invasion of prairie near Ames, Iowa. Oecologia, 95: 365-369.

Wang, Y., Amundson, R. and Trumbore, S.E., 1996a. Radiocarbon dating of soil organic matter. Quaternary Res., 45: 282-288.

Wang, Y., McDonald, E., Amundson, R., McFadden, L. and Chadwick, O., 1996b. An Isotopic Study of Soils in Chronological Sequences of Alluvial Deposits, Providence Mountains, California. Geological Society of America Bulletin, 108: 379-391.

Wassenaar, L.I., Aravena, R. and Fritz, P., 1989. The geochemistry and evolution of natural organic solutes in groundwater. Radiocarbon, 31: 865-876.

Wassenaar, L.I., Aravena, R., Barker, J.F. and Fritz, P., 1990a. Isotopic composition (13C, 14C, 2H) and geochemistry of aquatic humic substances from groundwater. Organic Geochemistry, 15: 383-396.

Wassenaar, L.I., Hendry, M.J., Aravena, R. and Fritz, P., 1990b. Organic carbon isotope geochemistry of clayey deposits and their associated porewaters, Southern Alberta. Jour. of Hydrol., 120: 251-270.

Wassenaar, L.I., Aravena, R., Barker, J.F. and Fritz, P., 1991a. Controls on the transport and carbon isotopic composition of dissolved organic carbon in a shallow groundwater system, Central Ontario, Canada. Chem. Geol. (Iso. Geo. Sec.), 87: 39-57.

Wassenaar, L.I., Aravena, R., Hendry, M.J. and Fritz, P., 1991b. Radiocarbon in dissolved organic carbon, a possible groundwater dating method: Case studies from Western Canada. Water Resour. Res., 27: 1975-1986.

Wassenaar, L.I., Aravena, R. and Fritz, P., 1992. Radiocarbon contents of dissolved organic and inorganic carbon in shallow groundwater systems - implications for groundwater dating. In: Isotope Techniques in Water Resources Development, IAEA, Vienna, pp. 143-151.

White, J.W.C., Ciais, P., Figge, R.A., Kenny, R. and Markgraf, V., 1994. A high-resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature, 367: 153-156.

Whiticar, M.J., Faber, E. and Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence. Geochim. et Cosmochim. Acta, 50: 693-709.

Wofsy, S.C., Goulden, M. L., Munger, J.W., Fan, S.M., Backwin, P.S., Daube, B.C., Bassow, S.L. and Bazzaz, F.A., 1993. Net exchange of CO2 in a mid-latitude forest. Science, 260: 1314-1317.

Yapp, C.R. and Epstein, S., 1982. A re-examination of cellulose carbon bound hydrogen D measurements and some factors affecting plant water D/H relationships. Geochim. et Cosmochim. Acta, 46: 955-965.



The URL of this page is: http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itch17refs.html
This page maintained by Carol Kendall, ckendall@usgs.gov
This page was last changed on November 24, 1998.
Return to the Periodic Table
Return to the IsoPubs Table of Contents