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Abstract- In the future, users will request engineering 
services automatically much like we request stock quotes 
and weather reports today. Rather than requesting an 
engineering service directly from an engineer, a user will 
request the service from an automated server, which can be 
accessed from a web browser or other computer 
applications. The engineer's duties will shift to maintaining 
and enhancing the automated services, and performing 
expert-level analysis. This paradigm shift is beneficial to 
the engineer who is currently burdened with providing 
repetitive services. It is also beneficial to the users, who 
will receive a faster response from an automated server than 
a person can provide. Unfortunately, it is vastly more 
difficult to expose engineering services than services such 
as stock quotes and weather services. This paper argues that 
service technology is sufficiently mature to provide many 
engineering services reliably and securely. It also illustrates 
a methodology for creating engineering services using the 
engineering applications that today's engineers use to 
provide their services. Once automated engineering 
services are available, they can be used in conjunction with 
a workflow management system to transform engineering 
processes in the same way business processes have been 
transformed in the last decade. This paper describes a 
prototype of an automated workflow system, developed by 
the Jet Propulsion Laboratory, that provides navigation and 
telecommunication services. 
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1. INTRODUCTION 
Workflow management systems have become prevalent in 
the enterprise. Large organizations provide many of their 
administrative tasks through workflow management systems 
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[1,2,3]. Some types of enterprises use workflow 
management in their business processes, for example on- 
line retailers and brokerage houses. While converting the 
processes of large engineering enterprises to take advantage 
of automatic workflow is nontrivial, this paper describes 
how it can be done. As a proof of concept, we have 
implemented a prototype of an automated workflow system 
for preparation of engineering data for telecommunication 
between the ground antennas of NASA's Deep Space 
Network (DSN) and the Jet Propulsion Laboratory's (JPL) 
spacecrafts. 

At the heart of the solution is a paradigm shift from present 
day processes where engineering services are provided 
directly by the engineer to a process that relies on 
automated, computerized engineering services. Consider 
the daily activities of a stockbroker in the 1970's. He spent 
a large portion of his day informing clients of the current 
status of their portfolios. Today clients get such 
information from automated telephone or web services. This 
brokerage service is fully automated with the information 
available anytime, anywhere. The broker can spend his 
time in his field of expertise - performing stock analysis and 
portfolio management. We have the same goal in mind for 
the engineering experts. Today, a navigation expert at JPL 
spends too much time on the large number of requests for 
routine navigational computations he receives. In the 
future, we want to see these requests submitted to an 
automated system. The navigation expert should spend his 
day analyzing complex navigational problems, or enhancing 
the capabilities of the automated service. 

The engineering domain is too broad to admit a single 
automation solution. There are many engineering activities 
at JPL with which engineers are involved. Among these are 
mission design, spacecraft design, communication, 
performance analysis, verification, etc. Many of these 
activities require creativity and problem-solving skills, 
which we are unlikely to automate even in the distant 
future. Other activities, however, involve well-understood 
computations that already exist in the form of an algorithm 
or a series executable program. It is this second set of 
activities that we would like to provide as automated 

* This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National 
Aeronautics and Space Administration. 

mailto:ruth@,alum.mit.edu
mailto:silvino.c.zendejas@jpl.nasa.gov


services. Engineers perform these computations routinely, 
usually by invoking existing programs. The primary 
advantage in the engineer's direct control of the 
computation is verification of correctness - an engineer can 
look over the results quickly and determine if there is an 
obvious problem. This ability is extremely important in this 
environment where the cost of a mistake is overwhelming. 
We compensate for this capability by validating the 
software and using the software routinely. The advantages 
of providing the computation as an automated service 
include relieving the engineer from such routine, repetitive 
activities, improving response time to the user and 
simplifying organizational procedures. 

We believe, from research of automated services in other 
domains and prototyping experience in our engineering 
domain, that the state of the art in Intemeflntranet based 
service technology provides sufficient reliability, 
availability and security. There are, however, technical 
challenges that are unique to large engineering enterprises. 
Engineering enterprises typically use heterogeneous 
computing platforms, including Unix workstations, PC's, 
Macintoshes. Interoperability is one of the key issues in 
groupware, with few offerings supporting multiple 
computing platforms [4,5]. There is great variation in the 
software tools that engineers use. They have confidence in 
their tool set and are not typically willing to switch tools to 
maintain enterprise-wide consistency. It is unusual for 
engineering organizations to mandate use of specific 
engineering tools, except, perhaps, for tools with prohibitive 
cost, such as CAD tools. Therefore, it is difficult to support 
the interoperability required by workflow systems. We 
overcome the issues of heterogeneous and distributed 
computing environments through the use of a distributed 
component communications protocol. There are several 
choices for remote object communications: CORBA [6], 
Java RMI[7] and SOAP[8] are the most notable. We 
elected to use the Simple Object Access Protocol (SOAP). 

Our strategy, toward enabling a service-oriented paradigm 
in engineering, is to provide routine services through 
Application Programming Interfaces (API's). The main 
contribution of this paper is an in-depth analysis of what 
comprises an automated service, and how to create a service 
and expose an API from an existing engineering 
application. These existing engineering applications, 
unfortunately, do not naturally lend themselves to re-use, 
but, on the other hand, they are not traditional "legacy" 
applications. These programs are like legacy applications in 
that they do not adhere to modem software development 
practices. They are unlike legacy applications in that they 
are not static, they are dynamic and continue to be 
developed and improved today. These programs typically 
embody a great deal of engineering know-how and are too 
costly to re-write. They require quite a bit of environment 
setup to operate. Often, they are not adequately 
documented, provide many tunable parameters and, as such, 

require an expert operator to produce useful results. We 
overcome these issues with wrapper code that exposes the 
functionality of the application in a modern, modular, re- 
usable API. These services, then, become available through 
a browser interface or even to another program. 

With this vision of service-oriented workflow for 
engineering in mind, we come to the practical question of 
how we make these services available. We identify general 
requirements for an application service that we can integrate 
into a workflow management system. These requirements 
are : 

0 Modularity 
0 Concise API 
0 Data availability 
0 Location independence 
0 Monitor status and exception handling 
0 Reliability 
0 Documentation 
0 Asynchronicity 
0 Scalability 

This paper discusses these requirements at length, especially 
as they pertain to the integration of existing applications. 
Having identified these requirements, we describe the 
process of providing a service given an existing application. 
The process is comprised of five steps 

(1) Define the services 
(2) Analyze input and output data 
(3) Create database support 
(4) Write the service proxy, which invokes the legacy 

application 
( 5 )  Write the service monitor, which controls and 

monitors the execution of the service 
In the paper we describe each of these steps. The ideal set 
of solutions is presented, but implementing this ideal often 
implies a complete re-write of the application. We then 
present a set of compromise solutions that allow us to attain 
the requirements above in a reasonable time fi-ame and cost. 

We have developed a prototype that follows this strategy. 
The prototype provides data services as well as application 
services. Data services include information about missions, 
schedules, ground antennas and more. The data to support 
the prototype resides in an Oracle database, but the data 
source is transparent to the user. At the time of writing, 
application services are provided for view period generation 
and some telecommunications link predictions. (A view 
period is the time span that a ground antenna can view an 
object in space and telecommunications link predictions 
provide configuration information for equipment to support 
communication between ground antenna and spacecraft.) 
This paper describes the methodology used to provide these 
services, the process of exposing an API from a legacy 
application, and the workflow management for executing 
requested services. 



This paper is organized as follows. Section 2 provides a 
(non-comprehensive) overview of fields of work related to 
the work presented in this paper. Section 3 discusses the 
state of engineering practices today and the technical 
challenges for automation. Section 4 provides a vision of 
the engineering services of tomorrow. Section 5 delves into 
the issues related to providing application services, in 
particular details pertaining to providing these services 
using legacy, engineering applications. Section 6 describes 
our Telecommunication Predicts Server Prototype. The 
intention of this paper is to provide a comprehensive 
discussion of the service-oriented vision for engineering. 
Thus some of the detail regarding the workflow 
management system implemented for the prototype is 
omitted from this paper and can be found in [9]. We 
conclude and present lessons learned in section 7. 

2. RELATED WORK 

This paper describes a workflow management system. 
Many workflow management packages exist and more are 
in development 11, 2, 3, 10, 111. Whereas most currently 
available workflow management systems are tied to a 
specific computing platform, with most systems running on 
PC's, our system is platform independent utilizing Java, 
SQL and XML [12]. Today's workflow management 
systems are monolithic centralized programs. Our 
workflow management is data-driven with decentralized 
control. Much of the workflow logic is embedded in a 
database as data, procedures, functions and triggers. This 
approach has the advantage that we can modify the most 
aspects of the workflow logic while the system is online and 
without affecting service availability. For an extensive 
discussion of this approach to workflow see [9]. 

Workflow management systems are often discussed in the 
literature under the umbrella of Computer Assisted 
Cooperative Working and Groupware [4,5]. These 
resources provide excellent discussion of issues the 
enterprise faces when adopting collaboration tools. 

Our system uses a distributed component architecture. In 
particular we are providing distributed services; an area that 
has received considerable attention in the last decade [ 131. 
Two main issues are frequently cited: security and 
communication. Security is very important for our system, 
and we use standard solutions such as firewall, 
authentication and access control. See [14] to learn more 
about security related concerns. 

Several excellent solutions exist to the distributed object 
communication problem. The most notable solutions are 
the Common Object Request Broker Architecture (COMA) 
[6], Java's Remote Method Invocation [7], Microsoft's .NET 
Architecture [ 151 (which replaces Distributed COM 
(DCOM)), XML Remote Procedure Call (XML-RPC) [ 161, 
and the Simple Object Access Protocol (SOAP) [SI. A 

comprehensive comparison among these architectures is 
beyond the scope of this paper, see 1171 for a very good 
analysis. We select SOAP which we feel suits our 
requirements for platform independence, firewall 
penetration and evolution into the future. 

Last, our problem includes legacy application integration, 
which provides some unique challenges. This area of work 
is prevalent in the e-Business community. See [ 18, 191 for 
some discussion of application integration. 

3. ENGINEERING SERVICES TODAY 
Engineers are doing mission critical work. The effect of an 
error in their calculation can be catastrophic to the tune of 
as much as hundreds of millions of dollars. The 
organization places a great deal of trust in its engineers, as 
well as a great deal of blame when failure occurs. It is of no 
wonder, therefore, that the work environment in the 
organization is cautious. Engineering organizations are 
cautious about changing processes, cautious about taking a 
new approach to a problem, and especially cautious about 
software. 

The engineering services required in the organization are, 
therefore, provided as they have been for several decades 
directly by the engineer. At JPL, for example, we have 
several categories of engineering experts. We have 
mechanical engineers who design instruments and 
spacecraft, navigation engineers who plan mission 
trajectories, telecommunication engineers who analyze 
requirements for communication between spacecraft and 
ground antenna, etc. Every mission at JPL uses experts in 
each of these areas. Some missions have a dedicated expert 
in each area, but many smaller missions cannot afford to 
keep an expert for every category and use the services of a 
pool of experts. 

When planning a mission, one person, typically, handles all 
the requests in his category of expertise. The expert almost 
always uses tools to perform the necessary computations. 
Generally speaking his expertise is essential for setting up 
the problem. For example, quite a bit of expert 
telecommunication knowledge and mission-specific 
knowledge is required to set up the parameters for a 
telecommunication computation. After the initial setup 
most computations become routine because the analysis of 
the problem has been done and the all but a few problem 
parameters are unchanged. Consider, for example, a change 
in mission trajectory. This change necessitates re- 
computing telecommunication capabilities, which really 
implies re-running the tool with the new trajectory. Despite 
the fact that this re-computation amounts to changing an 
input and hitting a go button, today it is the expert that 
performs this function. 

The primary technical reason this duty falls to the expert is 



that he is not only an expert in his field; he is an expert at 
running the legacy software tool. The majority of the tools 
we use to do engineering computation are tools that evolved 
in-house by expert engineers. These tools compute very 
sophisticated mathematical models, but lack many of the 
usability features common in today's software tools. They 
may be complicated to install, have complex command line 
interfaces, are subject to core dumps, and provide little or 
no error information. In short, one needs to be an expert to 
use the tool. The bottom line is that, today, experts are 
providing all engineering services manually. 

What is the Price of MSFT Value of my portfolio 

1970's Call stock broker Call stock broker 

I What is the Local Temp 

Add Stock price to my 
aPP 
Manual update 

2001 Updated in portal 

_. . - 

1980's 
1990's 

I I 

Table 1 : Temperature services 

Television stock- ticker Call stock broker Manual update 
Check stock site Check brokerage house Manual update 

site 

understood and are not handled by existing tools. For 
example, the Mars program is comprised of several 
spacecraft, which will be on Mars and in orbit around Mars 
simultaneously. This scenario creates a new challenge for 
our communications network, which until now 
communicated with one spacecraft at a time (except 
occasionally in a manually intensive setting). The 
engineering tools we use must be enhanced with such new 
capabilities. Only the engineering expert, who is already 
over-extended, can do this work. Thus, changing the 
paradigm by which we currently provide engineering 

1980's 

1990's 

2001 

Temp in Mumbai Add Temp to my 

Call a friend Manual update 
aPP 

DSN DSN 
E-mail Galileo NAV or E-mail Galileo NAV or Manual update 
DSN DSN 
E-mail Galileo NAV or E-mail Galileo NAV or Manual update 
DSN DSN 
E-mail Galileo NAV or E-mail Galileo NAV or Manual update 
DSN DSN 

Call a friend Manual update 
Check weather site Manual update 

Updated in portal 
service 

I I I 

2001 I Updated in portal I Updated in portal I Use Stock RPC service 
Table 2: Brokerage services 

I Where is Galileo? I  user 1 NASAuser I Add Galileo location 
I to my aPP 

1970's I Call Galileo NAV or I Call Galileo NAV or I Manualupdate 

Table 3: Navigation Services at JPL 
services is critical to the long-term success of our missions. 

4. ENGINEERING SERVICES TOMORROW 
Unfortunately, organizations cannot afford to continue this 
engineering paradigm. At JPL, the number of missions is 
increasing and the engineers cannot keep up with the 
workload. They are spending a significant percentage of 
their time providing these routine services, and, 
consequently, less time on expert analysis and tool 
enhancements. It is vital to JPL that engineers utilize their 
expertise for these activities, because future missions will 
identify new problems that are not currently well 

To illustrate the style of services we are advocating let us 
examine several services most people use daily, namely 
stock brokerage services and weather services. Tables 1 
and 2 describe the progress of temperature and brokerage 
services over the last several decades. Each of these 
services has undergone a metamorphosis. Where we once 
had to catch the weather report on television to find 
temperature information, we can now see up to the minute 
updates in our portal application. We can even get 
temperature information for most cities around the world 



right in our portal application. Lastly, if we need to add 
temperature information to our own application, where we 
once had to maintain our own database with this 
information and manually update it, we can now use a 
temperature Remote Procedure Call (RPC) service such as 
[20]. Likewise stock brokerage services have progressed. 
Where our primary source for up to date stock quotes and 
portfolio summaries was the stockbroker, we can now see 
that information in our portal application. Likewise an RPC 
service exists, for example [21]. These services are not 
typically real-time, but delayed some minutes. This 
information fidelity is, however, sufficient for, perhaps, 95 
percent of users. Not on the table but also available are 
stock trading services, which also suffice for most users. 
Thus these services have supplanted the frequent calls to the 
stockbroker. The stockbroker now deals with the problems 
where his expertise is best utilized: stock analysis and 
portfolio management. 

There are, on the other hand, some issues that today's 
technology solves. The engineering community does not 
yet perceive Information Technology as providing secure, 
reliable and robust solutions. While these problems are 
continually under scrutiny, with better and better solutions 
available, we consider today's technology in this area 
sufficient for most applications. The largest unknown in 
providing engineering services in a secure and reliable way 
is how reliable the underlying computational tool is. 

Table 3 describes the progress of a simple navigation 
service, namely the identification of the current location of 
the spacecraft Galileo, over the last several decades. As you 
see, whether a user is on the Galileo team, at JPL or outside 
of JPL, they must contact an engineer to obtain this 
information - even today! Adding the location of Galileo to 
an application still requires manual update (unless one 
chooses to add the complete suite of navigation programs to 
their application, which, in itself, requires expert 
understanding. 

We believe that we can take advantage of the technology 
used to provide temperature and brokerage service to 
provide some engineering services. Our aim is not to 
replace the engineer, nor to provide a complete set of 
engineering services. Rather we want to substitute 
software, when applicable, for expert labor. In particular, 
where such services are already performed by manually 
invoking a software tool. We will consider ourselves 
successful if we can avoid manual intervention in 80 
percent of the requests for service. These engineering 
services are extremely oversubscribed, and the engineer's 
workload is such that a response delay may be as high as 
two weeks. Our goal is to provide these automated services 
in a matter of minutes or hours, at most. The difference in 
procedure should be significant both to the user, in terms of 
faster response to the requests, and to the engineer, in terms 
of time available for analysis. 

We do not delude ourselves. Providing engineering 
services is considerably more complex than providing 
temperature or stock brokerage services. Engineering 
services rely on more volumes of data and contain a great 
deal of specialized logic. In addition, the tools currently 
used to perform these computations are, at best, prototype 
implementations. They do not provide sufficient reliability 
or monitor and control capability. Providing these services 
is a challenge. We therefore cannot expose the full 
capability of the application as services, and we must work 
to improve reliability. These issues are discussed in detail 
in the next section. 

5. HOW TO PROVIDE AN ENGINEERING SERVICE 
For the purpose of this paper, let us define an automated 
service is a service that is available over a network, such as the 
Internet or Intranet. A service operates on messages that 
contain requests, and include either document-oriented or 
procedure-oriented information. 

This section describes how to expose an engineering 
service. We define the requirements for an automated 
service, problem areas for exposing services using existing 
applications and how we solve these problems. Section 5.2 
discusses ideal solutions, which require too much effort for 
most applications. To reduce the level of effort, we have 
adopted with non-ideal but workable solutions, which we 
describe in section 5.3. These solutions allow us to attain 
faster results and avoid re-writing and re-validating the 
existing tools. 

Requirements for Application Services 

This section outlines requirements for services and contrasts 
these requirements with the state of engineering 
applications. The requirements we identify for application 
services are: modularity, a concise Application 
Programming Interface (API), seamless access to 
application data, location transparency for both the user 
location and application location, ability to monitor and 
control the application, reliability with respect to abnormal 
program termination or communication fault and, lastly, 
comprehensive documentation. The remainder of this 
section discusses these requirements and where these 
engineering applications do not adhere to the requirements. 

Modulari@- According to the Cambridge Dictionaries 
Online a service is a system or organization that provides 
for a basic public need [22]. Our interpretation is one 
service, one need. We want to provide basic functionalities 
as services. These services can be combined to provide 
complex functionality (as we do with our workflow 
system). The services should be modular so services can be 
added to the overall system or replaced by new services 
without disruption to the user. This modularity will allow 



our system to remain up-to-date with the latest formats and 
technologies. This paradigm is very much the extension of a 
modular programming paradigm to a large distributed 
system, and appears to be the direction software 
development is headed. 

The engineering applications we are working with do not 
support this modular service paradigm well. These 
applications evolved from historical software. In many 
cases, the application started as a Fortran program or Matlab 
model, which the engineer used to do some calculations. 
Over decades, more capabilities were added, the toolset 
grew, and the tool fell into multiple hands until it became an 
application that performs a critical function for the 
organization. Unfortunately, this evolutionary software 
development resulted in monolithic applications. Typically 
an application bundles multiple services in one package or 
provides a partial service so it must be used in conjunction 
with several other applications. These applications need 
some cleaning-up to support our one service, one need 
requirement. 

Concise API- A successful service must be intuitive to the 
user. A concise API is the key to making the service 
intuitive. The service must provide exactly the "right" set of 
methods, which take the natural input parameters and return 
the desired output parameters. For this reason, temperature 
and stock quote services are very successful. The API is 
indeed intuitive: method stockquote, input ticker symbol, 
output dollar value. 

The engineering applications we use to provide services, on 
the other hand, typically accept many parameters, options 
and file inputs. The entire "data base" that the application 
requires is passed in as input. This comprehensive set of 
inputs is akin to an application that provides temperature 
service and has two inputs. The first input is the name of 
the city for the location whose temperature the user would 
like to find out. The second input is a file containing the 
temperature information for every zip code. The 
temperature application converts the city name to a zip code 
and looks up the temperature in the input file. For the 
engineering application, separating those inputs that might 
be considered part of the database from those that are salient 
for the service is difficult. Even more difficult is analyzing 
the data to determine an appropriate model for storing this 
data. If one succeeds in defining the data model, the 
application has to be adapted to use the new form of the 
data. 

An additional challenge arises from the use patterns for 
these applications. Discussions with users typically indicate 
that the automation and ease-of-use we are suggesting 
sounds great, but users still want to be able to run special 
cases manually. The API that supports complete manual 
functionality for these applications is far from concise and 
user-friendly. On the other hand, the engineering expert has 

a legitimate need for manual invocation. We describe our 
solution to this dual challenge in the following sections. 

Data Availability- Whatever data the application uses 
should be readily available. This requirement seems 
obvious in modem applications. Naturally, a stock quote 
service must have a database with stock prices to support it. 
The service provider is tasked with ensuring that the data is 

up to date and accessible. As we have already discussed, it 
is not so with many engineering applications. The 
application data is passed in with other parameters. The 
task of managing the application data, at present, falls to the 
user. 

Location Independence- The service should be available 
to a user at any time and from anywhere (subject to security 
constraints). The API should make all details of the service 
transparent to the user. These details include the application 
platform, the directory location of the application and the 
location of application data. 

Deploying engineering services in a location independent 
manner is difficult because the applications are platform 
dependent and often contain some file system directory 
structure dependence as well. Most of these applications 
have no chance of running on any platform other than their 
development platform (usually some flavor of Unix). The 
applications may be in Fortran, they may include Matlab 
models or they may combine multiple programming 
languages. Directory dependence may stem from including 
a Matlab model, which the program uses as part of the 
calculation, or from some hard-wired application data input. 
This practice, unfortunately, is common in these 

applications. We tackle this challenge by setting up a 
distributed architecture. The user makes requests. The 
request is handled by a workflow management system 
which invokes services that execute elsewhere using SOAP 
RFJC[17]. 

Monitor Status and Exception Handling- We require 
services to make status information available. This status 
information includes both progress information and 
termination status. We want to monitor the progress of the 
application. The preferred progress information is in the 
form of percent of work completed. We only require a flag 
indicating that the application has started, is running or has 
completed. Upon termination the application should report 
whether it has succeeded or failed. The service also should 
maintain a log, which the service administrator can browse 
when a failure occurs. We require this log as opposed to 
comprehensive exception information for simplicity. To 
extract detailed exception information or progress in the 
form of percent of work completed from an engineering 
application would require significant re-writing of the 
application. The weaker requirements for progress and 
termination status indicators constitute an acceptable 



compromise, between information requirements and 
development time, which enables seamless operation. 

ReliabiZity- We require reliability at many different levels 
in our services. First, the application must result in correct 
outputs. Second, the workflow must be reliable. Third, the 
system must recover from hardware and network failures. 
Last, the service must be available 24 hours, 7 days a week. 

For engineering applications these reliability requirements 
translate to a level of testing to which these applications 
have never been subjected. The current mode of operation 
for these applications has assumed an engineer looks over 
the results. To remove this check, we must validate the 
application and its inputs. Achieving reliable workflow 
with these applications presents a further challenge, since 
they were not designed for an automated environment or for 
multiple users. This reliability requirement drives some of 
the requirements we have already discussed, such as 
location independence and status monitoring. The other 
two reliability requirements are handled with the standard 
industry solutions to the problem of service availability by 
using redundant systems and failure recovery. See 1231 for 
an excellent overview of the state of the art in this area. 

Documentation- Naturally, the service must be 
documented comprehensively so that a user can make use of 
the service with ease. We, furthermore, require API 
documentation so that developers of other applications or 
services can reuse this service in their development. 

These requirements suffice to expose a service on the 
network using existing service protocols, such as SOAP or 
CORBA. The messages correspond to the requested service 
and include the methods and parameters defined by the API. 
Requirements such as modularity, location independence, 
data availability, etc. allow the service to exist as a stand- 
alone entity on the network. Last, a variety of clients can 
use the service due to the API and documentation. 

Asynchronicity- Services should support an asynchronous 
delivery of results. Some of the calculations can take many 
minutes or even hours to run. We can not expect the user to 
be waiting at the web browser for the request to complete. 

Scalability- A useful and responsive service is likely to 
attract use. Clearly the service must be able to handle 
multiple concurrent requests and be able to scale in 
performance and capacity depending on the needs. 

We have made some allusions to problem areas for creating 
an engineering service. Let us now discuss in detail how to 
convert an engineering application into a service. 

Providing an Engineering Service the Right Way 

This section describes the preferred way to provide a 

service. We describe the steps one must go through to 
expose an application as a service. Here we outline how to 
do everything "the right way". If we follow these steps we 
will have an ideal service. Namely, it will be a service that 
is easy to use, easy to add to a workflow system and easy to 
adapt to future needs. 

DeJne the Services- In the ideal case, the application we 
use would provide a service has a well-defined API. The 
services then correspond to this API. That is, each of the 
top-level methods provided by the application is exposed as 
a service and the parameters correspond to the method. 
parameters. In such cases where fulfilling the function that 
the service provides requires performing an additional 
function, the additional function is itself used as a service. 
For example, compute spacecraft view periods requires 
trajectory computation, so we should provide a trajectory 
service as well as a view period service and the view period 
service should use the trajectory service. As discussed in 
the previous section, the engineering applications we use, 
unfortunately, never provide a programmatic API. We 
invoke these applications through a cumbersome manual 
interface. Providing services the right way, implies a 
significant re-write of, at least, the input and output portions 
of the application. We need to define the services and API's 
that provide these services. Applications that invoke other 
applications internally should be broken up to modular 
pieces that use and provide services. This is a significant 
undertaking. 

Analyze Input and Output Data- As part of providing the 
API we must define the input and output parameters to the 
services the application provides. Since we use an existing 
application the input and output parameters for the 
application are already defined. Ideally, we can simply 
propagate these inputs and outputs to the service APT. If we 
had, for example, a view period generation program that has 
as input a spacecraft object, a list of antenna objects, start 
time and end time, and as output a list of view period 
objects, we could define the service API with ease. It would 
simply correspond to the application input and output. The 
view period generation application we actually have has as 
input a spacecraft identifier, a start time, an end time and 
about twenty files. The following is a partial list of the files 
inputs 

0 Spacecraft trajectory file 
0 Planetary trajectory files 
0 Ground antenna trajectory file 
0 Planetary constants, such as masses 
0 Ground antenna parameters, such as a horizon 

mask 
0 Model of the Earth 
0 Parameter list of view period generation events 
0 Parameter list for view period post processing 

0 View period file 
The outputs of this application are 



0 Output status and log files 
The problem then is how to expose the intuitive API 
suggested above, when the underlying application requires 
so many more inputs. 

The "right" solution, is to 
(1) Thoroughly analyze the application inputs. 
(2) Identify the supporting application data, in contrast 

with the invocation specific data. 
(3) Modify the application interface to expose an 

object oriented API instead of input files 
containing parameter lists. This API contains the 
invocation specific data. 

(4) Organize the supporting data in a database. 
( 5 )  Modify the application to use the data services 

from the database rather than an input file base for 
supporting data. 

(6) Last, but not least, modify the organizational 
processes to maintain the data in the database, i.e. 
keep it up to date. In the view period example, 
most of the data is static, such as the planetary 
constants. Other data changes on a daily, weekly 
or monthly basis. There is a process for updating 
the data, but the current process is comprised of 
updating files and directories. 

Create Database Support- In our design the workflow is 
closely tied to a database. We maintain the queue of work 
orders including status information and input values in the 
database. Likewise, the description of the tasks our system 
is capable of completing resides in the database for 
persistent storage. When we define a new service we need 
to add information about the tasks performed by this service 
to the database. This information includes the name of the 
tasks, and the full set of inputs required to complete each 
task. 

At first glance adding database support appears 
straightforward, especially after we have thoroughly 
analyzed the parameters above. It is, indeed, 
straightforward if the API is simple and the input 
parameters are simple. If, on the other hand, the types of 
the parameters are complex we must define every type of 
parameter the service uses. 

In practice, doing this right is llkely to drive quite a bit of 
database development. For (a simple) example we may 
have a parameter input that is integral, and may take a value 
within some known range. We may have many similar 
parameters that take values in different ranges. We may 
have a string, such as uplink frequency band, that can take 
one of an enumerated set of values, e.g. "X", "Ka", etc. 
View period events are an example of complex types. All 
this domain specific information has to be represented in the 
database to support the service. 

The advantage of domain knowledge in the database is that 
we can do quite a bit of validation on requests before they 
are submitted to the server. From the user's perspective, 
early input verifiation is obviously useful, because 
submitting a request to the workflow system does not 
provide immediate response. With up-front validation, the 
request can be corrected immediately, rather than after the 
user has waited for the workflow system. In addition, we 
can use this domain knowledge to drive automation of the 
system. If we have good information about the parameters 
a task requires we can automatically generate valid work 
requests and increase the reliability of the service. 

Write the Service Proxy- The service proxy is the back end 
provider of the service. We call this server a proxy because 
it is a stand-in for the application that provides the service in 
the workflow design. This application can be a Java 
program or a legacy program, or any other program. The 
only requirement is that it provide the following interface 
methods 

0 execute - The execute method is called to for a new 
request. All input parameters are passed in to this 
method. 

0 getWorkerEvent - request the status of the request 
0 abort - the abort method is called to stop the 

processing of the request 
0 testProxy - this method can be used to verify that 

the proxy server is up and running 

In our design the proxy is a stand-alone application. It does 
not know about other architectural components, including 
the database. The application may, however, use other 
services, such as application services or data services. In 
addition to making a request, via the execute method, the 
proxy can be queried for status of the request using the 
getWorkerEvent method. We can stop execution of the 
request using the abort method. Lastly, we can check if the 
proxy is running using the testproxy method. 

When the application exists a priori and provides a clean 
API, the service proxy simply invokes the appropriate 
methods of the API. Since we are doing things the "right" 
way, we have already provided such a clean API for our 
application. The proxy must contend with multiple 
requests. If the application can handle multiple requests 
internally we have no problem. Otherwise, the proxy has to 
manage multiple instances of the application. 

Our design exposes this service proxy as a SOAP service on 
a web server. Thus, the above API methods are remotely 
accessible to any SOAP enabled client. 

Write the Service Monitor- The service monitor is the 
middle layer component that fulfils a work order. It 
prepares the request for the service proxy, invokes the 
service proxy, monitors the progress of request execution on 
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~i~~~~ la: ne diagram above shows the design 
of the view period server. this design, the 
trajectory application is invoked directly by the 
view period application. 

Figure lb: The diagram above shows a modular design for 
the View period and trajectory applications. In this design, 
the view period application obtains trajectory information via 
a SOAP request to the SOAP server. 

the proxy, updates the status of the work order and the 
worker proxy in the database, and manages the output data. 
The monitor is fully database aware. In fact, in our design, 

the monitor runs in the Java server inside the Oracle 
database we use. The monitor would typically contain most 
of our application specific business logic as well as some 
workflow logic, specifically with respect to monitoring and 
status. 

Providing An Engineering Service the Practical Way 

trajectory information, which it obtains by using, internally, 
a set of trajectory tools. In the future we would like to 
provide trajectory services as one entity. We would then 
replace the current view period service with a new service 
based or an application that uses these trajectory services, 
instead of the current application that uses the trajectory 
tools directly. The modular design of our service system 
will enable us to make this change transparently to users 
and other services. Figure 1 depicts a pictorial comparison 
of these two scenarios. 

The most common phrase we utter is "for now". 
Unfortunately, the applications we are working with are so 
complex, use so much data, and involve so much domain 
knowledge that it is impossible to provide services Yhe 
right way". Instead, we make compromises and provide 
these services "the practical way". The practical path to 
providing a service given an engineering application is as 
follows: 

Def;ne the Services- Since the engineering application is 
not modular and does not provide a programmatic API, 
providing the service the right way becomes impossible. 
What we do instead is make sure we provide the 
functionality of the application as a service. That is, we 
need to do a good job of defining the services. This allows 
us to define the API that the application should provide. 
We then wrap the application, or possible set of applications 
to provide this API. The intent is that we can provide this 
functionality to the user. In addition, the functionality from 
the user's perspective will never change. That is, the API 
we expose to the user will remain consistent. The 
underlying application and the wrapper implementation and 
even the support data can change, but these changes will be 
transparent to the user. 

For example, we now provide a view period generation 
service. The view period application needs quite a bit of 

Defining the right set of services requires quite a bit of 
domain understanding. The crux of the problem is how 
users prefer to invoke the application. It is not the case that 
a single command line application corresponds to one 
service. Some services may be made up of multiple 
applications. For example, generating some 
telecommunication link predictions is a two-step process 
beginning with generating a mission configuration from the 
desired sequence of events and equipment and then 
generating the predictions for this configuration. Other 
applications may be broken up into multiple services. For 
example, the functionality provided by the trajectory toolkit 
we use (SPICE Toolkit) provides many services including 
locations of planets, moons and spacecrafts, ranges between 
bodies and more. Lastly, we do not change the applications 
to use other services "for now". 

Our system provides a manual interface as well as an 
automated one. We, therefore, provide a two-layer API for 
these applications. The lower layer API exposes all the 
details of the application, the full set of input parameters, 
file inputs and options. This provides the capability for 
manual invocation (for example through a detailed user- 
interface). The higher level API, which we call the 
Application Services API exposes a subset of the 
hctionality according to an analysis of use patterns. This 
API exposes only a handful of parameters. Other 



application parameters and options are either defaulted or 
retrieved from a database. This API is the commonly used 
one. It is also the API that is exposed as a RPC service. 
The engineering expert uses the lower-level API for 
advanced analysis. 

Analyze Input and Output Data- Modifying the input and 
output data as described above leads to significant rewriting 
of the application in addition to a major process change. 
These changes will not happen in a timely fashion. Again, 
we compromise. While we keep in mind our goal of 
database integration, we build a service that is still file 
based, but supporting files are stored in the database. We 
provide an object API, but underneath this API is an API 
comprised of a lengthy parameter list. Thus we are able to 
support manual invocation as well as typical uses. 
The "practical" solution follows the same sequence as the 
"right" solution, but each step is different 

Thoroughly analyze the application inputs. 
Identify the supporting application data files, in 
contrast with the invocation specific data files. 
a. Expose the manual, parameter based interface 

a. Define the file inputs (some of these will 
be supporting files) and output. 

b. Define the parameter inputs. All the 
invocation specific data should be 
provided as parameter inputs, even if the 
underlying application uses a file input for 
those parameters. 

b. Expose the application service, object based 
interface 

0 Define the object inputs and outputs. 
0 Identify the supporting files, which will 

be in the database. 
0 Identify the invocation specific 

parameters that are not part of the object 
inputs. Provide defaults for these 
parameters. 

Organize the supporting data in a database. The 
practical solution for data management is to store 
the supporting data files in the database with 
reasonable organization. (For example, for view 
period generation the spacecraft trajectory is stored 
with project data, the planetary trajectory is stored 
with astrodynamic data, etc.) 
Since we cannot re-write the application to use 
supporting data directly from the database we 
provide supporting data to the two application 
interfaces as follows 
a. For the manual interface 

0 The user specifies file inputs. These files 
must be in the database. 

b. For the application service interface 
0 this interface uses data services to find 

appropriate supporting files in the 
database given the object inputs and 

(6 )  

Create 

required file types. 
A middle layer, which we call the work monitor, 
takes care of copying the supporting files from the 
database onto the application server for use by the 
manual interface. 

The process change for updating the data is 
unlikely to change in the near future. Instead we 
put utilities in place to grab the latest supporting 
data files from their release location and insert 
them in the database. 

Database Support- We do not, at present, feel 
equal to the task of analyzing the full set of parameter types 
for the task. For the telecommunications domain, there is 
vast domain knowledge that should be in the database. We 
compromise greatly on the parameter type definition, and 
postpone most of this hard analysis and development until 
later. We currently support simple types: integer, float, 
string , url, date, boolean and file. Of the above types only 
the file type has been analyzed to the point that we specify 
various file types. Files are critical because, as we have 
already discussed, they are the primary data source for these 
applications. 

The result of these shortcuts is that we can check a priori 
whether an input file is of the correct type. This level of 
type checking for files is limited, because a file may have 
the correct type, but may not, for example, be for the time 
period of interest. We can also check that the input data is 
of the right type, but not that it falls into an appropriate 
range or that it is one of the enumerated set values. For 
strings, we cannot check proper format. These limitations 
imply that validating correctness of requests falls to the 
user, and most input errors will not be caught until the 
application fails. 

These shortcuts also limit our ability to automate our 
system. For most parameters we do not have enough 
information to populate a work request. The remaining 
options are to get the input data from a user, or to assign 
defaults for most parameters. Thus, the services we 
provide in an automated setting expose partial functionality 
of the application. 

Write the Service Pro- Our applications do not provide a 
clean API. In addition, they use files for both inputs and 
outputs. Thus, a large part of the proxy's work is wrapping 
the existing application to provide the desired API. The 
application's use of local directories and files complicates 
the API; the files must be copied from the database to the 
local file system. In addition, supporting multiple threads is 
complicated because we have to ensure that one thread does 
not use or overwrite files for another thread. Lastly, the 
output of the application is usually a file, which is written to 



the file system. We must grab that output file and save it. 

The solution to these problems in our design is that the 
service monitor loads the input file onto the service proxy's 
file system. After application execution, the monitor grabs 
the resulting output file from the proxy's file system and 
inserts it to the database or provides it to the user in the 
manner the user requested it (we support mail and ftp). 
Cleaning up the local file system must wait until the output 
file has been assimilated. We, therefore, add a cleanup 
method to the proxy interface. The proxy does not clean up 
the local environment until this cleanup request is made by 
the monitor. 

The service proxy, then implements the following interface 
0 

0 
0 

0 

0 

execute - The execute method is called to for a new 
request. All input parameters are passed in to this 
method. 
getWorkerEvent - requests the worker status 
cleanup - the cleanup method signals the proxy to 
clean its local environment from the respective 
program execution. 
abort - the abort method is called to stop the 
worker application 
testproxy - this method can be used to verify that 
the proxy server is up and running 

The wrapper implementation that the proxy uses to invoke 
the application is implemented in a thread aware class. The 
implementation of the wrapper class deals with the many 
domain specific and application specific details involved in 
wrapping. Some of the issues the wrapper must address 
follow. 

0 Converting parameters from user specified type 
and format to those the application expects. 

0 Creating parameter input files. 
0 Creating and removing temporary files. 
0 Creating and removing temporary directories. 
0 Invoking the legacy application from the wrapper. 
0 Providing status updates. 
0 Maintaining an accurate and comprehensive log on 

the part of the proxy. 
0 Aborting work that is currently executing. 
0 Cleaning up when the request is completed. 

While a great deal of the logic for invoking the application 
resides in the back-end wrapper, some logic resides in the 
service monitor that invokes the wrapper. The decision as 
to where to put some domain or application logic must be 
made by the implementer on a case-by-case basis. Some of 
the decisions are guided by the parameter analysis. Some 
issues are practical, such as separating the back-end 
application from the database. 

Write the Service Monitor- Our underlying application is 
still file based, and, at the same time, we want the proxy to 
be location independent and ignorant of the database. It, 
therefore, falls on the service monitor to "magically" place 

the input files in the proper location for the proxy and to 
fetch the output file from its location on the proxy server. 
In addition, since the monitor is between the user, on the 
front end, and the proxy, on the back end, we can use it to 
do some of the parameter conversion. As stated above, it is 
up to the implementer to decide how to divide the logic 
between the middle layer (monitor) and the back layer 
(proxy). 

Of the other functions performed by the service monitor: 
invoking the service proxy, monitoring the progress of 
request execution on the proxy and updating the status of 
the work order and the worker proxy in the database, only 
monitoring progress depends on the application. Our 
existing applications do not provide progress information 
while the application is executing. We would like to be able 
to report progress in terms of time to completion or percent 
done. We do not have this capability at present. Thus, we 
focus more on status than progress. Status information is 
more limited. We can tell if the application has been 
initiated, is in progress, has succeeded or has failed. For 
now, we provide this limited progress information. 

A service created using the above steps is not perfect. We 
would expect to revisit some issues on this service, to 
review the shortcuts we have made one by one and redesign 
them the right way. This service may be more difficult to 
reuse, integrate and adapt than a service created the right 
way. This service is, however, functional, and hnctionality 
is our first goal. 

6. THE TELECOMMUNICATIONS PREDICTS SERVER 

PROTOTYPE 
This section describes a prototype that provides 
telecommunication predicts services. We briefly discuss the 
architecture of the prototype, the services provided by the 
prototype, the workflow management, and how we 
automate processes using known services. 

The Architecture 

A long list of requirements influences our architectural 
design. We have a requirement for 7/24 availability. Our 
system must be fault tolerant for hardware, networking and 
software failures. We must support users on any computing 
platform. (Unix, Windows and Macintoshes are all 
pervasive at P L . )  The legacy applications we use to 
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Figure 2: High-level architecture of the telecomrmniwtiions 



provide services typically execute on the Unix platform. 
Our services, both data services and application services, 
must be available both within and outside of a firewall. 
Naturally, some of the data our system carries is sensitive 
and proper security is required. Based on all these 
requirements, the architecture for our prototype is 
distributed, multi-platform and multi-tiered. 

The architecture for the prototype is presented graphically 
in figure 2. On the back end is the application server, which 
invokes the server application. From the architectural point 
of view, for this server, any computing platform is 
acceptable. We are currently using Apache SOAP, which 
runs under the Apache Tomcat servlet container. As this 
software is all Java, we can use any platform where Java is 
supported. Usually we are restricted by the legacy 
application, most of which are native for some flavor of 
Unix. In the prototype, the back end server is a Sun Solaris 
machine. Security issues are fairly simple for the back-end 
server since it is behind a firewall and is only accessed by 
the workflow manager, which is also behind the firewall. 

The middle tier in our architecture contains the bulk of our 
data and business logic. We are using an Oracle database, 
which provides the reliability, availability and security we 
need for our data. Our application server also resides in the 
middle tier. In fact, we are using the Oracle provided Java 
server and application server, which run in the database. 
(Note that the term application server is overloaded here. 
This application server does not refer to one of the services 
we provide. Rather, it is the industry standard name for a 
server that can execute some software upon request.) This 
combination of tools should provide good reliability and 
security infrastructure, and keep our efforts in this area to a 
minimum. The middle tier in our architecture is behind the 
firewall. The data and application services it provides are 
accessible by users (and other applications) within and 
outside the firewall. Thus, the bulk of emphasis on security 
in our system is in the middle tier. As part of our business 
logic the middle tier hosts the workflow manager. This 
module contains the SOAP client that communicates with 
the SOAP server to request a service. 

The data and application services we provide in the middle 
tier are available as either web applications or SOAP RPC. 
Thus we support two types of clients on the front end: 
human user with a browser and any SOAP enabled client. 

VGR2 Spacecraft 

Since web browsers are available for all platforms, and 
SOAP is a platform independent protocol this architecture 
does not restrict the platform of the client. 

The Services 

At present the prototype provides view period generation 
and some telecommunication link prediction services. View 
periods are the spans of time that a spacecraft is "visible" 
for a particular antenna. View period generation is a service 
that is particularly well suited to automation. This service is 
used during mission design to ascertain the level of 
telecommunication service the mission can expect. The 
mission designer needs the spacecraft view periods to 
forecast ground antenna availability for this mission. It is 
often the case that the mission can be modified to obtain 
better service. For example, the launch date can change. 
Some trajectory changes are possible. The mission designer 
will typically explore many scenarios before committing to 
a design. For each scenario the designer must obtain view 
periods, and the fidelity of these view periods need not be 
very high. (Five minute accuracy suffices, typically, for 
scheduling.) The convenience and fast service paradigm we 
provide are a perfect fit with these requirements. 
The low level manual interface to these services is 
accessible via a web browser. Figure 3 shows the main 
screen for the view period server interface. As you can see 
the user has considerable control in selecting the parameters 
for view period generation, including selection of events, 
occulting bodies and supporting data. Most of the input 
information is defaulted based on database information after 
the spacecraft is selected and start and end dates are set. The 
user may then override any of the database default values. 
The outputs are in the form of a file. The user can request 
the output location of the resulting file as a Uniform 
Resource Locator (URL). Both FTP and mail URLs are 
available. 

There is also a high level API available programmatically as 
a SOAP RPC. The generate view periods function of this 
API takes as input the spacecraft object, an optional 
trajectory file, start and end dates, optional ground antenna 
objects, and an optional output URL. Like the manual 
interface, the result of this method will be to place the 
output file in the requested URL. This API uses the same 
infrastructure to create a complete work order for the view 
period generation service using the database defaults for the 
given inputs. It also uses the same infrastructure to control 
the workflow for this work order once it has been queued. 
Thus we have achieved the two-level API we desired. The 
narve user is able to get results with minimal inputs and 
little domain understanding. The expert user has fine- 
grained control over the execution of the application. 

Other services available in our prototype generate the 
telecommunication link predictions. These predictions are 
specific equipment settings for a known telecommunication 



link. For example, we know that Mars Global Surveyor will 
downlink telemetry to the 70m antenna in Goldstone on 
December 2 1,200 1 between 7pm and 3am, what equipment 
setting are necessary to support this activity. For these 
telecommunications link predictions we have similar 
manual and high-level APIs available programmatically in 
the prototype. Work to design the browser Graphical User 
Interface (GUI) is ongoing. 

We are extending the services provided by the prototypes to 
include additional radiometric predictions. The DSN needs 
these predictions to enable acquisition and tracking of the 
spacecraft and to specify the equipment configuration 
necessary for telecommunication with a spacecraft. For 
example, for a given spacecraft, trajectory and antenna view 
period, where should the antenna be pointing to lock onto 
the spacecraft and what is the optimal frequency for 
downlink communication. 

In addition, we have identified trajectory functions to be 
well suited to exposing as services. There is a large 
community of people, in and outside of JPL, who use 
trajectory information in a variety of ways. There is a 
toolkit, called the SPICE toolkit, which is often used to 
obtain trajectory information. This toolkit provides 
excellent functionality. The drawbacks of using it are that 
every user must install a copy on his machine. Every user is 
then responsible for maintenance and upgrades. Although 
the toolkit is well documented, it requires considerable 
investment in time to learn. We believe we can expose 
many of the functions provided by the toolkit as a trajectory 
service, and this service will have considerable impact for 
many JPL processes (from mission design to mission 
operations to educational outreach). This service remains, 
however, future work. 

The Workjlow Module 

Figure 4: Design of the workflow management 
module. 

The design of the workflow management module is 
depicted in figure 4. Let us briefly overview this design. 
Very few of the design details are included in this 
discussion. For a detailed discussion on the workflow 
management system see [9]. 

The workflow management in the prototype manages the 
requests for services, which we call work orders. A work 
order is queued in a work order queue, which we store in 
the database. When the work order is ready for execution 
the work dispatcher attempts to find a worker proxy for the 
requested work. If the work dispatcher finds a worker 
proxy it instantiates a work monitor to monitor the progress 
of the work. The work monitor prepares the data for the 
proxy, transfers files if necessary, and makes the SOAP call 
to the proxy. The proxy receives the request and invokes 
the legacy application. The monitor repeatedly checks the 
progress of the work, using SOAP calls, and updates the 
status of the work order in the database. The monitor is also 
in charge of retrieving the output file from the worker proxy 
and putting it in the user-requested location (database, email 
or ftp). 

In our design the workflow module resides in the database 
server. We take advantage of this collocation to create a 
new breed of workflow management system. The work 
dispatcher, although it is drawn in Figure 4 as one unit, is 
actually a distributed collection of Java methods, stored 
procedures and triggers. In addition, information about the 
available services and worker proxies is stored in the 
database. The dynamic nature of this design allows us to 
update the workflow logic in a localized manner. We need 
not make a grand re-release when we change a component 
or add a new one. We do not need to interrupt the 
workflow to make a change to the system. In practical 
terms, this implies improved usability. The disadvantage of 
this type of distributed logic is that the workflow is difficult 
to analyze and debug. We have attempted to reduce this 
challenge with a carefully designed state transition system 
for work order and worker status. 

7. CONCLUSIONS 
This paper explores the feasibility of an automated 
engineering service paradigm. Under this paradigm, 
engineering services are analogous to today's web services. 
The service can be invoked directly by a user using a 
browser. The service can also be re-used in another 
program through an API. We assert that the technology 
enabling such automated services is sufficiently mature to 
adapt to the engineering domain. 

The bulk of the paper addresses the challenge of exposing 
engineering services in practice. We immediately see that 
engineering applications are inherently more complex than 
typical web-enabled applications. These applications 
require considerable domain specific input. Furthermore, 
the only reasonable path to exposing automated engineering 
services is to adapt existing applications to the new 
paradigm. These programs, unfortunately, are ill suited for 
an automated setting. They have strong dependencies on 
the environment, they expect a large number of parameter 
inputs, and they operate on files. This paper provides a 



methodology for exposing such existing engineering 
applications as automated services. This methodology 
converts the existing application to an application with the 
following requirements: modularity, location independence, 
concise API, data availability, reliability, documentation 
and monitor status and exception handling. 

We have implemented the methodology described in this 
paper in the telecommunications domain. We built a 
prototype which exposes several applications as web 
services, including view period generation and 
telecommunication link predictions. This prototype, in 
addition to providing useful functionality in its own right, 
demonstrates the use of automated services in a web setting 
and application re-use as part of a workflow management 
system. 
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