
Automated Workflow for Engineering Services12
Ruth Bergman, Chester S. Borden and Silvino Zendejas

Jet Propulsion Laboratory/Califomia Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91009

ruth@,alum.mit.edu, Chester.Borden@Ljpl.nasa.gov, silvino.c.zendejas@jpl.nasa.gov
8 18-354-1 1 12

Abstract- In the future, users will request engineering
services automatically much like we request stock quotes
and weather reports today. Rather than requesting an
engineering service directly from an engineer, a user will
request the service from an automated server, which can be
accessed from a web browser or other computer
applications. The engineer's duties will shift to maintaining
and enhancing the automated services, and performing
expert-level analysis. This paradigm shift is beneficial to
the engineer who is currently burdened with providing
repetitive services. It is also beneficial to the users, who
will receive a faster response from an automated server than
a person can provide. Unfortunately, it is vastly more
difficult to expose engineering services than services such
as stock quotes and weather services. This paper argues that
service technology is sufficiently mature to provide many
engineering services reliably and securely. It also illustrates
a methodology for creating engineering services using the
engineering applications that today's engineers use to
provide their services. Once automated engineering
services are available, they can be used in conjunction with
a workflow management system to transform engineering
processes in the same way business processes have been
transformed in the last decade. This paper describes a
prototype of an automated workflow system, developed by
the Jet Propulsion Laboratory, that provides navigation and
telecommunication services.

TAE~LE OF CONTENTS

1. INTRODUCTION
2. RELATEDWORK
3. ENGINEERING SERVICES TODAY
4. ENGINEERING SERVICES TOMORROW

6. RIE TELECOMMUNICATIONS PREDICTS SERVER

7. CONCLUSIONS

5. HOW TO PROVIDE ENGINEERING SERVICES

PROTOTYPE

1. INTRODUCTION
Workflow management systems have become prevalent in
the enterprise. Large organizations provide many of their
administrative tasks through workflow management systems

0-7803-723 1-X/01/$10.00/0 2002 IEEE

[1,2,3]. Some types of enterprises use workflow
management in their business processes, for example on-
line retailers and brokerage houses. While converting the
processes of large engineering enterprises to take advantage
of automatic workflow is nontrivial, this paper describes
how it can be done. As a proof of concept, we have
implemented a prototype of an automated workflow system
for preparation of engineering data for telecommunication
between the ground antennas of NASA's Deep Space
Network (DSN) and the Jet Propulsion Laboratory's (JPL)
spacecrafts.

At the heart of the solution is a paradigm shift from present
day processes where engineering services are provided
directly by the engineer to a process that relies on
automated, computerized engineering services. Consider
the daily activities of a stockbroker in the 1970's. He spent
a large portion of his day informing clients of the current
status of their portfolios. Today clients get such
information from automated telephone or web services. This
brokerage service is fully automated with the information
available anytime, anywhere. The broker can spend his
time in his field of expertise - performing stock analysis and
portfolio management. We have the same goal in mind for
the engineering experts. Today, a navigation expert at JPL
spends too much time on the large number of requests for
routine navigational computations he receives. In the
future, we want to see these requests submitted to an
automated system. The navigation expert should spend his
day analyzing complex navigational problems, or enhancing
the capabilities of the automated service.

The engineering domain is too broad to admit a single
automation solution. There are many engineering activities
at JPL with which engineers are involved. Among these are
mission design, spacecraft design, communication,
performance analysis, verification, etc. Many of these
activities require creativity and problem-solving skills,
which we are unlikely to automate even in the distant
future. Other activities, however, involve well-understood
computations that already exist in the form of an algorithm
or a series executable program. It is this second set of
activities that we would like to provide as automated

* This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.

mailto:ruth@,alum.mit.edu
mailto:silvino.c.zendejas@jpl.nasa.gov

services. Engineers perform these computations routinely,
usually by invoking existing programs. The primary
advantage in the engineer's direct control of the
computation is verification of correctness - an engineer can
look over the results quickly and determine if there is an
obvious problem. This ability is extremely important in this
environment where the cost of a mistake is overwhelming.
We compensate for this capability by validating the
software and using the software routinely. The advantages
of providing the computation as an automated service
include relieving the engineer from such routine, repetitive
activities, improving response time to the user and
simplifying organizational procedures.

We believe, from research of automated services in other
domains and prototyping experience in our engineering
domain, that the state of the art in Intemeflntranet based
service technology provides sufficient reliability,
availability and security. There are, however, technical
challenges that are unique to large engineering enterprises.
Engineering enterprises typically use heterogeneous
computing platforms, including Unix workstations, PC's,
Macintoshes. Interoperability is one of the key issues in
groupware, with few offerings supporting multiple
computing platforms [4,5]. There is great variation in the
software tools that engineers use. They have confidence in
their tool set and are not typically willing to switch tools to
maintain enterprise-wide consistency. It is unusual for
engineering organizations to mandate use of specific
engineering tools, except, perhaps, for tools with prohibitive
cost, such as CAD tools. Therefore, it is difficult to support
the interoperability required by workflow systems. We
overcome the issues of heterogeneous and distributed
computing environments through the use of a distributed
component communications protocol. There are several
choices for remote object communications: CORBA [6],
Java RMI[7] and SOAP[8] are the most notable. We
elected to use the Simple Object Access Protocol (SOAP).

Our strategy, toward enabling a service-oriented paradigm
in engineering, is to provide routine services through
Application Programming Interfaces (API's). The main
contribution of this paper is an in-depth analysis of what
comprises an automated service, and how to create a service
and expose an API from an existing engineering
application. These existing engineering applications,
unfortunately, do not naturally lend themselves to re-use,
but, on the other hand, they are not traditional "legacy"
applications. These programs are like legacy applications in
that they do not adhere to modem software development
practices. They are unlike legacy applications in that they
are not static, they are dynamic and continue to be
developed and improved today. These programs typically
embody a great deal of engineering know-how and are too
costly to re-write. They require quite a bit of environment
setup to operate. Often, they are not adequately
documented, provide many tunable parameters and, as such,

require an expert operator to produce useful results. We
overcome these issues with wrapper code that exposes the
functionality of the application in a modern, modular, re-
usable API. These services, then, become available through
a browser interface or even to another program.

With this vision of service-oriented workflow for
engineering in mind, we come to the practical question of
how we make these services available. We identify general
requirements for an application service that we can integrate
into a workflow management system. These requirements
are :

0 Modularity
0 Concise API
0 Data availability
0 Location independence
0 Monitor status and exception handling
0 Reliability
0 Documentation
0 Asynchronicity
0 Scalability

This paper discusses these requirements at length, especially
as they pertain to the integration of existing applications.
Having identified these requirements, we describe the
process of providing a service given an existing application.
The process is comprised of five steps

(1) Define the services
(2) Analyze input and output data
(3) Create database support
(4) Write the service proxy, which invokes the legacy

application
(5) Write the service monitor, which controls and

monitors the execution of the service
In the paper we describe each of these steps. The ideal set
of solutions is presented, but implementing this ideal often
implies a complete re-write of the application. We then
present a set of compromise solutions that allow us to attain
the requirements above in a reasonable time fi-ame and cost.

We have developed a prototype that follows this strategy.
The prototype provides data services as well as application
services. Data services include information about missions,
schedules, ground antennas and more. The data to support
the prototype resides in an Oracle database, but the data
source is transparent to the user. At the time of writing,
application services are provided for view period generation
and some telecommunications link predictions. (A view
period is the time span that a ground antenna can view an
object in space and telecommunications link predictions
provide configuration information for equipment to support
communication between ground antenna and spacecraft.)
This paper describes the methodology used to provide these
services, the process of exposing an API from a legacy
application, and the workflow management for executing
requested services.

This paper is organized as follows. Section 2 provides a
(non-comprehensive) overview of fields of work related to
the work presented in this paper. Section 3 discusses the
state of engineering practices today and the technical
challenges for automation. Section 4 provides a vision of
the engineering services of tomorrow. Section 5 delves into
the issues related to providing application services, in
particular details pertaining to providing these services
using legacy, engineering applications. Section 6 describes
our Telecommunication Predicts Server Prototype. The
intention of this paper is to provide a comprehensive
discussion of the service-oriented vision for engineering.
Thus some of the detail regarding the workflow
management system implemented for the prototype is
omitted from this paper and can be found in [9]. We
conclude and present lessons learned in section 7.

2. RELATED WORK

This paper describes a workflow management system.
Many workflow management packages exist and more are
in development 11, 2, 3, 10, 111. Whereas most currently
available workflow management systems are tied to a
specific computing platform, with most systems running on
PC's, our system is platform independent utilizing Java,
SQL and XML [12]. Today's workflow management
systems are monolithic centralized programs. Our
workflow management is data-driven with decentralized
control. Much of the workflow logic is embedded in a
database as data, procedures, functions and triggers. This
approach has the advantage that we can modify the most
aspects of the workflow logic while the system is online and
without affecting service availability. For an extensive
discussion of this approach to workflow see [9].

Workflow management systems are often discussed in the
literature under the umbrella of Computer Assisted
Cooperative Working and Groupware [4,5]. These
resources provide excellent discussion of issues the
enterprise faces when adopting collaboration tools.

Our system uses a distributed component architecture. In
particular we are providing distributed services; an area that
has received considerable attention in the last decade [131.
Two main issues are frequently cited: security and
communication. Security is very important for our system,
and we use standard solutions such as firewall,
authentication and access control. See [14] to learn more
about security related concerns.

Several excellent solutions exist to the distributed object
communication problem. The most notable solutions are
the Common Object Request Broker Architecture (COMA)
[6], Java's Remote Method Invocation [7], Microsoft's .NET
Architecture [151 (which replaces Distributed COM
(DCOM)), XML Remote Procedure Call (XML-RPC) [161,
and the Simple Object Access Protocol (SOAP) [SI. A

comprehensive comparison among these architectures is
beyond the scope of this paper, see 1171 for a very good
analysis. We select SOAP which we feel suits our
requirements for platform independence, firewall
penetration and evolution into the future.

Last, our problem includes legacy application integration,
which provides some unique challenges. This area of work
is prevalent in the e-Business community. See [18, 191 for
some discussion of application integration.

3. ENGINEERING SERVICES TODAY
Engineers are doing mission critical work. The effect of an
error in their calculation can be catastrophic to the tune of
as much as hundreds of millions of dollars. The
organization places a great deal of trust in its engineers, as
well as a great deal of blame when failure occurs. It is of no
wonder, therefore, that the work environment in the
organization is cautious. Engineering organizations are
cautious about changing processes, cautious about taking a
new approach to a problem, and especially cautious about
software.

The engineering services required in the organization are,
therefore, provided as they have been for several decades
directly by the engineer. At JPL, for example, we have
several categories of engineering experts. We have
mechanical engineers who design instruments and
spacecraft, navigation engineers who plan mission
trajectories, telecommunication engineers who analyze
requirements for communication between spacecraft and
ground antenna, etc. Every mission at JPL uses experts in
each of these areas. Some missions have a dedicated expert
in each area, but many smaller missions cannot afford to
keep an expert for every category and use the services of a
pool of experts.

When planning a mission, one person, typically, handles all
the requests in his category of expertise. The expert almost
always uses tools to perform the necessary computations.
Generally speaking his expertise is essential for setting up
the problem. For example, quite a bit of expert
telecommunication knowledge and mission-specific
knowledge is required to set up the parameters for a
telecommunication computation. After the initial setup
most computations become routine because the analysis of
the problem has been done and the all but a few problem
parameters are unchanged. Consider, for example, a change
in mission trajectory. This change necessitates re-
computing telecommunication capabilities, which really
implies re-running the tool with the new trajectory. Despite
the fact that this re-computation amounts to changing an
input and hitting a go button, today it is the expert that
performs this function.

The primary technical reason this duty falls to the expert is

that he is not only an expert in his field; he is an expert at
running the legacy software tool. The majority of the tools
we use to do engineering computation are tools that evolved
in-house by expert engineers. These tools compute very
sophisticated mathematical models, but lack many of the
usability features common in today's software tools. They
may be complicated to install, have complex command line
interfaces, are subject to core dumps, and provide little or
no error information. In short, one needs to be an expert to
use the tool. The bottom line is that, today, experts are
providing all engineering services manually.

What is the Price of MSFT Value of my portfolio

1970's Call stock broker Call stock broker

I What is the Local Temp

Add Stock price to my
aPP
Manual update

2001 Updated in portal

_. . -

1980's
1990's

I I

Table 1 : Temperature services

Television stock- ticker Call stock broker Manual update
Check stock site Check brokerage house Manual update

site

understood and are not handled by existing tools. For
example, the Mars program is comprised of several
spacecraft, which will be on Mars and in orbit around Mars
simultaneously. This scenario creates a new challenge for
our communications network, which until now
communicated with one spacecraft at a time (except
occasionally in a manually intensive setting). The
engineering tools we use must be enhanced with such new
capabilities. Only the engineering expert, who is already
over-extended, can do this work. Thus, changing the
paradigm by which we currently provide engineering

1980's

1990's

2001

Temp in Mumbai Add Temp to my

Call a friend Manual update
aPP

DSN DSN
E-mail Galileo NAV or E-mail Galileo NAV or Manual update
DSN DSN
E-mail Galileo NAV or E-mail Galileo NAV or Manual update
DSN DSN
E-mail Galileo NAV or E-mail Galileo NAV or Manual update
DSN DSN

Call a friend Manual update
Check weather site Manual update

Updated in portal
service

I I I

2001 I Updated in portal I Updated in portal I Use Stock RPC service
Table 2: Brokerage services

I Where is Galileo? I user 1 NASAuser I Add Galileo location
I to my aPP

1970's I Call Galileo NAV or I Call Galileo NAV or I Manualupdate

Table 3: Navigation Services at JPL
services is critical to the long-term success of our missions.

4. ENGINEERING SERVICES TOMORROW
Unfortunately, organizations cannot afford to continue this
engineering paradigm. At JPL, the number of missions is
increasing and the engineers cannot keep up with the
workload. They are spending a significant percentage of
their time providing these routine services, and,
consequently, less time on expert analysis and tool
enhancements. It is vital to JPL that engineers utilize their
expertise for these activities, because future missions will
identify new problems that are not currently well

To illustrate the style of services we are advocating let us
examine several services most people use daily, namely
stock brokerage services and weather services. Tables 1
and 2 describe the progress of temperature and brokerage
services over the last several decades. Each of these
services has undergone a metamorphosis. Where we once
had to catch the weather report on television to find
temperature information, we can now see up to the minute
updates in our portal application. We can even get
temperature information for most cities around the world

right in our portal application. Lastly, if we need to add
temperature information to our own application, where we
once had to maintain our own database with this
information and manually update it, we can now use a
temperature Remote Procedure Call (RPC) service such as
[20]. Likewise stock brokerage services have progressed.
Where our primary source for up to date stock quotes and
portfolio summaries was the stockbroker, we can now see
that information in our portal application. Likewise an RPC
service exists, for example [21]. These services are not
typically real-time, but delayed some minutes. This
information fidelity is, however, sufficient for, perhaps, 95
percent of users. Not on the table but also available are
stock trading services, which also suffice for most users.
Thus these services have supplanted the frequent calls to the
stockbroker. The stockbroker now deals with the problems
where his expertise is best utilized: stock analysis and
portfolio management.

There are, on the other hand, some issues that today's
technology solves. The engineering community does not
yet perceive Information Technology as providing secure,
reliable and robust solutions. While these problems are
continually under scrutiny, with better and better solutions
available, we consider today's technology in this area
sufficient for most applications. The largest unknown in
providing engineering services in a secure and reliable way
is how reliable the underlying computational tool is.

Table 3 describes the progress of a simple navigation
service, namely the identification of the current location of
the spacecraft Galileo, over the last several decades. As you
see, whether a user is on the Galileo team, at JPL or outside
of JPL, they must contact an engineer to obtain this
information - even today! Adding the location of Galileo to
an application still requires manual update (unless one
chooses to add the complete suite of navigation programs to
their application, which, in itself, requires expert
understanding.

We believe that we can take advantage of the technology
used to provide temperature and brokerage service to
provide some engineering services. Our aim is not to
replace the engineer, nor to provide a complete set of
engineering services. Rather we want to substitute
software, when applicable, for expert labor. In particular,
where such services are already performed by manually
invoking a software tool. We will consider ourselves
successful if we can avoid manual intervention in 80
percent of the requests for service. These engineering
services are extremely oversubscribed, and the engineer's
workload is such that a response delay may be as high as
two weeks. Our goal is to provide these automated services
in a matter of minutes or hours, at most. The difference in
procedure should be significant both to the user, in terms of
faster response to the requests, and to the engineer, in terms
of time available for analysis.

We do not delude ourselves. Providing engineering
services is considerably more complex than providing
temperature or stock brokerage services. Engineering
services rely on more volumes of data and contain a great
deal of specialized logic. In addition, the tools currently
used to perform these computations are, at best, prototype
implementations. They do not provide sufficient reliability
or monitor and control capability. Providing these services
is a challenge. We therefore cannot expose the full
capability of the application as services, and we must work
to improve reliability. These issues are discussed in detail
in the next section.

5. HOW TO PROVIDE AN ENGINEERING SERVICE
For the purpose of this paper, let us define an automated
service is a service that is available over a network, such as the
Internet or Intranet. A service operates on messages that
contain requests, and include either document-oriented or
procedure-oriented information.

This section describes how to expose an engineering
service. We define the requirements for an automated
service, problem areas for exposing services using existing
applications and how we solve these problems. Section 5.2
discusses ideal solutions, which require too much effort for
most applications. To reduce the level of effort, we have
adopted with non-ideal but workable solutions, which we
describe in section 5.3. These solutions allow us to attain
faster results and avoid re-writing and re-validating the
existing tools.

Requirements for Application Services

This section outlines requirements for services and contrasts
these requirements with the state of engineering
applications. The requirements we identify for application
services are: modularity, a concise Application
Programming Interface (API), seamless access to
application data, location transparency for both the user
location and application location, ability to monitor and
control the application, reliability with respect to abnormal
program termination or communication fault and, lastly,
comprehensive documentation. The remainder of this
section discusses these requirements and where these
engineering applications do not adhere to the requirements.

Modulari@- According to the Cambridge Dictionaries
Online a service is a system or organization that provides
for a basic public need [22]. Our interpretation is one
service, one need. We want to provide basic functionalities
as services. These services can be combined to provide
complex functionality (as we do with our workflow
system). The services should be modular so services can be
added to the overall system or replaced by new services
without disruption to the user. This modularity will allow

our system to remain up-to-date with the latest formats and
technologies. This paradigm is very much the extension of a
modular programming paradigm to a large distributed
system, and appears to be the direction software
development is headed.

The engineering applications we are working with do not
support this modular service paradigm well. These
applications evolved from historical software. In many
cases, the application started as a Fortran program or Matlab
model, which the engineer used to do some calculations.
Over decades, more capabilities were added, the toolset
grew, and the tool fell into multiple hands until it became an
application that performs a critical function for the
organization. Unfortunately, this evolutionary software
development resulted in monolithic applications. Typically
an application bundles multiple services in one package or
provides a partial service so it must be used in conjunction
with several other applications. These applications need
some cleaning-up to support our one service, one need
requirement.

Concise API- A successful service must be intuitive to the
user. A concise API is the key to making the service
intuitive. The service must provide exactly the "right" set of
methods, which take the natural input parameters and return
the desired output parameters. For this reason, temperature
and stock quote services are very successful. The API is
indeed intuitive: method stockquote, input ticker symbol,
output dollar value.

The engineering applications we use to provide services, on
the other hand, typically accept many parameters, options
and file inputs. The entire "data base" that the application
requires is passed in as input. This comprehensive set of
inputs is akin to an application that provides temperature
service and has two inputs. The first input is the name of
the city for the location whose temperature the user would
like to find out. The second input is a file containing the
temperature information for every zip code. The
temperature application converts the city name to a zip code
and looks up the temperature in the input file. For the
engineering application, separating those inputs that might
be considered part of the database from those that are salient
for the service is difficult. Even more difficult is analyzing
the data to determine an appropriate model for storing this
data. If one succeeds in defining the data model, the
application has to be adapted to use the new form of the
data.

An additional challenge arises from the use patterns for
these applications. Discussions with users typically indicate
that the automation and ease-of-use we are suggesting
sounds great, but users still want to be able to run special
cases manually. The API that supports complete manual
functionality for these applications is far from concise and
user-friendly. On the other hand, the engineering expert has

a legitimate need for manual invocation. We describe our
solution to this dual challenge in the following sections.

Data Availability- Whatever data the application uses
should be readily available. This requirement seems
obvious in modem applications. Naturally, a stock quote
service must have a database with stock prices to support it.
The service provider is tasked with ensuring that the data is

up to date and accessible. As we have already discussed, it
is not so with many engineering applications. The
application data is passed in with other parameters. The
task of managing the application data, at present, falls to the
user.

Location Independence- The service should be available
to a user at any time and from anywhere (subject to security
constraints). The API should make all details of the service
transparent to the user. These details include the application
platform, the directory location of the application and the
location of application data.

Deploying engineering services in a location independent
manner is difficult because the applications are platform
dependent and often contain some file system directory
structure dependence as well. Most of these applications
have no chance of running on any platform other than their
development platform (usually some flavor of Unix). The
applications may be in Fortran, they may include Matlab
models or they may combine multiple programming
languages. Directory dependence may stem from including
a Matlab model, which the program uses as part of the
calculation, or from some hard-wired application data input.
This practice, unfortunately, is common in these

applications. We tackle this challenge by setting up a
distributed architecture. The user makes requests. The
request is handled by a workflow management system
which invokes services that execute elsewhere using SOAP
RFJC[17].

Monitor Status and Exception Handling- We require
services to make status information available. This status
information includes both progress information and
termination status. We want to monitor the progress of the
application. The preferred progress information is in the
form of percent of work completed. We only require a flag
indicating that the application has started, is running or has
completed. Upon termination the application should report
whether it has succeeded or failed. The service also should
maintain a log, which the service administrator can browse
when a failure occurs. We require this log as opposed to
comprehensive exception information for simplicity. To
extract detailed exception information or progress in the
form of percent of work completed from an engineering
application would require significant re-writing of the
application. The weaker requirements for progress and
termination status indicators constitute an acceptable

compromise, between information requirements and
development time, which enables seamless operation.

ReliabiZity- We require reliability at many different levels
in our services. First, the application must result in correct
outputs. Second, the workflow must be reliable. Third, the
system must recover from hardware and network failures.
Last, the service must be available 24 hours, 7 days a week.

For engineering applications these reliability requirements
translate to a level of testing to which these applications
have never been subjected. The current mode of operation
for these applications has assumed an engineer looks over
the results. To remove this check, we must validate the
application and its inputs. Achieving reliable workflow
with these applications presents a further challenge, since
they were not designed for an automated environment or for
multiple users. This reliability requirement drives some of
the requirements we have already discussed, such as
location independence and status monitoring. The other
two reliability requirements are handled with the standard
industry solutions to the problem of service availability by
using redundant systems and failure recovery. See 1231 for
an excellent overview of the state of the art in this area.

Documentation- Naturally, the service must be
documented comprehensively so that a user can make use of
the service with ease. We, furthermore, require API
documentation so that developers of other applications or
services can reuse this service in their development.

These requirements suffice to expose a service on the
network using existing service protocols, such as SOAP or
CORBA. The messages correspond to the requested service
and include the methods and parameters defined by the API.
Requirements such as modularity, location independence,
data availability, etc. allow the service to exist as a stand-
alone entity on the network. Last, a variety of clients can
use the service due to the API and documentation.

Asynchronicity- Services should support an asynchronous
delivery of results. Some of the calculations can take many
minutes or even hours to run. We can not expect the user to
be waiting at the web browser for the request to complete.

Scalability- A useful and responsive service is likely to
attract use. Clearly the service must be able to handle
multiple concurrent requests and be able to scale in
performance and capacity depending on the needs.

We have made some allusions to problem areas for creating
an engineering service. Let us now discuss in detail how to
convert an engineering application into a service.

Providing an Engineering Service the Right Way

This section describes the preferred way to provide a

service. We describe the steps one must go through to
expose an application as a service. Here we outline how to
do everything "the right way". If we follow these steps we
will have an ideal service. Namely, it will be a service that
is easy to use, easy to add to a workflow system and easy to
adapt to future needs.

DeJne the Services- In the ideal case, the application we
use would provide a service has a well-defined API. The
services then correspond to this API. That is, each of the
top-level methods provided by the application is exposed as
a service and the parameters correspond to the method.
parameters. In such cases where fulfilling the function that
the service provides requires performing an additional
function, the additional function is itself used as a service.
For example, compute spacecraft view periods requires
trajectory computation, so we should provide a trajectory
service as well as a view period service and the view period
service should use the trajectory service. As discussed in
the previous section, the engineering applications we use,
unfortunately, never provide a programmatic API. We
invoke these applications through a cumbersome manual
interface. Providing services the right way, implies a
significant re-write of, at least, the input and output portions
of the application. We need to define the services and API's
that provide these services. Applications that invoke other
applications internally should be broken up to modular
pieces that use and provide services. This is a significant
undertaking.

Analyze Input and Output Data- As part of providing the
API we must define the input and output parameters to the
services the application provides. Since we use an existing
application the input and output parameters for the
application are already defined. Ideally, we can simply
propagate these inputs and outputs to the service APT. If we
had, for example, a view period generation program that has
as input a spacecraft object, a list of antenna objects, start
time and end time, and as output a list of view period
objects, we could define the service API with ease. It would
simply correspond to the application input and output. The
view period generation application we actually have has as
input a spacecraft identifier, a start time, an end time and
about twenty files. The following is a partial list of the files
inputs

0 Spacecraft trajectory file
0 Planetary trajectory files
0 Ground antenna trajectory file
0 Planetary constants, such as masses
0 Ground antenna parameters, such as a horizon

mask
0 Model of the Earth
0 Parameter list of view period generation events
0 Parameter list for view period post processing

0 View period file
The outputs of this application are

0 Output status and log files
The problem then is how to expose the intuitive API
suggested above, when the underlying application requires
so many more inputs.

The "right" solution, is to
(1) Thoroughly analyze the application inputs.
(2) Identify the supporting application data, in contrast

with the invocation specific data.
(3) Modify the application interface to expose an

object oriented API instead of input files
containing parameter lists. This API contains the
invocation specific data.

(4) Organize the supporting data in a database.
(5) Modify the application to use the data services

from the database rather than an input file base for
supporting data.

(6) Last, but not least, modify the organizational
processes to maintain the data in the database, i.e.
keep it up to date. In the view period example,
most of the data is static, such as the planetary
constants. Other data changes on a daily, weekly
or monthly basis. There is a process for updating
the data, but the current process is comprised of
updating files and directories.

Create Database Support- In our design the workflow is
closely tied to a database. We maintain the queue of work
orders including status information and input values in the
database. Likewise, the description of the tasks our system
is capable of completing resides in the database for
persistent storage. When we define a new service we need
to add information about the tasks performed by this service
to the database. This information includes the name of the
tasks, and the full set of inputs required to complete each
task.

At first glance adding database support appears
straightforward, especially after we have thoroughly
analyzed the parameters above. It is, indeed,
straightforward if the API is simple and the input
parameters are simple. If, on the other hand, the types of
the parameters are complex we must define every type of
parameter the service uses.

In practice, doing this right is llkely to drive quite a bit of
database development. For (a simple) example we may
have a parameter input that is integral, and may take a value
within some known range. We may have many similar
parameters that take values in different ranges. We may
have a string, such as uplink frequency band, that can take
one of an enumerated set of values, e.g. "X", "Ka", etc.
View period events are an example of complex types. All
this domain specific information has to be represented in the
database to support the service.

The advantage of domain knowledge in the database is that
we can do quite a bit of validation on requests before they
are submitted to the server. From the user's perspective,
early input verifiation is obviously useful, because
submitting a request to the workflow system does not
provide immediate response. With up-front validation, the
request can be corrected immediately, rather than after the
user has waited for the workflow system. In addition, we
can use this domain knowledge to drive automation of the
system. If we have good information about the parameters
a task requires we can automatically generate valid work
requests and increase the reliability of the service.

Write the Service Proxy- The service proxy is the back end
provider of the service. We call this server a proxy because
it is a stand-in for the application that provides the service in
the workflow design. This application can be a Java
program or a legacy program, or any other program. The
only requirement is that it provide the following interface
methods

0 execute - The execute method is called to for a new
request. All input parameters are passed in to this
method.

0 getWorkerEvent - request the status of the request
0 abort - the abort method is called to stop the

processing of the request
0 testProxy - this method can be used to verify that

the proxy server is up and running

In our design the proxy is a stand-alone application. It does
not know about other architectural components, including
the database. The application may, however, use other
services, such as application services or data services. In
addition to making a request, via the execute method, the
proxy can be queried for status of the request using the
getWorkerEvent method. We can stop execution of the
request using the abort method. Lastly, we can check if the
proxy is running using the testproxy method.

When the application exists a priori and provides a clean
API, the service proxy simply invokes the appropriate
methods of the API. Since we are doing things the "right"
way, we have already provided such a clean API for our
application. The proxy must contend with multiple
requests. If the application can handle multiple requests
internally we have no problem. Otherwise, the proxy has to
manage multiple instances of the application.

Our design exposes this service proxy as a SOAP service on
a web server. Thus, the above API methods are remotely
accessible to any SOAP enabled client.

Write the Service Monitor- The service monitor is the
middle layer component that fulfils a work order. It
prepares the request for the service proxy, invokes the
service proxy, monitors the progress of request execution on

View Period

View Period
SOAP
Reauest

Trajectory
SOAP
Request

Request

~i~~~~ la: ne diagram above shows the design
of the view period server. this design, the
trajectory application is invoked directly by the
view period application.

Figure lb: The diagram above shows a modular design for
the View period and trajectory applications. In this design,
the view period application obtains trajectory information via
a SOAP request to the SOAP server.

the proxy, updates the status of the work order and the
worker proxy in the database, and manages the output data.
The monitor is fully database aware. In fact, in our design,

the monitor runs in the Java server inside the Oracle
database we use. The monitor would typically contain most
of our application specific business logic as well as some
workflow logic, specifically with respect to monitoring and
status.

Providing An Engineering Service the Practical Way

trajectory information, which it obtains by using, internally,
a set of trajectory tools. In the future we would like to
provide trajectory services as one entity. We would then
replace the current view period service with a new service
based or an application that uses these trajectory services,
instead of the current application that uses the trajectory
tools directly. The modular design of our service system
will enable us to make this change transparently to users
and other services. Figure 1 depicts a pictorial comparison
of these two scenarios.

The most common phrase we utter is "for now".
Unfortunately, the applications we are working with are so
complex, use so much data, and involve so much domain
knowledge that it is impossible to provide services Yhe
right way". Instead, we make compromises and provide
these services "the practical way". The practical path to
providing a service given an engineering application is as
follows:

Def;ne the Services- Since the engineering application is
not modular and does not provide a programmatic API,
providing the service the right way becomes impossible.
What we do instead is make sure we provide the
functionality of the application as a service. That is, we
need to do a good job of defining the services. This allows
us to define the API that the application should provide.
We then wrap the application, or possible set of applications
to provide this API. The intent is that we can provide this
functionality to the user. In addition, the functionality from
the user's perspective will never change. That is, the API
we expose to the user will remain consistent. The
underlying application and the wrapper implementation and
even the support data can change, but these changes will be
transparent to the user.

For example, we now provide a view period generation
service. The view period application needs quite a bit of

Defining the right set of services requires quite a bit of
domain understanding. The crux of the problem is how
users prefer to invoke the application. It is not the case that
a single command line application corresponds to one
service. Some services may be made up of multiple
applications. For example, generating some
telecommunication link predictions is a two-step process
beginning with generating a mission configuration from the
desired sequence of events and equipment and then
generating the predictions for this configuration. Other
applications may be broken up into multiple services. For
example, the functionality provided by the trajectory toolkit
we use (SPICE Toolkit) provides many services including
locations of planets, moons and spacecrafts, ranges between
bodies and more. Lastly, we do not change the applications
to use other services "for now".

Our system provides a manual interface as well as an
automated one. We, therefore, provide a two-layer API for
these applications. The lower layer API exposes all the
details of the application, the full set of input parameters,
file inputs and options. This provides the capability for
manual invocation (for example through a detailed user-
interface). The higher level API, which we call the
Application Services API exposes a subset of the
hctionality according to an analysis of use patterns. This
API exposes only a handful of parameters. Other

application parameters and options are either defaulted or
retrieved from a database. This API is the commonly used
one. It is also the API that is exposed as a RPC service.
The engineering expert uses the lower-level API for
advanced analysis.

Analyze Input and Output Data- Modifying the input and
output data as described above leads to significant rewriting
of the application in addition to a major process change.
These changes will not happen in a timely fashion. Again,
we compromise. While we keep in mind our goal of
database integration, we build a service that is still file
based, but supporting files are stored in the database. We
provide an object API, but underneath this API is an API
comprised of a lengthy parameter list. Thus we are able to
support manual invocation as well as typical uses.
The "practical" solution follows the same sequence as the
"right" solution, but each step is different

Thoroughly analyze the application inputs.
Identify the supporting application data files, in
contrast with the invocation specific data files.
a. Expose the manual, parameter based interface

a. Define the file inputs (some of these will
be supporting files) and output.

b. Define the parameter inputs. All the
invocation specific data should be
provided as parameter inputs, even if the
underlying application uses a file input for
those parameters.

b. Expose the application service, object based
interface

0 Define the object inputs and outputs.
0 Identify the supporting files, which will

be in the database.
0 Identify the invocation specific

parameters that are not part of the object
inputs. Provide defaults for these
parameters.

Organize the supporting data in a database. The
practical solution for data management is to store
the supporting data files in the database with
reasonable organization. (For example, for view
period generation the spacecraft trajectory is stored
with project data, the planetary trajectory is stored
with astrodynamic data, etc.)
Since we cannot re-write the application to use
supporting data directly from the database we
provide supporting data to the two application
interfaces as follows
a. For the manual interface

0 The user specifies file inputs. These files
must be in the database.

b. For the application service interface
0 this interface uses data services to find

appropriate supporting files in the
database given the object inputs and

(6)

Create

required file types.
A middle layer, which we call the work monitor,
takes care of copying the supporting files from the
database onto the application server for use by the
manual interface.

The process change for updating the data is
unlikely to change in the near future. Instead we
put utilities in place to grab the latest supporting
data files from their release location and insert
them in the database.

Database Support- We do not, at present, feel
equal to the task of analyzing the full set of parameter types
for the task. For the telecommunications domain, there is
vast domain knowledge that should be in the database. We
compromise greatly on the parameter type definition, and
postpone most of this hard analysis and development until
later. We currently support simple types: integer, float,
string , url, date, boolean and file. Of the above types only
the file type has been analyzed to the point that we specify
various file types. Files are critical because, as we have
already discussed, they are the primary data source for these
applications.

The result of these shortcuts is that we can check a priori
whether an input file is of the correct type. This level of
type checking for files is limited, because a file may have
the correct type, but may not, for example, be for the time
period of interest. We can also check that the input data is
of the right type, but not that it falls into an appropriate
range or that it is one of the enumerated set values. For
strings, we cannot check proper format. These limitations
imply that validating correctness of requests falls to the
user, and most input errors will not be caught until the
application fails.

These shortcuts also limit our ability to automate our
system. For most parameters we do not have enough
information to populate a work request. The remaining
options are to get the input data from a user, or to assign
defaults for most parameters. Thus, the services we
provide in an automated setting expose partial functionality
of the application.

Write the Service Pro- Our applications do not provide a
clean API. In addition, they use files for both inputs and
outputs. Thus, a large part of the proxy's work is wrapping
the existing application to provide the desired API. The
application's use of local directories and files complicates
the API; the files must be copied from the database to the
local file system. In addition, supporting multiple threads is
complicated because we have to ensure that one thread does
not use or overwrite files for another thread. Lastly, the
output of the application is usually a file, which is written to

the file system. We must grab that output file and save it.

The solution to these problems in our design is that the
service monitor loads the input file onto the service proxy's
file system. After application execution, the monitor grabs
the resulting output file from the proxy's file system and
inserts it to the database or provides it to the user in the
manner the user requested it (we support mail and ftp).
Cleaning up the local file system must wait until the output
file has been assimilated. We, therefore, add a cleanup
method to the proxy interface. The proxy does not clean up
the local environment until this cleanup request is made by
the monitor.

The service proxy, then implements the following interface
0

0
0

0

0

execute - The execute method is called to for a new
request. All input parameters are passed in to this
method.
getWorkerEvent - requests the worker status
cleanup - the cleanup method signals the proxy to
clean its local environment from the respective
program execution.
abort - the abort method is called to stop the
worker application
testproxy - this method can be used to verify that
the proxy server is up and running

The wrapper implementation that the proxy uses to invoke
the application is implemented in a thread aware class. The
implementation of the wrapper class deals with the many
domain specific and application specific details involved in
wrapping. Some of the issues the wrapper must address
follow.

0 Converting parameters from user specified type
and format to those the application expects.

0 Creating parameter input files.
0 Creating and removing temporary files.
0 Creating and removing temporary directories.
0 Invoking the legacy application from the wrapper.
0 Providing status updates.
0 Maintaining an accurate and comprehensive log on

the part of the proxy.
0 Aborting work that is currently executing.
0 Cleaning up when the request is completed.

While a great deal of the logic for invoking the application
resides in the back-end wrapper, some logic resides in the
service monitor that invokes the wrapper. The decision as
to where to put some domain or application logic must be
made by the implementer on a case-by-case basis. Some of
the decisions are guided by the parameter analysis. Some
issues are practical, such as separating the back-end
application from the database.

Write the Service Monitor- Our underlying application is
still file based, and, at the same time, we want the proxy to
be location independent and ignorant of the database. It,
therefore, falls on the service monitor to "magically" place

the input files in the proper location for the proxy and to
fetch the output file from its location on the proxy server.
In addition, since the monitor is between the user, on the
front end, and the proxy, on the back end, we can use it to
do some of the parameter conversion. As stated above, it is
up to the implementer to decide how to divide the logic
between the middle layer (monitor) and the back layer
(proxy).

Of the other functions performed by the service monitor:
invoking the service proxy, monitoring the progress of
request execution on the proxy and updating the status of
the work order and the worker proxy in the database, only
monitoring progress depends on the application. Our
existing applications do not provide progress information
while the application is executing. We would like to be able
to report progress in terms of time to completion or percent
done. We do not have this capability at present. Thus, we
focus more on status than progress. Status information is
more limited. We can tell if the application has been
initiated, is in progress, has succeeded or has failed. For
now, we provide this limited progress information.

A service created using the above steps is not perfect. We
would expect to revisit some issues on this service, to
review the shortcuts we have made one by one and redesign
them the right way. This service may be more difficult to
reuse, integrate and adapt than a service created the right
way. This service is, however, functional, and hnctionality
is our first goal.

6. THE TELECOMMUNICATIONS PREDICTS SERVER

PROTOTYPE
This section describes a prototype that provides
telecommunication predicts services. We briefly discuss the
architecture of the prototype, the services provided by the
prototype, the workflow management, and how we
automate processes using known services.

The Architecture

A long list of requirements influences our architectural
design. We have a requirement for 7/24 availability. Our
system must be fault tolerant for hardware, networking and
software failures. We must support users on any computing
platform. (Unix, Windows and Macintoshes are all
pervasive at P L .) The legacy applications we use to

Ui&W Application Application
sen/er

Figure 2: High-level architecture of the telecomrmniwtiions

provide services typically execute on the Unix platform.
Our services, both data services and application services,
must be available both within and outside of a firewall.
Naturally, some of the data our system carries is sensitive
and proper security is required. Based on all these
requirements, the architecture for our prototype is
distributed, multi-platform and multi-tiered.

The architecture for the prototype is presented graphically
in figure 2. On the back end is the application server, which
invokes the server application. From the architectural point
of view, for this server, any computing platform is
acceptable. We are currently using Apache SOAP, which
runs under the Apache Tomcat servlet container. As this
software is all Java, we can use any platform where Java is
supported. Usually we are restricted by the legacy
application, most of which are native for some flavor of
Unix. In the prototype, the back end server is a Sun Solaris
machine. Security issues are fairly simple for the back-end
server since it is behind a firewall and is only accessed by
the workflow manager, which is also behind the firewall.

The middle tier in our architecture contains the bulk of our
data and business logic. We are using an Oracle database,
which provides the reliability, availability and security we
need for our data. Our application server also resides in the
middle tier. In fact, we are using the Oracle provided Java
server and application server, which run in the database.
(Note that the term application server is overloaded here.
This application server does not refer to one of the services
we provide. Rather, it is the industry standard name for a
server that can execute some software upon request.) This
combination of tools should provide good reliability and
security infrastructure, and keep our efforts in this area to a
minimum. The middle tier in our architecture is behind the
firewall. The data and application services it provides are
accessible by users (and other applications) within and
outside the firewall. Thus, the bulk of emphasis on security
in our system is in the middle tier. As part of our business
logic the middle tier hosts the workflow manager. This
module contains the SOAP client that communicates with
the SOAP server to request a service.

The data and application services we provide in the middle
tier are available as either web applications or SOAP RPC.
Thus we support two types of clients on the front end:
human user with a browser and any SOAP enabled client.

VGR2 Spacecraft

Since web browsers are available for all platforms, and
SOAP is a platform independent protocol this architecture
does not restrict the platform of the client.

The Services

At present the prototype provides view period generation
and some telecommunication link prediction services. View
periods are the spans of time that a spacecraft is "visible"
for a particular antenna. View period generation is a service
that is particularly well suited to automation. This service is
used during mission design to ascertain the level of
telecommunication service the mission can expect. The
mission designer needs the spacecraft view periods to
forecast ground antenna availability for this mission. It is
often the case that the mission can be modified to obtain
better service. For example, the launch date can change.
Some trajectory changes are possible. The mission designer
will typically explore many scenarios before committing to
a design. For each scenario the designer must obtain view
periods, and the fidelity of these view periods need not be
very high. (Five minute accuracy suffices, typically, for
scheduling.) The convenience and fast service paradigm we
provide are a perfect fit with these requirements.
The low level manual interface to these services is
accessible via a web browser. Figure 3 shows the main
screen for the view period server interface. As you can see
the user has considerable control in selecting the parameters
for view period generation, including selection of events,
occulting bodies and supporting data. Most of the input
information is defaulted based on database information after
the spacecraft is selected and start and end dates are set. The
user may then override any of the database default values.
The outputs are in the form of a file. The user can request
the output location of the resulting file as a Uniform
Resource Locator (URL). Both FTP and mail URLs are
available.

There is also a high level API available programmatically as
a SOAP RPC. The generate view periods function of this
API takes as input the spacecraft object, an optional
trajectory file, start and end dates, optional ground antenna
objects, and an optional output URL. Like the manual
interface, the result of this method will be to place the
output file in the requested URL. This API uses the same
infrastructure to create a complete work order for the view
period generation service using the database defaults for the
given inputs. It also uses the same infrastructure to control
the workflow for this work order once it has been queued.
Thus we have achieved the two-level API we desired. The
narve user is able to get results with minimal inputs and
little domain understanding. The expert user has fine-
grained control over the execution of the application.

Other services available in our prototype generate the
telecommunication link predictions. These predictions are
specific equipment settings for a known telecommunication

link. For example, we know that Mars Global Surveyor will
downlink telemetry to the 70m antenna in Goldstone on
December 2 1,200 1 between 7pm and 3am, what equipment
setting are necessary to support this activity. For these
telecommunications link predictions we have similar
manual and high-level APIs available programmatically in
the prototype. Work to design the browser Graphical User
Interface (GUI) is ongoing.

We are extending the services provided by the prototypes to
include additional radiometric predictions. The DSN needs
these predictions to enable acquisition and tracking of the
spacecraft and to specify the equipment configuration
necessary for telecommunication with a spacecraft. For
example, for a given spacecraft, trajectory and antenna view
period, where should the antenna be pointing to lock onto
the spacecraft and what is the optimal frequency for
downlink communication.

In addition, we have identified trajectory functions to be
well suited to exposing as services. There is a large
community of people, in and outside of JPL, who use
trajectory information in a variety of ways. There is a
toolkit, called the SPICE toolkit, which is often used to
obtain trajectory information. This toolkit provides
excellent functionality. The drawbacks of using it are that
every user must install a copy on his machine. Every user is
then responsible for maintenance and upgrades. Although
the toolkit is well documented, it requires considerable
investment in time to learn. We believe we can expose
many of the functions provided by the toolkit as a trajectory
service, and this service will have considerable impact for
many JPL processes (from mission design to mission
operations to educational outreach). This service remains,
however, future work.

The Workjlow Module

Figure 4: Design of the workflow management
module.

The design of the workflow management module is
depicted in figure 4. Let us briefly overview this design.
Very few of the design details are included in this
discussion. For a detailed discussion on the workflow
management system see [9].

The workflow management in the prototype manages the
requests for services, which we call work orders. A work
order is queued in a work order queue, which we store in
the database. When the work order is ready for execution
the work dispatcher attempts to find a worker proxy for the
requested work. If the work dispatcher finds a worker
proxy it instantiates a work monitor to monitor the progress
of the work. The work monitor prepares the data for the
proxy, transfers files if necessary, and makes the SOAP call
to the proxy. The proxy receives the request and invokes
the legacy application. The monitor repeatedly checks the
progress of the work, using SOAP calls, and updates the
status of the work order in the database. The monitor is also
in charge of retrieving the output file from the worker proxy
and putting it in the user-requested location (database, email
or ftp).

In our design the workflow module resides in the database
server. We take advantage of this collocation to create a
new breed of workflow management system. The work
dispatcher, although it is drawn in Figure 4 as one unit, is
actually a distributed collection of Java methods, stored
procedures and triggers. In addition, information about the
available services and worker proxies is stored in the
database. The dynamic nature of this design allows us to
update the workflow logic in a localized manner. We need
not make a grand re-release when we change a component
or add a new one. We do not need to interrupt the
workflow to make a change to the system. In practical
terms, this implies improved usability. The disadvantage of
this type of distributed logic is that the workflow is difficult
to analyze and debug. We have attempted to reduce this
challenge with a carefully designed state transition system
for work order and worker status.

7. CONCLUSIONS
This paper explores the feasibility of an automated
engineering service paradigm. Under this paradigm,
engineering services are analogous to today's web services.
The service can be invoked directly by a user using a
browser. The service can also be re-used in another
program through an API. We assert that the technology
enabling such automated services is sufficiently mature to
adapt to the engineering domain.

The bulk of the paper addresses the challenge of exposing
engineering services in practice. We immediately see that
engineering applications are inherently more complex than
typical web-enabled applications. These applications
require considerable domain specific input. Furthermore,
the only reasonable path to exposing automated engineering
services is to adapt existing applications to the new
paradigm. These programs, unfortunately, are ill suited for
an automated setting. They have strong dependencies on
the environment, they expect a large number of parameter
inputs, and they operate on files. This paper provides a

methodology for exposing such existing engineering
applications as automated services. This methodology
converts the existing application to an application with the
following requirements: modularity, location independence,
concise API, data availability, reliability, documentation
and monitor status and exception handling.

We have implemented the methodology described in this
paper in the telecommunications domain. We built a
prototype which exposes several applications as web
services, including view period generation and
telecommunication link predictions. This prototype, in
addition to providing useful functionality in its own right,
demonstrates the use of automated services in a web setting
and application re-use as part of a workflow management
system.

REFERENCES

[l] MQSeries Family. IBM. http://www-
4. ibm. com/sofiware/ts/mqseries/about/.

P I ActiveEnterprise. TIBCO.
http://www.tibco.com/products/enterprise.html.

[31 Oracle Workflow. Oracle.
http://otn.oracle.com/products/integration/workflow/workfl
ow fov.htm1.

[41 Usability First. Web site.
http://www.usabilityfirst.com/groupware/.

[5] Michel Beaudouin-Lafon. Computer Supported Co-
operative Work. Trends in Software, 7. , John Wiley &
Son, 1999.

[6] Ben-Natan, Ron. CORBA: A Guide to Common Object
Request Broker Architecture. McGraw-Hill, 1995.

[7] Sun Corporation. JavaTM Remote Method Invocation
(RMI). http://iava.sun.com/i2se/l.4/docs/guide/rmi/.

[8] Skonnar, Aaron. SOAP: The Simple Object Access
Protocol. MSDN Magazine. January, 2000.
http://www.microsoft.com/mind/O 1 OO/soap/soap.asp.

[9] Bergman, Ruth and Zendejas, Silvino C. A Decentralized
Approach to Automatic Workflow in Dynamic and
Distributed Environments. In preparation.

[IO] The Workflow Management Coalition.
http://www.wfinc.org/.

[1 1] Fraunhofer-Institute for Software Engineering and Systems
Engineering.

http://www.do.isst.fhg.de/workflow/produkte/index e.html.

[12] World Wide Web Consortium.
Language (XML) 1 .O. http://www.w3 .org/TR/REC-xml/.

Extensible Markup

[131 Matti Aamo Hiltunen. Configurable Fault-Tolerant
Distributed Services. PhD Dissertation. University of
Arizona. 1996.

[141 Lincoln D. Stein and John N. Stewart. The World Wide
Web Security FAQ. http://www.w3 .org/Security/Faq/www-
security-faq .html.

[151 Microsoft Corporation. Microsoft .NET.
http://www .microsoft.com/net/.

[161 Userland. XML-RPC. http://www.xmlrpc.com/.

[171 Kenn Scribner and Mark Stiver. Understanding SOAP:
The Authoritative Solution. Sams, 2000.

[181 Attachmate Corporation. Approaches to Enterprise
Application Integration Involving Legacy Applications.
http://www.attachrnate.com/article/O, 1012,3 163 1 3857,OO.
!ltnlJ 2000.

[191 David S. Linthicum. EA1 Application Integration
Exposed. Software Magazine, Februaryh4arch 2000.
http://www.softwaremag.com/archive/2000feb/EAI.html.

[20] Xmethods. Weather - Temperature Service.
http://xmethods.com/detail.html?id=8.

[21] Xmethods. Delayed Stock Quote Service.
http://xmethods . com/detail. html?id=2.

[221 Cambridge Dictionaries Online.
http://dictionary.cambridge.orgldefme.asp.

[23] IMEX Research. High Availability Overview.
http://www .highavailabilitycenter.com/overview .html.

Ruth Bergman is a Senior
Computer and Information
Scientist in the Mission and
Systems Architecture section at
JPL. She is working on the
TMOD network simplification
project among others. From 1996
through 1998, Dr. Bergman was a
member of the technical staff at
the MIT Lincoln Laboratory in the Advanced Systems and
Sensors Group, where she developed artificial intelligence
approaches for Infra-Red seeker technology in ballistic
missile defense. She holds a Ph.D. in Computer Science
from MIT, where she was a member of the Artificial

http://www
http://www.tibco.com/products/enterprise.html
http://otn.oracle.com/products/integration/workflow/workfl
http://www.usabilityfirst.com/groupware
http://iava.sun.com/i2se/l.4/docs/guide/rmi
http://www.microsoft.com/mind/O
http://www.wfinc.org
http://www.do.isst.fhg.de/workflow/produkte/index
http://www.w3
http://www.w3
http://www
http://www.xmlrpc.com
http://www.attachrnate.com/article/O
http://www.softwaremag.com/archive/2000feb/EAI.html
http://xmethods.com/detail.html?id=8
http://xmethods
http://dictionary.cambridge.orgldefme.asp
http://www

Intelligence Laboratory and performed research in the area
of autonomous agents and machine learning.

Chester Borden is the Supervisor of the Information and
Mission Operations Architecture Group in the Mission and
Systems Architecture Section at the Jet Propulsion
Laboratory. He manages the software development effort
for the Service Preparation Subsystem for the Interplanetary
Network and Information Services Directorate. Mr.
Borden has worked on and managed numerous technology
and software development tasks at JPL. He has an MS in
Operations Research from Cal State Northridge and a BS in
Mathematics from UCLA.

Silvino Zendejas is a Senior Computer and Information
Scientist in the Mission and Systems Architecture section at
JPL. He is the Cognizant Design Engineer for the Service
Data Management Assembly of the Service Preparation
Subsystem. He holds an MS in Computer Engineering from
the University of Southern Califomia and a BS in Civil
Engineering from California Polytechnic University in San
Luis Obispo.

