

 1

Distributed Operations for the Mars Exploration Rover
Mission with the Science Activity Planner
Justin V. Wick, John L. Callas, Jeffrey S. Norris, Mark W. Powell, Marsette A. Vona, III

Jet Propulsion Laboratory, Pasadena California
Justin.Wick@cornell.edu

Abstract— The unprecedented endurance of both the Spirit
and Opportunity rovers during the Mars Exploration Rover
Mission (MER) brought with it many unexpected
challenges. Scientists, many of whom had planned on
staying at the Jet Propulsion Laboratory (JPL) in Pasadena,
CA for 90 days, were eager to return to their families and
home institutions. This created a need for the rapid
conversion of a mission-planning tool, the Science Activity
Planner (SAP), from a centralized application usable only
within JPL, to a distributed system capable of allowing
scientists to continue collaborating from locations around
the world.

Rather than changing SAP itself, the rapid conversion was
facilitated by a collection of software utilities that emulated
the internal JPL software environment and provided
efficient, automated information propagation. During this
process many lessons were learned about scientific
collaboration in a concurrent environment, use of existing
server-client software in rapid systems development, and
the effect of system latency on end-user usage patterns.

Switching to a distributed mode of operations also saved a
considerable amount of money, and increased the number of
specialists able to actively contribute to mission research.
Long-term planetary exploration missions of the future will
build upon the distributed operations model used by MER.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. CENTRALIZED OPERATIONS1
3. MOVING TO DISTRIBUTED OPERATIONS..............2
4. ARCHITECTURE AND IMPLEMENTATION..............5
5. TECHNICAL CHALLENGES6
6. MISSION IMPACT...6
7. RECOMMENDATIONS FOR THE FUTURE...............7
8. CONCLUSION ...8
REFERENCES ...8
BIOGRAPHY ...8

1. INTRODUCTION

The Mars Exploration Rover Mission has been an
unqualified success. At the time of this writing, both the
Spirit and Opportunity rovers have exceeded their
operational lifetimes by a factor of three. Both rovers
continue to roam Mars, returning a wealth of valuable new
information to Earth.\

The unprecedented length of the Mars Exploration Rovers
mission created many challenges for mission planners.
Although the original architecture of the mission planning
system was intended to be distributed in nature[1], budget
constraints did not allow for the development of this
capability. As a result, the planning software was designed
such that it was heavily reliant upon internal computing
resources at JPL, making it unusable at remote sites.

In March 2004, as the primary mission for both rovers drew
to a close, it became evident that both rovers were likely to
continue operating long past their original 90 sol lifetimes.
Faced with the reality that mission scientists would shortly
begin departing from JPL to their respective research
institutions, the decision was made to redesign the system to
accommodate the participation of scientists at remote sites.
Since the Science Activity Planner was the primary tool
used by scientists in the high level planning process, an
effort was begun to adapt SAP for use outside of JPL and to
provide a collaborative framework for scientists to operate
it.

2. CENTRALIZED OPERATIONS

During the centralized phase of the MER mission, scientists
were gathered in a single building at JPL and used the
planning and analysis software in a specially configured
computing environment, which was called the Flight
Operations System. The Flight Operations System was the
platform for the Ground Data System (GDS) software that
drove the data processing and planning processes for the
mission.

The Science Activity Planner (SAP) is a GDS tool that is
used to perform dual roles facilitating manual science and
engineering-level data analysis, and planning the daily
actions of each rover in a coarse, high level fashion. This
tactical decision-making process is similar to that practiced
in the FIDO field tests [2]. SAP provides functionality
allowing users to view and manipulate images captured by
the rover in what is known as the Downlink Browser (figure
2). There, objects can be examined, and points in space
known as “targets” can be marked for use in creating
planned activities. The Uplink Browser (figure 3) allows
users to create “activities” (a high level description of an
action the rover should take, such as acquiring an image or
driving) and “observations” (groups of related activities).

 2

Each day the tactical process starts with a science meeting
during which scientists are briefed about the current
situation. After this, the scientists break up into “theme
groups” such as “atmospheric” or “soils” or “long term
planning” and work in parallel, using SAP to construct
sequences of instructions for the rover that reflect their
scientific goals. During this several hour period, the data is
analyzed within SAP, points are designated as targets for
the rover’s actions, and the potential plans are put together.
After this time, the final plan is debated and assembled in
the Science Operations Working Group (SOWG) meeting.
Possible scientific observations from each group are ranked
according to importance. After a structured debate, the
accepted observations are arranged together in SAP to meet
the daily energy, time, and bandwidth budgets that have
been established by the engineering team. The final merged
plan is then delivered for further refinement and processing
downstream to be converted to the actual sequence of
instructions sent to the rover.

A homogeneous computing environment consisting of
custom-built workstations running the Linux operating
system facilitated collaboration within the system. There
was a central Network File System server (the OSS) for
each rover (MER-A and MER-B) and also a central SQL
database server for each. Because all downlinked data and
planning information were kept in these two central
repositories, collaboration was simple. When a scientist
saved a plan file, it was immediately available to all others
to be analyzed and merged. Target designation, critical to
the planning process, was also synchronized with low
latency (~2 sec) via the central SQL server. All science
workstations were guaranteed to have access to the exact
same set of data.

3. MOVING TO DISTRIBUTED OPERATIONS

Due to budget and lifestyle constraints, the mission was
shifted to a new, more distributed mission architecture. The
cost of keeping relevant scientists on location in Pasadena
was prohibitive, and many of the scientists and engineers
had family elsewhere in the world for whom they were
responsible. Because of this, the decision was made to
create an environment in which scientists could tactically
plan with SAP at remote sites. This software environment
would have to:
 Make planning-relevant downlink data available
to the remote scientists in a timely fashion.
 Allow scientists to interactively share targets
designations.
 Facilitate the sharing of plan files that contain
the scientific observations for the day.
 Dynamically create indexing metadata of
available data products to make them available in SAP.
 Maintain operational security through use of
encryption, authentication, and firewalls.

It was decided that the best possible action was to closely
replicate the JPL software environment, rather than change
SAP itself. SAP expects a highly structured file system
database containing images, range data, three dimensional
meshes, spectral data records, coordinate frame information,
planning constraints, and plan files. Because no available
network file system server was fast enough to be used by
SAP interactively, the relevant data sets would have to be
mirrored locally. This also meant that the indexing of that
data (which is how SAP knows what information is
available on the file system) would also have to be done
locally. Also, the sharing of targets and plans presented a
challenge, since the servers hosting the plans and targets
were not accessible outside of JPL.

Data Synchronization

The first matter was to arrange for the data to be delivered
to the remote SAP workstations. SAP expects data to exist
in a highly structured, hierarchical system of folders,
numbering well over a million for each rover. This file
system database is known as the Operational Software
System, or OSS. The folders separate data by sol (martian
day), instrument, and data type. The job of the data
synchronization subsystem was to replicate the internal file
system database of downlinked data on client workstations
around the world.

The first solution to this problem that was developed
utilized an open source program known as RSYNC, which
can synchronize files and directories recursively between
machines through a secure SSH tunnel. A daemon was
created that repeatedly synchronized the directories for
recent sols with a central server. The central server itself
was to be filled with the SAP-relevant data from the
operational NFS servers.

The problem with this approach was that it relies heavily on
polling, and tens of thousands of files and directories had to
be recursively compared. It was decided that it would place
too much of a load on the server to have an acceptably low
latency for data delivery. Worse, overloading issues were
already a severe problem on the operational NFS server, and
it was decided that this solution would most likely
exacerbate the situation.

We then decided to create a second data synchronization
solution, utilizing the JPL Multi-mission Image Processing
Lab’s (MIPL) File Exchange Interface (FEI). FEI is a
system that MIPL uses to automatically push out data to
remote sites, such as research institutions or museums.
While it supports polling and client-initiated downloading,
it also has an event-driven server-push mode that relies on
the “subscriptions” of a client to a set of file types. FEI was
chosen because it has a very low latency (~2 seconds within
the JPL network) and is very well load balanced.

 3

The main problem associated with this approach was that
FEI does not keep track of the path in the file system to the
directory where a particular file came from – this data
would have to be reconstructed. In addition to this, FEI also
contains a large number of files that cannot be used by SAP
and are not relevant for tactical planning. Because of the
low bandwidth at many remote sites, the files would have to
be filtered for relevance prior to downloading. The system
also needed to allow for the gathering of archived files from
specific sols of interest – a feature not supported by FEI.

The final solution was to have two methods of getting files
– an automatic subscription program, and a manual archived
file retrieval program. Both programs used a filter to
determine whether or not a given file was desired based on
its relevance (and in the case of archival data, whether or
not it fell within a specified range of sols). Also, a script
was assembled that could sort the files into their final
locations based solely on the file names. This was made
possible by the fact that the file names systematically
encode the data type, instrument name, time acquired, and
the rover from which the data was obtained.

Each workstation established a connection with the FEI
server, and signed up to be “notified” when files in a
relevant “filetype” were made available. This notification
was pushed from the server to the client, at which time the
client decided, based on the filename, if the file was
desirable. If the file was wanted, it was retrieved from the
server and then sorted into the file system. This system has
latencies on the order of minutes or less, and has nearly idea
bandwidth use (the server/client messages are very short).

Obtaining access to archival data was somewhat less
straightforward. That program, given a rover designation
(A or B, for Spirit or Opportunity) and a desired range of
sols, downloads an entire roster of all available files in
relevant filetypes. It then filters the names of files to find
those files that fall into the specified range of sols, and also
do not currently exist on the local file system. This roster
listing process is very inefficient and takes several minutes,
however downloading the requisite data can take hours, so
the overhead is acceptable.

The final step in the data synchronization process is the
Data State Manager Daemon – a daemon process that scans
available downlinked data products and creates a
comprehensive index of what data is available. Every thirty
seconds the most recent sols are scanned (and occasionally
older sols, according to a probabilistic algorithm) to see if
new data has been made available. When new data is
discovered, it is processed and incorporated into the index,
making it available for SAP. A nearly identical process is
run at JPL, where the cost of all open SAP instances
scanning each sol would have been prohibitive.

Target Synchronization

Target synchronization was another vital component of the
distributed SAP system. At JPL, targets were synchronized
between machines by storing them in a central SQL server.
The various SAP instances would poll the server every two
seconds, checking timestamps in the database to see if new
targets had been created, or if old ones had been modified.
There were no security issues because the database was not
accessible from the outside world, and all individuals using
computers that could access the database were cleared to
designate targets.

In a distributed setup, however, everything changed. It was
no longer possible to make the central JPL target server
available to machines outside of JPL for security reasons;
however, each remote site had to be able to see the same
targets as users at JPL with minimal latency. Moreover,
there had to be a method to take targets from outside JPL
and import them into the internal JPL server. This entire
process was required to be as low-latency and automatic as
possible, while maintaining operational security.

The solution we chose was that there should be a secondary,
“external” SQL server that would be accessible to
authorized machines outside of JPL. A script at JPL
forwarded changes and new additions to the JPL internal
target database out to the external server every few seconds.
 Because of the nature of the database, it was acceptable for
targets to exist in the external database but not in the
internal database without causing any problems. Plan files,
however, contain reference to targets (to decide where to
drive, or aim a camera, etc). If a plan were brought into JPL
that referenced an external target, that target would have to
be manually imported by a script at JPL. That script would
then have to extract a static copy of the target from the plan
file text. This process was considered secure because it
required a human in the loop to verify that the target was
valid. Also, the external server was protected by a strict
firewall that only allowed access from a set of secured
university computers that were certified as part of the
planning process. The data from JPL was encrypted using
an SSH tunnel with public key authentication.

A final consideration for target sharing was the
complication that was caused by SAP’s use of MySQL
database polling. The newly changed entries in the JPL
target database had to have a timestamp in the remote
database that would cause the remote SAP clients to notice
the change. Due to various internal details of the SAP client
and MySQL servers, these timestamps had to be adjusted
into the future before being sent to the external targets
server. This caused new targets to be downloaded
repeatedly by clients, but the bandwidth that this used was
acceptably small.

Plan Sharing

The issues associated with plan sharing were similar to
those of target synchronization in that the central server (in

 4

this case, the internal NFS server at JPL) was not accessible
to the outside world. Also, there were similar security
concerns. Plan files coming out of JPL automatically were
not considered to be a security issue. However no one from
outside JPL could be able to insert a plan file into the
normal planning directories inside JPL.

The solution chosen was that there should be two
repositories for plan files, one inside JPL (the NFS server)
and one outside JPL. These two repositories would
automatically synchronize, however no user outside JPL
could be allowed to write a file that would propagate to a
normal planning directory inside JPL. Instead, users outside
JPL would have to place plans into special “external”
directories. The planning directories inside JPL for each sol
had names such as “apxs” or “soil”, etc, broken down by
group, and each containing an additional named “working”
directory. The planning directories were modified by
adding another directory named “external” in each subgroup
directory. A user outside JPL could submit his plan to the
central external plan server, but only if it resided inside an
“external” directory.

Fi
gu

re
 1

 –
 D

at
a

flo
w

 in
 D

is
tri

bu
te

d
SA

P.
 B

lu
e

ar
ro

w
s

in
di

ca
te

 d
at

a
pr

od
uc

ts
. G

re
en

 in
di

ca
te

s
pl

an
s.

 O
ra

ng
e

in
di

ca
te

s
ta

rg
et

s.
 P

ro
ce

ss
es

 m
ar

ke
d

in
 re

d
re

qu
ire

 h
um

an
 in

te
rv

en
tio

n.

rs
yn

c

O
S

S

P
la

n
s

L
o

ca
l

O
S

S

S
u

b
m

it-
p

la
n

S
A

P
W

as
h

in
g

to
n

U
n

iv
er

si
ty

D
S

M
S

F
ir

ew
al

l
JP

L
Fi

re
w

al
l

W
as

h
in

g
to

n
 U

n
iv

er
si

ty
 F

ir
ew

al
l

R
em

o
te

 S
it

e
JP

L
 M

S
A P
la

n
su

b
m

itd
in

t

S
ta

gi
ng

P
la

n
sy

n
cd

P
la

n
sy

n
cd

R
S

V
P

S
A

P

ex
t

ex
t

in
t

ex
t

R
em

o
te

 F
ir

ew
al

l

ta
rg

et
sy

n
cd

T
ar

g
et

s
Im

p
o

rt
-

ta
rg

et

in
t/

ex
t

in
t/e

xt

in
t

S
ta

gi
ng

in
t/e

xt

in
t

ex
t

ex
t

in
t

ex
t

F
E

I
M

IP
L

In
co

n
p

u
sh

o
u

td

T
ar

g
et

s

S
ap

fe
id

in
t/

ex
t

rs
vp

in
t

in
t

ex
t

ex
t

R
S

V
P

D
at

a

O
P

G
S

 D
A

T
A

IN
C

O
N

S
V

F

in
t

R
S

V
P

in
t ex

t

D
S

M
d

in
de

x

da
ta

da
ta

da
ta

ex
t

 5

The majority of the synchronizations were automatic. JPL’s
NFS server was considered the canonical source for
“internal” plans. Every 30 seconds the next 5 sols worth of
internal plans were sent to the external server. Every 30
seconds or so, those same sols were synchronized from the
external server to the SAP workstations at each institution.
However, because there was no single canonical source for
plans created at an institution, it was decided that
submission of an “external” plan to the central server would
be a manual process. Once an “external” plan was
submitted to the central server, within 30 seconds it would
be copied to the same directory on the JPL NFS server, to
be seen by those at JPL. This is how planned observations
that were created outside of JPL could become part of the
final plan at the SOWG meeting held at JPL.

4. ARCHITECTURE AND IMPLEMENTATION

Figure 1 illustrates the overall architecture of the system.
The left side of the diagram represents the portion of the
system running at JPL. The lower right corner of the
diagram shows the servers at Washington University of St.
Louis. Finally, the upper right represents each individual
Distributed SAP workstation. The data flow is illustrated
by colored arrows: blue for downlink data, green for plans,
and yellow for targets. The cylindrical shapes represent
servers, and the named rectangles signify a process or
collection of processes that are logically grouped together.
A name in red signifies that the process requires a human
intervention. Whether or not a target or plan being
transferred was created inside or outside JPL is indicated by
an “int” or “ext” label on the associated arrow. Names
ending in “d” refer to “daemon” processes that run
constantly in the background. RSVP is an engineering level
planning program that is used by some scientists remotely,
and uses much of the same data as SAP.

Downlinked Data

To understand how the system works, one should first
examine the downlink data flow (blue arrows). The Multi-
mission Image Processing Laboratory (MIPL) is the source
of all processed imagery used in this system. MIPL, along
with the “Inconpushoutd” – a daemon that pushes out initial
conditions of the rover for a sol, the planning constraints,
and coordinate frame information – supplies the FEI server
with the files that are needed for the use of SAP outside of
JPL.

After the files are sent to the FEI server, the clients are
notified of the newly available files through the “Sapfeid”, a
daemon that handles all of the processes that wait for new
files. If the files are deemed relevant, they are downloaded
from the server into a temporary directory, and then stored
in their proper location in the local OSS (the local set of
folders that hold the data for each sol). Once the new data

is noticed by the DSMd (Data State Manager daemon), it is
then indexed. After that the data can be accessed by SAP.

Target Data

The target data flow is more symmetric – a target can
originate either at JPL or at an external workstation. SAP
instances at JPL create targets in the internal database. A
JPL computer running the “targetsyncd” – the target
synchronization daemon – takes newly generated targets
and sends them out to the centralized target server at
Washington University. Every time an external SAP client
opens a plan from a given sol, it fetches the targets
associated with that sol from the central server. The SAP
client also maintains a polling thread that keeps looking for
new targets being made on that sol.

A computer external to JPL can create a target in the
external database, making it available to all other external
SAP instances. If the target needs to be used inside JPL, an
external plan file is saved and then submitted to the plan
server; a copy arrives at the JPL OSS. A person, either at
JPL or logged in remotely then runs the import-target script,
giving it the plan file, and the name of the target to be
imported. The import-target program reads the target data
from the plan file and then enters it into the local JPL
database. Any open internal SAP instances can then see the
new target, and it can be used in the final, official plan.

Planning Data

The final component of the system is the shared planning
data flow (green arrows). Just like shared targets, there are
two separate places where plans can be generated – internal
to JPL by SAP, or external to JPL by SAP. Inside JPL, they
are kept in special directories on the OSS. An automated
process called Plansubmitd polls the OSS every 30 seconds
to check for new plans, or newly modified plans, and
uploads them to the external planning server at Washington
University. A similar process called Plansyncd polls the
server for new or newly modified external plans to be
imported. Plansyncd imports all changed plans to a staging
area, but only copies external plans to the actual OSS for
security reasons. This prevents anything submitted to the
external server from affecting the internal plans without
intervention from a human at JPL.

The right side of this data flow concerns the remote sites.
If a plan is created or modified at a remote site, and the user
wants to share it with the rest of the distributed SAP users,
the “submit-plan” script is run. This sends the file to the
server (overwriting any older version of that file if it
previously existed). Also, a slightly different version of the
Plansyncd is running in the background. It is identical to
the JPL version, except that it copies both internal and
external plans to the local OSS.

Programming Languages Used

 6

All of the daemon programs were written in Perl 5, and
utilized utility shell scripts. The import-target program is a
combination of a Perl frontend and a Java backend. Perl
was used because the system is tied heavily to the
underlying OS, and it made invocation of Unix commands
and file manipulation particularly easy. Also a large
amount of the work done by these programs involved text
parsing.

5. TECHNICAL CHALLENGES

The technical challenges of this project were many and
varied. Most of the challenges involved reliable
communications between all of the parts of the system,
atomicity of transactions, and server load. Also, out of
necessity, many parts of the system used software in ways
that were not originally intended.

The most common technical challenge of the entire project
was the large set of problems created by repeated polling of
file systems and servers. Because the MER GDS has no
centralized, common event-driven architecture, most of the
components of the distributed system use some form of
polling to handle propagated changes. Polling itself is not a
significant challenge in software development. However,
the efficiency of the polling was a severe limiting factor in
what design choices were available, and it forced us to use
nondeterministic algorithms for some of the less important
parts of the system.

Our data indexing process, the Data State Manager (DSM),
needed to poll tens of thousands of subdirectories of the file
system every thirty seconds. This grew to the point where it
was untenable, so a compromise was made in the system’s
design. Instead of scanning all sol data directories every 30
seconds, it would scan only the three most recent for new
data constantly. The older directories would have a
probability of being scanned each 30 second sweep such
that about 95% of all sols would be scanned in a given 24
hour period. The use of nondeterministic algorithms was
considered safe because older sols tended not to change
often, and their changes tended not to be important.

Another example where polling was a bottleneck was the
Plan Synchronization Daemon. The Plan Synchronization
Daemon (plansyncd) relied heavily on polling of a central
server. Plansyncd used the RSYNC client tunneled through
SSH, and RSYNC only permits one directory to be
recursively synchronized per connection. Because of this
and the fact that the first five upcoming sols had to be
synchronized every thirty seconds, each requiring a separate
connection, the SSH authentication server on the central
planning server became intolerably slow. While plans still
propagated, it was at a reduced rate, and often connections
to the server were rejected due to the overload. As of this
writing, we plan to replace this polling process with a

manual process due to the incredible load it places on the
server.

A different issue encountered was reliable communications
through a highly heterogeneous network environment.
There were a lot of very complicated firewalls involved –
two levels at JPL, at least two at Washington University of
Saint Louis, and usually between one and two firewalls at
other institutions. SSH tunneling made communications
through these firewalls possible, however this required
authentication keys to be distributed. Network failures were
not entirely uncommon, and temporary workarounds had to
be set up in the event that a server was not reachable.
Server load and reliability was often the deciding factor for
the success of the Distributed SAP system.

One of the biggest causes of bugs was the relative
heterogeneity of systems running SAP outside of JPL.
Inside JPL the software was run exclusively on Red Hat
Linux 7.3 boxes, all of which contained identical processors
and graphics cards. Outside of JPL, Red Hat Linux 7.3, 8,
9, Red Hat Enterprise Linux 3, and Fedora Core 1 were in
use. This was a problem because it required different
systems to use different versions of the FEI client, which
was not fully tested on Fedora Core 1. Also, newer Linux
distributions shipped version 5.8 of Perl, which has subtly
different semantics for a few very important operations,
such as regular expression matching. This lead to a few
bugs involving data delivery, which were very difficult to
track down.

Last but not least was the fact that some software
components of the system were being used in ways that
their creators had not intended. This sometimes put the
system into odd states requiring manual intervention. The
FEI server system was not designed, for instance, to notify
clients if a file that already existed on the server was
modified, only when new files were added. So, when
certain important configuration files had to be pushed out,
they had to be removed and then added to FEI. Also, FEI
had no method of filtering files based on the sol they belong
to, or specific details of the file type. This had to be
implemented in one of the more complicated Perl programs
that we created. The same goes for the lack of file system
metadata preservation in FEI. The files had to be sorted by
a Perl program, based solely on the name of the file – a fact
that precluded the sorting of certain types of files
accurately.

6. MISSION IMPACT

The impact of the Distributed Science Activity Planner on
the MER mission was very significant. By allowing
scientists to analyze data and collaboratively plan at remote
institutions, Distributed SAP was a primary enabling factor
in the feasibility of the distributed operations architecture.

 7

Transitioning to distributed operations has saved a
considerable amount of money during the extended mission.
 The principal expense change with the implementation of
remote operations was the savings on travel expense.
Approximately $250 per day was expensed to the project
for a typical visiting scientist on MER to cover travel-
related expenses. During the period of remote operations, it
is estimated that about 13 outside scientists were necessary
to operate each rover – 26 in total. The cost of this team’s
residence at JPL for operations is estimated at
approximately $200,000 per month of dual-rover
operations. The current implementation of remote
operations for MER saves the MER Project at minimum this
amount each month.

There are also some modest remote operations related
expenses. These expenses included development cost for
the remote operations infrastructure and the on-going
maintenance of this infrastructure. However, since most of
the hardware was existing equipment at JPL that was
relocated to remote sites and the maintenance engineers are
already on staff, the added cost for remote operations was
small relative to the overall travel cost savings.

The MER science team has adapted quite well to remote
operations. The team has consistently been able to produce
the detailed activity plans and associated sequences on time
for each rover on every sol during the period of remote
operations. This is likely due to the extensive training the
science team received prior to the beginning of rover
surface operations - the intense co-located operational
period of the prime mission phase (90 sols) which precisely
honed each team members operational skills. It is also
aided by the similarity of the remote operations
infrastructure to the prime mission operational infrastructure
(e.g., tools and procedures, etc.).

According to MER Principle Investigator Steve Squyres,
there has been no loss in capability of the science team due
to moving to the distributed missions architecture. He
reports that the system is highly robust – planning at Cornell
University continued even during a power failure via a
laptop and cellular phone modem. Having the scientists at
home with their family and collogues has been good for
morale, and it has enabled the team to successfully retain its
members in the long term.[3]

There are still challenges in using the distributed
architecture. Communication is more difficult when people
are not in the same room. Also, a significant amount of
time was spent emailing screen shots back and forth, due to
the fact that many mission computer programs were not
designed to be collaborative over a distance. Much of the
communications difficulties were mitigated by the use of
teleconferencing equipment, web cameras, Virtual Network
Computing, and SSH. There are aspects to the system that
need improved, however, the net impact of moving to a
distributed architecture is overwhelmingly positive.

7. RECOMMENDATIONS FOR THE FUTURE

Future missions will be more ambitious and will require
significantly more complex supporting technology. The
amount of data returned will skyrocket as novel
communications infrastructures are utilized. Planning will
likely become more specialized and more involved as
larger, more sophisticated science payloads are sent to
space. Also, the trend towards greater international
cooperation in space exploration continues to diversify the
geographical distribution of labor.

Consequently, future missions are likely to be partially or
fully distributed in their ground support architecture. This
requires a new breed of operations software – software
designed from the ground up to support collaboration from
multiple locations. This software will have to deal with
issues of versioning, concurrency, data propagation, content
synchronization, and effective communications among team
members. To support its development, we make the
following recommendations:

1) Design operations software as fundamentally
distributed – from the beginning. The single most
challenging aspect of the MER distributed operations
effort was coercing centralized software into
functioning properly in a distributed environment. The
performance of the system was adversely affected by
many compromises made to meet the requirements of
the original software, and potential robustness was
sacrificed due to the need of ad-hoc solutions.

2) Avoid polling by using a common event notification
system. The largest obstacle to good performance in
our system was the lack of a common event notification
system. Almost all processes were forced to rely on
polling, which was inefficient, high in latency, and
consumed enormous system resources. It was also a
source of unnecessary complexity. A common event
notification system would solve this problem by
making processes aware of new or newly changed
resources. The File Exchange Interface includes a
subset of this desired functionality. This is the most
significant feature that the current architecture lacks.

3) Distributed planning software should operate in a
high-concurrency environment. Many parts of the
planning process are by nature collaborative, as is the
scientific process itself. Plan sharing in Distributed
SAP was problematic because it was not designed to be
highly concurrent. Systems should be designed to allow
multiple users to edit a resource simultaneously, or
prevent resource conflicts. This might be best
accomplished using notions of resource ownership, or a
“copy on write” model. Operations should be
transactional and reversible where possible.

 8

4) Minimize latency effects in collaborative
functionality. The latency involved in the shared
planning subsystem, while low, is still high enough to
discourage its use in the interactive part of a planning
session. It is important to use techniques, such as
optimistic locking in order to reduce the inevitable
effects of latency in this kind of global system.

5) Utilize decentralized architectures for information
propagation where possible. As the volume of
mission information increases, it will become more
critical to use a less centralized method for distributing
static information (data products). We suggest the use
of swarming downloads (as demonstrated by the
BitTorrent protocol) or localized synchronization of
caches (swarm caching). The ability for operations
software to obtain data from a localized peer should
increase effective throughput significantly, and also
lower latency. The network topology in this operations
model consists of small, interconnected “clusters,”
which is ideal for swarming transfers.

6) Use SQL databases where possible. SQL databases
are an industry standard, and they have successfully
solved many problems relating to concurrency, locking,
transactions, data propagation, and querying. The use
of SQL databases for targets was critical for the success
of Distributed SAP. To aid in the use of SQL, object
oriented software can use what is known as an Object-
Relational Bridge (ORB), a piece of software that
converts object graphs in memory to a database
representation, and back. Distributed SAP uses Castor
Java Data Objects to perform this function.

7) Use XML or ASCII Text for metadata. Lack of
integration with specialized science analysis and
planning software lead to extra work and reduced
capabilities for MER scientists. The use of
platform/language neutral standard formats would
greatly increase the interoperability of mission
software.

8. CONCLUSION

The Distributed Science Activity Planner has contributed to
the success of distributed operation for the Mars
Exploration Rover mission. Scientists were able to analyze
data and plan from their home institution, and collaborate
with other scientists around the world. The distributed
operations architecture has enabled a large science team to
operate Spirit and Opportunity well beyond the original
mission lifetime as they continue to return valuable
scientific information to earth. Distributed MER operations
will serve as a model for missions into the future.

REFERENCES

[1] Robert Steinke, Paul G. Backes, and Jeffrey S.
Norris. Distributed mission operations with the multi-
mission encrypted communication system. In Proceedings
IEEE Aerospace Conference, Big Sky, Montana, March 9-
16 2002.

[2] Paul G. Backes , Jeffrey S. Norris , Mark W.
Powell , Marsette A. Vona , Robert Steinke , and Justin
Wick. The Science Activity Planner for the Mars
Exploration Rover Mission: FIDO Field Test Results. In
Proceedings IEEE Aerospace Conference, Big Sky,
Montana, March 8-15 2003.

[3] Personal correspondence with Professor Steve
Squyres, December 8th, 2004.

BIOGRAPHY

Justin Wick worked as a member of the
operations staff of the Mars

Exploration Rover mission at the
Jet Propulsion Laboratory during 2004.
He designed and implemented the
Distributed Science Activity Planner
system to enable collaboration between
scientists at remote locations. Prior to
the mission Justin spent four years

pursuing a bachelors of science from Cornell University in
Applied and Engineering Physics. While not working on
MER, Justin parallelized several Magnetohydrodynamic
simulation codes for theoretical astrophysics, created a
kinematics simulation system for the Cornell RoboCup
robotic soccer team, and lead the computer science team on
the Cornell Snake Arm robotics project.

Justin currently lives in Ithaca, NY, working for Maas
Digital, creating custom computer graphics algorithms for
high definition IMAX films. He plans to pursue a career in
computational physics.

Dr. John L. Callas received his
Bachelor's degree in Engineering from
Tufts University in 1981 and his
Masters and Ph.D. in Physics from
Brown University in 1983 and 1987,
respectively. After completing his
doctorate in elementary particle

physics in 1987, he joined the Jet Propulsion Laboratory in
Pasadena, California to work on advanced spacecraft
propulsion, which included such futuristic concepts as
electric, nuclear and antimatter propulsion.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

 9

In 1989 he began work supporting the exploration of Mars
with the Mars Observer mission and has since worked on
seven Mars missions. In 2000, Dr. Callas was asked to join
the Mars Exploration Rover (MER) Project as the Science
Manager. Dr. Callas continues as the Science Manager for
the highly successful Spirit and Opportunity rovers.
Recently, Dr. Callas has begun serving as a Mission
Manager on MER, as an additional duty, as the rovers
continue their great success on the surface of Mars. In
addition to his Mars work, Dr. Callas is involved in the
development of instrumentation for astrophysics and
planetary science, and teaches mathematics at Pasadena City
College as an adjunct faculty member. In his spare time, he
mentors students interested in science and works with
schools classrooms on science projects.

Jeffrey S. Norris is a computer scientist
and member of the technical staff of the
Mobility Systems Concept Development
section at the Jet Propulsion Laboratory.
 At JPL, his work is focused in the areas
of distributed operations for Mars rovers
and landers, secure data distribution,
and science data visualization.

Currently, he is a software engineer on the Mars
Exploration Rover ground data systems and mission
operation systems teams. Jeff received his Bachelor’s and
Master’s degrees in Electrical Engineering and Computer
Science from MIT. While an undergraduate, he worked at
the MIT Media Laboratory on data visualization and media
transport protocols. He completed his Master’s thesis on
face detection and recognition at the MIT Artificial
Intelligence Laboratory. He lives with his wife, Kamala, in
La Crescenta, California.

Mark W. Powell has been a member
of the technical staff in the Mobility
Systems Concept Development
section at the Jet Propulsion
Laboratory, Pasadena, CA, since
2001. He received his B.S.C.S. in
1992, M.S.C.S in 1997, and Ph.D. in
Computer Science and Engineering
in 2000 from the University of South

Florida, Tampa. His dissertation work was in the area of
advanced illumination modeling, color and range image
processing applied to robotics and medical imaging. At JPL
his area of focus is science data visualization and science
planning for telerobotics. He is currently serving as a
software and systems engineer, contributing to the
development of science planning software for the 2003
Mars Exploration Rover mission and the JPL Mars
Technology Program Field Integrated Design and
Operations (FIDO) rover task. He, his wife Nina, and
daughters Gwendolyn and Jacquelyn live in Tujunga, CA.

Marsette A. Vona, III is currently a
PhD candidate in Computer Science
at Massachusetts Institute of
Technology. He is a former member
of the technical staff of the Mobility
Systems Concept Development
Section at the Jet Propulsion
Laboratory. At JPL, his work was
focused in the areas of high-

performance interactive 3D data visualization for planetary
exploration, user-interface design for science data analysis
software, and Java software architecture for large, resource-
intensive applications. Marsette received a B.A. in 1999
from Dartmouth College in Computer Science and
Engineering, where he developed new types of hardware
and algorithms for self-reconfigurable modular robots. He
completed his M.S. in 2001 at MIT’s Precision Motion
Control lab, where he developed a high-resolution

 10

interferometric metrology system for a new type of
robotic grinding machine. Marsette was awarded the
Computing Research Association Outstanding
Undergraduate Award in 1999 for his research in Self-
Reconfigurable Robotics.

ACKNOWLEDGEMENTS

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration. We would like to
thank Professor Steve Sqyures, Mary Mulvanerton,
Daniel Crotty, Rupert Scammell, and Adam Wick for
their generous assistance in the preparation of this paper.

 11

Fi
gu

re
 2

 –
 U

pl
in

k
B

ro
w

se
r.

 T
he

 U
pl

in
k

B
ro

w
se

r
al

lo
w

s
us

er
s

to
 e

di
t p

la
ns

.
Tw

o
pl

an
s

ar
e

cu
rr

en
tly

 o
pe

n,
 a

lo
ng

 w
ith

 a
 r

es
ou

rc
e

an
al

ys
is

 g
ra

ph
.

Th
e

de
ta

ils
 d

ia
lo

g
bo

x
co

nt
ai

ns
 a

dd
iti

on
al

 s
et

tin
gs

 fo
r a

 p
la

nn
ed

 p
an

or
am

ic
 c

am
er

a
ob

se
rv

at
io

n.
 T

he
 u

pp
er

 le
ft

co
nt

ai
ns

 a
 fi

le
 tr

ee
 o

f a
va

ila
bl

e
pl

an
 fi

le
s.

 T
he

lo

w
er

 le
ft

co
nt

ai
ns

 a
 li

st
 o

f a
va

ila
bl

e
ac

tiv
ity

 ty
pe

s.

 12

Fi
gu

re
 3

 –
 D

ow
nl

in
k

B
ro

w
se

r.
 T

he
 D

ow
nl

in
k

B
ro

w
se

r a
llo

w
s

us
er

s
to

 v
ie

w
 im

ag
es

 a
nd

 c
re

at
e

ta
rg

et
s.

 In
 th

is
 fi

gu
re

, a
n

eq
ui

cy
lin

dr
ic

al
 p

ro
je

ct
io

n
of

 a

na
vi

ga
tio

na
l c

am
er

a
m

os
ai

c
is

 b
ei

ng
 c

on
st

ra
st

 s
tre

tc
he

d.

R
ed

 c
irc

le
s

in
di

ca
te

 ta
rg

et
s,

an
d

th
e

ye
llo

w
 tr

ap
ez

oi
d

is
 th

e
pr

ed
ic

te
d

“f
oo

tp
rin

t”
 o

f
a

pl
an

ne
d

pa
no

ra
m

ic
 c

am
er

a
ob

se
rv

at
io

n.
 T

he
 y

el
lo

w
 re

ct
an

gl
e

is
 a

 m
ea

su
rin

g
to

ol
.

