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Abstract— The unprecedented endurance of both the Spirit 
and Opportunity rovers during the Mars Exploration Rover 
Mission (MER) brought with it many unexpected 
challenges. Scientists, many of whom had planned on 
staying at the Jet Propulsion Laboratory (JPL) in Pasadena, 
CA for 90 days, were eager to return to their families and 
home institutions. This created a need for the rapid 
conversion of a mission-planning tool, the Science Activity 
Planner (SAP), from a centralized application usable only 
within JPL, to a distributed system capable of allowing 
scientists to continue collaborating from locations around 
the world. 
 
Rather than changing SAP itself, the rapid conversion was 
facilitated by a collection of software utilities that emulated 
the internal JPL software environment and provided 
efficient, automated information propagation.  During this 
process many lessons were learned about scientific 
collaboration in a concurrent environment, use of existing 
server-client software in rapid systems development, and 
the effect of system latency on end-user usage patterns. 
 
Switching to a distributed mode of operations also saved a 
considerable amount of money, and increased the number of 
specialists able to actively contribute to mission research.  
Long-term planetary exploration missions of the future will 
build upon the distributed operations model used by MER. 
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1. INTRODUCTION 

The Mars Exploration Rover Mission has been an 
unqualified success.  At the time of this writing, both the 
Spirit and Opportunity rovers have exceeded their 
operational lifetimes by a factor of three.  Both rovers 
continue to roam Mars, returning a wealth of valuable new 
information to Earth.\ 

The unprecedented length of the Mars Exploration Rovers 
mission created many challenges for mission planners.  
Although the original architecture of the mission planning 
system was intended to be distributed in nature[1], budget 
constraints did not allow for the development of this 
capability.  As a result, the planning software was designed 
such that it was heavily reliant upon internal computing 
resources at JPL, making it unusable at remote sites. 

In March 2004, as the primary mission for both rovers drew 
to a close, it became evident that both rovers were likely to 
continue operating long past their original 90 sol lifetimes.  
Faced with the reality that mission scientists would shortly 
begin departing from JPL to their respective research 
institutions, the decision was made to redesign the system to 
accommodate the participation of scientists at remote sites.  
Since the Science Activity Planner was the primary tool 
used by scientists in the high level planning process, an 
effort was begun to adapt SAP for use outside of JPL and to 
provide a collaborative framework for scientists to operate 
it. 

2. CENTRALIZED OPERATIONS  

During the centralized phase of the MER mission, scientists 
were gathered in a single building at JPL and used the 
planning and analysis software in a specially configured 
computing environment, which was called the Flight 
Operations System.  The Flight Operations System was the 
platform for the Ground Data System (GDS) software that 
drove the data processing and planning processes for the 
mission. 
 
The Science Activity Planner (SAP) is a GDS tool that is 
used to perform dual roles facilitating manual science and 
engineering-level data analysis, and planning the daily 
actions of each rover in a coarse, high level fashion. This 
tactical decision-making process is similar to that practiced 
in the FIDO field tests [2].  SAP provides functionality 
allowing users to view and manipulate images captured by 
the rover in what is known as the Downlink Browser (figure 
2).  There, objects can be examined, and points in space 
known as “targets” can be marked for use in creating 
planned activities.  The Uplink Browser (figure 3) allows 
users to create “activities” (a high level description of an 
action the rover should take, such as acquiring an image or 
driving) and “observations” (groups of related activities). 
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Each day the tactical process starts with a science meeting 
during which scientists are briefed about the current 
situation.  After this, the scientists break up into “theme 
groups” such as “atmospheric” or “soils” or “long term 
planning” and work in parallel, using SAP to construct 
sequences of instructions for the rover that reflect their 
scientific goals.  During this several hour period, the data is 
analyzed within SAP, points are designated as targets for 
the rover’s actions, and the potential plans are put together.  
After this time, the final plan is debated and assembled in 
the Science Operations Working Group (SOWG) meeting.  
Possible scientific observations from each group are ranked 
according to importance.  After a structured debate, the 
accepted observations are arranged together in SAP to meet 
the daily energy, time, and bandwidth budgets that have 
been established by the engineering team.  The final merged 
plan is then delivered for further refinement and processing 
downstream to be converted to the actual sequence of 
instructions sent to the rover. 
 
A homogeneous computing environment consisting of 
custom-built workstations running the Linux operating 
system facilitated collaboration within the system.  There 
was a central Network File System server (the OSS) for 
each rover (MER-A and MER-B) and also a central SQL 
database server for each.  Because all downlinked data and 
planning information were kept in these two central 
repositories, collaboration was simple. When a scientist 
saved a plan file, it was immediately available to all others 
to be analyzed and merged.  Target designation, critical to 
the planning process, was also synchronized with low 
latency (~2 sec) via the central SQL server.  All science 
workstations were guaranteed to have access to the exact 
same set of data. 
 

3. MOVING TO DISTRIBUTED OPERATIONS 

Due to budget and lifestyle constraints, the mission was 
shifted to a new, more distributed mission architecture.  The 
cost of keeping relevant scientists on location in Pasadena 
was prohibitive, and many of the scientists and engineers 
had family elsewhere in the world for whom they were 
responsible.  Because of this, the decision was made to 
create an environment in which scientists could tactically 
plan with SAP at remote sites.  This software environment 
would have to: 
  Make planning-relevant downlink data available 
to the remote scientists in a timely fashion. 
  Allow scientists to interactively share targets 
designations. 
  Facilitate the sharing of plan files that contain 
the scientific observations for the day. 
  Dynamically create indexing metadata of 
available data products to make them available in SAP. 
  Maintain operational security through use of 
encryption, authentication, and firewalls. 

 
It was decided that the best possible action was to closely 
replicate the JPL software environment, rather than change 
SAP itself.  SAP expects a highly structured file system 
database containing images, range data, three dimensional 
meshes, spectral data records, coordinate frame information, 
planning constraints, and plan files.  Because no available 
network file system server was fast enough to be used by 
SAP interactively, the relevant data sets would have to be 
mirrored locally.  This also meant that the indexing of that 
data (which is how SAP knows what information is 
available on the file system) would also have to be done 
locally.  Also, the sharing of targets and plans presented a 
challenge, since the servers hosting the plans and targets 
were not accessible outside of JPL. 
 
Data Synchronization 
 
The first matter was to arrange for the data to be delivered 
to the remote SAP workstations.  SAP expects data to exist 
in a highly structured, hierarchical system of folders, 
numbering well over a million for each rover.  This file 
system database is known as the Operational Software 
System, or OSS.  The folders separate data by sol (martian 
day), instrument, and data type.  The job of the data 
synchronization subsystem was to replicate the internal file 
system database of downlinked data on client workstations 
around the world. 
 
The first solution to this problem that was developed 
utilized an open source program known as RSYNC, which 
can synchronize files and directories recursively between 
machines through a secure SSH tunnel.  A daemon was 
created that repeatedly synchronized the directories for 
recent sols with a central server.  The central server itself 
was to be filled with the SAP-relevant data from the 
operational NFS servers. 
 
The problem with this approach was that it relies heavily on 
polling, and tens of thousands of files and directories had to 
be recursively compared. It was decided that it would place 
too much of a load on the server to have an acceptably low 
latency for data delivery.  Worse, overloading issues were 
already a severe problem on the operational NFS server, and 
it was decided that this solution would most likely 
exacerbate the situation. 
 
We then decided to create a second data synchronization 
solution, utilizing the JPL Multi-mission Image Processing 
Lab’s (MIPL) File Exchange Interface (FEI).  FEI is a 
system that MIPL uses to automatically push out data to 
remote sites, such as research institutions or museums.  
While it supports polling and client-initiated downloading, 
it also has an event-driven server-push mode that relies on 
the “subscriptions” of a client to a set of file types.  FEI was 
chosen because it has a very low latency (~2 seconds within 
the JPL network) and is very well load balanced. 
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The main problem associated with this approach was that 
FEI does not keep track of the path in the file system to the 
directory where a particular file came from – this data 
would have to be reconstructed.  In addition to this, FEI also 
contains a large number of files that cannot be used by SAP 
and are not relevant for tactical planning.  Because of the 
low bandwidth at many remote sites, the files would have to 
be filtered for relevance prior to downloading.  The system 
also needed to allow for the gathering of archived files from 
specific sols of interest – a feature not supported by FEI.   
 
The final solution was to have two methods of getting files 
– an automatic subscription program, and a manual archived 
file retrieval program.  Both programs used a filter to 
determine whether or not a given file was desired based on 
its relevance (and in the case of archival data, whether or 
not it fell within a specified range of sols).  Also, a script 
was assembled that could sort the files into their final 
locations based solely on the file names.  This was made 
possible by the fact that the file names systematically 
encode the data type, instrument name, time acquired, and 
the rover from which the data was obtained. 
 
Each workstation established a connection with the FEI 
server, and signed up to be “notified” when files in a 
relevant “filetype” were made available.  This notification 
was pushed from the server to the client, at which time the 
client decided, based on the filename, if the file was 
desirable.  If the file was wanted, it was retrieved from the 
server and then sorted into the file system.  This system has 
latencies on the order of minutes or less, and has nearly idea 
bandwidth use (the server/client messages are very short). 
 
Obtaining access to archival data was somewhat less 
straightforward.  That program, given a rover designation 
(A or B, for Spirit or Opportunity) and a desired range of 
sols, downloads an entire roster of all available files in 
relevant filetypes.  It then filters the names of files to find 
those files that fall into the specified range of sols, and also 
do not currently exist on the local file system.  This roster 
listing process is very inefficient and takes several minutes, 
however downloading the requisite data can take hours, so 
the overhead is acceptable. 
 
The final step in the data synchronization process is the 
Data State Manager Daemon – a daemon process that scans 
available downlinked data products and creates a 
comprehensive index of what data is available.  Every thirty 
seconds the most recent sols are scanned (and occasionally 
older sols, according to a probabilistic algorithm) to see if 
new data has been made available.  When new data is 
discovered, it is processed and incorporated into the index, 
making it available for SAP.  A nearly identical process is 
run at JPL, where the cost of all open SAP instances 
scanning each sol would have been prohibitive. 
 
Target Synchronization 
 

Target synchronization was another vital component of the 
distributed SAP system.  At JPL, targets were synchronized 
between machines by storing them in a central SQL server.  
The various SAP instances would poll the server every two 
seconds, checking timestamps in the database to see if new 
targets had been created, or if old ones had been modified.  
There were no security issues because the database was not 
accessible from the outside world, and all individuals using 
computers that could access the database were cleared to 
designate targets. 
 
In a distributed setup, however, everything changed.  It was 
no longer possible to make the central JPL target server 
available to machines outside of JPL for security reasons; 
however, each remote site had to be able to see the same 
targets as users at JPL with minimal latency.  Moreover, 
there had to be a method to take targets from outside JPL 
and import them into the internal JPL server.  This entire 
process was required to be as low-latency and automatic as 
possible, while maintaining operational security. 
 
The solution we chose was that there should be a secondary, 
“external” SQL server that would be accessible to 
authorized machines outside of JPL.  A script at JPL 
forwarded changes and new additions to the JPL internal 
target database out to the external server every few seconds. 
 Because of the nature of the database, it was acceptable for 
targets to exist in the external database but not in the 
internal database without causing any problems.  Plan files, 
however, contain reference to targets (to decide where to 
drive, or aim a camera, etc).  If a plan were brought into JPL 
that referenced an external target, that target would have to 
be manually imported by a script at JPL. That script would 
then have to extract a static copy of the target from the plan 
file text.  This process was considered secure because it 
required a human in the loop to verify that the target was 
valid.  Also, the external server was protected by a strict 
firewall that only allowed access from a set of secured 
university computers that were certified as part of the 
planning process.  The data from JPL was encrypted using 
an SSH tunnel with public key authentication. 
 
A final consideration for target sharing was the 
complication that was caused by SAP’s use of MySQL 
database polling. The newly changed entries in the JPL 
target database had to have a timestamp in the remote 
database that would cause the remote SAP clients to notice 
the change.  Due to various internal details of the SAP client 
and MySQL servers, these timestamps had to be adjusted 
into the future before being sent to the external targets 
server.  This caused new targets to be downloaded 
repeatedly by clients, but the bandwidth that this used was 
acceptably small. 
 
Plan Sharing 
 
The issues associated with plan sharing were similar to 
those of target synchronization in that the central server (in 
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this case, the internal NFS server at JPL) was not accessible 
to the outside world.  Also, there were similar security 
concerns.  Plan files coming out of JPL automatically were 
not considered to be a security issue.  However no one from 
outside JPL could be able to insert a plan file into the 
normal planning directories inside JPL. 
 
The solution chosen was that there should be two 
repositories for plan files, one inside JPL (the NFS server) 
and one outside JPL.  These two repositories would 
automatically synchronize, however no user outside JPL 
could be allowed to write a file that would propagate to a 
normal planning directory inside JPL.  Instead, users outside 
JPL would have to place plans into special “external” 
directories.  The planning directories inside JPL for each sol 
had names such as “apxs” or “soil”, etc, broken down by 
group, and each containing an additional named “working” 
directory.  The planning directories were modified by 
adding another directory named “external” in each subgroup 
directory.  A user outside JPL could submit his plan to the 
central external plan server, but only if it resided inside an 
“external” directory.   
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The majority of the synchronizations were automatic.  JPL’s 
NFS server was considered the canonical source for 
“internal” plans.  Every 30 seconds the next 5 sols worth of 
internal plans were sent to the external server.  Every 30 
seconds or so, those same sols were synchronized from the 
external server to the SAP workstations at each institution.  
However, because there was no single canonical source for 
plans created at an institution, it was decided that 
submission of an “external” plan to the central server would 
be a manual process.  Once an “external” plan was 
submitted to the central server, within 30 seconds it would 
be copied to the same directory on the JPL NFS server, to 
be seen by those at JPL.  This is how planned observations 
that were created outside of JPL could become part of the 
final plan at the SOWG meeting held at JPL. 

4. ARCHITECTURE AND IMPLEMENTATION 

Figure 1 illustrates the overall architecture of the system.  
The left side of the diagram represents the portion of the 
system running at JPL.  The lower right corner of the 
diagram shows the servers at Washington University of St. 
Louis. Finally, the upper right represents each individual 
Distributed SAP workstation.  The data flow is illustrated 
by colored arrows: blue for downlink data, green for plans, 
and yellow for targets.  The cylindrical shapes represent 
servers, and the named rectangles signify a process or 
collection of processes that are logically grouped together.  
A name in red signifies that the process requires a human 
intervention.  Whether or not a target or plan being 
transferred was created inside or outside JPL is indicated by 
an “int” or “ext” label on the associated arrow.  Names 
ending in “d” refer to “daemon” processes that run 
constantly in the background.  RSVP is an engineering level 
planning program that is used by some scientists remotely, 
and uses much of the same data as SAP. 

Downlinked Data 

To understand how the system works, one should first 
examine the downlink data flow (blue arrows). The Multi-
mission Image Processing Laboratory (MIPL) is the source 
of all processed imagery used in this system.  MIPL, along 
with the “Inconpushoutd” – a daemon that pushes out initial 
conditions of the rover for a sol, the planning constraints, 
and coordinate frame information – supplies the FEI server 
with the files that are needed for the use of SAP outside of 
JPL. 

After the files are sent to the FEI server, the clients are 
notified of the newly available files through the “Sapfeid”, a 
daemon that handles all of the processes that wait for new 
files.  If the files are deemed relevant, they are downloaded 
from the server into a temporary directory, and then stored  
in their proper location in the local OSS (the local set of 
folders that hold the data for each sol).  Once the new data 

is noticed by the DSMd (Data State Manager daemon), it is 
then indexed.  After that the data can be accessed by SAP. 

Target Data 

The target data flow is more symmetric – a target can 
originate either at JPL or at an external workstation. SAP 
instances at JPL create targets in the internal database.  A 
JPL computer running the “targetsyncd” – the target 
synchronization daemon – takes newly generated targets 
and sends them out to the centralized target server at 
Washington University.  Every time an external SAP client 
opens a plan from a given sol, it fetches the targets 
associated with that sol from the central server.  The SAP 
client also maintains a polling thread that keeps looking for 
new targets being made on that sol. 

A computer external to JPL can create a target in the 
external database, making it available to all other external 
SAP instances.  If the target needs to be used inside JPL, an 
external plan file is saved and then submitted to the plan 
server; a copy arrives at the JPL OSS.  A person, either at 
JPL or logged in remotely then runs the import-target script, 
giving it the plan file, and the name of the target to be 
imported.  The import-target program reads the target data 
from the plan file and then enters it into the local JPL 
database.  Any open internal SAP instances can then see the 
new target, and it can be used in the final, official plan. 

Planning Data 

The final component of the system is the shared planning 
data flow (green arrows).  Just like shared targets, there are 
two separate places where plans can be generated – internal 
to JPL by SAP, or external to JPL by SAP.  Inside JPL, they 
are kept in special directories on the OSS.  An automated 
process called Plansubmitd polls the OSS every 30 seconds 
to check for new plans, or newly modified plans, and 
uploads them to the external planning server at Washington 
University.  A similar process called Plansyncd polls the 
server for new or newly modified external plans to be 
imported.  Plansyncd imports all changed plans to a staging 
area, but only copies external plans to the actual OSS for 
security reasons.  This prevents anything submitted to the 
external server from affecting the internal plans without 
intervention from a human at JPL. 

The right side of this data flow concerns  the remote sites.  
If a plan is created or modified at a remote site, and the user 
wants to share it with the rest of the distributed SAP users, 
the “submit-plan” script is run.  This sends the file to the 
server (overwriting any older version of that file if it 
previously existed).  Also, a slightly different version of the 
Plansyncd is running in the background.  It is identical to 
the JPL version, except that it copies both internal and 
external plans to the local OSS. 

Programming Languages Used 



 

 6

All of the daemon programs were written in Perl 5, and 
utilized utility shell scripts.  The import-target program is a 
combination of a Perl frontend and a Java backend.  Perl 
was used because the system is tied heavily to the 
underlying OS, and it made invocation of Unix commands 
and file manipulation particularly easy.  Also a large 
amount of the work done by these programs involved text 
parsing. 

5. TECHNICAL CHALLENGES 

The technical challenges of this project were many and 
varied.  Most of the challenges involved reliable 
communications between all of the parts of the system, 
atomicity of transactions, and server load.  Also, out of 
necessity, many parts of the system used software in ways 
that were not originally intended. 
 
The most common technical challenge of the entire project 
was the large set of problems created by repeated polling of 
file systems and servers.  Because the MER GDS has no 
centralized, common event-driven architecture, most of the 
components of the distributed system use some form of 
polling to handle propagated changes.  Polling itself is not a 
significant challenge in software development. However, 
the efficiency of the polling was a severe limiting factor in 
what design choices were available, and it forced us to use 
nondeterministic algorithms for some of the less important 
parts of the system. 
 
Our data indexing process, the Data State Manager (DSM), 
needed to poll tens of thousands of subdirectories of the file 
system every thirty seconds.  This grew to the point where it 
was untenable, so a compromise was made in the system’s 
design.  Instead of scanning all sol data directories every 30 
seconds, it would scan only the three most recent for new 
data constantly.  The older directories would have a 
probability of being scanned each 30 second sweep such 
that about 95% of all sols would be scanned in a given 24 
hour period.  The use of nondeterministic algorithms was 
considered safe because older sols tended not to change 
often, and their changes tended not to be important.  
 
Another example where polling was a bottleneck was the 
Plan Synchronization Daemon.  The Plan Synchronization 
Daemon (plansyncd) relied heavily on polling of a central 
server.  Plansyncd used the RSYNC client tunneled through 
SSH, and RSYNC only permits one directory to be 
recursively synchronized per connection.  Because of this 
and the fact that the first five upcoming sols had to be 
synchronized every thirty seconds, each requiring a separate 
connection, the SSH authentication server on the central 
planning server became intolerably slow.  While plans still 
propagated, it was at a reduced rate, and often connections 
to the server were rejected due to the overload.  As of this 
writing, we plan to replace this polling process with a 

manual process due to the incredible load it places on the 
server. 
 
A different issue encountered was reliable communications 
through a highly heterogeneous network environment.  
There were a lot of very complicated firewalls involved – 
two levels at JPL, at least two at Washington University of 
Saint Louis, and usually between one and two firewalls at 
other institutions.  SSH tunneling made communications 
through these firewalls possible, however this required 
authentication keys to be distributed.  Network failures were 
not entirely uncommon, and temporary workarounds had to 
be set up in the event that a server was not reachable.  
Server load and reliability was often the deciding factor for 
the success of the Distributed SAP system.  
 
One of the biggest causes of bugs was the relative 
heterogeneity of systems running SAP outside of JPL.  
Inside JPL the software was run exclusively on Red Hat 
Linux 7.3 boxes, all of which contained identical processors 
and graphics cards.  Outside of JPL, Red Hat Linux 7.3, 8, 
9, Red Hat Enterprise Linux 3, and Fedora Core 1 were in 
use.  This was a problem because it required different 
systems to use different versions of the FEI client, which 
was not fully tested on Fedora Core 1.  Also, newer Linux 
distributions shipped version 5.8 of Perl, which has subtly 
different semantics for a few very important operations, 
such as regular expression matching.  This lead to a few 
bugs involving data delivery, which were very difficult to 
track down. 
 
Last but not least was the fact that some software 
components of the system were being used in ways that 
their creators had not intended. This sometimes put the 
system into odd states requiring manual intervention.  The 
FEI server system was not designed, for instance, to notify 
clients if a file that already existed on the server was 
modified, only when new files were added.  So, when 
certain important configuration files had to be pushed out, 
they had to be removed and then added to FEI.  Also, FEI 
had no method of filtering files based on the sol they belong 
to, or specific details of the file type. This had to be 
implemented in one of the more complicated Perl programs 
that we created.  The same goes for the lack of file system 
metadata preservation in FEI.  The files had to be sorted by 
a Perl program, based solely on the name of the file – a fact 
that precluded the sorting of certain types of files 
accurately.  

6. MISSION IMPACT 

The impact of the Distributed Science Activity Planner on 
the MER mission was very significant.  By allowing 
scientists to analyze data and collaboratively plan at remote 
institutions, Distributed SAP was a primary enabling factor 
in the feasibility of the distributed operations architecture.   
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Transitioning to distributed operations has saved a 
considerable amount of money during the extended mission. 
 The principal expense change with the implementation of 
remote operations was the savings on travel expense.  
Approximately $250 per day was expensed to the project 
for a typical visiting scientist on MER to cover travel-
related expenses.  During the period of remote operations, it 
is estimated that about 13 outside scientists were necessary 
to operate each rover – 26 in total.  The cost of this team’s 
residence at JPL for operations is estimated at 
approximately $200,000 per month of dual-rover 
operations. The current implementation of remote 
operations for MER saves the MER Project at minimum this 
amount each month. 

There are also some modest remote operations related 
expenses.  These expenses included development cost for 
the remote operations infrastructure and the on-going 
maintenance of this infrastructure. However, since most of 
the hardware was existing equipment at JPL that was 
relocated to remote sites and the maintenance engineers are 
already on staff, the added cost for remote operations was 
small relative to the overall travel cost savings. 

The MER science team has adapted quite well to remote 
operations. The team has consistently been able to produce 
the detailed activity plans and associated sequences on time 
for each rover on every sol during the period of remote 
operations.  This is likely due to the extensive training the 
science team received prior to the beginning of rover 
surface operations - the intense co-located operational 
period of the prime mission phase (90 sols) which precisely 
honed each team members operational skills.  It is also 
aided by the similarity of the remote operations 
infrastructure to the prime mission operational infrastructure 
(e.g., tools and procedures, etc.). 

According to MER Principle Investigator Steve Squyres, 
there has been no loss in capability of the science team due 
to moving to the distributed missions architecture.  He 
reports that the system is highly robust – planning at Cornell 
University continued even during a power failure via a 
laptop and cellular phone modem.  Having the scientists at 
home with their family and collogues has been good for 
morale, and it has enabled the team to successfully retain its 
members in the long term.[3]  

There are still challenges in using the distributed 
architecture.  Communication is more difficult when people 
are not in the same room.  Also, a significant amount of 
time was spent emailing screen shots back and forth, due to 
the fact that many mission computer programs were not 
designed to be collaborative over a distance.  Much of the 
communications difficulties were mitigated by the use of 
teleconferencing equipment, web cameras, Virtual Network 
Computing, and SSH. There are aspects to the system that 
need improved, however, the net impact of moving to a 
distributed architecture is overwhelmingly positive.  

7. RECOMMENDATIONS FOR  THE FUTURE 

Future missions will be more ambitious and will require 
significantly more complex supporting technology.  The 
amount of data returned will skyrocket as novel 
communications infrastructures are utilized.  Planning will 
likely become more specialized and more involved as 
larger, more sophisticated science payloads are sent to 
space.  Also, the trend towards greater international 
cooperation in space exploration continues to diversify the 
geographical distribution of labor. 

Consequently, future missions are likely to be partially or 
fully distributed in their ground support architecture.  This 
requires a new breed of operations software – software 
designed from the ground up to support collaboration from 
multiple locations.  This software will have to deal with 
issues of versioning, concurrency, data propagation, content 
synchronization, and effective communications among team 
members.  To support its development, we make the 
following recommendations: 

1) Design operations software as fundamentally 
distributed – from the beginning.  The single most 
challenging aspect of the MER distributed operations 
effort was coercing centralized software into 
functioning properly in a distributed environment.  The 
performance of the system was adversely affected by 
many compromises made to meet the requirements of 
the original software, and potential robustness was 
sacrificed due to the need of ad-hoc solutions. 

2) Avoid polling by using a common event notification 
system.  The largest obstacle to good performance in 
our system was the lack of a common event notification 
system.  Almost all processes were forced to rely on 
polling, which was inefficient, high in latency, and 
consumed enormous system resources.  It was also a 
source of unnecessary complexity.  A common event 
notification system would solve this problem by 
making processes aware of new or newly changed 
resources.  The File Exchange Interface includes a 
subset of this desired functionality.  This is the most 
significant feature that the current architecture lacks. 

3) Distributed planning software should operate in a 
high-concurrency environment.  Many parts of the 
planning process are by nature collaborative, as is the 
scientific process itself.  Plan sharing in Distributed 
SAP was problematic because it was not designed to be 
highly concurrent. Systems should be designed to allow 
multiple users to edit a resource simultaneously, or 
prevent resource conflicts.  This might be best 
accomplished using notions of resource ownership, or a 
“copy on write” model.  Operations should be 
transactional and reversible where possible. 
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4) Minimize latency effects in collaborative 
functionality.  The latency involved in the shared 
planning subsystem, while low, is still high enough to 
discourage its use in the interactive part of a planning 
session.  It is important to use techniques, such as 
optimistic locking in order to reduce the inevitable 
effects of latency in this kind of global system. 

5) Utilize decentralized architectures for information 
propagation where possible.  As the volume of 
mission information increases, it will become more 
critical to use a less centralized method for distributing 
static information (data products).  We suggest the use 
of swarming downloads (as demonstrated by the 
BitTorrent protocol) or localized synchronization of 
caches (swarm caching).  The ability for operations 
software to obtain data from a localized peer should 
increase effective throughput significantly, and also 
lower latency. The network topology in this operations 
model consists of small, interconnected “clusters,” 
which is ideal for swarming transfers. 

6) Use SQL databases where possible.  SQL databases 
are an industry standard, and they have successfully 
solved many problems relating to concurrency, locking, 
transactions, data propagation, and querying.  The use 
of SQL databases for targets was critical for the success 
of Distributed SAP.  To aid in the use of SQL, object 
oriented software can use what is known as an Object-
Relational Bridge (ORB), a piece of software that 
converts object graphs in memory to a database 
representation, and back.  Distributed SAP uses Castor 
Java Data Objects to perform this function. 

7) Use XML or ASCII Text for metadata.  Lack of 
integration with specialized science analysis and 
planning software lead to extra work and reduced 
capabilities for MER scientists.  The use of 
platform/language neutral standard formats would 
greatly increase the interoperability of mission 
software. 

8. CONCLUSION 

The Distributed Science Activity Planner has contributed to 
the success of distributed operation for the Mars 
Exploration Rover mission.  Scientists were able to analyze 
data and plan from their home institution, and collaborate 
with other scientists around the world.  The distributed 
operations architecture has enabled a large science team to 
operate Spirit and Opportunity well beyond the original 
mission lifetime as they continue to return valuable 
scientific information to earth. Distributed MER operations 
will serve as a model for missions into the future. 
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