

The NASA Orbiting Carbon Observatory : Measuring CO₂ from Space

http://oco.jpl.nasa.gov

David Crisp, OCO Pl (JPL/Caltech)

March 19, 2008

- Humans have added >200 Gt C to the atmosphere since 1958
- Only ~58% of this CO₂ is staying in the atmosphere
- Where are the sinks that are absorbing over 40% of the CO₂?
 - Land or ocean?
 - Eurasia/North America?
- Why does the CO₂ buildup vary from year to year with nearly uniform emission rates?
- How will these CO₂ sinks respond to climate change?

Source: Hansen and Sato, PNAS, 101, 16109, 2004.

JPL *Orl*

The Orbiting Carbon Observatory (OCO)

OCO will acquire the space-based data needed to identify CO_2 sources and sinks on regional scales over the globe and quantify their variability over the seasonal cycle

Approach:

- Collect spectra of CO₂ and O₂ absorption in reflected sunlight
- Use these data to resolve variations in the column averaged CO₂ dry air mole fraction, X_{CO2} over the sunlit hemisphere X_{CO2} = 0.20995 × [CO₂] / [O₂]
- Validate measurements to ensure X_{CO2} accuracies of 1 - 2 ppm (0.3 - 0.5%) on regional scales at monthly intervals

PL *Orb*

What is X_{CO2}?

Hamilton Sundstrand

A United Technologies Company

rhiting Car

Precise Measurements are Needed to Resolve X_{CO2} Variations

Making Precise X_{CO2} Measurements from Space

- High resolution spectra of reflected sunlight in near IR CO₂ and O₂ bands used to retrieve the column average CO₂ dry air mole fraction, X_{CO2} - 1.61 µm CO₂ band: Column CO₂
 - 2.06 μ m CO₂ band: Column CO₂, Aerosols
 - 0.76 μm O₂ A-band: Surface pressure, clouds, aerosols
 - Why high spectral resolution?
 - Enhances sensitivity, minimizes biases

Putting the OCO Bands into Context

Project Management (JPL)

International Science Team

Single Instrument (Hamilton Sundstrand/JPL)

Dedicated Spacecraft (Orbital Sciences)

Dedicated Taurus 3110 Launch Vehicle (Orbital)

Mission Operations (JPL/Orbital/NGN)

December 2008 Launch from Vandenberg AFB

2-Year Nominal Mission

JPL *orbital*

JPL Orbizal

Pre-Flight Instrument Calibration and Characterization

Sundstrand

United Technologies Company

- Flight qualification ensures that instrument survives
 - Thermal, vacuum, vibration
- Pre-flight testing quantifies key Instrument performance and knowledge parameters
 - Geometric
 - Bore-sight alignment
 - Radiometric
 - Zero-level offset (bias)
 - · Gain, Gain non-linearity
 - Spectroscopic
 - Spectral range, resolution, sampling
 - Instrument Line Shape (ILS)
 - Polarization
 - Instrument stability

Observations of the sun with the flight instrument during the instrument thermo-vacuum testing provided an end-to-end test of the instrument performance.

Orb

A United Technologies Company

11 of 24, Crisp, OCO March 2008

Single Frame of Data using the Moon

- High SNR (given low illumination levels)
- High spectral resolution (absorption bands are clearly visible)
- Imaging works (moon is ~0.5° wide just as expected)

The OCO Spacecraft Bus

Our Ride: Taurus 3110 Launch Vehicle

14 of 24, Crisp, OCO March 2008

Orbita

OCO Will Fly in the A-Train

Hamilton Sundstrand

A United Technologies Company

OCO files at the head of the A-Train, 4 minutes ahead of the Aqua platform

- 705 km altitude sun synchronous, 98.2° inclination, 98.8 minute period
 - Global coverage with a 16-day(233 orbit) ground track repeat cycle

Orb

Sundstrand

United Technologies Company

- Optimized to minimize bias and yield high Signal/Noise observations of X_{CO2} over the globe
- Nadir Observations: tracks local nadir
 - + Small footprint (< 3 km²) isolates cloudfree scenes and reduces biases from spatial inhomogeneities over land
 - Low Signal/Noise over dark ocean
- Glint Observations: views "glint" spot
 - + Improves Signal/Noise over oceans
 - More interference from clouds
- Data acquisition schedule:
 - alternate between Nadir and Glint on 16-day intervals

Glint and Nadir observations are taken with the spectrometer slit oriented perpendicular to the principle plane to minimize biases associated with polarization of the scene

- OCO Orbit Constraints
 - The 705 km altitude ,98.2° inclination
 - global coverage with a 16-day ground repeat cycle
 - 98.8 minute period: 14.57 Orbits/day
 - ~25° longitude offset between consecutive orbits
 - 1.5° longitude offset between orbit tracks over 16-day repeat cycle
- •OCO Sampling Rate/Coverage
 - Glint: <u>+75</u>° SZA, Nadir: <u>+</u>85° SZA
 - 12-24 samples/second collected along track over land and ocean
 - 200 to 400 samples/degree of latitude along orbit track on day side of the Earth
 - •7 and 14 million soundings over the globe once every 16 days.

OCO provides dense sampling along track and coarser sampling from track-to-track. Plumes of CO_2 rich/poor air are captured by the column measurements.

Sundstrand

Sundstrand

United Technologies Company

Target Observations

- Tracks a stationary surface calibration site to collect large numbers of soundings
- Uplooking ground-based FTS data acquired simultaneously through same slant column
- Acquire Target data over 1 surface validation site each day
- Comparisons used to identify and remove biases

Geolocation Accuracy

Scan Direction

Along Slit

Estimating X_{CO2} from OCO Spectra: The OCO L2 Retrieval Algorithm

Purpose: To derive X_{CO2} from calibrated spectral radiances

Approach: A hybrid approach has been adopted:

- A "Full Physics" algorithm that incorporates everything known about atmospheric and surface optical properties that affect observed radiances
 - Should be reliable over a wide range of conditions, providing an absolute standard
 - Too slow to process all data
- A "Semi-Analytical" method based on correlations between correlated Apparent Optical Path Differences (AOPD's) in the O₂ and CO₂ bands
 - Fast and accurate over "training" range
 - Provides good initial guess for full physics algorithm

IPL *orbit*a

- OCO spectra depend on large number of parameters, but by far dominating are:
 - Aerosol loading
 - Solar zenith angles
 - Surface types
- Lin. Error analysis has been used to calculate errors and averaging kernels for range of the 3 dominating parameters:
 - Aerosol: 0 < AOD < 0.3
 Surface types: Lambert: vegetation, ocean, snow, desert, soil-vegetation mix CoxMunk surface for ocean sunglint
 Solar zenith angle: 0° < SZA < 85° for nadir 0° < SZA < 75° for sunglint
 - SNR and FWHM: current best estimate
- Main assumptions:
 - Retrieval has converged to the correct solution
 - Retrieval errors are small
 - No systematic errors included here (i.e. perfect Forward Model)

Averaging Kernels for Nadir Observations

Simulated Single Sounding X_{CO2} Retrieval Errors for Nadir Observation

Based on OCO orbit geometry + MODIS cloud and AOD maps + OCO pixel size

Averaged 16 Day Ensemble X_{CO2} Retrieval Error for Nadir Observations

Sundstrand

A United Technologies Company

- Based on land type climatology + AOD histogram (for AOD < 0.3) + number of cloud-free OCO pixels from effective OCO pixel size
- SZA < 85°
- No MODIS aerosol data available over ice and desert regions

sunglint observations will significantly reduce errors over ocean at high latitudes

Orbita

Space-based X_{CO2} Validation Strategy Ensures Accuracy and Early Acceptance

