
NASA Technical Memorandum 110164

/,,Z -_ e

Manual for a Workstation-based Generic

Flight Simulation Program (LaRCsim)
Version 1.4

E. Bruce Jackson

Langley Research Center, Hampton, Virginia

May 1995

(NASA-TN-110164) MANUAL FOR A
WORKSTATION-BASED GENERIC FLIGHT
SIMULATION PROGRAM (LaRCsim),

VERSION 1.4 (NASA. Langley

Research Center) 142 p

C_ 11108

N95-30327

Unclas

0055562

National Aeronautics and

Space Administration
Langley Research Center
Hampton, Virginia 23681-0001

Summary

LaRCsim is a set of ANSI C routines that implement a full set of equations of

motion for a rigid-body aircraft in atmospheric and low-earth orbital flight, suitable

for pilot-in-the-loop simulations on a workstation-class computer. All six rigid-body
degrees of freedom are modeled. The modules provided include calculations of the

typical aircraft rigid body simulation variables, earth geodesy, gravity and atmo-

sphere models, and support several data recording options. Features/limitations of

the current version include English units of measure, a 1962 atmosphere model in

cubic spline function lookup form, ranging from sea level to 75,000 feet, rotating

oblate spheroidal earth model, with aircraft C.G. coordinates in both geocentric

and geodetic axes. Angular integrations are done using quaternion angular state
variables. Vehicle X-Z symmetry is assumed.

A copy of this software is available upon request to the author.

Introduction

Historically, six degree of freedom aircraft simulations have been performed on

larger minicomputers or mainframe computers due to limited processing speed and

data storage capability on smaller workstation and desktop computers. With the

advent of more powerful reduced instruction set computer (RISC) architecture, the

processing capability of a desktop computer exceeds that of a supercomputer of a
decade ago.

Simultaneously with the rise in popularity of workstation and desktop com-

puters, the acceptance of UNIX-style operating systems has grown. This popular

operating system has brought with it the C programming language in which the
original UNIX kernal was written. While the standard C libraries lack some of the

mathematical procedures of FORTRAN, in which most digital aircraft models are

written, it is still possible to make use of this powerful and portable language. Ab-

stract data types, longer variable names, data structures, and recursion allow the

simulation architect to write maintainable and self-documenting software, with full

access, through standardized library routines, to operating system capabilities in a
nearly machine independent fashion.

Although not fully utilized in this version of LaRCsim, the popular X-Windows

facility is easily manipulated in C. This provides for graphical operator/user

interface capabilities on any X capable terminal or personal computer terminal

emulator (called a window server).

This version of LaRCsim utilizes a curses-based terminal interface, which will

support almost all types of computer terminals. X-windows support is planned for

later versions of LaRCsim. Also supported is a Silicon Graphics GL workstation

interface that includes out-the-window scenery and heads-up display symbology.

The pilot controls are provided through a mouse or, optionally, an analog-to-digital

interface (driver code for the analog-to-digital interface is not included since the

software depends upon the choice of host processor and interface hardware.)
Output options include time history information in ASCII text tab-delimited,

Dryden's GetData .ASC1, or Agile-Vu ".fl¢" format; a fourth option will write
the time history data into a text file suitable for execution by one of several popular

controls analysis software tools. Any global or static local variable can be recorded.

The recording module uses debugger symbol to access static or global variables at
a user-selected frequency. Specification of variables to be recorded can be made at
run-time.

Overview

What is LaRCsim?

LaRCsim is a set of C routines that implement a full set of equations of motion

for a rigid-body aircraft in atmospheric and low-earth orbital flight, it is intended

tobeusedwithadditional,user-providedsubroutines(eitherFORTRANorC)that
describetheaerodynamics,propulsionsystem,and other flight dynamic elements

of a specific air vehicle. Once combined with the vehicle-specific routines, LaRCsim

provides a desktop- and/or cockpit-based near-real-time simulation of the vehicle

for engineering analysis and control law development.

The six rigid-body degrees of freedom are modeled. The modules provided

include all of the kinematic relationships, most of the conventional output vari-

ables, geodesy and atmospheric models, and a data recording option. Some fea-

tures/limitations of the current version are as follows:

• English units of measure.

• 1962 atmosphere model in cubic spline function lookup form, ranging from sea

level to 75,000 ft. Included in the model are density, speed of sound, and sigma.

• Rotating oblate spheroidal earth model, with aircraft C.G. coordinates in both

geocentric and geodetic axes.

• Vehicle X-Z symmetry is assumed.

• Quaternions are used in determining the angular orientation (although equiv-

alent Euler angles are also calculated) to avoid the singularity at =1:90 degrees
pitch angle.

• Gravitational harmonic effects due to the earth's oblateness are modeled.

• Modular design allows user to incorporate modified atmosphere, turbulence, and

steady winds into the simulation.

• Rotating machinery effects are not modeled.

Origin and Purpose

LaRCsim was developed as part of an engineering flight simulation facility at

NASA Langley Research Center that is used to debug aircraft flight control laws.

This facility, known as Advanced Controls Evaluation Simulator (ACES), is used

in the Dynamics and Control Branch (DCB) and currently consists of a dual RISC

processer Silicon Graphics Onyx computer with RealityEngine-2 graphics driving

an evaluation cockpit with throttles and a side stick hand controller.

The LaRCsim routines are used to provide appropriate aircraft dynamic re-

sponses to flight control commands. The flight control laws may be written in C or

Fortran. The equations of motion are based upon work by McFarland in reference 1.

The axis frames and sign conventions comply with the ANSI/AIAA recommended

practice as outlined in reference 2; geodesy calculations use the relationships out-

lined in reference 3, as well as a custom geocentric to geodetic conversion developed
by the author. The atmosphere model is derived from data found in references 4

and 5; other physical constants were obtained from references 6 and 7. LaRCsim

itself is based upon FORTRAN routines originally developed by the author for the

U. S. Naval Air Test Center (now the Naval Air Warfare Center) under a project

known as CASTLE (see reference 8); these routines have ties back to the NASA

Ames FORTRAN simulation routines known as BASIC, written by McFarland and
others.

It is intended that LaRCsim applications be capable of running both with a
cockpit and pilot in the loop as well as in terminal interactive and batch modes.

This version includes both a generic display terminal and Silicon Graphics GL-based
keyboard/mouse interfaces in addition to an external cockpit interface.

Changes from version 1.3

The ACES facility is still being developed, and LaRCsim continues to evolve.
This release, version 1.4, differs from version 1.3 as follows:

• Six-degree of freedom trim capability has been added.

• Thedefaultsettingsfilehasbeenrenamed,andis automaticallyupdatedatthe
endof asessionsoLaRCsim"remembers"settingsfromtheprevioussession.

• Initial conditionsmaybespecifiedat byaflagon thecommandline.
• Timestepandinitializationflagsarenowpassedto modelroutines.

Additionalinformationon thesechangesis availablein the READMEfile,
providedin the softwaredistribution.Pleaseseethis file for moreinformation
onwhat isrequiredto adaptaversion1.3simulationmodelto version1.4. This
reportdetailstherequirementsto implementa newversion1.4simulationmodel.

Input files

Default settings file. LaRCsim is fairly self-contained, and does not require any

special supporting files to run. It does, however, utilize one file if it is present in the

default directory: if present, a file named . simname (also called the default settings

file) specifies what parameters are to be recorded during the simulation run, what

parameters are to be used to trim the vehicle and what parameters are to be set to

zero by the trim algorithm. The settings file may specify a default initial condition

to which the model is initialized if no other initial condition file is specified on the
command line. This file is automatically updated at the end of a LaRCsim session

to record any changes in these settings. A sample settings file is shown in figure 1.

In the present version of LaRCsim, the default settings file contains four sections

of information: previous simulation operation settings, a list of parameters to record,
the default trim parameters, and the default initial conditions. These sections are

independent and may appear in any order.

The first few lines of the default settings file demonstrates the use of a pound
sign (_) as the first non-blank character to denote a comment line; comments can

appear on any line (as long as the first non-blank character is a _). Blank lines
are ignored.

The third line in the file is the first line that is used by LaRCsim: "sire" appears

on a line by itself to indicated the beginning of a list of simulation options that were

in force at the end of the last session. This line is followed by "0010" on the next line

by itself; this flag line indicates which version of syntax is used (presently version

1.0) so that future version of LaRCsim will be able to recognize and use older input

files. The contents of this section indicate what type of files to record at the end

of the simulation session; the spacing with which to write the data files, the end

time of the simulation; and the update rates for the model, screen refresh, and data

recording; and how long (in seconds) the data buffer should be. In the example

given in figure 1, a data file in matrix format will be written when the simulation

ends. It will contain up to one hour's worth of simulation data, recorded at 20 Hz

and every frame will be written to the data set. The model itself will run up to one

hour, at 120 Hz, and the video screen (or terminal screen) will be updated at 30
frames per second.

In the next section, "record-" appears on a line by itself to indicate the beginning
of a list of parameters to be recorded during the simulation session. The next six

lines are parameter declarations; these six parameters, if successfully located in

the debugger symbol tables, will be added to 19 predefined variables and recorded
during the simulation session.

The first three declaration lines are examples of how to specify scalar parameters.

Note that these declarations are local variables to each routine. LaRCsim, by way

of compiler-provided symbol tables, can locate and track the value of any local

or global variable, but the variables must be static variables, declared as such at

the top of each function. If the variables are automatic (i.e., not static), then
the variable is defined only as long as the program is executing that function;

thus, LaRCsim is unable to track automatic variables. The third declaration, of

variable forward_u in function navion.gea.r, is actually an automatic variable (in

t .navion created a¢ 950406 22:57:12 by bjax
sim

sire

0010

write-av 0

write_mat 1

write_tab 0

write-ascl 0

write-spacin E 1

end-t ime 3600. 000000

model_hz 120. 000000

t erm_updat e_hz 30.00000

dat a.rat e 20. 000000

buffe r-t ime 3600. 0000

end

St'. record

record

0010

aero elevator

aero aileron

gear foreard.mu

* generic_, f_gear_v [0]

* generic_, f_gear_v [1]

* generic_, f.gear_v [2]

end

#', - trim

trim

0010

controls : 3

module parameter min_val max.val pert-size

* generic_, euler-angles_v [1] -7. 853981E-01 7. 853981E-01

aero long_trim -1. O00000E+O0 1. O00000E+O0

cockpit_, t hrott le.pct O. O00000E+O0 1. O00000E+O0

outputs : 3

module parameter trim-criteria

* generic_, omeEa.dot-body_v [1] 5. O00000E-O5

* generic_, v-dot -body_v [0] 5. O00000E-04

* Eeneric_. v.dot_body_v [2] 5. O00000E-04

end

#==: init

init

0010

continuous-states : 22

module parameter value

* gener i c_. geode¢ ic_posit ion_v [0] 2.374953E-04

gener 1c-. geodet ic-posit ion_v [1] 7. 714288E-07

* gener Ic_. Eeodet ic-posit ion_v [2] 1. 099708E+01

generic_, v.local_v [0] 1.740701E+02

generic_, v.local_v [1] 1. 522121E+03

* generic_, v_local_v [2] -3. 972784E+00

generic_, euler_angles_v [0] -1. 481027E-04

generic_, euler.angles_v [1] 1.127979E-01

generic_, euler_angles_v [2] 2.089291E-03

* generic_, omega_body_v [0] 5. 395570E-06

generlc_, omega_body_v [I] O. O00000E+O0

* gener i c_. omega_body_v [2] -2.788522E-05

generic_, ear t h.posit ion_angle 0. O00000E+O0

generlc_, mass 8. 547270E+01

generRc_, i.xx 1.048000E+03

generlc_, i_yy 3. O00000E+03

* generlc_, i.zz 3. 530000E+03

generlc-, i.xz 0. O00000E+O0

generic_, d-cg-rp_body_v [0] 0. O00000E+O0

* generic., d_cg-rp_body_v [i] 0. O00000E+O0

generic_, d_cg-rp.body_v [2] O. O00000E+O0

aero long__ rim -1. 365538E-03
discrete-states : 0

module parameter value

end

Figure 1. A sample default settings file.

1_000000E-02

1.000000E-02

1.000000E-02

the example simulation), and thus LaRCsim will complain when it reads this input

file and attempts to locate forward.mu for the first time.

A local static variable is specified by the name of the function or subroutine in

which it exists (e.g. aero or navion4geax) and the name of the variable. Case is
important. Elevator is not the same variable as elevator.

The next three lines are examples of global variables; these are variables that

have been declared outside the scope of a function. They are identified to LaRCsim

as global by use of the * in place of a function name.

These last three lines also demonstrate the capability of LaRCsim to parse and

locate elements of complex data structures; here, the elements of the landing gear
force vector, f_gear_v, itself a part of the global data structure generic._ will be

added to the list of variables to record. The syntax for non-scalar data elements

follows that of ANSI C. Arrays are all zero-index-based, as in C (unlike FORTRAN).

The end word must appear on a line by itself to delimit the list of recording
variables that began with record.

The next section of the default settings file tells LaRCsim how to attempt to

trim the vehicle when requested. The format is similar to that used by the record

section, with the addition of a count of how many controls and how many output

variables are specified (on the controls: 3 and outputs: 3 lines). Note: in

this version of LaRCsim, the number of controls must equal the number of outputs.

LaRCsim presently supports trim strategies with up to ten controls and outputs; in

practice, however, no more than six are required for a rigid fixed-wing aircraft. See

the section below for a description of the trim method and suggested techniques.

Each trim control specification includes a module and parameter name, as

before for record specifications, as well as minimum and maximum values and

perturbation size (see the Trimming Strategies section below for more information

about these values).

Each trim output specification includes a module and parameter name and a

criteria value that specifies how close to zero the output must driven by the trim
algorithm before a successful trim is achieved.

The next section of the settings file, the init section, specifies what parameters
are considered states, and should include both continuous states and discrete states

(flags, Booleans, and integers), as well as a specification for the default values

of these states. The initial condition described in this settings file do not have to
describe a trimmed flight condition. Each line of the init section includes a module

and parameter name, as before, as well as the initial value for that state.

Overriding the default settings. The user may specify on the command line, with

the -i option flag, a different settings file with an alternate initial condition (IC)
description. An IC settings file should have a file name that describes the initial

condition, and end with a. ±c file type, such as on_ground, it, two_raile.:final. ±c,
etc. The contents of this file are identical in format to the ±nit section of the default

settings file; LaRCsim will substitute the optional initial conditions for those found

in the default settings file.

As an example, the command line

navion -i on_ground.ic

will cause the navion simulation to start at a specified initial condition defined in

an IC settings file named on_ground, ic.

Similarly, the default trim strategy may be replaced with a new one by

identifying a file containing the new trim portion of the settings file using the

-i flag. By convention, the trim settings file should end in . trim and contain only
a trim specifications section.

Additional parameters may be added to the list of recorded parameters by

specifying (again with the -i flag) a file that contains a record specification. Any

parameters thus specified will be added to the existing list of recorded parameters.

Inthe presentversionof LaRCsim,onlyonesettingsfilemaybespecifiedat
runtime;it ispossibleto combineseveralsettingsfileintoasinglefile,andspecify
thatfilenameat runtimeto achieve the desired set of trim parameters, recorded

variables, and initial conditions.

Optional search path and redirection. At startup, LaRCsim will search the

directories listed in an environment variable LARCSIMPATH, if it is defined, to find

both the default settings file (e.g.. navion) and any specified settings file files (e.g.

on_ground. £c). LaRCsim will use the first occurance of these files discovered in the

path of directories specified by LARCSIMPATH. The variable LARCSIMPATH should be

a colon-separated list of directories, similar to standard UNIX PATH environment

variables. If LARCSIM is undefined, only the default directory will be searched to

find the settings file.

A settings file may contain a line beginning with '©'; this indicates to LaRCsim
an additional file that should be parsed. For example, the default settings file for

the terminal version of a simulation (e.g..navion_term) could contain the single
line, ©.navion; LaRCsim would interpret this to mean the contents of .navion

should be parsed instead of .navion_term. (Note: .navion_term should be set to
read-only to prevent it from being overwritten at the end of the LaRCsim session.)

The file pointed to by the indirection flag '©' could itself contain an additional

indirection flag; caution should be used to avoid circular references.._

•simname

run. flt

r_. m

run. ascl

run. dat

Output files

This default settings file, if it does not already exist, is created at the end
of each simulation session and will contain the default values for record

parameters, trim controls, and initial conditions. If the default settings file

already exists and is not write-protected it will be replaced with a new copy.

This file, if requested with the -a flag, will be generated at the end of a

session and will contain a time history of each recorded parameter in Agile-
Vu format.

This file, if requested with the -r flag, will be generated at the end of a

session and will contain the time history information in matrix notation,

suitable for use as a script in one of the popular control system design and

analysis products.

This file, if requested by use of the -x command line switch, wil be generated

at the end of a session and will contain the time history information in a

format understood by the Dryden Flight Research Center's GetData and
XPlot tools.

This file,ifrequested with the -t command lineswitch,willcontain ASCII

tab-delimitedcolumns ofthe recorded data;the firstlinecontainsthe names

of the parameters included. This format may be usefulfor importing time

historydata intospreadsheetor other chartingprograms.

Running a LaRCsim Example

Compiling LaRCsim

Building LaRCsim from the distributionisstraightforward:

1. Define an environment variable,LARCSIM, to point to the source directoryfor

the main LaRCsim routines.This should probably be done inthe user's.login

file (Example: setenv LARCSIM /aces/larcsim/vOl4)

2. Change the default directory to SLARCSIM.
3. Enter the command 'haake." This will:

a. create a new object library file, libls.a
b. compile all of the LaRCsim source files

c.put allthegeneratedobjectfilesin thelibls, a archivelibrary
Theobjectarchivelibrarylibls, aonlyneedstoberebuiltafteraLaRCsimmodule
hasbeenmodified.

_t

Compiling and building the example simulation

Once the libls.a file has been built in the SLARCSIM directory, move to the

directory containing the aircraft files (in the case of the example simulation, move
to the navion directory).

1. Enter the command "make" (for Silicon Graphics-based simulations) or "make
term" for a terminal-based simulation. This will compile all the navion source

files and link them together to form the executable simulation program navion
(for Silicon Graphics-based simulations, or navion_term, for a terminal-based

simulation).

2. If desired, create a default settings file in the format described above. It should

be named . simname, where simname is the name of the executable simulation

program.

-i filename. ±c

-f <iteration rate>

-o <output rate>

Running the example simulation program

Typing navion on the IRIX command line will run the navion example simu-
lation program on the GL console; the navion_term command will run the navion

example simulation on most terminals.

Command line switches. The command for running a LaRCsim model may
include a number of optional flags or switches:

-a Run in conjunction with ACES cockpit (valid only for DCB users).
-k Run on the Silicon Graphics console using the mouse as a joystick

(-k and the -A flags are mutually exclusive).

Identifies an optional settings file that contains an alternate initial

condition, trim strategy, or additional parameters to be recorded.

Specifies an iteration rate, in iterations per second, that the
simulation model is to execute. Default frame rate is 120 iterations

per second.

Specifies the rate at which the terminal or GL display screen should

be updated, in frames per second. This rate must be an integral
sub-multiple of the iteration rate (see -f above). For example, if

the simulation model iteration rate is 120 iterations per second,

legitimate choices for output rate are 120, 60, 40, 30, etc. frames

per second (corresponding to 1, 1 1 1 etc. of the iteration rate).2, 3, 4,
Default screen refresh rate is 20 frames per second.

-e <end time> Specifies an end time for the simulation run. The simulation will

terminate when this value of simulated time is reached, if the
simulation is not reset prior to that time.

Specifies the length of the data storage buffer, in seconds. This

circular buffer retains the last buffer length seconds of time his-

tory data. If not specified, the default buffer length equals the

simulation end time given by -e above.

Specifies the rate, in records per second, at which the requested
parameters will be recorded to the circular data buffer. This

rate must be an integral sub-multiple of the iteration rate (see -f
above). For example, if the simulation model iteration rate is 120

iterations per second, legitimate choices for storage rate are 120,

60, 40, 30, etc. records per second (corresponding to 1, 1, ½, 41, etc.
of the iteration rate). If not specified, the default storage rate will
be one-eighth of the iteration rate of the simulation model.

-b <buffer length>

-s <storage rate>

-a <filename>

-t <filename>

-x <filename>

-r <filename>

-d

Specifies that an Agile-Vu compatible ".fit" file is to be written at

the end of the session. Default filename is run.flt. If this option

is the last one on the command line, a filename must be specified.

Specifies that a tab-delimited ASCII listing of time history data be

written at the session. Default filename is run.dat. If this option

is the last one on the command line, a filename must he specified.

Specifies that a GetData/X-Plot compatible ".ascl" file is to be
written at the end of the session. Default filename is run. ascl. If

this option is the last one on the command line, a filename must

be specified.

Specifies that a matrix manipulation software compatible . m file is
to be written at the end of the session. Default filename is run.re.

If this option is the last one on the command line, a filename must

be specified.

Specifies that the run allow interactive debugging; this prevents

scheduling of timer interrupts and forces the GL display into single-
buffer mode. This switch is probably not of great use to the typical
user.

GL console operation. The command navion -k will bring up the out-the-

window view, on the SGI console, with a heads-up display (HUD)overlay, and
allow the user to maneuver the aircraft using the mouse and keyboard. The mouse

movement simulates a control stick: push forward to move the stick forward, left to

roll left, etc.

When the simulation first comes up, the aircraft is placed in the specified initial

condition and the display will indicate the simulation is paused (on a GL display,

this is indicated by the HUD symbology showing up in a red color). At this point

the simulation may be trimmed (using the 't' key) or put into operation (with the

'p' key). A trim may be requested at any time during a run by use of the 't' key;

this allows the vehicle to be flown to an interesting point of the sky and retrimmed.

A successful trim will cause the current flight conditions to be remembered as the
new initial condition.

At any point, the 'r' key will reset the simulation to the last remembered initial

condition, allowing repeated landing attempts, for example.

The simulation may be paused at any point by use of the 'p' key to toggle

between pause and run modes. Data is recorded in run mode and during trim

attempts.

The simulation session will last for up to 60 minutes; a longer period of time

may be specified on the command line as a parameter for the -e option (see the

previous section for information on various command line options).

Pressing the escape key causes the simulation to terminate, and any recorded

data will be written to the requested output files.

Display terminal operation. The command navion_terra will operate the same

simulation, but does not use a mouse or provide GL graphics. Instead, a simple
instrument panel is presented on the user's terminal screen and several keyboard

keys are pressed into service for flight controls. Figure 2 shows the screen used in
LaRCsim version 1.4, with flight control keys indicated. No rudder command is
available in this version.

External cockpit operation. The command navion -A will operate the same

simulation, but LaRCsim will call the external cockpit interface routine to provide

control stick, rudder pedal, and throttle positions, as well as pause and reset buttons.

Most keyboard commands will still operate.

Note for DCB users: in the ACES cockpit, the upper red button on the handgrip

resets the simulation, and the thumb button pauses the simulation.

L a R C S I M navion_erm

Mach 0.007 Psi 0.1

KEAS 4.3 Thet 0.4

Throt 0 _ Phi 0.0

Elevator 0.00 Aileron

0:00:00.0

NZ-G 0.997

Alt 4 Alpha 0.42

Hdot 0.000 Beta 0.03

0.00 Rudder 0.00

stick

i

throttle quit

I

-a +s j -k- 1 <ESC>
I

<

Figure 2. Terminal mode display

Trimming strategies

The trim algorithm, new to this version of LaRCsim, uses up to ten user-specified
"controls" to drive a like number of "outputs" to values near zero. LaRCsim also

forces pitch rate to zero prior to each trim attempt, so trimmed turns are not

currently possible. Steady-heading sideslip trims, however, are possible and have

been demonstrated. On-ground longitudinal trims are also supported.

The current mechanism to specify (and modify) the trim method requires editing

the default settings file, or specifying a settings file containing a different set of trim

controls and outputs by use of the -i flag on the command line. Listed below

are examples of trim specifications that have been tested and used successfully in

LaRCsim simulations at Langley Research Center.

In-flight longitudinal trim. In this example, pitch attitude, throttle, and a local

variable in the aerodynamics module called "long_trim" are used to zero out the

accelerations in pitch and body-X and-Z axes:

trim

0010

controls : 3

module parameter min_val max_val pert_size

* generic_.euler_angles_v[1] -0.785 0.785 1.0E-02

aero long_trim -1.0000E+O0 1.0000E+O0 1.0000E-02

cockpit_.throttle_pct O.O000E+O0 I.O000E+O0 1.0000E-02

outputs : 3

module parameter trim_criteria

generic_, omeEa_dot_body_v [1] 5. O000E-05

generic_, v_dot_body_v [O] 5.0000E-04

generic_, v_dot_body_v [2] 5. O000E-04

end

On-ground trim. With this strategy, two controls (pitch attitude and altitude)

are used to obtain zero pitch and vertical acceleration, regardless of the aircraft's

velocity or heading:

trim

0010

controls : 2

module parameter min_val max_val pert_size

* generic_.euler_angles_v[1] -0.785 0.785 1.0E-02

9

* generic_, geodetic-position_v [2] 0 30 0.0001

outputs : 2

module parameter trim_criteria

* generic_, omega-dot-body_v [1] 5.0000E-05

* generic_, v_dot-local_v [2] 5.0000E-04

end

Steady-heading sideslip trim. In this strategy, three pilot control trim variables

are used, along with throttle, pitch attitude, and heading angle to achieve zero

accelerations in angular and local velocities:

this trim is for steady-heading sideslip, where

sideslip is given by local velocities.

trim

0010

controls : 6

module parameter min_val max_val pert_size

subsystems longtrim -3.0000E+01 3.0000E+01 3.0000E-02

* generic_.euler_angles_v[l] -0.5

* cockpit_.throttle_pct O.O000E+O0

subsystems lattrim -I0 10 0.01

subsystems pedtrim -10 10 0.01

* generic_.euler_angles_v[O] -0.5

outputs: 6

module parameter trim_criteria

end

0.5 1.0000E-03

1.0000E+O0 1.0000E-03

0.5 0.001

generic_, omega_dot_body_v [0] 5. 0000E-05

generic_, omega_dot_body_v [I] 5. 0000E-05

generic_, omega-dot_body_v [2] 5.0000E-05

generic_, v_dot-Aocal_v [0] 5.0000E-04

generic_, v_dotlocal_v [1] 5.0000E-04

generic_, v_dot.Aocal_v [2] 5.0000E-04

Creating a New Aircraft Simulation

Mandatory routines

A new simulation model must provide, as a minimum, an aerodynamics routine

with an entry point labeled nero (). The source code is usually kept in a file named

after the specific vehicle, e.g. navion_aero.c. In addition, a complete vehicle

model would include engine (), subsystems (), inertias (), and gear () routines,

although stub routines are provided for these.

Inputs to these routines come from the GENERIC global variable structure, for

which useful aliases are provided in the is_generic.h header file(see Appendix A).

The more sophisticated models will undoubtedly create an aircraft-specificset of

global variables;the use of a struct or COMMON isrecommended to share these global

specificvariables between simulation components. Interface to the simple keyboard,

mouse and/or ACES cockpits is available through the COCKPIT data structure.

The expected outputs from aero() are simply the aerodynamic forces and

moments about the reference point, in Ibs and ft-lbs, respectively, being stored

in the F_aero_v and M_aero_v vectors (scalar names F_X._aero, F_Y..aero, F_Z_aero,

M_l_aero, M_m_aero, and M_n_aero).

Likewise, the outputs from any engine() or gear() routines should be stored

in the F_engine_v, M_engine_v, F_gear_v, and M_engine_v vectors as appropriate.

Refer to the example simulation for samples of how to do this.

If desired, the LaRCsim user may craft an inertias() routine to keep track of

fuel burn (using an aircraft specific fuel flow parameter provided from engine())

10

and adjust the inertia properties and center of gravity location values kept in

GENERIC: Mass, I_xx, I_yy, I_zz, I_xz, and vector quantity D_cg_rp_body_v (the

location of the center of gravity, measured from the reference point, in body axis);
for most simulation studies of an engineering nature, the fuel quantity is a constant

that can be, along with mass properties and C.G. location, be set at initialization

(through user routine model/nit(), or through a settings file.).

The user must have a modeLinit() routine, which is called before each

simulation run, to set certain parameters. See the section below for a list of

necessary parameters. Failure to set certain parameters will lead to an immediate

divide by zero error, or unreasonable dynamic response of the simulation.

The subsystems() hook allows control system models, navigation system
models, sensor models, autopilots, etc. to be included in the more elaborate

simulations. These routines will likely use some of the parameters provided in

GENERIC and get other inputs from and store outputs to user-defined common

memory structure(s).

Mandatory parameters

The following is a list of the variables for which the user-supplied vehicle routines
must provide reasonable values:

Mass

I_xx

I_yy
I_zz

I_xz

D_pilot_rp_body_v

D_cg_rp_body_v
F_aero_v

F_engine_v

F_gear_v
M_aero_v

M_engine_v

M_gear_v

Runway_alt itude

Runway_fat itude

Runway_longitude

Runway_heading

vehicle inertial properties;
these must be non-zero

pilot location w.r.t, reference point

C. of Grav. location w.r.t, reference point
aero forces, body axes

engine forces, body axes

gear forces, body axes

aero moments, body axes, about ref. pt.

engine moments, body axes, about ref. pt.

gear moments, body axes, about refi pt.
location of threshold of runway of interest

These values may be initialized once, in the model_init() function, or may be

calculated each frame, in a procedure called by is_model(). The mass properties
must by non-zero to avoid mathematical errors.

The following variables should be specified in model./nit () to the appropriate
initial conditions; they are thereafter calculated by the EOM routines:

Geodetic_osition_

Euler_angles_v

V_ocal_v

Omega_body_v

geodetic position in radiansfeet

aircraft attitude (¢, 0, ¢), radians

center of gravity velocities, in ft/s

body axis rates, in rad/s

where geodetic position is latitude, longitude, and altitude above sea level. The
following variables may be set by the user routines if desired:

V_local_airmas s_v

V_local_gus__v

airmass velocity: steady wind

body axis turbulence

11

Support for FORTRAN routines

Existing FORTRAN routines can be interfaced to LaRCsim through use of

"wrapper" routines that translate between existing FORTRAN COMMONdata struc-

tures and the GENERIC and other LaRCsim data structures. It is possible to write

FORTRAN versions of nero (), engine (), inertias (), etc., but the reader is en-

couraged to write new models in C (or even C++) for maintainability and compat-

ibility reasons.

The secret to writing these "wrapper" routines is to realize that, at least in

IRIX, FORTRAN entry points and commons appear (from the C side) as having

the same name that they do in FORTRAN, but in lowercase and with an underscore

('_') appended, and vice-versa. Thus, a FORTRAN COMMON structure named SIMPAR

will appear to the C language routine as a global variable named simpar_ (it must

be declared as an external global structure in the C routine or header file). Likewise,
a FORTRAN subroutine declared as SUBROUTINE PLSURF can be called from a C

program as plsurf_(). Consult the documentation for each particular operating

system for more information on how to develop a "wrapper" for an implementation

on that system.

When the real-time loop is entered, the routines specified in Is_model() are

called once per loop. The user is expected to replace the simple nero() and

engine() routines provided in this package with more realistic aerodynamic and
propulsion system models. These models should calculate, based upon the current

Mach, altitude, angle of attack, etc. the appropriate forces and moments due to

aerodynamics, engines, and perhaps landing gear, if appropriate. These forces and

moments are to be provided in units of lbs and ft-lbs, in the X-Y-Z body axis system

(positive indicates forward, right, and down, respectively) acting at the predefined

reference position. If fuel consumption or weapon drops are to be simulated, an

inertias() routine should be added, and the values of Mass, I.xx, I_yy, I.zz

and T..xz should be updated in each loop. Center of gravity movement should be

reflected in updates to the D_cg.x-p_body_v vector as well. It is also possible to

change runway location during simulation operation, if appropriate; the code to

provide this capability is not included in the present LaRCsim version, however.

Function Data Interpolation

Overview. Mathematical descriptions of the aerodynamics of most flight vehicles

usually include non-linear elements, such as the stall "break" characteristic exhib-

ited by straight fixed-wing aircraft at higher angles of attack. Other aerodynamic

properties exhibit even more pronounced non-linearities with respect to angles of
attack, sideslip, Mach number, control surface deflection and other "independent"

flight conditions. Other components of a flight vehicle model, such as propulsion

systems and control law gain tables, often need to represent a very non-linear pa-
rameter in some fashion.

Many ways have been developed in previous years to represent these non-linear

functions, including specialized mechanical analogues and electrical circuits. In

present flight simulators these functions are represented through special-purpose

software. To save memory, early software-based functions were generated using
polynomials to approximate the non-linear characteristics of the actual airplane.

As memory became less expensive, small tables of numbers were stored and

then interpolated at run time. The present industry practice is to use large

amounts of memory to store multi-dimensional tables; a return to polynomial

representation may be underway to generate models that are mathematically

smooth (see reference 10). The atmosphere model developed for LaRCsim uses

a combination of these techniques; it represents atmospheric properties by use of a

table, based upon altitude, of the coefficients of a set of cubic spline functions that

12

provide smoothly varying curves that agree with the original atmosphere model at
the "knots".

To provide a general, C-based function generation capability, the ls.:fuacgen, c

module was developed. This simple code makes use of an object paradigm to
represent the function tables and a recursive C-routine to perform the interpolation

along each dimension. This particular solution is, in the opinion of the author,

elegant in its object-oriented design, recursiveness and the capability to handle

function sets of unlimited size and dimension; it is, on the other hand, a little

difficult to understand, and not as fast as an in-line, non-recursive, FORTRAN

routine used for comparision.

To become really useful, a set of tools to generate the function data code for a

particular simulation would be nice and may become available in a later version of
LaRCsim.

Terminology. The following terms are used to describe the function generation
routine:

Breakpoint data set A monotonically increasing vector of real numbers that

represent the values of an independent variable for which
the dependent function is known and tabulated.

Dependent variable The value of the function, or the return value from the

function generation subroutine. Known values of the

dependent variable for specific values of the independent

variable(s) upon which it depends are provided by the
user in the form of data tables; the routines described

in this section provide linearly interpolated values of the

dependent variable for an arbitrary set of independent
variable values.

Dimension Each dimension of a data table represents an independent

variable upon which the dependent variable, represented
as points in the function table, are based.

Function table A multi-dimensional table of dependent variable values

that correspond to a given number of breakpoint data sets.

In LaRCsim, the first dimension varies most rapidly.

An argument to the function. In terms of aerodynamic

tables, the independent variables are usually one or more

of the following: angle of attack, angle of sideslip, Mach

number, and control surface deflection.

A floating point number, corresponding to a specific break-

point set, that represents the present location of the inde-

pendent variable in that breakpoint set. The integer before

the decimal represents the index (0-origin based) of the
breakpoint data point that is closest to, but less than, the

actual independent variable value; the fractional portion

of the number represents the fractional distance the inde-

pendent variable is between the indexed and next-higher
breakpoint value. It is defined as w, where

Independent variable

Index and weights value

w=i+d

where d is the interpolation ratio given below and i is the

current index of the next-lower value of the breakpoint set.

Interpolation ratio This fractional quantity, d, represents the location of the
independent variable between the next lower and next-

13

highervaluesofthebreakpointset.It isdefinedas:

d- z- zi
xi+ 1 -- x i

where x is the value of the independent variable, xi+l is

the next-higher value of the breakpoint set, and zi is the
next-lower value of the breakpoint set.

Normalization The process of determining the proper index and weights

value w (see above) for the present independent variable
value.

Implementation. If one were to describe the problem of data interpolation, one

might use the following description:

The value of a function is represented in an orthagonal N-

dimensional table. Each dimension of the table corresponds to a

monotonicly increasing independent breakpoint variable. The data

in the table is arranged such that each entry represents the known

value of the function, or dependent variable, corresponding to fixed

value(s) of the breakpoint, or independent variable(s), at that index

of the table. The problem is to determine the value of the dependent

variable at any arbitrary value(s) of the independent variable(s). This

is done by interpolating the known value of the function between the

two surrounding table entries; in effect, generating a new table entry.

If multidimensional, this process may be repeated for each dimension

of the table, but the "known" values used for each succeeding interpo-

lation are actually interpolated values from the previous dimension.

This recursion" continues until the value of the dependent variable has

been interpolated for the last dimension; this quantity is the value of

the function corresponding to the arbitrary values of the independent
variables.

In the most general case, some breakpoint sets may be shared between function

tables; and since breakpoint normalization is relatively CPU intensive, re-use of

normalized breakpoints is a good idea. Similarly, often times the function table

itself may be duplicted to represent similar but independent functions; a common

example is a set of spoilers on an aircraft that are operated independently, where

the spoilers have similar or identical aerodynamic effect (except for perhaps a minus

sign) but may well be operated at different deflections.

The function generator data structures used in LaRCsim allow for re-use of

breakpoints and function table data; for this reason, understanding the data

structures may take a little examination and thought. Separate "objects" that

represent the breakpoint sets, the function values themselves, the actual function

data (which associates the function data with the corresponding breakpoint sets)

and the final object, the non-linear function (which associates function data with

breakpoint normalization data) are all stored as separate data structures, as
described below.

In keeping with the object-oriented abstraction of the problem, breakpoint data

sets and function tables are stored separately in BREAI(POINTS and DATA structures.

They are associated together in an individual FUNC_DATA structure; the FU_IC..DATA
structure is an abstraction of a multi-dimensional curve or surface. These data

structures are defined in the header file ls-2tmcgen.h.
The _I01_LINEAR_FUNCTION structure associates this function data with the

interpolation information (index and weights as well as the last value returned

on the previous lookup call). This structure is an abstraction of the process of

interpolating a FU_IC..DATAcurve; it includes a pointer to the function data as well as

state information about where the function was most recently found, which speeds

14

up subsequent searches since a sequential search through the breakpoint vector,

starting with the last index used, is used instead of a binary search. The crawl

search is believed to be better for flight simulation function generation applications

than a binary search, since the traditional independent arguments change fairly

slowly.

The tables are effectively unlimited in size and number of dimensions; the

maximum length in any dimension is set by MAX_LENGTIt, and the number of

dimensions is set by MAX.DIMENSION; both are declared in the ls.=funcgen.h header
file.

Another data structure, ARG..LIST, is used to pass interpolation information to

the lookup function. It contains the current index value and interpolation ratio for

each dimension of the nonlinear function.

For an example implementation of these data objects and an actual implemen-

tation of this code, refer to the header information found in ls_:funcgen, c.

Implementation Details

File Descriptions

The source and header files that make up the LaRCsim application are listed

below, along with individual file version numbers:

In the LARCSIM directory:

Makefile, v 1.0

Is_ACES.h, v 1.4

is_cockpit.h, v 1.3

is_constants.h, v 1.0

is_err.h, v I.I

is_funcgen.h, v I.I

Is-generic.h, v 1.0

is-matrix.h, v I.I

Is-sim_control.h, v I.II

is_sym.h, v 1.9

is_tape.h, v 1.6

is_types.h, v 1.0

LaRCsim.c, v 1.4.1.7

atmos_62.c, v 1.0

default_model_routines.c, v 1.3

Is_ACES.c, v 1.8

Is_accel.c, v 1.5

is_aux.c, v 1.12

is_err.c, v 1.2

Is_funcgen.c, v 1.6

is_geodesy.c, v 1.5

is_gravity.c, v 1.2

Is_ifgl.c, v 1.15

is_ifterm.c, v 1.1

is_init.c, v 1.4

Is_matrix.c, v I. 1

Is_model.c, v 1.3

Is_record.c, v 1.11

is-settings.c, v 1.6

Is-step.c, v 1.5

is_sym.c, v 2.7

is_sync.c, v 1.7

Is_trim.c, v 1.9

Is_writeascl.c, v 1.7

Is_writeav.c, v 1.10

is_writemat.c, v I. 11

is_writetab.c, v 1.4

In the example directory:

Makefile, v 1.0

navion.h, v 1.3

.navion, v 1.0

navion_aero, c, v 1.0

navion_engine.c, v I.I

navion_gear.c, v 1.0

navion_init.c, v 1.0

Each of these components of the LaRCsim simulation program are described below.

Compilation support files.

Makefile A simple makefile that allows the LaRCsim object library lib:is, a to be created

and/or updated on most Unix platforms by the simple command make. To build

15

th e example simulation, issue the make command in the LaRCsim directory, and

then move to the navion subdirectory and issue another make command.

Header files.

Is_ACES.h

Is_types .h

is_conStants, h

is_generic, h

is_sim_control, h

is_cockpit, h

1s_err.h

This header file describes various constants and data structures

used with the Dynamics and Control Branch Advanced Controls

Evaluation Simulator (ACES) hardware; it is not of interest to a
non-DCB user.

This file defines the two principal data types used in LaRCsim:

SCALAR and VECTOR_3. The SCALAR data type, which is defined

as a double, is suggested for use by any C or C++ routines added

to LaRCsim. This definition allows easy modification of the level

of precision of calculations, since changing the type definition of
SCALAR in this routine to, say, float, would halve the precision of
all LaRCsim module calculations.

Prior to version 1.3, the scalar floating-point type DATAwas defined,
but is not recommended for further use to avoid confusion with

the FORTRAN compiler directive of the same name. It remains

defined in this module for commonality with older routines, but
may be removed in future versions.

A 3-element vector of SCALAR elements, VECTOR_3, is c[efined for use

by routines which may benefit from using vector notation. Many

of the components of the generic_ global variable structure are

defined in terms of VECTOR_3 elements, with an alternative set of
three scalar names defined for convenience.

This header file defines useful constants, such as PI, equato-

rial radius of the earth EQUATORIAL_RADIUS as well as its square

RESQ, earth geodesy parameters FP, E, and EPS, the inverse of

nominal gravitational acceleration INVG, the rotation rate of the

earth, 0MEGA_EARTH (in radians per second), useful conversion fac-
tors V_T0._KNOTS,DEG_TO_RAD, and RAD_TO_DEG, and standard sea-

level atmospheric density, SEA_LEVEL_DENSITY, in English units

(slug/a3).

This header file defines the generic_ aircraft parameter global
structure which is used to pass global parameters between aircraft

subsystem models and the various equations of motion routines.

The generic parameters provide the common aircraft state infor-

mation (positions and velocities) as well as other parameters such

as accelerations, forces and moments, vehicle geometry, mass and

inertia, and atmospheric properties. A complete description of the

contents of the generic_ data structure is given in Appendix A.

This header file defines the SIM_C0NTROL global structure which
is used to indicate command-line and other options set by the

user. It contains the mode flag sire_type to indicate what mode

of operation has been requested (batch, terminal, GLmouse, or

cockpit), as well as information about run number, date and time

stamps, and output formats requested for trajectory information.

This header file defines the COCKPIT global structure which is
used to pass pilot control position information between the cockpit

(either a keyboard, mouse, or actual cockpit) and the rest of the
simulation routines. Some abbreviations for locations within the

COCKPIT structure are also provided for convenience.

This header file defines the ERROR global structure which is used to

signal error conditions to the rest of the simulation. At present, the

16

onlyerrorsdefinedarethoserelatingto thetablelookuproutines
definedin ls.=funcgen,c.

ls_:funcgen.hThisheaderfile providesprototypesfor the linearinterpolation
(datatablelookup)routinesavailablein thisversionof LaRCsim.
Seethe section"FunctionData Interpolation"abovefor more
information.

lsuaatrix, h Thisheaderfileprovidesfunctionprototypesforgeneralrealmatrix
manipulationroutines;it is usedbythels_trim routines.

ls_sym,h Thisheaderfileprovidesprototypesforvarioussymboltablelookup
andmanipulationroutines,ls_findsym(),Is_put_sym_val (), and

ls-get_sym_val(). This particular header file is probably of not
much interest to the casual LaRCsim user.

ls_tape.h This header file defines the time-history data recording structure,

tape__ which is used in the ls./ecord() and ls_writexxx() rou-
tines, and is of not much interest to the casual LaRCsim user.

However, the number of parameters that may be stored is deter-

mined by the definition of MAX_TAPE_CHANNELSwhich is contained

in this header file (currently set to 1024 parameters).

Routines called in the main execution loop.

ls_accel, c The first of three main EOM routines. This function sums the

body-axis forces and moments provided by the nero (), engine (),

and gear () routines (these are written by the user; example nero ()
and engine() routines are found in the file navion, c included in

this package) and calculates the resulting total angular and linear
accelerations in geocentric coordinates. Forces and moments are

taken to act at the reference point, which is fixed to the body. The

center of gravity location is defined relative to the reference point

by variables D [xyz] _cg (found in vector D_cg_vp.body_v). The
total angular and linear accelerations are corrected to act through

and about the center of gravity.

Is_step. c This is the second of the three main EOM routines. This function

performs the integration of the vehicle accelerations and velocities

to form the updated vehicle velocities and positions. The time

variable, Simtime, is integrated as well. The integration of ac-

celerations uses a predictive (forward) integration; the integration

of velocities is a modified trapezoidal backwards integration algo-
rithm. These integration routines have been used successfully at

NASA-Ames, NASA-Langley, and NATC/NAWC Patuxent River
for many years and are well proven.

ls.aux.c This is the third major EOM routine. This function calculates

most of the auxiliary variables based upon the updated vehicle

state, including conventional accelerometer readings at both the

C.G. and the pilot station, new values for angles of attack, sideslip,

flight path, Mach number, gravity, and numerous descriptions of
velocity and position in several axes. The state variables for

geocentric latitude, longitude, and radius are converted to more

useful geodetic (map coordinates) latitude, longitude and altitude

(M.S.L.) as well as runway relative coordinates from a prespecified

runway.

The next three routines are called by the main EOM routines to perform supporting
calculations.

atmos_62.c The 1962 Standard Atmosphere Tables for density and speed of

sound, in cubic spline lookup format, along with the necessary

17

interpolationroutines.Datais includedfromsealevelto 240,000
ft.; however,theambienttemperatureandpressurearedescribed
asparametricequationsandareonlyvalidto about75,000ft. in
thisversionofLaRCsim.

ls_geodesy.cThisfunctionconvertsgeocentriclatitudeandradiusto geodetic
latitudeandaltitudeabovesealevel,andviceversa.It is based
uponrelationshipsprovidedin reference3,whichdefinethetrans-
formationfromgeodeticto geocentric;unfortunately,reference3
doesn'tincludetheoppositetransformation,whichis fairly com-
plex. SinceLaRCsimusesgeocentriccoordinatesas_heinertial
axesset,andperformsthetranslationalintegrationsin thegeocen-
tricframe,it isnecessaryto haveameanstoefficientlyconvertback
to geodeticcoordinates,sincethesearethecoordinatesmostoften
usedfor navigation(maplatitude,longitude,andaltitude).The
ls.geoc_to_geod() routine, found in the ls_geodesy.c module

performs this approximate conversion. Note: recently an engineer-

ing note in the AIAA Journal of Guidance, Control and Dynamics

describes a closed-form solution; it is quite complex and has not

yet been evaluated for this application (reference 9).

ls_gravity.c This routine calculates the value for local gravity, based upon

geocentric latitude and radius, including effects due to oblateness

of the earth (harmonics), based on equations given in reference 3.

The user-supplied aircraft model is called by the next routine.

ls._odel, c This routine is an executive to the vehicle (user supplied) routines

engine(), subsystems(), nero(), and gear(), or whatever set

of routines the user decides are needed to adequately model the

vehicle properties.

Any functions that are not satisfied by user-provided routines are provided by the
next routine:

default._odel..routines.c This module contains stub routines for what are normally user-

provided functions, inertias(), subsystems(), engine(), and

gear(). If these are not provided by the user, these stub routines

satisfy the loader at link time, with no ill effects aside from fixed

weight, thrust, and the lack of ability to land. The user musl

provide initial values of certain mass properties, as well as force

and moment vectors, in a routine named modelAnit(). See the

section above on creating a new model for more details on what

parameters must be initialized by user software.

Data logging is provided by a call to the next routine:

ls..record, c This routine stores preselected global variables into a data structure

for later playback or analysis, ls..record() automatically saves

19 channels of data (e.g. these outputs are hardwired) that contain

state and basic input information from each run; in addition, the

user can specify (through the settings file) additional parameters to

record. Variables are addressed via memory locations found in the

debugger symbol table of the executable; for this reason, the various

modules that comprise a LaRCsim executable must be compiled

and linked using the symbol table option (usually a -g switch).

A LaRCsim simulation that can't locate a specified variable will

complain at invocation, but continue to execute; those parameters
that are not found will not be recorded. The data structure TAPE

utilizes a circular buffer that, when full, begins to replace the oldest

18

timehistorydatawithnewerdata.In theversion1.4distribution
ofLaRCsim,thisbufferrecordseveryeighthtimeslice.

Finally,interfaceswith the pilot andsynchronizationwith the real world are
accomplishedbythefollowingroutines:

Is_syncThismodulecontainsroutinesinvolvedwith synchronizingthe
operationof LaRCsimto matchsimulatedtimewith real-world
timeonsomeUNIXplatforms.Theportabilityof thismoduleis
in question,however.It makesuseof systemservicessignal(),
setil;imer(), pause(),andthe itimerval data structure, which

are supported on both SGI (IRIX 5.2) and Sun (SUnOS 4.1.3)
platforms.

ls_ifgl, c This module contains an IRIS GL (Graphics Library) interface for

interactive runs on Silicon Graphics computers (running IRIX 5.x),

as well as dummy synchronization routines (which aren't needed
if run under GL, since the drawing calls effectively synchronize to

real-time). This module replaces ls__ifsun, c for Silicon Graphics

implementations.

ls_ifterm.c This module contains a simple interface for interactive runs on

most Unix computers, using the curses library of terminal rou-

tines, as well as routines to synchronize simulation with real-time,

using standard unix system routines s etitimer (), Signal (), and
pause(). It was the intent of the author to keep the routines very

generic, without relying on either BSD or System V style system

calls; our ignorance of these nuances may well show through, how-
ever; this routine works well on a SunSPARCstation-1 and -2, and
will work on an SGI IRIS 4D machine.

Is.ACES.c This module contains driver code to communicate with the Ad-

vanced Controls Evaluation Simulator (ACES) cockpit used in the
Dynamics and Control Branch, and is of little interest to the non-
DCB LaRCsim user.

Support routines. The following routines provide additional services for the

LaRCsim application, and are not typically called during the main simulation loop:

LaRCsim. c This routine is provided as an example executive function to call

the appropriate routines in the proper sequence both prior, during,
and at the end of a simulated run. LaRCsim. c includes the main()

procedure for the simulation. It also interprets any command

line options provided by the user, and initializes some simulation
data structures with default values. At the conclusion of the

simulation, it calls the output routines ls_writemat, ls_writeav,
Is_writetab, and Is_writeascl.

is_err, c This module reports errors in a semi-meaningful way. By properly

loading the ERROR structure elements (see is_err.h) and then

calling print_error(), a LaRCsim routine can have an error
message printed on stderr.

ls__funcgen, c The ls_=fuacgen module provides a simple linear interpolation rou-

tine for doing function generation using data tables. At present,
this routine is limited to functions of six dimensions and 63 break-

points along each dimension. It reports errors via the Is_err()

routine. See the section above on "Function Data Interpolation"
for more information on using this capability.

ls_init, c This routine calls the EOM functions and the user-supplied vehicle

initialization routines in the proper sequence to initialize the vehicle

prior to a run, or to reset at the end of a run.

19

Is_matrix. c

Is_settings. c

Is_sym.c

is_trim, c

ls_writeav, c

is_writ eascl, c

This module contains several utilities to create, delete, print, and

invert general real matrices. It is used by the trim routine.

This module contains the code that deals with settings files.

Two main routines are defined: is_get_settings() and Is---
put_settings(). A singleparameter, desiredcfile_name, isac-

cepted by is_get_settings(). Callingis_get_settings() with

a file name specified will cause a search for a file by that name

along the LARCSIMPATH directory path; if a null string is passed to

Is_get_settings (), a default settings file with the name of the ex-
ecutable simulation program, prepended with a '.', will be hunted

for along the path. If either file is found, that file wiI1 be opened,

read into memory, and parsed by the is_parse_settings() rou-

tine. A table of facilities is kept that provide entry points for

both reading and writing each type of information (e.g. trim,

init, record), is_parse_settings() will call the appropriate rou-

tine as the designated keyword is found, passing a pointer to
the appropriate location in the file buffer to that routine. If

is_parse_settings() encounters a line in which the first non-
blank characters is '©', it will use the characters following the '©'

sign as a file name, search for and open that file, and recursively

call itself. A call to is_put_settings() will create a default set-

tings file, replacing the previous one, if it exists, and then calls each

facilities' put_settings () routines, as kept by the facility table, in

sequence, causing the current LaRCsim settings to be recorded.

This routine performs symbol table lookups to resolve static local

and global variable names into virtual memory addresses. It is

used by is_record() to record time history data during run time.

It is not intended for use by the general LaRCsim user; and

its portability is in question, as this capability is usually highly

platform-dependent. It does appear to work on SGI (IRIX 5.2)

and Sun (SunOS 4.1.3) operating systems, however.

This module contains a Newton-Raphson algorithm for solving

simultaneous non-linear equations. Given n "control" parameters,

is_trim() will perturb those parameters and observe the effect

upon n other "output" variables. After measuring these partial

derivatives, using a single-sided difference approach, the algorithm
makes a constrained step of all n controls simultaneously to try

to reduce the root-mean-square value of the sum of the n outputs.

This process repeats for up to Max_Cycles or until all outputs are
within a specified tolerance of zero.

This module writes time history data from the Tape data storage
structure to a file named run.fit at the end of the simulation

session. This data file is in a format recognizable to the Agile-Vu

trajectory visualization tool developed for Silicon Graphics work-

stations by McDonnell-Douglas and the Naval Air Development

Center. The -a command line switch will choose this output for-
mat; by default, no run.flt file is created.

This module writes time history data from the Tape data storage
structure to a file named run.asel at the end of the simulation

session. This data file is in a format recognizable to the GetData
and XPlot programs, written for X-windows machines by the kind

folk at NASA Dryden Flight Research Center. (see reference 11

for information on this time history format.) The -x command
line switch will choose this output format; by default, no run. ascl
file is created.

2O

is_writetab, c This module writes time history data from the Tape data storage
structure to a file named run.dat at the end of the simulation

session. This data file contains a ASCII based, tab-delimited listing

of each parameter at each recording point; these files can therefore
become quite large for a long simulation session. The -t command

line switch will choose this output format; by default, no run. due
file is created.

ls_writema¢, c This module writes time history data from the Tape data storage
structure to a file named run. m at the end of the simulation session.

This data file is in a format recognizable to a typical commercial
matrix manipulation application. The -r command line switch will

choose this output format; by default, no run.m file is created.

The following routines, contained in a separate directory, provide an example

aircraft simulation including simple aerodynamic, engine, and initialization routines.

navion.h This header file defines a data structure that contains the linear

aero coefficients, C0EFFS, which can be made available for run-time

modification of the example aircraft's aerodynamic properties and
stability characteristics.

A simple, linear aerodynamics model of the North American

Navion for a trimmed level flight at 100 knots.

This file contains a simple engine() routine with an optimistic
thrust calculation that allows the venerable Navion to break Much

1 in level flight.

navionq_ear, c This module includes a fairly simple landing gear (mass-spring-
damper) model of tricycle arrangement, and is not representative
of the North American Aviation Navion.

navion_/nit, c This module initializes the mass properties and sets forces and
moments and velocities to zero. It also initializes elements of the

pilot and cg displacement vectors (relative to the reference point).

Makefile This makefile is used to build either a GL-based (for Silicon Graph-

ics machines) or terminal-based version of the navion example

LaRCsim executable. Invoke with make to generate the GL-based

executable (which will be named navion), or specify make termi-
nal to create the curses-based executable, navion_term.

.navion This ASCII data file contains a list of any parameters that are to

be added to the recorded parameters list, as well as the desired set

of trim parameters and initial condition states and controls. This

file shows an example of the format to be used, and may be opened
and modified with a text editor.

navion-aero, c

navion_engine, c

Theory of Operation

Inspection of the LaRCsim code (see Appendix B), beginning with the main()

routine found in module LaRCsim. c, will demonstrate how and in what order the
software is called. The main() routine initializes the contents of the sire_control_

data structure and certain execution variables, such as the local variables endtime,

speedup, io_dt (the terminal refresh period), multiloop (the number of model

loops per terminal refresh), and model_dt (the model iteration time step). A call is

then made to is_get_settings() which opens the default settings file, if it exists,
allows it to override these hardwired default values.

Is-get_set¢ings() parses the default settings file and makes calls to Is_-

record_et_sett ings (),is_trim_get_settings (),and is_init _et_sett ings (),

each of which initialize their various data structures and parse the appropriate

section of the default settings file. ls_get_sectings () then returns control back to
main().

21

main() then makes a call a call to Is_check_opts () which looks at any command

line arguments, allowing them to override the default settings, if appropriate. (If

the -i flag is encountered, for example, another call is made to is.get_settings (),

this time passing the name of the requested optional settings file), is_stamp() is

then called to generate a time and date stamp for the simulation run. These are
stored in the sire_control_ data structure.

The main() routine then calls ls_init(), which sets Simtime = 0 and then

initializes the initial conditions data structure. If no initial conditions were specified

in the default settings or optional settings file, the initial conditions data structure
is set to contain information about the thirteen rigid body and environment states.

ls_init() then uses the values of the initial conditions data structure to set the

simulation to the specified initial condition and then calls model_J.nit (), normally

a user-supplied routine. The sample routine provided in this package is found in

file navion_init, c; it initializes control positions, inertia properties, vehicle forces

and moments, and vehicle positions and velocities. Routine ls_init() then calls

Is_step() with a time step of 0 and the initialization flag set.

Responding to the initialization flag, is_step() initializes the integrator internal

states ("past values") to zero, converts the initial geodetic latitude, longitude,

and altitude values into geocentric latitude, longitude and radius (from the center

of the earth) values; corrects the eastward velocity component to account for

earth rotation; initializes the quaternion variables based upon the .present Euler

angles; initializes the local-to-body transformation matrix; calculates local gravity;

and calls is_aux() so that the miscellaneous output variables (such as angles

of attack and sideslip, various velocities, and Much number) reflect the current
initial conditions. A call is then made to is_model(). This routine calls the

user-supplied vehicle routines inert ins (), subsyst eros (), nero (), engine (), and

gear(), passing to them a value of 0 for time step and with the initialization flag

non-zero, indicating a reset is requested. These user-supplied routines calculate

the forces and moments for the current flight conditions, setting the appropriate

values in the generic_ data structure. A call is then made by is_step() to the

ls_accel () routine to sum the forces and moments and calculate appropriate initial

accelerations at the vehicle center of gravity, ls_aux () is then called to calculate the

appropriate accelerometer outputs, is_step() then sets the local variable dt = 0

and performs the normal state integration equations. Since clt is 0, the vehicle state

is not updated; however, the past values of the integration filters become initialized

to the appropriate initial condition values. Control flow then returns to ls_init (),
which returns control to main().

Continuing with the initialization process, main() calls is_record() to record

the initial time history data. The initial call to is_cockpit () is then made, which

initializes either the GL screen or the terminal display, depending on which interface

routine was linked in at compile time - either the curses library routines to draw

a simple instrument panel on the terminal, or the IRIS GL routines to draw an

out-the-window and heads-up-display (HUD) presentation on a Silicon Graphics
screen. A call is then made to ls_sync (), with io_dt passed as a parameter, which

schedules an interval timer to signal SIGALRM on timer expiration.

The real-time loop portion of the program is then entered. This consists of

multiloop number of passes to Is_loop(). Is_loop() calls the following sequence:
Is_step(), which advances the simulation one dt in simulated time to a new

state; ls.aux() which calculates the new flight conditions, based on the new state;

is_model(), which calculates new control positions as well as vehicle forces and

moments at the reference point; and finally ls.accel(), which sums the forces and

moments at the vehicle reference point, transfers them to the center of gravity,

and then calculates the resulting accelerations. Is_loop() then returns control to
main ().

main() then calls ls._record(), to record the current flight conditions, velocities,

22

accelerations,andotherparametersspecifiedin thesettings file. main() then makes

a call to is_cockpit() which refreshes the instrument panel display and gets new

values for controls from the keyboard (or mouse, if GL is used). Is_cockpit()
returns a non-zero integer if the user has signaled a desire to end the simulation.

If is_cockpit() returns zero, Is-pause() is called to await the arrival of the

SIGALI:tM signal, which is caught and rescheduled, with command passing back to
main() (see file ls..sync.c). If Simtime has exceeded the value of endtime or

is_cockpit() returned a non-zero value, the simulation calls the ls_unsync() and

is_cockpit_exit () routines, writes out any data files, calls Is_put_herr ±ngs () to
update the default settings file, and the program exits.

23

Concluding Remarks

This report describes how to implement, modify, and utilize a generic flight

simulation software package on a UNIX-based computer. A description of each

routine and all global variables are provided. The software is written entirely in

ANSI C; listings of each routine are provided as well.

The structure of the code lends itself to pilot-in-the-loop operation on a

sufficiently fast computer, and can be operated from a display terminal, a keyboard

and mouse on a Silicon Graphics computer, or some modification, with an actual

simulator cockpit. Time histories of selected parameters may be recorded in a
variety of formats.

This software is patterned after similar FORTRAN routines used at the Manned

Flight Simulator facility at the U.S. Navy's Naval Air Warfare Center/Aircraft
Division, Patuxent River, Maryland. Those routines were themselves rewrites

of older FORTRAN simulation routines that comprised a simulation architecture

called BASIC used at NASA-Ames since the early 1970s.

The potential user is cautioned that results obtained from this software should be

validated using conventional design methods. It is believed that equations of motion

are implemented properly, but a full validation of LaRCsim against a benchmark

simulation has not yet been performed. Simulated flight near either the North or

South pole should be avoided, due to a singularity in the vehicle position calculations

at either pole.

A copy of the latest version of this software is available upon request:

E. Bruce Jackson

MS 489

NASA Langley Research Center

Hampton, VA 23681-0001

e.b.j ackson@larc.nasa.gov

(804) 864-4060

References

1. McFarland, Richard E., A Standard Kinematic Model for Flight Simulation at

NASA-Ames, NASA CR-2497, January 1975.

2. ANSI/AIAA R-004-1992, Recommended Practice: Atmospheric and Space Flight
Vehicle Coordinate Systems, February 1992.

3. Stevens, Brian L. and Lewis, Frank L., Aircraft Control and Simulation, Wiley

and Sons, 1992, ISBN 0-471-61397-5.

4. Anon., U. S. Standard Atmosphere, 1952.
5. Anon., Aeronautical Vest Pocket ttandbook, 17th edition, Pratt & Whitney

Aircraft Group, Dec. 1977.

6. I-Ialliday, David, and Resnick, Robert, Fundamentals of Physics, Revised Print-

ing, Wiley and Sons, 1974, ISBN 0-471-34431-1.

7. Beyer, William I-I., editor, CRC Standard Mathematical Tables, 28th edition,

CRC Press, Boca Raton, FL, 1987, ISBN 0-8493-0628-0.

8. Dowdy, M. C., Jackson, E. B., and Nichols, J. H., Controls Analysis and

Simulation Test Loop Environment (CASTLE) Programmer's Guide, Version
1.3, TM 89-11, Naval Air Test Center, Patuxent River, MD, March 1989.

9. Zhu, J. Exact Converions of Earth-Centered, Earth-Fixed Coordinates to Geode-

tic Coordinates. J. Guidance, Control and Dynamics, vol. 16, no. 2, March-
April 1993, p 389.

10. Morelli, Eugene A., Nonlinear Aerodynamic Modeling using Multivariate Or-

thogonal Functions, AIAA 93-3636, presented at the AIAA Atmospheric Flight

Mechanics Conference, August 1993, Monterey, CA.

11. Maine, Richard E., Manual for GetData Version 3.1, A FORTRAN Utility

Program for Time History Data, NASA TM-88288, October 1987.

24

Appendix A: LaRCsim Global Variables

25

0
M
a

L- Q

o_

L_

@
O.

0

r"

o
S.

m
o
a

o

¢;

o

L_

6

000000000

._._._._._._._._._

ossoooooo

"_°_Oo_
f:-_e - _

0"_ _ _

_"_N c ,-'_

•_ _ _ o._,_
"_N ®-- _'g

o,___<o_g_-_i__ __°" _°

b_

__o_

Q)

.E
F-

i

e-
Q)

8

e,-

o)
Q_
33

Q)
(J

o

E
"0

E

_ = _66= = ====

A

:: :: :: :: N

_+ 0

0

ol

• _._-_-- ._._._
_ ._

__ _xxx

-_E S_gS

0000

I

0

_J 0 00

e-

o

._._._._

_×>N

_E_E
oo

0000

I

'0
0

I
n.

26

r-=---

o

S.

D
0

>

Q

•'_ ¢::: :'_' _;::: .0 .Q _ 43 .Q ._i .Q .Q _ c_ .o .Q ._ ._: .Q .Q

0 ._0 0 (_ O O O_O 0- "-- = ® "o - .= = o o ._ "o

0%

•_ O eg • • • rg
O _ _ I r' r " ,"
•_ I > O O O • --_ -,-.I -,-I _ _ _

_o oo_o , _ , _ , _
"QIr,. r.,. _ r,,.NI _1 NI "-_tr.,. r., r,. r,r'l _1 g:_l I Ir,.c0 _ I t,.I r.,.I r,.r,I I r,.I r,l r,.I I r.I

27

_E
M

" m

m

C W

i°

C

o

U
M
Q

L___

M

,"i j_l J_i J_ .0 JO JO JO J_ .0 .0 JO .0 j_ dr_ .0 .0 JC_ JO .0

r- _- r-- r- c-

O 0 0 0 0

•- .-=o .- ,_ ,

_0 0 _0 0 _)0 0
•-'- ZZ ":" Z Z Z Z "__ Z Z '_ Z Z

_ _ ---

o_ _°_oo_

 oooE Em_m

OOOO OOOO

OO_O _OO

EEEE EEEE
0000 0000
EE_E EEEE

x

._._.__

_oooE_m

_NNN oooo

g_gg gggg gggg

E E EE EE _ EEEE
OOOO OOO_ OOOO

........ _ _m
EEEE cccc m®oo
_ OOOO _

_ _
OOOO _ _

I I

Q; Q; OJ

_,ooo _,_ _,_
0 q_ • • ._ _ r, r, _ _ Q; Q_

I ,_I _. I .,_I ,_I ,_ ._I a_ _.I I ,,_I

28

F-_

i
I

m

i c3

-'
010

m

0
D.

C
0

Q.

w
0

0

(B>

0

i°Cg

(B

_ (I) a) • o _) 0 _) • _ q)

:>I

[0 0 _ 0

I 0 0 0 @"_ "l:J _ "(J

,_ >1 :>1 :>1 >1

_ ' _ ' o ,_
0000 _ I000 I000 0000

29

,,..-,,

od

o=_
m

_o

_a

M
0

e-
0

el

0

t

09

._m
0

o
0
>

a) • _) O) q) _) 0 0 a)
.>_.> ,> o> .> ,_>.> ,> .>

I

0 0 _ 0

>I >I >I I

.'3O

1

2. I

=E-_

I

.,H

0

n

I

31

o_

0
U_

_0

F

i
0

i

.o®

E _

; , , , , , , , , , i
i i , , , , , , , , ,
i

(/)
0

_r

0
0

0

!

I , I , , , , , , ,

0 _'_

cc

O0 _

• 0 0 _ _ 0 _ _ ._._ _ _ 0 0

x

E

< _

0

E 00_0 00o0

._8 eeee e_ _

o-_
--

32

m m
m

c •
D_

0 >

c_

Q.

-o
c-i o

I O
c _

,e-
r_

°!

O

I,..
o
w
Q

b,.

O

W
>

I

_ E = 0
c-

O

, _ ,_=_

m E
E _

O _

P m _

•_ 0 _ >_ o_ .__oo

_o ._o__ __

o= _ _ _
• o° _ _'_ _

_ _,
_ _"_ 0

_, _--_

_ • • 0
I.o

_ 0 _ _

-_-_ _ _ _ oIJ _,_ _o_ oI o,, _

0

• E
E

EE _

5"5"_ '5"6"5_

oo _
NNN_ _-_-_
' _'_

m

_ _ F

o I o I N

OOOO 0000

33

Appendix B: Source Code Listings

34

,<
,..¢

o

u

•_ rj

°,-I

I

o.

:. h

.1_ r..) I

_ ? = _;'_,
t_

] _,-i •

@ . .

0 0 0 0-

ooo . o • ... _ ,, . = ._,

r_
0

o

c_

_o..,

36

o

O0 O_

OOM

o,_,__, _ooo _1_ _

_o_o_°_ _o® _ _

_ o o o o o o o o o o o1_1

..

,_ ..

c_

_ ,., _ _- _'_ _ oo_,

; _ _ -_

o

3T

i

r

.... "_,_,_.,-,_, _._
m_ _ m

I

_ _ _ o ,. o_ ®-.-,.a.a _

U D1 _ 0 ,-_ D_

"-_ _ _

@

r,.) _

.1

e

t,
i,

i,
e

i,

i,

: =
e

e

e
e

i,

u

m

e_

Cl U

_ mI

o _ x x _" x

..• _ ,_ _

•o ..-, _, _.-, ,-,,_ o o=

o" _o.o,_ o=
o .o_ "_ "_.... ,_ _ .,_

,_ _,_ _ o

o

,_ ,u'z

38

t

o_

.,_

_ _-_, o,_
_ o_,O,_
e,,Q

?555

ooooo e®

o

E

q r_
o

m

o_

o_ _.

_ dd_d= _ o;d old

o

0,,.0

4' 1.1

2
.,.i

.,.t

C

o

o,

m

:i
rll

Iii m

o

o

39

r_ _o_

• OCt; .. _

c_
c

,.u

•. ._ _ =_ _'_
.,-_ o_ ,.-t

._; ._ _ _ .:_• _, _oo _, ._'_ _,
._._ _ _ _ _._o_ _®o_

= r.O r.)

' _ u'_ _0 t _- cO

o
ne

i i

o xl

",'4

0

ID

1

i,

° p,

i,

° ,'.
° _ ,_o _

4'

>

/;

e,

_ m

._ ,,Q

_0

m

o_.

o_

o_ __ _o _

_n-v>

40

0 I

c_

o

.c

|

c_

o

G'}

m

0

I

=o

m-,,_

4I

rj.

m

-m

oooo

oooo

ul 01 / ,al

_a
I

o
t

o ::'i

i

0 ,I i_I c,I

_®®®®

'0 "0 '_

°u.f

° 6

• ¢.

i,

_ H

L

3 _

n

o= o= o

i-i

_ o _

!;

42

, ;, ._

._,_ _ _o

® u=m
¢' t G_ ::e

..o
•_ ,- =_. = _.
• _ |_ _

• ..t • • ..

'0:>_

u _ _ 0

(J

r_

hh h
0 0 0

_i_01 '01

O0 0

iii

o o o

o o

v_.l _.1 v.i

0 G ===o_,,I

C,,,) _

43

o='=';

>6
{_ O'J

rj--

o:I
_J

,=i

u

_.... _ _ooo_-.®o

" ® ':'" " " " ,;' ,,' o'_' J _ o'J u'_'"1 _) '1 "t "1 "t - '1 "1 "1 "1 '1 "1 _ I I I I _ "1 '1 '1 "I '1 '1 -'_ '1 "1 "" "_

m 4m=m= 8 °m _ : ,=_

oo _._ oo_o..o,o, :'._ "--: .oo ,
m_ o-,. o-.-, -,-, m _,_ _ o _ Imi

O0 _0000

,7,-,_

01 d _ 01 01 01 01

a.)
I

t m

..,.i
.iJ

iJ _ .iJ

hh>,h o.'.'_

®®_ _o_oooo

° i,._'_ m o _'_ _)

0 0 _ _0 O0 rm _ ,_, _ U

_I >I _I o _

M UUUO

j;;;_' '' o'do'# _ Jo'JJ JJJJ
_ . _ >_ "_'_'_

_ >_ _ i_

o >1

, _ :_ _
m I

• o r_r- I oo

,,;, ._o_

11=,11,,i,11, _i,ii=ql, ,i, Ii)=w Im Ii= -_

44

.o m

00000 -_ _l l

®_ _jo_o_ooooooo o._

............ • • o' _'i';';'
°' °'" _'_' " _ "_i' _ _'o I o I

_ _- ,

oooo
_ 0000000 -_

I I I I I I I I _ u ,_m_

u

®

x

45

;2
e_

_ _ o,_

co o_

v v v

_ ,_ _.._,_ __,n0,_ ,ua, _ I> I>

-..-.. -..-..

,--,_ _ ,

o_ _o o _ .._

o_'_•
.._ -_ _ _

. _ o _ _

___o_'_6_-._ .)_
o= _ _ =o _ ..

_ _ -_ @@_

_)o _oo_
) _ '__ .,.,_,-,_

_ _ _o

®°_o_®_
o o_®_ o_

-0

0 Q,_O_

__ _o_ ,. _

¢...q

46

,(,,l-

o

• ° .,.i

o

.g®

.U

°_ ,_
_ •

o

47

o

¢,1

5
I=

.0 ,.=
r._

g,j

,-i

D

D

.,2

c
.,.4

D

® oo

_ _ _r.. _ I
|_
_l_i E" _

,_ _°°°°_®

_ _,L _ _. _:_

o o _ m_

.-, _ ,_ _,._,._

.,_ _ _ _ ,_

..1

(,

o
®

e,

o

o,

g
m

m
,),

,_ o _

o

_ _ _

o.

_ g g g

48

_ _ '01

• - _ ..

.... ,_ "_ .. ,, ,_

_ _" o= ,..,_ o_ _:> _._

_ '-'_':"_ '_°_'_,.x,., .=_ ._ -_'_'_o,_ ooo _o ,_ .., =o_ _2

° .:

o ,4::o1.,_
r_

'o '0

_ o_ --_= ®_
_ 0

. 0_ • _ _ _ _.'d

_o_oo_,_ _ _°_._o,_0 0 N

4O

_3
,-I

s,--I

0 ,._
o,_4 •

e.+l
.,.4

"3 '"

uI

-,.i .,-+ q_

P,
m

.I

o e_

"11 ._

2,',; • ""

_-.- _

_.I .e., I

• . =l _i
I I_ c_ -+-+ .i.+

m +

+,

++

.+

+.

++
++
++
++

4+

<+

+,

+,

++

+, I

+,
+.

• +n

+0

++

m

+

+-

+

_3

_0

o

_o

o_

o_

oo

o_ o_ o_
m

b3

o=

-,,t

r_

"0

o

o

o_

m

.,Q

o_

_ m

o

o _

51

"r,

e_

a

o

0

. _._

"o

o

o,m.q

o:l
.l

U

" 8

o_

_o
o_

o_

o

o_

m

2

u_

o

0 0 "-

• ._o_,_, _ _o
,_,_ (J-" < _ < 0 s" I._ I_.,,_ .u _,,_ ¢I _,_ O_a_ m_

i-i

o _ _ _o_o .

"0

62

o

_9

_.;o

_..

.-1

o=

n-

• " ;I.-_

_ _ ..

.. "_

_ E 0

,IN==_ il,

I == =

53

,=2

" r..)

o

$,,,,l • _,,-q

Ol
.i

0

EI

w

0 -

M

A

l,J

o

o _ _

o

}

._ 0

oI "_

. "" a,
_" _ _
o;Jo_ _ o_

_ ml I

I" ii

_..
o_: ¢)

"1

N ii N

,,_,_,
2, o

_ ,

_ _:, _.,

,_ 0-,_ 0 -

oo

.1

e_

22 _1

.. r.,_ _i_

_0

o- _o
01 "_ O 0

"_ _ _ _ :

o

o:

÷ |

.i.1 .iJ _ ._

^ _ .'_ v .x 2• - I I I I _ B,1

...._ _ _

56

oo

o -r-_ _ • o "_

o _ _ " " " _

57

i

o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Co 0 0 0 0 o 0 0 0 0 o
+ + + + ÷ + + + + + + ÷ + + + + + ÷ + + ÷ + + + + + + + + ÷ ÷ + +

0 0 0 0 o o 0 0 o o o o o 0 0 o o 0 0 o 0 0 o 0 0 0 0 0 o 0 o 0 0

........................ _ -- _ _ --

• ' ooo__ o i_ o__ o_o . oo_ o_i _ __ _°°i _ii_ o _o o_ o° o°° oo o°° o° o oo o o =o o o° o o o o° o o

58

o=oo

o_ _o o
_D c0 o
Ln o

_ g

y ,-; oi

,g ,g _
,,-i ,-4 o

,.,, ,.,, ,.*,

0_ _ o

o o

,-4

Ca
,'4 O

,-4 ,=I ,'4

§ oo ooo o
co o

u_
t,-

¢ o

o_

o_ o_ °_t_ aJ

_o,-4

r'_

t_'OO

._ o°_, ._ _ ,

i '° !- 0
,o_,o ,, ,, ,o _ ala,,,. ,, ..,

4_

4_

4_

"U'

41
4,

'I" *

$ •

T :

oo

• , g :.

__ i_!!iI
I O I o I n I I Iu i i u o o o o o o o o o o o

_D...... _. _. _. _. _. _ _. _. _. _. . . _. _. _ ? _. _. _. _. _. _. _.

i _ I I I I : I I I I u I I I I I I u I I I n I I o I u I I I I I

÷ ÷ + + ÷ + + 4- 4- ÷ + + 4- + + + + 4- ÷ 4- + ÷ 4- 4- + + 4- ÷ + + ÷ + +

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o _ co co _ t.- _0

o o
i u i I i i i u u i o I : i i I i i i _ I i u i I I i I o n u I :

. . - - .- ._ .- .- .- .- : ." - : " .- - - : " .- - .- .- : : ." .- .- : ." - .
C_ C_ 0 C) 0 0 0 0 0 0 0 0 C_
0 0
o o

c
c _

G

0

._ o

_o _ x
' .

..... _ _,._
_ _ _ _ _ _ _._ _._

60

o

m

o _

oooooo

®1

+

_ _-_

_ _ ... I _

• =A^_ _
_ • • ® _ __

000000

vvvvv_v _ _ _ = _ __

o_

o

_J

D

0

>

e_

I
o

m

_ 8 _

o_

o ' _
e_.4.1 e. t_ .-..

-,-I _ 0

.,._ o <; ._ ,,®

o_ 3 °°

o

E g g _ °" = =._
<. <. o --_:,.o_o .Zo_

61

.._

o _

. O=o

.... 4J

_ _ _: _ ..o

-

_ _>o>

_ u'_ _...... 2

oo®®® N_

0 0 0 0 0_ ooo o

o o
,c _"

22 _

"¢:I

o

r.,)

" E" t" ,_i

o

,', o

oD

01 ,J

"_I "_'_ _

e,

22

' o"
II J

.,-i

22
22

, .Z

o _._
-_,__
_o_o_o o

-,,4 -- II 0 _I II 0 _ II 0 % II 0 _)

o

_o

0

" _X'_= ,° ,,,_. - _-_. "6ii

_ ,,_o_ , ,, ,.,_o._ ,, ._o_ -

z

63

..Z

c_Z_

22

000 i"

_ J

"o

o o

[.T.]

E <I

u_

U "_ ,_ =

AI _ II U

I

7 ._

,,-¢

o°.. 5:

v L•,.t o v _

0"0 _

._,o

I ÷

• o=

÷ o=+

. ,, _ = o _ ® o'_==_'_ _ _"" "_ "_ _ "_ _ ._ _ 5

•- o_ _ o o _ _,

.... ,,• _^_ ^o "_ _._ _ "_

II ii ii _) $4 $.¢ _ t) o .,.i o

: '_ '_'_ _,_,_
.-, ,, -_

, . .. °.,., ,-;..; ..;,_; .-,.-., _.,.,

_" _ _ _'®l ,,, ,, ,, _P..
o= ,_.,o o= == ®_ _ ._._ ._._

@

_ _ ._ 0,

• ._0 I_II 0 I

oO _-.

! i i _'_'__=, = _ _,
I

ii i_ _li _ "_ i,_

, g ,_,_ _,_ ,_ _,

, o °_ _ _,o,_o o

e

r.

0

II

e

22

' _' b;

_ o
ii _11

_.. _

.,,.t

64

"o

•_ r_

_ooo
_?_o_

II II H 11 II II II

llll;ll

ag

? ._
11 _ ,.

P_

v w

""_ =, ,_

_' _,+m,-', _+.,

+_._ _,," _ _
-l-I °+-I II II

.... _ g o_._ _ ._

.,,-I .,,.+

I i<,,: +J I_ m 0

Y

/

tlllllll I

II II It II II II II It II II

mo

°,=_ °

cJ

JJJ_

0 0 0 0 _0

•-I 0

O 0

d_
o I

o-,,t

XI,-_"_

o

"QI "QI _I

I I I

...... ._ _ ,_

o

,.3

o o rJ

_ _ o_

• ,_ _ _, .. _, _.-,J_._ 00 Im. o_

......_ _ o_oo _ _' _' =_.'_ ,,_,,
I I _..I E-, I _1 rJ E_ 0 I I 0 _" 0

. f.

o

'0

c

o
E

_d

o

o

c
o

._

_ o •

m

=o_ -- _o ..__ =.-_°_ ..
0 _ 0 r_ "_' x.

o o_ _ _°o_
o_

= =oo o_

•o_ _I _o°_ _® o_

_ ,_ o _.._o_ ,>",_ ,_ _o_ _'_:

86

• i

.£ o

CJ_ '="

0

ce_.
I15_=l

o_

o 0'@
0 '_II

"QI "ql "÷ ÷

0 _ 0 _ _

i i "
_I .. l

., _,, _.' .-0,"I

, _, .

o _

+ ÷ _

67

o

. _ _g _ .__
• _._._ :_ "

_s

.,.t

_t

m

P_

4)

u_ •

.o_

¢,.

i:

.'__ _ _ I

• • • v

_z

,.-t

z&u_

,

'i!!io_ _._ _ ®
_,, _

mmm_mm

e
4,

e

e

t,

e
e

U

o

I

o

C _ o_ 0_

o_ _ _® .._
• 1-_ 0 0 _ •

.,.t

_ .. _

,.-t

®

_ "_, ..

ood= _,, ®o _ _ "" ' "" o_ "_

ooo. o_ _ _ _o
._.. ._ o. _ _ _.o__ .o_.

®_-_ . _

:> _ _ 0_

• o
_ _1 e _ e e _ e e e e • • _ _ _ • e

88

o
.,-t

¢J

mI

r_

O_

o_ o_

+

r, C o_ .1_,.i

1o I

, o+ +, I-,_

. +=.- +_ =_

_°,

.2

c

_ mm

+._ c_ ii Ii 0"J t,..

._ ",,.m ._ o_ -+.,_....

69

cl
.0 o

::"==I

o

>,

l

E.,o

o i

.u_>I

>I o

,.-t

_1 , !

l _, o=

,k

22

.u t ..4 I

300 '_ ,3
" E..,E-,

g o o_ _,,..,o_ _
I_ _oo_ IO•oo ._ _,_,

..-t N (D,_ N

'=" _"_''"" i ">:I ooo , .,,.,,._

"_1 _" ®" o o _o'_o_

U U I I0 J¢lO 0 _1

I_l O_ I_0

ii _1 II

o_ _., _ oo_.°.° ,o..o,
U _ U + UI_ o,_,_,o,-°,

7O

o

1

m

E

' o_= v v

,I:1 ,_ ,I_ ®

",4

e.l t_

X

o._

m m

co

r¢

o _ _ _ _,_

..,

0,-_

.. _"_ _ _

o

71

e_

1

i

1

o

;_ IDI

72

II I II II

oo oo oo oo oo

II II II 11

.... m_

-,-i

Io,_I

Y

.d

o_ ._

.=i)

==

ra

=o_ -_ _,

" = ._-
,-,#_ .i,=

_-4

_ _,_i_I

t)
-_ '13

.. EI, _

_1 =' .-

r,l

II II ii ii

-'_ _ ';'_
_. _

._= _ _

.1

e
4,

e

¢

i,

e

e

m

C

o

ol
,,-t

_= o

• J ¢I r.

"_'_ _ _ _

e'- 0 -u ,I_ ra ,_ _ 0

o) m I

e_ I ¢0 O_ _le.u >, _.u

._._ =# ®_, oo

., "_ _._ _ ._® _,_

o o o
._ _ _-_

73

"; II _,o

o

6

• . =

II
n ,1 CD II ,I 0 _1_
II. co .::
II ."

o.,_ I',o Ior_.

E ,..)co _41

.. _ _'

,, _ _

E_

°l--d

cD

? .

6

..

_ o_ _ _ .

_ ® _
...¢

_- _®

m._ "(3 X_ ""

^ r-

=® I

AA

,la.u ,iJ

"QI "QI"=I

N i,I N

ii II Ii
m

j= ,l= ,=

_.-:.
_, _ _ •

- 0 _ _ _

II
ii

II

II

m al

Q

_ o _e_ u

.e

:>m a} m C _ '

,-_ -_ -_;;_,_

,_n. in-

74

_ 6

u

"c:i

=I ci
°,ii

P" I::l

A

m
.,.4

,-,-i[

+ ill

+,_ ,,

i i .,-4

...... _ _ _
,,..i el m ..

_r g

2;

:_ _

-_,._ ._ _ _,

o_,-_° _ _ ._ _ _. _,
_,_i_ _ _.-_-. ®

m

?
-,_ (; Q;,_ 0J A 0J A iV

o_ _._ o _-® +

(D "-'

.._, _ i _'

_ _ _ _..

o

n 11 p

i;
,.i=

..-i

- i

®'_ >'_'_ "" <, <_'._ _ I_o
= i

! "•- ooooo_ _>_ i ,_'

?5

A

f_
i

e.

0
X

+ _

I 'J _ _'ti' e

'-= _ _ _o,,_-+. , .. illIQ)

Q,I I_'_ l.i

o _o_
_ _-_ &-
. O "-II lil ill _i ¢1 in

.,., _'_ _

x

m

w==_

P," o

Ii

+_

._ 0

,-t

o,-i .,4

_ m

"_ ._°
ZOJ_ 0

,, ._
+ _.

._®

-_®_

._ _

I I

E_

0

o_

0J

o

o_

--.co
o_

mm_

=._= ._, _

_ -_
ml ml ._ _ r.,1 I

.. _ _

01 _0 0

4.)._

-,_ _I_ _ rj}

_ _ d d _

, _'_ _
•-0 I

O_ _

mm_m

_3 _ g

g_ 2 "

eO m I_"- _ m_OC _f_

_ o_:__ _ _ 0oi

_1_1 _ _ o._ O_ I'_.,_.._._

.1
i,

e
e

e

e

i,

e

• I

e

o
.,-t

o

,x

,0

e_

o

= _= o=

° _

. _
m

'_o_ _; x ° x_ ._

•_ _'_ _'_ ,..
,-4_*=_*,='

! .o0 0

g _ _® ._ . .

_ °®o_

o
o

?8

r_

..

o

_ r_ ,=_

_o

•_ 0 r.Q

e_

oi-W

¢) ,._
P. o

+0
CQ

I

r.I

o_

+,

•- ,-_

_÷

m_
II

II

I ,_tl

A

I

I

I

,-t

u -- _ (3

• _ _, _

. _:::: _

?7

o

ol,-4

CJ"

.k
4,

,k

A

._ _ ._ _®®

_.a

,=

"_ ®

÷

o

_

_g
e_

m

n

),i
m ,_ m

o_
e-

* I

o_
l.lm

,.-i 1.0

,,.,o iJ

o _

_ _°

o

78

i-,

o _

cJ

_ o._

_ _._

i
.... _ "_

co

o

COO
M

o
, °

.1

#

t

e

.,-i

4, ,-1

: E,

e

o

o

me0

e_

D

.,_._ _._ _"° ..

mI _ .uo _ =_o m DI

O_ _ 0
.. _ _ _ ._ = _ ._

o

oo o_

o° _

,_.,_ ,_-_ o_ _o
=_ "_ 3 _ _==® ®_

m _l • m

_ _ _o_ • ®_o

-_ _ 0_ _ 0

mmm m m u,_ o m_Jo

.... o- ._ _ ®_,_ _ o _-_

o= o= o ,_._,_ ,_ _ o

?g

o

> ""I

o
'0

uA
v

Q) .,-i

o_

:_ x_ _®

_ ._ _..._ ._° ._ _ ._ .

_ .=_ _o.
o

• X

.I

8O

e.

o_ _,

.,4 _

_.. _ _- _ _ _ -_ _

..

- _ _

= S o _. _, _ ._v^_._.. z_ _°_
'_ o o

II ;.i_ Ii --

_o_o _ _o _ ®_

. $

r_

o

01 # •

x

I

+

, _

-,4 _ "-, 0<_

• 0-_0 _ ._

81

,.3 e¢ ('_ _ _ _
r_

00000
•.+ ÷ + + +

............ ,, ._ 2 o_

'_'. _ "__._-' _._ _ ,_-_ o_,_
,--* ,-_ 0') O'C)

o,==(0

22

_" 22
'. 8 ,'-

L_L: .2L:

99 -- 99

i)

® ..f... N _. ,, 2_._2 ,., ,, 2-_2

,._ (p .,.(_) _,,.-(

Io

_"__

I0

8_

r_

.1

22

u

22

_ gg

e. Q,

,c o ''_ z

_m

" _ _," '__)-,'_)

o,_ _ _ _= .o.. + _-,_ _o

'=_ o ,=(),),

82

.2

)1

_ttooooo

.o o _

;> .

r_

o
. w-a

r,l'J

ooooo 0_
u_

..... 2" i -

N

m

"'i ÷ . =_o_

] [I i _'_ 14 '# _0 II

_.,,__^^^_ _ _ o-_
ddd _ =_ ® "

_ _q_3 4J _

m_

o_

_,'

o

II II _ _ it n

_,%.. _ %",..

o
rfJ °

"'i

000 .-
'D _ "O O)
X >, N n. U' _ ._

..... -._ _
..:__..Zx -

: ÷÷++++

_. _._. _._._. _._ ,_.,_ ®.,;

Ii ii ii ii ii ii ii _ _ .,=i _ o_

+ +x _.._---_o _ 0x

®""®®,',_.,-, S 0,,• .,4 _ .iJ.u

" ",

o

"0

o

A :.

.u

222_ mm
mm
_ii NN NN

m_ _dd_ggg

_HO000 _.._ .._ _

ouZ_6666 m==_.

=_==== y .==== ,

.1

22

.^ .: &"
i M -,_ .- v I

_ -.. z_ _ -_

.u.._ _ Im ..
4J.=_

0",_ _ 0

,. ": .. ": ..- .. ":

.... ,_ ._""':": •.......... A"_ _ ": ""04':""":o .,+, oo°o _ <:;..

; _ o _', o _, . o . o
-- ._ -,4 0 0 o ii ii II .,-io o o II II ii .,,.Io o o ii II ii .,4 0 o o ii ii II .,=io 0 o ii II ii

85

o

"'I

o z. _ > =)_ '" _ --'::: _ 'd=('_"_ .- _,.-® --........ --
" ° "_ "_ _ _, _ o:E _ 0

0 0

.]

FFFFFF..;'FC

_ _ "__

_ ii Ii II II • • • _ t

c_

8
o

x m m_

o o- !., io

86

o

22

o

.I

87

o

® _ _..
÷ °. ÷

i '

v _ _ o _3

i i

A + + +
I

,--t ,,-t

II II II

r_

r_

.1

It 0 I_1

- _

t i

22

o

° _ "_

x_ _, _ _._._

A

+

_ ..
'_ =_ _..

_ .-_<_
_ t_°_,,

ii r,_

"_ _,,_

'_ ^ ,,_ ,_®
o_

! 7 i "°°@_ _ o_O_x_.-. _

88

"0

o
r_

,o B

o o _ _ _ z® _ _ _ _

_ oo oo oo oo oo oo oo oo oo

_÷ _÷ _ ÷

w,,,4

c
o

I

0

c_

O0

zz

o

c.

o ._..
I

-_ 0 e.

o_ o° _o

• ,,-i I"

m,,, -- oo "_ _ .g

_ _. ° _,°'!__'_ _ _ ., _ _ _,
_ _ _. o .. o

°o
_ • II _ _l _r_ -"

o_

hh _-,_ _ . o

_®® _," I®

.:_ _.... .o _o_.__o ® _ o_

_.. __

_ 0

• ,,-I ,_

. ®_ ®._

_ 22 22

N M t,_

ooo_ o_ _o_o_
O 0 _ 0 0

5

1

0

o_ _ _ _ --..®_ .. "_ "_

® Io

gO

A

i

0

0

_oo o 0

"_ _ o o o°° ° _ t _ _1

C

I

(._ .,.¢

.)=) r0 4J ,_ _ _ _ i_ .. O(E .u).(.._ .o

(3

v

II _ ,_'=1o _ o _ o

_ O_ _0 .-X_ O_ 0._ 0 _ 0

0

..,,-i ,--i

'

,,_ 2,, i, _, " "_ ">'

.... _° .." o.-., ._ o_
_) _ _

_o._o_o_o_o_oo_o__ _ _ o_®o

C
0

"'I
.._

q2

:- o_
m

o

o=

...... E ,-_ m.) ,<,<

"" _ _ _ _ "_ ,_,Z + + _o_o

oo._..,_.._.. 2,_,._o. oo
o-_

o m

91

o

"0 w

. oo

o _ o Ii

.._ ,:._ _u, _ --
= _,, _o_

_; .-r.3 m-,-i

,:- _o = ®_.o,_),®_®=

o

c_

oo

d

• -_"_ _' I I'0_

,, _ _ _'_'_®

I

,,'_ _,_ _.
•1 "- t_I I I _ r_ 0 H

.,.i.,.i...i.,.i o o o

_, _. _
_o _. _

.._ _ _ "_

_ .
"1

g2

"0

I

o_

v

,,-,

I

o_ _
I

m

m

.,-i

o_ '_._ .5,8
I

®

o

_ 5
1::1

o o

F

o

I

u

r_

.Z

4J

c
o _.
C_

.2

o

I

I

I

m
I

o_

x
I

.2

Ii ,.4

m
e

.2
.2 "

.. "...2 _
.2......2.,.2_._.oo._o

"" • li
=_

iii o
,, _ _ _ _.._ -- _ -__==.._ _""___'

.2

m

®'_

_ "_g

='..2222

C
o
c

.2
o

"" _._ _-.2.2.2.2.2.2.2.2.2.2.2.2.22 .2 _ ._ _
o d_

g4

o
.,iq

/

o

o_

o_

d

o_

z

ii _, o_ [._ _ii _ "" "I ""o o® o

- _,_ _, _.-

.I,a_

o_
_J

ol

N

./J

o_

o

.,i ill

_, o _

on.

I

o

• _ °. o-_

z o _ = -
o,, o_°",-no mI

® o

•.s. ¢¢/-

95

o
°

I

o

ul
I

,.<

I"

o

ii

,.-i

. mI

_.;a) ii .iJ

,, °,,

o

-.- _

.m ._ _ -_ _ -._ -._ ._ _ .,_

_J _J

_z

o _

.,, _
_ _. ,,

_ _ o

+ _. + ,

oo ",_ _ ,,

o I I_ -- I

96

o° _-Z

@

o _u_io,
_o,

_ _._,. _®
-_ OJ Zfi [

= ,, ._ _ ._ o ®U,"_

-,_ _

_..I _

OI _1 _

u m

._'_

-

2_

22

v

O_

g_

®1_

_.,.i

I.

o

o i

[J

1o

g77h

22 II

_,, _

_,,

I

o 2;

n _

m _

97

22

o I _.- I _-

... .- ._._ z ++ _..

o'_ ® ,_ i:_" .'_'_®

II ..I_ ll:I - - • i

:-.- 2.-1o_ _ ,','_ _ _ _w®,-

........ -,-t

c
o •

.,,Nr._

o

• r_I
r_

r..)

-_ v

II I "_ _"

N

_^ _ _ _ o_ o_,

-

,M_ A

o_ _ _°,. _

o_ ,_ ®,_

,_ = o ._-=o_ _
_ o_ _: _'_

,_ _ -_ .,.i

22

•_ 22
v =

.,-i

3 _,

._ o ._

o_ ._- ,

._-_ _ _ ® ,,,,

h h

• 0

• x

o•
_o _oo_

_o _ _-
= _'_o _

_.__ _= _

_0

_ o |_ _

• _0 0",_

"_,_ _® _.,

®_ ®_=_, _-_

o_

D

o

_o

u_

o_

m

g8

,"4

x

? ..

.. ® _
o-

,..¢

_a
z_

.

°,_ ,_

g,d

,+,--4

+

-
o=O

Z++ _ .:_ •
o_,,., _- ._

o ?, ° '_
_= . ,,

o _
r_

__ _ _
- _ v_ ..

U -- -='I II

_ ._ _ _.o ._ .,.;
•_ ., o_ _,

o.c, o = = _ ,_
I _ I

c:

2

o

o=

+

o" -
A

z

-_+_

=: .e.
• I "0

.. .,+= o .o

"_ _ 0

-,,4

.

_'+-+ _"_ S -+'+,=_ _..;P8
,,_ e+e' -0

-+ m+ o o 8

,_ _ _

O9

"o
,¢..

0 o.

E _j

c_

.=
!

zJ v..4_.-i t.-_

,_ o

• ,._.u aJa.aa._

_ v _=_

sd .u .:.a"r.

ua u_a _
I I I

?

o d_
,, ,=,

,o, _

+
-r'_

o ._ o"
ii

4, + .

• _o,,

o _- ..

..... o
_ _ n

= _ _o _

o

4J

*_ i'=I ,--C-_

oo

n_
0

U

_o=o
.aJ

o

= ,.,
e_

o,-I
OJ_ m
[q .-_

m

..

o o-,-*

co

_ -.. _._
"_=• C-,

..

_ _.

"' .._ _ _o_._ _.__ _ .._J ¢_

101

..2

o=

o o

102

--;-
u o

c ,"

m

8

_0 _, ._ _J

H _ O

r_

M

®

8

E 0

_ U

mJ

z

• 0

_ _ o
o, o o o._

....... ,_ :._ _"?_.._

xxx oo-

.8 ° _. _ _. _

c,} ,iJ

O_ 0

i • .- E-,'-- I o_ i _0

mI

d

.o_
m

®._._ ._o ®_ _ ,o_ _

,= ,.-t u' o

co ,4J o)

E

I

Z

0 _ ._

• _ o) •

_ -_ _.,, _ _._o- _-_.... _ ,_-._

.__ o _ o .__ _ _ "_= _ _ "_._ _._

103

o

B =

_ o_ -_'

- _ e a_

• _: _'_

• = • = v v v _

_o
1-11

_o It

H,-,I

_7
ii

_ _..
II ,._0

="

ii

=

,-1

o m_ _

_,.." .".........,.,=
^^o oo

.... ,_-_ _o° _o>_=_ ;,,
i_ . o o -._

__ ,_,_,_,0.-,___ , _ _._.__._
• I 0 - ¢1{ • _ • ¢_ A A A ^ 0 ,--I _) A 0 O 0 0 0 0 O

o ooo o ooo_,t_,_,_t "_ _
^=^_^_^,^ ,^ ®^ ,^ ,^ ,^ ,^_l^_^_^_ I _" _;__I _{ I {,) I {J I _ i {'4 I 14 I 1'41 I_ I I{{ I ¢1_ I .1_ I I I I I I

-I=1 _ _{ II

U e" U,I=
-,4 ^ 0 t_-I

, W , W , , W , W , W, w ® , w , W ® , w , o.e n._ o,.r.._ o. o. _

_-W _-W _-g_W _ ® Q,g _ ® _W _W _W aW _WQ, _ WWWW WW

L

104

c

o

e..)

= I

lil
[-_ II

m

o

_ 0 0

g
_ _ -g _> ._

=_ _.._ _ o_ ._
_ ._._ - .. _ _ "._

,"4 U II II

_ .,. i.-..

I

I

,2

= i
A

,._ <->_

<-_< _>,,

i = i
: . _= _ , ®_<>,,- _,,

I.i i.I '_ _ _'OA "A _,l=i
'i..¢

"_ ,J{ ¢I{@ ..CI@

_3 -'°^"

_" _= _ _ ,,_.=_ .:_

105

_. . _,,
"<'"<'i _ "_IO ,,_ +'1:_

,-._._g_
I I ^ iO^ Ill I¢_

..... '®,"9 o

h _

.2
0

m

_u

m

I : C _l C 0 ll_

_f.5

e. ®

.... h_

• _d_Z

,.-1 t,

4,

: ®
.

:
• _.
• 1

.

.

-_ -.-_ R U 0_

_o _ _o o._ o_._ _ o_ _

®® o ._=o _ _d

C_

o

106

o_

o o

m

• _ _
o

_ •J _ _ o

°o _ _
...._

oi 'm 'E

_ .._

o1,lq

._ mI
raO _tJ

O--

,-.l

A

III .IJ _ e, _ -,-I

_ ,2._, - .,:, .,_ _®_ ._
._ oh

6,'_ - _ I ,-_m 0_ _o

_ e_

c_

._ _

•- ® • _ _ _. _ _

-_ II Ii ii iI II ii ii

_ _ _
--_ _ _

.la

m ..

" _i o a _

• ®®._ _E."

aJ 0 r" ,._,

,.. _ ._ _-;: o _ ,,
::

_0 _ 0 _

107

'1:1

C _" -,_ =0 _

01,-I O)
lO

._-_ - _ _,>,_,
•_= ,, - _-_.'- _.

.,-,_o -.- _ ®_u._ "_
- _ ..o._

,,

.l.a
) >, _

m.

_ o_ _

,Q m 0 _, --.-1 a=

2c_ v o >=o<.=

|_ ,_ _,,._.
°_" _ ,,_^v_

N e, _

¢..)

,,.., _

_ =l

.,.q
,-q "_ II

I° °_ _.

m

[..,

_,o

ii

o _ _

•,_ _ .2

_o

III ,_

E _

") .. _

•,-, I -- I

"'1 _

,, _ _ _,_,,

its _ _.la

J ==®_ == -_

==

c

;_?.,

=

_J

r_"-

..==,;s ..==..".,"

nO _ I m _

A" J='='J J='JJ

_1 ii ii ii ii ii ii iiit

I I I I I I I I

_ _ggg g_gg

•" _ _'_
,., =,_ _ .. ,-,

" ® -- _- =.j - ='=' =

,_o,_ _ _ , _ o,= z® = _ =
• _ 0 O) C CC

=_'o " ° _ ._ ._ _® _,_ =

_iI '11 _ II 1414 _i_ _ I_ I

•_ I,U I

0) 0

.... ; "; _ -

,-_. _ 0 0 "_ -.-q -*.I

108

m

o o

i,

m

.;_
cO 0

0

m

_ jm

m

s

m

"l "1 i '1 / '1 I '1

_ ; ;_ _ _; ;'__
o o o o o o o o o

It II II II II II II II II
11 II ii II II ii Ii II ii

4'

_ _ ,. _ _ =-.._= _
_ a. o o o o o o o o o

,..=,..... ._ %" ._

•.o ,,= = 0 0 • • _;_

_ • _ -_Z ! Hi _ _ ".

II O' eI_

_" _ "_I, , _ _, _, _, _ _ _

O_

.J

109

ii

I:

I

m

m

"1

u}

'_ '_1

E ". E "_

+ o ,_ o

=l UI

I

-,_ _ v

C m, m

®'_. ,' __',

' _ _

II0

.°

o

o

o_

;> _irJJ

z"

'00_ 0 QJ
0":' E,u

u_

_.,.i

,_ _ o

ee_

.. = _

r.) 0

_J
O_

E_

_J

m

EI

"0

=._ o= _ "_

g dd d_ -

2; 2;

• 10 m'O
'0 m 0

'0"o o I

o _J _J
_0 -0 0

',_

0 t"_ O _ 0 _ 0_ o o o o'01

._ ®_ -

o ,o-
o o&. _ ® • ._ "Z_

II 0 _) 0 I - .-_ Ol _.1_ _;_ _ _ _0 I

-- o -_ o o -_ o -

.1

m I

o_

o

o
°.-i

_o

o
"_®
M _J

¢.

'0

D

D

0

°,.i _

._

-

m m

m

ol .

.i
._ -_ _ "_

o _ _, .,_

_°o _d _ _

o o_ o_ _

.... _ _,_ _

._= "_ _o _ _

111

mi.

o o
• ,,,,q o

4- + +

.- _ o' " o'

_l _" z"z _. #," _ ' ' ."

0 ." _ _ o .-- "_ "_ "_

-_ o o o _) "QI,o)_)

...... _. _ _ _ • o o ._

-,_ = e_ _ m _I _I Ol _ _ _I I I I I'0 _ _) _ U _ O ® O_ 0 0 0 I _ _,"_ _J
':I"01 "_I "_

0 0 _ _ _ _-_ _-3 0 0 0

_ _ 8_ _ _ o _ ,_ _" _" ,,-_,,-_,,-_ ,,

:_ ,,_ < ®: _ _,_ _'_ _ _ " ,..... "_
- _ ooo . o_.,,,.,,., o_

0 0 0 _ 0,_ O_ O_

_ o, _ 8 _ _ _ ooo_=, _,°°° _ ooo _ _,o)3oI',o'_ _°°°
_,o) =I

)..i

. • _ _ • - . . "_ _ _ . .

=J

_z

.Z

;- o _ -. ..

........ _ _ o__ "_ . . .
"S

• 0 _
_ _ 0 _

_D
o_ _ _ o _: _ _o_ooo,_:._.,_:_::

o 0-,_-,-_ 0 0",-_-_ 0 • I I I_ I I I0 C .I

........ I÷ , , I+ +) I

"'l"'_ _ " " o" ",_.. "• oooooc::,oo+ I I I I I I I I _ 0

_ o0. .0.,.o., 0
........), (, (,)_, ,_ (,)

0-_ 0 _-_ -,-I 0"--4 0
o _o _J olm o m o ii ii ii ii I) ii II)I II

..._, o o _o _

"_" ®' ._ "_'_,"'_ _ ooo _ _. --_" _ '
• _ _,_ _"o o

o oh:, _ =,o-._.: _ ooooooooo _ . ._ ._..,m-_ l,_ ® m m • 0 .,'_ 0-a 0 .- 0 .,'_ I I I I I I I I I _ _ ;: 0 _I m _: m n
':I _l

IO u._ _ _"m . o o o o o o o o o _ _ _ m "_

iI_

O_,ll

14 .1

+ + :_ **

'_ '_I i ._

_ ÷

_I I

° h _ _,o'_ :

._ ._ _ ."
o= _ ,, _o=_ ,

II

._ o= ,--

"01 _ "_._

a_

i

°,o,_, _ ._, i i ÷

g-
,,;,-:, _ _ _:, ." ._,o,!,÷o,o,°,.

d d d d _ ®. =o _" g +®'®'."Og.".,-i c:1¢ = . o_ • • o

i i + + + + + + "_ I

2_

I

_ o

.2

o

I

,--i
I

et

o
o

A

÷

.2 ®

1 H -

o00 + _ r,.

........................ _ _ _ _ _ _ _ _ _ _ _-II _,lI

_1 _1 ,"il r_l _ _ _ "_ _1 _1 _1 _1 O ,._0.00 0 0 0 0000,'-_ ,-I ,-I ,-I _ _ -_ _._1_) O) I_ _ _ _._ _1

,,_,o_ _ _ _ _ ._°°°._... _

113

_3

o _

L
X .

xl++++ _ .._

oo,_

x_, ,_,_ ,,_ o

o-.._

._ c s_I

......_ _ ._,- = .- ®®_® _®® ®_'_'_.......... _._ _._._ =_== =_ _:

m

?,
o

-_ x

.,-t

,=t._=t

r,=)

,i

e

e

: l

e
e

_J

>.

o
.=.

o=

o

m

m

_. _ _ ,_.. o ,_._ _,_
o._, "_

m _ _1 0 0 ,.

•.-,._ . o "1.
_. _ _ _ ® ._ _,_ ,,, _ o _ .-;

o

H

o

.(,,t._,z,

114

°VI_
r_

o_

o_
.o

_o _

®°

e_ X _

-. _ _- _

^ ^._

.,ii ,la

I1 -i-_ .la

_ ®,,

mm

÷

x

It II

xx _ _

^ ^

2."
o

"_ x_

,_._ _

.._-_-_-

o o o

,-i ,i¢ ,-i e_

,..-I

•_ _ 0

115

0 I

0 U

,,-..1

W
It

, _
n

g -,'-4 ¢" 0

. _ _, . ._ | II
" 5 _,g
II c"

. _,_ _,_

•+-t 0 .,.-I

®® _ .'-

o.-,__!_,_,_

,,,,....j _._! _, _, ®- _

,, _fl_

._ _ _.._.

-_l_e

116

0
_ A

0

_,o_o_=• _ - l, _

'-'"-'_ _ _

_ _ _,, ,,,_=... ,, . _ ,_ _ ,_

+ _,, _'

m

.,.S° _ '_ ._
0

0 0 _'_ _

II d,.,I II II "0 I_'o,.,,':';o' -" .-_,®" _'_ ,. ,." -." _ "_'

+,
II ._ II A A I

+ II II

I=-=1

cl
°,l_l

0

._ <>

-_o "_

_Uo _

U I_ e' QI I_l

II

II 0 _ I

. . . ,g:. • .

_ <_ _ +

0

-,- _ ._ _..

o _,, ,, . _,o_ . ,.:

e_

._ 0 0

¢11,.I 0 0
i,J 0 ,i.I

". _,'_
II In ,,-i _

II 0

. }(,, I _ =_
,, _._

Y_II 3

117

I=

'-, t_

.,,_1

•-o _o

i_=_ ,'_-

_" __ + ._ II

=..,_ g_ ." _,,
xo_

,i.i C --_I_

_- _'_

, _,_ .-
i_l lz,1 m

,...i ._ Ol o

i_ II I:_ _ I- . _ _ . i"

II ."i

e_

A

I

Oi

"" _ =, ,_

Ill.i.i

•- ._ ._'_.,,

°__i"__";i""_"'"_'"
"" io._ _ " _7 ',I _

_"" _i =_

118

c

o

g _, ._

•._ la

il! RI l#l f.,_

m li_ I

;' ii ''°•" _ !!='
_ , _._._

_ m .,.i

¢) ,)° _.,,¢

_,rn

®..,_

_o
ii
II ll_ GI

ii 1.4

! °o
_ o

ii

•,-i .,-¢

A

i,

._i II
II

22

G
f_

.... c_
_++ -.o

r..)

I19

Q
olml

o

0

e,..)

.l^

i::i

II

_ o _

. _II

I)

..,-4

i! "

=_ , _ ._.
_ d _..

_" ! I _- ,-<|

,=_ ,_-.._...=
_;: _ ,,_"_'<_ '_ <_" _l

120

c

°,,,=4 •

E
ir../31

0) _ ¢0

. ,-. ";.o_=

• 0 _'=

m

m -.-4 -,-__.__ _ _.

II II --

II

._®_o_=°o _ _®_ ,_ ;_- ._ 0 0

.o

o=

m

_o

o" =

o
..Q

o_ -.

_ + i

...... • _ X

m_ _ o== =® ® >, ×,-_0 0 ,'_ ¢_ _ 0

.::.;
m

o_

o° _ o°-"

c_
ro

.%

" _dddd._ .

"°" o

,,-, _.. "; E

,"4

®_ ,. =,-; . _=o _ .-== .= =_oo _® _ . _x ;_ _"

121

0 0 -,"=

mm _

MH

'' _

.IJ._

•"_0 "0 .._

• - "0 ,U

+
¢

"o

.o

> >'.

L_

>¢
_u

Ii II

,,

3

,_ ._ _ .-

• _ ,_

|

o

=,

>

/ "0

=o " °=
o= ,_

=

_ o=

o

0'0 0 0"0

22

g _

• _

o,,_
o_ _ "_"_

,r-,,i

.O c.>

o
;> u;;_

r_

rj

c_

"0

"0_ _ _ _ 0

, _;_

-

.._o = .. _
o_'_o_,_ o° ,_;

__,_-,_ _ =_

m _ 0 0 _"_._

,r,
/

o_

..,-i

o _ _
_ o

o_ _ ..-.

®_ I m _

¢,,) _ m _ _<i .U ¢/)

.... _

.= =, = _- .

o

._ o .Q .Q .Q .Q ..Or.Q ,.Q .,Q

_ _ oo _
_ _ _°° ._

";'_ _ g="

aJ._ ii tl ii ii 11 ii ii ii ii ii

[" =

_ _ ..
m -,< .,-¢ ,..4 ,-4 u.io _

,_,o _ ":;

123

• M II II li II II tt II U II ;I

_ _ _oo

= ,".,-,:; _ g & .C;,:.;

c0

2

..Q

,i ..._1 t t

w _

i

e,

22

,--t

^

o"

I

124

o

D
o

_o

v • =

m o

o_ -

o
,i.J ii

= ?

m .- 0 _ • _

C t-_
,,,_ m ,,-_ m

-_ _ -__ _ -- -_ o_-. _ _._ _ _= -

r..)

.1 e

e
e

i,
i,

t,

e .

_ m

e

e,

.,.i

o

i

li1

n

-e

o

N

,_ . _ _

_ m -,-I
0 _=Ic 0-_ O_

I®o

0 ._ 0

i|_,=®.._

o

o

m

o

X_ X_ X X_

°" i
"-.,

. ® o

_ _ _ _,.o_ _ _ o® o_ o_ o_

-_® :, _ ,_ ,_ -..,-,., ® -_

0) o

_25

I-,i

r_

a.a

.-_Oo_

.,-q

o" i_ _,,'®

7 °'_
_l _- '_ "

|
-,'4

'% .I,a
.,-q

,,, ,, ..® _

.o _ 2,2_,_ ,

o_

oo_
+

o
o
o

°-,-t

''

o ¢"

o'_°,-' ,'-' ?_7
_o _

2 g

126

f,

o

. _ _•_ 0

lu

_J

o_

=

_t¸

o

127

m

o

C

m

m

o

ou_

_ o

,.-3

o_E-,

_I oI
Or,.

jo

E-, Q;

o_i_,

c) I

_ _o =_ o==o_.=_ ._._==_ _ ==

,._ _._ ._._ _ ._._

_ •

22

I

,'4 o I

0 E_ _ J_

4J

o=_ .=_ =
ro I _:

"" _ _1
.l.l ,-l _ rJ

"_ " ._ 4 ,,.= ?
o

.... ,.... o=_ _ ..

®_ ,,_,_,_ ._° _='

COt,.

0 I_ I

J._ ®o

o _'_ _JI _ 0_,_C_

1 ' _

O_

C13

_4
0

O_

>

G

I

n

o

=oo:_ . _=o,o

o o (J

_28

_J N

o I -,_.

>,®_ _
_ _ _._

._ _
C

= 0® oo= _ _ _
® o o_ _

"o

o _

'13

w
o3

-_o=

-,.4

m".

_ o,
_,.-q

o_ _ ._ _

.u e"

o _ °Z
_ 0

II

,_o ou

L_i o

. o=
u

A_..i I

='; _,

II

. ,_

r_

L)

.1

_J

_u

o _.

j o 8-

_o .a" "-
I

A

-- I_ Io _ +
,._ e.

A c_ A ,..Io o _
II - II

u .d " u ,J " 3
= == _ °=B

®.. .d ®= _o',J

i_,_ _ -_-__,=._N_ • _0 0 _ 0 0

_ _ 0

= o

o_

| ,-; _

o "

o • %'B

= E _ ==

h _ '_ - _, _ --,._ u

m,_,., ._ _ ,,._== ._ o=o_

• .,..I
o* o_,

129

C

o:
I

.,-i

"_ o_

:."z®

I

-,.t e.i

,-i a.l

m

v _

_1 o
1

_ ^

o=
o,_

o _ _

"_ V

x,-,W

o c)°w,W

r_

,.J

.,.4

(-,

o:
r,

8

o o

?

o

I

v o}

u I _ o
o I I

X • _I

o _ _'I II }d -r"1 _4

u

•"J _
o

..._ ® _- - ,=_,,_ _ _' _

00_,_.... _ '_ _OOoo_:

-_'1 0 0 0

,..-,u u _ +"_
+

'I0

v C

0 0 ,-

°° _ • o)

_M _ 0

u I

uI _

o uu

,..i

g _

_' _.!

J

2: .. -
_®- _

e, e.

_ ..

,-4 ÷

i:,o _ :,:,
- -,_ u _" _'

• o) I

U

130

c

I

o
_J

0 _ _"

_®

_ _J II 0

.t,=l
r_

_J

o

° I

,-1

m

v A

- _,,._

II _ o n

ii

._ 4+'_I

o_-_

¢_o oE

_. _... _

o_
"0

==

o

o

o
÷

o .._

_ o_
oz L-
P, II 0

II II

ii

i! "
-._._

.,.t

==h = '

,_;.o ..o_ _ =,,,,_,
, _ _ _o

< i, _ _'_
• >1 _ "

.=_= _=_oo_ =
_ 0 0 0 _J (J®uo o o

o= = o_ _ _ =o

o m

'_ _ _ raI
,i_ "_ ;E '=

.,,=_ -
'._ E",

,_ ,..=t

...., _ _ ,ii

-

° I

t

&- o
II

o_

I

o

o_

_0 = _'" I

o

I

i
A _
o

II

A .-i

"_ _ .._

,,.., ,.i, _o
.... _ _ ,,

__ .o" :_+ = i _-
" _._ 'l _ O0 ,1

_0

o_

]31

i
.=

I

.=,

o_
ii

E _ _" Ul

_ o o _ ii _-e

E

A

==
I

H

r,, X

o._9

o=5 _ __='

o I - - o_
-- I [_ e@ _ o

z
o_ e_/ZZ oq; •

/

Nj -- -- --

• _ o m m m m m D o e-I

...... _ ..I C _ O O O O O_ I _ _

_, • _= ,w u ,El _,u o _"

¢), • • I_, • , • _'_r.;CJE;E;CJ, • _000,
V _ Z

_,_o

132

_'_l_ I I I

V V V • • • _1

:_= :rA= :ll= =e= =l= =ll= -_.

A

==
m

o

.=

e,

AAA _

. +."

=_ ._: .:
.=, _ o=- "= ,,

,,_ ._ :. _.=

+v
I
I

I o)

I

|
5

w

.d

!

e,

B

,--I I_

=, =, ;;oo ;_

=_ ._=_

"4"1 .Sa

...... °. .-4 _q

o_ ^ _
.,-I u'_ O ,_

= _ o . . .,_ .

.._ _ _ _ o_°°-_ __o_=_ ==°° _ =_ _ =,_ =_

133

',:d-

c)

i

v i _

-_.. _._'_ •
o

^

- ._ _

-_,

÷

3 _ u

It

° .0_,

_ _ _, _ _ 00

_ | _® o -

,- .-0._ _

I_-_

Z I

_ :_ ,_. _ _ -

.| o._

._, _ o

_. ...
134

w

I

o •

II

o

"_ _

A A • _" O o _

HHHHN

O

o
0_

"0

m

m

o
e-i

z

_. _I_IZ=_=I_ I_O=-

u_

CO E =

x _
A

>10 '_

-.. _ >

;.=_®;_._ =.o

1 ® •, _ _._ _ _'_

,-,u0 ,_ ,_=oO -.._ ®

ooo,_

•.n..u_

135

,+,,ml

0

ii

X

EI

!+
o

>

e,.) -"
O_

i
o
o.

°_ :_

o

u _

m _I o "_

iI I i

I I

m m _
i

m m
i i

i I

®

+ _

® _ _=_<-.._-.-=.-=.-,'.-=..

ol ot _-i

_ _ _ _

g g g _ _ _ oo

i i

÷ v,_

III

I_I

I_I

•.'_ii
^ _I

0

I,.,

""

et o ,-,i

^ ^._0

.

.0
o

i,

4,

_ x

o_.
._

o
"o

o 8 _ 8 _

_=_o _

® _"_'_d2 :_

o I,-_,_ _

= ,.-_ ® = e o _2

_ _o.ooo_oo_
o r-_o

r_ 6_ ooo,,--i,.,-Io,-4oooo

137

A

• _

o

o_

_ o_

.-
,..4 _ _.U

°,.i _

_ -,_ _ o_ 0

8 --_o_ o®_o .oo .2.... _ o_

= u

i_I

,ia

_°
[ii, ii i

It 11

,.-i +4. II ,- i

..- -,-,,.,_ "_

! _2__1'_ _

,_,,_
II i ol

" v_ "__m
u_ I_ ra

._ ,_

_ _ o

A_A

r

;;'_ ..5

_ "

ii i¢.

i_ | -
,_ g 0_1 -'--

_ _'_ _-0

)l I

i_¢
u_
,i

"l

4-

¢_

UI

A II

A

II A

.._ _ _. ._ o

o

138

.,-t

A

II I_ f_ O) II

'\
\

o

;> "i_

A ^ ._ 0

• _ -_1

vvv===

E-,O

_ "_'

.

.

I11'_

II _ ,.-t

-_, _

÷

.c i

A..C

÷._,
11

_ °!.i ' ^ ' -_ "°°

o _ _ _ _

_.

_ o

g

,x

o _i 8

_ ,,'_ __,,

e,, [,-,

e

• _,o _ _

oS ,_ _ _ _ -o_'-'_.,_ _-,_ ,_

•.®_= _ _ _'_

_3g

o

=

r.j

o

o
i

o

o

*,-q

.2

l-, q:_ ^

* ;,,J [,_ II

. _, -r-i • OJ_

" 7_ " °°_

.,-, ,.,_ _ -,-, .,-, '_

_ _

÷

II

-,-I

2

140

REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

P_=,j_,.=_ ___ =:_=j.==_.= _n,_ _ .,p_ _o=,,.,_____j_ _, _o_. _ =._ _ _ ,,=,=_. _ .,,_ == _,_.
,au:_ m_......._J=_ um _ ,m_Rm_, m_ _Jl.mns_ _ rovleWalg oze _ma_81ol nllOf1118tlorz,_nd c_nme41ts ro0aldino IfsisbcJr_W1estimate or an_otflOfoithnsy _ "

rmjnwsy, _J;zo 1_J4, Anmgzon, v/_ z_:_u_-4_r_ ano to mo _m¢o orManagement and Budget, Paperwork Recluction Profect (0704..0188), Washington, DC 20_.

1. AGENCY USE ONLY (/.4rove blank) 2. _F.POR_ DATE 3. REPORT TYPE AND DATES COVERED

May 1995 Technical Memorandum

4. TITLE AND SIJ_ I t I _ 5. FUNDING NUMBERS

Manual for a Workstation-based Generic Flight Simulation Program 505-64-52-01
(LaRCsim) Version 1.4

s. AUTHOR(S)

E. Bruce Jackson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(F.S)

NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/ MONITORINGAGENCYNAME(S)AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM - 110164

11. SUPPLEMENTARY NOTES

12,1. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category - 08

12b. DISTRIBUTION CODE

13. ABSTRACT (Mmdmum 200 words)

LaRCsim is a set of ANSi C routines that implement a full set of equations of motion for a rigid-body aircraft in

atmospheric and low-earth orbital flight, suitable for pilot-in-the-loop simulations on a workstation-class

computer. All six rigid-body degrees of freedom are modeled. The modules provided include calculations of the
typical aircraft rigid body simulation variables, earth geodesy, gravity and atmosphere models, and support
several data recording options. Features/limitations of the current version include English units of measure, a
1962 atmosphere model in cubic spline function lookup form, ranging from sea level to 75,000 feet, rotating
oblate spheroidal earth model, with aircraft C.G. coordinates in both geocentric and geodetic axes. Angular
integrations are clone using quatemion angular state variables. Vehicle X-Z symmetry is assumed.

14. SUBJECT TERMS

flight simulation, UNIX, real-time, equations of motion, source code, oblate
spheroid, and flight dynamics

17. SECURITY CLASSlRCATION
OF REPORT

unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

15. NUMBER OF PAGES

141

16. PRICE CODE

A07

20. lIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

