Storage QoS Guarantee

Tzi-cker Chiueh

Experimental Computer Systems Laboratory Computer Science Department Stony Brook University

HECURA Project Review (Year 1)

The Team

- PI: Tzi-cker Chiueh
- Ph.D. students: Maohua Lu and Shibiao Lin
- Collaborator: Dharmesh Satish (Symantec Research Labs)
- Project page:

http://www.ecsl.cs.sunysb.edu/stonehenge/index.html

QoS Scheduling Theory

- Given a workload specification (e.g. input rate and maximum input burst size) and a performance requirement (e.g. delay, bandwidth, jitter), a given real-time request scheduling algorithm (i.e. weighted fair queuing or WFQ) fully determines
 - Correlation between bandwidth reservation and worstcase service delay
 - Criterion on when to admit a new reservation (admission control)

Applying This Theory to Storage

- 1. How to integrate traditional efficiency-driven disk scheduler with QoS-driven disk scheduler
- 2. How to accurately and fairly account for non-data-transfer disk service overhead in real-time request scheduling algorithm
- 3. How to maximize disk resource utilization while guaranteeing each virtual disk's QoS requirement
 - How to exploit statistical multiplexing to increase the number of virtual disks admitted without violating bandwidth and delay guarantee
 - How to accommodate the fact that input workloads cannot be fully characterized a priori

Disk Resource Scheduler

High Disk Bandwidth Utilization

- ♦ Candidates: SATF, CSCAN, etc.
- QoS/SLA Guarantee: more than just prioritization
 - Satisfy requests' deadlines or delay bounds: mainly focus on queuing delay
 - Fair bandwidth allocation among VDs
 - Candidates: Delay-EDD, Weighted Fair Queuing (WFQ), Virtual Clock (VC), etc.
- Our choice: Integration of VC (based on physical time rather than virtual time) and CSCAN

CSCAN-based Virtual Clock (CVC) Scheduler

Two queues

- QoS: ordered by latest start time (LST)
 FT(i) = max(FT(i-1), arrival_time) +
 normalized_service_time
 LST(i) = FT(I) physical_service_time
- Utilization: ordered by disk request's target position
- Request from utilization queue is dispatched only if:

Current_time + service_time(R_u) < Latest_start_time(R_q)

CVC's Utilization Efficiency

7

Normalized Service Time

Finish_Time(i) = max(Finish_Time(i-1), arrival_time) + normalized_service_time

normalized_service_time = request_size / reserved_bandwidth

reserved_bandwidth = reserved_transfer_bandwidth/ $(1 + \alpha)$

 $\alpha = \text{percentage of non-transfer-delay overhead}$

Virtual Disk Switching Overhead (VDSO)

- Multiplexing multiple VDs on the same physical disk(s) incurs additional overhead, which, like tax, should be distributed fairly among the sharing VDs
- Without fair attribution of VDSO, VDs with better locality suffer more when multiplexed with other VDs

HECURA Project Review (Year 1)

Ideal Fair Attribution of VDSO

 Goal: Throughput ratio between virtual disks multiplexed on the same physical disk should be the same as if they are serviced by separate physical disks

Distribution of VDSO

 Distributing VDSO proportional to total IOH of each individual virtual disks

- \diamond AVDSO_i = VDSO * IOH_i / Σ (IOH_i)
- $\diamond \alpha_i = IOH_i + AVDSO_i$

Correctness:

 $(IOH_{i}+AVDSO_{i}) / (IOH_{j}+AVDSO_{j}) = IOH_{i}/IOH_{j}$

Evaluation of Fair Attribution of VDSO

Delay Measurement-Based Admission Control

- Big deal: How to exploit statistical multiplexing while supporting (probabilistic) delay guarantees?
- Key idea: Ratio of measured delay and delay bound
- Deterministic delay guarantee vs. statistical delay guarantee with probability 1

Service Delay Measurement: P_{service}

 With a probability E_i, the actual delay bound of the i-th VD is
 P⁻¹_{service}(E_i) of its original delay bound

Key Idea

- Fact: Given a bandwidth reservation B, empirically 90% of the requests experience a delay that is less than 25% of worst_case_delay(B)
- Deduction: To guarantee that at least 90% of requests experience a delay less than worst_case_delay(B), the bandwidth reservation required is the one whose corresponding worst_case_delay is 4 (=1/0.25) times of worst_case_delay(B)

MBAC Performance – Latency Bound

Run	VD Type	Probability	Deterministic	MBAC	Oracle
1	Financial	95%	7	20	22
2	Mixed	95%	7	14	14
3	Mixed	85%	7	17	17

Resource Reservation

HECURA Project Review (Year 1)

Next Steps

- Virtual clock algorithm is long-term fair, but its short-term unfairness can be unbounded → Need a disk scheduling algorithm that can trade off short-term fairness, long-term fairness and disk resource utilization efficiency
- Distributed disk resource scheduling across a fault-tolerant and load-balancing storage server cluster
- Integrate multi-dimensional storage virtualization technology with CPU/memory virtualization technology to build a complete virtual machine resource management system

Questions?

Thank You!

chiueh@cs.sunysb.edu

8/8/2007

HECURA Project Review (Year 1)

Publications

- Gang Peng, "Availability, Fairness, and Performance Optimization in Storage Virtualization Systems", Ph.D. Dissertation, Computer Science Department, Stony Brook University, October 2006.
- Ningning Zhu, Tzi-cker Chiueh, "Portable and Efficient Continuous Data Protection for Network File Servers," in the 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, July 2007.
- Shibiao Lin, Maohua Lu, Tzi-cker Chiueh, ``Transparent Reliable Multicast for Ethernet-Based Storage Area Networks,'' in the 6th IEEE International Symposium on Network Computing and Applications, July 2007.
- Maohua Lu, Shibiao Lin, Tzi-cker Chiueh, ``Efficient Logging for Comprehensive Data Protection,'' in the 2007 IEEE Mass Storage and Systems Technology Symposium, September 2007.

Extraction of VDSO

- Inherent Overhead (IOH) of a VD tracks the VD's workload locality
- Only disk head movement counts
 - Need to detect disk cache miss
- Req N is Request X in VD_i, Req N+1 is Request Y in VD_i
- $VD_i \neq VD_j$
 - ◆ Req Y close to Req Y-1 overhead attributed to VDSO
 - Otherwise overhead attributed to VDSO and VD_i

• $VD_i = VD_j$

◆ Attributed to IOH of VD_j

Spare Bandwidth Distribution: P_{spare}

Measurement-based Admission Control (MBAC)

- The jth VD: (B_j, C_j, D_j, E_j)
 Calculate B_{i,latency} for 0 < i <= j D_i <= P⁻¹_{service}(E_i) * [(N+1) / IOPS_i + 1/IOPS_{full}]
 Check if ∑ MAX(B_i, B_{i, latency}) <= IOPS_{full}
 If the above inequality holds, accept the j_{th} VD;
- If the above inequality holds, accept the J_{th} VD; otherwise, reject it

Exploiting Statistical Multiplexing

Delay bound of virtual clock scheduling
 DB_i = (N+1)/IOPS_i + 1/IOPS_{full}
 DB_i : i-th VD's delay bound N: burst length
 IOPS_i: i-th VD's bandwidth reservation
 IOPS_{full}: Measured physical disk array's raw bandwidth in I/Os/sec

Observation: Worst-case delay rarely happens, so bandwidth reservation to achieve a certain delay bound can be reduced
 Why?

- ♦ Not all resources are reserved
- ♦ Not all resources reserved are used

Evaluation of Fair Attribution of VDSO

Dealing with Unknown Workload Features

- Request size (N) and read/write ratio (*fw*) affect resource reservation but are unknown at admission control time
- To use measurement to correct resource overprovisioning
 - ♦ Worst-case reservation first
 - Use MBAC to adjust reservation later on based on actual usage measurements at run time