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Abstract

Lignification limits grass cell-wall digestion by herbivores. Lignification is spatially and temporally regulated, and
characteristics differ between cell walls, plant tissues, and plant parts. Grass lignins are anchored within walls by
and diferulate cross-links,p-coumarate cyclodimers, and possibly benzyl ester and ether cross-links. Cell-wall degrada
regulated by lignin concentration, cross-linking, and hydrophobicity but not directly by mostvariations in lignin composition o
structure. Genetic manipulation of lignification can improve grass cell-wall degradability, but the degree of success will dep
on genetic background, plant modification techniques employed, and analytical methods used to characterize cell waTo cite
this article: J.H. Grabber et al., C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Bases génétiques et moléculaires de la biosynthèse et de la biodégradabilité des parois de graminées. I. Interactions
au sein de la matrice lignines × composés pariétaux. Les lignines sont des polymères phénoliques complexes, avec une
régulation spatio-temporelle, qui limitent la dégradation des parois végétales par les herbivores. Les lignines de gram
de plus la spécificité de posséder des acides hydroxycinnamiques (acidep-coumarique, acide férulique et ses dimères)
en ester ou en éther aux polymères pariétaux. La variabilité de dégradabilité des parois est liée à la variabilité de
en lignines, au caractère plus ou moins linéaire ou réticulé du réseau lignine et à l’importance de la réticulation pa
férulique (ou de ses dimères). Le succès d’une modification parvoie génétique de la lignification sera lié au fond génétiqu
à la stratégie de sélection utilisée, mais aussi aux méthodes analytiques employées pourcaractériser les polymères pariétaux
Pour citer cet article : J.H. Grabber et al., C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

✩ This article as well as the following one is part of a group of three articles, the second one of which will be published in a forth
thematic issue, onLignified Cell Wallsdedicated to Dr Bernard Monties.
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1. Introduction

Grass (Poaceae)-dominated ecosystems compri
about one third of the Earth’s vegetative cover[1].
Grasslands and savannas, covering about 20%
earth’s landscape, are a major source of nutrients
wild and domesticated herbivores. Graminaceous
reals (maize, rice, wheat, oats, rye, etc.) dominate cu
tivated cropland, supplying most of the dietary ene
needs of people and many classes of livestock. C
siderable genetic variation for cell-wall digestibility
grasses has been established both between and w
species. In maize for example,in-vivo cell-wall di-
gestibility of early maturing hybrids varied from 35
60%[2]. Lignins are likely the only component in ce
walls resistant to bacterial and fungal degradation
the gut and their association with other matrix com
nents greatly influences cell-wall properties, includ
the enzymatic degradability of structural polysacc
rides [3,4]. In recent years, research by Dr. Berna
Monties and others have greatly increased our
derstanding of lignin formation in plants and mec
anisms by which lignification limits the digestion
cell walls.

Most studies related to the genetics, genom
and biochemistry of lignin have been conducted w
woody dicot or gymnosperm species, whereas m
forage plants are grasses (except protein-rich for
plants such as alfalfa, clovers, or amaranths). This
cus is due to the major interest in reducing the c
and environmental impact of removing lignin fro
woody plants during pulping for paper productio
Biochemical traits involved in lignin biosynthesis a
cell-wall degradability have, however, been inves
gated in many forage grasses. Among grasses, m
has probably received the most attention in gen
and genomic studies related to cell-wall lignificati
and degradability[2]. The objective of this paper i
to review lignin chemistry and lignin-matrix intera
tions in cell walls and their influence on forage gra
digestibility.
2. Lignins in grass cell walls

The first step of lignin biosynthesis in grass
is the deamination of l-phenylalanine or tyrosine
ammonia lyases, yielding cinnamic orp-coumaric
acids, respectively. Successive steps of hydrox
tion, methylation, formation of hydroxycinnamoy
CoA thioesters, reduction of hydroxycinnamoyl-Co
thioesters to hydroxycinnamaldehydes, and red
tion of hydroxycinnamaldehydes leads to threep-hy-
droxycinnamyl alcohols (monolignols),p-coumaryl,
coniferyl, and sinapyl alcohols which are transpor
from the cytosol to the apoplast. A number of p
posals regarding the preferred pathway of monolig
biosynthesis have been recently reviewed[5]. Once
in the apoplast, monolignols undergo dehydroge
tive polymerization via oxidases to form lignins com
prised of two major unit types – guaiacyl (G), deriv
from coniferyl alcohol, and syringyl (S), derived fro
sinapyl alcohol.p-Hydroxyphenyl units (H), derived
from p-coumaryl alcohol, occur as a minor comp
nent of lignin.

Although composed of only three building block
the composition and structure of lignins varies co
siderably within and among plants[6,7]. Various
metabolic intermediates are also components of lig
particularly in plants with perturbed monolignol bi
synthesis, and these are described in parts 2 and
this review[8,9]. Lignin units are interconnected pr
marily through labileβ-O-4 andα-O-4 ether bonds
and smaller amounts of so-called “condensed” C
(β–5, β–β , and 5–5) and biphenyl ether (4-O-5, and
5-O-4) bonds that are resistant to chemical deg
dation. Analysis of degradation products followi
cleavage of ether linkages by thioacidolysis indica
the respective proportions of H, G, and S units
lignins are 4, 35, and 61% for mature maize sta
5, 49, 46% for wheat straw, and 15, 45, 40% for r
straw [10]. In contrast to grasses, the lignins of d
cot stems contain 14 to 66% G units, with the b
ance consisting of S units and only trace amount
H units. In gymnosperms, G units comprise at le
95% the lignin with the balance consisting of H a
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trace amounts of S units. Exceptions are unusual g
nosperms such asEphedraandGnetumwhere S units
make up 31 and 51%, respectively, of the lignin un
In more primitive plants such as Pteridophyta, H,
and S units are observed in diverse proportions
pending on the species[10]. The S/G ratio in forage
lignins increases as the plant ages[11–13]. In a re-
cent study[13], lignin content increased moderate
during stem elongation of tall fescue, but a major
crease occurred when plants changed from the e
gation stage to the reproductive stage. Lignin con
in the cell wall at anthesis was ten-fold higher than
the beginning of the elongation stage. Simultaneou
S lignin content and S/G ratio increased with progr
sive maturity of stems. There was also a major dec
in ruminal degradability of stem tissues, highly relat
to the increase in lignin content.

According to the comprehensive studies of Teras
ma and co-workers[14], the incorporation of H, G
and S units in grass lignins is spatially and tem
rally regulated and it varies between primary and s
ondary cell walls and among tissues. The incor
ration of H and G units takes place at the onse
lignification in cell corners and the middle lamellae
Syringyl lignins have however, been detected in i
mature maize coleoptiles, suggesting that their
position begins at the early stages of lignificati
[15]. Subsequently, the deposition of G with incre
ing proportions of S units occurs during lignificatio
of primary walls of parenchymatous tissues and
mary and secondary walls of xylary tissues and s
renchyma fibers. Normally lignification proceeds fro
primary to secondary cell walls in forage grasses
legumes[14,16,17]but the reverse was observed f
sclerenchyma in alfalfa[18]. Xylary tissues and scle
renchyma are lignified before parenchyma and t
have a higher S/G ratio and lignin content at matu
[19–21]. Compared to parenchyma and other tiss
with more limited lignification, the cross-section
proportion and cell-wall thickness of xylary and sc
renchyma tissues in leaves and stems also incre
during plant maturation[13,22,23]. Therefore, the in-
crease in S/G ratio during plant maturation and lig
fication is due to the pattern of monolignol depositi
into cell walls and the accumulation highly lignified
xylary and sclerenchyma cells which are highly e
riched in S lignins. These changes in lignin compo
tion are accompanied by changes in lignin structu
s

Guaiacyl-rich lignins in middle lamella/primary wa
are thought to be highly branched due to rapid po
merization and coupling by mainly condensed bon
In contrast, syringyl-rich lignins may be deposit
more gradually in secondary walls and would be m
linear due to extensive coupling byβ-O-4 bonds[24–
26]. Polymerization of monolignols in a cell-wall ma
trix enhances the formation of lignin and coupling
β-O-4 bonds[27–29]. Although lignin deposition in
individual leaves or internodes takes place over a
riod of weeks[30,31], in individual cells this proces
is completed in a two to four day period in leaves[32,
33], and a probably a longer period in internodes[34]
but this has not been adequately characterized.

3. Hydroxycinnamates in grass cell walls

In grasses, as in other Commelinoid monocoty
dons, hydroxycinnamic acids, namelyp-coumaric and
ferulic acid (along with its array of dehydrodimers
are ester and/or ether-linked to cell-wall polyme
Ester-linked caffeic acid is a minor component
some forage grasses[35]. Sinapic acid esters hav
recently been implicated incell-wall cross-linking
as sinapic acid, sinapate dehydrodimers, and e
sinapate-ferulate cross-products were released by
nification from cereal grains, notably wild rice, rice
wheat and spelt[36]. Depending on the tissue and
stage of development, cell walls in C4 grasses ten
have higher levels of hydroxycinnamic acids than
grasses; maize and sorghum cell walls can contai
to 4% ferulates (monomers plus dimers) and up to
p-coumarate[21,37].

According to Chase et al.[38], cell-wall-bound fer-
ulic acid is restricted to the terminal groups of Co
melinoids, including Poaceae(grasses). In grasses, fe
uloylated arabinoxylans are formed intracellularly a
then exported to the maturing wall[39]. Peroxidase
mediated dimerization of ferulate into diferulates prob
ably occurs mainly in cell walls[40,41], although
some dimerization may occur within Golgi vesicl
prior to xylan deposition into the apoplastic space[42,
43]. Over 50% of wall ferulates can undergo deh
drodimerization, forming a large array of 8-coupl
diferulates and small amounts 5–5-coupled dife
late [40,41,44]. Diferulate cross-linking is commonl
thought to play a role in stiffening cell walls and d
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celerating growth[33,45,46]. Ferulate monomers an
dimers may also have an important role as initiat
sites for lignin formation and for anchoring lignin
grass cell walls[47–49]. During lignification, ferulate
and 5–5-coupled diferulate copolymerize more rapi
with monolignols than 8–5-, 8-O-4-, and 8–8-coupled
diferulates but the final extent of incorporation of
isomers can exceeded 90%[41]. Ferulate monomer
are linked to lignins by various types of ether[47,50,
51] and C-C bonds[48,49,52]. Hydrolysis ofβ-O-4
andα-O-4 ether linkages releases about 35% of
ferulate monomers and 25 to 65% of the various di
ulate isomers incorporated into lignin[41] but iso-
mers linked to lignin by C-C, styryl ether and biphen
ether bonds cannot be released by current solvo
methods. Some of the C-C linked ferulates, for exa
ple the 8-β-cross-linked structures, can be observ
by NMR in synthetic lignins[52,53] and in isolated
grass lignins[48]. Recently, ferulate trimers (dehydr
triferulates) have also been identified following th
alkaline release from bran cell walls. The first trim
isolated independently by two groups[54,55]was a 5–
5/8-O-4-trimer. Other trimers are currently being is
lated and identified. It is not yet known whether d
hydrotriferulates represent cross-coupling of three
dependent arabinoxylan chains or just two; the la
is suspected, but verification awaits an insightful
proach. The type of ether linkage formed between
ulates and lignins remains a point of controversy; m
studies indicate that ferulate ethers derive from oxi
tive coupling to theβ-position of lignin units[47,49,
52] while others support preferential ether bonding
ferulic units at the benzylic position (α-ether linkage)
of lignin units [56]. The latter case, concluding th
ferulates are essentially all benzylicα-ethers is unfor-
tunately flawed by the use of reaction conditions t
also cleaveβ-ethers (F. Lu and J. Ralph, unpublishe
As a result of these coupling reactions, arabinoxyl
become extensively cross-linked by ferulate dimeri
tion and by incorporation of ferulate monomers a
dimers into lignin. The concentration of alkali-labi
ferulates initially increases during primary wall fo
mation and then peaks and declines during secon
wall formation and lignification[12,57]. This reduc-
tion in measurableferulate during later stages of ce
wall formation has been used to support the c
tention that ferulate deposition is limited to prima
cell walls [58]. However, recent studies have sho
that at least 50–70% of alkali-labile ferulate deposition
occurs during secondary wall formation and lignific
tion [31,33]. These analyses, however, again unde
timate ferulate and diferulate deposition in second
walls because radical coupling of ferulate and dife
lates to lignin prevents the recovery of most of the
acids by the solvolytic methods used to degrade lig
[41]. Immunocytochemical studies with maize ste
also indicate that ferulatesare deposited in lignified
walls of secondarily thickened xylem, sclerenchym
phloem fibers, and parenchyma tissues[59]. In ma-
ture sorghum, ester and ether-linked ferulate conc
trations were greater in sclerenchyma and vascula
sues than in pith parenchyma and epidermal cells[21].
Grass lignins may also be bound directly to other w
polymers by benzyl ether or ester bonds resulting fr
opportunistic nucleophilic addition reactions betwe
quinone methide intermediates of lignin and hydro
or acid groups on non-cellulosic polysaccharides
proteins[60–62]. While it is well established that ce
lulose and hemicellulose components are tightly
sociated through hydrogen bonds, the occurrenc
covalent bonds between cellulose and other cell-w
constituents has, thus far, not been demonstrated.

p-Coumarate is mainly esterified to theγ -position
of phenylpropanoidsidechains of S units in lignin[63–
65]. Although very small quantities ofp-coumarate
are esterified to arabinoxylans in immature tissu
most p-coumarate accretion occurs in tandem w
lignification [12,66], makingp-coumarate accumula
tion a convenient indicator of lignin deposition. Stru
tural studies suggest that syringyl units are enzym
cally pre-acylated withp-coumaric acid prior to thei
incorporation into lignin, so sinapylp-coumarate is
the logical precursor incorporated into lignin[65];
analogous preacylation of sinapyl alcohol by acetat
has been recently established in kenaf[67]. The role
of p-coumarate units is not understood. In vitro stu
ies indicate thatp-coumarate esters enhance the o
dation of sinapyl alcohol[68–71]. In contrast, the arti
ficial polymerization of syringyl-rich lignins into pri
mary maize walls was at times depressed by sina
p-coumarate, due to accelerated inactivation of p
oxidase and disruption of ferulate-lignin cross-linki
(J.H. Grabber, unpublished). As noted above, ferul
probably act as nucleation sites for lignin formati
and their extensive copolymerization with monol
nols helps to anchor lignins into cell walls during t
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early stages of lignification. Once most ferulates
come incorporated into lignin, sinapylp-coumarates
may aid the formation of syringyl-rich lignins du
ing the latter stages of lignification. Despite th
phenolic naturep-coumarate esters on lignin uni
form few, if any, cross-linked structures mediated
radical coupling reactions of thep-coumarate moi-
ety [63]. This appears to be because cross-coup
reactions are inefficient, and because radical tra
fer to monolignols and free phenolic lignin units
rapid. For example, in reactions ofp-coumarate es
ters and sinapyl alcohol, thep-coumarate remains un
reacted until all of the sinapyl alcohol is depleted[71].
Becausep-coumarates remain as free-phenolic p
dant groups on lignins, room-temperature alkaline
drolysis provides a good estimate of the total qu
tity of p-coumarate in cell walls.p-Coumarate can
however, undergo a photocatalyzed cyclodimeriza
during tissue development to form ester-linked
clobutane derivatives, the truxillic and truxinic aci
[72–74]. Since virtually allp-coumarates are ester
fied to lignin, their cyclodimerization probably resu
in cross-linking of lignin polymers. Cyclodimers b
tween p-coumarate and ferulate are also formed
grasses and these may cross-link lignins to xyla
Cyclodimers involving two ferulate moieties are co
paratively rare. In mature sorghum,p-coumarate con
centrations varied considerably between tissues,
extremely low levels in epidermis, moderate levels
sclerenchyma and high concentrations in vascular
sues and particularly pith parenchyma[21].

For nearly a century, it has been known tha
substantial fraction of grass lignins (25 to 50%) can
solubilized by alkali at room temperature[75]. This is
the reason why alkali treatment of small grain cer
straws improves their organic matter digestibility
more than 25%[76]. The alkaline solubility of gras
lignins, which is not observed with herbaceous di
and wood lignins, may be accounted for by tw
structural properties of these polymers. The first is
occurrence of the aforementioned ferulate cross-li
between cell-wall polymers. The alkaline hydroly
of ferulate esters would decrease the cross-link
between arabinoxylans and lignin thereby enhanc
the enzymatic degradation of polysaccharides.
second and more likely reason is the higher freque
of free phenolic groups in grass lignins, as compa
to lignins in other types of plants. When ionize
these abundant phenolic groups would be ma
responsible for the solubilization of grass lignins
alkali. Such a hypothesis is supported by the fact
methylation of phenolic groups with diazometha
reduces the alkaline solubility of grass lignins to t
low level observed for other types of plants[77].
This loss in alkaline solubility occurs even though
methylation has no effect on the alkaline hydroly
of ferulate esters. Durot et al.[78] also established
that the release of monomers by thioacidolysis w
increased up to 137% after a NaOH treatment of wh
straw. This response to NaOH treatment might in p
be due to the removal ofp-coumarate esters from
lignin, which reduce S units yields by thioacidolys
[64].

4. Genetic variation for lignin traits and cell-wall
digestibility

Variation in lignin characteristics and digestib
ity was first observed in maize brown-midrib mutan
in the 1960s and 1970s[79–82]. Since then, brown
midrib mutants of maize and other C4 grasses h
been the subject of numerous studies and these ar
scribed in part 2 of this review[8]. Normal maize lines
and hybrids also display substantial genetic varia
ity for lignin and degradability traits, at times rivalin
that observed with brown midrib mutants[83–90]. In
these and other studies with grasses[91], degradability
was negatively associated to lignin concentration,
this is not always the case[92]. Relationships betwee
lignin content and degradability are greatly influenc
by the hydrophobicity of lignin, its cross-linking t
other wall components, thepolymerization conditions
in the apoplast, and probably other chemical or str
tural factors[62,93,94]. Methods used estimate lign
concentrations and cell-wall degradability also infl
ence the relationship between these traits[2,95,96].
The anatomical configuration and cell-wall chemis
of various tissues is also a major determinant of c
wall degradability in grasses[22,97–101]. Therefore,
genetic engineering or plant breeding efforts aime
reducing lignin content or other lignin traits can im
prove grass cell-wall degradability, but the degree
success may vary depending on genetic backgro
and the plant modification and analytical methods e
ployed[2]. In some cases, the degradability of ma
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or other grasses was associated with the ratio of
units in lignin [11,87,102,103]. This has led some t
suggest that cell-wall degradability is related to the
ative ease with which lignin undergoes depolymeri
tion during acid or alkaline hydrolysis ofβ-ether link-
ages. Although lignin depolymerization during pul
ing is positively related to the S/G ratio of lignin[104]
the mechanisms controlling cell-wall digestibility a
completely different, so the analogy is weak at be
According to another model[58], degradability of
cell walls is influenced by the composition and thre
dimensional structure of lignin, such that conden
coupling of H and G units into branched polyme
limits enzymatic hydrolysis of structural polysacch
rides to a greater degree thanβ-O-4 coupling of S
units into linear polymers. Model studies with arti
cially lignified maize walls[62,105], however, sug-
gest that varying ratios of H, G, and S units a
branching of lignin (as indicated by the frequency
β-O-4 coupling) does not influence cell-wall degra
ability. Although variations in the H, G, or S unit com
position of lignin or the frequency ofβ-O-4 coupling
may not directly influence cell-wall degradability p
se, they may at times be associated with lignin cha
teristics (e.g., lignin concentration and cross-linkin
that do control cell-wall degradability. For examp
reduced deposition of S lignins, through plant selec
tion or direct gene manipulation, will enhance degr
ability if lignin concentration or distribution is reduce
in cell walls. At times, however, plants will compe
sate for reduced S deposition by increasing G dep
tion, leading to no change in overall lignin content
cell-wall degradability[106]. This highlights the po-
tential shortcoming of selecting or manipulating a tr
that does not mechanistically control some aspec
cell-wall degradability.

Substantial variation forp-hydroxycinnamates (co
tent and bonding modes) has been observed betw
normal maize genotypes hybrids or lines[86–88,107].
In these and other studies with grasses[92,108], the
concentration ofβ-O-4 and α-O-4 etherified feru-
late was negatively correlated with cell-wall digestib
ity. The importance of ferulate and diferulate cro
linking in limiting the rate and, to a lesser degree,
tent of cell wall degradation has been confirmed
model studies with non-lignified and artificially lig
nified walls of maize[94,109]. Progress in develop
ing plants with lower levels of cross-linking is cu
rently hindered by limitations in measuring all fer
late and diferulate cross-links by chemical or spec
scopic methods. Due to the limitations and compl
ity of current methods, typically only etherified fer
lates are quantified by solvolytic analyses. Such an
ses may account for as littleas 15% of total cross
linking because C-C, 8-O-4 styryl ether, and bipheny
ether coupling of ferulate and diferulates to lignin a
not determined[41]. The use of etherified ferulate t
represent total cross-linking is even more tenuous
cause the proportions ofβ-ether coupled ferulate an
diferulates are influenced by the pH and rate of lig
polymerization and possibly by the monolignol co
position of lignin (J.H. Grabber, unpublished). Con
quently, it is not known how well etherified ferulate r
flects total ferulate and diferulate cross-linking in cel
walls, particularly in cases where plant selection
gene manipulation alter the dynamics of lignin form
tion or its compositional makeup. Despite these lim
tations, direct plant selection for low levels of ferula
ether-linked to lignin has improved bromegrass c
wall fermentation by rumen microorganisms[108].
Plant selection for this important trait would, how
ever, be greatly enhanced if total ferulate and dife
late cross-linking in cell walls could be accurately a
rapidly measured by solvolytic or spectroscopic me
ods.

The concentration ofp-coumarate and the ratio o
p-coumarate to ferulate released by saponification
often negatively associated with cell-wall digestib
ity [99,107,110,111]. Since mostp-coumarate ester
on lignin are not covalently attached to other cell-w
polymers, they should not directly influence cell-w
degradability[58]. However, cell-wall model stud
ies indicate thatp-coumarate interferes with ferulat
lignin cross-linking and in some cases reduces
proportion of artificial lignins bound to maize ce
walls (J.H. Grabber, unpublished results). Ongo
work will determine whetherp-coumarate directly
(e.g., through cyclodimerization) or indirectly (e.g
through reductions in ferulate–lignin cross-linking) i
fluences the degradability of cell walls. The ratio ofp-
coumarate to ferulate released by saponification m
also have some utility as a selection criterion, withp-
coumarate being a indicator of total lignin depositi
and ferulate being an indicator of lignin distributio
among plant tissues. As noted above, the esteri
tion of p-coumarate to syringyl units in grasses ma
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it a good index of overall lignification. Ferulate ma
be a good indicator of lignin distribution because it
deposited throughout primary and secondary wall
mation in grass tissues and its release by saponi
tion declines dramatically as cell walls undergo lig
fication. Therefore, at a given lignin concentration, a
low p-coumarate to ferulate ratio might indicate th
lignin deposition is restricted to a relatively low pr
portion of tissues, whereas a high ratio would sugg
that lignin is more evenly distributed among tissu
This ratio may also indicate differences in the prop
tions of non-lignified and lignified tissues in grass
Variations in the proportions, lignin distribution, an
degradability of tissue types in grasses have been
served[22,97]but their relationship to the ratio ofp-
coumarate to ferulate needs to be more thoroughly
amined before this compositional trait is used as a
lection criterion in plant breeding programs.

Recent studies with a cell-wall model system
dicate that benzyl ether and ester cross-links, form
by the nucleophilic addition of neutral and acid
polysaccharides to ligninquinone-methide interme
diates, restricts the degradability of cell walls[62]
(J.H. Grabber, unpublished results). Genetic varia
for benzyl ester and ether cross-linking in grasses ha
not been investigated, largely because the abund
of these cross-links is not known and there is curre
no method for directly measuring them on a rout
basis.

5. Conclusion

Understanding of the molecular basis of cell-w
digestibility provides a foundation for improving gra
cell-wall digestibility through manipulating the ligni
pathway or other aspects of cell-wall biosynthe
Grasses exhibit significant genetic variation in
degradability, composition and structure of cell wa
and in the anatomical configuration and degrada
ity of their tissues. But relationships between cell-w
chemistry, anatomy and cell-wall degradability are
fully established. Lignin content is often a primary d
terminant of wall digestibility, but breeding for a lo
lignin content can impair plant vigor. Cross-linkin
of lignin to structural polysaccharides, particularly vi
ferulates and diferulates, and lignin hydrophobic
are also major determinants of cell-wall degrada
ity. A great obstacle for plant improvement progra
is that many chemical and anatomical factors in
ence cell-wall digestion. So variations in one fac
(e.g., cross-linking) may work with or against va
ations in other factors (e.g., lignin content) that d
termine digestibility. Perturbing one factor, by pla
selection or transgenic methods may lead to comp
satory changes in other factors that control digesti
ity. Plants may, for example, respond to lower lig
fication by increasing the amount of cell wall cros
linking [112], perhaps yielding no net change in d
gestibility. Our challenge is to accurately descr
what factors control digestion and to develop an ar
of effective tools for genetic modification and sele
tion of plants with improved digestibility.
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