
z/OS

Distributed File Service

zSeries File System

Administration

SC24-5989-07

���

z/OS

Distributed File Service

zSeries File System

Administration

SC24-5989-07

���

Note

Before using this information and the product it supports, be sure to read the general information in “Notices” on page 299.

Eighth Edition (September 2007)

This is a major revision of SC24-5989-06.

This edition applies to Version 1 Release 9 of z/OS (5694-A01) and to all subsequent releases and modifications

until otherwise indicated in new editions.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 MHVRCFS, Mail Station P181

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

About this document . ix

How this document is organized . ix

Conventions used in this document . ix

Where to find more information . x

Softcopy publications . x

Internet sources . x

Information updates on the web . x

Using LookAt to look up message explanations . x

Using IBM Health Checker for z/OS . xi

Summary of Changes . xiii

Part 1. zFS administration guide . 1

Chapter 1. zSeries File System (zFS) overview . 3

Features . 3

Terminology . 4

Chapter 2. Post installation processing . 5

zFS installation and configuration steps . 5

Chapter 3. Managing zFS processes . 9

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates . . . 11

Creating a compatibility mode aggregate . 11

Growing a compatibility mode aggregate . 13

Dynamically growing a compatibility mode aggregate 13

Creating a multi-volume compatibility mode aggregate 14

Adding a volume to a compatibility mode aggregate . 14

Renaming or deleting a compatibility mode aggregate 15

Cloning a file system . 16

zFS disk space allocation . 16

Sharing zFS data in a non-shared file system sysplex 18

Minimum and maximum file system sizes . 19

Chapter 5. Sysplex considerations . 21

Multi-file system aggregates and shared file systems 22

Chapter 6. Backing up zFS . 23

Chapter 7. Migrating data from HFS to zFS . 25

Using the z/OS HFS to zFS migration tool . 25

Using the z/OS UNIX pax command . 25

Using an intermediate archive file . 25

Without using an intermediate archive file . 26

Chapter 8. Multi-file system aggregates . 27

Creating a multi-file system aggregate . 27

Growing a multi-file system aggregate . 31

Dynamically growing a multi-file system aggregate . 31

When an aggregate or file system becomes full . 31

© Copyright IBM Corp. 2001, 2007 iii

||
||

||

Comparing compatibility mode aggregates and multi-file system aggregates 32

Sharing zFS data between systems . 32

Chapter 9. Performance and debugging . 35

Performance tuning . 35

Total cache size . 35

Metadata cache . 35

Transaction cache . 36

Vnode cache . 36

User file cache . 36

NOREADAHEAD option . 37

Log files . 37

Log file cache . 37

Fixed storage . 37

I/O balancing . 38

Monitoring zFS performance . 38

Sample zFS query reports . 39

Debugging aids for zFS . 48

Trace options for zFS . 48

Overview of dumping for zFS . 49

Understanding zFS messages . 50

Determining service levels . 51

Understanding zFS hang detection . 51

Diagnosing disabled aggregates . 54

Disabled compatibility mode aggregate . 55

Disabled multi-file system aggregate . 56

Part 2. zFS administration reference . 57

Chapter 10. z/OS system commands . 59

modify zfs process . 60

setomvs reset . 63

Chapter 11. zFS commands . 65

ioeagfmt . 66

ioeagslv . 69

MOUNT . 72

zfsadm . 75

zfsadm aggrinfo . 79

zfsadm apropos . 81

zfsadm attach . 82

zfsadm clone . 85

zfsadm clonesys . 87

zfsadm config . 89

zfsadm configquery . 91

zfsadm create . 94

zfsadm define . 97

zfsadm delete . 99

zfsadm detach . 101

zfsadm format . 103

zfsadm grow . 105

zfsadm help . 107

zfsadm lsaggr . 108

zfsadm lsfs . 109

zfsadm lsquota . 112

zfsadm lssys . 114

iv z/OS V1R9.0 Distributed File Service zFS Administration

||
||
||
||
||
||

zfsadm query . 115

zfsadm quiesce . 117

zfsadm rename . 119

zfsadm setquota . 121

zfsadm unquiesce . 123

Chapter 12. zFS data sets . 125

IOEFSPRM . 126

Chapter 13. zFS application programming interfaces 135

pfsctl (BPX1PCT) . 136

Attach Aggregate . 139

Clone File System . 143

Create File System . 148

Define Aggregate . 154

Delete File System . 158

Detach Aggregate . 163

Format Aggregate . 166

Grow Aggregate . 170

List Aggregate Status . 173

List Aggregate Status (Version 2) . 177

List Attached Aggregate Names . 181

List Attached Aggregate Names (Version 2) . 185

List File System Names . 189

List File System Names (Version 2) . 193

List File System Status . 197

List Systems . 205

Query Config Option . 209

Quiesce Aggregate . 212

Rename File System . 215

Set Config Option . 221

Set File System Quota . 224

Statistics Directory Cache Information . 229

Statistics iobyaggr Information . 233

Statistics iobydasd Information . 239

Statistics iocounts Information . 245

Statistics Kernel Information . 250

Statistics Locking Information . 254

Statistics Log Cache Information . 259

Statistics Metadata Cache Information . 263

Statistics Storage Information . 268

Statistics Transaction Cache Information . 274

Statistics User Cache Information . 278

Statistics Vnode Cache Information . 284

Unquiesce Aggregate . 290

Appendix A. Running the zFS pfsctl APIs in 64-bit mode 293

Statistics iocounts information . 294

Appendix B. Accessibility . 297

Using assistive technologies . 297

Keyboard navigation of the user interface . 297

z/OS information . 297

Notices . 299

Programming Interface Information . 300

Contents v

Trademarks . 300

Index . 303

vi z/OS V1R9.0 Distributed File Service zFS Administration

Figures

 1. Job to create a compatibility mode file system . 11

 2. Job to create a multi-volume compatibility mode aggregate 14

 3. Disk space allocation example 1 . 17

 4. Disk space allocation example 2 . 18

 5. Job to back up a zFS aggregate . 23

 6. Job to restore a zFS aggregate . 24

 7. Job to restore a zFS aggregate with replace . 24

 8. Job to create a multi-file system aggregate . 28

 9. Job to create a compatibility mode aggregate and file system 68

10. Job to verify a zFS aggregate . 71

11. Job to display aggregate information . 80

12. Job to attach an aggregate . 84

© Copyright IBM Corp. 2001, 2007 vii

viii z/OS V1R9.0 Distributed File Service zFS Administration

About this document

The purpose of this document is to provide complete and detailed guidance and reference information.

This information is used by system administrators that work with the zSeries File System (zFS) component

of the IBM® z/OS Distributed File Service base element.

How this document is organized

This document is divided into parts, each part divided into chapters:

v Part 1, “zFS administration guide,” on page 1 discusses guidance information for the zSeries File

System (zFS).

v Part 2, “zFS administration reference,” on page 57 discusses the zSeries File System (zFS) reference

information which includes z/OS system commands, zFS commands, and zFS data sets.

Conventions used in this document

This document uses the following typographic conventions

Bold Bold words or characters represent system elements that you must enter into the system

literally, such as commands.

Italic Italicized words or characters represent values for variables that you must supply.

Example Font Examples and information displayed by the system are printed using an example font that

is a constant width typeface.

[] Optional items found in format and syntax descriptions are enclosed in brackets.

{ } A list from which you choose an item found in format and syntax descriptions are enclosed

by braces.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on a keyboard.

... Horizontal ellipsis points indicated that you can repeat the preceding item one or more

times.

\ A backslash is used as a continuation character when entering commands from the shell

that exceed one line (255 characters). If the command exceeds one line, use the

backslash character \ as the last non-blank character on the line to be continued, and

continue the command on the next line.

Note: When you enter a command from this document that uses the backslash character

(\) make sure you immediately press the Enter key and then continue with the rest

of the command. In most cases, the backslash has been positioned for ease of

readability.

A pound sign is used to indicate a command is entered from the shell, specifically where

root authority is needed (root refers to a user with a UID = 0).

 This document used the following keying convention:

<Return> The notation <Return> refers to the key on your terminal or workstation that is labeled

with either the word “Return” or “Enter”, with a left arrow.

Entering commands

When instructed to enter a command, type the command name and then press <Return>.

© Copyright IBM Corp. 2001, 2007 ix

Where to find more information

Where necessary, this document references information in other documents, For complete titles and order

numbers for all elements of z/OS, refer to the z/OS Information Roadmap.

Information about installing Distributed File Service components is found in z/OS Program Directory.

Information about Distributed File Service zSeries File System-related messages is found in z/OS

Distributed File Service Messages and Codes.

Softcopy publications

The z/OS Distributed File Service library is available on a CD-ROM, z/OS Collection, SK3T-4269. The

CD-ROM online library collections is a set of documents for z/OS and related products that includes the

IBM Library Reader. This is a program that enables you to view the BookManager® files. This CD-ROM

also contains the Portable Document Format (PDF) files. You can view or print these files with the Adobe

Acrobat reader.

Internet sources

The softcopy z/OS publications are also available for web-browsing and for viewing or printing PDFs using

the following URL: http://www.ibm.com/servers/eserver/zseries/zos/bkserv/e0zlib

You can also provide comments about this document and any other z/OS documentation by visiting that

URL. Your feedback is important in helping to provide the most accurate and high-quality information.

Information updates on the web

For the latest information updates that have been provided in PTF cover letters and Documentation APARs

for z/OS, see the online document at:

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS.

This document is updated weekly and lists documentation changes before they are incorporated into z/OS

publications.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM messages you encounter,

as well as for some system abends and codes. Using LookAt to find information is faster than a

conventional search because in most cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for z/OS® elements and

features, z/VM®, z/VSE™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt Web site at

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS systems to access IBM message

explanations using LookAt from a TSO/E command line (for example: TSO/E prompt, ISPF, or z/OS

UNIX® System Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the z/OS Collection

(SK3T-4269) or the z/OS and Software Products DVD Collection (SK3T-4271) and use it from the

resulting Windows graphical user interface (GUI). The command prompt (also known as the DOS >

command line) version can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from www.ibm.com/servers/
eserver/zseries/zos/bkserv/lookat/lookatm.html with a handheld device that has wireless access and an

Internet browser (for example: Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or

Opera for Linux handheld devices).

x z/OS V1R9.0 Distributed File Service zFS Administration

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

You can obtain code to install LookAt on your host system or Microsoft Windows workstation from:

v A CD in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release, collection, and location that

suit your needs). More information is available in the LOOKAT.ME files available during the download

process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to gather information about

their system environment and system parameters to help identify potential configuration problems before

they impact availability or cause outages. Individual products, z/OS components, or ISV software can

provide checks that take advantage of the IBM Health Checker for z/OS framework. This book might refer

to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS, see IBM Health Checker

for z/OS: User’s Guide.

SDSF also provides functions to simplify the management of checks. See z/OS SDSF Operation and

Customization for additional information.

About this document xi

xii z/OS V1R9.0 Distributed File Service zFS Administration

Summary of Changes

Summary of changes

for SC24-5989-07

z/OS Version 1 Release 9

This document contains information previously presented in SC24-5989-06, which supports z/OS Version 1

Release 8.

Changed information

v The default for the IOEFSPRM dir_cache_size option is now 32M. See “IOEFSPRM” on page 126.

v Information about “Cloning a file system” on page 16 has been moved to Chapter 4, “Creating and

managing zFS file systems using compatibility mode aggregates,” on page 11.

v MODIFY ZFS,QUERY has new report options. See “Monitoring zFS performance” on page 38.

Deleted information

v The zfsadm configquery option -allow_dup_fs and the zfsadm config option -allow_dup_fs are

removed.

v The IOEFSPRM allow_duplicate_filesystems option is no longer optional. As of z/OS V1R9, the

condition is always allow_duplicate_filesystems=on.

v z/OS.e is not supported in z/OS V1R9.

You may notice changes in the style and structure of some content in this document—for example,

headings that use uppercase for the first letter of initial words only, and procedures that have a different

look and format. The changes are ongoing improvements to the consistency and retrievability of

information in our documents.

This document includes terminology, maintenance, and editorial changes. Technical changes or additions

to the text and illustrations are indicated by a vertical line to the left of the change.

Summary of changes

for SC24-5989-06

z/OS Version 1 Release 8

This document contains information previously presented in SC24-5989-05, which supports z/OS Version 1

Release 7.

New information

v In addition to displaying UNIX System Services reason codes, the UNIX System Services shell

command, bpxmtext, also displays the text and action of zFS reason codes (EFxxnnnn) returned from

the kernel.

v A new section is added, “Minimum and maximum file system sizes” on page 19.

v The zfs command “ioeagslv” on page 69 has a new option, converttov3. This option directs the Salvager

to convert the specified aggregate from version 1.4 to version 1.3.

v The zfsadm aggrinfo -long option and zfsadm lsfs -long option have been enhanced to include the

version of the aggregate. See “zfsadm aggrinfo” on page 79 and “zfsadm lsfs” on page 109.

v A new overview and procedure are added, “Understanding zFS hang detection” on page 51 and “Steps

for resolving a zFS hang” on page 51.

Changed information

v Starting with z/OS Version 1 Release 8, when a zFS compatibility mode aggregate is mounted R/W (or

a zFS multi-file system aggregate is attached R/W), the on-disk format of the aggregate is modified. It is

© Copyright IBM Corp. 2001, 2007 xiii

changed from a 1.3 aggregate to a 1.4 aggregate. This allows the performance of mount to be improved

(especially for zFS file systems with many files and directories). See “Growing a compatibility mode

aggregate” on page 13 and “Growing a multi-file system aggregate” on page 31 for additional

information.

Note: This function has been rolled back and is supported on z/OS Version 1 Release 7.

v An attempt to mount a zFS file system that is contained in a zFS multi-file system aggregate running in

a sysplex will be denied.

Deleted information

v zFS no longer supports the stop zfs command. This command is being replaced by the operator

command MODIFY OMVS,STOPPFS=ZFS command.

This document contains terminology, maintenance, and editorial changes, including changes to improve

consistency and retrievability.

Summary of changes

for SC24-5989-05

z/OS Version 1 Release 7

This document contains information previously presented in SC24-5989-04, which supports z/OS Version 1

Release 6.

New information

v “Using the z/OS HFS to zFS migration tool” on page 25.

v zFS supports the following additional characters in zFS file system names and zFS aggregate names:

@ (at sign), # (number sign), and $ (dollar).

v All zfsadm commands that apply to zFS aggregates or file systems work against all aggregates and file

systems across the sysplex. The following zfsadm commands can optionally direct their operation to a

particular member of the sysplex: aggrinfo, attach, clonesys, config, configquery, define, detach, format,

lsaggr, lsfs, and query.

v z/OS system command, modify zfs process, has been updated to support the unquiesce parameter.

See “modify zfs process” on page 60.

v The following zFS commands have been added:

– “zfsadm lssys” on page 114

v The following pfsctl Application Programming Interface command calls have been added:

– “List Systems” on page 205

– “Statistics Directory Cache Information” on page 229

– “Statistics Kernel Information” on page 250

– “Statistics Log Cache Information” on page 259

– “Statistics Metadata Cache Information” on page 263

– “Statistics Transaction Cache Information” on page 274

– “Statistics Vnode Cache Information” on page 284

Changed information

v “zfsadm aggrinfo” on page 79 has been enhanced to include the -fast and -long options. The -long

option displays additional information about space usage in an aggregate.

v “zfsadm configquery” on page 91 has been enhanced to include the -group and -sysplex_state

options. The -group option displays the XCF group used by ZFS for communication between sysplex

members. The -sysplex_state option displays the sysplex state of ZFS.

xiv z/OS V1R9.0 Distributed File Service zFS Administration

v “IOEFSPRM” on page 126 has been enhanced to include the dir_cache_size option, the group option,

and the xcf_trace_table_size option. The dir_cache_size option specifies the size of the directory

buffer cache. The group option specifies the XCF group name used by zFS. The xcf_trace_table_size

option specifies the size of the XCF trace table.

v The IOEFSPRM msg_output_dsn option is only used during initialization.

v Terminology change: References to Shared HFS have been replaced with shared file system.

v Terminology change: References to OpenEdition have been replaced with z/OS UNIX System Services,

or z/OS UNIX.

v The zfsadm lsfs command has added additional information when the -long option is specified.

This document includes terminology, maintenance, and editorial changes. Technical changes or additions

to the text and illustrations are indicated by a vertical line to the left of the change.

Summary of Changes xv

xvi z/OS V1R9.0 Distributed File Service zFS Administration

Part 1. zFS administration guide

This part of the document discusses guidance information for the zSeries File System (zFS).

v Chapter 1, “zSeries File System (zFS) overview,” on page 3

v Chapter 2, “Post installation processing,” on page 5

v Chapter 3, “Managing zFS processes,” on page 9

v Chapter 4, “Creating and managing zFS file systems using compatibility mode aggregates,” on page 11

v Chapter 5, “Sysplex considerations,” on page 21

v Chapter 6, “Backing up zFS,” on page 23

v Chapter 7, “Migrating data from HFS to zFS,” on page 25

v Chapter 8, “Multi-file system aggregates,” on page 27

v Chapter 9, “Performance and debugging,” on page 35.

© Copyright IBM Corp. 2001, 2007 1

2 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 1. zSeries File System (zFS) overview

The z/OS Distributed File Service zSeries File System (zFS) is a z/OS UNIX System Services (z/OS

UNIX) file system that can be used in addition to the hierarchical file system (HFS). zFS file systems

contain files and directories that can be accessed with z/OS UNIX application programming interfaces

(APIs). These file systems can support access control lists (ACLs). zFS file systems can be mounted into

the z/OS UNIX hierarchy along with other local (or remote) file system types (for example, HFS, TFS,

AUTOMNT and NFS).

Note: See z/OS UNIX System Services Planning for more information on ACLs.

zFS does not replace HFS, rather zFS is complementary to HFS. zFS can be used for all levels of the

z/OS UNIX System Services hierarchy (including the root file system) when all members are at the z/OS

V1R7 level. Because zFS has higher performance characteristics than HFS and is the strategic file

system, HFS may no longer be supported in future releases and you will have to migrate the remaining

HFS file systems to zFS.

zFS and HFS can both participate in shared sysplexes. However, only zFS supports security labels.

Therefore, in a multilevel-secure environment, you must use zFS file systems instead of HFS file systems.

See z/OS Planning for Multilevel Security and the Common Criteria for more information on multilevel

security and migrating your HFS version root to a zFS version root with security labels.

Note: Multi-file system aggregate support is not planned to be enhanced and might be removed sometime

in the future. In addition, beginning with z/OS Version 1 Release 8, zFS file systems that reside in a

zFS multi-file system aggregate in a shared file system environment cannot be mounted. You

should copy the data from that file system into a zFS compatibility mode file system using a prior

release of z/OS.

Features

zFS provides many features and benefits:

Performance zFS provides significant performance gains in many customer environments accessing

files approaching 8K in size that are frequently accessed and updated. The access

performance of smaller files is equivalent to HFS.

Restart zFS provides a reduced exposure to loss of updates. zFS writes data blocks

asynchronously and does not wait for a sync interval. zFS is a logging file system. It logs

metadata updates. If a system failure occurs, zFS replays the log when it comes back up

to ensure that the file system is consistent.

Cloning As an optional function, zFS allows the administrator to make a read-only clone of a file

system in the same data set. This clone file system can be made available to users to

provide a read-only point-in-time copy of a file system. The clone operation happens

relatively quickly and does not take up too much additional space because only the

metadata1 is copied.

Note: This function has some restrictions. See Chapter 5, “Sysplex considerations,” on

page 21 for information on these restrictions.

1. Metadata consists of things like owner, permissions and data block pointers.

© Copyright IBM Corp. 2001, 2007 3

Terminology

In order to discuss the details of zFS administration, a new concept and some new terminology is

introduced. The new concept is multiple file systems in a single data set. This is in contrast to HFS which

always has a single file system per data set.

The data set that contains zFS file systems is called a zFS aggregate. A zFS aggregate can contain one2

or more zFS file systems. A zFS aggregate is a Virtual Storage Access Method Linear Data Set (VSAM

LDS). Once the zFS aggregate is defined and formatted, one or more zFS file systems can be created in

the aggregate. A zFS aggregate that contains only a single read-write zFS file system can be defined and

is called a compatibility mode aggregate. A compatibility mode aggregate can also contain a backup file

system. Compatibility mode aggregates are more like HFS. It is recommended that as you begin to use

zFS, you use compatibility mode aggregates. Aggregates that contain multiple file systems are called

multi-file system aggregates. This support is not planned to be enhanced and might be removed in the

future. Therefore, you should only use compatibility mode aggregates.

zFS does not support the use of a striped VSAM Linear Data Set as a zFS aggregate. If you attempt to

mount a compatibility mode file system that had previously been formatted and is a striped VSAM LDS, it

will only mount as read-only. zFS does not support a zFS aggregate that has guaranteed space.

The term zFS file system refers to a hierarchical organization of files and directories that has a root

directory and can be mounted into the z/OS UNIX hierarchy. zFS file systems reside on DASD. The term

zFS Physical File System (PFS) refers to the code that runs in the zFS address space. The zFS PFS

can handle many users accessing many zFS file systems at the same time.

When discussing cloning, the zFS file system that is the source file system is referred to as the read-write

file system. The zFS file system that is the result of the clone operation is called the backup file system.

The backup file system is a read-only file system and can only be mounted as read-only.

When discussing file systems, the term zFS file system name refers to the name of the file system as

zFS knows it. The term z/OS UNIX file system name or mount file system name refers to the name of

the file system as z/OS UNIX knows it. We make this distinction because you can now specify a z/OS

UNIX file system name (as specified in the MOUNT FILESYSTEM option) that is different from the zFS file

system name (as optionally specified in the MOUNT PARM FILESYSTEM suboption). This latter

specification may be required when working with multiple zFS file systems that have the same zFS file

system name (in different zFS aggregates). However, this capability is only useful for multi-file system

aggregates. Multi-file system aggregate function is not planned to be enhanced and might be removed in

the future. Therefore, you should not use this capability. If you are currently using multi-file system

aggregates, start planning to discontinue.

2. Actually, a zFS aggregate can contain zero or more zFS file systems.

4 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|

Chapter 2. Post installation processing

zFS is part of the Distributed File Service base element of z/OS. Before using the zFS support, you must

install the z/OS release, the Distributed File Service, and the other base elements of z/OS using the

appropriate release documentation.

Note: If you are only using the zFS support of the Distributed File Service (and not the DCE DFS™

support nor the SMB server support of the Distributed File Service), DCE DFS and SMB do not

need to be configured and DCE does not need to be configured. For more information on DCE

DFS, refer to the z/OS Distributed File Service DFS Administration document. For more information

on SMB, refer to the z/OS Distributed File Service SMB Administration document.

To use the zFS support, you must configure the support on the system. Configuration includes the

following administrative tasks:

v Define the zFS physical file system to z/OS UNIX

v Create or update the zFS parameter data set (IOEFSPRM). See “IOEFSPRM” on page 126.

v Define zFS aggregates and file systems

v Create mount points and mount zFS file systems

v Change owner/group and set permissions on file system root

v Optionally, add MOUNT statements in your BPXPRMxx member(s) to cause zFS file systems to be

mounted at IPL.

zFS installation and configuration steps

To install, configure, and access zFS, you must perform the following administrative steps:

1. Install and perform post-installation of the Distributed File Service by following the applicable

instructions in the z/OS Program Directory or the ServerPac: Installing Your Order. The following is a

summary of the information that is contained in those documents:

a. Ensure that the target and distribution libraries for the Distributed File Service are available.

b. Run the prefix.SIOESAMP(IOEISMKD) job from UID 0 to create the symbolic links used by the

Distributed File Service. This job reads the member prefix.SIOESAMP(IOEMKDIR) to delete and

create the symbolic links.

c. Ensure that the DDDEFS for the Distributed File Service are defined by running the

prefix.SIOESAMP(IOEISDDD) job.

d. Install the Load Library for the Distributed File Service. The Load Library (hlq.SIOELMOD) must be

APF authorized and must be in link list.

e. Install the samples (hlq.SIOESAMP).

f. Install the sample PROC for ZFS (hlq.SIOEPROC).

g. Create a JCL PROC for the ZFS started task in SYS1.PROCLIB by copying the sample PROC

from the previous step.

The DDNAME IOEZPRM identifies the optional IOEFSPRM data set. Although this DD statement is

optional, it is recommended that it be included to identify the parameter data set to be used for

ZFS. For now, it is suggested that this DD refer to a PDS with a member called IOEFSPRM that

has a single line that begins with an asterisk (*) in column 1. Subsequent modifications can be

made to the IOEFSPRM member, refer to “IOEFSPRM” on page 126.

As an alternative to the IOEZPRM DDNAME specification, the IOEFSPRM member can be

specified as a true PARMLIB member. In this case, the member has the name IOEPRMxx, where

xx is specified in the parmlib member list. Refer to “IOEFSPRM” on page 126 for additional

information on IOEPRMxx.

© Copyright IBM Corp. 2001, 2007 5

If you want to run ZFS so that it is not under control of JES, see step 2 below. You might want to

do this so that ZFS does not interfere with shutting down JES.

h. Add the following RACF® commands:

ADDGROUP DFSGRP SUPGROUP(SYS1) OMVS(GID(2))

ADDUSER DFS OMVS(HOME(’/opt/dfslocal/home/dfscntl’) UID(0)) DFLTGRP(DFSGRP) AUTHORITY(USE)

 UACC(NONE)

RDEFINE STARTED DFS.** STDATA(USER(DFS))

RDEFINE STARTED ZFS.** STDATA(USER(DFS))

SETROPTS RACLIST(STARTED)

SETROPTS RACLIST(STARTED) REFRESH

Note: The DFS user ID must have at least ALTER authority to all VSAM LDSes that contain zFS

aggregates. A user ID other than DFS can be used to run the ZFS started task if it is

defined with the same RACF characteristics as shown for the DFS user ID. As an alternative

to PERMITting ALTER authority to all VSAM LDSes that contain zFS aggregates, you may

assign the ZFS started task the TRUSTED attribute or you may give the userid of the ZFS

started task the OPERATIONS attribute. Please consult the RACF documentation that

describes these attributes.

2. Create a BPXPRMxx entry for ZFS.

Add the following FILESYSTYPE statement to your BPXPRMxx:

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM) ASNAME(ZFS)

You should update your IEASYSxx parmlib member to contain the OMVS=(xx,yy) parameter for future

IPLs.

If necessary, you can specify that ZFS should not run under control of JES by specifying SUB=MSTR

as in the following example:

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM) ASNAME(ZFS,’SUB=MSTR’)

3. Run the dfs_cpfiles program.

Running this program as described in the program directory is recommended even if you plan to only

use the zFS support. The only zFS configuration file is the IOEFSPRM data set and it is not created by

the dfs_cpfiles program. But, to complete the installation of the Distributed File Service, the

dfs_cpfiles program should be run to create other files needed by SMB or DCE DFS support. This

avoids problems if the other support (SMB or DCE DFS) supplied by the Distributed File Service is

subsequently activated.

To run the dfs_cpfiles program:

v Logon as root (UID 0) on the local machine.

v From the z/OS UNIX shell, enter /usr/lpp/dfs/global/scripts/dfs_cpfiles.

4. Create or update the zFS parameter data set (IOEFSPRM).

The zFS parameter data set is optional. The IOEZPRM DD can be omitted from the ZFS PROC or the

IOEFSPRM data set can exist, with no parameters contained in it. Parameters are only required if you

want to override the defaults for the zFS parameters. As mentioned previously, it is recommended that

you create an empty IOEFSPRM member in a PDS. The IOEFSPRM member should have a single

line in it that is a comment (an asterisk(*) in column 1). Update the IOEZPRM DD statement in the

ZFS PROC to contain the name of the IOEFSPRM member. For example:

IOEZPRM DD DSN=SYS4.PVT.PARMLIB(IOEFSPRM),DISP=SHR

If you are running a sysplex, you may want to have different IOEFSPRM data sets for different

systems. Refer to Chapter 5, “Sysplex considerations,” on page 21 for reasons why you may need to

use different IOEFSPRM data sets. In this case, you may want to specify a system qualifier in the data

set name in the IOEZPRM DD. For example:

IOEZPRM DD DSN=SYS4.&SYSNAME..PARMLIB(IOEFSPRM),DISP=SHR

As an alternative to the IOEZPRM DDNAME specification, the IOEFSPRM member can be specified

as a true PARMLIB member. In this case, the member has the name IOEPRMxx, where xx is specified

in the parmlib member list. Refer to “IOEFSPRM” on page 126 for additional information on

IOEPRMxx.

6 z/OS V1R9.0 Distributed File Service zFS Administration

The PDS (organization PO) should have a record format of FB with a record length of 80. The block

size can be any multiple of 80 that is appropriate for the device. A sample IOEFSPRM is provided in

hlq.SIOESAMP(IOEFSPRM). IOEFSPRM is also known as IOEZS001. Refer to Chapter 12, “zFS data

sets,” on page 125 for a full description of the options that can be specified in IOEFSPRM.

5. Preallocate data sets for debugging - Allocate the zFS trace output data set as a PDSE with

RECFM=VB, LRECL=133 with a primary allocation of at least 50 cylinders and a secondary allocation

of 30 cylinders. The name of this trace output data set should be specified in the trace_dsn option in

the IOEFSPRM file. Also, allocate a debug settings data set as a PDS member with an LRECL=80.

You can put one comment line in the member (Use a /* followed by */). The name of this debug

settings data set member should be specified in the debug_settings_dsn option of the IOEFSPRM file.

You should do each of these for each member of the sysplex.

6. Create a zFS (compatibility mode) file system.

A zFS file system resides in a zFS aggregate. A zFS aggregate is a VSAM Linear Data Set. Refer to

Chapter 4, “Creating and managing zFS file systems using compatibility mode aggregates,” on page 11

for details on creating zFS file systems.

7. Create a directory and mount the zFS file system on it.

A directory can be created with the z/OS UNIX mkdir command. (You can also use an existing

directory.) The TSO/E MOUNT command or the /usr/sbin/mount REXX exec can be used to mount

the zFS file system on the directory. Refer to Chapter 4, “Creating and managing zFS file systems

using compatibility mode aggregates,” on page 11 for details on mounting zFS file systems.

Note: Steps 6 and 7 can be repeated as many times as necessary for each permanently mounted

zFS file system. Only step 6 is needed for zFS automounted file systems (assuming that the

automount file system has been set up.)

8. Add mount statements to BPXPRMxx members so that the zFS file systems are mounted on the next

IPL.

For example:

MOUNT FILESYSTEM(’OMVS.PRV.COMPAT.AGGR001’) TYPE(ZFS) MOUNTPOINT(’/etc/mountpt’)

Chapter 2. Post installation processing 7

|
|
|
|

|
|

|

|

8 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 3. Managing zFS processes

This section describes the zFS address space and then discusses starting zFS, stopping zFS, and other

activities required to manage zFS.

zFS runs as a z/OS UNIX colony address space. There must be an entry in a BPXPRMxx parmlib

member for zFS and the zFS PROC must be available. zFS is started by z/OS UNIX based on the

FILESYSTYPE statement for zFS in the BPXPRMxx parmlib member.

zFS can be started at IPL if the BPXPRMxx parmlib member is in the IEASYSxx parmlib member’s

OMVS=(xx,yy) list. It can also be started later by using the setomvs reset=(xx) operator command.

zFS can be stopped using the MODIFY OMVS,STOPPFS=ZFS operator command. zFS file systems will

be unmounted or moved to another sysplex member before stopping zFS. When zFS is stopped, you

receive the following message (after replying Y to message BPXI078D):

nn BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY ’R’ WHEN READY TO RESTART. REPLY ’I’ TO IGNORE.

In general, you should not stop zFS. Stopping zFS is disruptive to applications that are using zFS file

systems. zFS will be stopped automatically when you shut down z/OS UNIX.

To restart zFS, reply r to message nn. (For example, r 1,r). If you want zFS to remain stopped, you can

reply i and this removes the prompt. In this case, zFS may be redefined at a later time using the setomvs

reset=(xx) operator command. However, this can result in zFS file systems becoming NOT ACTIVE. An

unmount and remount is required to activate a file system that is NOT ACTIVE. If you plan to restart zFS,

you should reply r to the message.

Note: Stopping zFS may have shared file system (sysplex) implications. Refer to Chapter 5, “Sysplex

considerations,” on page 21 for information on shared file systems.

If the zFS colony address space has an internal failure, it will normally not terminate. It may disable an

aggregate (see “Diagnosing disabled aggregates” on page 54). If it is a case where it does terminate,

normally the ZFS colony address space will restart automatically. Otherwise, message BPXF032D (the

same message you receive when the MODIFY OMVS,STOPPFS=ZFS operator command is used) will be

issued and a reply will be requested.

If zFS terminates, all zFS file systems on that system will be unmounted (or moved if AUTOMOVE in a

sysplex is specified). Applications with an open file on these file systems will receive I/O errors until the file

is closed. Once zFS is restarted, you must remount any file systems that were locally mounted (that is, file

systems that were owned by that system and were not moved). This can be done by using the MODIFY

BPXOINIT,FILESYS=REINIT operator command. This causes a remount for each file system that was

mounted through a BPXPRMxx parmlib statement.

If you need to determine if zFS is currently active or not, use the following steps:

1. If the BPXF032D message is outstanding, ZFS is not active.

2. If the operator command D A,ZFS says ZFS is not found, ZFS is not active.

3. If the operator command D A,ZFS gives the ZFS address space information, ZFS is active.

© Copyright IBM Corp. 2001, 2007 9

10 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 4. Creating and managing zFS file systems using

compatibility mode aggregates

This section discusses creating compatibility mode aggregates and file systems. Refer to Chapter 8,

“Multi-file system aggregates,” on page 27 for information on multi-file system aggregates.

Note: Multi-file system aggregate support is not planned to be enhanced and might be removed sometime

in the future.

Creating a compatibility mode aggregate

A zFS file system is created in a zFS aggregate (which is a VSAM Linear Data Set). When using

compatibility mode aggregates, the aggregate and the file system are created at the same time. For

simplicity, we refer to a file system in a compatibility mode aggregate as a compatibility mode file system.

A compatibility mode file system is created using the IOEAGFMT utility. This is a two step process:

1. Create a VSAM Linear Data Set using IDCAMS. The VSAM Linear Data Set must have a secondary

allocation size specified, if you want to use dynamic grow. See “Dynamically growing a compatibility

mode aggregate” on page 13 for additional information.

2. Format the VSAM LDS as a compatibility mode aggregate and create a file system in the aggregate

using IOEAGFMT (see “ioeagfmt” on page 66 for additional information). When using ioeagfmt, it is

required that the user must have ALTER authority to the VSAM LDS and must be UID 0 or have READ

authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

The VSAM LDS, the aggregate, and the file system all have the same name and that name is equal to the

VSAM LDS cluster name. The zFS file system is then mounted into the z/OS UNIX hierarchy.

The Control Interval (CI) size of a VSAM LDS that will be formatted as a zFS aggregate must be 4K. This

is the default for IDCAMS and is, therefore, unspecified in the following example.

Figure 1 shows an example of a job that creates a compatibility mode file system.

Note, the -compat parameter in the CREATE step. That is what tells IOEAGFMT to create a compatibility

mode file system. The result of this job is a VSAM LDS that is formatted as a zFS aggregate and contains

one zFS file system. The zFS file system has the same name as the zFS aggregate (and the VSAM LDS).

The size of the zFS file system (that is, its quota) is based on the size of the aggregate.

//USERIDA JOB ,’Compatibility Mode’,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

//DEFINE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//AMSDUMP DD SYSOUT=H

//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000

//SYSIN DD *

 DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -

 VOLUMES(PRV000) -

 LINEAR CYL(25 0) SHAREOPTIONS(3))

/*

//CREATE EXEC PGM=IOEAGFMT,REGION=0M,

// PARM=(’-aggregate OMVS.PRV.COMPAT.AGGR001 -compat’)

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

Figure 1. Job to create a compatibility mode file system

© Copyright IBM Corp. 2001, 2007 11

The default for the size of the aggregate is the number of 8K blocks that fits in the primary allocation. You

can specify a -size option giving the number of 8K blocks for the aggregate. If you specify a number that

is less than (or equal to) the number of blocks that fits into the primary allocation, the primary allocation

size is used. If you specify a number that is larger than the number of 8K blocks that fits into the primary

allocation, the VSAM LDS is extended to the size specified as long as the total size will fit in the primary

allocation and a single extension. The single extension must be no larger than a single volume. This

occurs during its initial formatting. Sufficient space must be available on the volume(s). Multiple volumes

can be specified on the DEFINE of the VSAM LDS. The multiple volumes are used during extension of the

data set at a later time. If you want to create a multi-volume data set initially that is larger than two

volumes, see “Creating a multi-volume compatibility mode aggregate” on page 14. DFSMS decides when

to allocate on these volumes during extension. Any VSAM LDS greater then 4 GB can be specified by

using the extended format and extended addressability capability in the data class of the data set. Refer to

z/OS DFSMS Using Data Sets for information on VSAM data sets greater than 4 GB in size. zFS does not

support the use of a striped VSAM Linear Data Set as a zFS aggregate. If you attempt to mount a

compatibility mode file system that had previously been formatted and is a striped VSAM LDS, it will only

mount as read-only.

There are several other options that can be used when creating a compatibility mode file system that set

the owner, group, and the permissions of the root directory. The -owner option specifies the owner of the

root directory. The -group option specifies the group of the root directory. The -perms option specifies the

permissions on the root directory. Refer to Chapter 11, “zFS commands,” on page 65 for more information

on IOEAGFMT.

The zFS file system can now be mounted into the z/OS UNIX hierarchy. This is accomplished with the

TSO/E MOUNT command. Here is an example of mounting the compatibility mode file system that was

just created:

MOUNT FILESYSTEM(’OMVS.PRV.COMPAT.AGGR001’) TYPE(ZFS) MODE(RDWR) MOUNTPOINT(’/usr/mountpt1’)

This assumes that the directory /usr/mountpt1 exists and is available to become a mountpoint. See z/OS

UNIX System Services Planning for complete information about mount points.

Here is an example of mounting the compatibility mode file system that was just created using the z/OS

UNIX mount command:

/usr/sbin/mount -t ZFS -f OMVS.PRV.COMPAT.AGGR001 /usr/mountpt1

Starting with z/OS Version 1 Release 7, when a zFS compatibility mode aggregate is mounted R/W, the

on-disk format of the aggregate is modified. It is changed from a version 1.3 aggregate to a version 1.4

aggregate. This allows the performance of mount to be improved (especially for zFS file systems with

many files and directories). During the automatic conversion, you will see messages such as:

IOEZ00500I Converting PLEX.JMS.AGGR007.LDS0007 for fast mount processing

IOEZ00518I Converting filesystem PLEX.JMS.AGGR007.LDS0007 to allow for fast mount

You must install toleration APAR OA11573 on prior releases. This will allow the prior releases to correctly

access the new structure (version 1.4) for zFS aggregates. If you do not install toleration APAR OA11573

on prior releases, prior releases will not be able to correctly access the new structure.

In this case, you can convert a zFS aggregate back to a version 1.3 structure so that it can be accessed.

(You should, of course, apply toleration APAR OA11573 as soon as possible.) To convert a zFS aggregate

back to a version 1.3 structure, use the zFS IOEAGSLV (salvager) utility. A new IOEAGSLV utility option

(-converttov3) is provided in z/OS V1R7 to convert a version 1.4 zFS aggregate back to a version 1.3 zFS

aggregate. IOEAGSLV is also installed in the MIGLIB PDS. IOEAGSLV can be executed from any

supported release by STEPLIBing to MIGLIB. Here is a sample job:

//USERIDA JOB ,’Salvage’,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

//STEPLIB DD DSN=hlq.MIGLIB,DISP=OLD

//SALVAGE EXEC PGM=IOEAGSLV,REGION=0M,

12 z/OS V1R9.0 Distributed File Service zFS Administration

|
|

// PARM=(’-aggregate PLEX.JMS.AGGR007.LDS0007 -converttov3’)

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

Growing a compatibility mode aggregate

If a compatibility mode aggregate becomes full, the administrator can grow the aggregate (that is, cause

an additional allocation to occur and format it to be part of the aggregate). This is accomplished with the

zfsadm grow command. There must be space available on the volume(s) to extend the aggregate’s

VSAM Linear Data Set. The size specified on the zfsadm grow command must be larger than the current

size of the aggregate.

For example, suppose a 2 cylinder (primary allocation, 3390) aggregate has a total of 180 8K blocks and a

(potential) secondary allocation of 1 cylinder. 180 8K blocks is 1440K bytes. A zfsadm aggrinfo command

for this aggregate might show 1440K. This is a total of 1440K. zfsadm grow does this by calling DFSMS

to allocate the additional DASD space. You might need to specify a few blocks larger than the current size

before an allocation occurs because DFSMS might require some number of reserved blocks. Refer to the

following example:

zfsadm aggrinfo omvs.prv.aggr003.lds0003

OMVS.PRV.AGGR003.LDS0003 (R/W COMP): 1286 K free out of total 1440

zfsadm grow omvs.prv.aggr003.lds0003 1440

IOEZ00173I Aggregate OMVS.PRV.AGGR003.LDS0003 successfully grown

OMVS.PRV.AGGR003.LDS0003 (R/W COMP): 1286 K free out of total 1440

Notice that the zfsadm grow command indicates success, but the aggregate was not made any larger

because the size specified on the command was the same as the existing size.

zfsadm grow omvs.prv.aggr003.lds0003 1441

IOEZ00173I Aggregate OMVS.PRV.AGGR003.LDS0003 successfully grown

OMVS.PRV.AGGR003.LDS0003 (R/W COMP): 2006 K free out of total 2160

The aggregate now has a total size of 2160K bytes. You can specify 0 for the size to get a secondary

allocation size extension. The file system quota has also been increased based on the new aggregate

size. Aggregates cannot be made smaller.

Dynamically growing a compatibility mode aggregate

An administrator can specify that an aggregate should be dynamically grown if it becomes full. This is

specified by the AGGRGROW PARM on the MOUNT command or globally by the aggrgrow option of the

IOEFSPRM file (see “IOEFSPRM” on page 126 for additional information). The aggregate (that is, the

VSAM Linear Data Set) must have secondary allocation specified when it is defined and space must be

available on the volume(s). The aggregate will be extended when an operation cannot complete because

the aggregate is full.

If the extension is successful, the operation will again be transparently driven to the application. During the

extension, a portion of the extension is formatted. Applications that cause new blocks to be allocated or

that are reading a file that is being extended will wait. Other applications will not wait. Applications that

must wait, will wait for the extension and the (portion) format. Look for HI-A-RBA, the size of the data set

in bytes, and HI-U-RBA, how much of it is formatted in bytes. If the aggregate has previously been

extended but not fully formatted (that is, the HI-U-RBA (or hi-used-RBA) is less than the HI-A-RBA (or

hi-allocated-RBA)), zFS will format another portion of the existing extension to make more space available.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 13

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

You can determine the HI-U-RBA and HI-A-RBA by using the IDCAMS LISTCAT ALL utility against the zFS

aggregate and looking for HI-U-RBA and HI-A-RBA in the job output. Dividing HI-A-RBA or HI-U-RBA by

8192 will convert them to the number of 8K blocks.

When a dynamic extension fails (for example, because of insufficient space), zFS sets an internal indicator

to avoid attempting another dynamic extension. This indicator can be reset by a successful explicit grow

(for example, by using the zfsadm grow command) or by an unmount and mount of the file system.

Creating a multi-volume compatibility mode aggregate

To create a large zFS aggregate (for example, 10 full volumes), you need:

v 10 empty volumes, and

v a DFSMS DATACLASS that provides extended addressability (since the total size is greater than 4 GB),

and

v a JOB that defines and formats the aggregate.

Assuming that each volume is a 3390 with 3338 cylinders (with 3336 cylinders free), that there are 15

tracks per cylinder and that you can get 6 8K blocks per track (15 x 6 = 90 8K blocks per cylinder), you

should get 90 x 3336 = 300240 8K blocks per volume and 10 x 300240 = 3002400 8K blocks in the

aggregate. Figure 2 is an example JOB that defines the VSAM Linear Data Set in the first step and

formats it as a zFS aggregate in the second step. The FORMAT step formats the primary allocation (3336

cylinders, and then extends the data set by the -grow amount (300240 8K blocks) multiple times until it

reaches the total -size amount (3002400 8K blocks).

Adding a volume to a compatibility mode aggregate

To add a candidate volume to a zFS aggregate, use the IDCAMS utility ALTER command with the

ADDVOLUMES parameter. The following example job adds two volumes to the (SMS-managed)

OMVS.ZFS.AGGR1 zFS aggregate:

//SUIMGVMA JOB (ACCTNO),’SYSPROG’,CLASS=A,

// MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID

//STEP01 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//USERIDA JOB ,’Multi-Volume’,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

//DEFINE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//AMSDUMP DD SYSOUT=H

//SYSIN DD *

 DEFINE CLUSTER (NAME(OMVS.VOL10.COMPAT.AGGR001) -

 VOLUMES(PRV000 PRV001 PRV002 PRV003 PRV004 -

 PRV005 PRV006 PRV007 PRV008 PRV009) -

 DATACLASS(EXTATTR) -

 LINEAR CYL(3336 5) SHAREOPTIONS(3))

/*

//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,

// PARM=(’-aggregate OMVS.VOL10.COMPAT.AGGR001 -compat -size 3002400 -gX

// row 300240’)

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

Figure 2. Job to create a multi-volume compatibility mode aggregate

14 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|

|
|
|

//SYSIN DD *

 ALTER OMVS.ZFS.AGGR1.DATA -

 ADDVOLUMES(* *)

/*

In this case, DFSMS is choosing the particular candidate volumes. If you want to specify the volumes, use

their volume serials in place of the asterisks. See z/OS DFSMS Access Method Services for Catalogs for

additional information on IDCAMS ALTER ADDVOLUMES. DFSMS states, if an ALTER ADDVOLUMES is

done to a data set already opened and allocated, the data set must be closed, unallocated, reallocated,

and reopened before VSAM can extend onto the newly-added candidate volume.

For zFS, this means that if the zFS aggregate is already attached when the ALTER ADDVOLUMES is

done, it must be detached and attached again before zFS can extend to the newly-added candidate

volume(s). Compatibility mode aggregates must be unmounted and mounted again (because that is when

they are detached and attached). If a backup file system (created by the clone operation) is mounted, it

must also be unmounted when the read-write file system is unmounted. Otherwise, the aggregate will not

be detached. If only the read-write file system is mounted, you can use the remount capability of z/OS

UNIX. For details, see the topic on Remounting a mounted file system in z/OS UNIX System Services

Planning.

Renaming or deleting a compatibility mode aggregate

To rename a compatibility mode aggregate, use the IDCAMS ALTER command with the NEWNAME

parameter. The aggregate must not be mounted to rename it.

The name of the file system stored in the zFS aggregate will not match the aggregate name. This is a

requirement for compatibility mode zFS aggregates. To reconcile the file system and aggregate name, the

zFS file system must be mounted initially as read-write after the IDCAMS RENAME is complete. This

allows zFS to reconcile the file system name with the new aggregate name. After the name is reconciled,

the aggregate can then be mounted read-only.

The following example assumes that:

v the data component name is the same as the cluster name with DATA appended

v you want to rename both the cluster name and the data component name.
//SUIMGVMS JOB (ACCTNO),’SYSPROG’,CLASS=A,

// MSGCLASS=X,MSGLEVEL=(1,1),NOTIFY=&SYSUID

//STEP01 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 ALTER PLEX.JMS.AGGR006.LDS0006 -

 NEWNAME(PLEX.JMS.AGGR008.LDS0008)

 ALTER PLEX.JMS.AGGR006.LDS0006.* -

 NEWNAME(PLEX.JMS.AGGR008.LDS0008.*)

/*

To delete a compatibility mode aggregate, use the IDCAMS utility DELETE command. The aggregate must

not be mounted to delete it. The following example deletes both the cluster name and the data component.

//SUIMGVMD JOB (ACCTNO),’SYSPROG’,CLASS=A,

// MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID

//STEP01 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE PLEX.JMS.AGGR006.LDS0006

/*

See z/OS DFSMS Access Method Services for Catalogs for information and restrictions on IDCAMS

ALTER NEWNAME and DELETE.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 15

|
|
|

|

|
|

|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

Cloning a file system

zFS provides the ability to clone a file system by using the zfsadm clone command. When a you clone a

file system, you create a copy of the file system in the same aggregate. There must be enough physical

space available in the aggregate for the clone to be successful. This copy of the file system is read-only

and is called a backup file system. The name of the backup file system is the same as the original

(read-write) file system with .bak (in lower case) appended to the file system name. This means that you

need to limit the length of the file system name to 40 characters if you want to clone it.

Here is an example of a zfsadm clone command:

zfsadm clone -filesystem OMVS.PRV.FS1

IOEZ00225I File system OMVS.PRV.FS1 successfully cloned.

A backup file system takes up a relatively small amount of space because only the metadata is copied, not

the user data. The backup file system’s data block pointers point to the same data blocks that the

read-write file system’s data block pointers point to. After a clone operation, if the read-write file system

user data is updated, zFS ensures that new physical blocks are allocated to hold the updates, while

maintaining the backup file system’s data pointers to the original data. The backup file system remains a

point-in-time read-only copy in the face of updates to the read-write file system. This backup file system

can be mounted (read-only) so that users who have the backup mounted can have an online backup of

that file system available. That is, if a user accidently erases a file from the read-write file system, they can

simply copy the file from the backup into the read-write file system to restore the file to the time the

backup was created.

Here is an example of a TSO/E MOUNT command for the backup file system:

MOUNT FILESYSTEM(’’’OMVS.PRV.FS1.bak’’’) MOUNTPOINT(’/etc/mountpt3’) TYPE(ZFS) MODE(READ) NOAUTOMOVE

Here is an example of an OMVS mount command for the backup file system:

/usr/sbin/mount -t ZFS -r -a no -f OMVS.PRV.FS1.bak /etc/mountpt3

The read-write file system can be cloned again (re-clone). When a backup file system already exists, it is

replaced during the clone operation. One backup file system can exist for each read-write file system.

Backup file systems cannot be mounted during the clone operation.

You can clone or re-clone a set of file systems with the zfsadm clonesys command. This can be specified

in terms of file systems with a file system name prefix or file systems in an aggregate or both.

zFS disk space allocation

A zFS aggregate is an array of 8K blocks. There are three special objects in a zFS aggregate (and are

present in all zFS aggregates) that take up space in an aggregate and hence that space cannot be used

for user files:

v Log file - This is used to record metadata changes. It is by default 1% of the disk size.

v Bitmap - This records which blocks are free on disk, and is as big as needed. How big it is depends on

the size of the aggregate.

v Aggregate File System List - This describes the file systems contained in the aggregate. For

compatibility mode aggregates it is usually only 1 8KB block. For multi-file system aggregates, its size

depends on how many file systems there are.

The zfsadm aggrinfo command shows aggregate disk space usage. This is based on the number of 8KB

blocks. It subtracts the space reserved for the above three objects in its calculations (and tells you this in

the output). The zfsadm aggrinfo command shows output in units of 1KB blocks. If you use the -long

option of the zfsadm aggrinfo command, it shows the number of free 8K blocks, the number of free 1K

fragments and the size (in K) taken up by the log file, the filesystem table and the bitmap.

16 z/OS V1R9.0 Distributed File Service zFS Administration

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|

|
|

The zFS threshold monitoring function aggrfull reports space usage based on total aggregate disk size. It

incorporates the space for the above three special objects when showing total disk space and amount

used on disk in its messages. The aggrfull message shows units in 8K blocks.

zFS aggregates are all capable of containing multiple file systems, even compatibility mode aggregates.

Compatibility mode aggregates can have backup file systems in them that take space if the clone

operation is used. Each file system has a quota represented in 1KB fragments. The quota of a file system

is a logical number and can be smaller or larger than the size of the disk (if the size of the disk were

expressed in 1KB fragments).

For compatibility mode aggregates the file system quota is set to be the following size:

v total disk size (in 1KB units) - size of the above three special objects (in 1KB units)

The zfsadm lsquota command will show the quota in 1KB units and will also show the aggregate size

and usage in 1KB units (it shows the amount of space used for the three special objects above also).

The df command shows the file system quota, but since the df command shows things in 512 byte units,

normally the df output for zFS is exactly twice the numbers shown for quota.

zFS stores files on disk in one of three ways:

v inline - if the file is 52 bytes or less its stored in the same data structure on disk that holds the file

status (things like owner, size and permissions). A file 52 bytes or less takes no extra disk space.

v fragmented - if the file is 7KB or less and has never been larger than 7KB, it is stored in 1KB

fragments (hence it is stored in part of an 8KB block). Multiple small files can share the same 8KB block

on disk.

v blocked - if the file is over 7 KB, it is stored as an array of 8 KB blocks.

The reason zFS uses these three methods for storing data is to conserve disk space. Each small file does

not need to use a full 8 KB block of disk space. However, as a result of these three methods of storing

data, the amount of free space displayed by the z/OS UNIX df command might not give the entire picture

of free space. The df -k command displays free space in a file system in 1 KB units. In zFS, this space is

a combination of full 8 KB blocks plus the free 1 KB fragments in fragmented blocks. As shown in Figure 3

for example, if there were two 8 KB blocks and twenty 1 KB blocks left, df -k would report 36 KB

available.

Because it is a combination of 8KB blocks and 1KB blocks, it can happen that there are many 1KB blocks

available but no 8KB blocks left. As shown in Figure 4 on page 18 for example, if there were 0 8KB blocks

Figure 3. Disk space allocation example 1

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 17

left and 20 1KB blocks available, df -k would report 20 KB available. Now, if you try to create a 10 KB file,

you might think that there is plenty of space. However, a 10 KB file is larger than 7 KB and therefore uses

full 8KB blocks. Since there are no 8KB blocks available, there is no room for a 10 KB file even though

there is 20 KB free space.

There are other rules that can further restrict how free space is used. A file that is 7 KB must be stored in

7 contiguous fragments. So, even if there is 20 KB available in the file system, if there is no fragmented

block with 7 contiguous 1KB blocks available, the file system will report that there is no space for the file.

Also, a file stored as fragments cannot share the same 8KB block as a directory stored as fragments.

Fragments save disk space but make space allocation more complicated. To provide the maximum options

for space allocation, you need to have free 8KB blocks. The aggrfull option of MOUNT, zfsadm attach,

IOEFSPRM and define_aggr indicates the amount of free 8KB blocks. If you are out of 8KB blocks, you

will be limited in how much additional file space that can be allocated in the file system. You should grow

the aggregate or allow it to be dynamically extended.

When a zFS compatibility mode aggregate becomes full, you can make more space available. This will

happen automatically if you have specified aggrgrow for the aggregate and you specified a secondary

allocation size when you defined the aggregate (that is, the VSAM LDS). You can increase the size of the

aggregate with the zfsadm grow command. Of course, in each of these cases, you must have space

available on the volume(s) to extend into. Or, you might be able to erase some files from the file system to

free up some space. However, if you have cloned the file system, you will not be able to free space by

erasing files. A cloned file system requires additional space in the aggregate to erase a file. In this case,

you might be able to free some space by recloning the file system.

Note that because of the difference between how HFS and zFS manages disk space and block sizes,

certain z/OS UNIX commands, such as df and du may display information differently.

Sharing zFS data in a non-shared file system sysplex

For sharing zFS data in a shared file system sysplex environment, see Chapter 5, “Sysplex

considerations,” on page 21.

The only fully supported way to share zFS data between systems in a non-shared file system sysplex

environment is read-only sharing, where a zFS file system is mounted read-only to each system.

Figure 4. Disk space allocation example 2

18 z/OS V1R9.0 Distributed File Service zFS Administration

|
|

|

|
|

|
|

There is limited support for a zFS filesystem to be mounted read-write to one system and mounted

read-only on another system.

If you mount a zFS file system read-write to a system (system A), you cannot mount that file system

read-write to any other system (system B). If you attempt to mount the file system read-write to another

system (system B), the mount will fail.

If you subsequently mount the file system read-only on another system (system B), the mount will succeed

if no data has been written to the file system since it was attached read-write (to system A). If data has

been written, you will receive reason code EFxx6271 indicating that the log must be replayed and the

read-only mount (to system B) will fail.

However, the examples shown here only work when:

v You do not share Global Resource Serialization (GRS) between these systems. (When you share GRS

across the systems, the first mounted read-write data set is allocated as EXCL, and the second

mounted read-only data set tries to allocate as SHR, which results in an enqueue failure.)

v You share the catalog or you have a way to get the zFS file system data set name into the other

catalog.

Notes:

1. If you are running z/OS V1R5 on the system where the file system is mounted read-write, you can use

the remount capability to clear the log. See “Disabled compatibility mode aggregate” on page 55.

2. If you are running z/OS V1R6 or higher on the system where the file system is mounted read-write,

you can quiesce and unquiesce the aggregate and clear the log. For example,

zfsadm quiesce -aggrname name

and then

zfsadm unquiesce -aggrname name

Otherwise, you need to unmount the read-write file system from the system (system A) and then mount

the file system read-write on that same system (system A). This will clear the log and allow it to be

mounted read-only. Once the file system is successfully mounted read-only, you will receive a message

(informational message ″IOEZ00439I Read-only aggregate aggrname is attached read-write on another

system″) and errors may occur on the read-only file system (system B) if writes have occurred on the file

system from the system where it is read-write mounted (system A). To recover from the errors on the

read-only file system, you need to unmount the read-write file system (system A) and then remount it

read-write (system A). Then you can unmount the read-only file system and then remount it read-only

(system B).

Minimum and maximum file system sizes

The minimum zFS compatibility mode aggregate size is six 3390 tracks, which hold thirty-six 8 KB blocks

(six 8 KB blocks per track × 6 tracks). This only leaves 143 KB of free space available for files and

directories (see the example below). Small file systems tend to fill up quickly because of block and

fragment allocation and can appear to have free space when they really do not (for more information, see

“zFS disk space allocation” on page 16). IBM does not recommend using such small file systems. You can

let the file system grow automatically (you must have aggrgrow=on in IOEFSPRM file or in the MOUNT

PARM and you must have a secondary allocation specified on the define - specified as 5 in the example

below). However, your log file size is very small and might cause contention. The log file size cannot be

increased after the aggregate is formatted.

zfsadm define -aggr PLEX.JMS.AGGR007.LDS0007 -volumes CFC000 -tracks 6 5

IOEZ00248I VSAM linear dataset PLEX.JMS.AGGR007.LDS0007 successfully created.

zfsadm format -aggr PLEX.JMS.AGGR007.LDS0007 -compat

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 19

|
|

|
|
|

|
|
|
|

|

|
|
|

|
|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|

IOEZ00077I HFS-compatibility aggregate PLEX.JMS.AGGR007.LDS0007 has been successfully created

/usr/sbin/mount -t ZFS -f PLEX.JMS.AGGR007.LDS0007 -o ’AGGRGROW’ /zfsmnt3

zfsadm aggrinfo -aggr PLEX.JMS.AGGR007.LDS0007 -long

PLEX.JMS.AGGR007.LDS0007 (R/W COMP): 143 K free out of total 288

version 1.4

 17 free 8k blocks; 7 free 1K fragments

 112 K log file; 8 K filesystem table

 8 K bitmap file

The architected maximum zFS compatibility mode aggregate size is approximately 4 TB (1KB × 4GB). If

you use 3390s that have 65520 cylinders per volume, you can create a compatibility mode aggregate of

about 2,850,088,550,400 bytes: 65520 cylinders per volume × 90 blocks per cylinder × 8KB per block × 59

volumes = 2654 GB = 2.59 TB. The usable free space in the file system would be a small amount less

than this. However, if you plan to do this, you should consider the implications of backup and recovery for

failures (media failure, data corruption, and others).

20 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 5. Sysplex considerations

zFS supports a shared file system sysplex environment. That is, users in a sysplex can access zFS data

that is owned by another system in the sysplex. Some options may not apply. See z/OS UNIX System

Services Planning for information on automount. For full sysplex support, zFS must be running on all

systems in the sysplex and all zFS file systems must be compatibility mode file systems (that is, they

cannot be file systems in multi-file system aggregates).

The following considerations apply when using zFS in a sysplex in shared file system mode:

v The file system hierarchy appears different when viewed from systems with zFS mounted file systems

than it does from those systems not running zFS. Pathname traversal through zFS mountpoints have

different results in such cases since the zFS file system is not mounted on those systems not running

zFS.

v zFS file systems owned by another system are accessible from a member of the sysplex that is running

zFS.

v zFS compatibility mode file systems can be automoved and automounted. A zFS compatibility mode file

system can only be automoved to a system where zFS is running.

v Although the clone operation is allowed in a compatibility mode aggregate, if both file systems (the

read-write and the backup file systems) are mounted, some restrictions and limitations apply to the

compatibility mode aggregate because there are really two mounted file systems in the aggregate.

chmount and setomvs cannot be used to move ownership. MOUNT (that is, the mount of the second

file system from a different system) and AUTOMOVE (as long as you do not have incompatible

AUTOMOVE SYSTEM LISTs) do work properly in z/OS V1R4 and above.

v In order to share IOEFSPRM across a sysplex, the following specifications must use system symbols to

differentiate the data set names:

– trace_dsn

– msg_output_dsn

– multi-file system aggregate

In this case you should use the &SYSNAME system variable in the IOEZPRM DD of the ZFS PROC to

specify a different IOEFSPRM for different systems.

If you are only using compatibility mode aggregates (and file systems), and you are not specifying a

msg_output_dsn or a trace_dsn (or you can use system symbols), and you use the same options for

all ZFS PFSs on all systems, you can share the same IOEFSPRM across systems.

If you want to share IOEFSPRM and you want to specify data set names in IOEFSPRM, you may be

able to use system symbols. For example, if you have sysplex member systems SY1 and SY2, and you

have allocated trace data sets named USERA.SY1.ZFS.TRACE and USERA.SY2.ZFS.TRACE, you can

specify trace_dsn=USERA.&SYSNAME..ZFS.TRACE in your shared IOEFSPRM. You can also use

system symbols in the define_aggr option of IOEFSPRM.

As an alternative to the IOEZPRM DDNAME specification, the IOEFSPRM member can be specified as

a true PARMLIB member. In this case, the member has the name IOEPRMxx, where xx is specified in

the parmlib member list. It is possible to have multiple IOEPRMxx members and it is also possible to

have a IOEPRMxx members that are shared among all members of the sysplex and another IOEPRMxx

member that contains options that are specific to a particular sysplex member. See “IOEFSPRM” on

page 126 for more information on IOEPRMxx.

The following describes z/OS UNIX considerations that relate to the level of z/OS running on the members

of the sysplex:

v When all members of the sysplex are at z/OS V1R2 or later and some or all systems are running zFS:

– All systems running zFS see zFS file systems. The file system hierarchy appears differently when

viewed from systems with zFS mounted file systems than it does from those systems not running

zFS. Pathname traversal through zFS mountpoints have different results in such cases since the zFS

file system is not mounted on those systems not running zFS.

© Copyright IBM Corp. 2001, 2007 21

|
|

|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

– If a system running zFS is brought down,

- zFS compatibility mode file systems owned by the system that can be automoved are automoved

to another system running zFS. If this function fails to find another owner, the file system becomes

unowned.

- zFS file systems that are noautomove, become unowned.

- File systems which are unowned are not visible in the file system hierarchy, but can be seen from

a D OMVS,F command. To recover a file system that is mounted and unowned, the file system

must be unmounted.

– If zFS is brought down on one system in the sysplex,

- zFS compatibility mode file systems owned by the system that can be automoved are automoved

to another system running zFS. If this function fails to find another owner, the file system and all

file systems mounted under it are unmounted in the sysplex.

- zFS file systems that are noautomove and all file systems mounted under them are unmounted in

the sysplex.

v Beginning with z/OS V1R7, zfsadm commands work across the shared file system environment. You

can display and modify zFS aggregates and file systems using zfsadm from any member of the sysplex

regardless of which member owns the aggregate.

Multi-file system aggregates and shared file systems

Multi-file system aggregates in a shared file system environment have very limited support. They can be

attached but file systems that reside in multi-file system aggregates cannot be mounted. You should use

compatibility mode aggregates only. If you have data in file systems that reside in multi-file system

aggregates, you should copy each file system into a compatibility mode aggregate using a prior release of

z/OS or a non-shared file system environment. See Chapter 7, “Migrating data from HFS to zFS,” on page

25 for more information about copying data from one file system to another.

22 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 6. Backing up zFS

This section describes how to back up a zFS aggregate using a DFSMSdss™ logical dump. File systems

in the aggregate may or may not be mounted. The following job consists of a single step:

1. Back up the aggregate (and all the file systems)

DFSMSdss automatically quiesces the zFS aggregate before dumping the data set and unquiesces it

when it is done.

Note: If any systems in the sysplex are running a release prior to z/OS V1R7, the job must be run on the

sysplex member where the aggregate(s) is attached. If the job is not run on the same member of

the sysplex, the quiesce will fail and the job will terminate. However, if all systems in the sysplex

are running z/OS V1R7, you can run the backup job on any member of the sysplex.

The size of the target sequential data set should have sufficient space.

Figure 5 shows an example of a job backing up a zFS aggregate. For additional information on the DUMP

command and its keywords, see z/OS DFSMS Storage Administration Reference.

 The zFS aggregate can be restored using DFSMSdss logical restore. It is restored into a new aggregate

(in this case, OMVS.PRV.AGGR005.LDS0005) if the original aggregate (in this case, hlq.ZFS.AGGR004)

still exists. Figure 6 on page 24 is an example of a restore job.

//ZFSBKUP1 JOB (OS390),’PROGRAMMER’,CLASS=A,

// MSGCLASS=X,MSGLEVEL=(1,1)

//*---

//* THIS JOB QUIESCES A ZFS AGGREGATE, DUMPS IT, THEN UNQUIESCES IT.

//*---

//DUMP EXEC PGM=ADRDSSU,REGION=4096K

//SYSPRINT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//OUT DD DSN=hlq.AGGR004.BACKUP,

// DISP=(NEW,CATLG,DELETE),SPACE=(CYL,(5,1),RLSE)

//SYSIN DD *

 DUMP DATASET(INCLUDE(hlq.ZFS.AGGR004)) -

 CONCURRENT -

 OUTDD(OUT)

/*

//

Figure 5. Job to back up a zFS aggregate

© Copyright IBM Corp. 2001, 2007 23

|
|

|

|
|

|
|
|
|

After the aggregate is restored, you need to do the following steps for a compatibility mode aggregate:

1. Unmount the original aggregate (in this case, hlq.ZFS.AGGR004) if it still exists (this also detaches it).

2. Mount the file system in the restored aggregate (in this case, OMVS.PRV.AGGR005.LDS0005).

After the aggregate is restored, you need to do the following steps for a multi-file system aggregate:

1. Unmount the file systems in the original aggregate (if any are mounted).

2. Detach the original aggregate (in this case, hlq.ZFS.AGGR004) if it still exists.

3. Attach the restored aggregate (in this case, OMVS.PRV.AGGR005.LDS0005).

4. Mount the file systems in the restored aggregate.

Another example of a logical restore of a zFS aggregate using DFSMSdss by replacing the existing

aggregate is shown. The backup is restored into the original aggregate (in this case, hlq.ZFS.AGGR004).

The aggregate cannot be mounted (or attached) during the restore operation. Figure 7 is an example of a

restore replace job.

//ZFSREST1 JOB (OS390),’PROGRAMMER’,CLASS=A,

// MSGCLASS=X,MSGLEVEL=(1,1)

//*---

//* THIS JOB RESTORES A ZFS AGGREGATE.

//*---

//ZFSREST EXEC PGM=ADRDSSU,REGION=0M

//SYSPRINT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//INDS DD DISP=SHR,DSN=SUIMGUR.ZFS.DUMP1

//SYSIN DD *

 RESTORE DATASET(INCLUDE(**)) -

 CATALOG -

 RENAMEU(-

 (hlq.ZFS.AGGR004, -

 OMVS.PRV.AGGR005.LDS0005) -

) -

 WRITECHECK -

 INDD(INDS)

Figure 6. Job to restore a zFS aggregate

//ZFSREST2 JOB (OS390),’PROGRAMMER’,CLASS=A,

// MSGCLASS=X,MSGLEVEL=(1,1)

//*---

//* THIS JOB RESTORES A ZFS AGGREGATE.

//*---

//ZFSREST EXEC PGM=ADRDSSU,REGION=0M

//SYSPRINT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//INDS DD DISP=SHR,DSN=SUIMGUR.ZFS.DUMP1

//SYSIN DD *

 RESTORE DATASET(INCLUDE(hlq.ZFS.AGGR004)) -

 CATALOG -

 REPLACE -

 WRITECHECK -

 INDD(INDS)

Figure 7. Job to restore a zFS aggregate with replace

24 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 7. Migrating data from HFS to zFS

This section discusses how to migrate data from HFS to zFS.

Using the z/OS HFS to zFS migration tool

You can use the ISPF-based tool (z/OS UNIX utility), BPXWH2Z, to migrate HFS file systems to zFS file

systems. It has a panel interface that enables you to alter the space allocation, placement, SMS classes

and data set names. With this tool, you can:

v Migrate HFS file systems (both mounted and unmounted) to zFS file systems. If the HFS being

migrated is mounted, the tool automatically unmounts it and then mounts the new zFS file system on its

current mount point.

v Define zFS aggregates by default to be approximately the same size as the HFS. The new allocation

size can also be increased or decreased.

v Have the migration run in TSO foreground or z/OS UNIX background.

Note: The number of blocks to store a zFS file system might not be exactly the same as HFS.

For additional information on migrating data from HFS to zFS see z/OS Migration.

Using the z/OS UNIX pax command

You can copy data from an HFS file system to a zFS file system by using the z/OS UNIX pax command

with or without using an intermediate archive file. Refer to the z/OS UNIX System Services Command

Reference for more information on the pax command. When the data is being copied, the file system(s)

being accessed must be mounted. You can also use pax to copy a file system that resides in a multi-file

system aggregate into a compatibility mode aggregate. You must do this using a prior release or a

non-shared file system environment since file systems that reside in multi-file system aggregates cannot

be mounted when running in a shared file system environment.

Note: If you are migrating a file system that contains additional file systems mounted below it, by default,

the pax command will also copy the files and directories contained in those file systems. To avoid

this, you can either specify the pax -X option, or unmount the lower file systems prior to issuing the

pax command.

Using an intermediate archive file

Use the pax command to copy the source (HFS) file system into an intermediate archive file and then use

the pax command to copy from the archive file into the target (zFS) file system. This archive file can be a

z/OS UNIX file or it can be an MVS™ data set.

Suppose you have an HFS file system mounted at /etc/dfs. You want to copy this into an empty zFS file

system mounted at /etc/dce/testzfs1. You issue the following commands from z/OS UNIX:

1. Position to the source (HFS) file system mounted at /etc/dfs

cd /etc/dfs

2. Create a z/OS UNIX archive file called /tmp/zfs1.pax that contains the HFS file system mounted at

/etc/dfs

pax -wvf /tmp/zfs1.pax .

3. Position to the target (zFS) file system mounted at /etc/dce/testzfs1

cd /etc/dce/testzfs1

4. Read the archive file into the zFS file system mounted at /etc/dce/testzfs1

pax -rv -p e -f /tmp/zfs1.pax

© Copyright IBM Corp. 2001, 2007 25

|
|
|

|
|
|

|
|

|

|

Without using an intermediate archive file

Use the pax command to copy the source (HFS) file system to the target (zFS) file system, without an

intermediate archive file.

Suppose you have an HFS file system mounted at /etc/dfs. You want to copy this into an empty zFS file

system mounted at /etc/dce/testzfs1. You issue the following commands from OMVS:

1. Position to the source (HFS) file system mounted at /etc/dfs

cd /etc/dfs

2. Copy the (HFS) file system mounted at /etc/dfs to the (zFS) file system mounted at /etc/dce/testzfs1

pax -rwvCDM -p eW . /etc/dce/testzfs1

26 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 8. Multi-file system aggregates

This section discusses multi-file system aggregates, however, it is recommended that you use compatibility

mode aggregates because they are more like HFS file systems. Refer to Chapter 1, “zSeries File System

(zFS) overview,” on page 3. Compatibility mode aggregates have a single file system in the aggregate and

are fully supported in a sysplex (shared file system) environment. Refer to Chapter 4, “Creating and

managing zFS file systems using compatibility mode aggregates,” on page 11 for information on zFS

compatibility mode aggregates and file systems.

Note: Multi-file system aggregate support is not planned to be enhanced and might be removed sometime

in the future.

Multi-file system aggregates are not supported in a sysplex shared file system environment. Refer to

Chapter 5, “Sysplex considerations,” on page 21 for information on shared file systems.

Multi-file system aggregates allow the administrator to create multiple file systems in a single aggregate.

This allows space sharing between different file systems in the same aggregate. Therefore, if files are

being deleted from one file system, another file system (in the same aggregate) can use that physical

space for creating new files.

Creating a multi-file system aggregate

A multi-file system aggregate is a VSAM Linear Data Set (LDS) that can contain multiple zFS file systems.

The multi-file system aggregate and the zFS file systems that are contained in the aggregate are created

separately. First, the multi-file system aggregate is created using the zFS ioeagfmt utility. The aggregate

must be attached and then one or more zFS file systems are created in the aggregate using one or more

zfsadm create commands. Creating a zFS multi-file system aggregate is a two step process:

1. Create a VSAM LDS using IDCAMS. The VSAM Linear Data Set must have a secondary allocation

size specified, if you want to use dynamic grow. See “Dynamically growing a multi-file system

aggregate” on page 31 for additional information.

2. Format the VSAM LDS as a multi-file system aggregate using ioeagfmt.

The VSAM LDS and the zFS multi-file system aggregate both have the same name and that name is

equal to the VSAM LDS cluster name.

Figure 8 on page 28 shows an example of a job that creates and formats a zFS multi-file system

aggregate.

© Copyright IBM Corp. 2001, 2007 27

After the multi-file system aggregate is formatted, it contains zero zFS file systems in it. The size of the

aggregate is reported by ioeagfmt as the number of 8K blocks that fit into the primary allocation or as

specified on the -size option. The multi-file system aggregate must then be attached on a system before

any zfsadm commands can be issued against it.

The default for the size of the aggregate is the number of 8K blocks that fits in the primary allocation. You

can specify a -size option giving the number of 8K blocks for the aggregate. If you specify a number that

is less than (or equal to) the number of blocks that fits into the primary allocation, the primary allocation

size is used. If you specify a number that is larger than the number of 8K blocks that will fit into the

primary allocation, the VSAM LDS is extended to the size specified. (You may need to specify the -grow

option if the extension will not fit on a single volume.) A secondary allocation on the VSAM LDS is not

required. This occurs during its initial formatting. Sufficient space must be available on the volume(s).

Multiple volumes may be specified on the DEFINE of the VSAM LDS. DFSMS decides when to allocate on

these volumes during extension. VSAM LDSes greater then 4 GB may be specified by using the extended

format and extended addressability capability in the data class of the data set. Refer to z/OS DFSMS

Using Data Sets for information on VSAM data sets greater than 4 GB in size. zFS does not support the

use of a striped VSAM Linear Data Set as a zFS aggregate. If you attempt to attach a zFS aggregate that

had previously been formatted and is a striped VSAM LDS, it will only attach as read-only.

When you attach a multi-file system aggregate on a system, the zFS Physical File System (PFS) must be

active on that system. Refer to Chapter 3, “Managing zFS processes,” on page 9 for information on

starting zFS. You can attach in one of the following ways:

v The zfsadm attach command can be issued on that system, or

v A define_aggr statement can be placed in the IOEFSPRM file for that system and the ZFS PFS can be

started (or restarted).

After a new multi-file system aggregate is defined and formatted, the zFS administrator attaches it by

issuing the zfsadm attach command and then adds a define_aggr statement for the aggregate in that

system’s IOEFSPRM file so that the aggregate is automatically attached each time the ZFS PFS is

subsequently started (or restarted). The define_aggr statement does not have to be added to the

IOEFSPRM file but then the aggregate would need to be attached (by using the zfsadm attach command)

each time the ZFS PFS is started (or restarted).

//USERIDA JOB ,’Multi-File System’,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

//DEFINE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//AMSDUMP DD SYSOUT=H

//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000

//SYSIN DD *

 DEFINE CLUSTER (NAME(OMVS.PRV.MULTI.AGGR002) -

 VOLUMES(PRV000) -

 LINEAR CYL(25 0) SHAREOPTIONS(3))

/*

//CREATE EXEC PGM=IOEAGFMT,REGION=0M,

// PARM=(’-aggregate OMVS.PRV.MULTI.AGGR002’)

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

Figure 8. Job to create a multi-file system aggregate

28 z/OS V1R9.0 Distributed File Service zFS Administration

The zfsadm attach command for the multi-file system aggregate just created is shown in the following

example:

zfsadm attach -aggregate omvs.prv.multi.aggr002

A define_aggr statement in the IOEFSPRM file for the multi-file system aggregate just created is shown in

the following example:

define_aggr cluster(omvs.prv.multi.aggr002)

Note: zFS aggregate names are case insensitive. Since they are always VSAM LDS names, they are

always folded to upper case.

After the multi-file system aggregate is attached, the administrator can now create zFS file systems in the

aggregate. This is accomplished using the OMVS zfsadm create command. The following example shows

an example of creating a file system in the aggregate you just created and attached:

zfsadm create -filesystem OMVS.PRV.FS1 -aggregate omvs.prv.multi.aggr002 -size 5000

The previous example creates a zFS file system (named OMVS.PRV.FS1) in the

OMVS.PRV.MULTI.AGGR002 aggregate. The file system has a maximum size of 5000 1K blocks.

Note: zFS file system names are case sensitive. The file system name specified on the zfsadm create

command is not folded to upper case. If you create a zFS file system using lower case letters, it

must be mounted using these same lower case letters. This can be accomplished by using the

TSO/E MOUNT command and surrounding the file system name with a pair of three single quotes.

Refer to the z/OS UNIX System Services Command Reference for information on the TSO/E

MOUNT command.

If you are using both multi-file system aggregates and compatibility mode aggregates, do not name any file

systems in multi-file system aggregates with the same name as any of your compatibility mode

aggregates. If you do this, you will get a different file system mounted depending on whether an aggregate

is attached or not. For example, suppose you have compatibility mode aggregate A.B.C and you have

multi-file system aggregate D.E.F that contains file system A.B.C. When you mount file system A.B.C, you

will get the one in aggregate D.E.F mounted if D.E.F is attached. If D.E.F is not attached, you will get

compatibility mode aggregate A.B.C mounted.

The maximum size of the file system you just created is known as its quota. This is a logical number that

is compared against each time additional blocks are allocated to the file system. When the quota is

reached, the file system indicates that it is full (even if there are more physical blocks available in the

aggregate). A quota can be smaller than the space available in the aggregate (this is typical), it can be

equal or it can be larger. If the quota is larger than the space available in the aggregate, or more typically,

if the sum of the quotas for all file systems in an aggregate is larger than the space available in the

aggregate, the file system can run out of physical space before it reaches its quota.

The quota of a file system can be displayed by using the zfsadm lsquota command and it can be

increased by using the zfsadm setquota command. The quota of a file system can also be decreased (as

long as the usage has not exceeded the new quota) by using the zfsadm setquota command. The quota

is the number used when determining if a message to the operator is required due to the FSFULL

parameter of the MOUNT command. Refer to “MOUNT” on page 72 for more information.

A file system’s quota can be dynamically increased if the FSGROW PARM was specified on the MOUNT

or if the fsgrow option is specified in the IOEFSPRM file. You must specify the amount that the quota

should grow (in k-bytes) and the number of times that the quota should be increased. (A history of the

number of times the quota has been increased is not kept across instances of the ZFS PFS. That is, the

number of times the quota has been increased is lost when ZFS is stopped and restarted.)

Chapter 8. Multi-file system aggregates 29

If you attempt to attach an aggregate that contains a duplicate file system name, the attach is successful

and a message is issued that states there are two file systems with the same filesystemname in use. The

zfsadm commands that refer to file systems allow a -aggregate option to qualify the file system name.

MOUNT allows an AGGREGATE PARM.

After creating a zFS file system in a multi-file system aggregate, the file system can be mounted. (The

aggregate must be attached before any file systems in a multi-file system aggregate can be MOUNTed.)

Following is an example of a TSO/E MOUNT command for the zFS file system just created:

MOUNT FILESYSTEM(’OMVS.PRV.FS1’) MOUNTPOINT(’/etc/mountpt2’) TYPE(ZFS) MODE(RDWR) NOAUTOMOVE

The previous example assumes that the directory /etc/mountpt2 exists and is available to become a

mount point. Note that the TYPE parameter of the MOUNT command specifies ZFS. This is required for

any zFS file systems in multi-file system aggregates. Once the zFS file system is mounted, applications

and commands can be executed and files and directories can be accessed in zFS just as in HFS. Refer to

Chapter 5, “Sysplex considerations,” on page 21 for the reason that NOAUTOMOVE is specified for file

systems in multi-file system aggregates.

When multiple file systems are created in an aggregate, this allows the possibility of space sharing

between those file systems. That is, physical DASD space that is made available by erasing files in one

file system (A), is potentially available to another file system (B) in the same aggregate (assuming that the

other file system (B) is not at its quota limit).

Starting with z/OS V1R7, when a zFS multi-file system aggregate is attached R/W, the on-disk format of

the aggregate is modified. It is changed from a version 1.3 aggregate to a version 1.4 aggregate. This

allows the performance of mount to be improved (especially for zFS file systems with many files and

directories). During the automatic conversion, you will see messages such as:

IOEZ00500I Converting PLEX.JMS.AGGR007.LDS0007 for fast mount processing

IOEZ00518I Converting filesystem PLEX.JMS.AGGR007.LDS0007 to allow for fast mount

You must install toleration APAR OA11573 on prior releases. This will allow the prior releases to correctly

access the new structure (version 1.4) for zFS aggregates. If you do not install toleration APAR OA11573

on prior releases, prior releases will not be able to correctly access the new structure.

In this case, you can convert a zFS aggregate back to a version 1.3 structure so that it can be accessed.

(You should, of course, apply toleration APAR OA11573 as soon as possible.) To convert a zFS aggregate

back to a version 1.3 structure, use the zFS IOEAGSLV (salvager) utility. A new option (-converttov3) is

provided to convert a version 1.4 zFS aggregate back to a version 1.3 zFS aggregate. The IOEAGSLV

utility (with the new -converttov3 option) is provided with z/OS Version 1 Release 8. IOEAGSLV is also

installed in the MIGLIB PDS. IOEAGSLV can be executed from any supported release by STEPLIBing to

MIGLIB. Here is a sample job:

//USERIDA JOB ,’Salvage’,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

//STEPLIB DD DSN=hlq.MIGLIB,DISP=OLD

//SALVAGE EXEC PGM=IOEAGSLV,REGION=0M,

// PARM=(’-aggregate PLEX.JMS.AGGR007.LDS0007 -converttov3’)

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

30 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|

|
|
|
|
|
|

Growing a multi-file system aggregate

If the sum of the quotas of all the file systems in an aggregate is greater than the physical space available

in the aggregate, it is possible for a file system to run out of physical space before exceeding its quota. If

this occurs, the application gets ENOSPC as a return code (the same return code it would get for

exceeding its quota). The administrator can grow the aggregate (that is, cause an additional allocation to

occur and format it to be part of the aggregate). This is accomplished with the zfsadm grow command.

There must be space on the volume(s) to extend the aggregate’s VSAM LDS. The size specified on the

zfsadm grow command must be larger than the current size of the aggregate.

For example, suppose a 2 cylinder (primary allocation, 3390) aggregate has a total of 180 8K blocks and a

(potential) secondary allocation of 1 cylinder. 180 8K blocks is 1440K bytes. A zfsadm aggrinfo command

for this aggregate might show 1440K. This is a total of 1440K.zfsadm grow does this by calling DFSMS to

allocate the additional DASD space. You may need to specify a few blocks larger than the current size

before an allocation occurs because DFSMS may require some number of reserved blocks. Refer to the

following example:

zfsadm aggrinfo omvs.prv.aggr004.lds0004

OMVS.PRV.AGGR004.LDS0004 (R/W MULT): 1295 K free out of total 1440

zfsadm grow omvs.prv.aggr004.lds0004 1440

IOEZ00173I Aggregate OMVS.PRV.AGGR004.LDS0004 successfully grown

OMVS.PRV.AGGR004.LDS0004 (R/W MULT): 1295 K free out of total 1440

zfsadm grow omvs.prv.aggr004.lds0004 1441

OMVS.PRV.AGGR004.LDS0004 (R/W MULT): 2015 K free out of total 2160

The aggregate now has a total size of 2160K bytes. The size of the aggregate is rounded up to the control

area (CA) size. You can specify 0 for the size to get a secondary allocation size extension. In this case, a

secondary allocation must have been specified on the VSAM LDS. File systems that have not exceeded

their quota can now use the additional physical space that is available. (If necessary, a file system quota

can be increased with the zfsadm setquota command.) Aggregates cannot be made smaller.

Dynamically growing a multi-file system aggregate

An administrator can specify that an aggregate should be dynamically grown if it becomes full. This is

specified by the -aggrgrow option on the zfsadm attach command or the aggrgrow suboption of the

define_aggr option of the IOEFSPRM file or globally by the aggrgrow option of the IOEFSPRM file. The

aggregate (that is, the VSAM Linear Data Set) must have secondary allocation specified when it is defined

and space must be available on the volume(s). The aggregate will be extended when an operation cannot

complete because the aggregate is full. If the extension is successful, the operation will be redriven

transparently to the application.

When an aggregate or file system becomes full

When a zFS file system in a multi-file system aggregate becomes full, you can add more space. But first,

you must first determine if you have run out of physical space in the aggregate or if you have reached the

file system quota limit. You can determine how much free space there is in the aggregate by using the

zfsadm aggrinfo command. For example:

zfsadm aggrinfo PLEX.JMS.AGGR001.LDS0001

PLEX.JMS.AGGR001.LDS0001 (R/W MULT): 2964 K free out of total 3600

You can determine how full the file system is by using the zfsadm lsquota command. For example:

zfsadm lsquota -filesystem OMVS.PRV.FS3 -aggregate PLEX.JMS.AGGR001.LDS0001

Filesys Name Quota Used Percent Used Aggregate

OMVS.PRV.FS3 7000 9 0 17 = 636/3600 (zFS)

Chapter 8. Multi-file system aggregates 31

|
|
|
|
|
|
|
|
|
|

|

You can allow an aggregate to grow automatically or you can explicitly grow it. Also, you can allow a file

system quota to grow automatically or you can explicitly set it larger. See the following table:

 Automatic Explicit

v Specify secondary allocation in DEFINE of VSAM LDS,

and

v Specify -aggrgrow in IOEFSPRM or on zfsadm attach,

and

v have space available on volume(s)

zfsadm grow aggrname newsizeinK

v Specify fsgrow(x,y) in IOEFSPRM or on MOUNT

PARM

zfsadm setquota filesystemname newsizeinK

Another way to relieve a file system full condition is to erase some files. If your aggregate is full and you

have cloned file systems in the aggregate, you may be able to free some physical space by recloning one

or more of the file systems.

Comparing compatibility mode aggregates and multi-file system

aggregates

The difference between a compatibility mode aggregate and a multi-file system aggregate is simply the

number of read-write file systems in the aggregate and whether the aggregate has been explicitly attached

or not. There is no special bit stored on the disk that indicates whether an aggregate is compatibility mode

or multi-file system.

A compatibility mode aggregate has exactly one read-write file system in the aggregate and it is not

attached before being mounted. It is only mounted and unmounted. (An implicit attach occurs during the

mount; an implicit detach occurs during the unmount. If the MOUNT is of type RDWR, the aggregate is

attached R/W. If the MOUNT is of type READ, the aggregate is attached R/O unless the RW PARM is

specified on the MOUNT.) To mount a compatibility mode aggregate, the aggregate name is specified as

the file system name. The decision as to whether to treat an aggregate as a compatibility mode aggregate

is made at mount time or explicit attach time. If no attach has been done and the mount is successful, the

aggregate is treated as a compatibility mode aggregate. The mount will only be successful if there is

exactly one read-write file system in the aggregate. If the name of the (only) file system in the aggregate

does not match the aggregate name, the file system name will be renamed so its name is the same as the

aggregate name. For a mount of type RDWR, the file system name will be changed on disk. For a mount

of type READ, the changed name will be kept in memory.

If an explicit attach is done before any mounting, the aggregate is treated as a multi-file system aggregate.

If you want, you can cause zFS to treat an aggregate that has been formatted with the -compat option, as

a multi-file system aggregate by attaching it before you mount the file system. This would allow you to

create another file system in the aggregate. This would, however, mean that the aggregate cannot be

treated as a compatibility mode aggregate anymore.

You can always query an (attached) aggregate to determine if it is compatibility mode or multi-file system

using the zfsadm aggrinfo command. COMP indicates compatibility mode; MULT indicates multi-file

system.

Sharing zFS data between systems

The only fully supported mechanisms for sharing zFS data between systems are the following:

v using shared file systems in a sysplex (see Chapter 5, “Sysplex considerations,” on page 21)

v read-only sharing (a zFS aggregate is attached read-only to multiple systems and no system has the

aggregate attached read-write)

32 z/OS V1R9.0 Distributed File Service zFS Administration

There is limited support for a zFS aggregate to be attached read-write to one system and attached

read-only on another system.

If you attach a zFS aggregate read-write to a system (system A), you cannot attach that aggregate

read-write to any other system (system B). If you attempt to attach the aggregate read-write to another

system (system B), the attach will fail.

If you subsequently attach the aggregate read-only on another system (system B), the attach will succeed

if no data has been written to the aggregate since it was attached read-write. If data has been written, you

will receive reason code EFxx6271 indicating that the log must be replayed and the read-only attach will

fail.

Note: If you are running z/OS V1R6 or later on the system where the file system is mounted read-write,

you can quiesce and unquiesce the aggregate and clear the log. For example,

zfsadm quiesce -aggrname name

and then

zfsadm unquiesce -aggrname name

Otherwise, you need to detach the read-write aggregate from the system (system A) and then attach the

aggregate read-write on that same system (system A). This will clear the log and allow it to be attached

read-only (on system B). Once the aggregate is successfully attached read-only, you will receive a

message (informational message ″IOEZ00439I Read-only aggregate aggrname is attached read-write on

another system.″) and errors may occur on the read-only aggregate (system B) if writes have occurred on

the aggregate from the system where it is read-write attached. To recover from the errors on the read-only

aggregate, you need to detach the read-write aggregate (system A) and then attach it read-write (system

A). Then you can detach the read-only aggregate and then attach it read-only (system B).

Chapter 8. Multi-file system aggregates 33

34 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 9. Performance and debugging

This section discusses performance tuning techniques and what should be done if a problem occurs that

requires IBM service assistance. The examples presented here are for illustrative purposes only—it is

normal for the output of some reports to wrap.

Performance tuning

zFS performance is dependent on many factors. zFS provides performance information to help the

administrator determine bottlenecks. The IOEFSPRM file contains many tuning options that can be

adjusted. The output of the operator modify query commands provide feedback about the operation of

zFS. This section describes those IOEFSPRM options and the operator commands that relate to

performance.

zFS performance can be optimized by tailoring the size of its caches to reduce I/O rates and pathlength. It

is also important to monitor DASD performance to ensure there are no volumes or channels that are

pushed beyond their capacity. The following describes some of the considerations when tuning zFS

performance.

Total cache size

The total storage size for all of the caches that reside in the zFS address space must be less than 2 GB.

zFS terminates when it cannot obtain all the storage it needs for the caches specified in IOEFSPRM file.

In addition to the zFS address space caches, storage is necessary for processing file requests and for the

products zFS might use. As a result, you must restrict the total zFS address space cache storage to

approximately 1.5 GB. Use MODIFY ZFS,QUERY,STORAGE to determine the total allocated zFS storage.

The MODIFY ZFS,QUERY,ALL command also shows the total zFS storage allocated, but includes the

storage allocated for all the caches and everything else zFS might need. The zFS address space caches

include:

v “Metadata cache”

v “Transaction cache” on page 36

v “Vnode cache” on page 36

The user data cache, log file cache, and metadata backing cache reside in data spaces and do not use

zFS address space storage.

Metadata cache

The metadata cache is used to contain all file system metadata which includes all directory contents, file

status information (such as atime, mtime, size, permission bits, and so on), file system structures and

additionally, it also caches data for files smaller than 7 K. Essentially, zFS stores a file by using one of the

following three methods. For additional information on how zFS shows free blocks, see “zFS disk space

allocation” on page 16.

inline If the file is smaller than 52 bytes, its data is stored in the structure that contains the

status information for the file.

fragmented If the file is less than 7 K it is stored in blocks on disk that could be shared with other files,

hence multiple files are stored in the same physical disk block. Physical disk blocks are

always 8K in size.

blocked Files larger than 7 K are stored in multiple blocks, blocked files are only stored in the user

file cache, and all I/O is performed directly to or from user file cache buffers.

 Because inline files are stored in the status block, files that are stored on disk by using the inline method

are stored in the metadata and hence are cached in the metadata cache (and also in the user file cache).

© Copyright IBM Corp. 2001, 2007 35

|
|
|
|
|

|
|
|

|

|

|

|
|

Because the metadata cache is the only component that knows about multiple files sharing the same disk

blocks, small fragmented files are stored in the metadata cache (and also in the user file cache) and I/O is

performed directly to or from the metadata cache for these small user files.

Generally metadata is referred to and updated very frequently for most zFS file operations, hence

achieving a good hit ratio is often essential to good performance for most workloads. A good hit ratio might

be considered to be 90% or more depending on your workload.

The metadata cache is stored in the primary address space and its default size is 32 M. Because the

metadata cache only contains metadata and small files it normally does not need to be nearly as large as

the user file cache. The operator MODIFY ZFS,QUERY,ALL command output shows statistics for the

metadata cache including the cache hit ratio.

An optional metadata backing cache can be specified that extends the size of the metadata cache. It

resides in a data space and increases the amount of metadata that can be kept in memory. It might

improve the performance of workloads that require large amounts of metadata.

Transaction cache

Every change to zFS file system metadata is bounded by a transaction describing its changes by using

records written to the log file. The transaction cache is a cache of data structures representing

transactions.

The transaction cache is stored in the zFS primary address space with a default of 2000 transactions. zFS

dynamically increases the size of this cache based on the number of concurrent pending transactions

(transactions that have not been fully committed to disk) in the zFS file system. Therefore, the

administrator does not have to tailor the transaction cache size. However, the MODIFY ZFS,QUERY,ALL

output will show the transaction count at any given time.

Vnode cache

Every object in the zFS file system is represented by a data structure called a vnode in memory. zFS

keeps a cache of these and recycles these vnodes in an LRU fashion. Every operation in zFS requires a

vnode and z/OS UNIX keeps pointers to zFS vnodes. Because z/OS UNIX keeps references to zFS

vnodes, zFS might be forced to dynamically increase the size of this cache to meet the demands of z/OS

UNIX. To create a zFS vnode for a newly referenced file or a newly created file for a user requires the

pathlength to initialize the structure and obtain its status information from the metadata cache. If the file’s

status is not in the metadata cache then a disk I/O might also be required.

The vnode cache is stored in the zFS primary address space and the default number of vnodes is 32768.

As with any cache a good hit ratio is desirable and the operator MODIFY ZFS,QUERY,ALL command

shows the vnode cache hit ratio. Because the vnode cache is essentially backed by the metadata cache, if

the vnode hit ratio is low but the metadata cache hit ratio is high your performance might not suffer too

much since a vnode cache miss only requires some pathlength to initialize the vnode structures.

User file cache

The user file cache is used to cache all ″regular″ files. It caches any file no matter what its size and

performs write-behind and asynchronous read-ahead for files. It performs I/O for all files that are 7 K or

larger. For files smaller than 7 K, I/O is normally performed through the metadata cache.

The user file cache is allocated in data spaces. Its size by default is 256M and can be tailored to meet

your performance needs based on your overall system memory. The maximum size is 65536M (which is

64G). The general rule for any cache is to ensure a good hit ratio and additionally, for a user file cache it

is good to have it large enough to allow write-behind activity to occur (if the cache is too small you need to

36 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

recycle buffers more frequently and it could degrade write-behind performance). The operator MODIFY

ZFS,QUERY,ALL command output shows the cache hit ratio. (Actually, it shows the ″Fault Ratio″. To get

the hit ratio subtract the fault ratio from 100%).

In general you should have hit ratios of at least 80% or more, over 90% usually gives good performance.

However, the desired hit ratio is very much workload dependent. For example, a zFS file system exported

exclusively to SMB clients by using the SMB server would likely have a low hit ratio because the SMB

client and the SMB server caches data, making the zFS cache achieve a low hit ratio in this case. That is

expected and is not considered a problem.

NOREADAHEAD option

For sequential file access, read-ahead provides an overlap of I/O with processing that can result in smaller

response time for file read requests. However for random file access, read-ahead can degrade

performance. zFS generally attempts to first determine if a file’s access pattern is sequential or random

before it decides if read-ahead should be performed for that file. Because zFS really has no knowledge of

an applications future requests sometimes zFS can make the wrong guess. For file systems that have

random access patterns, which are typical for database systems such as Lotus Notes®, sequential access

is rare and the administrator can disable read-ahead for that file system by specifying the

NOREADAHEAD option for the MOUNT command. This ensures that zFS never performs read-ahead for

any files in that file system and avoids any overhead due to unnecessary read-aheads.

Log files

Every zFS aggregate contains a log file used to record transactions describing changes to the file system

structure. This log file is, by default, 1% of the aggregate size but is tailorable by the administrator on the

ioeagfmt command. Usually, 1% is sufficient for most aggregates. However, larger aggregates might need

less than 1%, while very small aggregates might need more than 1% if a high degree of parallel update

activity occurs for the aggregate.

Log file cache

The log file cache is a pool of 8 K buffers used to contain log file updates. Log file buffers are always

written asynchronously to disk and normally only need to be waited upon when the log is becoming full, or

if a file is being fsync’ed.

The log file cache is stored in a data space and its default is 64 M. The log file cache is grown

dynamically by adding one 8 K buffer for each attached aggregate. This ensures each aggregate always

has one 8 K buffer to use to record its most recent changes to file system metadata. Because log files are

written asynchronously, the cache essentially allows write-behind of log files and because the cache is

shared among all aggregates, aggregates that have a higher write rate use more buffers in the cache

using a least-recently-used (LRU) algorithm.

The log file cache is a write-only cache, so a read hit ratio is not relevant, however the operator MODIFY

ZFS,QUERY,ALL command does show log file I/O waits. It is desirable to make the log file cache large

enough so that log file I/O waits do not occur too frequently. However, every workload is different. For

example, workloads that issued fsync operations force zFS to sync the log file more frequently.

Fixed storage

By default, zFS does not fix any pages in any of the caches except when an I/O is pending to or from the

cache buffers. The administrator can permanently page fix the user file cache, the metadata cache, and/or

the log file cache by choosing the fixed option for the cache. This ensures the cache experiences no

paging and avoids the overhead of page fixing for each I/O but comes at the expense of using real

storage for the given cache which means the real storage is not available for other applications.

If your file system performance is critical and you have enough real memory to support it, the fixed option

can be useful. Otherwise, you should not set it.

Chapter 9. Performance and debugging 37

|
|
|

|
|
|
|

I/O balancing

Any file system’s performance is heavily dependent on DASD I/O performance. If any channel(s) or DASD

volume(s) are overloaded, then excessive I/O waits could occur for that DASD.

Performance products such as RMF™ will show DASD performance.

zFS operator MODIFY ZFS,QUERY,ALL commands also provide reports that show I/O rates per

aggregate, and file system request rates per aggregate and per file system. This information, along with

DASD performance information from RMF or performance products similar to RMF can be used to easily

balance I/O among your DASD. For example, you can use the QUERY output to show which file systems

could be moved to different DASD to achieve a better balance among disks.

Monitoring zFS performance

You can monitor zFS performance through the MODIFY command. The syntax of this command is:

MODIFY ZFS,QUERY,<report>,<option>

where <report> is:

KN This report provides counts of calls made to zFS from z/OS UNIX and the average response time

of each call. This is the basic measure of zFS performance. There are no <options>s for this

report. See “KN” on page 39 for details of the report.

VM This report provides performance information for the user file cache including cache hit ratios, I/O

rates and storage usage. There are no <option>s for this report. See for details of the report. See

“VM” on page 40 for details of the report.

LFS This report provides detailed file system statistics including the performance of the zFS metadata

caches, the vnode cache and the aggregate I/O statistics. There are no <option>s for this report.

See “LFS” on page 42 for details of the report.

LOCK This report provides a measure of how much lock contention and how often z/OS UNIX threads

wait for certain events such as user file cache reclaim. There are no <option>s for this report. See

“LOCK” on page 46 for details of the report.

STOR This report provides a detailed breakdown of zFS allocated storage by component. By default this

report just lists storage usage by zFS component, if you use the details option then you will get

more detailed information for each zFS component. See “STOR” on page 47 for details of the

report.

FILE This report provides a detailed breakdown of requests per zFS files system and aggregate. By

default this report lists only file systems and aggregates that had active requests since the last

statistics reset. If you use the ALL option you get all file system and aggregates regardless of

whether they were active or not. See “FILE” on page 48 for details of the report.

ALL This report shows all the above reports. However, for the STOR report, the details option is off and

the FILE report indicates only active file systems.

You can also reset the statistics for any given zFS report or reset all of the internal zFS statistics. The

syntax of this command is:

MODIFY ZFS,RESET,<report>

where <report> is KN, VM, LFS, LOCK, STOR, FILE, ALL.

Resetting the statistics is useful if you want to view zFS performance for a given time of day, such as

during peak usage. For example, if you want performance of zFS between 1 p.m. and 3 p.m. you would

enter MODIFY ZFS,RESET,ALL at 1 p.m and enter MODIFY ZFS,QUERY,ALL at 3 p.m.:

MODIFY ZFS,RESET,ALL

38 z/OS V1R9.0 Distributed File Service zFS Administration

||
|

|
|
|

|

Monitor period

MODIFY ZFS,QUERY,ALL

The zFS query output from the MODIFY ZFS,QUERY, <report> command is written to the system log.

Sample zFS query reports

The next sections show sample zFS query outputs and describes the relevant fields of each report. Some

fields are used mainly by IBM service but are included here for completeness.

KN

The QUERY,KN report shows basic zFS performance, it shows all calls made to zFS by z/OS UNIX since

the last statistics reset and the average response time in milliseconds for each request. These requests

are the official interface between z/OS UNIX and zFS and is the most fundamental measure of zFS

performance because it includes any CPU, I/O wait time or lock wait time.

The times here are only the zFS portion of the overall command response time. For example, entering a

mkdir command from z/OS UNIX will actually result in many zFS calls, and the zfs_mkdir time is only the

portion of time it took zFS to perform the actual mkdir. Hence, application time and time spent processing

in z/OS UNIX is not included here.

F ZFS,QUERY,KN

IOEZ00438I Starting Query Command KN.

 PFS Calls on Owner

Operation Count XCF req. Avg Time

--------- ---------- ---------- ----------

zfs_opens 4 0 0.148

zfs_closes 4 0 0.519

zfs_reads 1 0 0.434

zfs_writes 30000 0 0.063

zfs_ioctls 0 0 0.000

zfs_getattrs 7 0 0.283

zfs_setattrs 0 0 0.000

zfs_accesses 1 0 0.132

zfs_lookups 9 0 23.787

zfs_creates 0 0 0.000

zfs_removes 0 0 0.000

zfs_links 0 0 0.000

zfs_renames 0 0 0.000

zfs_mkdirs 0 0 0.000

zfs_rmdirs 0 0 0.000

zfs_readdirs 0 0 0.000

zfs_symlinks 0 0 0.000

zfs_readlinks 0 0 0.000

zfs_fsyncs 0 0 0.000

zfs_truncs 1 0 55.180

zfs_lockctls 0 0 0.000

zfs_audits 4 0 0.221

zfs_inactives 1 0 0.048

zfs_recoveries 0 0 0.000

zfs_vgets 1 0 0.024

zfs_pfsctls 4 0 492.122

zfs_statfss 0 0 0.000

zfs_mounts 4 0 2138.552

zfs_unmounts 0 0 0.000

zfs_vinacts 0 0 0.000

--------- ---------- ---------- ----------

TOTALS 30041 0 0.423

IOEZ00438I Starting Query Command KN.

 PFS Calls on Client

Chapter 9. Performance and debugging 39

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Operation Count XCF req. Avg Time

--------- ---------- ---------- ----------

zfs_opens 0 0 0.000

zfs_closes 0 0 0.000

zfs_reads 0 0 0.000

zfs_writes 0 0 0.000

zfs_ioctls 0 0 0.000

zfs_getattrs 0 0 0.000

zfs_setattrs 0 0 0.000

zfs_accesses 0 0 0.000

zfs_lookups 0 0 0.000

zfs_creates 0 0 0.000

zfs_removes 0 0 0.000

zfs_links 0 0 0.000

zfs_renames 0 0 0.000

zfs_mkdirs 0 0 0.000

zfs_rmdirs 0 0 0.000

zfs_readdirs 0 0 0.000

zfs_symlinks 0 0 0.000

zfs_readlinks 0 0 0.000

zfs_fsyncs 0 0 0.000

zfs_truncs 0 0 0.000

zfs_lockctls 0 0 0.000

zfs_audits 0 0 0.000

zfs_inactives 0 0 0.000

zfs_recoveries 0 0 0.000

zfs_vgets 0 0 0.000

zfs_pfsctls 0 0 0.000

zfs_statfss 0 0 0.000

zfs_mounts 0 0 0.000

zfs_unmounts 0 0 0.000

zfs_vinacts 0 0 0.000

--------- ---------- ---------- ----------

TOTALS 0 0 0.000

IOEZ00025I zFS kernel: MODIFY command - QUERY,KN completed successfully.

VM

The User File (VM) Caching System Statistics report shows the performance of the zFS user file cache.

This size of the cache is controlled by the user_cache_size zFS configuration option or the zfsadm

config command.

The zFS user file cache data is stored in a collection of dataspaces. zFS prefers to use multiple

dataspaces rather than one large dataspace when it can to reduce lock contention (as shown in this

example). zFS has a structure for each file currently cached, each cached file is broken into 64K segments

and each segment is broken into 4K pages. A segment is assigned to a dataspace, hence the pages for

any given segment belong only to one dataspace. A file’s segments can be scattered throughout multiple

segments.

At any given time a file need not (and for large files often might not) have all of its segments in the cache.

Furthermore, any segment need not (and often might not) have all of its pages in the cache. Reuse of

pages and segments is done in an LRU fashion.

The cache provides asynchronous read-ahead and write-behind of large files when access is considered

sequential. Read-ahead and write-behind for a file is performed by reading/writing segments (up to 64K).

 User File (VM) Caching System Statistics

 --

External Requests:

Reads 1 Fsyncs 0 Schedules 3

40 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

Writes 30000 Setattrs 1 Unmaps 0

Asy Reads 1 Getattrs 9 Flushes 0

File System Reads:

Reads Faulted 1 (Fault Ratio 100.00%)

Writes Faulted 0 (Fault Ratio 0.00%)

Read Waits 0 (Wait Ratio 0.00%)

Total Reads 1

File System Writes:

Scheduled Writes 96 Sync Waits 0

Error Writes 0 Error Waits 0

Scheduled deletes 0

Page Reclaim Writes 0 Reclaim Waits 0

Write Waits 0 (Wait Ratio 0.00%)

Page Management (Segment Size = 64K)) (Page Size = 4K)

--

Total Pages 2560 Free 1026

Segments 16384

Steal Invocations 0 Waits for Reclaim 0

Number of dataspaces used: 1 Pages per dataspace: 2560

Dataspace Allocated Free

Name Segments Pages

-------- ---------- ----------

ZFSUCD00 97 1026

The following section describes the fields of the User File (VM) Caching System Statistics report:

External Requests: This section of the report describes the requests made to the user file cache to

perform operations as requested by applications. Reads, Writes show how often the cache was called to

read or write files. Asy Reads shows how often read-ahead is performed. Fsync shows how often

applications requested that zFS sync a file’s data to disk. Unmaps are the count of file deletions.

File System Reads: This section shows how often the cache had to read data from disk for a file. The

″Reads Faulted″ shows the count of read requests that needed to perform at least 1 I/O to read the

requested portion of the file from disk. ″Writes Faulted″ show the count of how often a write to a file

needed to perform a read from disk. If a write only updates a portion of a page of a file on disk and that

page is not in memory then the page needs to be read in (the zFS I/O driver can only perform I/O in whole

pages) before the new data is written to the in-memory page. Read Waits show how often a read had to

wait for a pending I/O (for example, how often a read of a file found that the desired range of the file is

pending read probably due to asynchronous read ahead). ″Total Reads″ is the total number of file system

reads made for any reason. Cache misses and read I/Os degrade application response time, the goal is

for all these numbers to be as low as possible. Increasing the cache size is the usual method for lowering

these numbers.

File System Writes: This section shows how often the cache wrote the data to disk. In general, it is

desirable to minimize the ″Page Reclaim Writes″ and ″Reclaim Waits″. If these occur often relative to the

external zFS request rate (the KN report shows that), then the cache might be too small.

v Scheduled Writes is the count of how often the cache wrote out dirty segments for a file. Segments

are written as soon as every page becomes dirty. When a file is closed all of its dirty segments are

scheduled asynchronously and segments are also written asynchronously during filesystem syncs via

the zFS sync daemon (which by default runs every 30 seconds).

v Sync Waits is the count of how often an fsync request needed to wait on pending I/O for dirty

segments.

Chapter 9. Performance and debugging 41

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

v Error Writes and ″Error Waits″ are error handling paths and should almost always be 0 unless a disk

hardware error occurs. Whenever an unexpected error occurs for a file all of its dirty segments are

written and synced to disk. (Note that a filesystem running out of space is not an error condition that

causes the cache to sync a file, the cache reserves storage for files as they are written which ensures

no unexpected out of space conditions arise).

v Scheduled Deletes is the count of times a pending I/O was cancelled due to a file being deleted. In

this case the data is not desired to be on disk (because the file is 0 link count) and thus if an I/O wait

can be avoided by cancelling the I/O it is done. Thus this is a performance optimization for file remove.

v Page Reclaim Writes is the count of times that a dirty segment had to be written to reclaim space in

the cache. ″Page Reclaim Waits″ is the count of times that the reclaim function needed to wait on

pending I/O to reclaim the pages of a segment.

v Write Waits is the count of times a write occurred to a page that was already pending I/O. In this case

the I/O needs to be waited upon before the page is updated with the new data.

Page Management: This section of the report shows the user file cache storage use. It shows total pages,

number of free pages, and total number of segments. Each dataspace used to hold cache pages is shown

with the total number of pages and number of free pages and allocated segments.

LFS

LFS:

 zFS Vnode Op Counts

Vnode Op Count Vnode Op Count

------------------------ ---------- ------------------------ ----------

efs_hold 0 efs_readdir 114

efs_rele 0 efs_create 307

efs_inactive 0 efs_remove 308

efs_getattr 2926 efs_rename 13

efs_setattr 17 efs_mkdir 27

efs_access 6772 efs_rmdir 27

efs_lookup 2303 efs_link 1

efs_getvolume 0 efs_symlink 4

efs_getlength 0 efs_readlink 5

efs_afsfid 0 efs_rdwr 0

efs_fid 0 efs_fsync 0

efs_vmread 6 efs_waitIO 4439

efs_vmwrite 4595 efs_cancelIO 4268

efs_clrsetid 0 efs_audit 0

efs_atime 0 efs_vmblkinfo 131

Total zFS Vnode Ops 26263

 zFS Vnode Cache Statistics

Vnodes Requests Hits Ratio Allocates Deletes

---------- ---------- ---------- ----- ---------- ----------

 130 926 921 99.460% 338 318

zFS Vnode structure size: 296 bytes

 Metadata Caching Statistics

Buffers (K bytes) Requests Hits Ratio Updates

---------- --------- ---------- ---------- ----- ----------

 4224 33792 139453 104957 75.2% 179863

 Metadata Backing Caching Statistics

Buffers (K bytes) Requests Hits Ratio Discards

---------- --------- ---------- ---------- ----- ----------

 4096 32768 340 0 0.0% 0

42 z/OS V1R9.0 Distributed File Service zFS Administration

Directory Cache Statistics

Dir Blocks (K bytes) Requests Hits Ratio Deletes

---------- --------- ---------- ---------- ----- ----------

 256 2048 3961 3934 99.318% 27

 Transaction Cache Statistics

Transactions started: 11422 Lookups on tran: 238405 EC Merges: 1195

Allocated Transactions: 2000 (Act= 0, Pend= 0, Comp= 1456, Free= 544)

 I/O Summary By Type

Count Waits Cancels Merges Type

---------- ---------- ---------- ---------- ----------

 177 209 0 0 File System Metadata

 1418 197 0 1027 Log File

 4595 150 1727 0 User File Data

 I/O Summary By Circumstance

Count Waits Cancels Merges Circumstance

---------- ---------- ---------- ---------- ------------

 6 6 0 0 Metadata cache read

 3 1 0 0 User file cache direct read

 0 0 0 0 Log file read

 0 0 0 0 Metadata cache async delete write

 0 0 0 0 Metadata cache async write

 148 68 0 0 Metadata cache lazy write

 0 0 0 0 Metadata cache sync delete write

 0 0 0 0 Metadata cache sync write

 4440 77 1727 0 User File cache direct write

 0 0 0 0 Metadata cache file sync write

 78 51 0 0 Metadata cache sync daemon write

 0 0 0 0 Metadata cache aggregate detach write

 0 0 0 0 Metadata cache buffer block reclaim write

 0 0 0 0 Metadata cache buffer allocation write

 0 0 0 0 Metadata cache file system quiesce write

 97 156 0 0 Metadata cache log file full write

 1418 197 0 1027 Log file write

 0 0 0 0 Metadata cache shutdown write

 zFS I/O by Currently Attached Aggregate

DASD PAV

VOLSER IOs Mode Reads K bytes Writes K bytes Dataset Name

------ --- ---- ---------- ---------- ---------- ---------- ------------

PRV001 1 R/W 0 0 0 0 SUDFS5.PRIVATE.LFSNET

PRV001 1 R/W 0 0 0 0 SUDFS5.PRIVATE.LFS106

PRV002 1 R/W 9 188 3427 205608 SUDFS5.PRIVATE.LFSFS

PRV001 1 R/W 0 0 0 0 SUDFS5.PRIVATE.TESTGROW

------ ---------- ---------- ---------- ----------

 4 9 188 3427 205608 *TOTALS*

Total number of waits for I/O: 556

Average I/O wait time: 62.215 (msecs)

zFS Vnode Op Counts: This section shows the number of calls to the lower layer zFS components. One

request from z/OS UNIX typically requires more than one lower layer call. Note that the output of this

report wraps.

Chapter 9. Performance and debugging 43

|
|
|

zFS Vnode Cache Statistics: This section shows the zFS vnode cache statistics. It shows the number of

currently allocated vnodes and the vnode hit ratio. ″Allocates″ and ″Deletes″ show requests to create new

vnodes (for operations like create or mkdir) and delete vnodes (for operations like remove or failed creates

or mkdirs). The size of this cache is controlled by the vnode_cache_size parameter and the demand for

zFS vnodes placed by z/OS UNIX. In general zFS tries to honor the setting of the vnode_cache_size

parameter and recycle vnode structures to represent different files. However, if z/OS UNIX requests more

vnodes than zFS has allocated then zFS must allocate vnodes to avoid applications failing. In general a

good hit ratio for this cache is desirable because a miss means initializing the data structures and the

initialization requires a read of the object’s status from disk. Often this would be in the metadata cache but

it’s not guaranteed. Hence a vnode cache lookup miss might sometimes require an I/O wait.

The vnode structure size is shown, however there are additional data structures anchored from the vnode

which also takes space, everything added together yields over 1K of storage per vnode. So you should

consider this when planning the size of this cache. Also note that initializing a vnode will not require an I/O

if the object’s status information is in the metadata cache, thus a good size metadata cache can be as

useful, and often more useful than an extremely large vnode cache.

Metadata Caching Statistics: This section shows the basic performance characteristics of the metadata

cache. The metadata cache contains a cache of all disk blocks that contain metadata and any file data for

files less than 7K in size. For files smaller than 7K, zFS will place multiple files in one disk block (for zFS a

disk block is 8K bytes). Only the lower metadata management layers have the block fragmentation

information so user file I/O for small files is performed directly through this cache rather than the user file

cache. The statistics show the total number of buffers (each are 8K in size), the total bytes, the request

rates and hit ratio of the cache. The higher the hit ratio the better the performance. Metadata is accessed

frequently in zFS and all metadata is contained only (for the most part) in the metadata cache so a hit

ratio of 80% or more is usually desirable.

Metadata Backing Cache Statistics: This section describes the performance of the extension to the

metadata cache. The size of this extension is controlled by the metaback_cache_size configuration option.

The backing cache is stored in a dataspace and is used only to avoid metadata reads from disk. All

metadata updates and write I/O are performed from the primary metadata cache. Similar statistics to the

metadata cache are shown for this cache. Every hit in this cache avoids one disk read, but normally the

metadata backing cache is not needed except for workloads with many small user files or that are

constrained in the zFS primary address space (possibly due to a large demand of zFS vnodes made by

z/OS UNIX and its applications). Thus if the zFS address space has primary space available, the space

should be given to the primary metadata cache. In the example above the metadata backing cache is

providing no performance benefit (as shown by its 0 hit ratio). The metadata backing cache is not created

by default. It can only be created by specifying the metaback_cache_size configuration option of the

IOEFSPRM file or the zfsadm config command.

Directory Cache Statistics: zFS maintains a cache of directory buffers. This directory cache is also

backed by the metadata cache (that is, a directory page is always read to/from the metadata cache

into/out of the directory cache). The size is controlled by the dir_cache_size configuration option in

“IOEFSPRM” on page 126.

Transaction Cache Statistics: zFS updates metadata on disk by writing the changes to the metadata to a

log file. Each operation will create one or more transactions, write the updates to the logs associated with

the transaction and then end the transaction. Each transaction has an associated state (Active, Pending,

Complete or Committed):

Active There are still records being written to the log file describing updates being made by this

transaction, hence the transaction was started but has not yet ended. (This is shown as ″Act″ in

the report.)

Complete

The transaction has ended, all updates were written to the log file and the end transaction record

is also written to the log for that transaction. (This is shown as ″Comp″ in the report.)

44 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|

Committed

The transaction has ended and all updates are written to the log file AND all the log file pages that

contain information about this transaction reside on disk. At this point the transaction is

guaranteed. The update would not be lost if the system stopped. (In the report statistics for this

count is not shown. As soon as a transaction is committed the structure representing the

transaction is ″free″ for reuse for another transaction.)

Equivalence Classes

zFS does not use a common technique called 2 phase locking or commit. Rather, transactions that

are related are grouped into equivalence classes. zFS will decide when a transaction is related to

or dependent on another transaction. When this determination is made the transactions are

grouped into an equivalence class. Any transactions in the same equivalence class are committed

together or backed out together in the event of a system failure. By using equivalence classes,

threads running transactions simply run in parallel without added serialization between the two

(other than locks if they hit common structures) and simply add their associated transactions to the

same class. This thus increases throughput. The merge of equivalence classes occurs when two

transactions that need to be made equivalent are both already in equivalence classes. In this case

both classes are merged ″EC Merges″.

Pending

A transaction is pending when all its updates are written to the log file but other transactions in its

same equivalence class have not ended. (This is ″Pend″.)

The transaction cache size is by default 2000 transactions. It can be changed by the tran_cache_size

configuration option. In general, zFS will increase the size of the cache if it determines too many I/O waits

are occurring to sync log file pages to commit transactions so their structure can be freed and this

improves performance. Also, if you are using the zfsadm config command to set the tran_cache_size, the

transaction cache will not be shrunk too small as to cause excessive log file syncs and you will see a

failure if you attempt to set the cache too small. As a rule of thumb the default should be fine for most

customers. If zFS determines more are needed for performance it will allocate more. zFS is a little

conservative about adding more transaction structures, so you might get a small performance boost by

starting with a larger transaction cache size so zFS does not need to make checks to determine if it can

increase the size or sync log file pages.

I/O Summary By Type & Circumstance: This section is mainly for IBM internal use in diagnosing

performance related problems. zFS keeps detailed statistics on how often it performs I/O for various

circumstances and how often it waits on that I/O to allow for easy determination of performance problems.

zFS I/O by Currently Attached Aggregate: The zFS I/O driver is essentially an I/O queue manager (one

I/O queue per DASD). It uses Media Manager to issue I/O to VSAM datasets. It generally sends no more

than 1 I/O per DASD volume to disk at one time. The exception is parallel access volume (PAV) DASD.

These DASD often have multiple paths and can perform multiple I/O in parallel. In this case zFS will divide

the number of access paths by 2 and round any fraction up. (Example, for a PAV DASD with 5 paths zFS

will issue at most 3 I/Os at one time to Media Manager).

The reason zFS limits the I/O is that it uses a dynamic reordering and prioritization scheme to improve

performance by reordering the I/O queue on demand. Thus high priority I/Os (I/Os that are currently being

waited on for example) are placed up front, and an I/O can be made high priority at any time during its life.

This reordering has been proven to provide the best performance, and for PAV DASD, performance tests

have shown that not sending quite as many I/Os as available paths allows zFS to reorder I/Os and leave

paths available for I/Os that become high priority.

Another feature of the zFS I/O driver is that by queueing I/Os it allows I/Os to be cancelled (and thus the

overhead of doing the I/O is removed). This is done in cases where a file was written and then

immediately deleted for example. Finally, the zFS I/O driver will merge adjacent I/Os into one larger I/O to

reduce I/O scheduling overhead, this is often done with log file I/Os because often times multiple log file

Chapter 9. Performance and debugging 45

I/Os are in the queue at one time and the log file blocks are contiguous on disk. This allows log file pages

to be written aggressively (making it less likely that users lose data in a failure) and yet allow them to be

batched together for performance if the disk has a high load.

Thus the ″PAV IOs″ column shows how many I/Os are sent in parallel to Media Manager by zFS, non PAV

DASD always shows the value 1.

The DASD volser for the primary extent of each aggregate is shown along with the total number of I/Os

and bytes read/written.

Finally, the number of times a thread processing a request must wait on I/O and the average wait time in

milliseconds is shown. By using this information in conjunction with the KN report, you can break down

zFS response time into what percentage of the response time is for I/O wait. To reduce I/O waits you can

run with larger cache sizes. Small log files (small aggregates) that are heavily updated might result in I/Os

to sync metadata to reclaim log file pages resulting in additional I/O waits. Note that this number is *NOT*

DASD response time. It’s affected by it but it’s not the same. If a thread does not have to wait for an I/O

then it has no I/O wait, if a thread has to wait for an I/O but there are other I/Os being processed it might

actually wait for more than 1 I/O (the time in queue plus the time for the I/O).

This report along with RMF DASD reports and the zFS FILE report can be used to balance zFS

aggregates among DASD volumes to ensure an even I/O spread.

LOCK

The LOCK report is mainly for IBM service to use when diagnosing performance problems relating to lock

contention.

The report shows a detailed breakdown of how often zFS waits for locks and which locks cause the most

contention. It also monitors how often a thread sleeps waiting for an event. The lock waits and lock wait

time and sleep waits and sleep wait time can be used in conjunction with the KN report to break down zFS

response time into what percentage of the time zFS is waiting on internal locks or events to occur. See the

following example:

LOCK:

 Locking Statistics

Untimed sleeps: 22 Timed Sleeps: 0 Wakeups: 21

Total waits for locks: 3698

Average lock wait time: 8.261 (msecs)

Total monitored sleeps: 22

Average monitored sleep time: 0.792 (msecs)

 Top 15 Most Highly Contended Locks

 Thread Async Spin

 Wait Disp. Resol. Pct. Description

---------- ---------- ---------- ----- --------------

 877 0 899 35.763% Log system map lock

 1464 0 40 30.285% Anode bitmap allocation handle

 481 0 28 10.249% Anode fileset quota lock

 291 0 42 6.705% Transaction lock

 205 0 62 5.376% Metadata-cache buffer lock

 210 0 4 4.309% Anode fileset handle lock

 84 68 7 3.201% User file cache main segment lo

 0 55 0 1.107% Volser I/O queue lock

 38 0 0 0.765% Vnode-cache access lock

 2 23 11 0.724% Transaction-cache main lock

 19 0 3 0.443% Transaction-cache equivalence c

 21 0 0 0.422% Async IO event lock

 0 14 0 0.281% Cache Services association main

 6 0 0 0.120% Cache Services hashtable resize

46 z/OS V1R9.0 Distributed File Service zFS Administration

0 0 5 0.100% Transaction-cache complete list

Total lock contention of all kinds: 4966

 Top 5 Most Common Thread Sleeps

Thread Wait Pct. Description

----------- ----- -----------

 22 100.0% Transaction allocation wait

 0 0.0% OSI cache item cleanup wait

 0 0.0% Directory Cache Buffer Wait

 0 0.0% User file cache Page Wait

 0 0.0% User file cache File Wait

Example:

 From the KN report we get the following:

 Total zFS requests: 91905

 Avg. Resp. Time: 1.108

 From the LFS report we get:

 Total I/O waits: 556

 Avg. I/O wait time: 62.215

 Avg. I/O wait time per request = 556/91905 * 62.215 = 0.376

 (this is 34% of the response time (0.376/1.108=.34)).

 From the locking report we get:

 Total Waits for Locks: 3698

 Avg. Lock wait time: 8.261

 Avg. Lock wait time per request = 3698/91905 * 8.261 = 0.332

 (this is 30% of the response time (0.332/1.108=.30)).

By extrapolation, you can guess that the remaining time is CPU time and processor wait time.

STOR

The STOR report provides a breakdown of zFS storage usage. It can be used to determine how much

storage zFS uses based on a configuration change (such as increasing or decreasing a zFS cache via the

zfsadm config command).

Not shown here is the output of QUERY,STOR,DETAILS. That report breaks down each component and

shows how much storage is used for each data structure class and is intended primarily for IBM service.

STOR:

 zFS Primary Address Space Storage Usage

Total Bytes Allocated: 75907620 (74128K) (72M)

Total Pieces Allocated: 131853

Total Allocation Requests: 16783

Total Free Requests: 385

 Storage Usage By Component

Bytes No. of No. of

Allocated Pieces Allocs Frees Component

---------- ------ ------ ------ ---------

 66019 5 0 0 z/OS UNIX Interface

 91956 4120 3750 0 Media Manager I/O driver

 33555876 4 0 0 Trace Facility

 281236 3 0 0 Message Service

 35636 34 3 0 Miscellaneous

 1064 13 0 0 Aggregate Management

 111300 103 0 0 Filesystem Management

 10753 16 18 17 Administration Command Handling

 45976 280 50 2 Vnode Management

Chapter 9. Performance and debugging 47

211600 2515 1677 0 Anode Management

 2146508 9 0 0 Directory Management

 378632 5418 0 0 Log File Management

 36162280 25127 3 0 Metadata Cache

 372504 4020 6 0 Transaction Management

 328292 986 844 0 Asynchronous I/O Component

 35340 63 14 0 Lock Facility

 2172 51 3 0 Threading Services

 104424 2645 1567 356 Cache Services

 12832 11 0 0 Configuration parameters processing

 1922308 86385 8848 10 User File Cache

 30912 45 0 0 Storage Management

FILE

The FILE report lists every file system that was active since last reset by default (it will list all of them if

you use the ALL option). To conserve space the internal aggregate number is shown rather than the name

of the aggregate that contains the file system. Use the zfsadm lsfs command to determine the aggregate

name for each file system. The file systems are grouped in the report by aggregate with the most active

file systems listed first. The most active aggregates are listed first.

The Flg column indicates the aggregate status as attached (A), mounted (M), or both (AM).

The Operations column indicates the count of z/OS UNIX vnode calls to that particular file system. It is not

an I/O rate. If desired, use the RMF DASD reports, the LFS Aggregate I/O report, and the FILE report to

balance your file systems and aggregates among disks to provide a more even I/O spread.

FILE:

File System Name Aggr # Flg Operations

--- ------ --- ----------

OMVS.ZFS.DFBLD.DFSSRC 100008 AM 274472

OMVS.ZFS.LOCAL 100009 AM 111722

OMVS.ZFS.DCEDFBLD.DCES390.ETC.DCE 100010 AM 81632

OMVS.ZFS.DCEDFBLD.DFSLOCAL 100012 AM 52154

OMVS.ZFS.DCEDFBLD.OS390R10.ETC 100004 AM 44108

OMVS.ZFS.GPLTOOLS 100006 AM 8458

OMVS.ZFS.BLDTOOLS 100007 AM 8120

OMVS.ZFS.DCEDFBLD.VAR 100005 AM 314

OMVS.ZFS.USR.LOCAL 100011 AM 54

Debugging aids for zFS

If a problem occurs in zFS that requires the attention of IBM support, it is important to obtain the

appropriate problem determination information to help resolve the problem quickly. This section covers the

following topics:

Trace options for zFS

One of the most important aspects of zFS problem determination is its tracing capability. zFS has an

internal (wrap around) trace table that is always tracing certain events. The size of this trace table is

controlled by the IOEFSPRM trace_table_size option.

Steps for tracing on zFS

If you are recreating a problem and need to minimize the amount of information the trace generates, you

can reset (set to empty) the trace table. To accomplish this:

48 z/OS V1R9.0 Distributed File Service zFS Administration

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|

|
|
|

1. Enter the MODIFY ZFS,TRACE,RESET command.

2. Allocate the trace output data set and specify its name in the IOEFSPRM trace_dsn option.

3. Format and send the trace table and trace output data set using the MODIFY ZFS,TRACE,PRINT

command.

4. Capture the ZFSKNTnn member from the trace output data set (for example, copy it to a sequential

data set) so that it can be sent to IBM service.

A separate trace output data set is required for each member of a Sysplex.

1. Ensure that you set up the trace data sets so that each system in the sysplex can write to its own

trace output data set concurrently. This requires separate IOEFSPRM files or the use of system

symbols in the trace_dsn name or the use of an IOEPRMxx PARMLIB member. For more information,

see Chapter 5, “Sysplex considerations,” on page 21.

2. Allocate the data set as a PDSE, RECFM=VB, LRECL=133 with a primary allocation of at least 50

cylinders and a secondary allocation of 30 cylinders. Each trace output is created as a new member

with a name of ZFSKNTnn. nn starts at 01 and increments for each trace output until zFS is restarted.

After restart, when the next trace output is sent to the trace output data set, ZFSKNT01 is overlaid.

You should not be accessing the trace output data set while a trace is being sent to the trace output

data set. The space used by a particular trace depends on how large the trace_table_size is and how

recently the trace was reset.

For example, a 32M trace_table_size can generate a trace output member of 100 cylinders of 3390. It is

important that the trace output data set be large enough to hold the trace output. If it runs out of room

while sending the trace to the trace output data set, the complete trace will not be captured .

IBM service might need more events to be traced. Additional tracing can be specified in two ways:

v Add events to trace by specifying the ioedebug statements in a data set that is read when zFS is

started (or restarted). The data set name is specified in the IOEFSPRM debug_settings_dsn option. It

is a PDS member with an LRECL of at least 80. IBM specifies the exact statements needed in the data

set.

v Add the events to trace dynamically by entering the MODIFY ZFS,IOEDEBUG command. IBM specifies

the exact statements needed.

You can also enter the operator MODIFY ZFS,ABORT command to cause zFS to send the trace to the

trace output data set and to perform a dump. This also causes zFS to terminate and attempt to restart.

If you have a zFS dump but could not capture the trace, the trace can be obtained from the dump.

Overview of dumping for zFS

Another important source of information is a zFS dump. Any time a zFS failure occurs, you should check

the system log to see if zFS has performed a dump. In a sysplex, zFS will normally request a dump on the

other sysplex members so you should also check to see if other members have zFS dumps. Normally

these will have the following message:

IOEZ00337E zFS kernel: non-terminating exception 2C3 occurred, reason EA2F0385

The abend reason of EAxx0385 indicates that the dump was requested by zFS from another sysplex

member. If zFS does not automatically request a dump from the other sysplex members, you should enter

the MODIFY ZFS,DUMP command on these other systems.

zFS also sends the trace to the trace output data set when a zFS dump occurs. Note that when a zFS

abend occurs, other application failures might occur. For problem determination, these failures are not as

important as the original zFS failure and dump(s).

Chapter 9. Performance and debugging 49

|

|

|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|

|

|

|
|
|
|

|

|
|
|

|
|
|

Normally, zFS does not terminate as a result of a zFS failure. An aggregate might become disabled (see

“Diagnosing disabled aggregates” on page 54). If zFS does terminate, zFS attempts to restart after the

terminating exception occurs. If the restart is successful, you might need to remount any zFS file systems.

If a failure of a zFS operation occurs (other than a user error), but zFS does not dump, you should get a

trace of the failure, if possible. Perform the steps outlined in “Steps for tracing on zFS” on page 48:

You can also obtain a dump of the zFS address space by entering the MODIFY ZFS,DUMP command.

The dump should contain the zFS trace table. You must ensure the dump is complete. Partial dumps are

of little use.

Understanding zFS messages

Beginning with z/OS V1R7, zFS administration commands use XCF communications to exchange zFS

aggregate and file system information between members of the sysplex. During zFS initialization, zFS

must contact each other zFS system that is active in the sysplex group to announce itself to the other

members of the group and to receive information about attached aggregates from the other members of

the group. You might see messages (if there are other z/OS V1R7 members with zFS active) on the

operator console and in the system log such as:

10.27.58 DCEIMGVQ *IOEZ00525I Starting initialization with DCEIMGVN

10.28.03 DCEIMGVQ *IOEZ00526I Requesting aggregate information from DCEIMGVN

10.28.07 DCEIMGVQ IOEZ00528I Initialization with DCEIMGVN complete.

These messages are written to the operator console and then are deleted (DOMed) when the target

system (DCEIMGVN in this case) responds. Sometimes the messages will be deleted from the operator

console before they are displayed. In that case, they will not appear on the operator console (they will

always appear in the system log). On the target system(s), you will find messages (in the system log) such

as:

IOEZ00529I Preparing for initialization with DCEIMGVQ.

IOEZ00530I Ready to initialize with DCEIMGVQ.

IOEZ00532I Sending aggregate information to DCEIMGVQ.

IOEZ00533I Done initializing with DCEIMGVQ.

These messages do not appear on the operator console (except for IOEZ00530I which can appear on the

operator console). If a failure occurs, you might see a failure message on the initializing or the target

system. There can be an abend and a dump associated with this failure. The dump should be sent to IBM

service.

If the messages on the initializing system (IOEZ00525I or IOEZ00526I) or the message on the target

system (IOEZ00530I) do not get deleted from the operator console in a reasonable period of time, there

might be a problem with the initializing system or the target system. You should check to see if there is an

outstanding WTOR on either system or if there is a hang on either system.

The IOEFSPRM msg_output_dsn option can be specified. It specifies the name of a data set that

contains any output messages that come from the zFS PFS. This message output data set is only used

for zFS initialization messages. This might be helpful for debugging because this data set can be sent to

IBM service if needed. The msg_output_dsn is optional. If it is not specified, zFS PFS messages go only

to the system log. If it is specified, the data set should be pre-allocated as a sequential data set with a

RECFM=VB and LRECL=248 and should be large enough to contain all zFS PFS initialization messages

between restarts. The space used depends on how many zFS initialization messages are issued. A

suggested primary allocation is two cylinders with a secondary allocation of two cylinders. If the data set

fills up, no more messages will be written to the data set. (They will still go to the system log.) After zFS

restart, the msg_output_dsn data set specified is overwritten.

50 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|

|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

Determining service levels

The service level of the zFS physical file system can be determined by examining the messages that

occur on the operator’s console when zFS initializes as shown in the following example:

IOEZ00559I zFS kernel: Initializing z/OS zSeries File System

Version 01.09.00 Service Level 0000000 - HZFS390.

Created on Fri Mar 16 09:25:37 EST 2007.

Address space asid x3F

Or use the MODIFY ZFS,QUERY,LEVEL operator command and look for the following message:

IOEZ00020I zFS kernel: Initializing z/OS zSeries File System

Version 01.09.00 Service Level 0000000 - HZFS390.

Created on Fri Mar 16 09:25:37 EST 2007.

In addition, the service level of the zfsadm command can be determined by using the -level option of the

zfsadm command. For example:

zfsadm -level

IOEZ00020I zfsadm: z/OS zSeries File System

Version 01.09.00 Service Level 0000000 - HZFS390.

Created on Fri Mar 16 09:27:54 EST 2007.

Understanding zFS hang detection

The zFS hang detector monitors the current location of the various tasks processing in zFS. At a set

interval, the hang detector thread wakes up and scans the current user requests that have been called into

zFS. The hang detector processes this list of tasks and notes various pieces of information that allow it to

determine the location of the task. When the hang detector determines that a task has remained in the

same location for a predefined period of time, it attempts to determine why it is hung and if so, the hang

detector flags the task as a potential hang and either issues message IOEZ00524I and produces a dump

or issues IOEZ00547I to the console. If on a subsequent iteration the hang detector recognizes that this

task has finally progressed, it will DOM the message (remove it from the console). If the message is

removed, it means that the hang condition cleared. Messages IOEZ00524I and IOEZ00547I are also

issued and cleared when slowdown occurs—this is not an indication of a real hang, but that things are

progressing slowly because of a stressful workload or some other issue. In this case, you can discard the

dump.

Guideline: IOEZ00524I or IOEZ00547I only indicate a potential hang. Further review of the situation is

necessary to determine if a hang condition really exists.

Steps for resolving a zFS hang

Perform the following steps when a hang condition occurs.

 1. Continually monitor for the following messages:

IOEZ00524I

zFS has a potentially hanging thread caused by: UserList where: UserList is a list of address

space IDs and TCB addresses causing the hang.

IOEZ00547I

zFS has a potentially hanging XCF request on systems: Systemnames where: Systemnames is

the list of system names.

To start investigating, enter D OMVS,W to check the state of sysplex messages/waiters. Message

IOEZ00547I (hanging XCF request) can indicate an XCF issue. Check any outstanding message that

might need a response to determine if a system is leaving the sysplex or not (for example, IXC402D).

This might look like a zFS hang until that message gets a response.

 2. Enter the MODIFY ZFS,QUERY,THREADS command to determine if any zFS threads are hanging

and why.

Chapter 9. Performance and debugging 51

|

|
|

|
|
|
|

|

|
|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|

Note: The type and amount of information displayed as a result of this command is for internal use

and can vary between releases or service levels.

 3. Enter the D A,ZFS command to determine the zFS ASID.

 4. Enter F ZFS,QUERY,THREADS at one to two minute intervals for six minutes.

 5. Interrogate the output for any user tasks (tasks that do not show the zFS ASID) that are repeatedly in

the same state during the time you requested F ZFS,QUERY,THREADS. If there is a hang, this user

task will persist unchanged over the course of this time span. If the information is different each time,

there is no hang.

 6. Verify that no zFS aggregates are in the QUIESCED state by checking their status using the zfsadm

lsaggr or zfsadm aggrinfo command. For example, quiesced aggregates display as follows:

DCESVPI:/home/susvpi/> zfsadm lsaggr

IOEZ00106I A total of 1 aggregates are attached

SUSVPI.HIGHRISK.TEST DCESVPI R/W QUIESCE

DCESVPI:/home/susvpi/> zfsadm aggrinfo

IOEZ00370I A total of 1 aggregates are attached.

SUSVPI.HIGHRISK.TEST (R/W COMP QUIESCED): 35582 K free out of total 36000

DCESVPI:/home/susvpi/>

Resolve the QUIESCED state continuing to determine if there is a real hang condition. The hang

condition message can remain on the console for up to a minute after the aggregate is unquiesced.

Note: Message IOEZ00581E appears on the system that contains at least one zFS aggregate that is

quiesced. There is a time delay between when the aggregate is quiesced and when the

message appears. When there are no quiesced zFS aggregates on the system, this message

is DOMed. There is also a delay between when the last aggregate is unquiesced and when

the message is DOMed. This message is handled by a thread that wakes up every 30

seconds and checks for any quiesced aggregates owned by this system. It is possible for an

aggregate to be quiesced and unquiesced in the 30 second sleep window of the thread and no

quiesce message to appear. This message remains if one aggregate is unquiesced and

another is quiesced within the 30 second sleep window.

 7. Verify that there no zFS file systems being cloned by checking their status using the zfsadm lsfs

-long command. For example, cloning file systems display as follows:

zfsadm190075 lsfs -aggregate PLEX.JMS.AGGR004.LDS0004 -long

IOEZ00129I Total of 2 file systems found for aggregate PLEX.JMS.AGGR004.LDS0004

PLEX.JMS.AGGR004.LDS0004 100003,,6 RW (Mounted R/W) states 0x10001 (Clone running)

 4294967232 K alloc limit; 16 K alloc usage

 5040 K quota limit; 26 K quota usage

 16 K Filesystem Inode Table 14 file requests

 version 1.4

 Creation Tue Jun 11 19:18:04 2002

 Last Update Thu Oct 5 14:27:59 2006

PLEX.JMS.AGGR004.LDS0004.bak 100003,,5 BK (Not Mounted) states 0x30002 On-line

 4294967232 K alloc limit; 26 K alloc usage

 5040 K quota limit; 26 K quota usage

 16 K Filesystem Inode Table 2 file requests

 version 1.4

 Creation Tue Jun 11 19:17:27 2002

 Last Update Thu Oct 5 14:27:59 2006

Note: Message IOEZ00588E appears on the system that contains the cloning file system.

 8. Check if any user tasks are hung focusing on the tasks issued by IOEZ00524I. User tasks will not

have the same address space identifier (ASID) as the zFS address space. One or more threads

consistently at the same location might indicate a hang (for example, Recov, TCB, ASID Stack,

52 z/OS V1R9.0 Distributed File Service zFS Administration

|
|

|

|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

Routine, State). The threads in the zFS address space with the zFS ASID (for example, xcf_server)

are usually waiting for work. It is normal for the routine these threads are waiting in to have the same

name as the entry routine.

MODIFY ZFS,QUERY,THREADS

IOEZ00438I Starting Query Command THREADS.

 zFS and USS Tasks

Recov TCB ASID Stack Routine State

-------- -------- ---- -------- -------- --------

7047EA68 007FF290 0050 0BC46000 efscm_mkdir WAITLOCK

 since May 26 2:27:34 2006 Current DSA: 0BC46CB8

 wait code location offset=039C rtn=elbb_ReadGeneral

 lock=717E9CD8 state=F0753A69 owner=(70753A68 0053 7DFE88)

 lock description=Metadata-cache buffer lock

 ReadLock held for 70AA7D88 state=00000002 00000000

 lock description=User-cache resize lock

 ReadLock held for 713C53D0 state=00000002 00000000

 lock description=Anode handle lock

704489B8 007DDA48 0053 0BC43E70 agown_takeover_worke WAITLOCK

 since May 26 2:28:10 2006 Current DSA: 0BC44710

 wait code location offset=00E0 rtn=start_aggr_cmd

 lock=71888C70 state=F047F0E9 owner=(7047F0E8 0053 7DDC68)

 lock description=Aggregate syscall lock

7047F0E8 007DDC68 0053 0BC3FE70 agown_takeover_worke WAITLOCK

 since May 26 2:28:10 2006 Current DSA: 0BC40980

 wait code location offset=14B0 rtn=internal_assoc_iterate

 lock=704478A0 state=F072B309 owner=(7072B308 0053 7DFA60)

 lock description=Aggregate lock

7047E2D8 007DDE88 0053 0BC3DE70 agown_takeover_worke WAITLOCK

 since May 26 2:28:10 2006 Current DSA: 0BC3E710

 wait code location offset=00E0 rtn=start_aggr_cmd

 lock=71888C70 state=F047F0E9 owner=(7047F0E8 0053 7DDC68)

 lock description=Aggregate syscall lock

7047E608 007E00D0 0053 0BC3BE70 agown_master WAITLOCK

 since May 26 2:28:40 2006 Current DSA: 0BC3C2B8

 wait code location offset=030C rtn=agown_master

 lock=71888C70 state=F047F0E9 owner=(7047F0E8 0053 7DDC68)

 lock description=Aggregate syscall lock

7072B308 007DFA60 0053 0BC1DE70 block_zero_daemon IOWAIT

 since May 26 2:28:09 2006

70753A68 007DFE88 0053 0BC13E70 local_sync_daemon IOWAIT

 since May 26 2:27:33 2006

 ReadLock held for 716D4178 state=00000002 00000000

 lock description=Log file cache resize lock

70754D68 007E4380 0053 0BC17E70 comm_daemon RUNNING

 since May 26 2:32:59 2006

IOEZ00025I zFS kernel: MODIFY command - QUERY,THREADS completed

successfully.

Note: This information is for example purposes only.

 9. After you ensure there is a valid hang condition and not a slowdown, obtain the proper dumps if none

are present. IBM Support must have dumps of zFS, OMVS and the OMVS data spaces for problem

resolution. Obtain and save SYSLOG and dumps of zFS, OMVS and the OMVS data spaces using

JOBNAME=(OMVS,ZFS),DSPNAME=(’OMVS’.*) in your reply to the DUMP command. If you are running in

Chapter 9. Performance and debugging 53

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

a sysplex and zFS is running on other systems in the sysplex, dump all the systems in the sysplex

where zFS is running, dumping zFS, OMVS and OMVS data spaces. The following is an example of

the DUMP command:

DUMP COMM=(zfs hang)

R x,JOBNAME=(OMVS,ZFS),SDATA=(RGN,LPA,SQA,LSQA,PSA,CSA,GRSQ,TRT,SUM,COUPLE),

DSPNAME=(’OMVS’.*),END

Rule: You must capture dumps for IBM Support before taking any recovery actions (HANGBREAK,

CANCEL).

10. If you know which user task is hung (for example, returned in IOEZ00524I), enter the CANCEL or

STOP command to clear that task from the system.

11. Finally, if the previous steps do not clear the hang, do one of the following:

v Enter the MODIFY ZFS,HANGBREAK command to attempt to break the hang condition. The

MODIFY ZFS,HANGBREAK command posts any threads that zFS suspects are in a hang

condition with an error and can cause abends and dumps to occur, which you can ignore. After

entering the MODIFY ZFS,HANGBREAK command, the hang message can remain on the console

for up to one minute. When the MODIFY ZFS,HANGBREAK command completes, it issues

message IOEZ00025I. However, IOEZ00025I does not mean the system cleared the hang. Enter F

ZFS,QUERY,THREADS to check the output for indication the hang is clear. It is possible that the

MODIFY ZFS,HANGBREAK command can clear the current hang condition only to encounter yet

another hang. You might have to enter the MODIFY ZFS,HANGBREAK command several times.

v Or, if you users are hung in the file system, forcefully unmount the file system by entering the

MODIFY ZFS,ABORT command.

If you question the hang condition or if the commands mentioned above do not seem to resolve the

situation, contact IBM Support and provide all the dumps and SYSLOG information.

Diagnosing disabled aggregates

If an internal error is detected by zFS (causing a 2C3 abend) on an aggregate that is mounted R/W, zFS

will attempt to isolate the failure rather than taking zFS down. As a result, zFS might mark an aggregate

unavailable and issue a message similar to the following.

IOEZ00422E Aggregate PLEX.JMS.AGGR001.LDS0001 disabled for writing

This is in addition to a dump and possibly zFS trace information. You can contact IBM service and provide

the dump and the trace and any other information that is useful for diagnosing the problem (for example,

what was running on the system when the problem occurred).

When an aggregate is disabled, applications cannot write to the aggregate. Other aggregates that are not

involved in the failure remain available. The disabled aggregate will be unavailable for writing until it is

unmounted and mounted.

Note: Even though the aggregate is disabled, z/OS UNIX System Services will continue to display the

aggregate mounted as R/W. To determine if the aggregate has been marked as disabled, use the

zfsadm lsaggr command or the zfsadm aggrinfo command.

An aggregate that has been disabled might potentially be corrupted. (zFS has had an internal problem and

has disabled the aggregate in order to avoid writing anything invalid into the aggregate. However, because

this is an internal failure, zFS cannot guarantee that the aggregate has no internal inconsistencies.) In

order to be sure the aggregate is internally consistent, run the IOEAGSLV utility against the aggregate that

was disabled. (See “ioeagslv” on page 69 for information on running the IOEAGSLV utility.)

54 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

Disabled compatibility mode aggregate

The compatibility mode aggregate (file system) should be unmounted. If there are other file systems

mounted below the disabled aggregate, these should be unmounted also. Run the IOEAGSLV utility to

ensure that the aggregate is internally consistent. Messages similar to the following will be issued if you do

not unmount before running IOEAGSLV.

IKJ56225I DATA SET PLEX.JMS.AGGR001.LDS0001 ALREADY IN USE, TRY LATER+

IKJ56225I DATA SET IS ALLOCATED TO ANOTHER JOB OR USER

IOEZ00003E While opening minor device 1, could not open dataset

PLEX.JMS.AGGR001.LDS0001.

After you have run IOEAGSLV and are satisfied that the aggregate is in a consistent state, mount the

aggregate.

If you choose not to run IOEAGSLV, you still need to unmount and mount the aggregate so that it is not

disabled any longer. If there are file systems mounted below the disabled aggregate, you can use the

remount capability of z/OS UNIX in order to avoid unmounting those lower file systems. Remount allows

you to change a mounted file system from read-only to read-write or from read-write to read-only without

affecting lower mounted file systems.

Note: If you are in a shared file system environment, you must be at z/OS V1R5 or higher to use the

remount capability. Otherwise, you need to unmount the file system (and possibly lower file

systems) and then mount the file system.

For example, if PLEX.JMS.AGGR001.LDS0001 is mounted read-write at /zfsmnt1 then you can change it

to a read-only mount by entering the following TSO/E UNMOUNT command:

UNMOUNT FILESYSTEM(’PLEX.JMS.AGGR001.LDS0001’) REMOUNT(READ)

or the following OMVS chmount command:

/usr/sbin/chmount -r /zfsmnt1

Note: You might see messages such as:

v When entering the TSO/E UNMOUNT command:

RETURN CODE 0000008D, REASON CODE EF096271.

THE UNMOUNT FAILED FOR FILE SYSTEM PLEX.JMS.AGGR001.LDS0001.

v When entering the OMVS chmount command:

FOMF0504I remount error: 8D EF096271

EROFS: The specified file system is read only

In either of these cases, the message indicates that the remount to read-only failed because zFS

needs to run log recovery for this aggregate. In this case, z/OS UNIX will mount the file system

back to read-write, so these messages can be ignored. You can verify that the file system is

mounted read-write by using the z/OS UNIX df -v command against the mount point (for example,

df -v /zfsmnt1). In that case, you can skip the next step (remount or chmount to read-write).

If this succeeds, then you should change it back to read-write mode with one of the following commands:

UNMOUNT FILESYSTEM(’PLEX.JMS.AGGR001.LDS0001’) REMOUNT(RDWR)

or

/usr/sbin/chmount -w /zfsmnt1

You will have accomplished your unmount and mount.

If the remount (to read-only) fails, then z/OS UNIX will attempt to mount it read-write again. If this

succeeds, then you have accomplished your unmount and mount. If it fails, then the aggregate will be

unavailable for writing until zFS is stopped and restarted.

Chapter 9. Performance and debugging 55

You can use the OMVS df -v command to determine if your file system is mounted and whether it is

mounted read-only or read-write.

Disabled multi-file system aggregate

All file systems in a multi-file system aggregate that are mounted must be unmounted before the

aggregate can be detached. Of course, if there are other file systems mounted on these file systems, they

must be unmounted also. Once all the file systems have been unmounted, the aggregate can be

detached. If this is successful, then you should then run the IOEAGSLV utility to ensure that the aggregate

is internally consistent. Messages similar to the following will be issued if you do not detach before running

IOEAGSLV.

IKJ56225I DATA SET PLEX.JMS.AGGR001.LDS0001 ALREADY IN USE, TRY LATER+

IKJ56225I DATA SET IS ALLOCATED TO ANOTHER JOB OR USER

IOEZ00003E While opening minor device 1, could not open dataset

PLEX.JMS.AGGR001.LDS0001.

If the detach is unsuccessful, then the aggregate will be unavailable for writing until zFS is stopped and

restarted.

To determine the names of the file systems contained within the disabled aggregate, enter the zfsadm lsfs

-aggregate command (see “zfsadm lsfs” on page 109).

For each filesystem in that aggregate that is mounted, unmount it by using the TSO/E UNMOUNT

command:

UNMOUNT FILESYSTEM(filesystem name)

or the following OMVS command:

/usr/sbin/unmount pathname

Next, detach the aggregate using the following command:

zfsadm detach -aggregate name

Then, run IOEAGSLV. After you have run IOEAGSLV and are satisfied that the aggregate is in a consistent

state, attach the aggregate using the following command:

zfsadm attach -aggregate name

Then, mount the file systems that were previously mounted using the TSO/E MOUNT command:

MOUNT FILESYSTEM(filesystem name) TYPE(ZFS) MODE(RDWR) MOUNTPOINT(pathname)

or the following OMVS command:

/usr/sbin/mount -t ZFS -f filesystemname pathname

56 z/OS V1R9.0 Distributed File Service zFS Administration

Part 2. zFS administration reference

This part of the document discusses the zSeries File System (zFS) reference information.

v Chapter 10, “z/OS system commands,” on page 59

v Chapter 11, “zFS commands,” on page 65

v Chapter 12, “zFS data sets,” on page 125

v Chapter 13, “zFS application programming interfaces,” on page 135.

© Copyright IBM Corp. 2001, 2007 57

58 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 10. z/OS system commands

This section introduces you to the following z/OS system commands:

v MODIFY, a system command which enables you to query internal counters and values. It also allows

you to initiate or gather debugging information.

v SETOMVS RESET, a system command that starts the ZFS Physical File System (PFS) if it has not

been started at IPL or if it has been stopped and the BPXF032D message has been responded to with

a reply of i.

These commands may be invoked from the operator console or from a Spool Display and Search Facility

(SDSF) screen.

© Copyright IBM Corp. 2001, 2007 59

modify zfs process

Purpose

Enables you to query internal ZFS counters and values. They are displayed on the system log. It also

allows you to initiate or gather debugging information. The ZFS PFS must be running to use this

command.

Format

You can use any of the following formats for this command.

modify procname,query,{all | level | settings | storage | threads[,allwait]}

modify procname,reset,{all | storage}

modify procname,trace,{reset | print}

modify procname,abort

modify procname,dump

modify procname,hangbreak

modify procname,unquiesce,aggregate_name

Parameters

procname The name of the ZFS PFS PROC. The default procname is ZFS.

command The action that is performed on the ZFS PFS. This parameter can have one of the

following values:

query Displays ZFS counters or values.

all Displays all the ZFS counters.

level Displays the ZFS level for the ZFS physical file system kernel.

settings

Displays the ZFS configuration settings. These are based on the

IOEFSPRM file and defaults.

storage

Displays the ZFS storage values.

threads[,allwait]

Displays the threads being monitored by the zFS hang detector.

To display all zFS threads, use the modify

zfs,query,threads,allwait command.

Refer to “Monitoring zFS performance” on page 38. Performance and

debugging for other query options available.

reset Resets ZFS counters to zero.

all Resets all the ZFS counters to zero.

storage

Resets the ZFS storage counters to zero.

trace Resets or prints the internal ZFS trace table.

reset Resets the internal (wrap around) trace table to empty.

print Formats and sends the current trace table to the data set specified

modify zfs process

60 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|

||

|
|
|
|

in the IOEFSPRM file trace_dsn entry. This data set must be

preallocated as a PDSE with RECFM VB and LRECL 133. It must

be large enough to hold the formatted trace table. Refer to

Chapter 9, “Performance and debugging,” on page 35 for more

information of the trace output data set.

abort Causes the ZFS PFS to abnormally terminate and dump. The internal

trace table is also printed to the data set specified in the IOEFSPRM file

trace_dsn entry.

dump Causes the ZFS PFS to dump. The internal trace table is not printed. The

modify zfs,trace,print command can be used if the internal trace table is

desired.

hangbreak Causes zFS to post with a failure any requests in zFS that are waiting and

are suspected of being hung by the hang detector. It will not break threads

working on administration tasks. This may allow the hang condition to be

broken and resolved. This should only be used if you suspect that there is

a hang involving zFS. The modify zfs,query,threads operator command

can be used to determine if one or more requestor threads remain in the

same wait over several queries. If this command does not successfully

break the hang, you will need to stop or cancel zFS. If you suspect that

zFS is in an infinite loop, you will need to cancel zFS. For additional

information, see “Steps for resolving a zFS hang” on page 51.

unquiesce Causes a quiesced aggregate to become unquiesced. Only locally

attached aggregates can be unquiesced using the MODIFY UNQUIESCE

command. You must issue this command on the system that owns the

aggregate. Use the z/OS UNIX zfsadm lsaggr command to determine

which system owns the aggregate.

Usage

The modify zfs command is used to display ZFS counters or values and to initiate or gather debugging

information.

Privilege Required

This command is a z/OS system command.

Examples

The following example queries all the ZFS counters:

modify zfs,query,all

The following example resets the ZFS storage counters:

modify zfs,reset,storage

The following example formats and sends the trace table to the data set specified in the IOEFSPRM file

trace_dsn entry:

modify zfs,trace,print

The following example causes the ZFS PFS to dump and terminate:

modify zfs,abort

Related Information

File:

 IOEFSPRM

modify zfs process

Chapter 10. z/OS system commands 61

||
|
|
|
|
|
|
|
|
|

For details on stopping zFS, see in the topic on Recycling z/OS UNIX System Services in z/OS MVS

System Commands.

modify zfs process

62 z/OS V1R9.0 Distributed File Service zFS Administration

|
|

setomvs reset

Purpose

Can be used to start the ZFS PFS if it has not been started at IPL. It can also be used to redefine it if it

has been terminated by replying i to the BPXF032D operator message (after stopping the ZFS PFS).

Format

setomvs reset=(xx)

Parameters

xx The suffix of a BPXPRMxx member of PARMLIB that contains the FILESYSTYPE

statement for the ZFS PFS.

Usage

The setomvs reset command can be used to start the ZFS PFS.

Privilege Required

This command is a z/OS system command.

Examples

The following command starts the ZFS Physical File System if the BPXPRMSS member of the PARMLIB

contains the ZFS FILESYSTYPE statement:

setomvs reset=(ss)

Related Information

File:

 IOEFSPRM

In z/OS V1R7 and above, the SETOMVS command also processes zFS FILESYSTYPE statements. For

more information, see SETOMVS command in z/OS MVS System Commands.

setomvs reset

Chapter 10. z/OS system commands 63

|
|

setomvs reset

64 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 11. zFS commands

This section provides a description of the relevant zFS commands.

Note: In addition to displaying UNIX System Services reason codes, the UNIX System Services shell

command, bpxmtext, also displays the text and action of zFS reason codes (EFxxnnnn) returned

from the kernel. zFS does not use the xx part of the reason code to display a module name. It

always displays zFS. If you only know the nnnn part of the zFS reason code, you can use

EF00nnnn as the reason code. The date and time returned with the zFS reason code matches the

date and time returned from the zFS kernel (displayed with operator command MODIFY

ZFS,QUERY,LEVEL). For additional information on the bpxmtext command, see the z/OS UNIX

System Services Command Reference, SA22-7802.

© Copyright IBM Corp. 2001, 2007 65

ioeagfmt

Purpose

Creates an HFS compatibility mode aggregate or a multi-file system aggregate.

Format

ioeagfmt -aggregate name [-initialempty blocks] [-size blocks] [-logsize blocks] [-overwrite] [-compat]

 [-owner {uid|name}][-group {gid|name}] [-perms {number}] [-grow blocks]

 [-level] [-help]

Options

-aggregate name

Specifies the name of the data set to format. This is also the aggregate name. The

aggregate name is always translated to upper case. The following characters can be

included in the name of an aggregate:

v All uppercase and lowercase alphabetic characters (a to z, A to Z)

v All numerals (0 to 9)

v The . (period)

v The - (dash)

v The _ (underscore)

v The @ (at sign)

v The # (number sign)

v The $ (dollar).

The name can be no longer than 44 characters. If this is a compatibility mode aggregate

(refer to the -compat option), and you intend to clone the file system (refer to the zfsadm

clone command), you may want to limit the aggregate name to 40 characters.

-initialempty blocks

Specifies the number of 8K blocks that will be left empty at the beginning of the

aggregate. The default is 1. If you specify 0, you will get 1 block. This option is not

normally specified.

-size blocks Specifies the number of 8K blocks that should be formatted to form the zFS aggregate.

The default is the number of blocks that will fit in the primary allocation of the VSAM

Linear Data Set (LDS). If a number less than the default is specified, it is rounded up to

the default. If a number greater than the default is specified, a single extend of the VSAM

LDS is attempted after the primary allocation is formatted unless the -grow option is

specified. In that case, multiple extensions of the amount specified in the -grow option will

be attempted until the -size is satisfied. The size may be rounded up to a control area

(CA) boundary by DFSMS. It is not necessary to specify a secondary allocation size on

the DEFINE of the VSAM LDS for this extension to occur. Space must be available on the

volume(s).

-logsize blocks

Specifies the size in 8K blocks of the log. The default is 1% of the aggregate size or 128

megabytes, whichever is smaller. This is normally sufficient. However, a small aggregate

that is grown to be very large will still have a small log. You might want to specify a larger

log if you expect the aggregate to grow very large.

-overwrite Required if you are reformatting an existing aggregate. Use this option with caution, since

it destroys any existing data. This option is not usually specified.

-compat Indicates that a compatibility mode aggregate should be created. This means that in

addition to formatting the VSAM LDS as a zFS aggregate, a zFS file system by the same

name (the aggregate name) is created and its quota is set to the size of the available

blocks on the aggregate. This option should normally be specified unless you want to

ioeagfmt

66 z/OS V1R9.0 Distributed File Service zFS Administration

create a multi-file system aggregate. Refer to Chapter 8, “Multi-file system aggregates,” on

page 27 for more information on multi-file system aggregates.

-owner uid | name

Specifies the owner for the root directory of the file system. This is used with the -compat

option, otherwise it is ignored. It may be specified as a z/OS user ID or as a uid. The

default is the uid of the issuer of ioeagfmt.

-group gid | name

Specifies the group owner for the root directory of the file system. This is used with the

-compat option, otherwise it is ignored. It may be specified as a z/OS group name or as a

gid. The default is the gid of the issuer of ioeagfmt. If only -owner name is specified, the

group is that owner’s default group. If only -owner uid is specified, the group is the

issuer’s group.

-perms number

Specifies the permissions for the root directory of the file system. This is used with the

-compat option, otherwise it is ignored. The number can be specified as octal (for

example, o755), as hexadecimal (for example, x1ED), or as decimal (for example, 493).

The default is o755 (owner read/write/execute, group read/execute, other read/execute).

-grow blocks Specifies the number of 8K blocks that zFS will use as the increment for extension when

the -size option specifies a size greater than the primary allocation.

-level Prints the level of the ioeagfmt command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The ioeagfmt utility is used to format an existing VSAM LDS as a zFS aggregate. All zFS aggregates

must be formatted before use (including HFS compatibility mode aggregates). You can run ioeagfmt even

if the zFS PFS is not active on the system. The size of the aggregate is as many 8K blocks as fits in the

primary allocation of the VSAM LDS or as specified in the -size option. The -size option can cause one

additional extension to occur during formatting. To extend it further, use the zfsadm grow command. If

-overwrite is specified, all existing primary and secondary allocations are formatted and the size includes

all of that space. If the VSAM LDS has a SHAREOPTIONS value of other than 3, ioeagfmt will change it

to SHAREOPTIONS 3 during format.

Privilege Required

The user must have ALTER authority to the VSAM LDS or must be UID 0 or have READ authority to the

SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class. In fact, UPDATE authority to the

VSAM LDS is sufficient for format, but zFS will not be able to set the zFS bit in the catalog unless the

issuer has ALTER authority.

Examples

Figure 9 on page 68 shows an example of a job that creates a compatibility mode aggregate and file

system.

ioeagfmt

Chapter 11. zFS commands 67

|
|
|

|
|

|
|
|
|

Note: In the PARM=(’-aggregate OMVS.PRV.COMPAT.AGGR001 -compat’) statement, the values for

-aggregate and -compat must be in lower case.

//USERIDA JOB ,’Compatibility Mode’,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

//DEFINE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//AMSDUMP DD SYSOUT=H

//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000

//SYSIN DD *

 DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -

 VOLUMES(PRV000) -

 LINEAR CYL(25 0) SHAREOPTIONS(3))

/*

//CREATE EXEC PGM=IOEAGFMT,REGION=0M,

// PARM=(’-aggregate OMVS.PRV.COMPAT.AGGR001 -compat’)

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

Figure 9. Job to create a compatibility mode aggregate and file system

ioeagfmt

68 z/OS V1R9.0 Distributed File Service zFS Administration

|
|

ioeagslv

Purpose

Scans an aggregate and reports inconsistencies. Aggregates can be verified, recovered (that is, the log is

replayed), or salvaged (that is, the aggregate is repaired). This utility is known as the Salvager.

Note: This utility is not normally needed. If a system failure occurs, the aggregate log is replayed

automatically, the next time the aggregate is attached (or for compatibility mode aggregates, the

next time the file system is mounted). This normally brings the aggregate (and all the file systems)

back to a consistent state. The aggregate must not be mounted (or attached) when ioeagslv is run.

Format

ioeagslv -aggregate name [-recoveronly] [{-converttov3 | -verifyonly | -salvageonly}] [-verbose]

 [-level] [-help]

Options

-aggregate name

Specifies the name of the aggregate to be verified, recovered, or salvaged.

-recoveronly Directs the Salvager to recover the specified aggregate. The Salvager replays the log of

metadata changes that resides on the aggregate. Refer to “Usage” for information about

using and combining the command’s options.

-converttov3 Directs the Salvager to convert the specified aggregate. The aggregate is converted from

a version 1.4 aggregate to a version 1.3 aggregate. This should normally not be

necessary. It would be needed if you did not install toleration APAR OA11573 on prior

releases (prior to z/OS Version 1 Release 7) before installing z/OS Version 1 Release 7.

You should, of course, install OA11573 on prior releases as soon as possible. Refer to

“Usage” for information about using and combining the command’s options.

-verifyonly Directs the Salvager to verify the specified aggregate. The Salvager examines the

structure of the aggregate to determine if it contains any inconsistencies, reporting any

that it finds. Refer to “Usage” for information about using and combining the command’s

options.

-salvageonly Directs the Salvager to salvage the specified aggregate. The Salvager attempts to repair

any inconsistencies it finds on the aggregate. Refer to “Usage” for information about using

and combining the command’s options.

-verbose Directs the Salvager to produce detailed information about the aggregate as it executes.

The information is useful primarily for debugging purposes. It is displayed on standard

output (which can be redirected). Use this option alone or with any combination of the

available options.

-level Prints the level of the ioeagslv command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The ioeagslv utility invokes the Salvager on the zFS aggregate specified with the -aggregate option. You

can run ioeagslv even if the zFS PFS is not active on the system. Following a system restart, the

Salvager employs the zFS file system log mechanism to return consistency to a file system by running

recovery on the aggregate on which the file system resides. Recovery is the replaying of the log on the

aggregate; the log records all changes made to metadata as a result of operations such as file creation

ioeagslv

Chapter 11. zFS commands 69

|
|

and deletion. If problems are detected in the basic structure of the aggregate, if the log mechanism is

damaged, or if the storage medium of the aggregate is suspect, the ioeagslv utility must be used to verify

or repair the structure of the aggregate.

Use the utility’s -recoveronly, -verifyonly, -salvageonly, and -converttov3 options to indicate the

operations the Salvager is to perform on the specified aggregate, as follows:

v Specify the -recoveryonly option

To run recovery on the aggregate without attempting to find or repair any inconsistencies found on it.

Recovery is the replaying of the log on the aggregate. Use this option to quickly return consistency to

an aggregate that does not need to be salvaged; this represents the normal production use of the

Salvager. Unless the contents of the log or the physical structure of the aggregate is damaged,

replaying the log is an effective guarantee of a file system’s integrity.

v Specify the -converttov3 option

To convert a zFS aggregate that is in version 1.4 format to version 1.3 format. The conversion will

succeed only if all file systems and the aggregate are successful converted. If the conversion is

interrupted before completion, it must be run again to completion. An attempt to mount or attach an

aggregate that has been partially converted will be denied.

v Specify the -verifyonly option

To determine whether the structure of the aggregate contains any inconsistencies without running

recovery or attempting to repair any inconsistencies found on the aggregate. Use this option to assess

the extent of the damage to an aggregate. The Salvager makes no modifications to an aggregate during

verification. Note that it is normal for the Salvager to find errors when it verifies an aggregate that has

not been recovered; the presence of an unrecovered log on an aggregate makes the findings of the

Salvager, positive or negative, of dubious worth.

v Specify the -recoveronly and -verifyonly options

To run recovery on the aggregate and then analyze its structure without attempting to repair any

inconsistencies found on it. Use these options if you believe replaying the log can return consistency to

the aggregate, but you want to verify the consistency of the aggregate after recovery is run. Recovering

an aggregate and then verifying its structure represents a cautious application of the Salvager.

v Specify the -salvageonly option

To attempt to repair any inconsistencies found in the structure of the aggregate without first running

recovery on it. Use this option if you believe the log is damaged or replaying the log does not return

consistency to the aggregate and may in fact further damage it. In most cases, you do not salvage an

aggregate without first recovering it.

v Omit the -recoveronly, -verifyonly, and -salvageonly options

To run recovery on the aggregate and then attempt to repair any inconsistencies found in the structure

of the aggregate. Because recovery eliminates inconsistencies in an undamaged file system, an

aggregate is typically recovered before it is salvaged. In general, it is good first to recover and then to

salvage an aggregate if a system goes down or experiences a hardware failure.

Omit these three options if you believe the log should be replayed before attempts are made to repair

any inconsistencies found on the aggregate. (Omitting the three options is equivalent to specifying the

-recoveronly and -salvageonly options.)

In some cases, when repairing an aggregate, it might be necessary to attempt the repair several times

before the repair is complete. The following rule summarizes the interaction of the -recoveronly,

-verifyonly, and -salvageonly options: The salvage command runs recovery on an aggregate and

attempts to repair it unless one of the three salvage options is specified; once one of these options is

specified, you must explicitly request any operation you want the Salvager to perform on the aggregate.

The basic function of the Salvager is similar to that of the fsck program in many z/OS UNIX systems. The

Salvager recovers a zFS aggregate and repairs problems it detects in the structure of the aggregate. It

does not verify or repair the format of user data contained in files on the aggregate. If it makes changes,

ioeagslv

70 z/OS V1R9.0 Distributed File Service zFS Administration

the Salvager displays the pathnames of the files affected by the modifications, when the pathnames can

be determined. The owners of the files can then verify the files’ contents, and the files can be restored

from backups if necessary

The Salvager verifies the structure of an aggregate by examining all of the anodes, directories, and other

metadata in each file system on the aggregate. An anode is an area on the disk that provides information

used to locate data such as files, directories, ACLs, and other types of file system objects. Each file

system contains an arbitrary number of anodes, all of which must reside on the same aggregate. By

following the links between the various types of anodes, the Salvager can determine whether the

organization of an aggregate and the file systems it contains is correct and make repairs if necessary.

Not all aggregates can be salvaged. In cases of extensive damage to the structure of the metadata on an

aggregate or damage to the physical disk that houses an aggregate, the Salvager cannot repair

inconsistencies. Also, the Salvager cannot verify or repair damage to user data on an aggregate. The

Salvager cannot detect problems that modified the contents of a file but did not damage the structure of an

aggregate or change the metadata of the aggregate.

Like the fsck command, the Salvager analyzes the consistency of an aggregate by making successive

passes through the aggregate. With each successive pass, the Salvager examines and extracts a different

type of information from the blocks and anodes on the aggregate. Later passes of the Salvager use

information found in earlier passes to help in the analysis.

In general, the Salvager exits with an error code of at least 16 without analyzing a VSAM LDS that it is

sure is not a zFS aggregate. It also exits with an error code of 16 if a file system on the aggregate to be

recovered or salvaged is attached. (If necessary, you can use the zfsadm detach command to detach the

aggregate.)

As the Salvager executes, it maintains a number of internal lists. Each list consists of anodes that failed

verification in specific ways. When it initially scans an aggregate, the Salvager marks as ″unsafe″ anodes

with which it encounters problems. The Salvager later attempts to determine the actual pathnames

associated with these anodes to include the pathnames in the lists. When it has finished salvaging, the

Salvager displays any non-empty lists.

Privilege Required

The user needs UPDATE authority for the specified VSAM LDS or the user must be uid 0 or have READ

authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

Figure 10 shows an example of a job that invokes the ioeagslv utility.

//USERIDA JOB ,’Salvage’,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

//SALVAGE EXEC PGM=IOEAGSLV,REGION=0M,

// PARM=(’-aggregate OMVS.PRV.COMPAT.AGGR001 -verifyonly’)

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

Figure 10. Job to verify a zFS aggregate

ioeagslv

Chapter 11. zFS commands 71

|
|

MOUNT

Purpose

Mounts a file system into the z/OS UNIX hierarchy. This section only documents MOUNT options that are

unique to zFS. For additional information on this command, refer to the z/OS UNIX System Services

Command Reference.

Note: An attempt to mount a zFS file system that is contained in a zFS multi-file system aggregate

running in a sysplex will be denied.

Format

MOUNT TYPE(file_system_type) [PARM(parameter_string)]

Options

TYPE (file_system_type)

Specifies the file system type. In z/OS V1R7 and above, to aid migration from HFS, the

TYPE option is generic. Specify ZFS or HFS and the correct file system type is

determined for the file system that is located by the data set name. If you specify the

wrong file type (for example, HFS instead of ZFS), any associated parameter string is

ignored. For additional information, see Mounting considerations in z/OS UNIX System

Services Planning.

PARM(parameter_string)

Specifies a parameter string to be passed to zFS. Parameters are case sensitive and

separated by a comma. Enclose the parameter string in quotes. If a parameter is specified

multiple times, the last parameter is used.

 The following parameters apply to both types of aggregates (compatibility mode

aggregates and multi-file system aggregates):

FSFULL(threshold,increment)

Specifies the threshold and increment for reporting file system quota error

messages to the operator. The default is the fsfull specification in the IOEFSPRM

file.

READAHEAD | NOREADAHEAD

Specifies whether this file system will be accessed sequentially or not and whether

the zFS read ahead processing normally done should be enabled or disabled.

NOREADAHEAD should be used for file systems that have random access

patterns (for example, for file systems that are used like a database). The default

is to do read ahead processing.

The following parameters apply to compatibility mode aggregates:

Note: These options are only effective when the mount causes an attach, which is

normally the case. However, if the backup file system is mounted first, that is when

the attach is done. A subsequent mount of the read-write file system would not

cause an attach and any options specified (because these are all aggregate

options) would have no effect.

AGGRFULL(threshold,increment)

Specifies the threshold and increment for reporting aggregate full error messages

to the operator. The default is the aggrfull specification in the IOEFSPRM file.

This parameter only applies to compatibility mode aggregates/file systems.

AGGRGROW | NOAGGRGROW

Specifies whether the aggregate is eligible to be dynamically grown. The growth

MOUNT

72 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|
|
|

|
|
|
|
|

will be based on the secondary allocation of the aggregate and will occur when

the aggregate becomes full. The default is the aggrgrow specification in the

IOEFSPRM file. This parameter only applies to compatibility mode aggregates/file

systems.

NBS | NONBS

Specifies the new block security processing for this aggregate. The default is the

nbs specification in the IOEFSPRM file. This parameter only applies to

compatibility mode aggregates/file systems.

RW Specifies that the aggregate is to be attached R/W even though the file system is

being mounted R/O. The default is to attach the aggregate R/O when the file

system is mounted R/O. It would normally be used when the backup file system

(.bak) is mounted before the read-write file system is mounted. This parameter

only applies to compatibility mode aggregates/file systems.

The following parameters apply to multi-file system aggregates:

AGGREGATE(aggregate_name)

Specifies the name of the aggregate that the file system resides in. This is

normally used when the zFS file system you are mounting has the same name as

a zFS file system in another aggregate. See also the FILESYSTEM parameter.

This parameter only applies to multi-file system aggregates/file systems.

FILESYSTEM(zFS_filesystem_name)

Specifies the name of the zFS file system that you are mounting. This is normally

used when the zFS file system you are mounting has the same name as a zFS

file system in another aggregate. If this is not specified, zFS assumes that the zFS

file system name is the same as the z/OS UNIX file system name (specified in the

MOUNT FILESYSTEM option). This parameter only applies to multi-file system

aggregates/file systems. The FILESYSTEM parameter cannot be specified without

the AGGREGATE parameter.

FSGROW(increment,times)

Specifies that the file system quota is to be dynamically grown when the file

system becomes full (that is, reaches its quota). The increment specifies how

much the quota is to grow in K-bytes. The times specifies how many times the

quota is to be grown before the file request is denied. The default is the fsgrow

specification in the IOEFSPRM file. The maximum value that can be specified is

2147483647. If the physical space becomes enhausted, the aggrgrow

specification in the IOEFSPRM file controls whether the aggregate is dynamically

grown. This parameter only applies to multi-file system aggregates/file systems. It

is not saved across attaches.

Usage

The MOUNT command mounts a zFS file system.

MOUNT of a compatibility mode aggregate is serialized with other zfsadm commands (because MOUNT

of a compatibility mode aggregate does an implicit attach).

If you attempt to mount a compatibility mode aggregate/file system read-only and it fails because it needs

to run recovery (return code EROFS (141) and reason code EFxx6271), you should temporarily mount it

read-write (so it can complete the recovery process) and then mount it read-only.

If the DASD volume containing the zFS compatibility mode aggregate being mounted is read-only, you

may receive message IOEZ00336I. This indicates that the zFS aggregate indicator could not be set in the

Catalog (actually, in the VVDS on the volume). The zFS aggregate is successfully MOUNTed (and

attached). DFSMSdss backup (DUMP) will not automatically quiesce and unquiesce the zFS aggregate

MOUNT

Chapter 11. zFS commands 73

because it cannot determine that the VSAM Linear Data Set is a zFS aggregate. If the zFS aggregate can

be MOUNTed with the DASD volume in read-write, the zFS aggregate indicator will be set.

You can determine if the zFS aggregate indicator is set by using IDCAMS LISTCAT ALL against the zFS

aggregate and looking for the ZFS indicator in the output.

Do not use a path entry as the file system name in the MOUNT command (See the topic on DEFINE

PATH in z/OS DFSMS Access Method Services for Catalogs). The mount succeeds but the system issues

messages similar to the following:

IOEZ00412I Catalog search failed for aggregate PLEX.JMS.AGGR006.PATH. Shareoptions are not altered.

IOEZ00336I PLEX.JMS.AGGR006.PATH could not be marked as a zFS aggregate in the catalog, rc=60 rsn=104

Examples

The following TSO/E example mounts a zFS file system and specifies a threshold and increment to display

a message when the file system becomes almost full:

MOUNT FILESYSTEM(’OMVS.PRV.AGGR004.LDS0004’) MOUNTPOINT(’/etc/zfscompat1’) TYPE(ZFS) MODE(RDWR)

 PARM(’AGGRFULL(90,5)’)

Here is the same example as an OMVS command:

/usr/sbin/mount -f OMVS.PRV.AGGR004.LDS0004 -t ZFS -o ’AGGRFULL(90,5)’ /etc/zfscompat1

The following TSO/E example mounts a zFS file system and specifies a z/OS UNIX file system name that

is different from the zFS file system name (because another zFS file system with the same name (in a

different aggregate) has already been mounted):

MOUNT FILESYSTEM(’OMVS.PRV.FS1.DUP1’) MOUNTPOINT(’/etc/zfsmntpt2’) TYPE(ZFS) MODE(RDWR)

 PARM(’AGGREGATE(OMVS.PRV.AGGR005.LDS0005),FILESYSTEM(OMVS.PRV.FS1)’)

Here is the same example as an OMVS command:

/usr/sbin/mount -f OMVS.PRV.FS1.DUP1 -t ZFS -o ’AGGREGATE(OMVS.PRV.AGGR005.LDS0005),

FILESYSTEM(OMVS.PRV.FS1)’ /etc/zfsmntpt2

The following TSO/E example mounts a clone of a zFS file system by specifying triple apostrophes to

preserve the mixed case file system name.

MOUNT FILESYSTEM(’’’OMVS.PRV.FS3.bak’’’) TYPE(ZFS) MODE(READ) MOUNTPOINT(’/etc/zfsmntpt3’)

Here is the same example as an OMVS command:

/usr/sbin/mount -f OMVS.PRV.FS3.bak -t ZFS -r /etc/zfsmntpt3

Related Information

Command:

 UNMOUNT (For information on this command, refer to the z/OS UNIX System Services Command

Reference.)

File:

 IOEFSPRM

MOUNT

74 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|

|
|

|

|

zfsadm

Purpose

Introduction to the zfsadm command suite.

Command Syntax

The zfsadm commands have the same general structure:

command {-option1 argument... | -option2 {argument1 | argument2}...} [-optional_information]

The following example illustrates the elements of a zfsadm command:

zfsadm detach {-all | -aggregate name} [-help]

The following list summarizes the elements of the zfsadm command:

v Command - A command consists of the command suite (zfsadm in the previous example) and the

command name (detach). The command suite and the command name must be separated by a space.

The command suite specifies the group of related commands.

v Options - Command options always appear in bold type in the text, are always preceded by a - (dash),

and are often followed by arguments. In the previous example, -aggregate is an option, with name as

its argument. An option and its arguments tell the program which entities to manipulate when executing

the command (for example, which aggregate, or which file system). In general, the issuer should

provide the options for a command in the order detailed in the documentation. The { | } (braces

separated by a vertical bar) indicate that the issuer must enter either one option or the other (-all or

-aggregate in the previous example).

v Arguments - Arguments for options always appear in italic type in the text. The { | } indicate that the

issuer must enter either one argument or the other (-all or -aggregate in the preceding example). The

... (ellipsis) indicates that the issuer can enter multiple arguments.

v Optional information - Some commands have optional, as well as required, options and arguments.

Optional information is enclosed in [] (brackets). All options except -all or -aggregate in the previous

example are optional.

Options

The following options are used with many zfsadm commands. They are also listed with the commands

that use them.

-filesystem name

Specifies the file system to use with the command.

-aggregate name

Specifies the aggregate name of the aggregate to use with the command.

-size kbytes Specifies the size in K-bytes for the kbytes argument.

-system system name

Specifies the name of the system that the request will be sent to.

-help Prints the online help for this command. All other valid options specified with this option

are ignored. For complete details about receiving help, refer to “Receiving Help” on page

77.

 When an option is specified multiple times on one command, the first will be honored and the subsequent

ones will be ignored. This may cause a subsequent argument to be interpreted as an option and be

diagnosed as unrecognized.

zfsadm

Chapter 11. zFS commands 75

Usage

Most zfsadm commands are administrative-level commands used by system administrators to manage file

systems and aggregates. They apply to multi-file system aggregates although several apply to

compatibility mode aggregates too (for example, zfsadm grow and zfsadm quiesce/unquiesce). They

can be issued from OMVS or as a batch job. The descriptions of the zfsadm aggrinfo and the zfsadm

attach commands show examples of issuing them as a batch job. The other zfsadm commands can be

run as a batch job in a similar manner.

For a batch job, the zfsadm options are specified in the EXEC PARM as a single subparameter (a single

character string enclosed in apostrophes with no commas separating the options). You cannot put the

ending apostrophe in column 72. If it needs go to the next line, use a continuation character in column 72

(continuing in column 16 with the ending apostrophe on the second line). Remember that a JCL EXEC

PARM is limited to 100 characters. See the topic on the EXEC PARM in z/OS MVS JCL Reference.

zfsadm commands are serialized with each other. That is, when a zfsadm command is in progress, a

subsequent zfsadm command is delayed until the active zfsadm completes. This also includes MOUNT of

a compatibility mode aggregate (since an implicit attach occurs). This does not include zfsadm grow or

implicit aggregate grow. zfsadm commands do not delay normal file system activity (except when the

zfsadm command requires it, such as zfsadm quiesce).

zfsadm commands only work on zFS file systems and aggregates. zfsadm commands can query and set

information on zFS aggregates owned by the current system only. File system information from other

systems will not show up in the command output. However, if all systems are running z/OS V1R7, all

zfsadm commands work across sysplex members.

When supplying an argument to a zfsadm command, the option (for example -aggregate) associated with

the argument (for example, OMVS.PRV.AGGR001.LDS0001) can be omitted if:

v All arguments supplied with the command are entered in the order in which they appear in the

command’s syntax. (The syntax for each command appears with its description in this chapter.)

v Arguments are supplied for all options that precede the option to be omitted.

v All options that precede the option to be omitted accept only a single argument.

v No options, either those that accept an argument or those that do not, are supplied before the option to

be omitted.

In the case where two options are presented in { | } (braces separated by a vertical bar), the option

associated with the first argument can be omitted if that argument is provided; however, the option

associated with the second argument is required if that argument is provided.

If it must be specified, an option can be abbreviated to the shortest possible form that distinguishes it from

other options of the command. For example, the -aggregate option found in many zfsadm commands can

typically be omitted or abbreviated to be simply -a. (One exception is the zfsadm attach command since it

has an -aggrfull option.)

It is also valid to abbreviate a command name to the shortest form that still distinguishes it from the other

command names in the suite. For example, it is acceptable to shorten the zfsadm grow command to

zfsadm g because no other command names in the zfsadm command suite begin with the letter g.

However, there are three zfsadm commands that begin with l: zfsadm lsaggr, zfsadm lsfs, and zfsadm

lsquota. To remain unambiguous, they can be abbreviated to zfsadm lsa, zfsadm lsf, and zfsadm lsq.

The following examples illustrate three acceptable ways to enter the same zfsadm grow command:

Complete command:

zfsadm grow -aggregate omvs.prv.aggr001.lds0001 -size 50000

zfsadm

76 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|
|

|
|
|
|

Abbreviated command name and abbreviated options:

zfsadm g -a omvs.prv.aggr001.lds0001 -s 50000

Abbreviated command name and omitted options:

zfsadm g omvs.prv.aggr001.lds0001 50000

Note: The ability to abbreviate or omit options is intended for interactive use. If you imbed commands in a

shell script, you should not omit options nor abbreviate them. If an option is added to a command in

the future, it may increase the minimum unique abbreviation required for an existing option or

change the order of options.

In general, zfsadm commands are processed on a worker thread while the zfsadm thread waits. If you

cancel a zfsadm command that is taking a long time (for example, zfsadm grow or zfsadm config (to

shrink a cache)), the zfsadm (waiting) thread is cancelled, but the worker thread continues to process the

request to completion. In addition, most zfsadm commands require a common zfsadm lock while they are

processing. If the zfsadm command cannot get the lock, it waits for it to become available. This means, if

you issue another zfsadm command (after cancelling a previous one), it could be delayed by this common

zfsadm lock, until the previous (possibly cancelled) command completes.

Receiving Help

There are several different ways to receive help about zfsadm commands. The following examples

summarize the syntax for the different help options available:

zfsadm help Displays a list of commands in a command suite.

zfsadm help -topic command

Displays the syntax for one or more commands.

zfsadm apropos -topic string

Displays a short description of any commands that match the specified string.

Privilege Required

zfsadm commands that query information (for example, lsfs, aggrinfo) can be issued by any user that

has READ authority to the data set that contains the IOEFSPRM file. zfsadm commands that modify (for

example, setquota, create) additionally require that the issuer must be one of the following:

v UID of 0

Note: If you are permitted READ to the BPX.SUPERUSER resource in the RACF facility class, you

may become a UID of 0 by issuing the su command.

v Have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Specific privilege information is listed within each command’s description.

Related Information

Commands:

 zfsadm aggrinfo

 zfsadm apropos

 zfsadm attach

 zfsadm clone

 zfsadm clonesys

 zfsadm config

 zfsadm configquery

 zfsadm create

 zfsadm define

 zfsadm delete

zfsadm

Chapter 11. zFS commands 77

zfsadm detach

 zfsadm format

 zfsadm grow

 zfsadm help

 zfsadm lsaggr

 zfsadm lsfs

 zfsadm lsquota

 zfsadm lssys

 zfsadm query

 zfsadm quiesce

 zfsadm rename

 zfsadm setquota

 zfsadm unquiesce

Files:

 IOEFSPRM

zfsadm

78 z/OS V1R9.0 Distributed File Service zFS Administration

|

zfsadm aggrinfo

Purpose

Displays information about an aggregate, or all attached aggregates, if there is no specific aggregate

specified.

Format

zfsadm aggrinfo [-aggregate name | -system system name] [-fast | -long] [-level] [-help]

Options

-aggregate name

Specifies the name of an aggregate about which information is to be displayed. The

aggregate must be attached. The aggregate name is not case sensitive. It is translated to

upper case. If this option is omitted, information is provided about all of the attached

aggregates on the system. Compatibility mode aggregates are implicitly attached when

they are mounted.

-system system name

Specifies the name of the system the report request will be sent to, to retrieve the data

requested.

-fast Causes the output of the command to be shortened to display only the aggregate name if

it contains one or more file systems or a message indicating that there are no file systems

contained in the aggregate.

-long Causes the output of the command to be extended to display the following additional

information about space usage in an aggregate: the version of the aggregate, the number

of free 8K blocks, the number of free 1K fragments, the size of the log file, the size of the

filesystem table and the size of the bitmap file.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm aggrinfo command lists information about the total amount of disk space and the amount of

disk space currently available on attached aggregates. The -aggregate option can be used to specify a

single aggregate about which information is to be displayed. If this option is omitted, information about all

aggregates that are attached in the sysplex (if shared file systems are being used) or the system is

displayed. In a shared file system environment, you can limit the display to a single system by using the

-system option. Compatibility mode aggregates are implicitly attached when they are mounted.

This command displays a separate line for each aggregate. Each line displays the following information:

v The aggregate name.

v Whether the aggregate is read-write (R/W) or read-only (R/O), it is a compatibility mode aggregate

(COMP), a multi-file system aggregate (MULT), or the aggregate is currently quiesced (QUIESCED)

and/or disabled (DISABLED).

v The amount of space available in K-bytes.

v The total amount of space in the aggregate in K-bytes. (To grow an aggregate using the zfsadm grow

command, specify a number larger than this number.)

v If -long is specified, the version of the aggregate, the number of free 8K blocks, the number of free 1 K

fragments, the size of the log file, the size of the filesystem table and the size of the bitmap file.

zfsadm aggrinfo

Chapter 11. zFS commands 79

|

|
|

Privilege Required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ authority to the data

set that contains the IOEFSPRM file. If you are using parmlib (IOEPRMxx), the issuer does not need

special authorization.

Examples

The following example displays information about the disk space available on all aggregates attached on

the system:

zfsadm aggrinfo -long

IOEZ00369I A total of 4 aggregates are attached to the sysplex.

PLEX.JMS.AGGR004.LDS0004 (R/W COMP): 4866 K free out of total 5040

version 1.4

 603 free 8k blocks; 42 free 1K fragments

 112 K log file; 24 K filesystem table

 8 K bitmap file

PLEX.JMS.AGGR003.LDS0003 (R/W MULT): 829 K free out of total 1440

version 1.4

 101 free 8k blocks; 21 free 1K fragments

 112 K log file; 16 K filesystem table

 8 K bitmap file

PLEX.JMS.AGGR002.LDS0002 (R/O MULT): 4886 K free out of total 5040

version 1.3

 609 free 8k blocks; 14 free 1K fragments

 112 K log file; 24 K filesystem table

 8 K bitmap file

PLEX.JMS.AGGR001.LDS0001 (R/W MULT QUIESCED): 2812 K free out of total 3600

version 1.4

 345 free 8k blocks; 52 free 1K fragments

 112 K log file; 24 K filesystem table

 8 K bitmap file

Figure 11 shows the same example as a job that invokes zfsadm aggrinfo.

Related Information

Command:

 zfsadm lsaggr

File:

 IOEFSPRM

//USERIDA JOB ,’Zfsadm Aggrinfo’,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

//AGGRINFO EXEC PGM=IOEZADM,REGION=0M,

// PARM=(’aggrinfo -long’)

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

Figure 11. Job to display aggregate information

zfsadm aggrinfo

80 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm apropos

Purpose

Shows each help entry containing a specified string.

Format

zfsadm apropos -topic string [-level] [-help]

Options

-topic Specifies the keyword string for which to search. If it is more than a single word, surround

it with double quotes (″″) or other delimiters. Type all strings for zfsadm commands in all

lowercase letters.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm apropos command displays the first line of the online help entry for any zfsadm command

containing the string specified by -topic in its name or short description.

To display the syntax for a command, use the zfsadm help command.

Privilege Required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ authority to the data

set that contains the IOEFSPRM file. If you are using parmlib (IOEPRMxx), the issuer does not need

special authorization.

Results

The first line of an online help entry for a command lists the command and briefly describes its function.

This command displays the first line for any zfsadm command where the string specified by -topic is part

of the command name or first line.

Examples

The following command lists all zfsadm commands that have the word list in their names or short

descriptions:

zfsadm apropos list

lsaggr: list aggregates

lsfs: list filesystem information

lsquota: list filesystem and aggregate space usage

Related Information

Command:

 zfsadm help

zfsadm apropos

Chapter 11. zFS commands 81

zfsadm attach

Purpose

Attaches an aggregate to zFS as a multi-file system aggregate.

Note: Do not explicitly attach compatibility mode aggregates. They are implicitly attached when the file

system is mounted.

Format

zfsadm attach {-aggregate name [-system system name] | -all} [-aggrfull threshold,increment]

[{-R/O | -ro | -rw}] [-nbs | -nonbs] [-aggrgrow | -noaggrgrow] [-level] [-help]

Options

-aggregate name

Specifies the name of the aggregate to be attached. The aggregate name is not case

sensitive. It is translated to upper case. This aggregate does not need an entry in the

IOEFSPRM file. If the aggregate is not contained in the IOEFSPRM file, it needs to be

attached again if it is a multi-file system aggregate and the ZFS PFS is restarted.

Note: Compatibility mode aggregates do not need to be attached with the zfsadm attach

command, nor do they need to be contained in the IOEFSPRM file. Compatibility

mode aggregates are automatically attached on MOUNT of the compatibility mode

file system.

-system system name

Specifies the name of the system that will be the zFS owner of the aggregate. The system

name is not case sensitive. It is translated to upper case.

-all Specifies that all aggregates listed in the IOEFSPRM file available to this system that are

not currently attached are to be attached.

-aggrfull threshold,increment

Specifies the threshold and increment for reporting aggregate full error messages to the

operator. Both numbers must be specified. The first number is the threshold percentage

and the second number is the increment percentage. For example, if 90,5 were specified,

the operator would be notified when the aggregate became 90% full, then again at 95%

full and again at 100% full. This overrides the aggrfull option in the define_aggr entry for

this aggregate in the IOEFSPRM file and the global aggrfull entry in the IOEFSPRM. The

default is the global aggrfull entry of the IOEFSPRM file.

-R/O | -ro Specifies that the aggregate should be opened in read-only mode. A read-only aggregate

means that all file systems are read-only and can only be mounted as read-only. The

default is read-write unless R/O or -ro is specified.

-rw Specifies that the aggregate should be opened in read-write mode. The default is

read-write unless R/O or -ro is specified.

-nbs Specifies whether New Block Security is used for file systems in this aggregate. New block

security refers to the guarantee made when a system fails. If -nbs is specified, then we

guarantee that at the time of a failure. If a file was being extended or new blocks were

being allocated for the file, but the user data has not yet made it to the disk when the

failure occurred, then we show the newly allocated blocks as all binary 0’s and not

whatever was on disk in those blocks at time of failure. The default for this is the global

nbs entry in the IOEFSPRM file.

-nonbs Specifies that the New Block Security guarantee is not required. Refer to the explanation

of -nbs for a description of the New Block Security guarantee.

zfsadm attach

82 z/OS V1R9.0 Distributed File Service zFS Administration

|

-aggrgrow Specifies that the aggregate should be dynamically grown if it runs out of physical space.

The aggregate (that is, the VSAM Linear Data Set) must have a secondary allocation

specified and there must be space available on the volume(s). The default is the

aggrgrow option of the IOEFSPRM file.

-noaggrgrow Specifies that the aggregate should not be dynamically grown if it runs out of physical

space. The default is the aggrgrow option of the IOEFSPRM file.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm attach command attaches zFS aggregates on this system. File systems on attached

aggregates are available to be mounted on the system or another system when -system is specified.

If the -all option is provided, the command attaches all aggregates listed in the IOEFSPRM file that is

available to this system. If the -aggregate option is provided, only the aggregate specified is attached. The

specified name need not be listed in the IOEFSPRM file.

When zfsadm attach -all executes, it reads the IOEFSPRM file that is available to this system to

determine the aggregates to be attached. All aggregates will be attached. If an aggregate is already

attached, this will be indicated. If the attach fails because log recovery is unsuccessful, you can run the

ioeagslv command with the -verifyonly option on the aggregate to determine if there is an inconsistency.

If this is the case, use the ioeagslv command to recover the aggregate that caused the failure and reissue

the zfsadm attach command.

The zfsadm lsaggr command can be used to display a current list of all aggregates attached on this

sysplex with the zFS owning system indicated, or this system when -system is used.

If the DASD volume containing the zFS multi-file system aggregate being attached is read-only, you may

receive message IOEZ00336I. This indicates that the zFS aggregate indicator could not be set in the

Catalog (actually, in the VVDS on the volume). The zFS aggregate is successfully attached. DFSMSdss

backup (DUMP) will not automatically quiesce and unquiesce the zFS aggregate because it cannot

determine that the VSAM Linear Data Set is a zFS aggregate. If the zFS aggregate can be attached with

the DASD volume in read-write, the zFS aggregate indicator will be set.

You can determine if the zFS aggregate indicator is set by using IDCAMS LISTCAT ALL against the zFS

aggregate and looking for the ZFS indicator in the output.

For multi-file system aggregates, define_aggr entries are generally included in the IOEFSPRM file for

them rather than issuing zfsadm attach commands at the keyboard. Once included in the IOEFSPRM file,

all aggregates listed in the IOEFSPRM file are attached whenever ZFS is started (or restarted) and

auto_attach=on in the IOEFSPRM file.

Compatibility mode aggregates do not need to be separately attached since they are attached during

MOUNT processing. Therefore, compatibility mode aggregates do not need define_aggr entries in

IOEFSPRM, nor do they need to be attached with the zfsadm attach command.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and is required to

be logged in as root or to have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class. If you are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the

zfsadm attach

Chapter 11. zFS commands 83

issuer is required to be logged in as root or to have READ authority to the

SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

The following command attaches all of the aggregates that have entries in the system’s IOEFSPRM file.

zfsadm attach -all

The following command attaches an aggregate. No entry is needed in the system’s IOEFSPRM file.

zfsadm attach -aggregate OMVS.PRV.AGGR001.LDS0001

Figure 12 shows the same example as a job that invokes zfsadm attach.

Note: If you want to specify the R/O option, you must specify a leading slash. Otherwise, Language

Environment will treat the characters before the slash as Language Environment parameters. That

is, you must use PARM=(’/attach OMVS.PRV.AGGR001.LDS0001 -R/O’)

zFS, by default, attaches aggregates listed in the IOEFSPRM file at start-up (or restart). This is based on

the auto_attach option (default is on) of the IOEFSPRM file. The zfsadm attach command would be

used if you had created and formatted a multi-file system aggregate after starting ZFS and you did not

want to restart ZFS. A define_aggr entry for this multi-file system aggregate may be placed in the

IOEFSPRM file so that it is attached the next time ZFS is started.

Related Information

Commands:

 zfsadm create

 zfsadm lsaggr

File:

 IOEFSPRM

//USERIDA JOB ,’Zfsadm Attach’,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

//AGGRINFO EXEC PGM=IOEZADM,REGION=0M,

// PARM=(’attach -aggregate OMVS.PRV.AGGR001.LDS0001’)

//SYSPRINT DD SYSOUT=H

//STDOUT DD SYSOUT=H

//STDERR DD SYSOUT=H

//SYSUDUMP DD SYSOUT=H

//CEEDUMP DD SYSOUT=H

//*

Figure 12. Job to attach an aggregate

zfsadm attach

84 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm clone

Purpose

Creates a backup version of a specific file system.

Format

zfsadm clone {-filesystem name| -mfilesystem mount_name} [-aggregate name] [-level] [-help]

Options

-filesystem name

Specifies the file system name of the read-write source file system.

-mfilesystem mount_name

Specifies the z/OS UNIX file system name of the file system that is to be cloned. The file

system name is case sensitive. If it was specified in upper case when the file system was

mounted, it must be specified in upper case here.

-aggregate name

Specifies the name of the aggregate where the zFS file system name resides. It is

specified to qualify the zFS file system name (-filesystem) when there are multiple zFS

file systems with the same name in different aggregates. The aggregate name is not case

sensitive. It is always folded to upper case.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

This command creates a backup version, or clone, of the indicated read-write zFS file system. It names

the new backup version by adding a .bak extension to the name of its read-write source file system. It

places the backup version on the same aggregate as the read-write version. The aggregate that the

read-write file system is contained in must be attached. The read-write file system may or may not be

mounted when the clone operation is issued. The backup file system cannot be mounted when the clone

operation is issued. File/directory operations against a mounted read-write file system are suspended

during the clone operation. After the clone operation, the backup file system can be mounted read-only.

The zfsadm clone command cannot clone non-zFS file systems.

If a backup version already exists, the new clone replaces it. If the read-write file system name is longer

than 40 characters, the clone fails. If the clone operation takes longer than approximately 30 seconds,

message IOEZ00588E is displayed on the operator console. It will be deleted (DOMed) when there are no

clone operations in progress. You can determine if a clone operation is in progress on an aggregate by

entering the zfsadm lsfs -long command, which shows the clone in progress for the backup file system.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be root

or must have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

If you are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the issuer is required to

be logged in as root or to have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class.

zfsadm clone

Chapter 11. zFS commands 85

|
|

|
|
|
|
|

Examples

The following command creates a backup version of the file system OMVS.PRV.FS1:

zfsadm clone OMVS.PRV.FS1

IOEZ00225I File system OMVS.PRV.FS1 successfully cloned.

Related Information

Command:

 zfsadm clonesys

 zfsadm lsfs

 zfsadm delete

zfsadm clone

86 z/OS V1R9.0 Distributed File Service zFS Administration

|
|

zfsadm clonesys

Purpose

Creates backup versions of all indicated file systems.

Format

zfsadm clonesys [-prefix string] [-aggregate name | -system system name] [-level] [-help]

Options

-prefix string Specifies a character string of any length. Every file system with a name matching this

string is cloned. Include field separators (such as periods) if appropriate. This option can

be combined with -aggregate. Omit all options to back up all file systems on the system

or -system. The prefix name is case sensitive.

-aggregate name

Specifies the aggregate name of the aggregate where the read-write source file systems

are stored. Omit all options to back up all file systems on the system. The aggregate

name is not case sensitive. It is translated to upper case.

-system system name

Specifies the name of the system that will be used to subset the zFS aggregates (they are

zFS owned by this system) containing zFS read-write file systems to be cloned.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm clonesys command creates a backup version, or clone, of each indicated read-write zFS file

system. The file systems must be in aggregates that are attached. The read-write file systems may or may

not be mounted when the clonesys operation is issued. The backup file systems cannot be mounted when

the clonesys operation is issued. The command names each backup version by adding a .bak extension

to the name of its read-write source file system. It places each backup version in the same aggregate as

its read-write version. The zfsadm clonesys command cannot backup non-zFS file systems.

If a backup version of a file system already exists, the new clone replaces it.

By combining the -prefix and -aggregate options, you can create backup copies of different subsets of

read-write file systems. To back up:

v All file systems in a sysplex, specify no options

v All file systems in a sysplex with a name beginning with the same character string (for example, sys. or

user.), specify the string with the -prefix option

v File systems on a specific aggregate, specify the -aggregate option

v File systems with a certain prefix on a specific aggregate, specify the -prefix and -aggregate options

v File systems on a specific system, specify the -system option

v File systems with a certain prefix on a specific system, specify the -prefix and -system options

Use the zfsadm clone command to back up a single read-write zFS file system.

zfsadm clonesys

Chapter 11. zFS commands 87

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be root

or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class. If you

are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the issuer is required to be

logged in as root or to have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class.

Examples

The following example creates a backup version of each zFS file system on the DCEIMGVQ system that

begins with THR:

zfsadm clonesys -p THR -system dceimgvq

IOEZ00368I A total of 1 aggregates are attached to system DCEIMGVQ.

IOEZ00219I Clonesys starting for aggregate PLEX.JMS.AGGR003.LDS0003, prefix THR

IOEZ00225I File system THREE successfully cloned.

IOEZ00216I Clone ending for aggregate PLEX.JMS.AGGR003.LDS0003 (Total: 1, Failed: 0, Time 0.833)

Related Information

Command:

 zfsadm clone

File:

 IOEFSPRM

zfsadm clonesys

88 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm config

Purpose

Changes the value of zFS configuration (IOEFSPRM) options in memory. See Chapter 12, “zFS data sets,”

on page 125 for a complete list of IOEFSPRM options.

Format

zfsadm config [-admin_threads number] [-user_cache_size number[,fixed]]

 [-meta_cache_size number[,fixed]] [-log_cache_size number[,fixed]]

 [-sync_interval number] [-vnode_cache_size number] [-nbs {on|off}]

 [-fsfull threshold,increment] [-aggrfull threshold,increment]

 [-trace_dsn PDSE_dataset_name] [-tran_cache_size number]

 [-msg_output_dsn Seq_dataset_name] [-user_cache_readahead {on|off}]

 [-metaback_cache_size number[,fixed]] [-fsgrow increment,times]

 [-aggrgrow {on|off}] [-vnode_cache_limit number]

 [-system system name] [-level] [-help]

Options

-admin_threads number

Specifies the number of threads defined to handle pfsctl or mount requests.

-user_cache_size number [,fixed]

Specifies the size, in bytes, of the cache used to contain file data. The fixed option

reserves real storage for usage by ZFS only.

-meta_cache_size number [,fixed]

Specifies the size, in bytes, of the cache used to contain meta data. The fixed option

reserves real storage for usage by ZFS only.

-log_cache_size number [,fixed]

Specifies the size, in bytes, of the cache used to contain buffers for log file pages. The

fixed option reserves real storage for usage by ZFS only.

-sync_interval number

Specifies the number of seconds between syncs.

-vnode_cache_size number

Specifies the initial number of vnodes that will be cached by zFS.

-nbs on | off Controls whether new block security is globally off or on by default.

-fsfull threshold,increment

Specifies the threshold and increment for reporting file system quota full error messages to

the operator.

-aggrfull threshold,increment

Specifies the threshold and increment for reporting aggregate full error messages to the

operator.

-trace_dsn PDSE_dataset_name

Specifies the name of a data set that contains the output of any operator MODIFY

ZFS,TRACE,PRINT commands or the trace output if ZFS abends.

-tran_cache_size number

Specifies the number of transactions in the transaction cache.

-msg_output_dsn Seq_dataset_name

Specifies the name of a data set that contains any output messages that come from the

ZFS PFS.

zfsadm config

Chapter 11. zFS commands 89

|
|

-user_cache_readahead on | off

Specifies whether zFS should attempt to read ahead or not.

-metaback_cache_size number [,fixed]

Specifies the size of the backing cache for meta data. The fixed option reserves real

storage for usage by ZFS only.

-fsgrow increment,times

Specifies the increment in k-bytes and the number of times that a file system’s quota

should be increased when it becomes full.

-aggrgrow on | off

Specifies whether an aggregate should be dynamically extended when it runs out of

physical space.

-vnode_cache_limit size

Specifies the maximum number of vnodes that will be cached by zFS. It is related to the

vnode_cache_size option which specifies the initial vnode cache size. The vnode cache

will start at the vnode_cache_size and potentially grow up to the vnode_cache_limit.

-system system name

Specifies the name of the system that the configuration option change request will be sent

to.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm config command changes the configuration options (in memory) that were specified in the

IOEFSPRM file (or defaulted). The IOEFSPRM file is not changed. If you want the configuration

specification to be permanent, you need to modify the IOEFSPRM file since ZFS reads the IOEFSPRM file

to determine the configuration values the next time ZFS is started. The values that can be specified for

each option are the same as the values that can be specified for that option in the IOEFSPRM file. You

can specify that the configuration option change request should be sent to another system by using the

-system option.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be root

or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class. If you

are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the issuer is required to be

logged in as root or to have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class.

Examples

The following example changes the size of the user cache:

zfsadm config -user_cache_size 64M

IOEZ00300I Successfully set -user_cache_size to 64M

Related Information

Command:

 zfsadm configquery

File:

 IOEFSPRM

zfsadm config

90 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm configquery

Purpose

Queries the current value of zFS configuration options.

Format

zfsadm configquery [-system system name] [-adm_threads] [-aggrfull] [-aggrgrow] [-all]

 [-auto_attach] [-cmd_trace] [-debug_dsn] [-fsfull] [-fsgrow]

 [-group] [-log_cache_size] [-meta_cache_size] [-metaback_cache_size]

 [-msg_input_dsn] [-msg_output_dsn] [-nbs] [-sync_interval] [-sysplex_state]

 [-trace_dsn] [-trace_table_size] [-tran_cache_size] [-user_cache_readahead]

 [-user_cache_size] [-vnode_cache_limit] [-vnode_cache_size]

 [-level] [-help]

Options

-system system name

Specifies the name of the system the report request will be sent to, to retrieve the data

requested.

-adm_threads

Displays the number of threads defined to handle pfsctl or mount requests.

-aggrfull Displays the threshold and increment for reporting aggregate full error messages to the

operator.

-aggrgrow Displays whether an aggregate should be dynamically extended when it runs out of

physical space.

-all Displays the full set of configuration options.

-auto_attach Displays whether aggregates defined and listed in the IOEFSPRM file are attached when

ZFS is started.

-cmd_trace Displays whether command tracing is active.

-debug_dsn Displays the name of the debug input parameters data set.

-fsfull Displays the threshold and increment for reporting file system quota full error messages to

the operator.

-fsgrow Displays the increment in k-bytes and the number of times that a file system’s quota

should be increased when it becomes full.

-group Displays the XCF group used by zFS for communication between sysplex members.

-log_cache_size

Displays the size, in bytes, of the cache used to contain buffers for log file pages.

-meta_cache_size

Displays the size, in bytes, of the cache used to contain meta data.

-metaback_cache_size

Displays the size of the backing cache for meta data.

-msg_input_dsn

Displays the name of the data set that contains translated zFS messages.

-msg_output_dsn

Displays the name of a data set that contains any output messages that come from the

ZFS PFS.

-nbs Displays whether new block security is globally off or on by default.

zfsadm configquery

Chapter 11. zFS commands 91

-sync_interval

Displays the number of seconds in the interval that zFS flushes data in the buffers to disk.

-sysplex_state

Displays the sysplex state of zFS.

v Zero (0) indicates that zFS is not in a shared file system environment (normal for V1R6

and prior releases and for single system configurations including monoplex and

xcflocal).

v One (1) indicates that zFS is in a shared file system environment (normal for V1R7,

V1R8, and V1R9).

-token_cache_size

Displays the current token size cache.

-trace_dsn Displays the name of the data set that contains the output of any operator MODIFY

ZFS,TRACE,PRINT commands or the trace output if ZFS abends.

-trace_table_size

Displays the size, in bytes, of the internal trace table.

-tran_cache_size

Displays the number of transactions in the transaction cache.

-user_cache_readahead

Displays whether zFS should attempt to read ahead or not.

-user_cache_size

Displays the size, in bytes, of the cache used to contain file data.

-vnode_cache_limit

Specifies the maximum number of vnodes that will be cached by zFS. It is related to the

vnode_cache_size option which specifies the initial vnode cache size. The vnode cache

will start at the vnode_cache_size and potentially grow up to the vnode_cache_limit.

-vnode_cache_size

Specifies the initial number of vnodes that will be cached by zFS.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm configquery command displays the current value of zFS configuration options. The value is

retrieved from ZFS address space memory rather than from the IOEFSPRM file. You can specify that the

configuration option query request should be sent to another system by using the -system option.

Privilege Required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ authority to the data

set that contains the IOEFSPRM file. If you are using parmlib (IOEPRMxx), the issuer does not need

special authorization.

Examples

The following example displays the current value of the user_cache_size option:

zfsadm configquery -user_cache_size

IOEZ00317I The value for config option -user_cache_size is 64M.

zfsadm configquery

92 z/OS V1R9.0 Distributed File Service zFS Administration

|

|
|
|

|
|

|
|

If you want to display all the zFS configuration options from each member, you can use something like the

following:

zfsadm lssys | grep -v IOEZ00361I | xargs -n 1 zfsadm configquery -all -system

Related Information

Command:

 zfsadm config

File:

 IOEFSPRM

zfsadm configquery

Chapter 11. zFS commands 93

zfsadm create

Purpose

Creates a read-write zFS file system in an aggregate. This is for multi-file system aggregates only.

Format

zfsadm create -filesystem name -aggregate name -size kbytes[-owner {name | uid}]

 [-group { name | gid}]

 [-perms permbits] [-level] [-help]

Options

-filesystem name

Specifies a name for the read/write file system. The file system name is case sensitive.

That is, if you specify the file system name in lower case on the zfsadm create command,

you must specify the file system name in lower case when you MOUNT it. The TSO/E

MOUNT command translates the file system name to upper case even if it is within

quotes. You can avoid this translation to upper case if you specify the file system name on

the TSO/E MOUNT command within triple quotes. For example, if you specify

FILESYSTEM(’’’lower.case.example’’’), the file system name is not translated to upper

case. However, you may find it simpler to specify the file system name in upper case on

the zfsadm create command. The name must be unique within the system, and it should

be indicative of the file system’s contents. The following characters can be included in the

name of a file system:

v All uppercase and lowercase alphabetic characters (a to z, A to Z)

v All numerals (0 to 9)

v The . (period)

v The - (dash)

v The _ (underscore)

v The @ (at sign)

v The # (number sign)

v The $ (dollar).

The name can be no longer than 44 characters. This includes the .bak extension, which is

added automatically when a backup version of the file system is created (for example, by

using zfsadm clone). If you intend to clone this file system, you may want to limit the file

system name to 40 characters. Note that the .bak extension is reserved for use with

backup file systems so you cannot specify a file system name that ends with this

extension.

 If you are using both multi-file system aggregates and compatibility mode aggregates, do

not name any file systems in multi-file system aggregates with the same name as any of

your compatibility mode aggregates. If you do this, you will get a different file system

mounted depending on whether an aggregate is attached or not. For example, suppose

you have compatibility mode aggregate A.B.C and you have multi-file system aggregate

D.E.F that contains file system A.B.C. When you mount file system A.B.C, you will get the

one in aggregate D.E.F mounted if D.E.F is attached. If D.E.F is not attached, you will get

compatibility mode aggregate A.B.C mounted.

 However, you can create file systems with the same name in different multi-file system

aggregates. The zfsadm commands and the MOUNT command can specify a zFS file

system name that is qualified by its aggregate name.

-aggregate name

Specifies the name of the aggregate where the read-write file system is to be stored. The

aggregate name is not case sensitive. It is translated to upper case.

zfsadm create

94 z/OS V1R9.0 Distributed File Service zFS Administration

-size kbytes Specifies the initial maximum quota for the file system in K-bytes. The minimum value is

128 (for 128 K bytes).

-owner name | uid

Specifies the owner of the root directory of the file system. This can be specified as a

z/OS user ID or as a numeric uid. The default is the uid of the issuer of the command.

-group name | gid

Specifies the group of the root directory of the file system. This can be specified as a z/OS

group ID or a numeric gid. The default is the group of the issuer of the command. If only

-owner is specified, the group is the owner’s default group.

-perms permbits

Specifies the permissions for the root directory of the file system. The number can be

specified as octal (for example, o755), as hexadecimal (for example, x1ED), or as decimal

(for example, 493). The default is o755 (owner read/write/execute, group read/execute,

other read/execute).

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm create command creates a read-write zFS file system, names it as specified by -filesystem,

and places it in the multi-file system aggregate specified by -aggregate. The aggregate must be attached.

(This is accomplished by issuing the zfsadm attach command or by placing a define_aggr entry for the

aggregate in the IOEFSPRM file and starting (or restarting) ZFS.)

If this command succeeds, the file system can be made available for use by MOUNTing it into the z/OS

UNIX hierarchy. The command creates an empty root directory in the file system, which becomes visible

when the file system is mounted.

Note: You cannot create another file system in a mounted compatibility mode aggregate. If you really

want to do this, you must unmount it, attach the aggregate and then create the file system. This

will, however, change the compatibility mode aggregate into a multi-file system aggregate.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be root

or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class. If you

are instead using parmlib (IOEPRMxx), the issuer is required to be logged in as root or to have READ

authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

The following command creates the read-write file system OMVS.USER.PAT, with an initial quota of 5000

1K blocks in aggregate OMVS.PRV.AGGR001.LDS0001.

zfsadm create OMVS.USER.PAT omvs.prv.aggr001.lds0001 5000

IOEZ00099I File system OMVS.USER.PAT created successfully

Related Information

Commands:

 zfsadm delete

 zfsadm lsfs

File:

zfsadm create

Chapter 11. zFS commands 95

IOEFSPRM

zfsadm create

96 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm define

Purpose

Defines a VSAM Linear Data Set (VSAM LDS) in preparation to be formatted as a zFS aggregate.

Format

zfsadm define -aggregate name [-dataclass SMS_data_class]

 [-managementclass SMS_management_class]

 [-storageclass SMS_storage_class] [-catalog catalog]

 [-system system name] [-model model [catalog]]

 [-volumes volume [volume ...]]

 [-cylinders primary [secondary]] [-kilobytes primary [secondary]]

 [-megabytes primary [secondary]] [-records primary [secondary]]

 [-tracks primary [secondary]] [-level] [-help]

Options

-aggregate name

Specifies the aggregate name of the aggregate to be defined. This will be the name of the

VSAM LDS that is defined. The aggregate name is not case sensitive. It is translated to

upper case.

-dataclass SMS_data_class

Specifies the name of the data class to be used when the VSAM LDS is defined.

-managementclass SMS_management_class

Specifies the name of the management class to be use when the VSAM LDS is defined.

-storageclass SMS_storage_class

Specifies the name of the storage class to be used when the VSAM LDS is defined.

-catalog catalog

Specifies the name of the catalog in which the VSAM Linear Data Set is to be defined.

-system system name

Specifies the name of the system that the define request will be sent to.

-model model [catalog]

Specifies the name of the model and optionally, the model entry’s catalog to be used when

the VSAM LDS is defined.

-volumes volume

Specifies the volume(s) on which the VSAM LDS may have space.

-cylinders primary [secondary]

Specifies the primary and optionally, the secondary allocation size for the VSAM LDS in

cylinders. The VSAM Linear Data Set must have a secondary allocation size specified, if

you want to use dynamic grow. See “Dynamically growing a compatibility mode aggregate”

on page 13 or “Dynamically growing a multi-file system aggregate” on page 31 for

additional information.

-kilobytes primary [secondary]

Specifies the primary and optionally, the secondary allocation size for the VSAM LDS in

kilobytes. The VSAM Linear Data Set must have a secondary allocation size specified, if

you want to use dynamic grow. See “Dynamically growing a compatibility mode aggregate”

on page 13 or “Dynamically growing a multi-file system aggregate” on page 31 for

additional information.

-megabytes primary [secondary]

Specifies the primary and optionally, the secondary allocation size for the VSAM LDS in

megabytes. The VSAM Linear Data Set must have a secondary allocation size specified, if

zfsadm define

Chapter 11. zFS commands 97

|
|
|
|
|

you want to use dynamic grow. See “Dynamically growing a compatibility mode aggregate”

on page 13 or “Dynamically growing a multi-file system aggregate” on page 31 for

additional information.

-records primary [secondary]

Specifies the primary and optionally, the secondary allocation size for the VSAM LDS in

records. When records is specified, the record size is assumed to be 4089 bytes. The

VSAM Linear Data Set must have a secondary allocation size specified, if you want to use

dynamic grow. See “Dynamically growing a compatibility mode aggregate” on page 13 or

“Dynamically growing a multi-file system aggregate” on page 31 for additional information.

-tracks primary [secondary]

Specifies the primary and optionally, the secondary allocation size for the VSAM LDS in

tracks. The VSAM Linear Data Set must have a secondary allocation size specified, if you

want to use dynamic grow. See “Dynamically growing a compatibility mode aggregate” on

page 13 or “Dynamically growing a multi-file system aggregate” on page 31 for additional

information.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm define command defines a VSAM LDS. The VSAM LDS is available to be formatted as a

zFS aggregate. The command creates a DEFINE CLUSTER command string for a VSAM LDS with

SHAREOPTIONS(3) and passes it to the IDCAMS utility. If a failure occurs, the zfsadm define command

may display additional messages from IDCAMS indicating the reason for the failure.

Privilege Required

The issuer of the zfsadm define command requires sufficient authority to create the VSAM LDS.

Examples

The following command defines a VSAM LDS.

zfsadm define -aggregate omvs.prv.aggr001.lds0001 -volumes prv000 prv001 -cylinders 10 5

Related Information

Commands:

 zfsadm format

zfsadm define

98 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm delete

Purpose

Removes a file system. This is for deleting a backup file system in a compatibility mode aggregate

(sometimes referred to as unclone) or for deleting file systems in a multi-file system aggregate.

Format

zfsadm delete -filesystem name [-aggregate name] [-level] [-help]

Options

-filesystem name

Specifies the name of the read-write or backup file system to be removed. Include the

.bak extension if specifying the name of a backup file system. The file system name is

case sensitive.

-aggregate name

Specifies the name of the aggregate where the zFS file system name resides. It is

specified to qualify the zFS file system name (-filesystem) when there are multiple zFS

file systems with the same name in different aggregates. The aggregate name is not case

sensitive. It is always folded to upper case.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm delete command removes the read-write or backup zFS file system indicated by the

-filesystem option from its aggregate. The aggregate containing the file system to be deleted must be

attached. Read-write file systems and backup file systems are related during removal as follows:

v Removing a read-write file system automatically removes its associated backup version (if the backup

version exists).

v Removing a backup file system does not remove the read-write file system.

File/directory operations against a mounted read-write file system are suspended during the delete of the

backup file system. If the delete of a backup operation takes longer than approximately 30 seconds,

message IOEZ00588E is displayed on the operator console. The message is deleted (DOMed) when there

are no clone delete operations in progress. You can determine if a delete of a clone operation is in

progress on an aggregate by using the zfsadm lsfs -long command, which shows the delete in progress

for the backup file system.

If the zFS file system to be removed is also mounted, you must unmount it before you delete it. The

zfsadm delete command cannot be used to delete a file system that is mounted. You can delete a

compatibility mode file system (and its aggregate) by using the IDCAMS DELETE operation. This deletes

the VSAM Linear Data Set. For more information on renaming or deleting a compatibility mode aggregate,

see “Renaming or deleting a compatibility mode aggregate” on page 15.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be root

or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class. If you

are instead using parmlib (IOEPRMxx), the issuer is required to be logged in as root or to have READ

authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

zfsadm delete

Chapter 11. zFS commands 99

|
|

|
|
|
|
|
|

|
|

Examples

The following command deletes the read-write file system named OMVS.USER.PAT and its backup

version (if it exists) from its aggregate:

zfsadm delete OMVS.USER.PAT

IOEZ00105I File system OMVS.USER.PAT deleted successfully

Related Information

Commands:

 zfsadm clone

 zfsadm create

 zfsadm lsfs

File:

 IOEFSPRM

zfsadm delete

100 z/OS V1R9.0 Distributed File Service zFS Administration

|

zfsadm detach

Purpose

Detaches one or more aggregates from zFS. This makes any file systems contained in the aggregate

unavailable to zFS. This is for multi-file system aggregates only.

Format

zfsadm detach [{-aggregate aggregate name| -all [-system system name]}] [-level] [-help]

Options

-all Specifies that all attached aggregates in the sysplex are to be detached. Use this option or

use -aggregate but not both.

-aggregate aggregate name

Specifies the aggregate name of the aggregate to be detached. Use this option or use -all,

but not both. The aggregate name is not case sensitive. It is always translated to upper

case.

-system system name

Specifies the name of the system where the aggregates to be detached reside. It cannot

be specified without the -all option.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm detach command is used to detach an aggregate. Detaching an aggregate makes it

unavailable to the system. To detach one or more aggregates, use the -all or the -aggregate option to

specify the aggregates to be detached. Use the -system option to limit the detach to a single system.

Before detaching an aggregate, all file systems in the aggregate must be unmounted. Therefore, zfsadm

detach -all will not detach compatibility mode aggregates. The -system option cannot be specified without

the -all option.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be

logged in as root or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class. If you are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the

issuer is required to be logged in as root or to have READ authority to the

SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

The following is an example of a zfsadm detach command that detaches the aggregate

OMVS.PRV.AGGR001.LDS0001.

zfsadm detach -aggregate omvs.prv.aggr001.lds0001

IOEZ00122I Aggregate OMVS.PRV.AGGR001.LDS0001 detached successfully

Related Information

Commands:

 zfsadm attach

zfsadm detach

Chapter 11. zFS commands 101

|

|
|
|
|

|
|
|

|
|

Files:

 IOEFSPRM

zfsadm detach

102 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm format

Purpose

Formats a VSAM Linear Data Set (VSAM LDS) as a zFS aggregate.

Format

zfsadm format -aggregate name [-initialempty blocks] [-size blocks] [-logsize blocks]

 [-owner {uid | name}] [-group {gid | name}]

 [-perms decimal | octal | hex_number] [-grow blocks]

 [-system system name] [-compat] [-overwrite] [-level] [-help]

Options

-aggregate name

Specifies the aggregate name of the aggregate to be formatted. This will be the name of

the zFS aggregate that is formatted. The aggregate name is not case sensitive. It is

translated to upper case.

-initialempty blocks

Specifies the number of 8K blocks that will be left empty at the beginning of the

aggregate. The default is 1. If you specify 0, you will get 1 block. This option is not

normally specified.

-size blocks Specifies the number of 8K blocks that should be formatted to form the zFS aggregate.

The default is the number of blocks that will fit in the primary allocation of the VSAM LDS.

If a number less than the default is specified, it is rounded up to the default. If a number

greater than the default is specified, a single extend of the VSAM LDS is attempted after

the primary allocation is formatted unless the -grow option is specified. In that case,

multiple extensions of the amount specified in the -grow option will be attempted until the

-size is satisfied. Space must be available on the volume(s).

-logsize blocks

Specifies the number of 8K blocks reserved for the aggregate log. The default is 1% of the

aggregate size or 128 megabytes, whichever is smaller. This is normally sufficient.

However, a small aggregate that is grown to be very large will still have a small log. You

might want to specify a larger log if you expect the aggregate to grow very large.

-owner {uid | name}

Specifies the owner of the root directory of the file system. This is used with the -compat

option, otherwise it is ignored. It may be specified as a z/OS user ID or as a uid. The

default is the uid of the issuer of the zfsadm format command.

-group {gid | name}

Specifies the group owner of the root directory of the file system. This is used with the

-compat option, otherwise it is ignored. It may be specified as a z/OS group ID or as a

gid. The default is the gid of the issuer of the zfsadm format command. If only owner is

specified, the group is that owner’s default group.

-perms number

Specifies the permissions of the root directory of the file system. This is used with the

-compat option, otherwise it is ignored. It may be specified as an octal number (for

example, o755), as a hexadecimal number (for example, x1ED), or as a decimal number

(for example, 493). The default is o755 (owner read/write/execute, group read/execute,

and other read/execute.

-grow blocks Specifies the number of 8K blocks that zFS will use as the increment for extension when

the -size option specifies a size greater than the primary allocation.

zfsadm format

Chapter 11. zFS commands 103

-system system name

Specifies the system that the format request will be sent to.

-compat Specifies that the zFS aggregate should be formatted as a compatibility mode aggregate.

That is, it should be formatted as an aggregate and then a zFS file system should be

created in the aggregate. The zFS file system will have the same name as the aggregate.

-overwrite Specifies that an existing zFS aggregate should be overlaid. All existing data will be lost.

Use this option with caution. This option is not usually specified.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm format command formats a VSAM LDS as a zFS aggregate. All zFS aggregates must be

formatted before use (including HFS compatibility mode aggregates). The zfsadm format command

requires the ZFS PFS to be active on the system. The size of the aggregate is as many 8K blocks as fits

in the primary allocation of the VSAM LDS or as specified in the -size option. To extend it, use the zfsadm

grow command. If -overwrite is specified, all existing primary and secondary allocations are formatted

and the size includes all of that space.

Privilege Required

The issuer of the zfsadm format command must have ALTER authority to the VSAM LDS and must be

UID 0 or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

The following command formats the VSAM LDS as a compatibility mode aggregate.

zfsadm format -aggregate omvs.prev.aggr001.lds0001 -compat -owner usera -group audit -perms o750

Related Information

Commands:

 zfsadm define

Files:

 IOEFSPRM

zfsadm format

104 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm grow

Purpose

Makes the physical size of an aggregate larger.

Format

zfsadm grow -aggregate name -size kbytes [-level] [-help]

Options

-aggregate name

Specifies the aggregate name of the aggregate to be grown. The aggregate name is not

case sensitive. It is always translated to upper case.

-size kbytes Specifies the new total size in kilobytes of the aggregate after the grow operation. The

size is rounded up to a control area (CA)3 boundary. If zero is specified, the secondary

allocation size will be used.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm grow command attempts to extend the size of an aggregate when the size specified is

greater than the current size of the aggregate or when the size is specified as zero. If the extend fails (for

example, if there is no space on the volume(s), or if size zero is specified and there is no secondary

allocation specified for the VSAM Linear Data Set), the grow operation fails. If the size specified is less

than or equal to the current size of the aggregate, no extend is attempted and the command successfully

returns. An aggregate cannot be made smaller than its current size. In any case, if the aggregate’s high

used value is less than the aggregate’s high allocated value, the aggregate will be formatted up to the high

allocated value (making the high used value equal to the high allocated value). The current (formatted)

size of an aggregate can be determined by using the zfsadm aggrinfo command. The high used value

(HI-U-RBA) and the high allocated value (HI-A-RBA) can be determined by using the IDCAMS LISTCAT

ALL command.

For a compatibility mode aggregate, the size of the file system quota will be increased by the amount of

additional space available. For a multi-file system aggregate, the size of the file system quotas is not

changed.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be

logged in as root or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class. If you are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the

issuer is required to be logged in as root or to have READ authority to the

SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

The following command displays the online help entry for the zfsadm grow command:

3. A Control Area is normally a cylinder or less and is based on the primary and secondary allocation units. Refer to z/OS DFSMS

Using Data Sets for more information on allocation size.

zfsadm grow

Chapter 11. zFS commands 105

|
|
|
|
|
|
|
|
|
|
|

|
|
|

zfsadm grow -help

Usage: zfsadm grow -aggregate <name> -size <size in K bytes> [-level] [-help]

Related Information

Command:

 zfsadm aggrinfo

zfsadm grow

106 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm help

Purpose

Shows syntax of specified zfsadm commands or lists functional descriptions of all zfsadm commands.

Format

zfsadm help [-topic command...] [-level] [-help]

Options

-topic command

Specifies each command whose syntax is to be displayed. Provide only the second part of

the command name (for example, lsfs, not zfsadm lsfs). Multiple topic strings can be

specified. If this option is omitted, the output provides a short description of all zfsadm

commands.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm help command displays the first line (name and short description) of the online help entry for

every zfsadm command if -topic is not provided. For each command name specified with -topic, the

output lists the entire help entry.

The online help entry for each zfsadm command consists of the following two lines:

v The first line names the command and briefly describes its function.

v The second line, which begins with Usage:, lists the command options in the prescribed order.

Use the zfsadm apropos command to show each help entry containing a specified string.

Privilege Required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ authority to the data

set that contains the IOEFSPRM file. If you are using parmlib (IOEPRMxx), the issuer does not need

special authorization.

Examples

The following command displays the online help entry for the zfsadm lsfs command and the zfsadm

lsaggr command:

zfsadm help -topic lsfs lsaggr

zfsadm lsfs: list filesystem information

Usage: zfsadm lsfs [-aggregate <aggregate name>] [{-fast | -long}] [-level] [-help]

zfsadm lsaggr: list aggregates

Usage: zfsadm lsaggr [-level] [-help]

Related Information

Command:

 zfsadm apropos

zfsadm help

Chapter 11. zFS commands 107

zfsadm lsaggr

Purpose

Lists all currently attached aggregates for zFS.

Format

zfsadm lsaggr [-system system name] [-level] [-help]

Options

-system system name

Specifies the name of the system that owns the attached aggregates to be displayed.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm lsaggr command displays information about all attached aggregates.

This command displays a separate line for each aggregate. Each line displays the following information:

v The aggregate name

v The name of the system that is the zFS owner of the aggregate. If the aggregate is unowned, *UNOWNED

is displayed.

v The mode of the aggregate

v The status of the aggregate (for example, QUIESCED and/or DISABLED).

You can use the zfsadm aggrinfo command to display information about the amount of disk space

available on a specific aggregate or on all aggregates on a system.

Privilege Required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ authority to the data

set that contains the IOEFSPRM file. If you are using parmlib (IOEPRMxx), the issuer does not need

special authorization.

Examples

The following example shows that five aggregates are attached to the system (or the entire sysplex when

all systems are running z/OS V1R7 and above):

zfsadm lsaggr

OMVS.PRV.AGGR004.LDS0004 JS000END R/W

OMVS.PRV.AGGR003.LDS0002 JS000END R/O

OMVS.PRV.AGGR003.LDS0001 JS000END R/W

OMVS.PRV.AGGR002.LDS0002 JS000END R/W

OMVS.PRV.AGGR001.LDS0001 JS000END R/W

Related Information

Command:

 zfsadm aggrinfo

File:

 IOEFSPRM

zfsadm lsaggr

108 z/OS V1R9.0 Distributed File Service zFS Administration

|
|

zfsadm lsfs

Purpose

Lists all the file systems on a given aggregate or all attached aggregates.

Format

zfsadm lsfs [-aggregate name| -system system name] [-fast | -long] [-level] [-help]

Options

-aggregate name

Specifies an aggregate name that is used to retrieve file system information. The

aggregate name is not case sensitive. It is always translated to upper case. If this option is

not specified, the command displays information for all attached aggregates.

-system system name

Specifies the name of the system that owns the aggregates that contain the file systems to

be displayed.

-fast Causes the output of the command to be shortened to display only the aggregate name if

it contains one or more file systems or a message indicating that there are no file systems

contained in the aggregate.

-long Causes the output of the command to be extended to display the following additional

information about space usage in an file system: the allocation limit, the quota limit, the

size of the inode table, the number of file requests, the version of the file system, the

creation date and time and the last update date and time.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm lsfs command displays information about file systems in an aggregate. The file systems do

not need to be mounted to use this command.

The zfsadm lsfs command displays the following information for a specified aggregate or all attached

aggregates on a system or all attached aggregates in the sysplex:

v The total number of file systems contained in the aggregate.

v The file system’s name (with a .bak extension, if appropriate).

v The type (RW for read-write, or BK for backup).

v If it is mounted or not.

v The allocation usage and the quota usage, in kilobytes.

v If the file system is on-line or not.

v If the file system is being cloned or if the backup is being deleted. (This status is shown on the backup

file system entry. The read-write file system is indicated as return code EBUSY (114) with reason code

EFxx6246.)

v The total number of file systems on-line, off-line, busy, and mounted appear at the end of the output for

all file systems. If the file system is being cloned or if the backup is being deleted, the totals only

include the backup file system.

zfsadm lsfs

Chapter 11. zFS commands 109

|
|
|

|
|
|

If -fast is specified, it only displays the file system names. If the file system is being cloned or if the

backup is being deleted, the read-write file system is indicated as return code EBUSY (114) with reason

code EFxx6246.

If -long is specified, the following is displayed:

v The total number of file systems contained in the aggregate.

v The file system’s name.

v The file system’s ID.

v The type (RW for read-write, or BK for backup).

v If it is mounted or not.

v The state vector of the file system.

v If the file system is on-line or not.

v If the file system is being cloned or if the backup is being deleted. (This status is shown on the backup

file system entry. The read-write file system is indicated as return code EBUSY (114) with reason code

EFxx6246.)

v The allocation limit and allocation usage.

v The quota limit and quota usage.

v The size of the Filesystem Inode Table and the number of file requests.

v The version of the file system

v The day, date, and time when the file system was created (backed up for a backup file system).

v The day, date, and time when the contents of the file system were last updated (same as the creation

time for a backup file system).

v The total number of file systems on-line, off-line, busy and mounted appears at the end of the output for

all file systems. If the file system is being cloned or if the backup is being deleted, the totals only

include the backup file system.

Privilege Required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ authority to the data

set that contains the IOEFSPRM file. If you are using parmlib (IOEPRMxx), the issuer does not need

special authorization.

Examples

The following example displays information for the aggregate OMVS.PRV.AGGR001.LDS0001:

zfsadm lsfs -aggregate omvs.prv.aggr001.lds0001 -long

IOEZ00129I Total of 2 file systems found for aggregate OMVS.PRV.AGGR001.LDS0001

OMVS.PRV.FS1 100000,,5 RW (Not Mounted) states 0x10010005 On-line

 4294967232 K alloc limit; 9 K alloc usage

 25000 K quota limit; 9 K quota usage

 8 K Filesystem Inode Table 0 file requests

 version 1.4

 Creation Thu Aug 9 17:17:03 2001

 Last Update Thu Aug 9 17:17:03 2001

OMVS.PRV.FS2 100000,,6 RW (Not Mounted) states 0x10010005 On-line

 4294967232 K alloc limit; 9 K alloc usage

 45000 K quota limit; 9 K quota usage

 8 K Filesystem Inode Table 0 file requests

 version 1.4

 Creation Thu Aug 9 17:26:54 2001

 Last Update Thu Aug 9 17:26:54 2001

Total file systems on-line 2; total off-line 0; total busy 0; total mounted 0

zfsadm lsfs

110 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|

Related Information

Commands:

 zfsadm create

 zfsadm clone

zfsadm lsfs

Chapter 11. zFS commands 111

zfsadm lsquota

Purpose

Shows quota information about file systems and aggregates.

Format

zfsadm lsquota {-filesystem name | -mfilesystem mount_name} [-aggregate name] [-level] [-help]

Options

-filesystem name

Specifies the name of the zFS file system about which quota and usage information is to

be displayed. The file system name is case sensitive. If it was specified in upper case

when the file system was created, it must be specified in upper case here.

-mfilesystem mount_name

Specifies the z/OS UNIX file system name of the file system about which quota and usage

information is to be displayed. The file system name is case sensitive. If it was specified in

upper case when the file system was mounted, it must be specified in upper case here.

-aggregate name

Specifies the name of the aggregate where the zFS file system name resides. It is

specified to qualify the zFS file system name (-filesystem) when there are multiple zFS

file systems with the same name in different aggregates. The aggregate name is not case

sensitive. It is always folded to upper case.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm lsquota command displays quota and usage information about a file system. The command

also provides usage information on the aggregate in which the file system resides. The file system does

not need to be mounted to use this command. The aggregate containing the file system must be attached.

The zfsadm lsquota command displays the name of the file system, the quota and the quota used (in

kilobytes) of the file system, and the percentage of the quota in use. It also displays the information about

the percentage of the aggregate in use, the number of kilobytes in use on the aggregate and the number

of available kilobytes on the aggregate in which the file system resides. It also reports that the file system

is zFS.

The size of a compatibility mode file system is equal to the size of the aggregate on which it resides.

Therefore, the size and usage information displayed for the aggregate in the output of the zfsadm lsquota

command equals the quota and quota usage information of the file system in the aggregate.

This command displays the following information about each specified file system:

v The name of the file system.

v The quota, in kilobytes, of the file system.

v The number of kilobytes of the quota currently in use on the file system.

v The percentage of the quota currently in use on the file system.

v The percentage of available disk space currently in use on the aggregate on which the file system

resides.

zfsadm lsquota

112 z/OS V1R9.0 Distributed File Service zFS Administration

v The number of kilobytes of disk space in use on the aggregate and the total number of kilobytes on the

aggregate on which the file system resides.

v The file system type of the aggregate (zFS).

If the file system quota usage rises above 90% or the aggregate usage rises above 97%, the appropriate

percentage is indicated with << and the message <<WARNING is displayed after the aggregate usage

information at the end of the output line. (The 90% and the 97% are not related to the FSFULL and

AGGRFULL options on MOUNT and in the IOEFSPRM file. Those are used to determine when to report

to the operator.)

Note: Because each compatibility mode aggregate contains a single file system, the information displayed

for a compatibility mode aggregate applies to the single file system it houses.

The zfsadm aggrinfo command can be used to display the total disk space on an aggregate and the

amount currently available.

Every newly created zFS file system has a quota specification. The zfsadm setquota command can be

used to increase or decrease the quota of a zFS file system. Because the quota of a zFS file system does

not represent the amount of physical data space allocated to the file system, it can be larger than the size

of the aggregate on which the file system resides. Similarly, the combined quotas of all file systems on an

aggregate can be larger than the size of the aggregate. It cannot be changed to smaller than the usage of

the file system.

Privilege Required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ authority to the data

set that contains the IOEFSPRM file. If you are using parmlib (IOEPRMxx), the issuer does not need

special authorization.

Examples

The command that follows lists quota and usage information for the file system OMVS.PRV.FS1. It also

displays the size and usage information for the aggregate that contains this file system.

zfsadm lsq OMVS.PRV.FS1

Filesys Name Quota Used Percent Used Aggregate

OMVS.PRV.FS1 25000 9 0 1 = 1891/177992 (zFS)

The following command lists quota and usage information for the zFS file system named

OMVS.PRV.AGGR004.LDS0004, and size and usage information for the aggregate on which the file

system resides. The <<WARNING message directs the issuer’s attention to the fact that the percentage of

the quota in use on the indicated file system is above the warning level of 90% or the aggregate usage is

above 97%.

zfsadm lsq -f OMVS.PRV.AGGR004.LDS0004

Filesys Name Quota Used Percent Used Aggregate

OMVS.PRV.AGGR004.LDS0004 1300 1266 97<< 100<< = 1412/1412 (zFS) <<WARNING

Related Information

Commands:

 zfsadm aggrinfo

 zfsadm lsfs

 zfsadm setquota

zfsadm lsquota

Chapter 11. zFS commands 113

zfsadm lssys

Purpose

Shows the names of the members in a sysplex.

Format

zfsadm lssys [-level] [-help]

Options

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm lssys command displays the names of the members in a sysplex.

Privilege Required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ authority to the data

set that contains the IOEFSPRM file. If you are using parmlib (IOEPRMxx), the issuer does not need

special authorization.

Examples

The command that follows shows the current list of system names in the XCF group for zFS.

zfsadm lssys

IOEZ00361I A total of 3 systems are in the XCF group for zFS

DCEIMGVM

DCEIMGVQ

DCEIMGVN

Related Information

Commands:

 zfsadm lsaggr

zfsadm lssys

114 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm query

Purpose

Displays internal zFS statistics (counters and timers) maintained in the zFS Physical File System (PFS).

Format

zfsadm query [-system system name] [-locking] [-reset] [-storage] [-usercache] [-trancache]

 [-iocounts] [-iobyaggregate] [-iobydasd] [-knpfs] [-metacache]

 [-dircache] [-vnodecache] [-logcache] [-level] [-help]

Options

-system system name

Specifies the name of the system the report request will be sent to, to retrieve the data

requested.

-locking Specifies that the locking statistics report should be displayed.

-reset Specifies the report counters should be reset to zero. Should be specified with a report

type.

-storage Specifies that the storage report should be displayed.

-usercache Specifies that the user cache report should be displayed.

-trancache Specifies that the transaction cache counters report should be displayed.

-iocounts Specifies that the I/O count report should be displayed.

-iobyaggregate

Specifies that the I/O count by aggregate report should be displayed.

-iobydasd Specifies that the I/O count by Direct Access Storage Device (DASD) report should be

displayed.

-knpfs Specifies that the kernel counters report should be displayed.

-metacache Specifies that the metadata cache counters report should be displayed.

-dircache Specifies that the directory cache counters report should be displayed.

-vnodecache Specifies that the vnode cache counters report should be displayed.

-logcache Specifies that the log cache counters report should be displayed.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm query command is used to display performance statistics maintained by the zFS Physical File

System.

Privilege Required

If you are using an IOEFSPRM file in your ZFS PROC, the issuer must have READ authority to the data

set that contains the IOEFSPRM file. If you are using parmlib (IOEPRMxx), the issuer does not need

special authorization.

zfsadm query

Chapter 11. zFS commands 115

||

Examples

The following example is one of the queries that displays performance statistics.

zfsadm query -iobyaggr

 zFS I/O by Currently Attached Aggregate

DASD PAV

VOLSER IOs Mode Reads K bytes Writes K bytes Dataset Name

------ --- ---- ---------- ---------- ---------- ---------- ------------

CFC000 1 R/W 13 92 7641 30564 PLEX.JMS.AGGR001.LDS0001

CFC000 1 R/O 9 60 0 0 PLEX.JMS.AGGR002.LDS0002

CFC000 1 R/W 26 188 4483 17952 PLEX.JMS.AGGR004.LDS0004

------ --- ---- ---------- ---------- ---------- ---------- ------------

 3 48 340 12124 48516 *TOTALS*

Total number of waits for I/O: 52

Average I/O wait time: 3.886 (msecs)

Related Information

Commands:

 zfsadm lsaggr

zfsadm query

116 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm quiesce

Purpose

Specifies that an aggregate and all the file systems contained in it should be quiesced.

Format

zfsadm quiesce {-all | -aggregate name} [-level] [-help]

Options

-all Specifies that all attached aggregates are to be quiesced. Use this option or use

-aggregate.

-aggregate name

Specifies the name of the aggregate that is to be quiesced. The aggregate name is not

case sensitive. It is always translated to upper case. An aggregate must be attached to be

quiesced. All current activity against the aggregate is allowed to complete but no new

activity is started. Any mounted file systems are quiesced.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm quiesce command is used to temporarily drain activity to the aggregate. During this time:

v No file systems in the aggregate can be created, deleted, renamed, or cloned.

v No quotas for file systems contained in the aggregate can be modified.

v The aggregate cannot be detached, or grown

v No activity can occur against mounted file systems.

v If a quiesced compatibility mode file system is unmounted, zFS will indicate success. (The aggregate is

detached when the unquiesce is issued.)

The aggregate can be the target of lsaggr, aggrinfo, lsfs (file systems are indicated as busy). While at

least one aggregate remains quiesced, message IOEZ00581E is displayed on the zFS owning system’s

console.

The aggregate would normally be quiesced prior to backing up the aggregate. After the backup is

complete, the aggregate can be unquiesced.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be

logged in as root or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class. If you are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the

issuer is required to be logged in as root or to have READ authority to the

SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

The following command quiesces the aggregate OMVS.PRV.AGGR001.LDS0001.

zfsadm quiesce -aggregate omvs.prv.aggr001.lds0001

IOEZ00163I Aggregate OMVS.PRV.AGGR001.LDS0001 successfully quiesced

zfsadm quiesce

Chapter 11. zFS commands 117

|
|

|
|
|

Related Information

Commands:

 zfsadm unquiesce

zfsadm quiesce

118 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm rename

Purpose

Renames a file system. This is for multi-file system aggregates only. If you want to rename a compatibility

mode aggregate see “Renaming or deleting a compatibility mode aggregate” on page 15.

Format

zfsadm rename -oldname oldname -newname newname [-aggregate name][-level] [-help]

Options

-oldname oldname

Specifies the current zFS file system name of the read-write file system. It is case

sensitive.

-newname newname

Specifies the new zFS file system name for the read-write file system. The name must be

unique within the aggregate and it should be indicative of the file system’s contents. The

following characters can be included in the name of a file system:

v All uppercase and lowercase alphabetic characters (a to z, A to Z)

v All numerals (0 to 9)

v The . (period)

v The - (dash)

v The _ (underscore)

v The @ (at sign)

v The # (number sign)

v The $ (dollar).

The name can be no longer than 44 characters. This length includes the .bak extension,

which is added automatically when a read-only or backup version of the file system is

created. If you intend to clone this file system, you may want to limit the file system name

to 40 characters. Note that the .bak extensions are reserved for use with backup zFS file

systems, so you cannot specify a file system name that ends with that extension.

Note: The file system name is case sensitive. That is, if you specify the file system name

in lower case as the -newname on the zfsadm rename command, you must

specify the file system name in lower case when you mount it. The TSO/E MOUNT

command translates the file system name to upper case even if it is within quotes.

It is not translated to upper case if you specify the file system name on the TSO/E

MOUNT command within triple quotes. For example, you can specify

FILESYSTEM(’’’lower.case.example’’’) and the file system name is not translated to

upper case. However, you may find it simpler to specify the file system name in

upper case on the zfsadm rename command.

-aggregate name

Specifies the name of the aggregate where the zFS file system name resides. It is

specified to qualify the zFS file system name (-oldname) when there are multiple zFS file

systems with the same name in different aggregates. The aggregate name is not case

sensitive. It is always folded to upper case.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

zfsadm rename

Chapter 11. zFS commands 119

|
|

Usage

The zfsadm rename command changes the name of the read-write file system specified with -oldname to

the name specified with -newname. The name of the read-write file system’s backup copy, if any,

automatically changes to match. The aggregate that the file system is contained in must be attached. The

file system cannot be mounted.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be

logged in as root or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class. If you are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the

issuer is required to be logged in as root or to have READ authority to the

SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

The following command changes the file system name OMVS.PRV.FS2 to the file system name

OMVS.PRV.FS9:

zfsadm rename -oldname OMVS.PRV.FS2 -newname OMVS.PRV.FS9

IOEZ00108I File system OMVS.PRV.FS2 renamed to OMVS.PRV.FS9

IOEZ00108I File system OMVS.PRV.FS2.bak renamed to OMVS.PRV.FS9.bak

Related Information

Commands:

 zfsadm create

 zfsadm clone

zfsadm rename

120 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm setquota

Purpose

Sets the quota for a filesystem. This is for multi-file system aggregates only.

Format

zfsadm setquota {-filesystem name | -mfilesystem mount_name} -size kbytes [-aggregate name]

 [-level] [-help]

Options

-filesystem name

Specifies the file system name of the read-write file system whose quota is to be set. The

file system name is case sensitive.

-mfilesystem mount_name

Specifies the z/OS UNIX file system name of the file system which the quota is to be set.

The file system name is case sensitive. If it was specified in upper case when the file

system was created, it must be specified in upper case here.

-size kbytes Specifies the maximum amount of disk space that all of the files and directories in the

read-write file system can occupy. This includes files and directories in the read-write

version of the file system that are actually pointers to disk blocks in the backup version of

the file system. Specify the value in 1-kilobyte blocks. (A value of 1024 kilobytes is 1

megabyte.) The minimum specification is 128 (that is, 128K bytes).

-aggregate name

Specifies the name of the aggregate where the zFS file system name resides. It is

specified to qualify the zFS file system name (-filesystem) when there are multiple zFS

file systems with the same name in different aggregates. The aggregate name is not case

sensitive. It is always folded to upper case.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm setquota command sets the quota limit for a read-write zFS file system. (It cannot be used to

set the quota for a non-zFS file system or for a backup zFS file system.) The file system whose quota is to

be set is indicated by specifying the file system name with the -filesystem option.

Quota refers to the amount of disk space occupied by all of the files and directories in the read-write

version of the file system. This includes files and directories in the read-write version of the file system that

are actually pointers to disk blocks in the backup version of the file system. Do not confuse quota with

allocation; the latter identifies the amount of disk space occupied by the data that a file system actually

houses; excluding those files and directories that are pointers to disk blocks in the backup version of the

file system.

This command increases or decreases a file system’s quota to be the number of kilobytes specified with

the -size option. Because it does not represent the amount of physical data the file system contains, a file

system’s quota can be larger than the size of the aggregate on which it resides. Similarly, the sum of the

quotas of all file systems on an aggregate can exceed the size of the aggregate.

The zfsadm lsfs and zfsadm lsquota commands display, among other things, the current quota for a file

system.

zfsadm setquota

Chapter 11. zFS commands 121

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be

logged in as root or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class. If you are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the

issuer is required to be logged in as root or to have READ authority to the

SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

The following command sets the quota for the file system named OMVS.PRV.FS1 to be 15,000 kilobytes:

zfsadm setquota -filesystem OMVS.PRV.FS1 -size 15000

zfsadm lsquota OMVS.PRV.FS1

Filesys Name Quota Used Percent Used Aggregate

OMVS.PRV.FS1 15000 9 0 1 = 1907/177992 (zFS)

Related Information

Commands:

 zfsadm lsfs

 zfsadm lsquota

zfsadm setquota

122 z/OS V1R9.0 Distributed File Service zFS Administration

zfsadm unquiesce

Purpose

Makes an aggregate (and all the file systems contained in the aggregate) available to be accessed.

Format

zfsadm unquiesce {-all | -aggregate name} [-level] [-help]

Options

-all Specifies that all attached aggregates are to be unquiesced. Use this option or use

-aggregate.

-aggregate name

Specifies the name of the aggregate that is to be unquiesced. The aggregate name is not

case sensitive. It is always translated to upper case. An aggregate must be attached to be

unquiesced. All current activity against the aggregate is allowed to resume. Any mounted

file systems are unquiesced.

-level Prints the level of the zfsadm command. This is useful when you are diagnosing a

problem. All other valid options specified with this option are ignored.

-help Prints the online help for this command. All other valid options specified with this option

are ignored.

Usage

The zfsadm unquiesce command allows activity that has been suspended by zfsadm quiesce, to be

resumed.

The aggregate would normally be quiesced prior to backing up the aggregate. After the backup is

complete, the aggregate can be unquiesced.

Privilege Required

The issuer must have READ authority to the data set that contains the IOEFSPRM file and must be

logged in as root or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS

UNIXPRIV class. If you are not using IOEFSPRM but instead, you are using parmlib (IOEPRMxx), the

issuer is required to be logged in as root or to have READ authority to the

SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV class.

Examples

The following command unquiesces the aggregate OMVS.PRV.AGGR001.LDS0001.

zfsadm unquiesce -aggregate omvs.prv.aggr001.lds0001

IOEZ00166I Aggregate OMVS.PRV.AGGR001.LDS0001 successfully unquiesced

Related Information

Command:

 zfsadm quiesce

zfsadm unquiesce

Chapter 11. zFS commands 123

zfsadm unquiesce

124 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 12. zFS data sets

The following data sets are used during zFS processing.

© Copyright IBM Corp. 2001, 2007 125

IOEFSPRM

Purpose

This file lists the processing options for the ZFS PFS and the definitions of the multi-file system

aggregates. There is no mandatory information in this file, therefore it is not required. The options all have

defaults. Aggregates can all be compatibility mode aggregates (which do not need definitions). Multi-file

system aggregates can be attached by using the zfsadm attach command. They do not need definitions

in IOEFSPRM to be attached using zfsadm attach. However, if you need to specify any options (for tuning

purposes, for example) or if you want to have any multi-file system aggregates automatically attached

when ZFS is started, you need to have an IOEFSPRM file.

The location of the IOEFSPRM file is specified by the IOEZPRM DD statement in the ZFS PROC. The

IOEFSPRM file is normally a PDS member, so the IOEZPRM DD might look like the following:

//IOEZPRM DD DSN=SYS4.PVT.PARMLIB(IOEFSPRM),DISP=SHR

If you need to have separate IOEFSPRM files and you want to share the ZFS PROC in a sysplex, you can

use a system variable in the ZFS PROC so that it points to different IOEFSPRM files. The IOEZPRM DD

might look like the following:

//IOEZPRM DD DSN=SYS4.PVT.&SYSNAME..PARMLIB(IOEFSPRM),DISP=SHR

Your IOEFSPRM file might reside in SYS4.PVT.SY1.PARMLIB(IOEFSPRM) on system SY1; in

SYS4.PVT.SY2.PARMLIB(IOEFSPRM) on system SY2; and others.

If you want to share a single IOEFSPRM file, you can use system symbols in data set names in the

IOEFSPRM file. For example, msg_output_dsn=USERA.&SYSNAME..ZFS.MSGOUT would result in

USERA.SY1.ZFS.MSGOUT on system SY1 and define_aggr cluster(USERA.&SYSNAME..AGGR001)

would result in define_aggr cluster(USERA.SY1.AGGR001) on system SY1. Each system has a single

(possibly shared) IOEFSPRM file.

Any line beginning with # or * is considered a comment. The text in the IOEFSPRM file is case insensitive.

Any option or value can be upper or lower case. Blank lines are allowed. You should not have any

sequence numbers in the IOEFSPRM file. If you specify an invalid text value, the default value will be

assigned. If you specify an invalid numeric value, and it is smaller than the minimum allowed value, the

minimum value will be assigned. If you specify an invalid numeric value, and it is larger than the maximum

allowed value, the maximum value will be assigned.

Using PARMLIB (IOEPRMxx)

As an alternative to the IOEZPRM DDNAME specification, the IOEFSPRM member can be specified as a

true PARMLIB member. In this case, the member has the name IOEPRMxx, where xx is specified in the

parmlib member list.

When the IOEFSPRM is specified in the IOEZPRM DD statement of the ZFS PROC, there can only be

one IOEFSPRM file for each member of a sysplex. Using PARMLIB, zFS configuration options can be

specified in a list of configuration parm files. This allows an installation to specify configuration options that

are common among all members of the sysplex (for example, adm_threads) in a shared IOEPRMxx

member and configuration options that are system specific (for example, define_aggr) in a separate,

system specific IOEPRMxx member. If a configuration option is specified more than once, the first one

found is taken. For more information about PARMLIB, see z/OS MVS Initialization and Tuning Reference.

The yy’s are specified in the PARM option of the FILESYSTYPE statement for ZFS (in the BPXPRMxx).

The only valid value that can be specified on the PARM option for zFS is the parmlib search parameter

PRM=. The PARM string is case sensitive. You must enter the string in upper case. For example,

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)

ASNAME(ZFS,’SUB=MSTR’)

PARM(’PRM=(01,02,03)’)

IOEFSPRM

126 z/OS V1R9.0 Distributed File Service zFS Administration

Up to 32 member suffixes may be specified. You can also use any system symbol that resolves to two

characters. For example,

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)

ASNAME(ZFS,’SUB=MSTR’)

PARM(’PRM=(01,&SYSCLONE.)’)

If &SYSCLONE.=AB, this specifies that parmlib member IOEPRMAB should be searched after parmlib

member IOEPRM01. IOEPRM01 could contain common configuration options and IOEPRMAB could

contain configuration options that are specific to system AB. If a parmlib member is not found, the search

for the configuration option will continue with the next parmlib member.

If no PRM suffix list is specified (and no IOEZPRM DD is specified in the ZFS PROC), then member

IOEPRM00 is read. PARMLIB support is only used when the IOEZPRM DD statement is not specified in

the ZFS PROC. When a IOEZPRM DD is specified in the ZFS PROC, the single IOEFSPRM file specified

in the DD is used, as previously.

To specify 32 members, type member suffixes up to column 71 and then continue them in column 1 on the

next line. For example,

 col 72

 |

 V

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM) ASNAME(ZFS,’SUB=MSTR’)

 PARM(’PRM=(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,

15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)’)

^

|

col 1

Coexistence between IOEFSPRM and IOEPRMxx

The FILESYSTYPE PARM PRM specification is ignored in releases prior to z/OS V1R6. Therefore, if you

specify it in a BPXPRMxx member that is shared between z/OS V1R6 and previous releases (and no

IOEZPRM DD is specified in the ZFS PROC), the PRM specification is honored in z/OS V1R6 but is

ignored in previous releases. This means that the IOEPRMxx members are searched for zFS configuration

parameters in z/OS V1R6, but defaults are taken in previous releases. Also, if the ZFS FILESYSTYPE

PARM has no PRM specification (and no IOEZPRM DD is specified in the ZFS PROC), then ZFS attempts

to use the IOEPRM00 member in z/OS V1R6, but takes defaults in the previous releases. If IOEPRM00 is

not found, then defaults are used.

Usage

The following options are used as processing options for the ZFS PFS:

adm_threads

Specifies the number of threads defined to handle pfsctl or mount requests.

Default Value 10

Expected Value A number in the range of 1 - 256.

Example adm_threads=5

aggrfull

Specifies the threshold and increment for reporting aggregate full error messages to the operator.

Default Value Off

Expected Value Two numbers in the range of 1 - 99 within parentheses separated

by a comma.

Example aggrfull(90,5)

aggrgrow

Specifies whether aggregates can be dynamically extended when they become full. The aggregate

(that is, the VSAM Linear Data Set) must have a secondary allocation specified to be dynamically

extended and there must be space on the volume(s). This global value can be overridden in the

IOEFSPRM

Chapter 12. zFS data sets 127

|
|
|
|
|
|
|
|

define_aggr option or the zfsadm attach command for multi-file system aggregates and on the

MOUNT command for compatibility mode aggregates.

Default Value Off

Expected Value On or off

Example aggrgrow=on

auto_attach

Controls whether aggregates defined and listed in the IOEFSPRM file are attached by default

when ZFS is started (or restarted). When the value is on, you can add new multi-file system

aggregates (with the define_aggr option) to the IOEFSPRM file and they are attached

automatically the next time ZFS is started.

Default Value On

Expected Value On or off

Example auto_attach=on

dir_cache_size

Specifies the size of the directory buffer cache.

Default Value 32M

Expected Value A number in the range of 2M - 512M

Example dir_cache_size=32M

fsfull Specifies the threshold and increment for reporting file system quota full error messages to the

operator.

Default Value Off

Expected Value Two numbers in the range of 1 - 99 within parentheses separated

by a comma.

Example fsfull(85,5)

fsgrow

Specifies whether file systems in multi-file system aggregates can have their quota be dynamically

extended when they reach their quota limit. The first number specifies the number of k-bytes that

the file system quota should be increased. The second number specifies the number of times the

quota should be extended. This global value can be overridden on the MOUNT command for

multi-file system aggregates.

Default Value Off

Expected Value Two numbers in the range of 0 - 2147483648, within parentheses

and separated by a comma.

Example fsgrow(100,16)

group Specifies the XCF group that zFS uses to communicate between sysplex members. The Expected

Value characters must be acceptable to XCF. Generally, the characters A-Z, 0-9 and the national

characters ($, # and @) are acceptable. For more detail, see the GRPNAME parameter of the

IXCJOIN macro in z/OS MVS Programming: Sysplex Services Reference.

Default Value IOEZFS

Expected Value 1 to 8 characters

Example group=IOEZFS1

log_cache_size

Specifies the size of the cache used to contain buffers for log file pages. You can also specify a

fixed option which indicates that the pages are permanently fixed for performance. Note, the fixed

option reserves real storage for usage by ZFS only.

Default Value 16M

Expected Value A number in the range of 2M - 1024M. A ’K’ or ’M’ can be

appended to the value to mean kilobytes or megabytes,

respectively.

Example log_cache_size=32M,fixed

IOEFSPRM

128 z/OS V1R9.0 Distributed File Service zFS Administration

|

|

||
|
|
|
||
||
||

|
|
|

meta_cache_size

Specifies the size of the cache used to contain metadata. You can also specify a fixed option

which indicates that the pages are permanently fixed for performance. Note, the fixed option

reserves real storage for usage by ZFS only.

Default Value 32M

Expected Value A number in the range of 1M - 1024M. A ’K’ or ’M’ can be

appended to the value to mean kilobytes or megabytes,

respectively.

Example meta_cache_size=64M,fixed

metaback_cache_size

Specifies the size of the backing cache used to contain metadata. This resides in a data space

and can optionally be used to extend the size of the metadata cache. You can also specify a fixed

option which indicates that the pages are permanently fixed for performance. Note, the fixed

option reserves real storage for usage by ZFS only.

Default Value None

Expected Value A number in the range of 1M - 2048M. A ’K’ or ’M’ can be

appended to the value to mean kilobytes or megabytes,

respectively.

Example metaback_cache_size=64M,fixed

msg_input_dsn

Specifies the name of a data set containing translated zFS messages. It is specified when the

installation uses non-English messages. (When you use English messages, you should not specify

this option.) It is read when zFS is started (or restarted). Currently, Japanese messages are

supported.

Default Value None

Expected Value The name of a data set containing translated zFS messages.

Example msg_input_dsn=usera.sioemjpn

nbs Controls whether new block security is globally on by default or off by default for any aggregate.

New block security refers to the guarantee made when a system fails. Refer to “zfsadm attach” on

page 82 for an explanation of the nbs option.

Default Value On

Expected Value On or off

Example nbs=on

recovery_max_storage

Indicates the maximum amount of zFS address space storage to use for concurrent log recovery

during multiple concurrent aggregate mounts (attaches). This allows multiple concurrent mounts to

occur when sufficient storage is available for multiple concurrent log recovery processing.

Default Value 256M

Expected Value A number in the range of 128M - 512M.

Example recovery_max_storage=128M

sync_interval

Specifies the number of seconds between syncs.

Default Value 30

Expected Value A number in the range of 11 - 21474836.

Example sync_interval=45

tran_cache_size

Specifies the initial number of transactions in the transaction cache.

Default Value 2000

Expected Value A number in the range of 200 - 10000000.

Example tran_cache_size=4000

user_cache_readahead

Specifies whether zFS does read ahead for sequential access. Normally, this should be left on.

IOEFSPRM

Chapter 12. zFS data sets 129

|
|
|
|
||
||
||

Readahead can be disabled for a particular file system that has mostly random access by

specifying NOREADAHEAD in the MOUNT PARM.

Default Value On

Expected Value On or off

Example user_cache_readahead=off

user_cache_size

Specifies the size, in bytes, of the cache used to contain file data. You can also specify a fixed

option which indicates that the pages are permanently fixed for performance. Note, the fixed

option reserves real storage for usage by zFS only.

Default Value 256M

Expected Value A number in the range of 10M - 65536M (64G). A ’K’ or ’M’ can be

appended to the value to mean kilobytes or megabytes.

Example user_cache_size=64M,fixed

vnode_cache_size

Specifies the initial number of vnodes that will be cached by zFS. The number of vnodes with

vnode extensions will not exceed this number.

Default Value 32768 (will grow if z/OS UNIX needs more than this number)

Expected Value A number in the range 32 to min(500000, vnode_cache_limit)

Note: The vnode_cache_size specification cannot be larger than

the vnode_cache_limit. In that case, the vnode_cache_size

is set to the vnode_cache_limit.
Example vnode_cache_size=131072

vnode_cache_limit

Specifies the maximum number of vnodes that will be cached by zFS. It is related to the

vnode_cache_size option which specifies the initial vnode cache size. The vnode cache will start

at the vnode_cache_size and potentially grow up to the vnode_cache_limit. This is the maximum

number of base vnodes (the vnode without a vnode extension).

Default Value 500000

Expected Value The current vnode_cache_size 32 to 7340032.

Note: The vnode_cache_size specification cannot be larger than

the vnode_cache_limit. In that case, the vnode_cache_size

is set to the vnode_cache_limit.
Example vnode_cache_limit=800000

 The following option is used to define multi-file system aggregates so that they are attached at ZFS start

(or restart):

define_aggr

Defines a multi-file system aggregate, its corresponding data set name (which is the same as the

aggregate name), and any processing suboptions for that aggregate. The define_aggr option can

be contained on multiple lines and is complete when the next option is encountered or the end of

the file is reached. Suboptions include:

aggrfull Specifies the threshold and increment for reporting aggregate full

messages for this aggregate to the operator. The default is the

global aggrfull option (refer to page 127).

aggrgrow or noaggrgrow Indicates whether the multi-file system aggregate should

dynamically grow when it runs out of physical space. The

aggregate (that is, the VSAM Linear Data Set) must have

secondary allocation specified and there must be space on the

volume(s). The default is the global aggrgrow option (refer to

page 127).

IOEFSPRM

130 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
||
||

|
|
|

|
|

|

|
|
|

attach or noattach Indicates whether this aggregate is attached automatically when

ZFS is started (or restarted). Aggregates that are not automatically

attached must be attached with the zfsadm attach command. The

default is the global auto_attach option (refer to page 128).

cluster Specifies the VSAM Linear Data Set Cluster name. This is also

the aggregate name. This option is required.

nbs or nonbs Indicates if new block security algorithms should be used for this

aggregate. The default is the global nbs option (refer to page

129).

R/O or R/W R/O specifies that the aggregate should be opened in read-only

mode. A R/O aggregate means that all file systems in the

aggregate are read-only and can only be mounted read-only. This

allows sharing of an aggregate among multiple systems.

R/W specifies that the aggregate should be opened in read-write

mode. R/W is the default.

Example

v define_aggr R/W attach nonbs aggrfull(85,5) aggrgrow

cluster(OMVS.PRV.AGGR0001.LDS0001)

 The following options are used during debugging of the ZFS PFS:

debug_settings_dsn

Specifies the name of a data set containing debug classes to enable when zFS starts up. It is read

when zFS is started (or restarted).

Default Value None

Expected Value The name of a data set containing debug classes to enable.

Example debug_settings_dsn=usera.zfs.debug.input(file1)

msg_output_dsn

Specifies the name of a data set that contains any output messages that come from the ZFS PFS

during initialization. Refer to Chapter 9, “Performance and debugging,” on page 35. This is not a

required parameter.

Default Value None

Expected Value The name of a data set that contains ZFS PFS messages issued.

Example msg_output_dsn=usera.zfs.msg.out

trace_dsn

Contains the output of any operator MODIFY ZFS,TRACE,PRINT commands or the trace output if

the ZFS PFS abends. Each trace output creates a member in the PDSE. Traces that come from

the ZFS PFS kernel have member names of ZFSKNTnn. nn starts with 01 and increments for

each trace output. nn is reset to 01 when ZFS is started (or restarted). Refer to Chapter 9,

“Performance and debugging,” on page 35. This is not a required parameter.

Default Value None

Expected Value The name of a PDSE data set.

Example trace_dsn=usera.zfs.trace.out

trace_table_size

Specifies the size, in bytes, of the internal trace table. This is the size of the wrap-around trace

table in the ZFS address space that is used for internal tracing that is always on. The trace can be

sent to the trace_dsn by using the operator MODIFY ZFS,TRACE,PRINT command.

Default Value 16M

Expected Value A number in the range of 1M - 2048M.

Example trace_table_size=1M

xcf_trace_table_size

Specifies the size of the XCF trace table.

IOEFSPRM

Chapter 12. zFS data sets 131

Default Value 4M

Expected Value A number in the range of 1M - 2048M.

Example xcf_trace_table_size=8M

 The next two options are obsolete in z/OS Version 1 Release 3 and later and are ignored.

storage_details is always on and output from the MODIFY ZFS,QUERY, STORAGE,DETAILS goes into

the system log. storage_details_dsn is not used.

storage_details

Indicates whether or not the ZFS internal storage tracking mechanisms are active. The results can

be sent to the storage_details_dsn with the operator MODIFY ZFS,QUERY,STORAGE,DETAILS

command.

Default Value Off

Expected Value On or off.

Example storage_details=on

storage _details_dsn

Indicates where the storage map is written if storage_details is on and the operator MODIFY

ZFS,QUERY,STORAGE,DETAILS command is run.

Default Value None

Expected Value The name of a data set.

Example storage_details_dsn=usera.zfs.storage.output(file1)

Examples

The following IOEFSPRM sample file lists every program option.

+ + + + Beginning of sample file + + + +

**

* zSeries File System (zFS) Sample Parameter File: ioefsprm

* For a description of these and other zFS parameters, refer to the

* zSeries File System Administration document.

* Notes:

* 1. The ioefsprm file and parameters in the file are optional but it

* is recommended that the parameter file be created in order to be

* referenced by the DDNAME=IOEZPRM statement the PROCLIB JCL for

* the zFS started task.

* 2. An asterisk in column 1 identifies a comment line.

* 3. A parameter specification must begin in column 1.

**

* The following msg_output_dsn parameter defines the optional output

* message data set. If this parameter is not specified, or if the data

* set is not found, messages will be written to the system log.

* You must delete the * from a line to activate the parameter.

**

*msg_output_dsn=usera.zfs.msg.out

**

* The following msg_input_dsn parameter is ONLY required if the optional

* NLS feature (e.g J0H232J) is installed. The parameter specifies the

* message input data set containing the NLS message text which is

* supplied by the NLS feature. If this parameter is not specified or if

* the data set is not found, English language messages will be generated

* by zFS. You must delete the * from a line to activate the parameter.

**

*msg_input_dsn=usera.sioemjpn

**

* The following are examples of some of the optional parameters that

* control the sizes of caches, tuning options, and program operation.

* You must delete the * from a line to activate a parameter.

**

*adm_threads=5

*aggrfull(90,5)

*aggrgrow=on

IOEFSPRM

132 z/OS V1R9.0 Distributed File Service zFS Administration

|

*dir_cache_size=32M

*fsfull(85,5)

*fsgrow(100,16)

*group=IOEZFS1

*log_cache_size=32M

*meta_cache_size=64M

*metaback_cache_size=64M

*nbs=on

*recovery_max_storage=128M

*sync_interval=45

*tran_cache_size=4000

*user_cache_readahead=off

*user_cache_size=64M

*vnode_cache_size=131072

*vnode_cache_limit=800000

**

* The following are examples of some of the options that control zFS

* debug facilities. These parameters are not required for normal

* operation and should only be specified on the recommendation of IBM.

* You must delete the * column from a line to activate a parameter.

**

*debug_settings_dsn=usera.zfs.debug(file1)

*trace_dsn=usera.zfs.trace.out

*trace_table_size=1M

*xcf_trace_table_size=8M

IOEFSPRM

Chapter 12. zFS data sets 133

|

|

IOEFSPRM

134 z/OS V1R9.0 Distributed File Service zFS Administration

Chapter 13. zFS application programming interfaces

This section contains programming interface information.

This chapter describes the zFS Application Programming Interface (API), pfsctl (BPX1PCT). It describes

the ZFS commands: ZFSCALL_AGGR (0x40000005), ZFSCALL_FILESYS (0x40000004),

ZFSCALL_CONFIG (0x40000006) and ZFSCALL_STATS (0x40000007) and their subcommands. These

APIs are used to manage zFS aggregates and file systems and to query and set configuration options.

In z/OS V1R8 and above, the z/OS UNIX pfsctl (command X'C000000B') can also retrieve zFS reason

code text. For additional information, see the description of the PC#ErrorText pfsctl command in the

usage notes for the BPX1PCT service in z/OS UNIX System Services Programming: Assembler Callable

Services Reference.

© Copyright IBM Corp. 2001, 2007 135

pfsctl (BPX1PCT)

Purpose

The pfsctl (BPX1PCT) application programming interface is used to send physical file system specific

requests to a physical file system. It is documented in a general manner in the z/OS UNIX System

Services Programming: Assembler Callable Services Reference. ZFS is a physical file system and

supports several (ZFS specific) pfsctl functions. These are documented in this section.

Format

BPX1PCT (File_system_type,

 Command,

 Argument_Length,

 Argument,

 Return_value,

 Return_code,

 Reason_code);

Parameters

File_system_type

An eight character field. In the case of ZFS, it contains the characters ZFS followed by five blanks.

Command

An integer. There are four major ZFS commands:

v ZFSCALL_AGGR (0x40000005)

v ZFSCALL_FILESYS (0x40000004)

v ZFSCALL_CONFIG (0x40000006)

v ZFSCALL_STATS (0x40000007)

Each of these commands has a set of subcommands. The general format of the Argument for all

subcommands is:

Subcommand operation code int

Parameter0 int

Parameter1 int

Parameter2 int

Parameter3 int

Parameter4 int

Parameter5 int

Parameter6 int

Buffer[n] char[n]

where n depends on the particular subcommand.

Argument_Length

An integer that contains the length of the argument.

Argument

A structure that has the pfsctl parameters followed by the subcommand parameters.

 The definitions of any structures that have padding bytes added by the compiler, have the padding

bytes explicitly declared in the examples.

Return_value

An integer that contains 0 if the request is successful or -1 if it is not successful.

Return_Code

An integer in which the return code is stored. Refer to the z/OS UNIX System Services Messages

and Codes document for these codes.

Reason_Code

An integer in which the reason code is stored. If this code is of the form 0xEFnnxxxx, refer to the

136 z/OS V1R9.0 Distributed File Service zFS Administration

z/OS Distributed File Service Messages and Codes document. Otherwise, refer to the z/OS UNIX

System Services Messages and Codes document.

Usage

There are four major commands: ZFSCALL_AGGR (0x40000005) and its subcommands,

ZFSCALL_FILESYS (0x40000004) and its subcommands, ZFSCALL_CONFIG (0x40000006) and

ZFSCALL_STATS (0x40000007) and its subcommands. zFS pfsctl APIs do not work across sysplex

members. zFS pfsctl APIs can query and set information on zFS aggregates owned by the current system

only. File system information from other systems will not show up. However, if all systems are running

z/OS Version 1 Release 7 and above, zFS pfsctl APIs will work across sysplex members.

Note: In z/OS V1R7 and above, the z/OS UNIX pfsctl (command X'C000000B') can also retrieve zFS

reason code text. For additional information, see the description of the PC#ErrorText pfsctl

command in the usage notes for the BPX1PCT service in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.

Aggregate commands

The Aggregate command code is ZFSCALL_AGGR (0x40000005). The following subcommands and their

subcommand opcodes are supported:

v Attach Aggregate (105)

v Create File System (131)

v Define Aggregate (139)

v Delete File System (136)

v Detach Aggregate (104)

v Format Aggregate (134)

v Grow Aggregate (129)

v List Aggregate Status (137)

v List Aggregate Status (Version 2) (146)

v List Attached Aggregate Names (135)

v List Attached Aggregate Names (Version 2) (140)

v List File System Names (138)

v List File System Names (Version 2) (144)

v Quiesce Aggregate (132)

v Unquiesce Aggregate (133).

File System commands

The File System command code is ZFSCALL_FILESYS (0x40000004). The following subcommands and

their subcommand opcodes are supported:

v Clone File System (143)

v List File System Status (142)

v Rename File System (140)

v Set File System Quota (141).

Configuration commands

The Configuration command code is ZFSCALL_CONFIG (0x40000006). The following subcommands and

their subcommand opcodes are supported:

v List Systems (174)

v Query adm_threads setting (180)

v Query aggrfull setting (181)

v Query aggrgrow setting (182)

v Query auto_attach setting (183)

v Query cmd_trace (184)

v Query debug_settings_dsn setting (186)

v Query fsfull setting (187)

v Query fsgrow setting (188)

v Query group setting (214)

Chapter 13. zFS application programming interfaces 137

|
|
|
|
|
|

|

v Query log_cache_size setting (193)

v Query meta_cache_size setting (198)

v Query metaback_cache_size setting (199)

v Query msg_input_dsn setting (200)

v Query msg_output_dsn setting (201)

v Query nbs setting (202)

v Query sync_interval setting (205)

v Query sysplex_state (215)

v Query trace_dsn setting (206)

v Query trace_table_size setting (207)

v Query tran_cache_size setting (208)

v Query user_cache_readahead setting (209)

v Query user_cache_size setting (210)

v Query vnode_cache_size setting (212)

v Query vnode_cache_limit (227)

v Set adm_threads (150)

v Set aggrfull (158)

v Set aggrgrow (171)

v Set fsfull (157)

v Set fsgrow (172)

v Set log_cache_size (153)

v Set meta_cache_size (152)

v Set metaback_cache_size (163)

v Set msg_output_dsn (161)

v Set nbs (156)

v Set sync_interval (154)

v Set trace_dsn (159)

v Set tran_cache_size (160)

v Set user_cache_readahead (162)

v Set user_cache_size (151)

v Set vnode_cache_size (155)

v Set vnode_cache_limit (226)

Statistics commands

The statistics command code is ZFSCALL_STATS (0x40000007). The following subcommands and their

subcommand codes are supported:

v Statistics directory cache information (249)

v Statistics iobyaggr information (244)

v Statistics iobydasd information (245)

v Statistics iocounts information (243)

v Statistics kernel information (246)

v Statistics locking information (240)

v Statistics log cache information (247)

v Statistics metadata cache information (248)

v Statistics storage information (241)

v Statistics transaction cache information (250)

v Statistics user data cache information (242)

v Statistics vnode cache information (251)

138 z/OS V1R9.0 Distributed File Service zFS Administration

Attach Aggregate

Purpose

The Attach Aggregate subcommand call is an aggregate operation that attaches a multi-file system

aggregate to a system. This makes the aggregate and all its file systems known to the ZFS Physical File

System running on that system.

Format

syscall_parmlist

 opcode 105 AGOP_ATTACH_PARMDATA

 parms[0] offset to AGGR_ID

 parms[1] offset to AGGR_ATTACH

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

AGGR_ATTACH

 at_eye char[4] "AGAT"

 at_len short sizeof(AGGR_ATTACH)

 at_ver char 1

 at_res1 int 0

 at_threshold char 90

 at_increment char 5

 at_flags char 0x80

 ATT_MONITOR 0x80 Monitor aggregate full

 ATT_RO 0x40 Attach aggregate as read-only

 ATT_NBS 0x20 Use New Block Security

 ATT_NONBS 0x10 Do not use new block security

 ATT_GROW 0x04 Allow dynamic grow

 ATT_NOGROW 0x02 Disallow dynamic grow

 at_res2 char 0

 at_reserved int[64] 0

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EEXIST Aggregate already attached

 EINTR ZFS is shutting down

 EMVSERR Internal error using an osi service

 EPERM Permission denied to perform request

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

This function is used to attach multi-file system aggregates. Compatibility mode aggregates are attached

during mount, so a separate attach is not necessary.

ATT_NBS and ATT_NONBS are mutually exclusive. If neither is specified, the default is the nbs setting in

the IOEFSPRM file. Refer to the “zfsadm attach” on page 82 for a description of the nbs parameter.

Attach Aggregate

Chapter 13. zFS application programming interfaces 139

ATT_GROW and ATT_NOGROW are mutually exclusive. If neither is specified, the default is the

aggrgrow setting in the IOEFSPRM file. See “Dynamically growing a compatibility mode aggregate” on

page 13 and “Dynamically growing a multi-file system aggregate” on page 31 for a description of dynamic

grow.

at_threshold and at_increment are ignored unless ATT_MONITOR is set.

Reserved fields and undefined flags must be set to binary zeros.

Offset to systemname in parms[2] can be specified in z/OS V1R7 and above. The systemname can only

refer to a system running z/OS V1R7 and above.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

Delete Aggregate

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_ATTACH_PARMDATA 105

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct aggr_attach_t

{

 char at_eye[4]; /* Eye catcher */

#define AT_EYE "AGAT"

 short at_len; /* Length of structure */

 char at_ver; /* Structure version */

#define AT_VER_INITIAL 1 /* Version 1 */

 char at_res1; /* Reserved for internal use */

 char at_threshold; /* Threshold for monitoring */

 char at_increment; /* Increment */

 char at_flags; /* Processing flags */

Attach Aggregate

140 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

#define ATT_MONITOR 0x80 /* aggrfull monitoring should */

 /* be used */

#define ATT_RO 0x40 /* aggr should be attached ro */

#define ATT_NBS 0x20 /* aggr should be attached */

 /* with full NBS */

#define ATT_NONBS 0x10 /* aggr should be attached */

 /* with no NBS */

#define ATT_GROW 0x04 /* allow dynamic grow */

#define ATT_NOGROW 0x02 /* disallow dynamic grow */

 char at_res2; /* Reserved for future use */

 int at_reserved[64]; /* Reserved for future use */

} AGGR_ATTACH;

struct parmstruct

{

 syscall_parmlist myparms;

 AGGR_ID aggr_id;

 AGGR_ATTACH myaggr;

 char systemname[9]; /* System to attach on */

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char aggrname[45] = "PLEX.JMS.AGGR001.LDS0001"; /* aggregate name to attach */

struct parmstruct myparmstruct;

AGGR_ID *idp = &(myparmstruct.aggr_id);

AGGR_ATTACH *atp = &(myparmstruct.myaggr);

char *asp = myparmstruct.systemname;

myparmstruct.myparms.opcode = AGOP_ATTACH_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);

myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want the owner of the aggregate to be a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(AGGR_ID) + sizeof(AGGR_ATTACH);*/

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

memset(atp,0,sizeof(AGGR_ATTACH)); /* Ensure reserved fields are 0 */

memset(asp,0,sizeof(myparmstruct.systemname)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.aggr_id.aid_eye,AID_EYE,4);

myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

strcpy(myparmstruct.aggr_id.aid_name,aggrname);

memcpy(&myparmstruct.myaggr.at_eye[0], AT_EYE, 4);

myparmstruct.myaggr.at_len = sizeof(AGGR_ATTACH);

myparmstruct.myaggr.at_ver = AT_VER_INITIAL;

myparmstruct.myaggr.at_threshold = 90; /* 90 percent threshold */

myparmstruct.myaggr.at_increment = 5; /* 5 percent increment */

myparmstruct.myaggr.at_flags = 0;

myparmstruct.myaggr.at_flags |= ATT_MONITOR; /* Use threshold and */

 /* increment */

myparmstruct.myaggr.at_flags |= ATT_GROW; /* allow dynamic growing */

/* This next field should only be set if parms[2] is non-zero */

Attach Aggregate

Chapter 13. zFS application programming interfaces 141

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error attaching aggregate %s on system %s\n", aggrname,myparmstruct.systemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from attach was successful */

 {

 printf("Aggregate %s attached successfully on system %s\n",aggrname,myparmstruct.systemname);

 }

return 0;

}

Attach Aggregate

142 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Clone File System

Purpose

The Clone File System subcommand call is a file system operation that creates (or replaces) a backup file

system from the specified read-write file system. This is referred to as cloning a file system. The backup

file system is stored in the same aggregate as the read-write file system.

You can use an FS_ID or an FS_ID2 as input.

Format

syscall_parmlist

 opcode 143 FSOP_CLONE_PARMDATA

 parms[0] offset to FS_ID or FS_ID2

 parms[1] 0

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

FS_ID or FS_ID2

 fsid_eye char[4] "FSID"

 fsid_len char sizeof(FS_ID)

 fsid_ver char 1

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_reserved char[32] 0

 fsid_reserved2 char[2] 0

FS_ID2 or FS_ID

 fsid_eye char[4] "FSID"

 fsid_len char sizeof(FS_ID2)

 fsid_ver char 2

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_mtname char[45] 0

 fsid_reserved char[49] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate containing file system is quiesced

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

 EROFS Aggregate is attached as read only

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Clone File System

Chapter 13. zFS application programming interfaces 143

Usage

The aggregate containing the read-write file system to be cloned must be attached. The backup file

system name is the same as the read-write file system’s name with .bak appended. After the clone

operation, the backup file system can be mounted read-only.

After the backup file system is mounted read-only, users can access this point-in-time copy of the data

until the backup file system is deleted or the read-write file system is recloned.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 Delete File System

Restrictions

The aggregate cannot be attached as read-only. The file system name of the read-write file system to be

cloned must be less than or equal to 40 characters. If the backup file system already exists, it cannot be

mounted. The aggregate containing the read-write file system cannot be quiesced.

Examples

Example 1 - Using FS_ID

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_FILESYS 0x40000004

#define FSOP_CLONE_PARMDATA 143

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

Clone File System

144 z/OS V1R9.0 Distributed File Service zFS Administration

char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID fsid;

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.FS3";

struct parmstruct myparmstruct;

FS_ID *idp = &(myparmstruct.fsid);

myparmstruct.myparms.opcode = FSOP_CLONE_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 0;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(FS_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid.fsid_len = sizeof(FS_ID);

myparmstruct.fsid.fsid_ver = FSID_VER_INITIAL;

strcpy(myparmstruct.fsid.fsid_name,filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_FILESYS, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error cloning file system %s\n",filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from clone file system was successful */

 {

 printf("File system %s cloned successfully\n",filesystemname);

 }

return 0;

}

Example 2 - Using FS_ID2

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_FILESYS 0x40000004

#define FSOP_CLONE_PARMDATA 143

Clone File System

Chapter 13. zFS application programming interfaces 145

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

typedef struct fs_id2_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

#define FSID_VER_2 2 /* Second version */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, null terminated */

 char fsid_reserved[49]; /* Reserved for the future */

} FS_ID2;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID2 fsid;

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.FS3";

struct parmstruct myparmstruct;

FS_ID2 *idp = &(myparmstruct.fsid);

myparmstruct.myparms.opcode = FSOP_CLONE_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 0;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

Clone File System

146 z/OS V1R9.0 Distributed File Service zFS Administration

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(FS_ID2)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid.fsid_len = sizeof(FS_ID2);

myparmstruct.fsid.fsid_ver = FSID_VER_2;

strcpy(myparmstruct.fsid.fsid_name,filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_FILESYS, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error cloning file system %s\n",filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from clone file system was successful */

 {

 printf("File system %s cloned successfully\n",filesystemname);

 }

return 0;

}

Clone File System

Chapter 13. zFS application programming interfaces 147

Create File System

Purpose

The Create File System subcommand call is an aggregate operation that creates a new read-write file

system in a multi-file system aggregate on a system.

You can use an FS_ID or an FS_ID2 as input.

Format

syscall_parmlist

 opcode 131 AGOP_CREATEFILESYS_PARMDATA

 parms[0] offset to FS_ID or FS_ID2

 parms[1] offset to FILESYS_DATA

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

FS_ID or FS_ID2

 fsid_eye char[4] "FSID"

 fsid_len char sizeof(FS_ID)

 fsid_ver char 1

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id hyper

 high long 0

 low long 0

 fsid_aggrname char[45] "OMVS.PRV.AGGR001.LDS0001"

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_reserved char[32] 0

 fsid_reserved2 char[2] 0

FS_ID2 or FS_ID

 fsid_eye char[4] "FSID"

 fsid_len char sizeof(FS_ID2)

 fsid_ver char 2

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_mtname char[45] 0

 fsid_reserved char[49] 0

FILESYS_DATA

 fd_eye char[4] "FSDT"

 fd_len short sizeof(FILESYS_DATA)

 fd_ver char 1

 fd_flags char

 FD_OWNER_SPECIFIED 0x80

 FD_PERMS_SPECIFIED 0x40

 fd_owner int 612

 fd_group int 10

 fd_perms int 0755

 fd_quotah short 0

 fd_reserved1 char[2] 0

 fd_quota long 5000

 fd_reserved char[64] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code

Create File System

148 z/OS V1R9.0 Distributed File Service zFS Administration

EBUSY Aggregate containing file system is quiesced

 EXIST File system already exists

 EINTR ZFS is shutting down

 EMVSERR Internal error using an osi service

 EPERM Permission denied to perform request

 EROFS Aggregate is attached as read only

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

The aggregate that is to contain the new read-write file system must be attached. The file system name

can be no longer than 44 characters. If this file system is to be cloned, a file system name extension of

.bak will be added to the end of the read-write file system name to create the backup file system name. If

you intend to clone this read-write file system, you may want to limit the read-write file system name to 40

characters.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 Clone File System

 Delete File System

Restrictions

The aggregate cannot be quiesced or attached as read-only. You cannot create a file system that already

exists. You cannot create a file system that ends with .bak. The fd_quota must be at least 128 (for 128 K

bytes).

Examples

Example 1 - Using FS_ID

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_CREATEFILESYS_PARMDATA 131

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

Create File System

Chapter 13. zFS application programming interfaces 149

char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

typedef struct filesys_t {

 char fd_eye[4]; /* eye catcher */

#define FD_EYE "FSDT"

 short fd_len; /* Length */

 char fd_ver; /* */

#define FD_VER_INITIAL 1 /* Initial version */

 char fd_flags; /* Flag bits */

#define FD_OWNER_SPECIFIED 0x80 /* Owner & group specified */

#define FD_PERMS_SPECIFIED 0x40 /* Permissions specified */

 int fd_owner; /* Owner id for root */

 /* filesystem */

 int fd_group; /* Group id for root */

 /* filesystem */

 int fd_perms; /* Permissions for root */

 /* filesystem */

#define FD_DEFAULT_PERMS 0755 /* Default permissions if not specified */

 short fd_quotah; /* High portion of quota, in */

 /* K bytes */

 char fd_reserved1[2]; /* Reserved bytes */

 long fd_quota; /* Low portion of quota in */

 /* K bytes */

 char fd_reserved[64]; /* More reserved bytes */

} FILESYS_DATA;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID fsid;

 FILESYS_DATA myfilesystem;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.FS3";

char aggrname[45] = "OMVS.PRV.AGGR001.LDS0001";

struct parmstruct myparmstruct;

FS_ID *idp = &(myparmstruct.fsid);

FILESYS_DATA *fdp = &(myparmstruct.myfilesystem);

myparmstruct.myparms.opcode = AGOP_CREATEFILESYS_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID);

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

Create File System

150 z/OS V1R9.0 Distributed File Service zFS Administration

memset(idp,0,sizeof(FS_ID)); /* Ensure reserved fields are 0 */

memset(fdp,0,sizeof(FILESYS_DATA)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid.fsid_len = sizeof(FS_ID);

myparmstruct.fsid.fsid_ver = FSID_VER_INITIAL;

strcpy(myparmstruct.fsid.fsid_aggrname,aggrname);

strcpy(myparmstruct.fsid.fsid_name,filesystemname);

memcpy(&myparmstruct.myfilesystem.fd_eye[0], FD_EYE, 4);

myparmstruct.myfilesystem.fd_len = sizeof(FILESYS_DATA);

myparmstruct.myfilesystem.fd_ver = FD_VER_INITIAL;

myparmstruct.myfilesystem.fd_flags = FD_OWNER_SPECIFIED | FD_PERMS_SPECIFIED;

myparmstruct.myfilesystem.fd_owner = 612;

myparmstruct.myfilesystem.fd_group = 10;

myparmstruct.myfilesystem.fd_perms = 0755; /* permissions (in octal) */

myparmstruct.myfilesystem.fd_quotah = 0;

myparmstruct.myfilesystem.fd_quota = 5000; /* Size of file system in K-bytes */

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error creating file system %s in aggregate %s\n",filesystemname,aggrname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from create file system was successful */

 {

 printf("File system %s in Aggregate %s created successfully\n",filesystemname,aggrname);

 }

return 0;

}

Example 2 - Using FS_ID2

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_CREATEFILESYS_PARMDATA 131

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

Create File System

Chapter 13. zFS application programming interfaces 151

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

typedef struct fs_id2_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

#define FSID_VER_2 2 /* Second version */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, null terminated */

 char fsid_reserved[49]; /* Reserved for the future */

} FS_ID2;

typedef struct filesys_t {

 char fd_eye[4]; /* eye catcher */

#define FD_EYE "FSDT"

 short fd_len; /* Length */

 char fd_ver; /* */

#define FD_VER_INITIAL 1 /* Initial version */

 char fd_flags; /* Flag bits */

#define FD_OWNER_SPECIFIED 0x80 /* Owner & group specified */

#define FD_PERMS_SPECIFIED 0x40 /* Permissions specified */

 int fd_owner; /* Owner id for root */

 /* filesystem */

 int fd_group; /* Group id for root */

 /* filesystem */

 int fd_perms; /* Permissions for root */

 /* filesystem */

#define FD_DEFAULT_PERMS 0755 /* Default permissions if not specified */

 short fd_quotah; /* High portion of quota, in */

 /* K bytes */

 char fd_reserved1[2]; /* Reserved bytes */

 long fd_quota; /* Low portion of quota in */

 /* K bytes */

 char fd_reserved[64]; /* More reserved bytes */

} FILESYS_DATA;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID2 fsid;

 FILESYS_DATA myfilesystem;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.FS3";

char aggrname[45] = "OMVS.PRV.AGGR001.LDS0001";

Create File System

152 z/OS V1R9.0 Distributed File Service zFS Administration

struct parmstruct myparmstruct;

FS_ID2 *idp = &(myparmstruct.fsid);

FILESYS_DATA *fdp = &(myparmstruct.myfilesystem);

myparmstruct.myparms.opcode = AGOP_CREATEFILESYS_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID2);

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(FS_ID2)); /* Ensure reserved fields are 0 */

memset(fdp,0,sizeof(FILESYS_DATA)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid.fsid_len = sizeof(FS_ID2);

myparmstruct.fsid.fsid_ver = FSID_VER_2;

strcpy(myparmstruct.fsid.fsid_aggrname,aggrname);

strcpy(myparmstruct.fsid.fsid_name,filesystemname);

memcpy(&myparmstruct.myfilesystem.fd_eye[0], FD_EYE, 4);

myparmstruct.myfilesystem.fd_len = sizeof(FILESYS_DATA);

myparmstruct.myfilesystem.fd_ver = FD_VER_INITIAL;

myparmstruct.myfilesystem.fd_flags = FD_OWNER_SPECIFIED | FD_PERMS_SPECIFIED;

myparmstruct.myfilesystem.fd_owner = 612;

myparmstruct.myfilesystem.fd_group = 10;

myparmstruct.myfilesystem.fd_perms = 0755; /* permissions (in octal) */

myparmstruct.myfilesystem.fd_quotah = 0;

myparmstruct.myfilesystem.fd_quota = 5000; /* Size of file system in K-bytes */

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error creating file system %s in aggregate %s\n",filesystemname,aggrname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from create file system was successful */

 {

 printf("File system %s in Aggregate %s created successfully\n",filesystemname,aggrname);

 }

return 0;

}

Create File System

Chapter 13. zFS application programming interfaces 153

Define Aggregate

Purpose

The Define Aggregate subcommand call is an aggregate operation that defines (creates) a VSAM Linear

Data Set (VSAM LDS). This VSAM LDS can then be formatted as a zFS aggregate.

Format

syscall_parmlist

 opcode 139 AGOP_DEFINE_PARMDATA

 parms[0] offset to AGGR_DEFINE

 parms[1] size of Buffer

 parms[2] offset to Buffer

 parms[3] offset to system name (optional)

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_DEFINE

 an_eye char[4] "AGDF"

 an_len char sizeof(AGGR_DEFINE)

 an_ver char 1

 an_aggrName char[45] "OMVS.PRV.AGGR001.LDS0001"

 an_dataClass char[9] 0

 an_managementClass char[9] 0

 an_storageClass char[9] 0

 an_model char[45] 0

 an_modelCatalog char[45] 0

 an_volumes[59] char[7] "PRV000"

 an_reservedChars1 char 0

 an_numVolumes int 1

 an_spaceUnit int 1 /* 1 = cylinders */

 an spacePrimary int 10 /* 10 cylinders */

 an_spaceSecondary int 1 /* 1 cylinder */

 an_reservedIntsl char[32] 0

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR ZFS is shutting down

 EINVAL Invalid parameters

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must have sufficient authority to create the VSAM LDS.

Related Services

 Format Aggregate

Define Aggregate

154 z/OS V1R9.0 Distributed File Service zFS Administration

Restrictions

The VSAM LDS to be defined cannot already exist

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_DEFINE_PARMDATA 139

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_SMSID 8

#define ZFS_MAX_VOLID 6

typedef struct aggr_define_t

{

 char eye[4]; /* Eye catcher */

#define ADEF_EYE "AGDF"

 short len; /* Length of this structure */

 char ver; /* Version */

#define ADEF_VER_INITIAL 1 /* Initial version */

 char aggrName[ZFS_MAX_AGGRNAME+1];

 char dataClass[ZFS_MAX_SMSID+1];

 char managementClass[ZFS_MAX_SMSID+1];

 char storageClass[ZFS_MAX_SMSID+1];

 char model[ZFS_MAX_AGGRNAME+1];

 char modelCatalog[ZFS_MAX_AGGRNAME+1];

 char catalog[ZFS_MAX_AGGRNAME+1];

 char volumes[59][ZFS_MAX_VOLID+1];

 char reservedChars1;

 int numVolumes;

 int spaceUnit;

#define ZFS_SPACE_CYLS 1

#define ZFS_SPACE_KILO 2

#define ZFS_SPACE_MEGA 3

#define ZFS_SPACE_RECS 4

#define ZFS_SPACE_TRKS 5

 unsigned int spacePrimary;

 unsigned int spaceSecondary;

 int reservedInts1[32];

} AGGR_DEFINE;

struct parmstruct {

 syscall_parmlist myparms;

 AGGR_DEFINE aggdef;

 char Buffer[1024];

 char systemname[9];

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char aggrname[45] = "PLEX.JMS.AGGR007.LDS0007"; /* aggregate name to define */

char dataclass[9] = "";

Define Aggregate

Chapter 13. zFS application programming interfaces 155

char managementclass[9] = "";

char storageclass[9] = "";

char model[45] = "";

char modelcatalog[45] = "";

char catalog[45] = "";

char volumes[7] = "CFC000";

struct parmstruct myparmstruct;

AGGR_DEFINE *agp = &(myparmstruct.aggdef);

char *bufp = &(myparmstruct.Buffer[0]);

/* This next field should only be set if parms[3] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVN"); */ /* set system to run define on */

myparmstruct.myparms.opcode = AGOP_DEFINE_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(myparmstruct.Buffer);

myparmstruct.myparms.parms[2] = myparmstruct.myparms.parms[0]+sizeof(AGGR_DEFINE); /* offset to Buffer */

myparmstruct.myparms.parms[3] = 0;

/* Only specify a non-zero offset for the next field (parms[3]) if */

/* you are running z/OS 1.7 and above, and */

/* you want the define to run on a different system than this one */

/* myparmstruct.myparms.parms[3] = */

/* myparmstruct.myparms.parms[0]+sizeof(AGGR_DEFINE)+sizeof(myparmstruct.Buffer); */

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(agp,0,sizeof(*agp));

strcpy(agp->eye,ADEF_EYE);

agp->ver=ADEF_VER_INITIAL;

agp->len=sizeof(AGGR_DEFINE);

memset(bufp,0,sizeof(myparmstruct.Buffer));

strcpy(agp->aggrName,aggrname);

strcpy(agp->model,model); /* If included next 4 can be null */

strcpy(agp->dataClass,modelcatalog);

strcpy(agp->managementClass,managementclass);

strcpy(agp->storageClass,storageclass);

strcpy(agp->modelCatalog,modelcatalog);

strcpy(agp->volumes[0],(char *)volumes);

agp->numVolumes=1;

agp->spaceUnit=ZFS_SPACE_CYLS;

agp->spacePrimary=10;

agp->spaceSecondary=1;

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR,

 sizeof(myparmstruct),

 (char *) &myparmstruct,

 &bpxrv,

 &bpxrc,

 &bpxrs);

if (bpxrv < 0) {

 printf("define: Error defining LDS %s\n", aggrname);

 printf("define: BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 printf("define: job output:\n\n%s\n",myparmstruct.Buffer);

 return bpxrc;

 }

Define Aggregate

156 z/OS V1R9.0 Distributed File Service zFS Administration

else{

 printf("define: LDS %s defined successfully\n",aggrname);

 }

return 0;

}

Define Aggregate

Chapter 13. zFS application programming interfaces 157

Delete File System

Purpose

The Delete File System subcommand call is an aggregate operation that deletes an existing read-write file

system from a multi-file system aggregate on a system. It can also be used to delete an existing backup

file system.

You can use an FS_ID or an FS_ID2 as input.

Format

syscall_parmlist

 opcode 136 AGOP_DELETEFILESYS_PARMDATA

 parms[0] offset to FS_ID or FS_ID2

 parms[1] 0

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

FS_ID or FS_ID2

 fsid_eye char[4] "FSID"

 fsid_len char sizeof(FS_ID)

 fsid_ver char 1

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id hyper

 high long 0

 low long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_reserved char[32] 0

 fsid_reserved2 char[2] 0

FS_ID2 or FS_ID

 fsid_eye char[4] "FSID"

 fsid_len char sizeof(FS_ID2)

 fsid_ver char 2

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_mtname char[45] 0

 fsid_reserved char[49] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate containing file system is quiesced

 EXIST File system does not exist

 EINTR ZFS is shutting down

 EMVSERR Internal error using an osi service

 EPERM Permission denied to perform request

 EROFS Aggregate is attached as read only

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Delete File System

158 z/OS V1R9.0 Distributed File Service zFS Administration

Usage

The aggregate that contains the file system to be deleted must be attached. Read-write file systems and

backup file systems are related during removal as follows:

v Removing a read-write file system automatically removes its associated backup version (if the backup

version exists).

v Removing a backup file system does not remove the read-write file system.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 Clone File System

 Create File System

Restrictions

The aggregate cannot be quiesced or attached as read-only. You cannot delete a file system that is

mounted. If you are removing a read-write file system and it has a backup file system, neither the

read-write nor the backup file systems can be mounted.

When using an FS_ID2 as input, you cannot specify the file system with the z/OS UNIX file system name

(fsid_mtname) since the file system cannot be mounted. You must use the zFS file system name

(fsid_name).

Examples

Example 1 - Using FS_ID

#pragma linkage(BX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_DELETEFILESYS_PARMDATA 136

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

Delete File System

Chapter 13. zFS application programming interfaces 159

char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID fsid;

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.FS3";

struct parmstruct myparmstruct;

FS_ID *idp = &(myparmstruct.fsid);

myparmstruct.myparms.opcode = AGOP_DELETEFILESYS_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 0;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(FS_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid.fsid_len = sizeof(FS_ID);

myparmstruct.fsid.fsid_ver = FSID_VER_INITIAL;

strcpy(myparmstruct.fsid.fsid_name,filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error deleting file system %s\n",filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from delete file system was successful */

 {

 printf("File system %s deleted successfully\n",filesystemname);

 }

return 0;

}

Example 2 - Using FS_ID2

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

Delete File System

160 z/OS V1R9.0 Distributed File Service zFS Administration

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_DELETEFILESYS_PARMDATA 136

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

typedef struct fs_id2_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

#define FSID_VER_2 2 /* Second version */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, null terminated */

 char fsid_reserved[49]; /* Reserved for the future */

} FS_ID2;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID2 fsid;

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.FS3";

struct parmstruct myparmstruct;

FS_ID2 *idp = &(myparmstruct.fsid);

Delete File System

Chapter 13. zFS application programming interfaces 161

myparmstruct.myparms.opcode = AGOP_DELETEFILESYS_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 0;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(FS_ID2)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid.fsid_len = sizeof(FS_ID2);

myparmstruct.fsid.fsid_ver = FSID_VER_2;

strcpy(myparmstruct.fsid.fsid_name,filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error deleting file system %s\n",filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from delete file system was successful */

 {

 printf("File system %s deleted successfully\n",filesystemname);

 }

return 0;

}

Delete File System

162 z/OS V1R9.0 Distributed File Service zFS Administration

Detach Aggregate

Purpose

The Detach Aggregate subcommand call is an aggregate operation that detaches a multi-file system

aggregate from a system. This makes the aggregate and all its file systems unavailable to the ZFS

Physical File System running on that system.

Format

syscall_parmlist

 opcode 104 AGOP_DETACH_PARMDATA

 parms[0] offset to AGGR_ID

 parms[1] 0

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate could not be detached due to mounted file system

 EINTR ZFS is shutting down

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

This function is used to detach multi-file system aggregates. Compatibility mode aggregates are detached

during unmount.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 Attach Aggregate

Restrictions

All file systems in the aggregate must be unmounted before the aggregate can be detached.

Detach Aggregate

Chapter 13. zFS application programming interfaces 163

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_DETACH_PARMDATA 104

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct

{

 syscall_parmlist myparms;

 AGGR_ID aggr_id;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char aggrname[45] = "OMVS.PRV.AGGR001.LDS0001";

struct parmstruct myparmstruct;

myparmstruct.myparms.opcode = AGOP_DETACH_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 0;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(&myparmstruct.aggr_id,0,sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.aggr_id,AID_EYE,4);

myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

strcpy(myparmstruct.aggr_id.aid_name,aggrname);

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

Detach Aggregate

164 z/OS V1R9.0 Distributed File Service zFS Administration

&bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error detaching aggregate %s\n", aggrname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from detach was successful */

 {

 printf("Aggregate %s detached successfully\n",aggrname);

 }

return 0;

}

Detach Aggregate

Chapter 13. zFS application programming interfaces 165

Format Aggregate

Purpose

The Format Aggregate subcommand call is an aggregate operation that formats a VSAM Linear Data Set

(VSAM LDS) as a zFS aggregate.

Format

syscall_parmlist

 opcode 134 AGOP_FORMAT_PARMDATA

 parms[0] offset to AGGR_ID

 parms[1] offset to AGGR_FORMAT

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

AGGR_FORMAT

 af_eye char[4] "AGFM"

 af_len short sizeof(AGGR_FORMAT

 af_ver char 1

 af_res1 char 0

 af_size long 0

 af_logsize long 0

 af_initialempty long 0 /* 0 gives 1 block */

 af_overwrite int 0 /* Use caution if you specify 1 */

 af_compat int 1 /* compat aggr desired */

 af_owner int 0 /* no uid specified */

 af_ownerSpecified int 0 /* use uid of issuer */

 af_group int 0 /* no guid specified */

 af_groupSpecified int 0 /* gid set to issuer default group */

 af_perms int 0 /* no perms specified */

 af_reserved char[64] 0

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate is busy or otherwise unavailable

 EINTR ZFS is shutting down

 EINVAL Invalid parameters

 EMVSERR Internal error using an osi service

 ENOENT No aggregate by this name is found

 EPERM Permission denied to perform request

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

Reserved fields and undefined flags must be set to binary zeros.

Format Aggregate

166 z/OS V1R9.0 Distributed File Service zFS Administration

Privilege Required

The issuer must have ALTER authority on the VSAM Linear Data Set to be formatted and must be logged

in as root or have READ authority to the SUPERUSER.FILESYS.PFSCTL profile in the z/OS UNIXPRIV

class.

Related Services

 Define Aggregate

Restrictions

The VSAM LDS to be formatted cannot be attached.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_FORMAT_PARMDATA 134

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct aggr_format_t

{

 char af_eye[4]; /* Eye catcher */

#define AF_EYE "AGFM"

 short af_len; /* Length of structure */

 char af_ver; /* Version of cb */

#define AF_VER_INITIAL 1

 char af_res1; /* For future use */

 long af_size; /* Amount to format of aggr */

#define AF_DEFAULT_SIZE 0 /* If set, we use default of entire primary partition of LDS */

 long af_logsize; /* Size of logfile in aggr */

#define AF_DEFAULT_LOGSIZE 0 /* If set, we use default of 1% of aggr size */

 long af_initialempty; /* Initial empty blocks */

#define AF_DEFAULT_INITIALEMPTY 1 /* This is the default & minumum too */

 int af_overwrite; /* Overwrite aggr if its not empty */

#define AF_OVERWRITE_OFF 0 /* Overwrite off, that means if aggr not empty it will */

 /* NOT be formatted, th default */

#define AF_OVERWRITE_ON 1 /* Overwrite in effect */

 int af_compat; /* HFS-compat aggr desired */

#define AF_MULT 0 /* Multi-file sys aggr desired */

#define AF_HFSCOMP 1 /* HFS-compat aggr desired */

 int af_owner; /* Owner for HFS-compat */

 int af_ownerSpecified; /* Indicates an owner was provided */

Format Aggregate

Chapter 13. zFS application programming interfaces 167

|
|
|

#define AF_OWNER_USECALLER 0 /* Owner gets set to pfsctl issuer uid */

#define AF_OWNER_SPECIFIED 1 /* Use owner uid set in af_owner */

 int af_group; /* Group for HFS-compat */

 int af_groupSpecified; /* Indicates if group specified */

#define AF_GROUP_USECALLER 0 /* Group gets set to pfsctl issuer default group */

#define AF_GROUP_SPECIFIED 1 /* Use group gid set in af_group */

 int af_perms; /* Perms for HFS-compat */

#define AF_DEFAULT_PERMS 0755 /* The default perms to use */

 int af_permsSpecified; /* Indicates if perms provided */

#define AF_PERMS_DEFAULT 0 /* Perms not specified, use default */

#define AF_PERMS_SPECIFIED 1 /* Use perms set in af_perms */

 char af_reserved[64]; /* For future use */

} AGGR_FORMAT;

struct parmstruct {

 syscall_parmlist myparms;

 AGGR_ID aid;

 AGGR_FORMAT aggformat;

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char aggrname[45] = "PLEX.JMS.AGGR007.LDS0007"; /* aggregate name to format */

AGGR_FORMAT *aggptr = &(myparmstruct.aggformat);

AGGR_ID *idp = &(myparmstruct.aid);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVN"); */ /* set system to change */

myparmstruct.myparms.opcode = AGOP_FORMAT_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist)+sizeof(AGGR_ID);

myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want the format to be run on a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist)+sizeof(AGGR_ID)+sizeof(AGGR_FORMAT);*/

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(AGGR_ID));

memcpy(idp->aid_eye,AID_EYE,4);

idp->aid_ver=1;

strcpy(idp->aid_name,aggrname);

idp->aid_len=(int) sizeof(AGGR_ID);

memset(aggptr,0,sizeof(myparmstruct.aggformat));

memcpy(aggptr->af_eye,AF_EYE,4);

aggptr->af_len = sizeof(myparmstruct.aggformat);

aggptr->af_ver = AF_VER_INITIAL;

aggptr->af_size = AF_DEFAULT_SIZE;

aggptr->af_compat = AF_HFSCOMP; /* I want an HFS compatibility mode aggregate */

aggptr->af_ownerSpecified = AF_OWNER_USECALLER;

/* aggptr->af_owner = owner; */

aggptr->af_groupSpecified=AF_GROUP_USECALLER;

/* aggptr->af_group = group; */

aggptr->af_permsSpecified=AF_PERMS_DEFAULT;

Format Aggregate

168 z/OS V1R9.0 Distributed File Service zFS Administration

/* aggptr->af_perms = perms; */

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0) {

 printf("Error formatting, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else {

 printf("Formatted aggregate %s\n",aggrname);

 }

 return 0;

}

Format Aggregate

Chapter 13. zFS application programming interfaces 169

Grow Aggregate

Purpose

The Grow Aggregate subcommand call is an aggregate operation that extends the physical size of an

aggregate. It can also be used to extend compatibility mode aggregates and multi-file system aggregates.

Format

syscall_parmlist

 opcode 129 AGOP_GROW_PARMDATA

 parms[0] offset to AGGR_ID

 parms[1] new size of aggregate

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 8 DFSMS did not extend the aggregate

 EBUSY Aggregate containing file system is quiesced

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

 EROFS Aggregate is attached as read only

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

The aggregate to be grown must be attached. The size specified is the new total size (in 1 K-byte blocks)

being requested. The size may be rounded up by DFSMS. If a zero is specified for the new size, the

aggregate is grown by a secondary allocation. The determination of whether to extend to another volume

is made by DFSMS. Requests that write to files and need aggregate blocks that are not available yet and

other requests that access those files will wait. Other requests will not wait during the grow.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 List Aggregate Status

Grow Aggregate

170 z/OS V1R9.0 Distributed File Service zFS Administration

|
|

Restrictions

The aggregate to be grown cannot already be quiesced and cannot be attached as read-only. An

aggregate cannot be made smaller.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

/* #include <stdlib.h> */

#define ZFSCALL_AGGR 0x40000005

#define AGOP_GROW_PARMDATA 129

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct

{

 syscall_parmlist myparms;

 AGGR_ID aggr_id;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char aggrname[45] = "OMVS.PRV.AGGR001.LDS0001";

struct parmstruct myparmstruct;

memset(&myparmstruct.aggr_id,0,sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

myparmstruct.myparms.opcode = AGOP_GROW_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 70000; /* New size of aggregate in K-bytes */

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memcpy(&myparmstruct.aggr_id.aid_eye,AID_EYE,4);

myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

strcpy(myparmstruct.aggr_id.aid_name,aggrname);

Grow Aggregate

Chapter 13. zFS application programming interfaces 171

BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error growing aggregate %s\n", aggrname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from grow was successful */

 {

 printf("Aggregate %s grown succssfully\n",aggrname);

 }

return 0;

}

Grow Aggregate

172 z/OS V1R9.0 Distributed File Service zFS Administration

List Aggregate Status

Purpose

The List Aggregate Status subcommand call is an aggregate operation that returns information about a

specified attached aggregate on this system.

Format

syscall_parmlist

 opcode 137 AGOP_GETSTATUS_PARMDATA

 parms[0] offset to AGGR_ID

 parms[1] offset to AGGR_STATUS

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

AGGR_STATUS

 as_eye char[4] "AGST"

 as_len short sizeof(AGGR_STATUS)

 as_ver char 1

 as_res1 char 0

 as_aggrId long Aggregate ID

 as_nFileSystems long Number of File Systems

 as_threshold char Aggrfull threshold

 as_increment char Aggrfull increment

 as_flags char

 AS_MONITOR 0x80

 AS_RO 0x40

 AS_NBS 0x20

 AS_COMPAT 0x10

 AS_GROW 0x08

 as_res2 char 0

 as_blocks unsigned long

 as_fragSize long

 as_blockSize long

 as_totalUsable unsigned long

 as_realFree unsigned long

 as_minFree unsigned long

 as_reserved char[128]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

This call returns information about a specified aggregate. The aggregate must be attached.

List Aggregate Status

Chapter 13. zFS application programming interfaces 173

To grow an aggregate, you would need to specify a number larger than the sum of as_totalUsable and

as_minFree.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 List Attached Aggregate Names

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_GETSTATUS_PARMDATA 137

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef unsigned long u_long;

typedef struct aggr_status_t {

 char as_eye[4]; /* Eye catcher */

#define AS_EYE "AGST"

 short as_len; /* Length of structure */

 char as_ver;

#define AS_VER_INITIAL 1 /* Initial version */

 char as_res1; /* Reserved. */

 long as_aggrId; /* Internal identifier */

 long as_nFileSystems; /* Number of filesystems in aggregate */

 char as_threshold; /* Threshold for aggrfull monitoring */

 char as_increment; /* Increment for aggrfull monitoring */

 char as_flags; /* Aggregate flags */

#define AS_MONITOR 0x80 /* Aggr monitored for aggr full */

#define AS_RO 0x40 /* Aggr attached Read-only */

#define AS_NBS 0x20 /* Aggr should guarantee NBS */

#define AS_COMPAT 0x10 /* Aggr is HFS compatible */

#define AS_GROW 0x08 /* Aggr can be dynamically grown */

 char as_res2; /* Reserved */

List Aggregate Status

174 z/OS V1R9.0 Distributed File Service zFS Administration

u_long as_blocks; /* Number of fragments in aggregate */

 long as_fragSize; /* Size of fragment in aggregate (normally 1K) */

 long as_blockSize; /* Size of blocks on aggregate (normally 8K) */

 u_long as_totalUsable; /* Total available blocks on aggregate (normally 8K) */

 u_long as_realFree; /* Total kilobytes free */

 u_long as_minFree; /* Minimum kilobytes free */

 char as_reserved[128]; /* Reserved for future */

} AGGR_STATUS;

struct parmstruct

{

 syscall_parmlist myparms;

 AGGR_ID aggr_id;

 AGGR_STATUS aggr_status;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char aggrname[45] = "OMVS.PRV.AGGR001.LDS0001"; /* aggregate name to getstatus */

struct parmstruct myparmstruct;

AGGR_ID *idp = &(myparmstruct.aggr_id);

AGGR_STATUS *asp = &(myparmstruct.aggr_status);

myparmstruct.myparms.opcode = AGOP_GETSTATUS_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

memset(asp,0,sizeof(AGGR_STATUS)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.aggr_status.as_eye[0], AS_EYE, 4);

myparmstruct.aggr_status.as_len = sizeof(AGGR_STATUS);

myparmstruct.aggr_status.as_ver = AS_VER_INITIAL;

memcpy(&myparmstruct.aggr_id,AID_EYE,4);

myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

strcpy(myparmstruct.aggr_id.aid_name,aggrname);

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error getstatus aggregate %s\n", aggrname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from getstatus was successful */

 {

 printf("Aggregate %s getstatus successful\n",aggrname);

 printf("getstatus: aggr_id=%d, no_of_filesystems=%d, aggr_flags=%x\n",

List Aggregate Status

Chapter 13. zFS application programming interfaces 175

myparmstruct.aggr_status.as_aggrId,

 myparmstruct.aggr_status.as_nFileSystems,

 myparmstruct.aggr_status.as_flags);

 printf("getstatus: threshold=%d, increment=%d\n",

 myparmstruct.aggr_status.as_threshold,

 myparmstruct.aggr_status.as_increment);

 printf("getstatus: blocks=%d, frag_size=%d, block_size=%d\n",

 myparmstruct.aggr_status.as_blocks,

 myparmstruct.aggr_status.as_fragSize,

 myparmstruct.aggr_status.as_blockSize);

 printf("getstatus: total_usable=%d, real_free=%d, min_free=%d\n",

 myparmstruct.aggr_status.as_totalUsable,

 myparmstruct.aggr_status.as_realFree,

 myparmstruct.aggr_status.as_minFree);

 }

return 0;

}

List Aggregate Status

176 z/OS V1R9.0 Distributed File Service zFS Administration

List Aggregate Status (Version 2)

Purpose

The List Aggregate Status subcommand call is an aggregate operation that returns information about a

specified attached aggregate on this system. Version 2 returns additional flags and fields.

Format

syscall_parmlist

 opcode 146 AGOP_GETSTATUS2_PARMDATA

 parms[0] offset to AGGR_ID

 parms[1] offset to AGGR_STATUS2

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

AGGR_STATUS

 as_eye char[4] "AGST"

 as_len short sizeof(AGGR_STATUS2)

 as_ver char 2

 as_res1 char 0

 as_aggrId long Aggregate ID

 as_nFileSystems long Number of File Systems

 as_threshold char Aggrfull threshold

 as_increment char Aggrfull increment

 as_flags char

 AS_MONITOR 0x80

 AS_RO 0x40

 AS_NBS 0x20

 AS_COMPAT 0x10

 AS_GROW 0x08

 AS_QUIESCED 0x01

 as_flags2 char

 AS_DISABLED 0x80

 as_blocks unsigned long

 as_fragSize long

 as_blockSize long

 as_totalUsable unsigned long

 as_realFree unsigned long

 as_minFree unsigned long

 as_reserved2 int[3]

as_freeblocks unsigned long

as_freefrags unsigned long

as_directLog unsigned long

as_indirectLog unsigned long

as_fstbl unsigned long

as_bitmap unsigned long

as_diskFormatMajorVersion unsigned long

as_diskFormatMinorVersion unsigned long

as_reserved char[84]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

List Aggregate Status (Version 2)

Chapter 13. zFS application programming interfaces 177

ENOENT Aggregate is not attached

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

This call returns information about a specified aggregate. The aggregate must be attached.

To grow an aggregate, you would need to specify a number larger than the sum of as_totalUsable and

as_minFree.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 List Attached Aggregate Names

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_GETSTATUS2_PARMDATA 146

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef unsigned long u_long;

typedef struct aggr_status_t {

 char as_eye[4]; /* Eye catcher */

#define AS_EYE "AGST"

 short as_len; /* Length of structure */

 char as_ver;

#define AS_VER_2 2 /* version 2 */

 char as_res1; /* Reserved. */

List Aggregate Status (Version 2)

178 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

long as_aggrId; /* Internal identifier */

 long as_nFileSystems; /* Number of filesystems in aggregate */

 char as_threshold; /* Threshold for aggrfull monitoring */

 char as_increment; /* Increment for aggrfull monitoring */

 char as_flags; /* Aggregate flags */

#define AS_MONITOR 0x80 /* Aggr monitored for aggr full */

#define AS_RO 0x40 /* Aggr attached Read-only */

#define AS_NBS 0x20 /* Aggr should guarantee NBS */

#define AS_COMPAT 0x10 /* Aggr is HFS compatible */

#define AS_GROW 0x08 /* Aggr can be dynamically grown */

/* The following flags are for AS_VER_2 */

#define AS_DYNAMIC_MOVE 0x04 /* 1=aggrmove is on, 0=aggrmove is off */

#define AS_QUIESCED 0x01 /* 1 = Aggr is quiesced, 0 = Aggr is unquiesced */

 char as_flags2; /* Aggregate flags2 */

#define AS_DISABLED 0x80 /* 1 = Aggr is disabled */

 u_long as_blocks; /* Number of fragments in aggregate */

 long as_fragSize; /* Size of fragment in aggregate (normally 1K) */

 long as_blockSize; /* Size of blocks on aggregate (normally 8K) */

 u_long as_totalUsable; /* Total available blocks on aggregate (normally 8K) */

 u_long as_realFree; /* Total kilobytes free */

 u_long as_minFree; /* Minimum kilobytes free */

 int as_reserved2[3]; /* reserved */

 u_long as_freeblocks; /*Number of k available in free 8k blocks*/

 u_long as_freefrags; /*Number of k available in free 1k fragments*/

 u_long as_directLog; /*Number of k used on the log*/

 u_long as_indirectLog; /*Number of k used indirectly on the log*/

 u_long as_fstbl; /*Number of k used for the filesystem table*/

 u_long as_bitmap; /*Number of k used for the bitmap file*/

 u_long as_diskFormatMajorVersion; /* disk format major version */

 u_long as_diskFormatMinorVersion; /* disk format minor version */

 char as_reserved[84]; /* Reserved for future */

} AGGR_STATUS2;

struct parmstruct

{

 syscall_parmlist myparms;

 AGGR_ID aggr_id;

 AGGR_STATUS2 aggr_status;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char aggrname[45] = "PLEX.JMS.AGGR001.LDS0001"; /* aggregate name to getstatus */

struct parmstruct myparmstruct;

AGGR_ID *idp = &(myparmstruct.aggr_id);

AGGR_STATUS2 *asp = &(myparmstruct.aggr_status);

myparmstruct.myparms.opcode = AGOP_GETSTATUS2_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

memset(asp,0,sizeof(AGGR_STATUS2)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.aggr_status.as_eye[0], AS_EYE, 4);

myparmstruct.aggr_status.as_len = sizeof(AGGR_STATUS2);

List Aggregate Status (Version 2)

Chapter 13. zFS application programming interfaces 179

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

myparmstruct.aggr_status.as_ver = AS_VER_2;

memcpy(&myparmstruct.aggr_id,AID_EYE,4);

myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

strcpy(myparmstruct.aggr_id.aid_name,aggrname);

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error getstatus aggregate %s\n", aggrname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from getstatus was successful */

 {

 printf("Aggregate %s getstatus successful\n",aggrname);

 printf("getstatus: aggr_id=%d, no_of_filesystems=%d, aggr_flags=%2.2x, aggr_flags2=%2.2x\n",

 myparmstruct.aggr_status.as_aggrId,

 myparmstruct.aggr_status.as_nFileSystems,

 myparmstruct.aggr_status.as_flags,

 myparmstruct.aggr_status.as_flags2);

 printf("getstatus: threshold=%d, increment=%d\n",

 myparmstruct.aggr_status.as_threshold,

 myparmstruct.aggr_status.as_increment);

 printf("getstatus: blocks=%d, frag_size=%d, block_size=%d\n",

 myparmstruct.aggr_status.as_blocks,

 myparmstruct.aggr_status.as_fragSize,

 myparmstruct.aggr_status.as_blockSize);

 printf("getstatus: total_usable=%d, real_free=%d, min_free=%d\n",

 myparmstruct.aggr_status.as_totalUsable,

 myparmstruct.aggr_status.as_realFree,

 myparmstruct.aggr_status.as_minFree);

 printf("getstatus: free_8K_blocks=%d, free_1K_fragments=%d\n",

 myparmstruct.aggr_status.as_freeblocks/8,

 myparmstruct.aggr_status.as_freefrags);

 printf("getstatus: direct_Log=%d, indirect_Log=%d\n",

 myparmstruct.aggr_status.as_directLog,

 myparmstruct.aggr_status.as_indirectLog);

 printf("getstatus: filesystem_table=%d, bitmap=%d\n",

 myparmstruct.aggr_status.as_fstbl,

 myparmstruct.aggr_status.as_bitmap);

 printf("getstatus: version=%d.%d\n",

 myparmstruct.aggr_status.as_diskFormatMajorVersion,

 myparmstruct.aggr_status.as_diskFormatMinorVersion);

 }

return 0;

}

List Aggregate Status (Version 2)

180 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

List Attached Aggregate Names

Purpose

The List Attached Aggregate Names subcommand call is an aggregate operation that returns a list of the

names of all attached aggregates on a system.

Format

syscall_parmlist

 opcode 135 AGOP_LISTAGGRNAMES_PARMDATA

 parms[0] buffer length or 0

 parms[1] offset to AGGR_ID or 0

 parms[2] offset to size

 parms[3] offset to system name (optional)

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID[n] Array of AGGR_IDs (n can be 0)

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

size needed long 0

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 E2BIG List is too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

This call returns an array of AGGR_IDs - one for each attached aggregate on the system. Each AGGR_ID

structure is 84 bytes. You can specify a buffer that you think might hold all of them or you can specify a

buffer length and offset of zero. If you get a return code of E2BIG, the required size for the buffer is

contained in the size field.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 List Aggregate Status

 List File System Names

Restrictions

None.

List Attached Aggregate Names

Chapter 13. zFS application programming interfaces 181

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_LISTAGGRNAMES_PARMDATA 135

#define E2BIG 145

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct

{

 syscall_parmlist myparms;

 /* Real malloc’d structure will have an array of AGGR_IDs here */

 long size;

 char systemname[9];

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

struct parmstruct myparmstruct;

AGGR_ID *aggPtr;

int aggSize = sizeof(AGGR_ID);

int buflen = sizeof(AGGR_ID);

struct parmstruct *myp = &myparmstruct;

int mypsize;

char *systemp;

int count_aggrs, total_aggrs;

myparmstruct.myparms.opcode = AGOP_LISTAGGRNAMES_PARMDATA;

myparmstruct.myparms.parms[0] = 0;

myparmstruct.myparms.parms[1] = 0;

myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

List Attached Aggregate Names

182 z/OS V1R9.0 Distributed File Service zFS Administration

&bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

{

 if (bpxrc == E2BIG)

 {

 buflen = myp->size; /* Get buffer size needed */

 mypsize = buflen + sizeof(syscall_parmlist) + sizeof(long) + 9;

 myp = (struct parmstruct *) malloc ((long) mypsize);

 memset(myp, 0, mypsize);

 /* This next field should only be set if parms[3] is non-zero */

 /* systemp = (char *)myp + buflen + sizeof(syscall_parmlist) + sizeof(long); */

 /* strcpy(systemp,"DCEIMGVN"); */ /* set system to get lsaggr info from */

 myp->myparms.opcode = AGOP_LISTAGGRNAMES_PARMDATA;

 myp->myparms.parms[0] = buflen;

 myp->myparms.parms[1] = sizeof(syscall_parmlist);

 myp->myparms.parms[2] = sizeof(syscall_parmlist) + buflen;

 myp->myparms.parms[3] = 0;

/* Only specify a non-zero offset for the next field (parms[3]) if */

/* you are running z/OS 1.7 and above, and */

/* you want lsaggr aggregates owned on a single system */

/* myp->myparms.parms[3] = sizeof(syscall_parmlist) + buflen + sizeof(long); */

 myp->myparms.parms[4] = 0;

 myp->myparms.parms[5] = 0;

 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 mypsize, /* Length of Argument */

 (char *) myp, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv == 0)

 {

 total_aggrs = buflen/aggSize;

 count_aggrs = 1;

 for(aggPtr = (AGGR_ID *) &(myp->size) ; count_aggrs <= total_aggrs ;

 aggPtr++, count_aggrs++)

 {

 if (strlen(aggPtr->aid_name) != 0)

 printf("%-64.64s\n",aggPtr->aid_name);

 }

 free(myp);

 }

 else /* lsaggr names failed with large enough buffer */

 {

 printf("Error on ls aggr with large enough buffer\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* error was not E2BIG */

 {

 printf("Error on ls aggr trying to get required size\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

List Attached Aggregate Names

Chapter 13. zFS application programming interfaces 183

}

else /* asking for buffer size gave rv = 0; maybe there are no aggregates */

{

 if (myparmstruct.size == 0)

 {

 printf("No attached aggregates\n");

 }

 else /* No, there was some other problem with getting the size needed */

 {

 printf("Error getting size required\n");

 }

}

return 0;

}

List Attached Aggregate Names

184 z/OS V1R9.0 Distributed File Service zFS Administration

List Attached Aggregate Names (Version 2)

Purpose

The List Attached Aggregate Names subcommand call is an aggregate operation that returns a list of the

names of all attached aggregates on a system with the system name.

Format

syscall_parmlist

 opcode 140 AGOP_LISTAGGRNAMES2_PARMDATA

 parms[0] buffer length or 0

 parms[1] offset to AGGR_ID2 or 0

 parms[2] offset to size

 parms[3] offset to system name (optional)

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID[2] Array of AGGR_ID2s (n can be 0)

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 2

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_sysname char[9] "DCEIMGVN"

 aid_reserved char[24] 0

size needed long 0

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 E2BIG List is too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

This call returns an array of AGGR_ID2s - one for each attached aggregate on the system. Each

AGGR_ID structure is 84 bytes. You can specify a buffer that you think might hold all of them or you can

specify a buffer length and offset of zero. If you get a return code of E2BIG, the required size for the buffer

is contained in the size field.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 List Aggregate Status

 List File System Names

Restrictions

None.

List Attached Aggregate Names (Version 2)

Chapter 13. zFS application programming interfaces 185

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_LISTAGGRNAMES2_PARMDATA 140 /* list attached aggregates with system name */

#define E2BIG 145

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

#define SYS_MAX_NAMELEN 8 /* Max. z/OS system name length*/

typedef struct aggr_id2_t {

 char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_2 2 /* version 2 */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */

 char aid_sysname[SYS_MAX_NAMELEN+1]; /* system name, NULL terminated */

 char aid_reserved[24]; /* Reserved for the future */

} AGGR_ID2;

struct parmstruct

{

 syscall_parmlist myparms;

 /* Real malloc’d structure will have an array of AGGR_ID2s here */

 long size;

 char systemname[9];

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

struct parmstruct myparmstruct;

AGGR_ID2 *aggPtr;

int aggSize = sizeof(AGGR_ID2);

int buflen = sizeof(AGGR_ID2);

struct parmstruct *myp = &myparmstruct;

int mypsize;

char *systemp;

int count_aggrs, total_aggrs;

myparmstruct.myparms.opcode = AGOP_LISTAGGRNAMES2_PARMDATA;

myparmstruct.myparms.parms[0] = 0;

myparmstruct.myparms.parms[1] = 0;

myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

List Attached Aggregate Names (Version 2)

186 z/OS V1R9.0 Distributed File Service zFS Administration

(char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

{

 if (bpxrc == E2BIG)

 {

 buflen = myp->size; /* Get buffer size needed */

 mypsize = buflen + sizeof(syscall_parmlist) + sizeof(long) + 9;

 myp = (struct parmstruct *) malloc ((long) mypsize);

 memset(myp, 0, mypsize);

 /* This next field should only be set if parms[3] is non-zero */

 /* systemp = (char *)myp + buflen + sizeof(syscall_parmlist) + sizeof(long); */

 /* strcpy(systemp,"DCEIMGVN"); */ /* set system to get lsaggr info from */

 myp->myparms.opcode = AGOP_LISTAGGRNAMES2_PARMDATA;

 myp->myparms.parms[0] = buflen;

 myp->myparms.parms[1] = sizeof(syscall_parmlist);

 myp->myparms.parms[2] = sizeof(syscall_parmlist) + buflen;

 myp->myparms.parms[3] = 0;

/* Only specify a non-zero offset for the next field (parms[3]) if */

/* you are running z/OS 1.7 and above, and */

/* you want lsaggr aggregates owned on a single system */

 /* myp->myparms.parms[3] = sizeof(syscall_parmlist) + buflen + sizeof(long); */

 myp->myparms.parms[4] = 0;

 myp->myparms.parms[5] = 0;

 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 mypsize, /* Length of Argument */

 (char *) myp, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv == 0)

 {

 total_aggrs = buflen/aggSize;

 count_aggrs = 1;

 for(aggPtr = (AGGR_ID2 *) &(myp->size) ; count_aggrs <= total_aggrs ;

 aggPtr++, count_aggrs++)

 {

 if (strlen(aggPtr->aid_name) != 0)

 printf("%-64.64s %-8.8s\n",aggPtr->aid_name,

 aggPtr->aid_sysname);

 }

 free(myp);

 }

 else /* lsaggr names failed with large enough buffer */

 {

 printf("Error on ls aggr with large enough buffer\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* error was not E2BIG */

 {

 printf("Error on ls aggr trying to get required size\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

List Attached Aggregate Names (Version 2)

Chapter 13. zFS application programming interfaces 187

return bpxrc;

 }

}

else /* asking for buffer size gave rv = 0; maybe there are no aggregates */

{

 if (myparmstruct.size == 0)

 {

 printf("No attached aggregates\n");

 }

 else /* No, there was some other problem with getting the size needed */

 {

 printf("Error getting size required\n");

 }

}

return 0;

}

List Attached Aggregate Names (Version 2)

188 z/OS V1R9.0 Distributed File Service zFS Administration

List File System Names

Purpose

The List File System Names subcommand call is an aggregate operation that returns the names of the file

systems contained in a specified aggregate on this system.

Format

syscall_parmlist

 opcode 138 AGOP_LISTFSNAMES_PARMDATA

 parms[0] offset to AGGR_ID

 parms[1] buffer length or 0

 parms[2] offset to buffer or 0

 parms[3] offset to size

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

FS_ID[n] Array of FS_IDs (n can be zero)

 fsid_eye char[4] "FSID"

 fsid_len char sizeof(FS_ID)

 fsid_ver char 1

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long

 low unsigned long

 fsid_aggrname char[45]

 fsid_name char[45]

 fsid_reserved char[32]

 fsid_reserved2 char[2]

size long

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 E2BIG List is too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

The aggregate specified must be attached.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

List File System Names

Chapter 13. zFS application programming interfaces 189

Related Services

 List Attached Aggregate Names

 List File System Status

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_LISTFSNAMES_PARMDATA 138

#define E2BIG 145

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct hyper { /* This is a 64 bit integer to zFS */

 unsigned long high;

 unsigned long low;

} hyper;

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

struct parmstruct

{

 syscall_parmlist myparms;

 AGGR_ID aggr_id;

 /* Real malloc’d structure will have an array of FS_IDs here */

 long size;

 } ;

List File System Names

190 z/OS V1R9.0 Distributed File Service zFS Administration

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

struct parmstruct myparmstruct;

AGGR_ID *aggPtr;

FS_ID *fsPtr;

int fsSize = sizeof(FS_ID);

int buflen = sizeof(FS_ID);

struct parmstruct *myp = &myparmstruct;

int mypsize;

int count_fs, total_fs;

char aggrname[45]="OMVS.PRV.AGGR001.LDS0001";

memset(&myparmstruct.aggr_id,0,sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.aggr_id.aid_eye,AID_EYE,4);

myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

strcpy(myparmstruct.aggr_id.aid_name,aggrname);

myparmstruct.myparms.opcode = AGOP_LISTFSNAMES_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 0;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

{

 if (bpxrc == E2BIG)

 {

 buflen = myp->size; /* Get buffer size needed */

 mypsize = buflen + sizeof(syscall_parmlist) + sizeof(AGGR_ID) + sizeof(long);

 myp = (struct parmstruct *) malloc ((long) mypsize);

 memset(myp, 0, mypsize);

 memcpy(myp->aggr_id.aid_eye,AID_EYE,4);

 myp->aggr_id.aid_len = sizeof(AGGR_ID);

 myp->aggr_id.aid_ver = AID_VER_INITIAL;

 strcpy(myp->aggr_id.aid_name,aggrname);

 myp->myparms.opcode = AGOP_LISTFSNAMES_PARMDATA;

 myp->myparms.parms[0] = sizeof(syscall_parmlist);

 myp->myparms.parms[1] = buflen;

 myp->myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);

 myp->myparms.parms[3] = sizeof(syscall_parmlist) + sizeof(AGGR_ID) + buflen;

 myp->myparms.parms[4] = 0;

 myp->myparms.parms[5] = 0;

 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 mypsize, /* Length of Argument */

List File System Names

Chapter 13. zFS application programming interfaces 191

(char *) myp, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv == 0)

 {

 total_fs = buflen/fsSize;

 printf("total file systems = %d\n",total_fs);

 count_fs = 1;

 for(fsPtr = (FS_ID *) &(myp->size) ; count_fs <= total_fs ; fsPtr++, count_fs++)

 {

 printf("%-64.64s\n",fsPtr->fsid_name);

 }

 free(myp);

 }

 else /* lsaggr names failed with large enough buffer */

 {

 printf("Error on ls fs with large enough buffer\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* error was not E2BIG */

 {

 printf("Error on ls fs trying to get required size\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

}

else /* asking for buffer size gave rv = 0; maybe there are no file systems */

{

 if (myparmstruct.size == 0)

 {

 printf("No file systems\n");

 }

 else /* No, there was some other problem with getting the size needed */

 {

 printf("Error getting size required\n");

 }

}

return 0;

}

List File System Names

192 z/OS V1R9.0 Distributed File Service zFS Administration

List File System Names (Version 2)

Purpose

The List File System Names (Version 2) subcommand call is an aggregate operation that returns the

names of the zFS file systems contained in a specified aggregate on this system and their corresponding

z/OS UNIX file system names (if they are mounted).

Format

syscall_parmlist

 opcode 144 AGOP_LISTFSNAMES_PARMDATA2

 parms[0] offset to AGGR_ID

 parms[1] buffer length or 0

 parms[2] offset to buffer or 0

 parms[3] offset to size

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

FS_ID2[n] Array of FS_ID2s (n can be zero)

 fsid_eye char[4] "FSID"

 fsid_len char sizeof(FS_ID2)

 fsid_ver char 2

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long

 low unsigned long

 fsid_aggrname char[45]

 fsid_name char[45]

 fsid_mtname char[45]

 fsid_reserved char[49]

size long

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 E2BIG List is too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

The version 2 List File System Names returns an array of FS_ID2s.

The aggregate specified must be attached.

Reserved fields and undefined flags must be set to binary zeros.

List File System Names (Version 2)

Chapter 13. zFS application programming interfaces 193

Privilege Required

None.

Related Services

 List Attached Aggregate Names

 List File System Status

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_LISTFSNAMES_PARMDATA2 144

#define E2BIG 145

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye Catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

typedef struct hyper { /* This is a 64 bit integer to zFS */

 unsigned long high;

 unsigned long low;

} hyper;

typedef struct fs_id2_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

#define FSID_VER_2 2 /* Second version */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, null terminated */

 char fsid_reserved[49]; /* Reserved for the future */

} FS_ID2;

struct parmstruct

{

 syscall_parmlist myparms;

 AGGR_ID aggr_id;

List File System Names (Version 2)

194 z/OS V1R9.0 Distributed File Service zFS Administration

/* Real malloc’d structure will have an array of FS_ID2s here */

 long size;

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

struct parmstruct myparmstruct;

AGGR_ID *aggPtr;

FS_ID2 *fsPtr;

int fsSize = sizeof(FS_ID2);

int buflen = sizeof(FS_ID2);

struct parmstruct *myp = &myparmstruct;

int mypsize;

int count_fs, total_fs;

char aggrname[45]="OMVS.PRV.AGGR001.LDS0001";

long *p;

memset(&myparmstruct.aggr_id,0,sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.aggr_id.aid_eye,AID_EYE,4);

myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

strcpy(myparmstruct.aggr_id.aid_name,aggrname);

myparmstruct.myparms.opcode = AGOP_LISTFSNAMES_PARMDATA2;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 0;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

{

 if (bpxrc == E2BIG)

 {

 buflen = myp->size; /* Get buffer size needed */

 mypsize = buflen + sizeof(syscall_parmlist) + sizeof(AGGR_ID) +

 sizeof(myparmstruct.size);

 myp = (struct parmstruct *) malloc ((long) mypsize);

 memset(myp, 0, mypsize);

 memcpy(myp->aggr_id.aid_eye,AID_EYE,4);

 myp->aggr_id.aid_len = sizeof(AGGR_ID);

 myp->aggr_id.aid_ver = AID_VER_INITIAL;

 strcpy(myp->aggr_id.aid_name,aggrname);

 myp->myparms.opcode = AGOP_LISTFSNAMES_PARMDATA2;

 myp->myparms.parms[0] = sizeof(syscall_parmlist);

 myp->myparms.parms[1] = buflen;

 myp->myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);

 myp->myparms.parms[3] = sizeof(syscall_parmlist) + sizeof(AGGR_ID) + buflen;

 myp->myparms.parms[4] = 0;

List File System Names (Version 2)

Chapter 13. zFS application programming interfaces 195

myp->myparms.parms[5] = 0;

 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 mypsize, /* Length of Argument */

 (char *) myp, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv == 0)

 {

 total_fs = buflen/fsSize;

 printf("total file systems = %d in aggregate %s\n",total_fs, aggrname);

 count_fs = 1;

 for(fsPtr = (FS_ID2 *) &(myp->size) ; count_fs <= total_fs ; fsPtr++, count_fs++)

 {

 printf("\n");

 printf("zFS file system name [%s]\n",fsPtr->fsid_name);

 printf("UNIX file system name [%s]\n",fsPtr->fsid_mtname);

 }

 free(myp);

 }

 else /* lsaggr names failed with large enough buffer */

 {

 printf("Error on ls fs with large enough buffer\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* error was not E2BIG */

 {

 printf("Error on ls fs trying to get required size\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

}

else /* asking for buffer size gave rv = 0; maybe there are no file systems */

{

 if (myparmstruct.size == 0)

 {

 printf("No file systems\n");

 }

 else /* No, there was some other problem with getting the size needed */

 {

 printf("Error getting size required\n");

 }

}

return 0;

}

List File System Names (Version 2)

196 z/OS V1R9.0 Distributed File Service zFS Administration

List File System Status

Purpose

The List File System Status subcommand call is a file system operation that lists the status information of

a file system.

You can use an FS_ID as input or (if you want to specify the z/OS UNIX file system name (that is, the

mount name)) you can use an FS_ID2 as input. Of course, if you use the z/OS UNIX file system name,

the file system must be mounted using that file system name.

Format

syscall_parmlist

 opcode 142 FSOP_GETSTAT_PARMDATA

 parms[0] offset to FS_ID

 parms[1] offset ro FS_STATUS

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

FS_ID or FS_ID2

 fsid_eye char[4] "FSID"

 fsid_len short sizeof(FS_ID)

 fsid_ver char 1

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_reserved char[32] 0

 fsid_reserved2 char[2] 0

FS_ID2 or FS_ID

 fsid_eye char[4] "FSID"

 fsid_len short sizeof(FS_ID2)

 fsid_ver char 2

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] 0

 fsid_mtname char[45] "OMVS.PRV.MNT.FS3"

 fsid_reserved char[49] 0

FS_STATUS

 fs_eye char[4] "FSST"

 fs_len short sizeof(FS_STATUS)

 fs_ver char 1

 fs_res1 char 0

 fs_id

 high unsigned long 0

 low unsigned long 0

 fs_cloneTime timeval 0

 fs_createTime timeval 0

 fs_updateTime timeval 0

 fs_accessTime timeval 0

 fs_allocLimit unsigned long 0

 fs_allocUsage unsigned long 0

 fs_visQuotaLimit unsigned long 0

 fs_visQuotaUsage unsigned long 0

 fs_accError unsigned long 0

List File System Status

Chapter 13. zFS application programming interfaces 197

fs_accStatus long 0

 fs_states long 0

 fs_nodeMax long 0

 fs_minQuota long 0

 fs_type long 0

 fs_threshold char 0

 fs_increment char 0

 fs_mountstate char 0

 FS_NOT_MOUNTED 0

 FS_MOUNTED_RW 1

 FS_MOUNTED_RO 2

 fs_msglen char 0

 fs_msg char[128] 0

 fs_aggrname char[45] 0

 fs_reserved1 char[3]

fs_reserved2 unsigned long[3]

fs_InodeTbl unsigned long

fs_requests

 high unsigned long

 low unsigned long

fs_reserved3 unsigned long

fs_reserved4 unsigned long

fs_reserved5 unsigned long

fs_pad1 int

fs_diskFormatMajorVersion unsigned long

fs_diskFormatMinorVersion unsigned long

fs_reserved char[80]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate containing file system is quiesced

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

The aggregate containing the file system to be listed must be attached.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 List Attached Aggregate Names

 List File System Aggregate Names

Restrictions

The aggregate containing the file system to be listed cannot be quiesced.

When FS_ID2 is used, if you specify the z/OS UNIX file system name (fsid_mtname), you cannot specify

the zFS file system name (fsid_name) nor the aggregate name (fsid_aggrname).

The following fields are internal use only and are not intended for application usage.

List File System Status

198 z/OS V1R9.0 Distributed File Service zFS Administration

v fs_accError

v fs_accStatus

v fs_type

The following field contains flags 0x00010000 and 0x00030000 indicating a read-write file system and a

backup file system respectively. All other flags in this field are internal use only and are not intended for

application usage.

v fs_states

Examples

Example 1 - Using FS_ID

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#include <time.h> /* ctime */

#define ZFSCALL_FILESYS 0x40000004

#define FSOP_GETSTAT_PARMDATA 142

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* This is a 64 bit integer to zFS */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

typedef unsigned long u_long;

struct timeval {

 long tv_sec; /* seconds */

 long tv_usec; /* microseconds */

};

typedef struct fs_status_t {

 char fs_eye[4]; /* Eye catcher */

#define FS_EYE "FSST"

 short fs_len; /* Length of structure */

 char fs_ver;

#define FS_VER_INITIAL 1 /* Initial version */

List File System Status

Chapter 13. zFS application programming interfaces 199

char fs_flags; /* Flags */

#define FS_PERFINFO 0x80 /* Performance information in output status */

 hyper fs_id; /* Internal identifier */

 struct timeval fs_cloneTime; /* Time when this filesys made via clone or when last recloned */

 struct timeval fs_createTime; /* Time when this filesys was created */

 struct timeval fs_updateTime; /* Time when this filesys was last updated */

 struct timeval fs_accessTime; /* Time when this filesys was last accessed */

 u_long fs_allocLimit; /* Allocation limit for filesys in kilobytes*/

 u_long fs_allocUsage; /* Amount of allocation used in kilobytes*/

 u_long fs_visQuotaLimit; /* Visible filesystem quota in kilobytes*/

 u_long fs_visQuotaUsage; /* How much quota is used in kilobytes*/

 u_long fs_accError; /* error to return for incompatible vnode ops */

 long fs_accStatus; /* Operations currently being performed on file system */

 long fs_states; /* State bits */

#define FS_TYPE_RW 0x10000 /* read-write (ordinary) */

#define FS_TYPE_BK 0x30000 /* ``.backup’’ */

 long fs_nodeMax; /* Maximum inode number used */

 long fs_minQuota;

 long fs_type;

 char fs_threshold; /* Threshold for fsfull monitoring */

 char fs_increment; /* Increment for fsfull monitoring */

 char fs_mountstate; /* Aggregate flags */

#define FS_NOT_MOUNTED 0 /* Filesys not mounted */

#define FS_MOUNTED_RW 1 /* Filesys mounted RW */

#define FS_MOUNTED_RO 2 /* Filesys mounted RO */

 char fs_msglen; /* Length of status message */

 char fs_msg[128]; /* Status message for filesystem */

 char fs_aggrname[ZFS_MAX_AGGRNAME+1]; /* Name of aggregate I reside on */

 char fs_reserved1[3]; /* Reserved for future use/alignment */

 unsigned long fs_reserved2[3]; /* reserved */

 u_long fs_InodeTbl; /*Amount of k used for the Filesystem Inode table*/

 /*fs_InodeTbl is zero for all releases prior to r7 and non zero in r7 and above*/

 hyper fs_requests; /* Number of filesystem requests by users/applications */

 u_long fs_reserved3;

 u_long fs_reserved4;

 u_long fs_reserved5;

 int fs_pad1;

 u_long fs_diskFormatMajorVersion; /* disk format major version */

 u_long fs_diskFormatMinorVersion; /* disk format minor version */

 char fs_reserved[80]; /* Reserved for future use */

} FS_STATUS;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID fs_id;

 FS_STATUS fs_status;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.FS3"; /* file system name to getstatus */

struct parmstruct myparmstruct;

FS_ID *idp = &(myparmstruct.fs_id);

FS_STATUS *fsp = &(myparmstruct.fs_status);

myparmstruct.myparms.opcode = FSOP_GETSTAT_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID);

myparmstruct.myparms.parms[2] = 0;

List File System Status

200 z/OS V1R9.0 Distributed File Service zFS Administration

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(FS_ID)); /* Ensure reserved fields are 0 */

memset(fsp,0,sizeof(FS_STATUS)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fs_status.fs_eye[0], FS_EYE, 4);

myparmstruct.fs_status.fs_len = sizeof(FS_STATUS);

myparmstruct.fs_status.fs_ver = FS_VER_INITIAL;

memcpy(&myparmstruct.fs_id.fsid_eye,FSID_EYE,4);

myparmstruct.fs_id.fsid_len = sizeof(FS_ID);

myparmstruct.fs_id.fsid_ver = FSID_VER_INITIAL;

strcpy(myparmstruct.fs_id.fsid_name,filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_FILESYS, /* File system operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error getstatus file system %s\n", filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from getstatus was successful */

 {

 printf("File system %s getstatus successful\n",filesystemname);

 printf("getstatus: fs_id=%d,,%d, clone_time=%s, create_time=%s, update_time=%s, access_time=%s\n",

 myparmstruct.fs_status.fs_id.high,

 myparmstruct.fs_status.fs_id.low,

 ctime(&myparmstruct.fs_status.fs_cloneTime.tv_sec),

 ctime(&myparmstruct.fs_status.fs_createTime.tv_sec),

 ctime(&myparmstruct.fs_status.fs_updateTime.tv_sec),

 ctime(&myparmstruct.fs_status.fs_accessTime.tv_sec));

 printf("getstatus: alloc_limit=%u, alloc_usage=%u, quota_limit=%u\n",

 myparmstruct.fs_status.fs_allocLimit,

 myparmstruct.fs_status.fs_allocUsage,

 myparmstruct.fs_status.fs_visQuotaLimit);

 printf("getstatus: quota_usage=%u, accError=%u, accStatus=%x, states=%x\n",

 myparmstruct.fs_status.fs_visQuotaUsage,

 myparmstruct.fs_status.fs_accError,

 myparmstruct.fs_status.fs_accStatus,

 myparmstruct.fs_status.fs_states);

 printf("getstatus: max_inode=%d, min_quota=%d, type=%d, fsfull_threshold=%d\n",

 myparmstruct.fs_status.fs_nodeMax,

 myparmstruct.fs_status.fs_minQuota,

 myparmstruct.fs_status.fs_type,

 myparmstruct.fs_status.fs_threshold);

 printf("getstatus: fsfull_increment=%d, mount_state=%d, msg_len=%d, msg=%s\n",

 myparmstruct.fs_status.fs_increment,

 myparmstruct.fs_status.fs_mountstate,

 myparmstruct.fs_status.fs_msglen,

 myparmstruct.fs_status.fs_msg);

 printf("getstatus: aggrname=%s\n", myparmstruct.fs_status.fs_aggrname);

 printf("getstatus: inode_table_k=%d, fs_requests=%d,,%d\n",

 myparmstruct.fs_status.fs_InodeTbl,

 myparmstruct.fs_status.fs_requests.high,

 myparmstruct.fs_status.fs_requests.low);

 printf("getstatus: version=%d.%d\n",

 myparmstruct.fs_status.fs_diskFormatMajorVersion,

List File System Status

Chapter 13. zFS application programming interfaces 201

myparmstruct.fs_status.fs_diskFormatMinorVersion);

 }

return 0;

}

Example 2 - Using FS_ID2

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#include <time.h> /* ctime */

#define ZFSCALL_FILESYS 0x40000004

#define FSOP_GETSTAT_PARMDATA 142

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* This is a 64 bit integer to zFS */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id2_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

#define FSID_VER_2 2 /* version for FS_ID2 */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, null terminated */

 char fsid_reserved[49]; /* Reserved for the future */

} FS_ID2;

typedef unsigned long u_long;

struct timeval {

 long tv_sec; /* seconds */

 long tv_usec; /* microseconds */

};

typedef struct fs_status_t {

 char fs_eye[4]; /* Eye catcher */

#define FS_EYE "FSST"

 short fs_len; /* Length of structure */

 char fs_ver;

#define FS_VER_INITIAL 1 /* Initial version */

 char fs_flags; /* Flags */

#define FS_PERFINFO 0x80 /* Performance information in output status */

 hyper fs_id; /* Internal identifier */

 struct timeval fs_cloneTime; /* Time when this filesys made via clone or when last recloned */

 struct timeval fs_createTime; /* Time when this filesys was created */

 struct timeval fs_updateTime; /* Time when this filesys was last updated */

List File System Status

202 z/OS V1R9.0 Distributed File Service zFS Administration

struct timeval fs_accessTime; /* Time when this filesys was last accessed */

 u_long fs_allocLimit; /* Allocation limit for filesys in kilobytes*/

 u_long fs_allocUsage; /* Amount of allocation used in kilobytes*/

 u_long fs_visQuotaLimit; /* Visible filesystem quota in kilobytes*/

 u_long fs_visQuotaUsage; /* How much quota is used in kilobytes*/

 u_long fs_accError; /* error to return for incompatible vnode ops */

 long fs_accStatus; /* Operations currently being performed on file system */

 long fs_states; /* State bits */

#define FS_TYPE_RW 0x10000 /* read-write (ordinary) */

#define FS_TYPE_BK 0x30000 /* ``.backup’’ */

 long fs_nodeMax; /* Maximum inode number used */

 long fs_minQuota;

 long fs_type;

 char fs_threshold; /* Threshold for fsfull monitoring */

 char fs_increment; /* Increment for fsfull monitoring */

 char fs_mountstate; /* Aggregate flags */

#define FS_NOT_MOUNTED 0 /* Filesys not mounted */

#define FS_MOUNTED_RW 1 /* Filesys mounted RW */

#define FS_MOUNTED_RO 2 /* Filesys mounted RO */

 char fs_msglen; /* Length of status message */

 char fs_msg[128]; /* Status message for filesystem */

 char fs_aggrname[ZFS_MAX_AGGRNAME+1]; /* Name of aggregate I reside on */

 char fs_reserved1[3]; /* Reserved for future use/alignment */

 unsigned long fs_reserved2[3]; /* reserved */

 u_long fs_InodeTbl; /*Amount of k used for the Filesystem Inode table*/

 /*fs_InodeTbl is zero for all releases prior to r7 and non zero in r7 and above*/

 hyper fs_requests; /* Number of filesystem requests by users/applications */

 u_long fs_reserved3;

 u_long fs_reserved4;

 u_long fs_reserved5;

 int fs_pad1;

 u_long fs_diskFormatMajorVersion; /* disk format major version */

 u_long fs_diskFormatMinorVersion; /* disk format minor version */

 char fs_reserved[80]; /* Reserved for future use */

} FS_STATUS;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID2 fs_id2;

 FS_STATUS fs_status;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.MNT.FS3"; /* file system name to getstatus */

struct parmstruct myparmstruct;

FS_ID2 *idp = &(myparmstruct.fs_id2);

FS_STATUS *fsp = &(myparmstruct.fs_status);

myparmstruct.myparms.opcode = FSOP_GETSTAT_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID2);

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(FS_ID2)); /* Ensure reserved fields are 0 */

memset(fsp,0,sizeof(FS_STATUS)); /* Ensure reserved fields are 0 */

List File System Status

Chapter 13. zFS application programming interfaces 203

memcpy(&myparmstruct.fs_status.fs_eye[0], FS_EYE, 4);

myparmstruct.fs_status.fs_len = sizeof(FS_STATUS);

myparmstruct.fs_status.fs_ver = FS_VER_INITIAL;

memcpy(&myparmstruct.fs_id2.fsid_eye,FSID_EYE,4);

myparmstruct.fs_id2.fsid_len = sizeof(FS_ID2);

myparmstruct.fs_id2.fsid_ver = FSID_VER_2;

strcpy(myparmstruct.fs_id2.fsid_mtname,filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_FILESYS, /* File system operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error getstatus file system %s\n", filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from getstatus was successful */

 {

 printf("File system %s getstatus successful\n",filesystemname);

 printf("getstatus: fs_id=%d,,%d, clone_time=%s, create_time=%s, update_time=%s, access_time=%s\n",

 myparmstruct.fs_status.fs_id.high,

 myparmstruct.fs_status.fs_id.low,

 ctime(&myparmstruct.fs_status.fs_cloneTime.tv_sec),

 ctime(&myparmstruct.fs_status.fs_createTime.tv_sec),

 ctime(&myparmstruct.fs_status.fs_updateTime.tv_sec),

 ctime(&myparmstruct.fs_status.fs_accessTime.tv_sec));

 printf("getstatus: alloc_limit=%u, alloc_usage=%u, quota_limit=%u\n",

 myparmstruct.fs_status.fs_allocLimit,

 myparmstruct.fs_status.fs_allocUsage,

 myparmstruct.fs_status.fs_visQuotaLimit);

 printf("getstatus: quota_usage=%u, accError=%u, accStatus=%x, states=%x\n",

 myparmstruct.fs_status.fs_visQuotaUsage,

 myparmstruct.fs_status.fs_accError,

 myparmstruct.fs_status.fs_accStatus,

 myparmstruct.fs_status.fs_states);

 printf("getstatus: max_inode=%d, min_quota=%d, type=%d, fsfull_threshold=%d\n",

 myparmstruct.fs_status.fs_nodeMax,

 myparmstruct.fs_status.fs_minQuota,

 myparmstruct.fs_status.fs_type,

 myparmstruct.fs_status.fs_threshold);

 printf("getstatus: fsfull_increment=%d, mount_state=%d, msg_len=%d, msg=%s\n",

 myparmstruct.fs_status.fs_increment,

 myparmstruct.fs_status.fs_mountstate,

 myparmstruct.fs_status.fs_msglen,

 myparmstruct.fs_status.fs_msg);

 printf("getstatus: aggrname=%s\n", myparmstruct.fs_status.fs_aggrname);

 printf("getstatus: inode_table_k=%d, fs_requests=%d,,%d\n",

 myparmstruct.fs_status.fs_InodeTbl,

 myparmstruct.fs_status.fs_requests.high,

 myparmstruct.fs_status.fs_requests.low);

 printf("getstatus: version=%d.%d\n",

 myparmstruct.fs_status.fs_diskFormatMajorVersion,

 myparmstruct.fs_status.fs_diskFormatMinorVersion);

 }

return 0;

}

List File System Status

204 z/OS V1R9.0 Distributed File Service zFS Administration

List Systems

Purpose

The List Systems subcommand call is used to retrieve the system names that are part of the zFS XCF

group.

Format

syscall_parmlist

 opcode 174 CFGOP_LSSYS

 parms[0] size of buffer

 parms[1] offset to buffer

 parms[2] offset to size

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

buffer char[]

size int

Return_value 0 if request successful, -1 if it is not successful

Return_code

 E2BIG Data to return is too large for buffer supplied

 EINTR ZFS is shutting down

 EMVSERR Internal error

 ERANGE No systems to return

Reason_code

 0xEFnnxxx See z/OS Distributed File Service Messages and Codes

Usage

List Systems is used to retrieve the system names that are part of the zFS XCF group.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 Query sysplex_state

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_CONFIG 0x40000006

#define CFGOP_LSSYS 174 /* List names of systems in the sysplex */

#define E2BIG 145 /* data to return is too big for buffer */

#define ERANGE 2 /* there were no systems to return */

List Systems

Chapter 13. zFS application programming interfaces 205

typedef struct system_name_t {

 char sys_name[9]; /* 8 byte name, null terminated */

 } SYSTEM_NAME;

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

struct parmstruct

{

 syscall_parmlist myparms;

 /* SYSTEM_NAME buffer[32]; */ /* output buffer for sysnames */

 int size;

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 struct parmstruct *myp = &myparmstruct;

 int mypsize, buflen;

 myparmstruct.myparms.opcode = CFGOP_LSSYS;

 myparmstruct.myparms.parms[0] = 0; /* size of buffer */

 myparmstruct.myparms.parms[1] = 0; /* offset to buffer */

 myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist); /* offset to size (required size) */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 BPX1PCT("ZFS ",

 ZFSCALL_CONFIG, /* Config query operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 if(bpxrc == E2BIG)

 {

 buflen = myparmstruct.size; /* Get buffer size needed */

 mypsize = sizeof(syscall_parmlist) + buflen + sizeof(myparmstruct.size);

 myp = (struct parmstruct *) malloc ((long) mypsize);

 memset(myp, 0, mypsize);

 myp->myparms.opcode = CFGOP_LSSYS;

 myp->myparms.parms[0] = buflen; /* size of buffer */

 myp->myparms.parms[1] = sizeof(syscall_parmlist); /* offset to buffer */

 myp->myparms.parms[2] = sizeof(syscall_parmlist) + buflen; /* offset to size */

 myp->myparms.parms[3] = 0;

 myp->myparms.parms[4] = 0;

 myp->myparms.parms[5] = 0;

 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",

 ZFSCALL_CONFIG, /* Config query operation */

List Systems

206 z/OS V1R9.0 Distributed File Service zFS Administration

mypsize, /* Length of Argument */

 (char *) myp, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv == 0)

 {

 int j,syscount;

 SYSTEM_NAME *syslist;

 int *sizep;

 sizep=(int *)((int)myp + sizeof(syscall_parmlist) + buflen);

 syslist=(SYSTEM_NAME *)((int)myp + sizeof(syscall_parmlist));

 syscount=(*sizep)/sizeof(SYSTEM_NAME);

 for (j=1; j <= syscount; j++)

 {

 printf("%-8.8s\n", syslist->sys_name);

 syslist++;

 }

 free(myp);

 }

 else /* lssys failed with large enough buffer */

 {

 if(bpxrc == ERANGE)

 {

 printf("No systems to display\n");

 }

 else

 {

 printf("Error on lssys with large enough buffer\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 }

 free(myp);

 return bpxrc;

 }

 }

 else /* error was not E2BIG on the original BPX1PCT */

 {

 if(bpxrc == ERANGE)

 {

 printf("No systems to display from original BPX1PCT\n");

 }

 else

 {

 printf("Error on lssys trying to get required size\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 }

 return bpxrc;

 }

 }

 else /* asking for buffer size gave rv = 0; maybe there is no data */

 {

 if(myparmstruct.size == 0)

 {

 printf("No data\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 }

 else /* No, there was some other problem with getting the size needed */

 {

 printf("Error getting size required\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

List Systems

Chapter 13. zFS application programming interfaces 207

}

 }

 return 0;

}

List Systems

208 z/OS V1R9.0 Distributed File Service zFS Administration

Query Config Option

Purpose

The Query Config Option is a set of subcommand calls (that are configuration operations) that retrieve the

current value for a particular configuration setting. Each one returns the particular configuration setting as

a character string.

The following Format and Example use the CFGOP_QUERY_ADM_THREADS subcommand. The other

query subcommands (refer to “Configuration commands” on page 137) would operate in a similar manner.

That is, each of them would return the configuration setting as a character string in the co_string field.

Format

syscall_parmlist

 opcode 180 CFGOP_QUERY_ADM_THREADS

 parms[0] offset to CFG_OPTION

 parms[1] offset to system name (optional)

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

CFG_OPTION

 co_eye char[4] "CFOP"

 co_len short sizeof(CFG_OPTION)

 co_ver char 1

 co_string char[81] 0

 co_value_reserved int 0

 co_reserved char[24] 0

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate could not be quiesced

 EINTR ZFS is shutting down

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

Query Config Option subcommands are used to retrieve the current value of a particular configuration

option. Each subcommand retrieves one configuration as a character string.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 Set Config Option

Query Config Option

Chapter 13. zFS application programming interfaces 209

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_CONFIG 0x40000006

#define CFGOP_QUERY_ADM_THREADS 180 /* query number of admin threads */

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct config_option_t {

 char co_eye[4]; /* Eye catcher */

#define CFGO_EYE "CFOP"

 short co_len; /* Length of structure */

 char co_ver; /* Version of structure */

#define CO_VER_INITIAL 1 /* Initial version */

#define CO_SLEN 80 /* Sizeof string */

 char co_string[CO_SLEN+1]; /* String value for option must be 0 terminated */

 int co_value[4]; /* Place for integer values */

 char co_reserved[24]; /* Reserved for future use */

} CFG_OPTION;

struct parmstruct {

 syscall_parmlist myparms;

 CFG_OPTION co;

 char system[9];

} myparmstruct;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

CFG_OPTION *coptr = &(myparmstruct.co);

/* This next field should only be set if parms[1] is non-zero */

/* strcpy(myparmstruct.system,"DCEIMGVN"); */ /* set system to query */

myparmstruct.myparms.opcode = CFGOP_QUERY_ADM_THREADS;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 0;

/* Only specify a non-zero offset for the next field (parms[1]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to configquery to a different system */

/* myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(CFG_OPTION); */

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

Query Config Option

210 z/OS V1R9.0 Distributed File Service zFS Administration

memset(coptr,0,sizeof(CFG_OPTION));

memcpy(coptr->co_eye,CFGO_EYE,4);

coptr->co_ver=CO_VER_INITIAL;

coptr->co_len=(int) sizeof(CFG_OPTION);

 BPX1PCT("ZFS ",

 ZFSCALL_CONFIG, /* Config operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0) {

 printf("Error querying config -adm_threads, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else {

 printf("Config query -adm_threads = %s\n",myparmstruct.co.co_string);

 }

 return 0;

}

Query Config Option

Chapter 13. zFS application programming interfaces 211

Quiesce Aggregate

Purpose

The Quiesce Aggregate subcommand call is an aggregate operation that quiesces a multi-file system

aggregate on a system. This quiesces activity on the aggregate and all its file systems.

Format

syscall_parmlist

 opcode 132 AGOP_QUIESCE_PARMDATA

 parms[0] offset to AGGR_ID

 parms[1] offset to handle returned by quiesce

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

quiesce_handle long

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate could not be quiesced

 EINTR ZFS is shutting down

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

Quiesce Aggregate is used to suspend activity on an aggregate. All activity on file systems contained in

the aggregate that are mounted is also suspended. This would normally be used prior to backing up an

aggregate. The aggregate must be attached in order to be quiesced. The quiesce operation returns a

quiesce handle that must be supplied on the unquiesce call.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 Unquiesce Aggregate

Restrictions

None.

Quiesce Aggregate

212 z/OS V1R9.0 Distributed File Service zFS Administration

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_QUIESCE_PARMDATA 132

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct

{

 syscall_parmlist myparms;

 AGGR_ID aggr_id;

 long quiesce_handle;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char aggrname[45] = "OMVS.PRV.AGGR001.LDS0001";

long save_quiesce_handle;

struct parmstruct myparmstruct;

AGGR_ID *idp = &(myparmstruct.aggr_id);

myparmstruct.myparms.opcode = AGOP_QUIESCE_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(&myparmstruct.aggr_id,0,sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.aggr_id,AID_EYE,4);

myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

strcpy(myparmstruct.aggr_id.aid_name,aggrname);

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

Quiesce Aggregate

Chapter 13. zFS application programming interfaces 213

(char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error quiescing aggregate %s\n", aggrname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from quiesce was successful */

 {

 printf("Aggregate %s quiesced successfully, quiescehandle=%d\n",

 aggrname,myparmstruct.quiesce_handle);

 save_quiesce_handle = myparmstruct.quiesce_handle;

 }

return 0;

}

Quiesce Aggregate

214 z/OS V1R9.0 Distributed File Service zFS Administration

Rename File System

Purpose

The Rename File System subcommand call is a file system operation that renames a file system.

You can use an FS_ID or an FS_ID2 as input for the old zFS file system name or the new zFS file system

name (that is, the fsid_name).

Format

syscall_parmlist

 opcode 140 FSOP_RENAME_PARMDATA

 parms[0] offset to FS_ID (Old Name)

 parms[1] offset to FS_ID (New Nakme)

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

FS_ID or FS_ID2 /* Old File System Name */

 fsid_eye char[4] "FSID"

 fsid_len short sizeof(FS_ID)

 fsid_ver char 1

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_reserved char[32] 0

 fsid_reserved2 char[2] 0

FS_ID2 or FS_ID /* Old File System Name */

 fsid_eye char[4] "FSID"

 fsid_len short sizeof(FS_ID2)

 fsid_ver char 2

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] 0

 fsid_mtname char[45] "OMVS.PRV.FS3"

 fsid_reserved char[49] 0

FS_ID or FS_ID2 /* New File System Name */

 fsid_eye char[4] "FSID"

 fsid_len short sizeof(FS_ID)

 fsid_ver char 1

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS4"

 fsid_reserved char[32] 0

 fsid_reserved2 char[2] 0

FS_ID2 or FS_ID /* New File System Name */

 fsid_eye char[4] "FSID"

 fsid_len short sizeof(FS_ID2)

 fsid_ver char 2

 fsid_res1 char 0

 fsid_res2 char 0

Rename File System

Chapter 13. zFS application programming interfaces 215

fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] 0

 fsid_mtname char[45] "OMVS.PRV.FS4"

 fsid_reserved char[49] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate containing file system is quiesced

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

 EROFS Aggregate is attached as read only

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

The aggregate that contains the file system to be renamed must be attached.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 Clone File System

Restrictions

A backup file system cannot be renamed by itself. You must rename the read-write file system (which

renames both the read-write and the backup file systems). You cannot rename a read-write file system to

an name that ends in .bak. This is reserved for backup file systems. If a backup file system exists, you

cannot rename a read-write file system to a name that is longer than 40 characters. The file system(s) to

be renamed cannot be mounted. The aggregate containing the file system to be renamed cannot be

quiesced or attached as read-only. If you specify an aggregate name in the old file system name FS_ID

and in the new file system name FS_ID, they must be the same.

When using an FS_ID2 for the old file system name, you cannot specify the z/OS UNIX file system name

(fsid_mtname) because the file system to be renamed cannot be mounted. When using the FS_ID2 for the

new file system name, you cannot specify the z/OS UNIX file system name (fsid_mtname) because the

API needs the new zFS file system name.

Examples

Example 1 - Using FS_ID

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_FILESYS 0x40000004

Rename File System

216 z/OS V1R9.0 Distributed File Service zFS Administration

#define FSOP_RENAME_PARMDATA 140

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID fsid_old;

 FS_ID fsid_new;

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char old_filesystemname[45] = "OMVS.PRV.FS3";

char new_filesystemname[45] = "OMVS.PRV.FS4";

struct parmstruct myparmstruct;

FS_ID *idop = &(myparmstruct.fsid_old);

FS_ID *idnp = &(myparmstruct.fsid_new);

myparmstruct.myparms.opcode = FSOP_RENAME_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID);

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idop,0,sizeof(FS_ID)); /* Ensure reserved fields are 0 */

memset(idnp,0,sizeof(FS_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid_old.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid_old.fsid_len = sizeof(FS_ID);

myparmstruct.fsid_old.fsid_ver = FSID_VER_INITIAL;

Rename File System

Chapter 13. zFS application programming interfaces 217

strcpy(myparmstruct.fsid_old.fsid_name,old_filesystemname);

memcpy(&myparmstruct.fsid_new.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid_new.fsid_len = sizeof(FS_ID);

myparmstruct.fsid_new.fsid_ver = FSID_VER_INITIAL;

strcpy(myparmstruct.fsid_new.fsid_name,new_filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_FILESYS, /* File system operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error renaming file system %s to %s\n",old_filesystemname, new_filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from rename file system was successful */

 {

 printf("File system %s was renamed to %s successfully\n",old_filesystemname, new_filesystemname);

 }

return 0;

}

Example 2 - Using FS_ID2

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_FILESYS 0x40000004

#define FSOP_RENAME_PARMDATA 140

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

Rename File System

218 z/OS V1R9.0 Distributed File Service zFS Administration

typedef struct fs_id2_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

#define FSID_VER_2 2 /* version for R14 */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, null terminated */

 char fsid_reserved[49]; /* Reserved for the future */

} FS_ID2;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID2 fsid_old;

 FS_ID2 fsid_new;

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char old_filesystemname[45] = "OMVS.PRV.FS3";

char new_filesystemname[45] = "OMVS.PRV.FS4";

struct parmstruct myparmstruct;

FS_ID2 *idop = &(myparmstruct.fsid_old);

FS_ID2 *idnp = &(myparmstruct.fsid_new);

myparmstruct.myparms.opcode = FSOP_RENAME_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID2);

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idop,0,sizeof(FS_ID2)); /* Ensure reserved fields are 0 */

memset(idnp,0,sizeof(FS_ID2)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid_old.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid_old.fsid_len = sizeof(FS_ID2);

myparmstruct.fsid_old.fsid_ver = FSID_VER_2;

strcpy(myparmstruct.fsid_old.fsid_name,old_filesystemname);

memcpy(&myparmstruct.fsid_new.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid_new.fsid_len = sizeof(FS_ID2);

myparmstruct.fsid_new.fsid_ver = FSID_VER_2;

strcpy(myparmstruct.fsid_new.fsid_name,new_filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_FILESYS, /* File system operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

Rename File System

Chapter 13. zFS application programming interfaces 219

if (bpxrv < 0)

 {

 printf("Error renaming file system %s to %s\n",old_filesystemname, new_filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from rename file system was successful */

 {

 printf("File system %s was renamed to %s successfully\n",old_filesystemname, new_filesystemname);

 }

return 0;

}

Rename File System

220 z/OS V1R9.0 Distributed File Service zFS Administration

Set Config Option

Purpose

The Set Config Option is a set of subcommand calls (that are configuration operations) that set the current

value for a particular configuration setting. Each one sets the particular configuration setting from input

specified as a character string.

The following Format and Example use the CFGOP_ADM_THREADS subcommand. The other set

subcommands (refer to “Configuration commands” on page 137) would operate in a similar manner. That

is, each of them would set the configuration setting from the character string in the co_string field.

Format

syscall_parmlist

 opcode 150 CFGOP_ADM_THREADS

 parms[0] offset to CFG_OPTION

 parms[1] offset to system name (optional)

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

CFG_OPTION

 co_eye char[4] "CFOP"

 co_len short sizeof(CFG_OPTION)

 co_ver char 1

 co_string char[81] "15" /* New value for adm_threads */

 co_value_reserved int 0

 co_reserved char[24] 0

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate could not be quiesced

 EINTR ZFS is shutting down

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

Set Config Option subcommands are used to set the current value of a particular configuration option.

Each subcommand sets one configuration from a character string.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 Query Config Option

Set Config Option

Chapter 13. zFS application programming interfaces 221

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_CONFIG 0x40000006

#define CFGOP_ADM_THREADS 150 /* Set number of admin threads */

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct config_option_t {

 char co_eye[4]; /* Eye catcher */

#define CFGO_EYE "CFOP"

 short co_len; /* Length of structure */

 char co_ver; /* Version of structure */

#define CO_VER_INITIAL 1 /* Initial version */

#define CO_SLEN 80 /* Sizeof string */

 char co_string[CO_SLEN+1]; /* String value for option must be 0 terminated */

 int co_value[4]; /* Place for integer values */

 char co_reserved[24]; /* Reserved for future use */

} CFG_OPTION;

struct parmstruct {

 syscall_parmlist myparms;

 CFG_OPTION co;

 char system[9];

} myparmstruct;

char new_adm_threads[CO_SLEN+1]="20"; /* New adm_threads value */

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

CFG_OPTION *coptr = &(myparmstruct.co);

/* This next field should only be set if parms[1] is non-zero */

/* strcpy(myparmstruct.system,"DCEIMGVN"); */ /* set system to change */

myparmstruct.myparms.opcode = CFGOP_ADM_THREADS;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = 0;

/* Only specify a non-zero offset for the next field (parms[1]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to configquery to a different system */

/* myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(CFG_OPTION); */

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

Set Config Option

222 z/OS V1R9.0 Distributed File Service zFS Administration

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(coptr,0,sizeof(CFG_OPTION));

memcpy(coptr->co_eye,CFGO_EYE,4);

coptr->co_ver=CO_VER_INITIAL;

coptr->co_len=(int) sizeof(CFG_OPTION);

strcpy(coptr->co_string,new_adm_threads); /* set new adm_thread value */

 BPX1PCT("ZFS ",

 ZFSCALL_CONFIG, /* Config operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0) {

 printf("Error setting config -adm_threads, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else {

 printf("Config -adm_threads = %s\n",myparmstruct.co.co_string);

 }

 return 0;

}

Set Config Option

Chapter 13. zFS application programming interfaces 223

Set File System Quota

Purpose

The Set File System Quota subcommand call is a file system operation that sets the quota for the file

system.

You can use an FS_ID or an FS_ID2 as input.

Format

syscall_parmlist

 opcode 141 FSOP_SETQUOTA_PARMDATA

 parms[0] offset to FS_ID or FS_ID2

 parms[1] 7000 quota

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

FS_ID or FS_ID2

 fsid_eye char[4] "FSID"

 fsid_len short sizeof(FS_ID)

 fsid_ver char 1

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_reserved char[32] 0

 fsid_reserved2 char[2] 0

FS_ID2 or FS_ID

 fsid_eye char[4] "FSID"

 fsid_len short sizeof(FS_ID2)

 fsid_ver char 2

 fsid_res1 char 0

 fsid_res2 char 0

 fsid_id

 high unsigned long 0

 low unsigned long 0

 fsid_aggrname char[45] 0

 fsid_name char[45] "OMVS.PRV.FS3"

 fsid_mtname char[45] 0

 fsid_reserved char[49] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EBUSY Aggregate containing file system is quiesced

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

 EROFS Aggregate is attached as read only

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Set File System Quota

224 z/OS V1R9.0 Distributed File Service zFS Administration

Usage

The aggregate containing the file system to have its quota set must be attached. A quota can be

decreased as long as the quota usage has not exceeded the new quota.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 List File System Status

Restrictions

You cannot set the quota of a backup file system. The aggregate containing the file system to have its

quota set cannot be quiesced or attached as read-only. The minimum value for quota is 128 (for 128 K

bytes).

Examples

Example 1 - Using FS_ID

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_FILESYS 0x40000004

#define FSOP_SETQUOTA_PARMDATA 141

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

struct parmstruct

{

Set File System Quota

Chapter 13. zFS application programming interfaces 225

syscall_parmlist myparms;

 FS_ID fsid;

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.FS3";

int quota;

struct parmstruct myparmstruct;

FS_ID *idp = &(myparmstruct.fsid);

quota = 7000;

myparmstruct.myparms.opcode = FSOP_SETQUOTA_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = quota;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(FS_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid.fsid_len = sizeof(FS_ID);

myparmstruct.fsid.fsid_ver = FSID_VER_INITIAL;

strcpy(myparmstruct.fsid.fsid_name,filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_FILESYS, /* File system operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error setting quota of %d for file system %s\n",quota, filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from set quota of file system was successful */

 {

 printf("File system %s had its quota set to %d successfully\n",filesystemname, quota);

 }

return 0;

}

Example 2 - Using FS_ID2

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_FILESYS 0x40000004

#define FSOP_SETQUOTA_PARMDATA 141

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

Set File System Quota

226 z/OS V1R9.0 Distributed File Service zFS Administration

/* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper { /* unsigned 64 bit integers */

 unsigned long high;

 unsigned long low;

} hyper;

#define ZFS_MAX_AGGRNAME 44

#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

#define FSID_VER_INITIAL 1 /* Initial version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_reserved[32]; /* Reserved for the future */

 char fsid_reserved2[2]; /* Reserved for the future */

} FS_ID;

typedef struct fs_id2_t {

 char fsid_eye[4]; /* Eye catcher */

#define FSID_EYE "FSID"

 char fsid_len; /* Length of this structure */

 char fsid_ver; /* Version */

 char fsid_res1; /* Reserved. */

 char fsid_res2; /* Reserved. */

 hyper fsid_id; /* Internal identifier */

#define FSID_VER_2 2 /* Second version */

 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can be NULL string */

 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */

 char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, null terminated */

 char fsid_reserved[49]; /* Reserved for the future */

} FS_ID2;

struct parmstruct

{

 syscall_parmlist myparms;

 FS_ID2 fsid;

 } ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char filesystemname[45] = "OMVS.PRV.FS3";

int quota;

struct parmstruct myparmstruct;

FS_ID2 *idp = &(myparmstruct.fsid);

quota = 7000;

myparmstruct.myparms.opcode = FSOP_SETQUOTA_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = quota;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

Set File System Quota

Chapter 13. zFS application programming interfaces 227

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(idp,0,sizeof(FS_ID2)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.fsid.fsid_eye, FSID_EYE, 4);

myparmstruct.fsid.fsid_len = sizeof(FS_ID2);

myparmstruct.fsid.fsid_ver = FSID_VER_2;

strcpy(myparmstruct.fsid.fsid_name,filesystemname);

 BPX1PCT("ZFS ",

 ZFSCALL_FILESYS, /* File system operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error setting quota of %d for file system %s\n",quota, filesystemname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from set quota of file system was successful */

 {

 printf("File system %s had its quota set to %d successfully\n",filesystemname, quota);

 }

return 0;

|}

Set File System Quota

228 z/OS V1R9.0 Distributed File Service zFS Administration

Statistics Directory Cache Information

Purpose

The statistics directory cache information subcommand call is a performance statistics operation that

returns directory cache counters.

Format

syscall_parmlist

 opcode 249 STATOP_DIR_CACHE

 parms[0] offset to STAT_API

 parms[1] offset to output buffer

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int length of buffer that follows STAT_API

 sa_ver int 1

 sa_flags char[1] 0x00

 SA_RESET 0x80 Reset statistics

 sa_fill char[3] 0

 sa_reserve int[4] 0

 posix_time_high unsigned long high order 32 bits since epoch

 posix_time_low unsigned long low order 32 bits since epoch

 posix_useconds unsigned long microseconds

 pad1 int

API_DIR_STATS

 ad_eye char[4] "ADIR"

 ad_size short size of output

 ad_version char version

 ad_reserved1 char reserved byte

 ad_reserved int always zero

 ad_buffers int number of buffers in the cache

 ad_buffersize int size of each buffer in K bytes

 ad_res1 int reserved

 ad_reserved int reserved

 ad_requests int requests to the cache

 ad_reserved int reserved

 ad_hits int hits in the cache

 ad_reserved int reserved

 ad_discards int discards of data from the cache

 ad_reserved2 int[10] reserved

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR zFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

It is used to determine the numbers of requests, hits and discards from the directory cache.

Statistics Directory Cache Information

Chapter 13. zFS application programming interfaces 229

|

|
|
|
|
|
|

Privilege Required

None.

Related Services

 Statistics Vnode Cache Information

 Statistics Metadata Cache Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_DIR_CACHE 249 /* Directory cache stats */

#define u_long unsigned long

#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \

{ \

 INTEGER = (int)RATIO; \

 DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \

}

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper {

 unsigned long high; /* unsigned long reserved */

 unsigned long low;

} hyper;

typedef struct API_DIR_STATS_t {

 char ad_eye[4]; /* Eye catcher = ADIR */

#define DS_EYE "ADIR"

 short ad_size; /* Size of output structure */

 char ad_version; /* Version of stats */

#define DS_VER_INITIAL 1 /* First version of log stats */

 char ad_reserved1; /* Reserved byte, 0 in version 1 */

 hyper ad_buffers; /* Number of buffers in cache */

 int ad_buffsize; /* Size of each buffer in K bytes */

 int ad_res1; /* Reserved for future use, zero in version 1 */

 hyper ad_requests; /* Requests to the cache */

 hyper ad_hits; /* Hits in the cache */

 hyper ad_discards; /* Discards of data from cache */

 int ad_reserved2[10]; /* Reserved for future use */

} API_DIR_STATS;

/* reset timestamp */

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

Statistics Directory Cache Information

230 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|

int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 API_DIR_STATS mystats;

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 double temp_ratio;

 int whole,decimal;

 STAT_API *stapptr = &(myparmstruct.myapi);

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_DIR_CACHE;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the directory cache statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + sizeof(API_DIR_STATS); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) sizeof(API_DIR_STATS);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

Statistics Directory Cache Information

Chapter 13. zFS application programming interfaces 231

BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 printf("Error querying directory cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

 printf("%55s\n","Directory Backing Caching Statistics");

 printf(" \n");

 printf("Buffers (K bytes) Requests Hits Ratio Discards\n");

 printf("---------- --------- ---------- ---------- ------ ----------\n");

 temp_ratio = (myparmstruct.mystats.ad_requests.low == 0) ? 0.0 :

 ((double)myparmstruct.mystats.ad_hits.low)/myparmstruct.mystats.ad_requests.low;

 temp_ratio *= 100.0;

 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);

 decimal = decimal / 100; /* Just want tenths */

 printf("%10d %9d %10d %10d %3d.%1.1d%% %10d\n",

 myparmstruct.mystats.ad_buffers.low,

 myparmstruct.mystats.ad_buffers.low * myparmstruct.mystats.ad_buffsize,

 myparmstruct.mystats.ad_requests.low, myparmstruct.mystats.ad_hits.low,

 whole, decimal, myparmstruct.mystats.ad_discards.low);

 printf(" \n");

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 }

 return 0;

}

Statistics Directory Cache Information

232 z/OS V1R9.0 Distributed File Service zFS Administration

Statistics iobyaggr Information

Purpose

This is information about the number of reads and writes and the number of bytes transferred for each

aggregate.

Format

syscall_parmlist

 opcode 244 STATOP_IOBYAGGR

 parms[0] offset to STAT_API

 parms[1] offset to output buffer

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int length of buffer that follows STAT_API

 sa_ver int 1

 sa_flags char[1] 0x00

 SA_RESET 0x80 Reset statistics

 sa_fill char[3] 0

 sa_reserve int[4] 0

 posix_time_high unsigned long high order 32 bits since epoch

 posix_time_low unsigned long low order 32 bits since epoch

 posix_useconds unsigned long microseconds

 pad1 int

IO_REPORT2_GRAND_TOTALS

 io_count int count of IO_REPORT2 lines

 grand_total_reads unsigned long total reads

 grand_total_writes unsigned long total writes

 grand_total_read_bytes unsigned long total bytes read (in kilobytes)

 grand_total_write_bytes unsigned long total bytes written (in kilobytes)

 grand_total_devices unsigned long total number of aggregates

 total_number_waits_for_io unsigned long total number of waits for I/O

 average_wait_time_for_io_whole unsigned long average wait time (whole number)

 average_wait_time_for_io_decimal unsigned long average wait time (decimal part)

IO_REPORT2[io_count]

 volser char[8] DASD volser where aggregate resides

 pavios unsigned long max number of concurrent I/Os that zFS will issue

 read_ind char[4] R/O or R/W (how aggregate is attached)

 temp_reads unsigned long count of reads for this aggregate

 temp_read_bytes unsigned long bytes read for this aggregate (in kilobytes)

 temp_writes unsigned long count of writes for this aggregate

 temp_write_bytes unsigned long bytes written for this aggregate (in kilobytes)

 allocation_dsname char[84] data set name of aggregate

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR zFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics iobyaggr Information

Chapter 13. zFS application programming interfaces 233

Usage

It is used to determine the numbers of I/Os and the amount of data transferred on an aggregate basis.

Privilege Required

None.

Related Services

 Statistics iobydasd Information

 Statistics iocounts Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_IOBYAGGR 244 /* Performance API queries */

#define E2BIG 145

#define u_long unsigned long

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

Statistics iobyaggr Information

234 z/OS V1R9.0 Distributed File Service zFS Administration

typedef struct io_report2_t

{

 char volser[8];

 unsigned long pavios;

 char read_ind[4];

 unsigned long temp_reads;

 unsigned long temp_read_bytes;

 unsigned long temp_writes;

 unsigned long temp_write_bytes;

 char allocation_dsname[84];

} IO_REPORT2;

typedef struct io_report2_grand_totals_t

{

 int io_count; /* number IO_REPORT2 structs in buffer */

 unsigned long grand_total_reads; /* Total # reads */

 unsigned long grand_total_writes; /* Total # writes */

 unsigned long grand_total_read_bytes; /* Total bytes read */

 unsigned long grand_total_write_bytes; /* Total bytes written*/

 unsigned long grand_total_devices; /* total # aggregates */

 unsigned long total_number_waits_for_io;

 unsigned long average_wait_time_for_io_whole;

 unsigned long average_wait_time_for_io_decimal;

} IO_REPORT2_GRAND_TOTALS;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 /* output buffer IO_REPORT2_GRAND_TOTALS + multiple IO_REPORT2s */

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 IO_REPORT2_GRAND_TOTALS *stgt;

 IO_REPORT2 *str2;

 char *stsy;

 char buf[33];

 struct parmstruct *myp = &myparmstruct;

 int mypsize, buflen;

 STAT_API *stapptr = &(myparmstruct.myapi);

 myparmstruct.myparms.opcode = STATOP_IOBYAGGR;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the iobyaggr statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

Statistics iobyaggr Information

Chapter 13. zFS application programming interfaces 235

stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=0;

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 if(bpxrc == E2BIG)

 {

 buflen = stapptr->sa_len; /* Get buffer size needed */

 mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen +

 sizeof(myparmstruct.systemname);

 myp = (struct parmstruct *) malloc ((long) mypsize);

 memset(myp, 0, mypsize);

 printf("Need buffer size of %d, for a total of %d\n",buflen,mypsize);

 myp->myparms.opcode = STATOP_IOBYAGGR;

 myp->myparms.parms[0] = sizeof(syscall_parmlist);

 myp->myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myp->myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the iobyaggr statistics of a different system than this one */

/* myp->myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen; */

 myp->myparms.parms[3] = 0;

 myp->myparms.parms[4] = 0;

 myp->myparms.parms[5] = 0;

 myp->myparms.parms[6] = 0;

 stapptr = (STAT_API *)((char *)myp + sizeof(syscall_parmlist));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=buflen;

 stgt = (IO_REPORT2_GRAND_TOTALS *)((char *)myp + sizeof(syscall_parmlist) +

 sizeof(STAT_API));

 str2 = (IO_REPORT2 *)((char *)stgt + sizeof(IO_REPORT2_GRAND_TOTALS));

 stsy = (char *)((char *)myp + sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(stsy,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Aggregate operation */

 mypsize, /* Length of Argument */

 (char *) myp, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv == 0)

 {

 printf(" zFS I/O by Currently Attached Aggregate\n");

 printf("\n");

 printf("DASD PAV\n");

 printf("VOLSER IOs Mode Reads K bytes Writes K bytes Dataset Name\n");

Statistics iobyaggr Information

236 z/OS V1R9.0 Distributed File Service zFS Administration

printf("------ --- ---- ---------- ---------- ---------- ---------- ------------\n");

 for(i = 0 ; i < stgt->io_count ; i++, str2++)

 {

 printf("%6.6s %3d %s %10d %10d %10d %10d %-44.44s\n",

 str2->volser,

 str2->pavios,

 str2->read_ind,

 str2->temp_reads,

 str2->temp_read_bytes,

 str2->temp_writes,

 str2->temp_write_bytes,

 str2->allocation_dsname);

 }

 printf("%6d %10d %10d %10d %10d %-44.44s\n",

 stgt->grand_total_devices,

 stgt->grand_total_reads,

 stgt->grand_total_read_bytes,

 stgt->grand_total_writes,

 stgt->grand_total_write_bytes, "*TOTALS*");

 printf("\n");

 printf("Total number of waits for I/O: %10d\n", stgt->total_number_waits_for_io);

 printf("Average I/O wait time: %9d.%3.3d (msecs)\n",

 stgt->average_wait_time_for_io_whole,

 stgt->average_wait_time_for_io_decimal);

 printf("\n");

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 free(myp);

 }

 else /* iobyaggr failed with large enough buffer */

 {

 printf("Error on iobyaggr with large enough buffer\n");

 printf("Error querying iobyaggr, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* error was not E2BIG */

 {

 printf("Error on iobyaggr trying to get required size\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* asking for buffer size gave rv = 0; maybe there is no data */

 {

 if(myparmstruct.myapi.sa_len == 0)

 {

 printf("No data\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 }

 else /* No, there was some other problem with getting the size needed */

 {

Statistics iobyaggr Information

Chapter 13. zFS application programming interfaces 237

printf("Error getting size required\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 }

 }

 return 0;

}

Statistics iobyaggr Information

238 z/OS V1R9.0 Distributed File Service zFS Administration

Statistics iobydasd Information

Purpose

This is information about the number of reads and writes and the number of bytes transferred for each

DASD volume.

Format

syscall_parmlist

 opcode 245 STATOP_IOBYDASD

 parms[0] offset to STAT_API

 parms[1] offset to output buffer

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int length of buffer that follows STAT_API

 sa_ver int 1

 sa_flags char[1] 0x00

 SA_RESET 0x80 Reset statistics

 sa_fill char[3] 0

 sa_reserve int[4] 0

 posix_time_high unsigned long high order 32 bits since epoch

 posix_time_low unsigned long low order 32 bits since epoch

 posix_useconds unsigned long microseconds

 pad1 int

API_IOBYDASD_HDR

 number_of_lines int count of API_IOBYDASD_DATA lines

 pad int 0

 grand_total_reserved int always zero

 grand_total_waits hyper total waits

 average_wait_time_whole int average wait time (whole number)

 average_wait_time_decimal int average wait time (decimal part)

API_IOBYDASD_DATA[number_of_lines]

 spare int 0

 volser char[6] DASD volser

 filler char[2] reserved

 pavios unsigned long max number of concurrent I/Os that zFS will issue for this DASD

 reads unsigned long count of reads for this DASD

 read_bytes unsigned long bytes read for this DASD (in kilobytes)

 writes unsigned long count of writes for this DASD

 write_bytes unsigned long bytes written for this DASD (in kilobytes)

 waits unsigned long waits

 avg_wait_whole int average wait time (whole number)

 avg_wait_decimal int average wait time (decimal part)

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR zFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

It is used to determine the numbers of I/Os and the amount of data transferred on a DASD basis.

Statistics iobydasd Information

Chapter 13. zFS application programming interfaces 239

|

Privilege Required

None.

Related Services

 Statistics iobyaggr Information

 Statistics iocounts Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_IOBYDASD 245 /* Performance API queries */

#define E2BIG 145

#define ENOMEM 132

#define u_long unsigned long

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

typedef struct hyper_t {

 unsigned long high; /* unsigned long reserved */

 unsigned long low;

} hyper;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

Statistics iobydasd Information

240 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|

} STAT_API;

typedef struct api_iobydasd_hdr

{

 int number_of_lines;

 int pad;

 hyper grand_total_waits;

 int avg_wait_time_whole;

 int avg_wait_time_decimal;

} API_IOBYDASD_HDR;

typedef struct api_iobydasd_data

{

 int spare;

 char volser[6];

 char filler[2];

 unsigned long pavios;

 unsigned long reads;

 unsigned long read_bytes;

 unsigned long writes;

 unsigned long write_bytes;

 unsigned long waits;

 int avg_wait_whole;

 int avg_wait_decimal;

} API_IOBYDASD_DATA;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 /* output buffer API_IOBYDASD_HDR + multiple API_IOBYDASD_DATAs */

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 API_IOBYDASD_HDR *stdh;

 API_IOBYDASD_DATA *stdd;

 char *stsy;

 char buf[33];

 struct parmstruct *myp = &myparmstruct;

 int mypsize, buflen;

 STAT_API *stapptr = &(myparmstruct.myapi);

 myparmstruct.myparms.opcode = STATOP_IOBYDASD;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the iobydasd statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

Statistics iobydasd Information

Chapter 13. zFS application programming interfaces 241

memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=0;

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 if(bpxrc == E2BIG)

 {

 buflen = stapptr->sa_len; /* Get buffer size needed */

 mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen +

 sizeof(myparmstruct.systemname);

 myp = (struct parmstruct *) malloc ((long) mypsize);

 memset(myp, 0, mypsize);

 printf("Need buffer size of %d, for a total of %d\n\n",buflen,mypsize);

 myp->myparms.opcode = STATOP_IOBYDASD;

 myp->myparms.parms[0] = sizeof(syscall_parmlist);

 myp->myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myp->myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the iobydasd statistics of a different system than this one */

/* myp->myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen; */

 myp->myparms.parms[3] = 0;

 myp->myparms.parms[4] = 0;

 myp->myparms.parms[5] = 0;

 myp->myparms.parms[6] = 0;

 stapptr = (STAT_API *)((char *)myp + sizeof(syscall_parmlist));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=buflen;

 stdh = (API_IOBYDASD_HDR *)((char *)myp + sizeof(syscall_parmlist) + sizeof(STAT_API));

 stdd = (API_IOBYDASD_DATA *)((char *)stdh + sizeof(API_IOBYDASD_HDR));

 stsy = (char *)((char *)myp + sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(stsy,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf stats operation */

 mypsize, /* Length of Argument */

 (char *) myp, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv == 0)

 {

 printf(" zFS I/O by Currently Attached DASD/VOLs\n");

 printf("\n");

 printf("DASD PAV\n");

Statistics iobydasd Information

242 z/OS V1R9.0 Distributed File Service zFS Administration

printf("VOLSER IOs Reads K bytes Writes K bytes Waits Average Wait\n");

printf("------ --- ---------- ---------- ---------- ---------- ---------- ------------\n");

 for(i = 0 ; i < stdh->number_of_lines ; i++, stdd++)

 {

 printf("%6.6s %3d %10d %10d %10d %10d %10d %6d.%3.3d\n",

 stdd->volser,

 stdd->pavios,

 stdd->reads,

 stdd->read_bytes,

 stdd->writes,

 stdd->write_bytes,

 stdd->waits,

 stdd->avg_wait_whole,

 stdd->avg_wait_decimal);

 }

 printf("\n");

 printf("Total number of waits for I/O: %d,,%d\n",

 stdh->grand_total_waits.high,stdh->grand_total_waits.low);

 printf("Average I/O wait time: %9d.%3.3d (msecs)\n",

 stdh->avg_wait_time_whole,

 stdh->avg_wait_time_decimal);

 printf("\n");

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 free(myp);

 }

 else /* iobydasd failed with large enough buffer */

 {

 printf("Error on iobydasd with large enough buffer\n");

 printf("Error querying iobydasd, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* error was not E2BIG */

 {

 printf("Error on iobydasd trying to get required size\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* asking for buffer size gave rv = 0; maybe there is no data */

 {

 if(myparmstruct.myapi.sa_len == 0)

 {

 printf("No data\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 }

 else /* No, there was some other problem with getting the size needed */

 {

 printf("Error getting size required\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

Statistics iobydasd Information

Chapter 13. zFS application programming interfaces 243

}

 }

 return 0;

}

Statistics iobydasd Information

244 z/OS V1R9.0 Distributed File Service zFS Administration

Statistics iocounts Information

Purpose

This is information about how often zFS performs I/O for various circumstances and how often it waits on

that I/O.

Format

syscall_parmlist

 opcode 243 STATOP_IOCOUNTS

 parms[0] offset to STAT_API

 parms[1] offset to output buffer

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int length of buffer that follows STAT_API

 sa_ver int 1

 sa_flags char[1] 0x00

 SA_RESET 0x80 Reset statistics

 sa_fill char[3] 0

 sa_reserve int[4] 0

 posix_time_high unsigned long high order 32 bits since epoch

 posix_time_low unsigned long low order 32 bits since epoch

 posix_useconds unsigned long microseconds

 pad1 int

API_IO_BY_TYPE[3]

 number_of_lines unsigned long count of API_IO_BY_TYPE lines (3)

 count unsigned long count of I/Os for type

 waits unsigned long number of waits for type

 cancels unsigned long number of cancels for type

 merges unsigned long number of merges for type

 type reserved1 reserved

 description char[51] type description

 pad1 char[3] pad bytes

API_IO_BY_CIRC[18]

 number_of_lines unsigned long count of API_IO_BY_CIRC lines (18)

 count unsigned long count of I/Os for circumstance

 waits unsigned long number of waits for circumstance

 cancels unsigned long number of cancels for circumstance

 merges unsigned long number of merges for circumstance

 type reserved1 reserved

 description char[51] circumstance description

 pad1 char[3] pad bytes

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR zFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

It is used to determine the numbers of I/Os zFS has issued for various circumstances.

Statistics iocounts Information

Chapter 13. zFS application programming interfaces 245

Privilege Required

None.

Related Services

 Statistics iobyaggr Information

 Statistics iobydasd Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_IOCOUNTS 243 /* Performance API queries */

#define TOTAL_TYPES 3

#define TOTAL_CIRC 18

#define u_long unsigned long

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

typedef struct API_IO_BY_TYPE_t

{

 unsigned long number_of_lines;

Statistics iocounts Information

246 z/OS V1R9.0 Distributed File Service zFS Administration

unsigned long count;

 unsigned long waits;

 unsigned long cancels; /* Successful cancels of IO */

 unsigned long merges; /* Successful merges of IO */

 char reserved1[6];

 char description[51];

 char pad1[3];

} API_IO_BY_TYPE;

typedef struct API_IO_BY_CIRC_t

{

 unsigned long number_of_lines;

 unsigned long count;

 unsigned long waits;

 unsigned long cancels;

 unsigned long merges;

 char reserved1[6];

 char description[51];

 char pad1[3];

} API_IO_BY_CIRC;

/***/

/* The following structures are used to represent cfgop queries */

/* for iocounts */

/***/

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 API_IO_BY_TYPE mystatsbytype[TOTAL_TYPES];

 API_IO_BY_CIRC mystatsbycirc[TOTAL_CIRC];

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 STAT_API *stapptr = &(myparmstruct.myapi);

 API_IO_BY_TYPE *stiotptr = &(myparmstruct.mystatsbytype[0]);

 API_IO_BY_CIRC *stiocptr = &(myparmstruct.mystatsbycirc[0]);

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_IOCOUNTS;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the iocounts of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) */

/* + (TOTAL_TYPES * sizeof(API_IO_BY_TYPE)) */

/* + (TOTAL_CIRC * sizeof(API_IO_BY_CIRC)); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

Statistics iocounts Information

Chapter 13. zFS application programming interfaces 247

memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) (TOTAL_TYPES * sizeof(API_IO_BY_TYPE))

 + (TOTAL_CIRC * sizeof(API_IO_BY_CIRC));

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 printf("Error querying iocounts, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

 if(stiotptr->number_of_lines != TOTAL_TYPES)

 {

 printf("Unexpected number of IO Types, %d instead of TOTAL_TYPES\n",stiotptr->number_of_lines);

 return 1;

 }

 if(stiocptr->number_of_lines != TOTAL_CIRC)

 {

 printf("Unexpected number of IO Circumstances, %d instead of TOTAL_CIRC\n",

 stiocptr->number_of_lines);

 return 2;

 }

 printf(" I/O Summary By Type\n");

 printf(" -------------------\n");

 printf("\n");

 printf("Count Waits Cancels Merges Type\n");

 printf("---------- ---------- ---------- ---------- ----------\n");

 for(i=0; i<TOTAL_TYPES; i++)

 {

 printf("%10d %10d %10d %10d %s\n",

 stiotptr->count, stiotptr->waits,

 stiotptr->cancels, stiotptr->merges,

 stiotptr->description);

 stiotptr = stiotptr + 1;

 }

 printf("\n");

 printf(" I/O Summary By Circumstance\n");

 printf(" ---------------------------\n");

 printf("\n");

 printf("Count Waits Cancels Merges Circumstance\n");

 printf("---------- ---------- ---------- ---------- ------------\n");

 for(i=0; i<TOTAL_CIRC; i++)

 {

 printf("%10d %10d %10d %10d %s\n",

 stiocptr->count, stiocptr->waits,

 stiocptr->cancels, stiocptr->merges,

 stiocptr->description);

 stiocptr = stiocptr +1;

 printf("\n");

 }

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

Statistics iocounts Information

248 z/OS V1R9.0 Distributed File Service zFS Administration

strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 }

 return 0;

}

Statistics iocounts Information

Chapter 13. zFS application programming interfaces 249

Statistics Kernel Information

Purpose

The statistics kernel information subcommand call is a performance statistics operation that returns kernel

counters.

Format

syscall_parmlist

 opcode 246 STATOP_KNPFS

 parms[0] offset to STAT_API

 parms[1] offset to output buffer

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int length of buffer that follows STAT_API

 sa_ver int 1

 sa_flags char[1] 0x00

 SA_RESET 0x80 Reset statistics

 sa_fill char[3] 0

 sa_reserve int[4] 0

 posix_time_high unsigned long high order 32 bits since epoch

 posix_time_low unsigned long low order 32 bits since epoch

 posix_useconds unsigned long microseconds

 pad1 int

KERNEL_CALL_STATS

 kc_eye char[8] "xxxxADIR"

 kc_version short version

 kc_size short size of output

 pad1 int reserved

 KERNEL_LINE[40]

 kl_operation_name char[27] operation name string

 kl_valid char operation entry is valid (0x01)

 kl_count unsigned long count of operations

 kl_time_reserved int always zero

 kl_time int average time for operation

 kl_reserved int[6] reserved

 kc_totalops unsigned long grand total operations

 pad2 int reserved

 kc_totaltime_reserved int reserved

 kc_totaltime int grand total wait time

 kc_valid_slots int number of slots in above array that actually contains data

 kc_reserved int[10] reserved

 pad3 int reserved

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR zFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Kernel Information

250 z/OS V1R9.0 Distributed File Service zFS Administration

|
|

|
|

Usage

It is used to determine the numbers of kernel operations and average time for the operation.

Privilege Required

None.

Related Services

 Statistics Vnode Cache Information

 Statistics Metadata Cache Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_KNPFS 246 /* Performance API queries */

#define u_long unsigned long

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef union {

 struct double_word_t

 {

 unsigned int first_word;

 unsigned int second_word;

 } double_word;

double alignment_dummy;

} two_words;

#define MAX_KERNEL_LINES 40

/* */

typedef struct KERNEL_line_t{

 char kl_operation_name[27];

 char kl_valid;

 u_long kl_count;

 two_words kl_time;

 int kl_reserved[6];

} KERNEL_LINE;

/* */

typedef struct kernel_call_stats_t {

 char kc_eye[8]; /*eye catcher */

 short kc_version;

 short kc_len;

 int pad1;

 KERNEL_LINE OUTPUT[MAX_KERNEL_LINES];

 u_long kc_totalops; /*Grand Total operations */

 int pad2;

 two_words kc_totaltime; /*Grand Total wait time*/

Statistics Kernel Information

Chapter 13. zFS application programming interfaces 251

int kc_valid_slots; /* Number of slots in the above array*/

 /* that actually contain data*/

 int kc_reserved[10];

 int pad3;

} KERNEL_CALL_STATS;

/* reset timestamp */

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 KERNEL_CALL_STATS mystats;

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 STAT_API *stapptr = &(myparmstruct.myapi);

 KERNEL_CALL_STATS *stkcptr = &(myparmstruct.mystats);

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_KNPFS;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the kernel statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + */

/* sizeof(KERNEL_CALL_STATS); */

 myparmstruct.myparms.parms[3] = 0;

Statistics Kernel Information

252 z/OS V1R9.0 Distributed File Service zFS Administration

myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) sizeof(KERNEL_CALL_STATS);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 printf("Error querying kernel calls, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

 printf("%34s\n","zFS Kernel PFS Calls");

 printf("%34s\n","--------------------");

 printf("\n");

 printf("Operation Count Avg Time\n");

 printf("--------- ---------- ----------\n");

 i=0;

 while (myparmstruct.mystats.OUTPUT[i].kl_valid == 1)

 {

 printf("%13s %10u %9d.%3.3d\n",myparmstruct.mystats.OUTPUT[i].kl_operation_name,

 myparmstruct.mystats.OUTPUT[i].kl_count,

 myparmstruct.mystats.OUTPUT[i].kl_time.double_word.first_word,

 myparmstruct.mystats.OUTPUT[i].kl_time.double_word.second_word);

 i+=1;

 }

 printf("--------- ---------- ----------\n");

 printf("*TOTALS* %10u %9d.%3.3d\n",

 myparmstruct.mystats.kc_totalops,

 myparmstruct.mystats.kc_totaltime.double_word.first_word,

 myparmstruct.mystats.kc_totaltime.double_word.second_word);

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 }

 return 0;

}

Statistics Kernel Information

Chapter 13. zFS application programming interfaces 253

Statistics Locking Information

Purpose

The statistics locking information subcommand call is a performance statistics operation that returns

locking information.

Format

syscall_parmlist

 opcode 240

 parm[0] offset to STAT_API

 parm[1] offset to STAT_LOCKING

 parm[2] offset to system name (optional)

 parm[3] 0

 parm[4] 0

 parm[5] 0

 parm[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int sizeof(STAT_LOCKING)

 sa_ver int 1

 sa_flags char 0x80 for reset; 0x00 otherwise

 sa_fill char[3] 0

 sa_reserve int[4] 0

STAT_LOCKING

 reserved1 int

 stlk_untimed_sleeps unsigned long number of untimed sleeps

 stlk_timed_sleeps unsigned long number of timed sleeps

 stlk_wakeups unsigned long number of wake ups

 stlk_total_wait_for_locks unsigned long total waits for locks

 stlk_average_lock_wait_time double average lock wait time

 stlk_avg_lock_wait_time_whole int average lock wait time in msecs left of the decimal

 part

 stlk_avg_lock_wait_time_decimal int average lock wait time in msecs decimal portion

 stlk_total_monitored_sleeps unsigned long total monitored sleeps

 stlk_average_monitored_sleep_time double average monitored sleep time

 stlk_avg_mon_sleep_time_whole int average monitored sleep time in msecs left of the

 decimal part

 stlk_avg_mon_sleep_time_decimal int average monitored sleep time in msecs

 decimal portion

 stlk_total_contentions unsigned long total lock contention of all kinds

 stlk_reserved_space char[48] reserved for future use

 stlk_locks struct Lock_line[15] storage for the lock data

 count int Number of thread waits for this lock

 async int Asynchronous disposition

 spins int Number of attempts to get lock that did not

 resolve immediately

 percentage double

 percentage_whole int percentage >= 1

 percentage_decimal int percentage < 1

 description char[84] Description of the lock

 stlk_sleeps struct Sleep_line[5] storage for sleep data

 sleepcount unsigned long Time spent sleeping

 percentage double Percentage of time spent sleeping

 percentage_whole int Percentage >=1

 percentage_decimal int Percentage < 1

 description char[84] Description of the thread

systemname char[9]

Return value 0 if request is successful, -1 if it is not successful

Return code

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

Statistics Locking Information

254 z/OS V1R9.0 Distributed File Service zFS Administration

Reason code

 0xEFxxnnnn See z/OS Distributed File Service Messages and Codes

Usage

This function is used to retrieve locking information.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 Statistics Storage Information

 Statistics User Cache Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_LOCKING 240 /* Performance API queries */

#define u_long unsigned long

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct Lock_line_t

{

 int count; /* Number of thread waits for this lock */

 int async; /* Asynchronous disposition*/

 int spins; /* Number of attempts to get lock that did not resolve immediately*/

 int pad1;

 double percentage; /**/

 int percentage_whole; /* percentage >= 1*/

 int percentage_decimal;/* percentage < 1*/

 char description[84]; /* Description of the lock */

 int pad2;

} LOCK_LINE;

typedef struct Sleep_line_t

{

 unsigned long sleepcount; /* Time spent sleeping */

 int pad1;

 double percentage; /* Percentage of time spent sleeping*/

 int percentage_whole; /* Percentage >=1 */

 int percentage_decimal; /* Percentage < 1 */

 char description[84]; /*Description of the thread*/

Statistics Locking Information

Chapter 13. zFS application programming interfaces 255

int pad2;

} SLEEP_LINE;

/* reset timestamp */

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

typedef struct stat_locking_t

{

 int reserved1;

 unsigned long stlk_untimed_sleeps; /* Number of untimed sleeps */

 unsigned long stlk_timed_sleeps; /* Number of timed sleeps */

 unsigned long stlk_wakeups; /* Number of wake ups */

 unsigned long stlk_total_wait_for_locks; /* Total waits for locks */

 int pad1;

 double stlk_average_lock_wait_time; /*Average lock wait time */

 int stlk_avg_lock_wait_time_whole; /*Average lock wait time in msecs */

 /*left of the decimal part */

 int stlk_avg_lock_wait_time_decimal; /*Average lock wait time in msecs */

 /*decimal portion */

 unsigned long stlk_total_monitored_sleeps; /*Total monitored sleeps */

 int pad2;

 double stlk_average_monitored_sleep_time;/* Average monitored sleep time */

 int stlk_avg_mon_sleep_time_whole; /*Average monitored sleep time in msecs */

 /* left of the decimal part*/

 int stlk_avg_mon_sleep_time_decimal; /*Average monitored sleep time in msecs */

 /* decimal portion */

 unsigned long stlk_total_contentions; /*Total lock contention of all kinds*/

 char stlk_reserved_space[48]; /* reserved for future use */

 int pad3;

#define MAX_LOCKS 15 /* Maximum number of locks in this release*/

#define MAX_SLEEPS 5 /* Maximum number of sleeps in this release*/

 LOCK_LINE stlk_locks[MAX_LOCKS]; /* Storage for the lock data */

 SLEEP_LINE stlk_sleeps[MAX_SLEEPS]; /* Storage for the top 5 most common sleep threads*/

} STAT_LOCKING;

/***/

/* The following structures are used to represent cfgop queries */

/* for locking stats */

/***/

struct parmstruct

{

Statistics Locking Information

256 z/OS V1R9.0 Distributed File Service zFS Administration

syscall_parmlist myparms;

 STAT_API myapi;

 STAT_LOCKING mystats;

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 STAT_API *stapptr = &(myparmstruct.myapi);

 STAT_LOCKING *stlkptr = &(myparmstruct.mystats);

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_LOCKING;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the locking statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + sizeof(STAT_LOCKING); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) sizeof(STAT_LOCKING);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 printf("Error querying locking stats, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

 printf("%55s\n","Locking Statistics");

 printf("\n");

 printf("\n");

 printf("Untimed sleeps: %10d Timed Sleeps: %10d Wakeups: %10d\n",

 myparmstruct.mystats.stlk_untimed_sleeps,

 myparmstruct.mystats.stlk_timed_sleeps,

 myparmstruct.mystats.stlk_wakeups);

 printf("\n");

 printf("Total waits for locks: %10d\n",

Statistics Locking Information

Chapter 13. zFS application programming interfaces 257

myparmstruct.mystats.stlk_total_wait_for_locks);

 printf("Average lock wait time: %9d.%3.3d (msecs)\n",

 myparmstruct.mystats.stlk_avg_lock_wait_time_whole,

 myparmstruct.mystats.stlk_avg_lock_wait_time_decimal);

 printf("\n");

 printf("Total monitored sleeps: %10d\n",

 myparmstruct.mystats.stlk_total_monitored_sleeps);

 printf("Average monitored sleep time: %9d.%3.3d (msecs)\n",

 myparmstruct.mystats.stlk_avg_mon_sleep_time_whole,

 myparmstruct.mystats.stlk_avg_mon_sleep_time_decimal);

 printf("\n");

 printf(" Top %d Most Highly Contended Locks\n",

 MAX_LOCKS);

 printf(" Thread Async Spin \n");

 printf(" Wait Disp. Resol. Pct. Description\n");

 printf("---------- ---------- ---------- ----- --------------\n");

 for(i = 0; i < MAX_LOCKS;i++)

 {

 printf("%10d %10d %10d %3d.%1.1d%% %.80s\n",

 myparmstruct.mystats.stlk_locks[i].count,

 myparmstruct.mystats.stlk_locks[i].async,

 myparmstruct.mystats.stlk_locks[i].spins,

 myparmstruct.mystats.stlk_locks[i].percentage_whole,

 myparmstruct.mystats.stlk_locks[i].percentage_decimal,

 myparmstruct.mystats.stlk_locks[i].description);

 }

 printf("\n");

 printf("Total lock contention of all kinds: %10d\n",

 myparmstruct.mystats.stlk_total_contentions);

 printf("\n");

 printf(" Top %d Most Common Thread Sleeps\n",

 MAX_SLEEPS);

 printf("Thread Wait Pct. Description\n");

 printf("----------- ----- -----------\n");

 for(i = 0; i < MAX_SLEEPS;i++)

 {

 printf(" %10d %3d.%1.1d%% %.80s\n",

 myparmstruct.mystats.stlk_sleeps[i].sleepcount,

 myparmstruct.mystats.stlk_sleeps[i].percentage_whole,

 myparmstruct.mystats.stlk_sleeps[i].percentage_decimal,

 myparmstruct.mystats.stlk_sleeps[i].description);

 printf("\n");

 }

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 }

 return 0;

}

Statistics Locking Information

258 z/OS V1R9.0 Distributed File Service zFS Administration

Statistics Log Cache Information

Purpose

The statistics log cache information subcommand call is a performance statistics operation that returns log

cache counters.

Format

syscall_parmlist

 opcode 247 STATOP_LOG_CACHE

 parms[0] offset to STAT_API

 parms[1] offset to output buffer

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int length of buffer that follows STAT_API

 sa_ver int 1

 sa_flags char[1] 0x00

 SA_RESET 0x80 Reset statistics

 sa_fill char[3] 0

 sa_reserve int[4] 0

 posix_time_high unsigned long high order 32 bits since epoch

 posix_time_low unsigned long low order 32 bits since epoch

 posix_useconds unsigned long microseconds

 pad1 int

API_LOG_STATS

 al_eye char[4] "ALOG"

 al_size short size of output

 al_version char version

 al_reserved1 char reserved byte

 al_reserved2 int reserved

 al_buffersize int size of each buffer in K bytes

 al_lookups_reserved int reserved

 al_lookups int lookups/creates of item in log buffer cache

 al_hits_reserved int reserved

 al_hits int hits - number of items time item found in cache

 al_writtenPages_reserved int reserved

 al_writtenPages int number of log buffer pages written to disk

 al_fullWaits_reserved int reserved

 al_fullWaits int number of times new log buffer requires wait on prior

 log pages

 al nbsWaits_reserved int reserved

 al nbsWaits int number of times new log buffer requires wait on new block

 user I/O

 al_reserved3 int[10] reserved

 systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR zFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Log Cache Information

Chapter 13. zFS application programming interfaces 259

|
|
|
|
|
|
|
|
|
|
|
|

Usage

It is used to determine the numbers of requests, hits and waits on the log buffer cache.

Privilege Required

None.

Related Services

 Statistics Vnode Cache Information

 Statistics Metadata Cache Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_LOG_CACHE 247 /* Performance API queries */

#define u_long unsigned long

#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \

{ \

 INTEGER = (int)RATIO; \

 DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \

}

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper {

 unsigned long high; /* unsigned long reserved */

 unsigned long low;

} hyper;

typedef struct API_LOG_STATS_t {

 char al_eye[4]; /* Eye catcher = ALOG */

#define LS_EYE "ALOG"

 short al_size; /* Size of output structure */

 char al_version; /* Version of stats */

#define LS_VER_INITIAL 1 /* First version of log stats */

 char al_reserved1; /* Reserved byte, 0 in version 1 */

 hyper al_buffers; /* Number of buffers used */

 int al_reserved2; /* Reserved for future use, 0 in version 1 */

 int al_buffsize; /* Size in kilobytes of one buffer */

 hyper al_lookups; /* Lookups/creates of item in log buffer cache */

 hyper al_hits; /* Hits, number of times item found in cache */

 hyper al_writtenPages; /* Number of log buffer pages written to disk */

 hyper al_fullWaits; /* Number of time new log buffer requires wait on prior log pages */

 hyper al_nbsWaits; /* Number of time new log buffer requires wait on new block user IO */

 int al_reserved3[10]; /* Reserved for future use */

} API_LOG_STATS;

Statistics Log Cache Information

260 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|
|

/* reset timestamp */

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 API_LOG_STATS mystats;

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 double temp_ratio;

 int whole,decimal;

 STAT_API *stapptr = &(myparmstruct.myapi);

 /* STAT_TRAN_CACHE *sttcptr = &(myparmstruct.mystats); */

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_LOG_CACHE;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the log cache statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + sizeof(API_LOG_STATS); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

Statistics Log Cache Information

Chapter 13. zFS application programming interfaces 261

memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) sizeof(API_LOG_STATS);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 printf("Error querying log cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

 printf("%52s\n","Log File Caching Statistics");

 printf(" \n");

 printf("Buffers (K bytes) Requests Hits Ratio Written \n");

 printf("---------- --------- ---------- ---------- ------ ----------\n");

 temp_ratio = (myparmstruct.mystats.al_lookups.low == 0) ? 0.0 :

 ((double)myparmstruct.mystats.al_hits.low)/myparmstruct.mystats.al_lookups.low;

 temp_ratio *= 100.0;

 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);

 decimal = decimal / 100; /* Just want tenths */

 printf("%10d %9d %10d %10d %3d.%1.1d%% %10d\n",

 myparmstruct.mystats.al_buffers.low,

 myparmstruct.mystats.al_buffers.low * myparmstruct.mystats.al_buffsize,

 myparmstruct.mystats.al_lookups.low, myparmstruct.mystats.al_hits.low,

 whole, decimal, myparmstruct.mystats.al_writtenPages.low);

 printf(" \n");

 printf("New buffer: log full waits %10d NBS IO waits %10d\n",

 myparmstruct.mystats.al_fullWaits.low, myparmstruct.mystats.al_nbsWaits.low);

 printf(" \n");

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 }

 return 0;

}

Statistics Log Cache Information

262 z/OS V1R9.0 Distributed File Service zFS Administration

Statistics Metadata Cache Information

Purpose

The statistics metadata cache information subcommand call is a performance statistics operation that

returns metadata cache counters.

Format

syscall_parmlist

 opcode 248 STATOP_META_CACHE

 parms[0] offset to STAT_API

 parms[1] offset to output buffer

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int length of buffer that follows STAT_API

 sa_ver int 1

 sa_flags char[1] 0x00

 SA_RESET 0x80 Reset statistics

 sa_fill char[3] 0

 sa_reserve int[4] 0

 posix_time_high unsigned long high order 32 bits since epoch

 posix_time_low unsigned long low order 32 bits since epoch

 posix_useconds unsigned long microseconds

 pad1 int

API_META_STATS

 am_eye char[4] "AMET"

 am_size short size of output

 am_version char version

 am_reserved1 char reserved byte

 PRIMARY_STATS

 buffers_reserved int reserved

 buffers int number of buffers in the cache

 buffsize int size of each buffer in K bytes

 amc_res1 int reserved

 requests_reserved int reserved

 requests int requests to the cache

 hits_reserved int reserved

 hits int hits in the cache

 updates_reserved int reserved

 updates int updates to buffers in the cache

 BACK_STATS

 buffers hyper number of buffers in the cache

 buffsize int size of each buffer in K bytes

 amc_res1 int reserved

 requests_reserved int reserved

 requests int requests to the cache

 hits_reserved int reserved

 hits int hits in the cache

 discards_reserved int reserved

 discards int discards of data from the cache

 am_reserved3 int[10] reserved

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR zFS is shutting down

Statistics Metadata Cache Information

Chapter 13. zFS application programming interfaces 263

|
|
|
|
|
|

|
|
|
|
|
|

EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

It is used to determine the numbers of requests, hits and discards from the directory cache.

Privilege Required

None.

Related Services

 Statistics Vnode Cache Information

 Statistics Metadata Cache Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_META_CACHE 248 /* Metadata cache (and back cache) stats */

#define u_long unsigned long

#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \

{ \

 INTEGER = (int)RATIO; \

 DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \

}

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper {

 unsigned long high; /* unsigned long reserved */

 unsigned long low;

} hyper;

/***/

/* META cache stats, including backing cache. */

/***/

typedef struct PRIMARY_STATS_t {

 hyper buffers; /* Number of buffers in cache */

 int buffsize; /* Size of each buffer in K bytes */

 int amc_res1; /* Reserved for future use, zero in version 1 */

 int requests_reserved; /* Reserved */

 int requests; /* Requests to the cache */

Statistics Metadata Cache Information

264 z/OS V1R9.0 Distributed File Service zFS Administration

|
|
|
|

|
|

int hits_reserved; /* Reserved */

 int hits; /* Hits in the cache */

 int updates_reserved; /* Reserved */

 int updates; /* Updates to buffers in the cache */

 int reserved[10]; /* For future use */

} PRIMARY_STATS;

typedef struct BACK_STATS_t {

 hyper buffers; /* Number of buffers in cache */

 int buffsize; /* Size of each buffer in K bytes */

 int amc_res1; /* Reserved for future use, zero in version 1 */

 int requests_reserved; /* Reserved */

 int requests; /* Requests to the cache */

 int hits_reserved; /* Reserved */

 int hits; /* Hits in the cache */

 int discards_reserved; /* Reserved */

 int discards; /* Discards of data from backing cache */

 int reserved[10]; /* For future use */

} BACK_STATS;

typedef struct API_META_STATS_t {

 char am_eye[4]; /* Eye catcher = AMET */

#define MS_EYE "AMET"

 short am_size; /* Size of output structure */

 char am_version; /* Version of stats */

#define MS_VER_INITIAL 1 /* First version of log stats */

 char am_reserved1; /* Reserved byte, 0 in version 1 */

 PRIMARY_STATS am_primary; /* Primary space cache statistics */

 BACK_STATS am_back; /* Backing cache statistics */

 int am_reserved3[10]; /* Reserved for future use */

} API_META_STATS;

/* reset timestamp */

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 API_META_STATS mystats;

 char systemname[9];

Statistics Metadata Cache Information

Chapter 13. zFS application programming interfaces 265

|
|
|
|

|
|
|
|
|
|

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 double temp_ratio;

 int whole,decimal;

 STAT_API *stapptr = &(myparmstruct.myapi);

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_META_CACHE;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the metadata cache statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + */

/* sizeof(API_META_STATS); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) sizeof(API_META_STATS);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 printf("Error querying meta cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

 /* Primary cache */

 printf("%52s\n","Metadata Caching Statistics");

 printf(" \n");

 printf("Buffers (K bytes) Requests Hits Ratio Updates\n");

 printf("---------- --------- ---------- ---------- ------ ----------\n");

 temp_ratio = (myparmstruct.mystats.am_primary.requests.low == 0) ? 0.0 :

 ((double)myparmstruct.mystats.am_primary.hits.low)/myparmstruct.mystats.am_primary.requests.low;

 temp_ratio *= 100.0;

 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);

 decimal = decimal / 100; /* Just want tenths */

 printf("%10d %9d %10d %10d %3d.%1.1d%% %10d\n",

Statistics Metadata Cache Information

266 z/OS V1R9.0 Distributed File Service zFS Administration

myparmstruct.mystats.am_primary.buffers.low,

 myparmstruct.mystats.am_primary.buffers.low * myparmstruct.mystats.am_primary.buffsize,

 myparmstruct.mystats.am_primary.requests.low, myparmstruct.mystats.am_primary.hits.low,

 whole, decimal, myparmstruct.mystats.am_primary.updates.low);

 printf(" \n");

 /* Backing cache */

 printf("%56s\n","Metadata Backing Caching Statistics");

 printf(" \n");

 printf("Buffers (K bytes) Requests Hits Ratio Discards\n");

 printf("---------- --------- ---------- ---------- ------ ----------\n");

 temp_ratio = (myparmstruct.mystats.am_back.requests.low == 0) ? 0.0 :

 ((double)myparmstruct.mystats.am_back.hits.low)/myparmstruct.mystats.am_back.requests.low;

 temp_ratio *= 100.0;

 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);

 decimal = decimal / 100; /* Just want tenths */

 printf("%10d %9d %10d %10d %3d.%1.1d%% %10d\n",

 myparmstruct.mystats.am_back.buffers.low,

 myparmstruct.mystats.am_back.buffers.low * myparmstruct.mystats.am_back.buffsize,

 myparmstruct.mystats.am_back.requests.low, myparmstruct.mystats.am_back.hits.low,

 whole, decimal, myparmstruct.mystats.am_back.discards.low);

 printf(" \n");

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 }

 return 0;

}

Statistics Metadata Cache Information

Chapter 13. zFS application programming interfaces 267

Statistics Storage Information

Purpose

The statistics storage information subcommand call is a performance statistics operation that returns

storage information.

Format

syscall_parmlist

 opcode 241

 parm[0] offset to STAT_API

 parm[1] offset to STAT_STORAGE

 parm[2] offset to system name (optional)

 parm[3] 0

 parm[4] 0

 parm[5] 0

 parm[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int 0

 sa_ver int 1

 sa_flags char 0x80 for reset; 0x00 otherwise

 sa_fill char[3] 0

 sa_reserve int[4] 0

API_STOR_STATS

 reserved1 int

 ss_total_bytes_allocated unsigned long /* Total bytes allocated*/

 ss_total_pieces_allocated unsigned long /* Total pieces allocated*/

 ss_total_allocation_requests unsigned long /* Total allocation requests*/

 ss_total_free_requests unsigned long /* Total free requests*/

 ss_number_of_comp_lines unsigned long /* Total number of components lines in buffer*/

 ss_reserved_space char[48] /* reserved for future use */

COMP_LINE[n]

 ss_comp_bytes_allocated int /* The number of bytes allocated by this*/

 /* component */

 ss_comp_pieces int /* The number of pieces allocated*/

 ss_comp_allocations int /* the number of storage allocations requests*/

 /*done by this component */

 ss_comp_frees int /* the number of storage frees done by this*/

 /*component */

 ss_comp_description char[84] /* the component description */

 ss_number_of_detail_lines int /* the number of detail lines following this*/

 /* component line */

 DETAIL_LINE[m]

 ss_detail_bytes_allocated int /*number of bytes allocated*/

 ss_detail_pieces int /*number of pieces allocated*/

 ss_detail_allocations int /*number of allocation requests*/

 ss_detail_frees int /*number of free requests*/

 ss_detail_description char[84] /*description */

systemname char[9]

Return value 0 if request is successful, -1 if it is not successful

Return code

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason code

 0xEFxxnnnn See z/OS Distributed File Service Messages and Codes

Statistics Storage Information

268 z/OS V1R9.0 Distributed File Service zFS Administration

Usage

This function is used to retrieve storage information. You can specify a buffer that you think might be large

enough or you can specify a buffer length of zero. If you get a return code E2BIG, the required size for the

buffer is contained in the sa_len field.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 Statistics Locking Information

 Statistics User Cache Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_STORAGE 241 /* Performance API queries */

#define E2BIG 145

#define u_long unsigned long

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

Statistics Storage Information

Chapter 13. zFS application programming interfaces 269

int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

typedef struct comp_line

{

 int ss_comp_bytes_allocated; /* The number of bytes allocated by this component */

 int ss_comp_pieces; /* The number of pieces allocated*/

 int ss_comp_allocations; /* the number of storage allocations requests done by this component */

 int ss_comp_frees; /* the number of storage frees done by this component */

 char ss_comp_description[84]; /* the component description */

 int ss_number_of_detail_lines; /* the number of detail lines following this component line */

 /* before the next component line or end of buffer */

} COMP_LINE;

typedef struct detail_line

{

 int ss_detail_bytes_allocated; /*number of bytes allocated*/

 int ss_detail_pieces; /*number of pieces allocated*/

 int ss_detail_allocations; /*number of allocation requests*/

 int ss_detail_frees; /*number of free requests*/

 char ss_detail_description[84]; /*description */

} DETAIL_LINE;

typedef struct api_stor_stats

{

 int reserved1;

 unsigned long ss_total_bytes_allocated; /* Total bytes allocated*/

 unsigned long ss_total_pieces_allocated; /* Total pieces allocated*/

 unsigned long ss_total_allocation_requests; /* Total allocation requests*/

 unsigned long ss_total_free_requests; /* Total free requests*/

 unsigned long ss_number_of_comp_lines; /* Total number of components lines in buffer*/

 char ss_reserved_space[48]; /* reserved for future use */

 /***/

 /**The returned data can contain comp_lines and detail_lines ******/

 /**The first line is a component line ******/

 /**The number of component lines returned is in this structure ******/

 /* Each component line is followed by zero or more detail lines */

 /* The comp_line struct indicates how many detail lines follow */

 /***/

} API_STOR_STATS;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 /* output buffer API_STOR_STATS + COMP_LINEs and DETAIL_LINEs */

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i,j;

 COMP_LINE *stcl;

 DETAIL_LINE *stdl;

 char *stsy;

 char buf[33];

 struct parmstruct *myp = &myparmstruct;

 int mypsize, buflen;

 API_STOR_STATS *stst;

 STAT_API *stapptr = &(myparmstruct.myapi);

Statistics Storage Information

270 z/OS V1R9.0 Distributed File Service zFS Administration

myparmstruct.myparms.opcode = STATOP_STORAGE;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the storage statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=0;

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 if(bpxrc == E2BIG)

 {

 buflen = stapptr->sa_len; /* Get buffer size needed */

 mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen +

 sizeof(myparmstruct.systemname);

 myp = (struct parmstruct *) malloc ((long) mypsize);

 memset(myp, 0, mypsize);

 printf("Need buffer size of %d, for a total of %d\n",buflen,mypsize);

 myp->myparms.opcode = STATOP_STORAGE;

 myp->myparms.parms[0] = sizeof(syscall_parmlist);

 myp->myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myp->myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the storage statistics of a different system than this one */

/* myp->myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen; */

 myp->myparms.parms[3] = 0;

 myp->myparms.parms[4] = 0;

 myp->myparms.parms[5] = 0;

 myp->myparms.parms[6] = 0;

 stapptr = (STAT_API *)((char *)myp + sizeof(syscall_parmlist));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=buflen;

 stst = (API_STOR_STATS *)((char *)myp + sizeof(syscall_parmlist) + sizeof(STAT_API));

 stsy = (char *)((char *)myp + sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen);

Statistics Storage Information

Chapter 13. zFS application programming interfaces 271

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(stsy,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Aggregate operation */

 mypsize, /* Length of Argument */

 (char *) myp, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv == 0)

 {

 printf(" zFS Primary Address Space Storage Usage\n");

 printf(" ---------------------------------------\n");

 printf("\n");

 printf(

 "Total Bytes Allocated: %d (%dK) (%dM)\n",

 stst->ss_total_bytes_allocated,

 stst->ss_total_bytes_allocated/1024,

 stst->ss_total_bytes_allocated/(1024*1024));

 printf(

 "Total Pieces Allocated: %d\n",

 stst->ss_total_pieces_allocated);

 printf(

 "Total Allocation Requests: %d\n",

 stst->ss_total_allocation_requests);

 printf(

 "Total Free Requests: %d, %d\n",

 stst->ss_total_free_requests, stst->ss_number_of_comp_lines);

 stcl = (COMP_LINE *)((char *)stst + sizeof(API_STOR_STATS));

 for(i = 0 ; i < stst->ss_number_of_comp_lines ; i++)

 {

 printf("\n");

 printf(" Storage Usage By Component\n");

 printf(" --------------------------\n");

 printf("Bytes No. of No. of \n");

 printf("Allocated Pieces Allocs Frees Component\n");

 printf("---------- ------ ------ ------ ---------\n");

 printf("\n");

 printf("%10d %6d %6d %6d %s\n",

 stcl->ss_comp_bytes_allocated,

 stcl->ss_comp_pieces,

 stcl->ss_comp_allocations,

 stcl->ss_comp_frees,

 stcl->ss_comp_description);

 stdl = (DETAIL_LINE *)((char *)stcl + sizeof(COMP_LINE));

 for(j = 0 ; j < stcl->ss_number_of_detail_lines ; j++, stdl++)

 {

 if(j == 0)

 {

 printf("\n");

 printf(" Storage Details by Component\n");

 printf(" ----------------------------\n");

 printf("\n");

 }

 printf(" %10d %6d %6d %6d %s\n",

 stdl->ss_detail_bytes_allocated,

 stdl->ss_detail_pieces,

 stdl->ss_detail_allocations,

 stdl->ss_detail_frees,

 stdl->ss_detail_description);

Statistics Storage Information

272 z/OS V1R9.0 Distributed File Service zFS Administration

}

 stcl = (COMP_LINE *)stdl;

 }

 printf("\n");

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 free(myp);

 }

 else /* storage stats failed with large enough buffer */

 {

 printf("Error on storage stats with large enough buffer\n");

 printf("Error querying storage stats, BPXRV = %d BPXRC = %d BPXRS = %x\n",

 bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* error was not E2BIG */

 {

 printf("Error on storage stats trying to get required size\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 free(myp);

 return bpxrc;

 }

 }

 else /* asking for buffer size gave rv = 0; maybe there is no data */

 {

 if(myparmstruct.myapi.sa_len == 0)

 {

 printf("No data\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 }

 else /* No, there was some other problem with getting the size needed */

 {

 printf("Error getting size required\n");

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 }

 }

 return 0;

}

Statistics Storage Information

Chapter 13. zFS application programming interfaces 273

Statistics Transaction Cache Information

Purpose

The statistics transaction cache information subcommand call is a performance statistics operation that

returns transaction cache counters.

Format

syscall_parmlist

 opcode 250 STATOP_TRAN_CACHE

 parms[0] offset to STAT_API

 parms[1] offset to output buffer

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int length of buffer that follows STAT_API

 sa_ver int 1

 sa_flags char[1] 0x00

 SA_RESET 0x80 Reset statistics

 sa_fill char[3] 0

 sa_reserve int[4] 0

 posix_time_high unsigned long high order 32 bits since epoch

 posix_time_low unsigned long low order 32 bits since epoch

 posix_useconds unsigned long microseconds

 pad1 int

STAT_TRAN_CACHE

 sttr_started_high unsigned long transactions started high 32 bits

 sttr_started unsigned long transactions started

 sttr_lookups_high unsigned long lookups on transaction high 32 bits

 sttr_lookups unsigned long lookups on transaction

 sttr_ec_merges_high unsigned long equivalence class merges high 32 bits

 sttr_ec_merges unsigned long equivalence class merges

 sttr_alloc_trans_high unsigned long allocated transactions high 32 bits

 sttr_alloc_trans unsigned long allocated transactions

 sttr_trans_act_high unsigned long transactions active high 32 bits

 sttr_trans_act unsigned long transactions active

 sttr_trans_pend_high unsigned long transactions pending high 32 bits

 sttr_trans_pend unsigned long transactions pending

 sttr_trans_comp_high unsigned long transactions completed high 32 bits

 sttr_trans_comp unsigned long transactions completed

 sttr_trans_free_high unsigned long free transactions high 32 bits

 sttr_trans_free unsigned long free transactions

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR zFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

It is used to determine the numbers of transactions in the transaction cache.

Statistics Transaction Cache Information

274 z/OS V1R9.0 Distributed File Service zFS Administration

Privilege Required

None.

Related Services

 Statistics Vnode Cache Information

 Statistics Metadata Cache Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_TRAN_CACHE 250 /* Performance API queries */

#define u_long unsigned long

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct stat_tran_cache_t

{

 unsigned long sttr_started_high;

 unsigned long sttr_started;

 unsigned long sttr_lookups_high;

 unsigned long sttr_lookups;

 unsigned long sttr_ec_merges_high;

 unsigned long sttr_ec_merges;

 unsigned long sttr_alloc_trans_high;

 unsigned long sttr_alloc_trans;

 unsigned long sttr_trans_act_high;

 unsigned long sttr_trans_act;

 unsigned long sttr_trans_pend_high;

 unsigned long sttr_trans_pend;

 unsigned long sttr_trans_comp_high;

 unsigned long sttr_trans_comp;

 unsigned long sttr_trans_free_high;

 unsigned long sttr_trans_free;

 char reserved[60];

} STAT_TRAN_CACHE;

/* reset timestamp */

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

Statistics Transaction Cache Information

Chapter 13. zFS application programming interfaces 275

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 STAT_TRAN_CACHE mystats;

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 STAT_API *stapptr = &(myparmstruct.myapi);

 STAT_TRAN_CACHE *sttcptr = &(myparmstruct.mystats);

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_TRAN_CACHE;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the tran cache statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + */

 /* sizeof(STAT_TRAN_CACHE); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) sizeof(STAT_TRAN_CACHE);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

Statistics Transaction Cache Information

276 z/OS V1R9.0 Distributed File Service zFS Administration

&bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 printf("Error querying tran cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

 printf("%52s\n","Transaction Cache Statistics");

 printf("%52s\n","----------------------------");

 printf("\n");

 printf("Trans started: %8d Lookups on Tran: %8d EC Merges: %8d\n",

 myparmstruct.mystats.sttr_started,

 myparmstruct.mystats.sttr_lookups,

 myparmstruct.mystats.sttr_ec_merges);

 printf("Allocated Trans: %8d (Act= %7d, Pend= %7d,\n",

 myparmstruct.mystats.sttr_alloc_trans,

 myparmstruct.mystats.sttr_trans_act,

 myparmstruct.mystats.sttr_trans_pend);

 printf(" Comp= %7d, Free= %7d)\n",

 myparmstruct.mystats.sttr_trans_comp,

 myparmstruct.mystats.sttr_trans_free);

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 }

 return 0;

}

Statistics Transaction Cache Information

Chapter 13. zFS application programming interfaces 277

Statistics User Cache Information

Purpose

The statistics user cache information subcommand call is a performance statistics operation that returns

user cache information.

Format

syscall_parmlist

 opcode 242

 parm[0] offset to STAT_API

 parm[1] offset to STAT_USER_CACHE

 parm[2] offset to system name (optional)

 parm[3] 0

 parm[4] 0

 parm[5] 0

 parm[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int sizeof(STAT_USER_CACHE)

 sa_ver int 1

 sa_flags char 0x80 for reset; 0x00 otherwise

 sa_fill char[3] 0

 sa_reserve int[4] 0

STAT_USER_CACHE[2]

 vm_schedules u_long

 vm_setattrs u_long

 vm_fsyncs u_long

 vm_unmaps u_long

 vm_reads u_long

 vm_readasyncs u_long

 vm_writes u_long

 vm_getattrs u_long

 vm_flushes u_long

 vm_scheduled_deletes u_long

 vm_reads_faulted u_long

 vm_writes_faulted u_long

 vm_read_ios u_long

 vm_scheduled_writes u_long

 vm_error_writes u_long

 vm_reclaim_writes u_long

 vm_read_waits u_long

 vm_write_waits u_long

 vm_fsync_waits u_long

 vm_error_waits u_long

 vm_reclaim_waits u_long

 vm_reclaim_steal u_long

 vm_waits_for_reclaim u_long

DS_ENTRY[32]

 ds_name char[9]

 pad1 char[3]

 ds_alloc_segs int

 ds_free_pages int

systemname char[9]

Return value 0 if request is successful, -1 if it is not successful

Return code

 EINTR ZFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

Reason code

 0xEFxxnnnn See z/OS Distributed File Service Messages and Codes

Statistics User Cache Information

278 z/OS V1R9.0 Distributed File Service zFS Administration

Usage

This function is used to retrieve cache information.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

None.

Related Services

 Statistics Locking Information

 Statistics Storage Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_USER_CACHE 242 /* Performance API queries */

#define LOCAL 0

#define REMOTE 1

#define u_long unsigned long

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct ds_entry

{

 char ds_name[9];

 char pad1[3];

 int ds_alloc_segs;

 int ds_free_pages;

 int ds_reserved[5]; /*reserved for future use*/

} DS_ENTRY;

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

 u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

Statistics User Cache Information

Chapter 13. zFS application programming interfaces 279

char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

/***/

/* The following structure is the user data cache statistics */

/***/

typedef struct vm_stats_t

{

 /**/

 /* First set of counters are for external requests to the VM system. */

 /**/

 u_long vm_schedules;

 u_long vm_setattrs;

 u_long vm_fsyncs;

 u_long vm_unmaps;

 u_long vm_reads;

 u_long vm_readasyncs;

 u_long vm_writes;

 u_long vm_getattrs;

 u_long vm_flushes;

 u_long vm_scheduled_deletes;

 /**/

 /* Next two are fault counters, they measure number of read or write */

 /* requests requiring a fault to read in data, this synchronizes */

 /* an operation to a DASD read, we want these counters as small as */

 /* possible. (These are read I/O counters). */

 /**/

 u_long vm_reads_faulted;

 u_long vm_writes_faulted;

 u_long vm_read_ios;

 /**/

 /* Next counters are write counters. They measure number of times */

 /* we scheduled and waited for write I/Os. */

 /**/

 u_long vm_scheduled_writes;

 u_long vm_error_writes;

 u_long vm_reclaim_writes; /* Wrote dirty data for reclaim */

 /**/

 /* Next counters are I/O wait counters. They count the number of */

 /* times we had to wait for a write I/O and under what conditions. */

 /**/

 u_long vm_read_waits;

 u_long vm_write_waits;

 u_long vm_fsync_waits;

 u_long vm_error_waits;

 u_long vm_reclaim_waits; /* Waited for pending I/O for reclaim */

 /**/

 /* Final set are memory management counters. */

 /**/

 u_long vm_reclaim_steal; /* Number of times steal from others function invoked */

 u_long vm_waits_for_reclaim; /* Waits for reclaim thread */

 u_long vm_reserved[10]; /*reserved for future use*/

} VM_STATS;

Statistics User Cache Information

280 z/OS V1R9.0 Distributed File Service zFS Administration

typedef struct stat_user_cache_t

{

 VM_STATS stuc[2]; /*Various statistics for both LOCAL and REMOTE systems*/

 int stuc_dataspaces; /* Number of dataspaces in user data cache */

 int stuc_pages_per_ds; /* Pages per dataspace */

 int stuc_seg_size_loc; /* Local Segment Size (in K) */ /*#B@D12838MG*/

 int stuc_seg_size_rmt; /* Remote Segment Size (in K) */

 int stuc_page_size; /* Page Size (in K) */

 int stuc_cache_pages; /* Total number of pages */

 int stuc_total_free; /* Total number of free pages */

 int stuc_vmSegTable_cachesize; /* Number of segments */

 int stuc_reserved[5]; /* reserved */

 DS_ENTRY stuc_ds_entry[32]; /* Array of dataspace entries */

} STAT_USER_CACHE;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 STAT_USER_CACHE mystats;

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i,j;

 double ratio1,ratio2,ratio3,ratio4;

 char buf[33];

 STAT_API *stapptr = &(myparmstruct.myapi);

 myparmstruct.myparms.opcode = STATOP_USER_CACHE;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the user cache statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + */

 /* sizeof(STAT_USER_CACHE); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) sizeof(STAT_USER_CACHE);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

Statistics User Cache Information

Chapter 13. zFS application programming interfaces 281

if(bpxrv < 0)

 {

 printf("Error querying user cache stats, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

 printf(" User File (VM) Caching System Statistics\n");

 printf(" --\n");

 printf("\n");

 for(i = 0 ; i <= REMOTE ; i++)

 {

 if(i == 0)

 {

 printf(" Direct Statistics\n");

 printf(" -----------------\n");

 printf("\n");

 }

 else

 {

 printf(" Client Statistics\n");

 printf(" -----------------\n");

 printf("\n");

 }

 printf("External Requests:\n");

 printf("------------------\n");

 printf("%-9s %10u %-9s %10u %-9s %10u\n",

 "Reads",myparmstruct.mystats.stuc[i].vm_reads,

 "Fsyncs",myparmstruct.mystats.stuc[i].vm_fsyncs,

 "Schedules",myparmstruct.mystats.stuc[i].vm_schedules);

 printf("%-9s %10u %-9s %10u %-9s %10u\n",

 "Writes",myparmstruct.mystats.stuc[i].vm_writes,

 "Setattrs",myparmstruct.mystats.stuc[i].vm_setattrs,

 "Unmaps",myparmstruct.mystats.stuc[i].vm_unmaps);

 printf("%-9s %10u %-9s %10u %-9s %10u\n",

 "Asy Reads",myparmstruct.mystats.stuc[i].vm_readasyncs,

 "Getattrs",myparmstruct.mystats.stuc[i].vm_getattrs,

 "Flushes",myparmstruct.mystats.stuc[i].vm_flushes);

 printf("\n");

 printf("File System Reads:\n");

 printf("------------------\n");

 ratio1 = ratio2 = ratio3 = ratio4 = 0.0;

 if(myparmstruct.mystats.stuc[i].vm_reads > 0)

 {

 ratio1 = 100 * (((double)myparmstruct.mystats.stuc[i].vm_reads_faulted)

 / ((double)myparmstruct.mystats.stuc[i].vm_reads));

 }

 if(myparmstruct.mystats.stuc[i].vm_writes > 0)

 {

 ratio2 = 100 * (((double)myparmstruct.mystats.stuc[i].vm_writes_faulted)

 / ((double)myparmstruct.mystats.stuc[i].vm_writes));

 }

 if(myparmstruct.mystats.stuc[i].vm_reads > 0)

 {

 ratio3 = 100 * (((double)myparmstruct.mystats.stuc[i].vm_read_waits)

 / ((double)myparmstruct.mystats.stuc[i].vm_reads));

 }

 printf("%-14s %10u (%s Ratio %.2f%%)\n",

 "Reads Faulted",myparmstruct.mystats.stuc[i].vm_reads_faulted,

 "Fault",ratio1);

 printf("%-14s %10u (%s Ratio %.2f%%)\n",

 "Writes Faulted",myparmstruct.mystats.stuc[i].vm_writes_faulted,

 "Fault",ratio2);

 printf("%-14s %10u (%s Ratio %.2f%%)\n",

 "Read Waits",myparmstruct.mystats.stuc[i].vm_read_ios,

 "Wait",ratio3);

 printf("\n");

Statistics User Cache Information

282 z/OS V1R9.0 Distributed File Service zFS Administration

printf("File System Writes:\n");

 printf("-------------------\n");

 printf("%-19s %10u %-13s %10u\n",

 "Scheduled Writes", myparmstruct.mystats.stuc[i].vm_scheduled_writes,

 "Sync Waits", myparmstruct.mystats.stuc[i].vm_fsync_waits);

 printf("%-19s %10u %-13s %10u\n",

 "Error Writes", myparmstruct.mystats.stuc[i].vm_error_writes,

 "Error Waits", myparmstruct.mystats.stuc[i].vm_error_waits);

 printf("%-19s %10u %-13s %10u\n",

 "Page Reclaim Writes", myparmstruct.mystats.stuc[i].vm_reclaim_writes,

 "Reclaim Waits", myparmstruct.mystats.stuc[i].vm_reclaim_waits);

 if(myparmstruct.mystats.stuc[i].vm_writes > 0)

 {

 ratio4 = 100 * (((double)myparmstruct.mystats.stuc[i].vm_write_waits)

 / ((double)myparmstruct.mystats.stuc[i].vm_writes));

 }

 printf("%-19s %10u (Wait Ratio %.2f%%)\n",

 "Write Waits", myparmstruct.mystats.stuc[i].vm_write_waits,

 ratio4);

 }

 printf("\n");

 printf("Page Management (Segment Size = (%dK Local %dK Remote)) (Page Size = %dK)\n",

 myparmstruct.mystats.stuc_seg_size_loc,

 myparmstruct.mystats.stuc_seg_size_rmt,

 myparmstruct.mystats.stuc_page_size);

 printf("---\n");

 printf("Total Pages %10u Free %10u\n",

 myparmstruct.mystats.stuc_cache_pages,myparmstruct.mystats.stuc_total_free);

 printf("Segments %10u\n",

 myparmstruct.mystats.stuc_vmSegTable_cachesize);

 printf("Steal Invocations %10u Waits for Reclaim %11u\n",

 myparmstruct.mystats.stuc[0].vm_reclaim_steal,

 myparmstruct.mystats.stuc[0].vm_waits_for_reclaim);

 printf("\n");

 printf("Number of dataspaces used: %5d ",myparmstruct.mystats.stuc_dataspaces);

 printf("Pages per dataspace: %11d\n",myparmstruct.mystats.stuc_pages_per_ds);

 printf("\n");

 printf("Dataspace Allocated Free\n");

 printf("Name Segments Pages\n");

 printf("-------- ---------- ----------\n");

 for(i = 0 ; i < myparmstruct.mystats.stuc_dataspaces ; i++)

 {

 printf("%8s %10u %10u\n",

 myparmstruct.mystats.stuc_ds_entry[i].ds_name,

 myparmstruct.mystats.stuc_ds_entry[i].ds_alloc_segs,

 myparmstruct.mystats.stuc_ds_entry[i].ds_free_pages);

 }

 printf("\n");

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 }

 return 0;

}

Statistics User Cache Information

Chapter 13. zFS application programming interfaces 283

Statistics Vnode Cache Information

Purpose

The statistics vnode cache information subcommand call is a performance statistics operation that returns

vnode cache counters.

Format

syscall_parmlist

 opcode 251 STATOP_VNODE_CACHE

 parms[0] offset to STAT_API

 parms[1] offset to output buffer

 parms[2] offset to system name (optional)

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

STAT_API

 sa_eye char[4] "STAP"

 sa_len int length of buffer that follows STAT_API

 sa_ver int 1

 sa_flags char[1] 0x00

 SA_RESET 0x80 Reset statistics

 sa_fill char[3] 0

 sa_reserve int[4] 0

 posix_time_high unsigned long high order 32 bits since epoch

 posix_time_low unsigned long low order 32 bits since epoch

 posix_useconds unsigned long microseconds

 pad1 int

STAT_VNODE_CACHE

 VNM_STATS_API_STRUCT

 reserved hyper reserved

 Vnodes hyper number of vnodes

 Requests hyper number of requests

 Hits hyper number of hits

 RatioWhole hyper ratio of hits to requests (whole number part)

 RatioDecimal hyper ratio of hits to requests (decimal part)

 Allocates hyper allocates

 Deletes hyper deletes

 VnodeStructSize hyper base vnode structure size

 ExtendedVnodes hyper number of extended vnodes

 extensionSize hyper size of vnode extension

 USSHeldVnodes hyper number of held vnodes

 USSHeldVnodesHi hyper hi water mark of held vnodes

 OpenVnodes hyper number of open vnodes

 OpenVnodesHi hyper hi water mark of open vnodes

 OpenVnodesReuse hyper number of vnodes that can be reused

 reserved1 long[3] reserved

 pad1 int padding

 reserved2 hyper[10] reserved

 EFS_STATS_API_STRUCT

 reserved hyper reserved

 grand_total_vnodes hyper total count of vnode ops

 total_ops hyper number of vnode op counts

 reserved1 long[3] reserved

 pad1 int reserved

 reserved2 hyper[10] reserved

 ZFSVNODEOPCOUNTS

 opname char[26] vnode operation name

 pad1 char[2] reserved

 opcount hyper count of vnode op requests

 reserved hyper[2] reserved

 reserved hyper[10] reserved

systemname char[9]

Statistics Vnode Cache Information

284 z/OS V1R9.0 Distributed File Service zFS Administration

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR zFS is shutting down

 EINVAL Invalid parameter list

 EMVSERR Internal error occurred

 E2BIG Information too big for buffer supplied

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

This function is used to determine the numbers of requests, hits and discards from the vnode cache.

Privilege Required

None.

Related Services

 Statistics Vnode Cache Information

 Statistics Metadata Cache Information

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_VNODE_CACHE 251 /* vnode cache stats */

#define u_long unsigned long

#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \

{ \

 INTEGER = (int)RATIO; \

 DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \

}

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct hyper {

 unsigned long high; /* unsigned long reserved */

 unsigned long low;

} hyper;

/* reset timestamp */

typedef struct reset_time {

 u_long posix_time_high; /* high order 32 bits since epoc */

 u_long posix_time_low; /* low order 32 bits since epoch */

Statistics Vnode Cache Information

Chapter 13. zFS application programming interfaces 285

|
|
|
|

u_long posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/* API STATOP_VNODE_CACHE storage structures */

typedef struct VNM_STATS_API_STRUCT_T

{

 hyper reserved;

 hyper Vnodes;

 hyper Requests;

 hyper Hits;

 hyper RatioWhole;

 hyper RatioDecimal;

 hyper Allocates;

 hyper Deletes;

 hyper VnodeStructSize;

 hyper ExtendedVnodes;

 hyper extensionSize; /* (minimum) in bytes */

 hyper USSHeldVnodes;

 hyper USSHeldVnodesHi;

 hyper OpenVnodes;

 hyper OpenVnodesHi;

 hyper OpenVnodesReuse;

 long reserved1[3];

 int pad1;

 hyper reserved2[10];

} VNM_STATS_API_STRUCT;

typedef struct ZFSVNODEOPCOUNTS_T {

 char opname[26]; /* Operation being counted */

 char pad1[2];

 hyper opcount; /* Number of operations performed */

 hyper reserved[2]; /* reserved for future use */

} ZFSVNODEOPCOUNTS;

typedef struct EFS_STATS_API_STRUCT_T

{

 hyper reserved;

 hyper grand_total_vnodes;

 hyper total_ops;

 long reserved1[3];

 int pad1;

 hyper reserved2[10];

 ZFSVNODEOPCOUNTS zFSOpCounts[50];

} EFS_STATS_API_STRUCT;

typedef struct stat_vnode_cache_t

 {

 VNM_STATS_API_STRUCT vnm_stats_info;

 EFS_STATS_API_STRUCT efs_stats_info;

 hyper reserved[10];

 } STAT_VNODE_CACHE;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

Statistics Vnode Cache Information

286 z/OS V1R9.0 Distributed File Service zFS Administration

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 STAT_VNODE_CACHE mystats;

 char systemname[9];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 double temp_ratio;

 int whole,decimal;

 STAT_API *stapptr = &(myparmstruct.myapi);

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_VNODE_CACHE;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

/* Only specify a non-zero offset for the next field (parms[2]) if */

/* you are running z/OS 1.7 and above, and */

/* you want to query the vnode cache statistics of a different system than this one */

/* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + */

/* sizeof(STAT_VNODE_CACHE); */

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) sizeof(STAT_VNODE_CACHE);

/* This next field should only be set if parms[2] is non-zero */

/* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 printf("Error querying vnode cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

Statistics Vnode Cache Information

Chapter 13. zFS application programming interfaces 287

i=0;

 printf("%50s\n","zFS Vnode Op Counts");

 printf(" \n");

 printf("Vnode Op Count Vnode Op Count \n");

 printf("------------------------ ---------- ------------------------ ---------- \n");

 while (i<=myparmstruct.mystats.efs_stats_info.total_ops.low)

 {

 printf("%-25s %10d ",

 myparmstruct.mystats.efs_stats_info.zFSOpCounts[i].opname,

 myparmstruct.mystats.efs_stats_info.zFSOpCounts[i++].opcount.low);

 if (i<=myparmstruct.mystats.efs_stats_info.total_ops.low)

 {

 printf("%-25s %10d\n",

 myparmstruct.mystats.efs_stats_info.zFSOpCounts[i].opname,

 myparmstruct.mystats.efs_stats_info.zFSOpCounts[i++].opcount.low);

 }

 }

 printf("\nTotal zFS Vnode Ops %10d\n\n",

 myparmstruct.mystats.efs_stats_info.grand_total_vnodes.low);

 printf("%52s\n","zFS Vnode Cache Statistics");

 printf(" \n");

 printf(" Vnodes Requests Hits Ratio Allocates Deletes\n");

 printf(" ---------- ---------- ---------- ------- ---------- ----------\n");

 printf("%10d %10d %10d %3d.%1.1d%% %10d %10d\n",

 myparmstruct.mystats.vnm_stats_info.Vnodes.low,

 myparmstruct.mystats.vnm_stats_info.Requests.low,

 myparmstruct.mystats.vnm_stats_info.Hits.low,

 myparmstruct.mystats.vnm_stats_info.RatioWhole.low,

 myparmstruct.mystats.vnm_stats_info.RatioDecimal.low,

 myparmstruct.mystats.vnm_stats_info.Allocates.low,

 myparmstruct.mystats.vnm_stats_info.Deletes.low);

 printf(" \n");

 printf("zFS Vnode structure size: %d bytes\n",

 myparmstruct.mystats.vnm_stats_info.VnodeStructSize.low);

 printf("zFS extended vnodes: %d, extension size %d bytes (minimum)\n",

 myparmstruct.mystats.vnm_stats_info.ExtendedVnodes.low,

 myparmstruct.mystats.vnm_stats_info.extensionSize.low);

 printf("Held zFS vnodes: %10d (high %10d) \nOpen zFS vnodes: %10d (high %10d) Reusable: %u\n",

 myparmstruct.mystats.vnm_stats_info.USSHeldVnodes.low,

 myparmstruct.mystats.vnm_stats_info.USSHeldVnodesHi.low,

 myparmstruct.mystats.vnm_stats_info.OpenVnodes.low,

 myparmstruct.mystats.vnm_stats_info.OpenVnodesHi.low,

 myparmstruct.mystats.vnm_stats_info.OpenVnodesReuse.low);

 printf(" \n");

 if (0==ctime_r((time_t *) &stapptr->reset_time_info.posix_time_low, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

Statistics Vnode Cache Information

288 z/OS V1R9.0 Distributed File Service zFS Administration

}

 return 0;

}

Statistics Vnode Cache Information

Chapter 13. zFS application programming interfaces 289

Unquiesce Aggregate

Purpose

The Unquiesce Aggregate subcommand call is an aggregate operation that unquiesces a multi-file system

aggregate on a system. This allows activity on the aggregate and all its file systems to resume.

Format

syscall_parmlist

 opcode 133 AGOP_UNQUIESCE_PARMDATA

 parms[0] offset to AGGR_ID

 parms[1] quiesce handle

 parms[2] 0

 parms[3] 0

 parms[4] 0

 parms[5] 0

 parms[6] 0

AGGR_ID

 aid_eye char[4] "AGID"

 aid_len char sizeof(AGGR_ID)

 aid_ver char 1

 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"

 aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code

 EINTR ZFS is shutting down

 EMVSERR Internal error using an osi service

 ENOENT Aggregate is not attached

 EPERM Permission denied to perform request

Reason_code

 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage

The unquiesce call must supply the quiesce handle that was returned by the quiesce call. The aggregate

would normally be quiesced prior to backing up the aggregate. After the backup is complete, the aggregate

can be unquiesced.

Reserved fields and undefined flags must be set to binary zeros.

Privilege Required

The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL

resource in the z/OS UNIXPRIV class.

Related Services

 Quiesce Aggregate

Restrictions

None.

Examples

#pragma linkage(BPX1PCT, OS)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

Unquiesce Aggregate

290 z/OS V1R9.0 Distributed File Service zFS Administration

#include <stdio.h>

#include <stdlib.h>

#define ZFSCALL_AGGR 0x40000005

#define AGOP_UNQUIESCE_PARMDATA 133

typedef struct syscall_parmlist_t {

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {

 char aid_eye[4]; /* Eye catcher */

#define AID_EYE "AGID"

 char aid_len; /* Length of this structure */

 char aid_ver; /* Version */

#define AID_VER_INITIAL 1 /* Initial version */

 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */

 char aid_reserved[33]; /* Reserved for the future */

} AGGR_ID;

struct parmstruct

{

 syscall_parmlist myparms;

 AGGR_ID aggr_id;

} ;

int main(int argc, char **argv)

{

int bpxrv;

int bpxrc;

int bpxrs;

char aggrname[45] = "OMVS.PRV.AGGR001.LDS0001";

long save_quiesce_handle;

struct parmstruct myparmstruct;

if (argc != 2)

 {

 printf("This unquiesce program requires a quiesce handle from the quiesce program as a parameter\n");

 return 1;

 }

save_quiesce_handle = atoi(argv[1]);

myparmstruct.myparms.opcode = AGOP_UNQUIESCE_PARMDATA;

myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

myparmstruct.myparms.parms[1] = save_quiesce_handle;

myparmstruct.myparms.parms[2] = 0;

myparmstruct.myparms.parms[3] = 0;

myparmstruct.myparms.parms[4] = 0;

myparmstruct.myparms.parms[5] = 0;

myparmstruct.myparms.parms[6] = 0;

memset(&myparmstruct.aggr_id,0,sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

memcpy(&myparmstruct.aggr_id.aid_eye,AID_EYE,4);

myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);

myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;

strcpy(myparmstruct.aggr_id.aid_name,aggrname);

 BPX1PCT("ZFS ",

 ZFSCALL_AGGR, /* Aggregate operation */

 sizeof(myparmstruct), /* Length of Argument */

Unquiesce Aggregate

Chapter 13. zFS application programming interfaces 291

(char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

if (bpxrv < 0)

 {

 printf("Error unquiescing aggregate %s\n", aggrname);

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else /* Return from unquiesce was successful */

 {

 printf("Aggregate %s unquiesced successfully\n",aggrname);

 }

return 0;

}

Unquiesce Aggregate

292 z/OS V1R9.0 Distributed File Service zFS Administration

Appendix A. Running the zFS pfsctl APIs in 64-bit mode

The pfsctl (BPX1PCT) application programming interface can be invoked in a 64-bit environment. In order

to do this, you must:

v replace the BPX1PCT with BPX4PCT

v replace the #pragma linkage(BPX1PCT, OS) statement with #pragma linkage(BPX4PCT, OS64_NOSTACK)

v change all the ″long″ declares to ″int″

v Ensure there are appropriate includes for function calls

v Ensure all functions requiring 64-bit parameters are passing 64-bit numbers (for example, ctime_r).

The remaining code is, or can remain unchanged. The following is an example with these changes.

© Copyright IBM Corp. 2001, 2007 293

Statistics iocounts information

Examples

#pragma linkage(BPX4PCT, OS64_NOSTACK)

extern void BPX4PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#include <time.h>

#define ZFSCALL_STATS 0x40000007

#define STATOP_IOCOUNTS 243 /* Performance API queries */

#define TOTAL_TYPES 3

#define TOTAL_CIRC 18

#define u_int unsigned int

typedef struct syscall_parmlist_t

{

 int opcode; /* Operation code to perform */

 int parms[7]; /* Specific to type of operation, */

 /* provides access to the parms */

 /* parms[4]-parms[6] are currently unused*/

} syscall_parmlist;

typedef struct reset_time {

 u_int posix_time_high; /* high order 32 bits since epoc */

 u_int posix_time_low; /* low order 32 bits since epoch */

 u_int posix_usecs; /* microseconds */

 int pad1;

 } RESET_TIME;

/***/

/* The following structure is the api query control block */

/* It is used for all api query commands */

/***/

typedef struct stat_api_t

{

#define SA_EYE "STAP"

 char sa_eye[4]; /* 4 byte identifier must be */

 int sa_len; /* length of the buffer to put data into*/

 /* this buffer area follows this struct*/

 int sa_ver; /* the version number currently always 1*/

#define SA_VER_INITIAL 0x01

 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/

#define SA_RESET 0x80

 char sa_fill[3]; /* spare bytes */

 int sa_reserve[4]; /* Reserved */

 struct reset_time reset_time_info;

} STAT_API;

typedef struct API_IO_BY_TYPE_t

{

 unsigned int number_of_lines;

 unsigned int count;

 unsigned int waits;

 unsigned int cancels; /* Successful cancels of IO */

 unsigned int merges; /* Successful merges of IO */

 char reserved1[6];

 char description[51];

 char pad1[3];

} API_IO_BY_TYPE;

typedef struct API_IO_BY_CIRC_t

Statistics iocounts information

294 z/OS V1R9.0 Distributed File Service zFS Administration

{

 unsigned int number_of_lines;

 unsigned int count;

 unsigned int waits;

 unsigned int cancels;

 unsigned int merges;

 char reserved1[6];

 char description[51];

 char pad1[3];

} API_IO_BY_CIRC;

/***/

/* The following structures are used to represent cfgop queries */

/* for iocounts */

/***/

struct parmstruct

{

 syscall_parmlist myparms;

 STAT_API myapi;

 API_IO_BY_TYPE mystatsbytype[TOTAL_TYPES];

 API_IO_BY_CIRC mystatsbycirc[TOTAL_CIRC];

} myparmstruct;

int main(int argc, char **argv)

{

 int bpxrv;

 int bpxrc;

 int bpxrs;

 int i;

 STAT_API *stapptr = &(myparmstruct.myapi);

 API_IO_BY_TYPE *stiotptr = &(myparmstruct.mystatsbytype[0]);

 API_IO_BY_CIRC *stiocptr = &(myparmstruct.mystatsbycirc[0]);

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_IOCOUNTS;

 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 myparmstruct.myparms.parms[2] = 0;

 myparmstruct.myparms.parms[3] = 0;

 myparmstruct.myparms.parms[4] = 0;

 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));

 memcpy(stapptr->sa_eye,SA_EYE,4);

 stapptr->sa_ver=SA_VER_INITIAL;

 stapptr->sa_len=(int) (TOTAL_TYPES * sizeof(API_IO_BY_TYPE))

 + (TOTAL_CIRC * sizeof(API_IO_BY_CIRC));

 BPX4PCT("ZFS ",

 ZFSCALL_STATS, /* Perf statistics operation */

 sizeof(myparmstruct), /* Length of Argument */

 (char *) &myparmstruct, /* Pointer to Argument */

 &bpxrv, /* Pointer to Return_value */

 &bpxrc, /* Pointer to Return_code */

 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv < 0)

 {

 printf("Error querying iocounts, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);

 return bpxrc;

 }

 else

 {

 if(stiotptr->number_of_lines != TOTAL_TYPES)

Statistics iocounts information

Appendix A. Running the zFS pfsctl APIs in 64-bit mode 295

{

 printf("Unexpected number of IO Types, %d instead of TOTAL_TYPES\n",

 stiotptr->number_of_lines);

 return 1;

 }

 if(stiocptr->number_of_lines != TOTAL_CIRC)

 {

 printf("Unexpected number of IO Circumstances, %d instead of TOTAL_CIRC\n",

 stiocptr->number_of_lines);

 return 2;

 }

 printf(" I/O Summary By Type\n");

 printf(" -------------------\n");

 printf("\n");

 printf("Count Waits Cancels Merges Type\n");

 printf("---------- ---------- ---------- ---------- ----------\n");

 for(i=0; i<TOTAL_TYPES; i++)

 {

 printf("%10d %10d %10d %10d %s\n",

 stiotptr->count, stiotptr->waits,

 stiotptr->cancels, stiotptr->merges,

 stiotptr->description);

 stiotptr = stiotptr + 1;

 }

 printf("\n");

 printf(" I/O Summary By Circumstance\n");

 printf(" ---------------------------\n");

 printf("\n");

 printf("Count Waits Cancels Merges Circumstance\n");

 printf("---------- ---------- ---------- ---------- ------------\n");

 for(i=0; i<TOTAL_CIRC; i++)

 {

 printf("%10d %10d %10d %10d %s\n",

 stiocptr->count, stiocptr->waits,

 stiocptr->cancels, stiocptr->merges,

 stiocptr->description);

 stiocptr = stiocptr +1;

 printf("\n");

 }

 if (0==ctime_r((time_t *) &stapptr->reset_time_info, buf))

 {

 printf("Could not get timestamp.\n");

 }

 else

 { /* Insert the microseconds into the displayable time value */

 strncpy(&(buf[27]),&(buf[20]),6);

 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);

 buf[26]=’ ’;

 buf[19]=’.’;

 printf("Last Reset Time: %s",buf);

 }

 }

 return 0;

}

Statistics iocounts information

296 z/OS V1R9.0 Distributed File Service zFS Administration

Appendix B. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision,

to use software products successfully. The major accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user interfaces found in z/OS.

Consult the assistive technology documentation for specific information when using such products to

access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E

User’s Guide, and z/OS ISPF User’s Guide Vol I for information about accessing TSO/E and ISPF

interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or

function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to

modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library Server versions of z/OS

books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2001, 2007 297

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

298 z/OS V1R9.0 Distributed File Service zFS Administration

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

© Copyright IBM Corp. 2001, 2007 299

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any

equivalent agreement between us.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Programming Interface Information

This z/OS Distributed File Service System z File System Administration primarily documents information

that is NOT intended to be used as Programming Interfaces of the Distributed File Service.

This z/OS Distributed File Service System z File System Administration also documents intended

Programming Interfaces that allow the customer to write programs to obtain the services of the Distributed

File Service. This information is identified where it occurs by an introductory statement to a chapter or

section or by the following marking.

[--- NOT Programming Interface information ---]

[--- End of NOT Programming Interface information ---]

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United

States, or other countries, or both:

v BookManager

v DFS

v DFSMSdss

v IBM

v IBMLink

v Library Reader

v Lotus Notes

v MVS

v RACF

v Resource Link

v RMF

300 z/OS V1R9.0 Distributed File Service zFS Administration

v System z

v System z9

v z/OS

v zSeries

v z/VM

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft and Windows NT are trademarks of Microsoft Corporation in the United States, other countries,

or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered trademarks or

trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Notices 301

302 z/OS V1R9.0 Distributed File Service zFS Administration

Index

Special characters
(pound sign) ix

A
access control lists (ACL) 3

accessibility 297

ACL (access control lists) 3

active
steps for determining 9

address space 9

aggregate
back up 23

aggregate attach subcommand 139

aggregate operations 137

aggregate state
determining 52

aggregates 22

comparing 32

compatibility mode 32

disabled
compatibility mode aggregate 54

multi-file system aggregate 54

full 31

growing
multi-file system 31

multi-file system 27, 32

valid characters in name 66

allocation
blocked 17, 35

fragmented 17, 35

inline 17, 35

anode 71

API (Application Programming Interface) 3

pfsctl 135

Application Programming Interface (API) 3

pfsctl 135

ASID
determining 52

attach aggregate subcommand 139

B
backing up

zFS file systems 23

example 23

backslash ix

backup file system 4, 16

batch job 76

blocked file allocation 17, 35

bpxmtext 65

C
cache

log file 37

metadata 35

cache (continued)
transaction 36

user file 36

vnode 36

cache size
IOEFSPRM 35

total 35

clone 16

clone file system subcommand 143

cloning 3

file system 16

cloning message 52

cloning status
determining 52

coexistence
IOEFSPRM and IOEPRMxx 127

command
zfsadm attach 82

command suites
zfsadm 75

commands
bpxmtext 65

ioeagfmt 66

ioeagslv 69

modify 48

modify zfs process 60

mount 12, 72

setomvs reset 63

TSO/E
mount 30

z/OS system 59

zfsadm aggrinfo 13, 31, 32, 79

zfsadm apropos 81

zfsadm attach 28, 126

zfsadm clone 16, 85

zfsadm clonesys 16, 87

zfsadm config 89

zfsadm configquery 91

zfsadm create 29, 94

zfsadm define 97

zfsadm delete 99

zfsadm detach 101

zfsadm format 103

zfsadm grow 13, 31, 105

zfsadm help 107

zfsadm lsaggr 108

zfsadm lsfs 109

zfsadm lsquota 29, 112, 114

zfsadm rename 119

zfsadm setquota 29, 31, 121

zfsadm unquiesce 123

comparing
aggregates 32

compatibility mode aggregate 32

adding a volume 14

deleting 15

disabled 54

growing 13

© Copyright IBM Corp. 2001, 2007 303

compatibility mode aggregate (continued)
renaming 15

size 20

compatibility mode file system 11

maximum size 20

minimum size 19

mounting 12

configuration operations 137

configuring 5

considerations
sysplex 21

conventions
this document ix

create file system in aggregate 148

create file system subcommand 148

creating
compatibility mode file system 11

multi-file system aggregates 27

zFS file system 11

D
data sets

IOEFSPRM 126

debugging 48

define aggregate subcommand 154

definitions
anode 71

zFS aggregate 4

zFS file system 4

zFS physical file system 4

delete file system subcommand 158

detach aggregate subcommand 163

DFSMSdss logical dump
using 23

disability 297

disabled aggregates
compatibility mode aggregate 54

multi-file system aggregate 54

E
examples

clone file system 144

cloning 52

create file system 149

create multi-file system aggregate 28

creating compatibility mode file system 11

define aggregate 155

delete file system 159

detach aggregate 164

format aggregate 167

grow aggregate 171

ioeagfmt 67

ioeagslv command 71

IOEFSPRM sample file 132

list aggregate status 174

list aggregate status (version 2) 178

list attached aggregate names 182

list attached aggregate names (version 2) 186

list file system names 190, 194

examples (continued)
list systems 205

modify zfs process 61

query config option 210

quiesce aggregate 213

rename file system 216

set config option 222

set file system quota 225

setomvs reset 63

statistics directory cache information 230

statistics iobyaggr information 234

statistics iobydasd information 240

statistics iocounts information 246

statistics kernel information 251

statistics locking information 255

statistics log cache information 260

statistics metadata cache information 264

statistics storage information 269

statistics transaction cache information 275

statistics user cache information 279

statistics vnode cache information 285

unquiesce aggregate 290

zFS aggregate restore 23, 24

zFS back up 23

zfsadm aggrinfo command 80

zfsadm apropos command 81

zfsadm attach command 84

zfsadm clone command 86

zfsadm clonesys command 88

zfsadm config command 90

zfsadm configquery command 92

zfsadm create command 95

zfsadm define command 98

zfsadm delete command 100

zfsadm grow command 105

zfsadm help command 107

zfsadm lsaggr command 108

zfsadm lsfs -long 52

zfsadm lsfs command 110

zfsadm lsquota command 113, 114

zfsadm quiesce command 117

zfsadm rename command 120

zfsadm setquota command 122

zfsadm unquiesce command 123

F
features 3

cloning 3

performance 3

restart 3

file allocation
blocked 17, 35

fragmented 17, 35

inline 17, 35

file system
backup 16

cloning 16

full 31

maximum size 19

minimum size 19

304 z/OS V1R9.0 Distributed File Service zFS Administration

file system (continued)
read-write 16

valid characters in name 94

file system operations 137

files
IOEFSPRM 126

fixed storage 37

format aggregate subcommand 166

fragmented file allocation 17, 35

G
grow aggregate subcommand 170

growing
compatibility mode aggregate 13

multi-file system aggregate 31

H
hang

detection 51

steps for resolving 51

I
I/O balancing 38

in a shared file system environment
multi-file system 22

inline file allocation 17, 35

installation
post 5

installing 5

intermediate archive file 25

ioeagfmt command 66

example 67

ioeagfmt utility 11

ioeagslv command 69

example 71

IOEFSPRM 126

example 132

sharing 21

total cache size 35

IOEFSPRM and IOEPRMxx
coexistence 127

IOEPRMxx 126

example 126

J
JES 6

K
keyboard 297

L
list aggregate status (version 2) subcommand 177

list aggregate status subcommand 173

list attached aggregate name subcommand 181

list attached aggregate names (version 2)

subcommand 185

list file system names subcommand 189, 193

list file system status subcommand 197

list systems subcommand 205

log file cache 37

log files 37

logical restore 23

LookAt message retrieval tool x

M
managing

processes 9

zFS file system 11

message retrieval tool, LookAt x

messages 127, 128, 129

metadata 16

metadata cache 35

migrating
from HFS to zFS 25

using the z/OS HFS to zFS migration tool 25

modify command 48

modify zfs process command 60

examples 61

mount command 12, 30, 72

mounting
compatibility mode file system 12

multi-file system aggregates 22, 27, 32

creating 27

disabled 54

growing 31

multilevel security 3

N
NBS (New Block Security) 82

New Block Security (NBS) 82

NLS 127, 128, 129

NOREADAHEAD option 37

Notices 299

O
options

NOREADAHEAD 37

zFS PFS 127

overview 3

P
path entry 74

pax command 25

performance 3, 35

PFS (physical file system) 4, 127

pfsctl
aggregate operations 137

configuration operations 137

file system operations 137

query operations 137

Index 305

physical file system (PFS) 4

post installation processing 5

pound sign (#) ix

Q
query config option subcommand 209

query operations 137

quiesce aggregate subcommand 212

quota 29

R
RACF

authority 6

commands 6

read-write file system 4, 16

rename file system subcommand 215

restart 3

restart zFS 9

restoring 23

from back up 24

S
security label 3

set config option subcommand 221

set file system quota subcommand 224

setomvs reset command 63

examples 63

shared file system 21

sharing zfs data between systems 18, 32

shortcut keys 297

statistics directory cache information subcommand 229

statistics iobyaggr information subcommand 233

statistics iobydasd information subcommand 239

statistics iocounts information subcommand 245

statistics kernel information subcommand 250

statistics locking information subcommand 254

statistics log cache information subcommand 259

statistics metadata cache information

subcommand 263

statistics storage information subcommand 268

statistics transaction cache information

subcommand 274

statistics user cache information subcommand 278

statistics vnode cache information subcommand 284

steps
creating

compatibility mode file system 11

installing 5

stopping zFS 9

storing files
blocked 35

fragmented 35

inline 35

subcommands
aggregate attach 139

attach aggregate 139

clone file system 143

create file system 148

subcommands (continued)
define aggregate 154

delete file system 158

detach aggregate 163

format aggregate 166

grow aggregate 170

list aggregate status 173

list aggregate status (version 2) 177

list attached aggregate name 181

list attached aggregate names (version 2) 185

list file system names 189, 193

list file system status 197

list systems 205

query config option 209

quiesce aggregate 212

rename file system 215

set config option 221

set file system quota 224

statistics directory cache information 229

statistics iobyaggr information 233

statistics iobydasd information 239

statistics iocounts information 245

statistics kernel information 250

statistics locking information 254

statistics log cache information 259

statistics metadata cache information 263

statistics storgae information 268

statistics transaction cache information 274

statistics user cache information 278

statistics vnode cache information 284

unquiesce aggregate 290

sysplex
considerations 21

modifying aggregates 22

specifying in BPXPRMxx 21

z/OS UNIX consideration 21

T
tasks

hang, resolving
steps 51

termination
zFS response to 9

total cache size 35

transaction cache 36

TSO/E commands
mount 30

U
unclone 99

unquiesce
operator command 61

zfsadm command 123

unquiesce aggregate subcommand 290

user file cache 36

using PARMLIB (IOEPRMxx) 126

306 z/OS V1R9.0 Distributed File Service zFS Administration

V
valid characters in aggregate name 66

valid characters in file system name 94

vnode cache 36

VSAM Linear Data Set (LDS) 11, 27

Z
z/OS

system commands 59

modify zfs process 60

setomvs reset 63

UNIX commands
pax 25

zFS (System z File System)
managing processes 9

zFS (zSeries File System) 3

backing up 23

zFS address space 9

zFS aggregate 4

zFS disk space allocation 16

zFS file systems 4

backup file system 4

creating 11

managing 11

read-write file system 4

zFS physical file system (PFS) 4

options 127

zFS reason codes
displaying 65

zfsadm aggrinfo command 13, 31, 32, 79

example 80

zfsadm apropos command 81

example 81

zfsadm attach 82

format 82

options 82

privilege 83

usage 83

zfsadm attach command 28, 126

example 84

zfsadm clone command 16, 85

example 86

zfsadm clonesys command 16, 87

example 88

zfsadm command suite
command syntax 75

introduction 75

zfsadm commands 75

shared file system 22

zfsadm config command 89

example 90

zfsadm configquery command 91

example 92

zfsadm create command 29, 94

example 95

zfsadm define command 97

example 98

zfsadm delete command 99

example 100

zfsadm detach command 101

zfsadm format command 103

zfsadm grow command 13, 31, 105

example 105

zfsadm help command 107

example 107

zfsadm lsaggr command 108

example 108

zfsadm lsfs command 109

example 110

zfsadm lsquota command 29, 112, 114

example 113, 114

zfsadm quiesce command
example 117

zfsadm rename command 119

example 120

zfsadm setquota command 29, 31, 121

example 122

zfsadm unquiesce command
example 123

zSeries File System (zFS)
features 3

overview 3

Index 307

308 z/OS V1R9.0 Distributed File Service zFS Administration

Readers’ Comments — We’d Like to Hear from You

z/OS

Distributed File Service

zSeries File System

Administration

 Publication No. SC24-5989-07

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC24-5989-07

SC24-5989-07

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

MHVRCFS, Mail Station P181

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in USA

SC24-5989-07

	Contents
	Figures
	About this document
	How this document is organized
	Conventions used in this document
	Where to find more information
	Softcopy publications
	Internet sources
	Information updates on the web
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	Summary of Changes
	Part 1. zFS administration guide
	Chapter 1. zSeries File System (zFS) overview
	Features
	Terminology

	Chapter 2. Post installation processing
	zFS installation and configuration steps

	Chapter 3. Managing zFS processes
	Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates
	Creating a compatibility mode aggregate
	Growing a compatibility mode aggregate
	Dynamically growing a compatibility mode aggregate
	Creating a multi-volume compatibility mode aggregate
	Adding a volume to a compatibility mode aggregate
	Renaming or deleting a compatibility mode aggregate
	Cloning a file system
	zFS disk space allocation
	Sharing zFS data in a non-shared file system sysplex
	Minimum and maximum file system sizes

	Chapter 5. Sysplex considerations
	Multi-file system aggregates and shared file systems

	Chapter 6. Backing up zFS
	Chapter 7. Migrating data from HFS to zFS
	Using the z/OS HFS to zFS migration tool
	Using the z/OS UNIX pax command
	Using an intermediate archive file
	Without using an intermediate archive file

	Chapter 8. Multi-file system aggregates
	Creating a multi-file system aggregate
	Growing a multi-file system aggregate
	Dynamically growing a multi-file system aggregate
	When an aggregate or file system becomes full
	Comparing compatibility mode aggregates and multi-file system aggregates
	Sharing zFS data between systems

	Chapter 9. Performance and debugging
	Performance tuning
	Total cache size
	Metadata cache
	Transaction cache
	Vnode cache
	User file cache
	NOREADAHEAD option
	Log files
	Log file cache
	Fixed storage
	I/O balancing

	Monitoring zFS performance
	Sample zFS query reports
	KN
	VM
	LFS
	LOCK
	STOR
	FILE

	Debugging aids for zFS
	Trace options for zFS
	Steps for tracing on zFS

	Overview of dumping for zFS
	Understanding zFS messages
	Determining service levels
	Understanding zFS hang detection
	Steps for resolving a zFS hang

	Diagnosing disabled aggregates
	Disabled compatibility mode aggregate
	Disabled multi-file system aggregate

	Part 2. zFS administration reference
	Chapter 10. z/OS system commands
	modify zfs process
	setomvs reset

	Chapter 11. zFS commands
	ioeagfmt
	ioeagslv
	MOUNT
	zfsadm
	zfsadm aggrinfo
	zfsadm apropos
	zfsadm attach
	zfsadm clone
	zfsadm clonesys
	zfsadm config
	zfsadm configquery
	zfsadm create
	zfsadm define
	zfsadm delete
	zfsadm detach
	zfsadm format
	zfsadm grow
	zfsadm help
	zfsadm lsaggr
	zfsadm lsfs
	zfsadm lsquota
	zfsadm lssys
	zfsadm query
	zfsadm quiesce
	zfsadm rename
	zfsadm setquota
	zfsadm unquiesce

	Chapter 12. zFS data sets
	IOEFSPRM

	Chapter 13. zFS application programming interfaces
	pfsctl (BPX1PCT)
	Attach Aggregate
	Clone File System
	Create File System
	Define Aggregate
	Delete File System
	Detach Aggregate
	Format Aggregate
	Grow Aggregate
	List Aggregate Status
	List Aggregate Status (Version 2)
	List Attached Aggregate Names
	List Attached Aggregate Names (Version 2)
	List File System Names
	List File System Names (Version 2)
	List File System Status
	List Systems
	Query Config Option
	Quiesce Aggregate
	Rename File System
	Set Config Option
	Set File System Quota
	Statistics Directory Cache Information
	Statistics iobyaggr Information
	Statistics iobydasd Information
	Statistics iocounts Information
	Statistics Kernel Information
	Statistics Locking Information
	Statistics Log Cache Information
	Statistics Metadata Cache Information
	Statistics Storage Information
	Statistics Transaction Cache Information
	Statistics User Cache Information
	Statistics Vnode Cache Information
	Unquiesce Aggregate

	Appendix A. Running the zFS pfsctl APIs in 64-bit mode
	Statistics iocounts information

	Appendix B. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

