
User’s guide to the
Wave Propagation Program (WPP)

version 1.0

Daniel Appel̈o, Stefan Nilsson, N. Anders Petersson, Björn Sj̈ogreen1 2,
Kathleen McCandless3

Arthur J. Rodgers4

Lawrence Livermore National Laboratory

June 25, 2007

1Lawrence Livermore National Laboratory technical report UCRL-SM-230257. This work was performed un-
der the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National
Laboratory, under Contract W-7405-Eng-48.

2Center for Applied Scientific Computing, Computations Directorate
3Biology, Chemistry, Atmosphere and Earth Division, Computations Directorate
4Atmosphere, Earth and Energy Department, Energy and Environment Directorate

Disclaimer This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or repre-
sents that its use would not infringe on privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

1

Contents

1 Getting started 4
1.1 RunningWPP . 4
1.2 Introductory example: Lamb’s problem . 5

2 Coordinate system, units and the grid 10
2.1 Geographic coordinates . 11

3 Sources, time-functions and grid sizes 13
3.1 Sources and time-functions inWPP . 13

3.1.1 Gaussian . 14
3.1.2 GaussianInt . 15
3.1.3 Ricker . 15
3.1.4 RickerInt . 15
3.1.5 Triangle . 15
3.1.6 Sawtooth . 16
3.1.7 Ramp . 16
3.1.8 Smoothwave . 16
3.1.9 Brune . 18
3.1.10 BruneSmoothed . 18
3.1.11 VerySmoothBump . 18

3.2 How fine does the grid need to be? . 19
3.2.1 Lamb’s problem revisited . 24

4 The material model 26
4.1 The block command . 26

4.1.1 Modeling water with blocks . 27
4.2 The vfile command . 28
4.3 The efile command . 29

4.3.1 Modeling water with Etree models . 30

5 Output options 31
5.1 Setting the output directory . 31
5.2 Time-history at a point: the sac command . 31
5.3 2-D cross-sectional data: the image command . 32
5.4 Volumetric data: the image3d command . 33
5.5 Restart files . 34

2

6 Keywords in the input file 35
6.1 Specifying the grid parameters (grid) [required] . 35
6.2 Specifying the time parameters (time) [required] . 36
6.3 Specifying the model [required] . 36

6.3.1 specifying a box shaped sub-region . 36
6.3.2 basic block command (block) . 36
6.3.3 velocity file (vfile) . 37
6.3.4 etree database files (efile) . 37

6.4 Specifying the source (source) . 38
6.5 Specifying output . 39

6.5.1 commands to control stdout (fileio) . 39
6.5.2 SAC files (sac) . 40
6.5.3 2D slices of data (image) . 40
6.5.4 3D volumetric data (image3d) . 41
6.5.5 saving and restoring the simulation (restart) . 42

6.6 Specifying numerical simulation controls . 42
6.6.1 curl-curl damping command options (in water only) 42
6.6.2 Controlling solid body motion (projection) . 42

7 Building WPP 43
7.1 Supported platforms . 43
7.2 Build tools . 43
7.3 Directory structure . 44
7.4 Third party library (TPL) build instructions . 44

7.4.1 Message Passing Interface (MPI) library (REQUIRED) 45
7.4.2 BLITZ++ array library (REQUIRED) . 46

7.5 Configuring and building WPP . 46
7.5.1 Invoking scons to build WPP . 46

7.6 Additional libraries required for the efile command (OPTIONAL) 47
7.6.1 Euclid etree database query library (OPTIONAL) 47
7.6.2 PROJ4 Projection Library (OPTIONAL) . 47
7.6.3 Central California velocity model query library (OPTIONAL) 48

7.7 Additional library for image3d command (OPTIONAL) . 48
7.7.1 Building BOW . 48

7.8 Detailed build example for Mac OS X . 48

3

Chapter 1

Getting started

WPPis a parallel computer program for simulating time-dependent elastic and acoustic wave propagation.
WPPsolves the elastic wave equation using a finite difference approach on a Cartesian grid, see [6] for
details. Version 1.0 ofWPPimplements substantial capabilities for 3-D seismic modeling, with a free sur-
face condition on the top boundary, Clayton-Engquist far-field boundary conditions on all other boundaries,
point force and point moment tensor source terms with many time dependencies, fully 3-D material model
specification, output of synthetic seismograms inSAC[2] format, output of 2-D slices of the solution field
as well as the material model, and output of 3-D solution fields.

WPPcomes with some examples, which can be found in the tests/examples subdirectory of the down-
loaded source code.

1.1 RunningWPP

WPPis run from the UNIX prompt with an input file name as its argument. The ASCII input file contains
a number of commands specifying the properties of the simulation, such as the dimensions of the computa-
tional domain, grid spacing, the duration of the simulation, the material properties, the source model, as well
as the desired output. To improve readability of this document we have used the continuation character “\”
to extend long commands to the subsequent line. There is however no support for continuation characters in
WPP, so each command in the actual input file must be written on one line.

SinceWPPis a parallel code, it is required to be run under a parallel operating environment such as srun
or mpirun.WPPreads all input from the file given as the first command line argument. For example,

shell> mpirun -np 2 wpp wpp.in

tells WPPto read input from a file namedwpp.in . Throughout this document we use the convention that
input files have the file suffix.in , butWPPwill read files with any extension.

Running on the Livermore Computing Linux Machines under srun:

shell> srun -ppdebug -N 16 -n 32 wpp xxx.in

The above command runs wpp on 16 nodes utilizing 32 processors on the debug parition using xxx.in as
the input file. Note that the debug partition time limit is limited to 30 minutes. Larger or longer jobs must
be submitted through the batch system using the psub command. Refer to the Livermore Computing web
pages for detailed information (http://www.llnl.gov/computing).

4

Running on other platforms (Linux desktop/laptop):

shell> mpirun -np 2 wpp wpp.in

This command will run the wpp code on two processors, usingwpp.in as the input file. Note: Before
executing mpirun, you need to setup an mpd daemon (see mpich2-doc-user.pdf for more info).

version information (-v) This option will output version information for the wpp executable. This infor-
mation is by default printed at the beginning of every run.

shell> srun -p pdebug wpp -v
--

WPP Version 1.0
--

Compiled: Wed Dec 14 10:31:54 2005
By: kmccandl
Machine: mcr39
Compiler: /usr/local/bin/mpiicpc
Lib: /usr/gapps/wpp/chaos_3_x86_elan3/tools/lib9.0.1/lib

--

1.2 Introductory example: Lamb’s problem

The version of Lamb’s problem [4] considered here consists of a single vertical time-dependent point force
acting downward on the surface of a uniform half-space. Receivers are placed on the surface at different
distances from the source, see Figure 1.1.

R R R R

S

Figure 1.1: A schematic picture of Lamb’s problem. A time-dependent source pointing downward into an
elastic half-space. There are four hypothetical seismic stations located on the surface recording the vertical
and radial displacements.

There are closed form solutions available for Lamb’s problem (see e.g. [5]) which can be used to test
that WPP is working properly by measuring the error for successively refined grids, and establishing the
order of convergence.

In this example, the elastic half-space consists of a Poisson solid (λ = µ) with S-wave velocity1000
m/s and P-wave velocity1000×

√
3 m/s and density1000 kg/m3. Our elastic “half-space” consists of the

rectangular box(x, y, z) ∈ [0, 10000]× [0, 10000]× [0, 5000]. The source is placed on the free surface in the
center point of the horizontal plane:(5000, 5000, 0). The time dependency of the forcing is a “RickerInt”
signal (see Figure 3.2) withω = 1 Hz, t0 = 1 s and magnitude1013 N. We record the solution at four
receivers on the surface at distances 1, 2, 3 and 4 km from the source. InWPPthe above setup is realized
by the input file shown below (with grid spacingh = 40 m):

5

0 1 2 3 4 5−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

Ve
rti

ca
l d

isp
la

ce
m

en
t [

m
]

Rec. 1
Rec. 2
Rec. 3
Rec. 4

Figure 1.2: The vertical displacements as a function of time. The displacement recorded at receivers 2, 3
and 4 have been offset in the vertical direction to improve readability.

grid x=10000.0 y=10000.0 z=5000.0 h=40
time t=5.0
block vp=1732.05080756 vs=1000 r=1000
source x=5000 y=5000 z=0 fx=0 fy=0 fz=1e13 type=RickerInt \

freq=1.0 t0=1.0
sac x=6000 z=0 y=5000 file=s1
sac x=7000 z=0 y=5000 file=s2
sac x=8000 z=0 y=5000 file=s3
sac x=9000 z=0 y=5000 file=s4

Note that by default the computational domain has a free surface boundary condition atz = 0 and non-
reflecting boundary conditions on the other five boundaries. When the time function is not explicitly given
in the source command,WPPuses the default RickerInt function, which is defined in Section 3.1.

For the grid spacingh = 40 the vertical displacement for the different receivers can be found in Figure
1.2. The waveforms are all smooth and the problem appears to be well resolved. In Figure 1.3 the errors
computed relative to the exact solution in the vertical displacement for the grid spacingsh = 10, h = 20
andh = 40 are plotted. The errors decay by a factor of 4 as the grid spacing is reduced by a factor of 2,
confirming the second order convergence of the method. To the right in Figure 1.3 the vertical displacement
for the three different grid spacings are plotted together with the exact solution. In the “eye norm” there is
no difference between the two finer grids and the exact solution.

Running Lamb’s problem: The input file for Lamb’s problem is provided with the source distribution
of WPP, in the file tests/examples/lamb.in . Under thesrun environment, the above example is
executed by the command

thunder2{appelo2}70: srun -n16 -ppdebug ./wpp lamb.in

which produces the following output:

6

0 1 2 3 4 510−6

10−4

10−2

Time [s]

Ab
so

lu
te

 e
rro

r

h = 40
h = 20
h = 10

0 1 2 3 4 5

−0.2

−0.1

0

0.1

0.2

Time [s]

Ve
rti

ca
l d

isp
la

ce
m

et
 [m

]

WPP h=10
WPP h=20
WPP h=40
Exact sol.

Figure 1.3: To the left: Absolute error for three different grid spacings. To the right:WPPsolutions for grid
spacingsh = 10, 20, 40 together with the exact solution from [5].

* Setting nx to 251 to be consistent with h=40
* Setting ny to 251 to be consistent with h=40
* Setting nz to 126 to be consistent with h=40

--
Max no of pts in one processor is 574592
Estimated maximum memory usage per process is 99 Mbytes
--

Nx=251, Ny=251, Nz=126, h=40

Block 1 will cover region: I(1, 251) J(1,251) K(1,126)

Running WPP on 16 processors...
Writing output to directory: .

With name: wpp
--

Making Output Directory: .

... Done!
--
==

Starting program wpp

--
WPP Version 1.0

Copyright (C) 2006 The Regents of the University of California

WPP comes with ABSOLUTELY NO WARRANTY; released under GPL.
This is free software, and you are welcome to redistribute

7

it under certain conditions, see LICENSE.txt for more details
--

Compiled: Tue Apr 17 11:37:47 2007
By: appelo2
Machine: thunder3
Compiler: /usr/global/tools/mpi/bin2.2/scripts/chaos_3_ia64_elan4/mpiicpc
Lib: /usr/gapps/wpp/chaos_3_ia64_elan4/tools/lib9.1.3/lib

--

==

Using the following data :

Start Time = 0 Goal Time = 5
Number Steps = 328 dt: 0.0152439
Internal order of accuracy: 2
Time discr. is 2nd order central method

Total seismic moment (M0): 0 Nm

----------- Material properties ranges ---------------
1000 kg/mˆ3 <= Density <= 1000 kg/mˆ3
1732.05 m/s <= Vp <= 1732.05 m/s
1000 m/s <= Vs <= 1000 m/s
1e+09 Pa <= mu <= 1e+09 Pa
1e+09 Pa <= lambda <= 1e+09 Pa
--
dt/h = 0.000381098

Time step 1 t = 0
Time step 101 t = 1.52439
Time step 201 t = 3.04878
Time step 301 t = 4.57317
Writing BINARY SAC Files, of size 329:

s3.201.126.1.x
s3.201.126.1.y
s3.201.126.1.z

Writing BINARY SAC Files, of size 329:
s1.151.126.1.x
s1.151.126.1.y
s1.151.126.1.z

Writing BINARY SAC Files, of size 329:
s4.226.126.1.x
s4.226.126.1.y
s4.226.126.1.z

Writing BINARY SAC Files, of size 329:
s2.176.126.1.x

8

s2.176.126.1.y
s2.176.126.1.z

Time step 328 t = 5
==

Wave Propagation Program (WPP) Finished!
==

9

Chapter 2

Coordinate system, units and the grid

WPP uses a right-handed Cartesian coordinate system with the z-direction pointing downwards into the
medium, see figure 2.1.WPP employs MKS (meters-kilograms-seconds) units; all distances (e.g., grid
dimensions, spacing, and displacements) are in meters (m), time is in seconds (s), seismic P- and S-wave
velocities are in meters/second (m/s), densities are in kilogram/cubic meter (kg/m3), forces are in Newton
(N), and seismic moment (torque) is in Newton-meters (Nm). All angles (e.g. latitude, longitude, azimuth,
strike, dip and rake) are in degrees.

Figure 2.1:WPPuses a right handed coordinate system with the z-axis pointing downwards.

In WPPthe computational domain is the box shaped region

0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, 0 ≤ z ≤ zmax. (2.1)

The grid command line in the input file specifies the extent of the computational domain. This release of
WPPuses a uniform grid spacingh in all three coordinate directions. The most obvious way of specifying
the grid is by providing the number of grid points in each direction as well as the grid size,

grid nx=301 ny=201 nz=101 h=500.0

This line gives a grid with grid size 500 meters, which extends 150 km inx, 100 km iny and 50 km in thez-
direction. Alternatively, the grid can be specified by giving the spatial range in each of the three dimensions
and explicitly specifying the grid spacing. For example,

grid x=30e3 y=20e3 z=10e3 h=500.0

results in a grid which spans 30,000 meters inx, 20,000 meters iny, and 10,000 meters in thez-direction.
The grid spacing is 500 meters, which is used to compute the number of grid points in each direction:
nx=61, ny=41, and nz=21, for a total of 52,521 grid points. Note that the number of grid points in the
different directions will be rounded to the nearest integer value. For example

nx = (int)1.5 + x/h, (2.2)

10

North

lat
azimuth (az)

lon

Latitude

Longitude

x

y

Figure 2.2: Geographical coordinates inWPP.

rounds nx to be the nearest integer value of1 + x/h. The extents in thex-direction is thereafter adjusted to

x = (nx− 1)h. (2.3)

A corresponding procedure is performed in the other directions.
The third option is to give the spatial range in each of the three dimensions and specify the number of

grid points in a particular direction:

grid x=30000.0 y=20000.0 z=10000.0 nx=100

Once again, same size grid spatially, but here the grid spacing will be computed as

h = x/(nx− 1) = 303.03.

Note that no rounding needs to take place in this case, sinceh is real. Given this value ofh, ny and nz are
computed using formulas corresponding to (2.2) giving ny=34 and nz=67, for a total of 227,800 grid points.
Again, the extents in they andz-directions are adjusted corresponding to (2.3). The syntax for the grid
command is given in Section 6.1.

2.1 Geographic coordinates

WPPsupports geographic coordinates as an alternative way of specifying spatial locations, see Figure 2.2.
The location of the Cartesian coordinte system is specified in the grid command, and if no location is given
the origin (x = 0, y = 0, z = 0) defaults to latitude 37 degrees (North), longitude -118 degrees (West), with
a 135 degree azimuthal angle from North to thex-axis. By default the elevation is at sea level. The latitude
(φ) and longitude (θ) are calculated using the approximative formulae (where lat, lon, and az are in degrees)

φ = lat +
x cos(α)− y sin(α)

M
, α = az

π

180
, (2.4)

θ = lon +
x sin(α) + y cos(α)

M cos(φπ/180)
, (2.5)

whereM = 111319.5 meters/degree. You can change the location and orientation of the grid by specifying
the latitude and longitude of the grid origin, and the azimuthal angle between North and thex-axis. For
example:

11

grid h=500.0 x=30000.0 y=20000.0 z=10000.0 lat=39.0 lon=-117.0 az=150

sets the origin of the grid to latitude 39 degrees (North), longitude -117 degrees (West), and azimuthal angle
150 degrees.

12

Chapter 3

Sources, time-functions and grid sizes

3.1 Sources and time-functions inWPP

WPPsolves the elastic wave equation in displacement formulation,

ρutt = ∇ · T + F(r, t), x in Ω, t ≥ 0,

T · n = 0, z = 0, t ≥ 0,

u(x, 0) = 0, ut(x, 0) = 0,

whereρ is the density,u(x, t) is the displacement vector,T is the stress tensor andn is the normal vector
to thez = 0 plane. The computational domainΩ is the box shaped region (2.1). A stress-free boundary
condition is imposed on thez = 0 boundary and first order Clayton-Engquist non-reflecting boundary
conditions are imposed on the other five sides of the computational domain.

There are six linearly independent invariants in the solution of the elastic wave equation: translations
along the three coordinate directions and rotation along the three coordinate axes. The projection command
(Section 6.6.2) removes these invariants from the solution at regular time intervals. By default, projection
occurs every 1000 time steps, ensuring the calculated displacements be relative to a reference frame which is
fixed with respect to the computational domain. Projection can be disabled by setting the projection interval
to 0, but this may cause the solution to spuriously drift after long times. Projection takes a small amount
of computational effort, so the calculation will execute slightly faster if the projection interval is made
longer. The amount of correction to the solution is interpolated linearly in time in between projections, so
the solution becomes (slightly) more accurate by projecting more often. To change the default projection
interval to every 100 time steps, you put the following line in the input file:

projection projectionInterval=100

The forcing termF consists of a sum of point force and point moment terms. For a point forcing we
have

F(r, t) = g(t, t0, ω)F0

 Fx

Fy

Fz

 δ(r− r0),

whereF0 is the amplitude,r0 = (x0, y0, z0) is the location of the point force in space,g(t, t0, ω) is the time
function, with offset timet0 and frequency parameterω, and(Fx, Fy, Fz) are the Cartesian components of
the force vector. Each of the Cartesian components are scaled by the amplitudeF0 (F0 ∗ Fx, F0 ∗ Fy, etc.).

13

For a point moment tensor we have

F(r, t) = g(t, t0, ω)M0∇ · (M δ(r− r0)) , M =

 Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz

 .

In this case the seismic moment of the moment tensor isM0, otherwise the notation is the same as for a
point force. Note that the moment tensor always is symmetric.

In WPPthe forcing is specified in the input file using thesource command. There needs to be at least
one source command in the input file in order for anything to happen during the simulation; complicated
source mechanisms can be described by using any (finite) number of source commands. A simple example
is:

source x=5000 y=4000 z=600 m0=1e15 mxx=1 myy=1 mzz=1 \
type=RickerInt t0=1 freq=5

which specifies an isotropic source (explosion) at the pointr0 = (5000, 4000, 600) with amplitude1015

Nm, using the RickerInt time function with offset timet0 = 1 s and frequency parameterω = 5 Hz. This
command sets the off-diagonal moment tensor elements (Mxy, Mxz andMyz) to zero (their default values).

Notes about sources and time functions:

• It is not necessary to place the sources exactly on grid points. The discretization of the source terms
is second order accurate for any location within the computational domain.

• The source time function can be selected from the set of predefined functions described below. All
functions start from zero (limt→−∞ g(t, t0, ω) = 0). The Gaussian and the Triangle functions inte-
grate to one (

∫∞
−∞ g(t, t0, ω) dt = 1), while the Sawtooth, Smoothwave, and Ricker functions integrate

to zero and have maximum amplitude one. The RickerInt function is the time-integral of the Ricker
function and integrates to zero. The GaussianInt, Brune, and BruneSmoothed functions tend to one
(limt→∞ g(t, t0, ω) = 1). The time derivative ofg(t, t0, ω), is often refered to as the moment-rate
function.

• For moment tensor sources, a displacement formulation code (such asWPP) uses the time-integral of
the time function used by velocity-stress formulation codes (such asE3D). For example, if you used
a Gaussian time function inE3D, you should use the GaussianInt function inWPP to get the same
effect. However, the same type of time-function is used for point forces in both types of codes.

• The Triangle, Sawtooth, Ramp, Smoothwave, Brune, BruneSmoothed and VerySmoothBump func-
tions are identically zero fort < t0, so they will give reasonable simulation results ift0 ≥ 0. However,
the Gaussian, GaussianInt, Ricker, and RickerInt functions are centered aroundt = t0 with exponen-
tially decaying tails fort < t0. Hencet0 must be positive and of the orderO(1/ω) to avoid incompat-
ibilty problems with the initial conditions. We recommend choosingt0 such thatg(0, t0, ω) ≤ 10−8

for these functions.

3.1.1 Gaussian

g(t, t0, ω) =
ω√
2π

e−((t−t0)ω)2/2.

Note thatσ = 1/ω in terms of the usual notation for a Gaussian function. A plot of the Gaussian time-
function is shown in Figure 3.1.

14

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

t

g(
t)

Gaussian ω=3.1416 t
0
=0

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

t

g(
t)

GaussianInt ω=3.1416 t
0
=0

Figure 3.1: Gaussian (left) and GaussianInt (right) withω = π andt0 = 0.

3.1.2 GaussianInt

The GaussianInt function is often used in earthquake modeling since it leads to a permanent displacement.

g(t, t0, ω) =
ω√
2π

∫ t

−∞
e−((τ−t0)ω)2/2 dτ.

GaussianInt is the time-integral of the Gaussian. A plot of the GaussianInt time-function is shown in Fig-
ure 3.1.

3.1.3 Ricker

g(t, t0, ω) =
(
2π2ω2(t− t0)2 − 1

)
e−π2ω2(t−t0)2 .

A plot of the Ricker time-function is shown in Figure 3.2.

3.1.4 RickerInt

g(t, t0, ω) = (t− t0)e−π2ω2(t−t0)2 .

RickerInt is the time integral of the Ricker function. The RickerInt function is often used in seismic ex-
ploration applications, since it does not lead to any permanent displacement. A plot of the RickerInt time-
function is shown in Figure 3.2.

3.1.5 Triangle

For t0 < t < t0 + 1/ω,

g(t, t0, ω) =
16ω

π2

[
sin(πω(t− t0))−

sin(3πω(t− t0))
9

+
sin(5πω(t− t0)

25
− sin(7πω(t− t0))

49

]
,

with g(t, t0, ω) = 0 elsewhere. A plot of the Triangle time-function is shown in Figure 3.3.

15

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

t

g(
t)

Ricker ω=1 t
0
=0

−3 −2 −1 0 1 2 3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t

g(
t)

RickerInt ω=1 t
0
=0

Figure 3.2: Ricker (left) and RickerInt (right) withω = 1 andt0 = 0.

3.1.6 Sawtooth

For t0 < t < t0 + 1/ω,

g(t, t0, ω) =
8
π2

[
sin(2πω(t− t0))−

sin(6πω(t− t0))
9

+
sin(10πω(t− t0))

25
− sin(14πω(t− t0))

49

]
,

with g(t, t0, ω) = 0 elsewhere. A plot of the Sawtooth time-function is shown in Figure 3.3.

3.1.7 Ramp

g(t, t0, ω) =

0, t < t0,
0.5(1− cos(π(t− t0)ω)), t0 ≤ t ≤ t0 + 1/ω,
1, t > t0 + 1/ω.

A plot of the Ramp time-function is shown in Figure 3.4.

3.1.8 Smoothwave

For t0 < t < t0 + 1/ω,

g(t, t0, ω) =
2187

8
(ω(t− t0))3 −

10935
8

(ω(t− t0))4 +
19683

8
(ω(t− t0))5

− 15309
8

(ω(t− t0))6 +
2187

4
(ω(t− t0))7,

with g(t, t0, ω) = 0 elsewhere. A plot of the Smoothwave time-function is shown in Figure 3.4.

16

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

g(
t)

Triangle ω=1 t
0
=0

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t
g(

t)

Sawtooth ω=1 t
0
=0

Figure 3.3: Triangle (left) and Sawtooth (right) withω = 1 andt0 = 0.

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

t

g(
t)

Ramp ω=1 t
0
=0

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

g(
t)

Smoothwave ω=1 t
0
=0

Figure 3.4: Ramp (left) and Smoothwave (right) withω = 1 andt0 = 0.

17

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

t

g(
t)

Brune ω=2 t
0
=−1

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

t

g(
t)

BruneSmoothed ω=2 t
0
=−1

Figure 3.5: Brune (left) and BruneSmoothed (right) withω = 2 andt0 = −1.

3.1.9 Brune

The Brune function has one continuous derivative but its second derivative is discontinuous att = t0,

g(t, t0, ω) =
{

0, t < t0,

1− e−ω(t−t0)(1 + ω(t− t0)), t ≥ t0.

The Brune function is often used in earthquake modeling.

3.1.10 BruneSmoothed

The BruneSmoothed function has three continuous derivatives att = t0, but is otherwise close to the Brune
function:

g(t, t0, ω) =

0, t < t0,

1− e−ω(t−t0)(1 + ω(t− t0) + 1
2(ω(t− t0))2

− 3
2x0

(ω(t− t0))3 + 3
2x2

0
(ω(t− t0))4 − 1

2x3
0
(ω(t− t0))5) 0 < ω(t− t0) < x0,

1− e−ω(t−t0)(1 + ω(t− t0)), ω(t− t0) > x0.

The parameter is fixed tox0 = 2.31. Plots of the Brune and BruneSmoothed time-functions are shown in
Figure 3.5.

3.1.11 VerySmoothBump

g(t, t0, ω) =

0, t < t0,
−1024(ω(t− t0))10 + 5120(ω(t− t0))9 − 10240(ω(t− t0))8+

10240(ω(t− t0))7 − 5120(ω(t− t0))6 + 1024(ω(t− t0))5, t0 ≤ t ≤ t0 + 1/ω,
0, t > t0 + 1/ω.

A plot of the VerySmoothBump time-function is shown in Figure 3.6.

18

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

t

g(
t)

VerySmoothBump ω=0.5 t
0
=0

Figure 3.6: VerySmoothBump withω = 0.5 andt0 = 0.

3.2 How fine does the grid need to be?

When preparing the input file, the most difficult parameter to choose is the grid sizeh. It is extremely
important to use a grid size which is sufficiently small to adequately resolve the waves which are generated
by the source. On the other hand we don’t want to use an unnecessarily small grid size either, because both
the computational demand and the memory requirements increase with decreasing grid size.

The number of points per wavelength,P , is a normalized measure of how well a solution is resolved on
the computational grid. Since the shear waves have the lowest velocities and a shorter wave length than the
compressional waves, the shortest wave length can be estimated by

minλ =
minVs

f
,

whereVs is the shear velocity of the material andf is the the temporal frequency of the wave. Hence the
number of grid points per wave length equalsminλ/h, which is given by

P =
minVs

h f
. (3.1)

Note thath needs to be made smaller to maintain the same value ofP if either Vs is decreased or if the
frequency is increased.WPPuses a second order accurate discretization and as we shall see below,P needs
to be around 15 or larger to obtain a reasonably accurate solution, but the exact number depends on the
particular type of time-function as well as the distance between the source and the reciever.

In formula (3.1),minVs is found from the material properties andh is determined by the input grid
specification. The frequencies present in the solution are determined by the frequencies present in the time
function(s) in the source term(s). We here show some examples of computed solutions with different source
time functions.

We place a single moment source in a homogeneous material of size 200×200×100 km, with a
free surface on the top and non-reflecting boundary conditions on all other sides. The source is lo-

19

Figure 3.7: Thex-component of the displacement due to a source with a RickerInt time function with
frequency parameterfreq = 0.25 on four different grids. Enlarged view to the right.

cated at the point(100, 100, 3.5) km and has a strength of 1.75×1017 Nm. The only non-zero com-
ponent in the moment tensor is thexy element. The material hasP -wave speed 6941 m/s,S-wave
speed 3949 m/s, and density 2994 kg/m3. This is expressed in the following input file towpp, (see
tests/examples/source-resolution.in),

grid x=200e3 y=200e3 z=100e3 h=1000
time t=30
block vp=6951 vs=3949 r=2994
source x=100e3 y=100e3 z=3.5e3 m0=1.75e17 Mxy=-1 freq=0.25 \

type=RickerInt t0=5.0
sac x=100e3 y=150e3 z=0 file=surf3

where we also note that the solution is sampled at the point(100, 150, 0) km. Figure 3.7 displays thex-
displacements as function of time at the point(100, 150, 0) km for a sequence of four different grids, using
the RickerInt time-function. Since the results withh = 250 m andh = 500 m are very close, we can
take theh = 250 m (green) curve as the exact solution. The red curve,h = 1000 m predicts the shape
of the solution correctly, although small errors are visible in the plot. However, the numerical errors in the
blue curve withh = 2000m are not acceptable since the peak amplitude is not well predicted and there is
significant artificial ringing in the solution after timet = 21. If we takef = freq andh = 1000 in formula
(3.1),

P = 3949/(1000 ∗ 0.25) = 15.8.

We conclude that for the RickerInt time function,P ≈ 15 gives an acceptable accuracy in the solution.
To further investigate how the grid size effects the solution, we study the Fourier transform of the time-

signals, see Figure 3.8. Note that the solutions using the coarser mesh deviate mostly in the higher frequen-
cies. Also note that there is significant energy in modes up to 0.7 Hz, which is higher than the frequency
parameter (freq =0.25) in the RickerInt time function.

Figure 3.9 shows the results from computing with the Ricker (3.1.3) time function instead of the Rick-
erInt time function. The accuracy is similar to the accuracy in the computation with RickerInt. This is
expected because the frequency content in the two computations are similar, which leads to a similar value
for the number of points per wave length.

20

h P
200m 64
500m 32
1000m 16
2000m 8

Table 3.1: Approximate grid points per wavelength (P) for a given grid spacing (h)

Figure 3.8: The Fourier transform of the time signal for different grid spacings.

Figure 3.9: Thex-component of the displacement due to a source with a Ricker time function with frequency
parameterfreq =0.25 on four different grids. Enlarged view to the right.

21

0 0.5 1 1.5 20

0.5

1

1.5

2

Frequency [1/s]

Fo
ur

ie
r T

ra
ns

fo
rm

 o
f S

ou
rc

e
fu

n.

d/dt Brune, freq = 1.5
Gaussian, freq = 1.5
RickerInt freq = 0.25
Ricker freq = 0.25

Figure 3.10: Absolute values of the Fourier transforms of the Gaussian (blue), Ricker (red), and the deriva-
tive of the Brune (black) time-functions. Herefreq =1.5 for the Gaussian and the derivative of the Brune
function, andfreq =0.25 for the Ricker and RicnerInt.

Figure 3.10 displays the absolute values of the Fourier transforms of the functions Gaussian, RickerInt,
Ricker, and the time derivative of the Brune function. Inspection of the mathematical definitions of the
Gaussian and Brune functions shows that thefreq parameter specifies the angular frequency for these
functions. To estimate the frequency content, we use the approximate formulae:

f ≈
{

freq, for Ricker and RickerInt,
freq/(2π), for Brune, BruneSmoothed, Gaussian, and GaussianInt.

(3.2)

The plots in Figure 3.10 were made with frequency parameterfreq =0.25 for the Ricker and RickerInt
functions and frequency parameterfreq =1.5 for the Gaussian andd/dt(Brune) functions. Furthermore,
Figure 3.10 illustrates that the Fourier transform of the Ricker, RickerInt and Gaussian functions decay
exponentially for large frequencies, but that the Fourier transform of the Brune function decays much slower
for high frequencies. The slow decay of the high modes arise from the lack of smoothness in the Brune
function att = 0. As a result, simulations using the Brune function are harder to resolve on the grid.

We next study solutions obtained with the Gaussian (3.1.1), GaussianInt (3.1.2) and the Brune (3.1.9)
time functions. To obtain a similar frequency content as for the Ricker and the RickerInt functions, we
use the frequency parameterfreq =1.5 in these computations. The source command in the input file then
becomes

source x=100e3 y=100e3 z=3.5e3 m0=1.75e17 Mxy=-1 freq=1.5 \
type=GaussianInt t0=5.0

Computations with the Gaussian, GaussianInt, and Brune functions are shown in Figures 3.11, 3.12, and 3.13
respectively. Even though there is more ringing in the calculation using the Brune function, the accuracy
in these calculations is seen to be similar to the previous computations with the Ricker and RickerInt time
functions. We conclude that the grid sizeh = 1000 is adequate for representing the solution on the grid. If
we use formula (3.1) with the frequency scaling (3.2) andh = 1000, we obtain

P = 3949/(1000 ∗ 1.5/(2π)) = 16.5.

22

Figure 3.11: Thex-component of the displacement due to a source with a Gaussian time function with
frequency parameterfreq =1.5 on four different grids. Enlarged view to the right.

Figure 3.12: Thex-component of the displacement due to a source with a GaussianInt time function with
frequency parameterfreq =1.5 on four different grids. Enlarged view to the right.

23

Figure 3.13: Thex-component of the displacement due to a source with a Brune time function with fre-
quency parameterfreq =1.5 on four different grids. Enlarged view to the right.

Hence,P ≈ 15 gives a solution with acceptable accuracy also for the Gaussian, GaussianInt, and Brune
time functions.

3.2.1 Lamb’s problem revisited

We now compute solutions to Lamb’s problem in a material withVp =
√

3 km/s, Vs = 1 km/s and
the density1000kg/m3. The solution is forced downward with amplitudefz=5e13 N and with a time
function centered at timet0=25 s . For various time functions the solution is recorded at receivers 10 and
50 km from the source. At the recievers the relative error

‖uexact(t)− ucomputed(t)‖∞
‖uexact(t)‖∞

,

in the horizontal component is computed and plotted in Figure 3.14. In these calculations, the grid size was
held constant and the frequency parameterfreq was varied. The number of points per wavelength was
computed by (3.1) Hence, a lower number of points per wave length corresponds to a higher value offreq .

From Figure 3.14 we see that for all of the time functions, except the Brune function, there is a decrease
in error inversely proportional to the square of the number of points per wavelength. The errors are larger
for the Brune function since its spectrum decays much slower due to its discontinuous second derivative at
t = t0. The difference in the error levels between the left and the right sub-figures are due to the fact that
the numerical solution accumulates errors as it propagates away from the source. For a single harmonic
wave, and a second order accurate finite difference method, the number of points per wavelength required to
achieve a certain error is proportional to the square root of the number of wavelengths the wave propagates
(see Chapter 3 in [3] for a detailed discussion). Thus, to get the same accuracy at five times the distance
from the source, we need to use about

√
5 ≈ 2.24 times more points per wave length. This could be achived

by reducing the grid size by a factor 2.24 in each direction, resulting in a factor of 11.1 times more grid
points and an increase in CPU time by a factor 25.

24

20 30 40 50 60 70 8010−3

10−2

10−1

Points per wavelength

Re
la

tiv
e

m
ax

. e
rr.

GaussianInt
Gaussian
Brune
BruneSmoothed
RickerInt
Ricker

20 30 40 50 60 70 8010−3

10−2

10−1

Points per wavelength

Re
la

tiv
e

m
ax

. e
rr.

GaussianInt
Gaussian
Brune
BruneSmoothed
RickerInt
Ricker

Figure 3.14: Relative errors for different source functions 10 (left) and 50km (right) from the source. For
the Brune time function the error decays much slower than for the other time functions.

25

Chapter 4

The material model

In WPP the material model is defined by the values of the density,ρ, the compressional velocity,Vp, and
the shear velocity,Vs, at each grid point. These values can be specified by the block command (see, Sec-
tion 6.3.2), the vfile command (see Section 6.3.3), the etree command (see Section 6.3.4) or by a combi-
nation of them. By default, these commands apply to the entire computational domain (as defined by the
grid command), but can be restricted to a portion of the domain by the sub-region options described in
Table 6.3.1.

Note: The order within the material commands (block, vfile, and etree) does matter (unlike all other com-
mands) in that the priority of the command / material increase towards the end of the input file. Hence, a
material command in the input file is overridden by subsequent material commands.

4.1 The block command

The block command can be used to specify properties in rectangular volumes (sub-regions), either with
constant properties or with linear vertical gradients. Combining the block command with the sub-region
options we can define a material model composed of three layers

block vp=4000 vs=2500 r=2000
block vp=6000 vs=3500 r=2700 z1=15000 z2=35000
block vp=8000 vs=4500 r=3300 z1=35000 z2=100000

In this case the top layer has a thickness of 15 km, the middle layer 20 km and the lower layer 65 km.
Because the above block commands do not specify horizontal coordinates, the values extend to the grid
boundaries in both horizontal directions. To add a box shaped inclusion of a new material we could add the
following line

block vp=3000 vs=25000 r=1000 \
x1=4000 x2=8000 y1=4000 y2=10000 z1=10000 z2=70000

To the left in Figure 4.1 an image slice ofVp atx = 50km is displayed.
The following example combines several block commands used to generate the material model displayed

to the right in Figure 4.1:

block vp=8000 vs=4500 r=3300 vpgrad=-0.01
block vp=3000 vs=2000 r=1000 \

x1=1e4 x2=9e4 y1=1e4 y2=9e4 z1=1e4 z2=9e4 vpgrad=0.02

26

Figure 4.1: Examples of material models specified with the block command.

block vp=4000 vs=2500 r=2000 \
x1=15e3 x2=85e3 y1=15e3 y2=85e3 z1=15e3 z2=85e3

block vp=6000 vs=3500 r=2700 \
x1=15e3 x2=85e3 y1=15e3 y2=85e3 z1=45e3 z2=55e3

block vp=6000 vs=3500 r=2700 \
x1=15e3 x2=85e3 z1=15e3 z2=85e3 y1=38e3 y2=45e3

4.1.1 Modeling water with blocks

In sea water the density is 1000kg/m3 Vp ≈ 1500m/s andVs = 0. With the block command it is easy to
include a layer of water at the top of the surface, for example:

block vp=6000 vs=3500 r=2700
block vp=1500 vs=0 r=1000 z1=0 z2=500

Even though no physical shear waves can propagate in water there may still be spurious numerical shear
waves in the water. To remove such spurious waves the damping command can be used with the curlcurl
option:

damping curlcurl=1 curlCFL=0.1

The curl of the curl damping adds the term

−d2∇× (∇× ut),

to the elastic wave equation in grid points whereVs = µ = 0, i.e., in the parts of the computational domain
where water or air is present.

The curlcurl dissipation coefficientd2 is not taken into account when the time step is computed. There-
fore, a too large value can lead to instability. The input value is given as fractions of the maximum allowed
value by the stability condition. Therefore the value 1 should give maximum damping, however in practice
the maximum limit is closer to 0.1. This is because the maximum limit is computed for the dissipation term
only. Effects from interaction with the terms of the basic scheme are not considered.

27

4.2 The vfile command

The vfile command can be used to read a binary raster file (vfile) that contains the values of a given model
feature (P-velocity, S-velocity, or density) at the grid points. These files are not self describing, and thus do
not contain any header metadata information, only the raw binary floating point data for each field point.
Assumingvp.flt , vs.flt andr.flt contains values for the P-velocity, the S-velocity and the density
in all grid points, the material model can be specified by the following lines in the input file:

vfile type=vp file=vp.flt
vfile type=vs file=vs.flt
vfile type=r file=r.flt

The above lines will causeWPPto read the floating point numbers in the files in a binary raster format. For
example, the P-wave velocity is read from the vfile in the following order:

for j = j2, j1
for k = k1, k2

for i = i1, i2
read vp(i,j,k);

Note that the values are traversed in increasing order in the i (x) and k (z) directions but in decreasing order
in the j (y) direction, this is because the vfiles are specified (for historical reasons) in a left handed coordinate
system, where they-direction points in the opposite direction compared toWPP. If i1, j1, k1, i2, j2 and k2
are not explicitly stated they are defaulted to i1=j1=k1=1, i2=nx, j2=ny, k2=nz (the full computational
domain). If they (as in the example below) are specified:

vfile i1=51 i2=61 k1=1 k2=11 type=vp file=vp.flt
vfile i1=51 i2=61 k1=1 k2=11 type=vs file=vs.flt
vfile i1=51 i2=61 k1=1 k2=11 type=r file=r.flt

WPPwill read the files to specify the material model in a box shaped sub-region of the computational grid.
The above lines will specify the model according to the velocities and density in the binary files vp.flt, vs,flt
and r.flt over the domain from grid point i=51 to i=61 in the x-direction, from k=1 to k=11 in the z-direction,
and fromj1 = 1 to j2 = ny in they-direction.

There is a one-to-one mapping between the points in the vfile and the computational grid points within
the specified region. Thus, the number of velocity values in the vfile must equal(i2−i1+1)× (j2−j1+1)×
(k2−k1+1). Since a floating point number is 4 bytes long, the size of the vfile must contain exactly4 ×
(i2−i1+1) × (j2−j1+1) × (k2−k1+1) bytes. If the vfile is smaller than that, theWPPwill exit with an
error message.

It is however allowed for the vfile to contain more grid points than the computational grid. For example,
consider the i index and suppose the computational grid has nx=100 grid points in thex-direction. If the
vfile exactly maps to the computational grid then i1=1 and i2=100. This will be the normal case. If the vfile
represents a fraction of the computational grid, the values of i could be something like i1=20 and i2=50.
If the vfile represents a region larger than the computational grid, then the values of i could be i1=-50 and
i2=150. In that case, the data in the vfile corresponding to−50 ≤ i ≤ 0 and101 ≤ i ≤ 150 are ignored.

Note that it is possible to specify the sub-domain boundaries using the x1, x2, y1, y2, z1, z2 options,
however this is not advised because roundoff may cause problems when the physical coordinates are con-
verted to grid point indices, causing the number of points to be ”off by one”. If physical sub-domain
boundaries are used, we strongly recommend verifying the material model before starting a simulation,
for example using the image command (see Section 5.3) to output a couple of cross sections through the
computational domain to check that the P- and S-wave velocities as well as the density look reasonable.

28

Figure 4.2: The geographical location where the efile model=SF is valid.

4.3 The efile command

The efile command is used to read in material properties from an etree database file. It is similar to the vfile
command in that it can either specify the material properties in the entire computational domain, or within a
box shaped sub-region. One major advantage compared to the vfile command is that the same etree database
can be used independently of the grid size, so there is no need to have a one-to-one mapping between the
etree model and the computational grid.

Currently we only support reading efile data from the central California velocity model provided by the
USGS (see Figure 4.2). Internally in the code we use the formula (2.4)-(2.5) to determine the geographic
coordinates for the grid points where material properties are requested from the etree database. Given the
latitude, longitude and depth, thecencalvmsoftware is used to query the etree database and then populate
Vp, Vs andρ with the values returned. It is important to note the bounds of the geographical region in the
database, if queried outside the software returns -999 for the material property values.

Assuming the computational domain is contained within the bounds of the database, it is easy to set up
the material model in the input file:

grid x=14000.0 y=14000.0 z=3000.0 lat=38. lon=-121.5 az=135 nx=100
efile model=SF etree=USGSBayAreaVM-05.1.0.etree

In the case where the domain is larger than what the efile covers, a block command can be used to initialize
the material data which falls outside of the efile block:

grid x=300000.0 y=300000.0 z=60000.0 lat=38. lon=-121.5 az=135 nx=100
block vp=8000.0 vs=4000.0 r=1000.0 rhograd=0.5
efile model=SF etree=USGSBayAreaVM-05.1.0.etree

The final case for mapping an efile to a grid, is if we want to have the efile map to a sub-region of the grid.

29

Model SF
Description see: http://www.sf06simulation.org/geology/velocitymodel/

Detailed Model Coordinates (NAD27)

SE -120.64040 37.04718
SW -121.91833 36.31746
NW -123.85736 38.42426
NE -122.56127 39.17461

Regional Model Coordinates (NAD27)

SE -118.944514 36.702176
SW -121.930857 35.009018
NW -126.353173 39.680558
NE -123.273199 41.48486

Depth 40,000 m

Table 4.1: Data for the central California velocity model.

grid x=14000.0 y=140000.0 z=30000.0 lat=38. lon=-121.5 az=135 nx=100
block vp=8000.0 vs=4000.0 r=1000.0 rhograd=0.5
efile model=SF i1=10 i2=90 etree=USGSBayAreaVM-05.1.0.etree

In this case, the detailed model will only span the region between grid point 10 and 90 in the x direction,
everywhere else the material properties will come from the block command.

Note To enable the extended model, the bay area extended Etree model must also be downloaded and then
added to the efile command line (names have been shortened for readability):

efile model=SF etree=USGSBayAreaVM.etree xetree=USGSBayAreaVMExt.etree

4.3.1 Modeling water with Etree models

When water is present in an etree database, the efile command will default to thewater=noshear option
to assign a zero shear velocity to the grid points in the water. Other water options are available for historical
reasons, see Section 6.3.4. As was mentioned before, spurious shear waves in the water are suppressed using
the curl-curl damping:

grid x=14000.0 y=140000.0 z=30000.0 lat=38. lon=-121.5 az=135 nx=100
time steps=1
block vp=8000.0 vs=4000.0 r=1000.0 rhograd=0.5
efile model=SF water=noshear query=FIXEDRES etree=USGSBayAreaVM-05.1.0.etree
damping curlcurl=1 curlCFL=0.1

For numerical reasons it is required that the depth of the water be at least two grid points. If this is not the
case,WPPwill assign water properties to the grid point below the water surface.

30

Chapter 5

Output options

5.1 Setting the output directory

The fileio command can be used to specify a directory whereWPPwrites all its output, as well as a name
to prepend to the output files. If the directory does not exist,WPPattempts to create it for you. The fileio
command may also be used to set the level of diagnostic messages (verbose) and how often the time step
information is printed. For example,

fileio path=wpp_dir verbose=0 printcycle=10

causes all output to be written to the directory ”./wppdir”, turns off extra diagnostic messages, and prints
the time step information every 10 time steps.

5.2 Time-history at a point: the sac command

The Seismic Analysis Code (SAC[2]) is a widely used program for displaying and analyzing digital seismo-
grams (time-series). Because of the broad use ofSAC, the file format is commonly used to exchange digital
seismogram data.WPPcan save the time-history of its solution at one point in the computational domain
using the command:

sac x=100000 y=50000 z=0 file=s1

This command makesWPPsample the displacement time-history at the grid point closest to the location
x=100000 m (100 km), y=50000 m (50 km), z=0.WPPsaves the data to the files named:

• s1.I.J.K.x

• s1.I.J.K.y

• s1.I.J.K.z (note: z is positive down)

Here I, J and K are the indices of the grid point closest to the specified(x, y, z) coordinate. The x,y,z files
correspond to the displacement history in the corresponding coordinate direction.

SACfiles contain date information which can be assigned using the date option:

sac i=10 j=10 k=5 eventDate=2003/11/22 eventTime=16:17:00 sta=EKM

Here the date is set to November 22nd, 2003, at 4:17 PM. By default the date is set to the date and time at
the start of the simulation. In this example we also set the station name to ”EKM”.

The sample option can be used to only save the displacements every other time step

31

sac i=10 j=10 k=5 sample=2 writeEvery=100

The sample option refers to how often theSACfile will record a displacement, in this case every 2 time
steps. We also set the writeEvery option to 100, which means that theSACfiles are flushed to disk after
every 100 time steps. By default, the files are flushed to disk every 1000 time steps, and at the end of the
simulation.

5.3 2-D cross-sectional data: the image command

The image command may be used to save files holding 2D horizontal or vertical cross-sectional data for
many different variables. This command is useful for visualizing the solution, making movies, and checking
the material properties. The example

image mode=ux j=5 file=picturefile cycle=1

outputs thex-displacement component (mode=ux) on thexz-plane along the fifth grid point (j=5) in the
y-direction. The data is written to a file namedpicturefile.cycle=1.j=5.ux after the first time
step (cycle=1). The example

image mode=div x=1000 file=picturefile cycleInterval=100

outputs the divergence of the displacement field in theyz-plane at the grid surface closest tox = 1000. The
data is written to the files

picturefile.cycle=100.x=1000.div
picturefile.cycle=200.x=1000.div
...

With this setup, one image file is output every 100 time steps.
WPPcan output twenty different quantities, see Section 6.5.3. The image plane can be specified as a

grid point index or as a Cartesian coordinate (x, y, or z). In the latter case, the image data is taken from the
grid plane closest to the specified coordinate. The image can be written at a specific time step or a specified
time. Images can also be output at time step intervals (ascycleInterval in the example above) or at
time intervals.

The images files are written in a binary format.WPPstores the grid sizeh (a single precision floating
point number) and the dimensions of the image (two integers) first in the file. Then follows the image as
single precision floating point numbers stored in column order. The Matlab statements

fd = fopen(’picturefile.cycle=100.x=1000.div’,’r’);
h = fread(fd,1,’float’);
ni = fread(fd,1,’int’);
nj = fread(fd,1,’int’);
u = fread(fd,[ni nj],’float’);
flcose(fd);

read the image file in the example above into the Matlab matrixu of sizeni ×nj . Here,fd is a file descrip-
tor variable. The Matlab functionsfopen andfread perform binary I/O similarly to the C functions with
the same names.

Note that the divergence of the displacement or velocity fields does not contain shear (S) waves and
the rotation (curl) of the displacement or velocity fields does not contain compressional (P) waves. These
options can therefore be useful to distinguish between P- and S-waves in the solution.

32

The options hvelmax, vvelmax, haccmax, and vaccmax, compute the maximum of the respective quan-
tity over time at each point in the image plane. The horizontal velocity is

√
u2

t + v2
t whereu andv are the

displacement components in thex- andy-directions, respectively, The vertical velocity is|wt|, wherew is
the displacement component in thez-direction. For these modes, the image cycle option only determines
how often the maxima are written to image files; the actual computation and accumulation of the maximuma
are performed after each time step.

5.4 Volumetric data: the image3d command

Warning: Saving volumetric data results in huge files which require specialized post processing software
to read.

The image3d command may be used to output 3-D data for different solution variables at a given
time (step) intervals. Data is saved in the compressed “brick-of-wavelet” format using Mark Duchaineau’s
Bow library, see Section 7.7. The image plane can be specified These files can be manipulated using the
bof/bow/bob tools, from the LibGen library.

Here is an example using the image3d command line:

grid x=500e3 y=200e3 z=40e3 lat=41.10 lon=-123.60 az=144.0 nx=500
fileio path=mydir/
image3d cycle=50 mode=veldiv

The image3d command generates one bow file per processor. If this simulation ran on four processors, the
following files would be generated after time step 50:

mydir/image3d00000/proc00000/step000050_p00000.bow
mydir/image3d00001/proc00001/step000050_p00001.bow
mydir/image3d00002/proc00002/step000050_p00002.bow
mydir/image3d00003/proc00003/step000050_p00003.bow
mydir/image3d-bowdump.txt

The last file, image3d-bowdump.txt, is the header file for the meta data in the run.
The options logifymin and logifymax can be used to change the logarithmic range to which data is

converted before being compressed and written to disk. The resulting file size (and the quality of the saved
data) is also controlled by the compressionFactor option. For example,

image3d cycleInterval=50 mode=velcurl file=more compressionFactor=0.0001
image3d cycleInterval=50 mode=velcurl file=less compressionFactor=0.01

The first line provides the default accuracy, which is the maximum available accuracy in the compression
library. The second line uses a compression factor of 0.01, which provides less accuracy and smaller files.
The compressionFactor is relative to the minima and maxima of the range of the compressed variable. Using
the default settings of the image3d command, we have seen a file size reduction for the velcurl/veldiv image
modes of 12-22 times.

Note: No compression takes place if compressionFactor=1.0.

33

5.5 Restart files

Warning: Restart files can be quite large. Aside from header information, a restart file contains six double
precision numbers per grid point. For a moderately sized simulation with 80 million grid points, the size of
the restart file exceeds 3.84 GB.

WPPcan save the current state of a simulation in a restart file and initialize a simulation from an existing
restart file. This functionality can be useful during longer simulations to protect against data loss in case of
hardware failures. To request a restart file to be written, use the restart command line:

restart dumpInterval=1000 file=myRestart

This command generates a restart file every 1000 time steps with the perpended name myRestart. After time
step 3000, three restart files are available:

myRestart_step001000.rst
myRestart_step002000.rst
myRestart_step003000.rst

To initialize a simulation from an existing restart file, use the command line

restart fromCycle=2000 file=myRestart

This time, we use the fromCycle keyword to specify the time step. In this caseWPPsearches the working
directory (as specified by the fileio command) for the restart file myRestartstep002000.rst.

WPP requires that material properties be setup using the same command lines on both the initial and
restarted runs. It also requires the grid to be the same. Some header information is stored in the restart file
to ensure basic compatibility. Changing the input file between the initial and restarted runs may result in
unexpected results.

SACfile data is also restarted. When a restart file is written, the relevantSACheader information and
displacement history is saved in the restart file. Upon restart, allSACoptions specified in theWPP input
file for the restarted run are overridden by theSACinformation contained in the restart file. Hence, it is not
possible to add or delete sampling stations in restarted runs.

34

Chapter 6

Keywords in the input file

The syntax of the input file is

command1 parameter1=value1 parameter2=value2 ... parameterN=valueN
comments are disregarded
command2 parameter1=value1 parameter2=value2 ... parameterN=valueN
...

Each command starts at the beginning of the line and ends at the end of the same line. Blank lines are
disregarded and comments can be placed on lines starting with a # character. The order of the parameters
within each command is arbitrary. The material commands (block, vfile, and efile) are applied in the order
they appear, but the ordering of all other commands is inconsequential. Also note that the entire input file is
read before the simulation starts.

6.1 Specifying the grid parameters (grid) [required]

Required parameters:

• number of grid points in all three dimensions and the grid size, or

• spatial extents in all three dimensions and the grid size, or

• spatial extents in all three dimensions and the number of grid points in one direction.

Option Description Type Units Default

x physical dimension of grid in the x-direction float m none
y physical dimension of grid in the y-direction float m none
z physical dimension of grid in the z-direction float m none

h grid spacing float m none

nx number of grid points in the x-direction int none none
ny number of grid points in the y-direction int none none
nz number of grid points in the z-direction int none none

az clockwise angle from north to the x-axis float degrees 135.0
lat latitude geographic coordinate of the origin float degrees 37.0
lon longitude geographic coordinate of the origin float degrees -118.0

35

6.2 Specifying the time parameters (time) [required]

The time command line specifies the duration of the simulation in seconds or the number of time-steps. The
size of the time step is computed internally byWPP.
Required parameters:

• Either t or steps must be specified.

Option Description Type Units Default

t duration of simulation float s none
steps number of cycles (time-steps) to advance int none none

6.3 Specifying the model [required]

6.3.1 specifying a box shaped sub-region

In general, a box shaped sub-region is specified using either i,j,k grid points or x,y,z domains. These options
are used in conjunction with the block, vfile and efile commands.

Option Description Type Units Default

x1 minimum x-dim for the box shaped sub-region float m 0.0
x2 maximum x-dim for the box shaped sub-region float m max x
x sets x1 and x2 to the same value, corresponds to yz planefloat m none

y1 minimum y-dim for the box shaped sub-region float m 0.0
y2 maximum y-dim for the box shaped sub-region float m max y
y sets y1 and y2 to the same value, corresponds to xz planefloat m none

z1 minimum z-dim for the box shaped sub-region float m 0.0
z2 maximum z-dim for the box shaped sub-region float m max z
z sets z1 and z2 to the same value, corresponds to xy planefloat m none

i1 minimum index in x-dim for the box shaped sub-region int none 1
i2 maximum index in x-dim for the box shaped sub-region int none Nx
i sets i1 and i2 to the same value int none none

j1 minimum index in y-dim for the box shaped sub-region int none 1
j2 maximum index in y-dim for the box shaped sub-region int none Ny
j sets j1 and j2 to the same value int none none

k1 minimum index in z-dim for the box shaped sub-region int none 1
k2 maximum index in z-dim for the box shaped sub-region int none Nz
k sets k1 and k2 to the same value int none none

Table 6.1: A box shaped sub-region can be specified on the block, vfile, and efile command lines.

6.3.2 basic block command (block)

Required parameters:none

36

The commands below can be used with or without the box shaped sub-region options, depending on whether
the block spans the entire grid or just a subvolume.

Option Description Type Units

vp P-wave velocity float m/s
vs S-wave velocity float m/s
r density float kg/m3

ps p/s ratio float none
vpgrad vertical gradient for vp float s−1

vsgrad vertical gradient for vs float s−1

rhograd vertical gradient for rho float kg/m4

The gradient optionsvpgrad , vsgrad , andrhograd are ways to specify linear profiles in thez-direction
(downward). Note that the unit forvpgrad andvsgrad is 1/seconds, which can be interpreted as m/s per
m, or km/s per km.

6.3.3 velocity file (vfile)

Required parameters:

• type of the input file (vp, vs, r)

• name of the file to be read

These command options may be used in conjunction with the box shaped sub-region options. (Table 6.3.1)

Option Description Type Units

type input file type (vp, vs, or r) string none
file name of input vfile string none

vp P-wave velocity float m/s
vs S-wave velocity float m/s
r density float kg/m3

ps p/s ratio float none
scaling factor multiplying vfile data when read float none
float machine type where the vfile was written string none

Values for the float option can be eitherlinux , sun , or native . The default isnative .

6.3.4 etree database files (efile)

Required parameters:

• model: name of the model to initialize materials from

• etree: full path to the etree database

These command options may be used in conjunction with the box shaped sub-region options (see table
in 6.3.1).

37

Option Description Type Units Default

model name of the model to be read in string none none
logfile name of file where output from etree file read will

go
string none none

vsmin minimum threshold for the s velocity in solids double m/s none
vpmin minimum threshold for the p velocity in solids double m/s none

water set to noshear, poisson, or seafloor string none noshear
query type of query to perform string none MAXRES
resolution for FIXEDRES, the resolution to sample the data double m h

etree full path to the etree database string none none
xetree full path to the extended etree database string none none

The query option can be set to one of the following:
Query Option Description
MAXRES This will sample the data at the maximum resolution available in the database,

which is the default query type for the efile option.
FIXEDRES This will sample the database at the requested resolution, even if the database

contains values at a higher resolution. This option defaults to the grid spacing
h, or can be specified with the resolution option.

For example, to set the data to be fixed at a 1km sampling:

efile model=SF query=FIXEDRES resolution=1000 etree=USGS-SF1906.etree

Note: If you would like to find out the locations of grid points which are found to be outside the etree
database domain, the logfile option can be used to track which points were not found. It will report points it
found outside the domain, as well as points it did not have data for (i.e., air just above water or a material).

6.4 Specifying the source (source)

The source location can be specified in terms of Cartesian coordinates(x, y, z), grid indices(i, j, k), or
geographic coordinates (lon,lat,depth). There can be multiple source terms where each source can have
different spatial location and be centered at different time levels.
Required parameters:

• Location of the source specified by Cartesian location, grid indices, or geographical coordinates

• Type of the source which can be specified in two ways:

1. Specifying a point force by the amplitude,F0, and at least one component of the force vector
(Fx, Fy, Fz)

2. Specifying a point moment tensor, which there are two ways:

(a) Seismic moment,M0, and at least one component of the moment tensor (Mxx, Mxy, etc)

(b) Seismic moment,M0, and double couple focal mechanism, strike/dip/rake angles (see [1]).

38

Option Description Type Units Default

x x position of the source float m none
y y position of the source float m none
z z position of the source float m none

i x grid point of the source int none none
j y grid point of the source int none none
k z grid point of the source int none none

depth depth of the source double m none
lat latitude geographic coordinate of the source double degrees none
lon longitude geographic coordinate of the source double degrees none

m0 moment amplitude float Newton-meter 1.0
Mxx the xx moment tensor component float none 0.0
Myy the yy moment tensor component float none 0.0
Mzz the zz moment tensor component float none 0.0
Mxy the xy moment tensor component float none 0.0
Mxz the xz moment tensor component float none 0.0
Myz the yz moment tensor component float none 0.0

f0 point force amplitude float Newton 1.0
Fx forcing function in the x direction float none 0.0
Fy forcing function in the y direction float none 0.0
Fz forcing function in the z direction float none 0.0

strike Aki and Richards strike angle float degrees none
dip Aki and Richards dip angle float degrees none
rake Aki and Richards rake angle float degrees none

t0 offset in time float s 0.0
freq frequency float none none
type selects a particular time dependent function string none RickerInt

Options for the time dependent function (type) include:GaussianInt, Gaussian, RickerInt,
Ricker, Ramp, Triangle, Sawtooth, Smoothwave, Brune , andBruneSmoothed .

6.5 Specifying output

6.5.1 commands to control stdout (fileio)

Required parameters:none

Option Description Type Units Default

name file header name to be prepended on all output filesstring none wpp
path path to a directory where all output will be written string none .
verbose sets the level of diagnostic messages written to stan-

dard out
int none 1

printcycle sets the interval for printing the cycle, time, dt info int none 100

39

6.5.2 SAC files (sac)

Required parameters:

• Location of the receiver in Cartesian, grid or geographic coordinates

Option Description Type Units Default

x x position of the receiver float m none
y y position of the receiver float m none
z z position of the receiver float m none

i x grid point of the receiver int none none
j y grid point of the receiver int none none
k z grid point of the receiver int none none

depth depth of the receiver float m none
lat latitude geographic coordinate of the receiver float degrees none
lon longitude geographic coordinate of the receiver float degrees none

sta name of the station string none file
sample sample factor or cycle interval for the seismogramint none 1
file file name header of the SAC file string none sac
type write out a binary or ascii SAC file string none binary
writeEvery cycle interval to write out the SAC file to disk int none 1000

eventDate date the event occured: YYYY/MM/DD int/int/int none date of run
eventTime time the event occured: hours:minutes:seconds int:int:int none time of run

6.5.3 2D slices of data (image)

Required parameters:

• Location of the image slice (x, y, z, i, j or k)

• Timing interval (time, timeInterval, cycle or cycleInterval)

Option Description Type Units Default

x x location of visual plane float m none
y y location of visual plane float m none
z z location of visual plane float m none
i x direction node location of visual plane int none none
j y direction node location of visual plane int none none
k z direction node location of visual plane int none none

time simulation time to output image, will be closest de-
pending on dt taken

float s none

timeInterval simulation time interval to output series of images float s none
cycle time-step cycle to output image int none none
cycleInterval time-step cycle interval to output a series of imagesint none none
file file name header of image string none image
mode specifies which field is written to the image file string none rho

Options for mode include:

40

Value Description

ux displacement in the x-direction
uy displacement in the y-direction
uz displacement in the z-direction
rho density

lambda lambda
mu mu
p p velocity
s s velocity

div divergence (div) of the displacement
curl magnitude of the rotation (curl) of the displacement

veldiv divergence (div) of the velocity
velcurl magnitude of the rotation (curl) of the velocity

hvelmax maximum in time of the horizontal velocity
vvelmax maximum in time of the vertical velocity
haccmax maximum in time of the horizontal acceleration
vaccmax maximum in time of the vertical acceleration

topo topography or elevation [only available with efile input]

6.5.4 3D volumetric data (image3d)

Required parameters:

• Image mode (see image mode command options)

• Timing interval (time, timeInterval, cycle or cycleInterval)

Option Description Type Units Default

time simulation time to output volumetric image, will be
closest depending on dt taken

float s none

timeInterval simulation time interval to output series of volumet-
ric images

float s none

compressionFactor option to vary how much accuracy will be preserved
during compression

float none 0.0001

cycle time-step cycle to output volumetric image int none none
cycleInterval time-step cycle interval to output a series of volu-

metric images
int none none

file file name header of volumetric image string none image3d
mode specifies which field string none none
topdirmod option to change how many top level directories are

written
int none 100

logifymin option to set min value to convert field to before
compression

float none 1e-8

logifymax option to set max value to convert field to before
compression

float none 1e+8

sample interval on which to sample the data in the x,y and z
direction

int none 1

verbose flag to output more info on write int none 0

41

Note: Options for mode include all image modes except topo - it is only for making slices in the xy plane.

6.5.5 saving and restoring the simulation (restart)

Required parameters:none

Option Description Type Default

file file header name to be prepended on restart files string wpp restart
dumpInterval sets the interval for writing out restart files int 0
fromCycle cycle from which to restart the code int 0

6.6 Specifying numerical simulation controls

6.6.1 curl-curl damping command options (in water only)

Required parameters:none

Option Description Type Default

curlcurl Turn on the curlcurl-damping int 0
curlCFL A normalized version of coefficientd2 above float 0

6.6.2 Controlling solid body motion (projection)

Required parameters:none

Option Description Type Default

projectionInterval Remove invariants each projectionInterval:th time
step

int 1000

42

Chapter 7

Building WPP

WPP source can be downloaded from:

http://www.llnl.gov/CASC/serpentine/software.html

Note: A really detailed example for Mac OS X build and install can be found in section 7.8.

7.1 Supported platforms

WPP and its supporting libraries have been built on LINUX based desktops and supercomputers. We have
built WPP using both the Gnu and Intel compilers. If the third party libraries can be built successfully on a
platform, WPP will most likely also work.

Gnu: g++/gcc/g77 version 4.0.2
Intel: icpc/icc/ifort version 9.1

7.2 Build tools

WPP does not use autoconf and automake (i.e.,configure andmake), but instead SCons (scons) which
is a software construction tool intended to replace autoconf and automake. Unlike the two step process with
runningconfigure and thenmake, with SCons both the configuration and build steps occur during the
scons command. To use SCons as a build system, there are two tools required:

• python A powerful scripting language written in C

• scons A python based software construction tool

Assumingpython is already installed (v2.3.5 or higher fromwww.python.org), it is straightforward
to installscons . You can test to see if python is installed by typingwhich python at the command line.
SCons can be downloaded from the websitewww.scons.org (v0.96.1), to install it, simply invoke the
following command from the top level directory:

shell> python setup.py install --prefix=/dir/of/your/choice

Note: scons andpython can be installed anywhere in your path. Typically people have them installed
into /usr/local/bin , however if you don’t have root access any other directory reachable by your
UNIX path will work.

43

7.3 Directory structure

For more detailed information about the files and directories in the WPP source, please readwpp-v1.0/README.txt
after you’ve untared your tarball.

shell> gunzip wpp-v1.0.tar.gz; tar xfv wpp-v1.0.tar

This will create a directory namedwpp-v1.0 which will contain several files and subdirectories:

• INSTALL.txt Information about how to build WPP

• KNOWN-BUGS.txt List of known problems or issues with porting or other bugs

• README.txt

• TPL.txt Details about building the third party libraries WPP requires

• configs Directory which contains build configuration files

• src1.0 C++ and Fortran source of WPP

• tools Matlab scripts which may be helpful for post processing and analysis

• tests/examples Referenced and documented examples from the users guide

• utilities Auxiliary code used to interface with the cencalvm library

• SConstruct A SCons ”makefile”

• wave.py python script used to print ”WPP Lives” at end of build

7.4 Third party library (TPL) build instructions

In addition to requiring the two build tools, there is a minimal set of third party libraries which WPP depends
upon:

• blitz A powerful library which contains the array class WPP uses

• mpi/mpio An implementation of the Message Passing Interface (MPI) which WPP uses for its
parallelism.

The WPP build system expects the third party libraries to all be collocated in the same directory. This
can be accomplished by actually building them all into the same install directory - or creating a directory
and symlinking to already built third party libraries. In any case, we will refer to this common directory as
TPLDIR.

44

| wpp_v1.0 |
|____________|

/ \
/ \

/ \
________ ________

... README.txt | src1.0 | SConstruct | TPLDIR | ...
|________| |________|

[...] / | \
_____ _______ _______

... | bin | |include| | src | ...
|_____| |_______| |_______|

/ | \
_________ ________ _____

... |blitz-0.9||cencalvm| | ... |
|_________||________| |_____|

Make an install directory for the third party library sets and a source directory where all the tarfiles will be
located:

shell> mkdir TPLDIR
shell> mkdir TPLDIR/src

Setup the environment to point to the C++/C/Fortran compilers of your choice. On LINUX installations
we normally will use the Gnu compilers. These are used by the TPL build processes. We will also use an
environment variable to refer to the third party library install location:

shell> setenv WPP_TPL TPLDIR
shell> setenv CC gcc
shell> setenv CXX g++
shell> setenv F77 g77

NOTE For third party libraries installed at LLNL, please see specific instructions found in TPL.txt. This
includes platform and OS specific gotchas we have encountered porting these libraries.

7.4.1 Message Passing Interface (MPI) library (REQUIRED)

WPP should be compatible with any standardized version of MPI. It requires the MPI-IO library, from the
MPI-2 Standard. If you don’t already have a vendor version of MPI for your cluster/machine, we recommend
using the mpich implementation from Argonne Labs (v1.0.3 from www-unix.mcs.anl.gov/mpi/mpich) To
build this implementation:

shell> ./configure --prefix=${WPP_TPL} --disable-f77 --disable-f90 \
|& tee configure.log

shell> make |& tee make.log
shell> make install |& tee install.log
shell> setenv PATH ${WPP_TPL}/bin:$PATH

45

To make sure you are going to pick up the right daemon andmpirun script, execute:

shell> which mpd; which mpirun; which mpiexec

These should refer to the ones where you just built it. Now, start anmpddaemon.

shell> mpd &

Note: if one is already running, kill it with

shell> mpdallexit

Ensure it works:

shell> mpdtrace

This should return your host. To test the implementation works:

shell> make testing

7.4.2 BLITZ++ array library (REQUIRED)

WPP builds successfully with version 0.9 fromhttp://www.oonumerics.org/blitz . To build this
library:

shell> cd blitz-0.9
shell> ./configure --prefix=${WPP_TPL}
shell> make lib
shell> make install
shell> make check-testsuite

7.5 Configuring and building WPP

For a minimal installation you are now set to configure and build WPP. If you want support for the efile
command and the image3d command you should first install the libraries as described in Sections 7.6 and
7.7 below.

To build WPP on your local system, you will need to create a configuration file. Examples are shown
in the configs directory, a detailed example can be found in configs/template.py. Once you have created a
configuration file, say configs/myconfig.py, you will need to set the WPPCONFIG env variable to locate it.

shell> setenv WPPCONFIG configs/myconfig.py

7.5.1 Invoking scons to build WPP

From the top level directory, where the SConstruct file is located:

shell> scons -h

46

This will give you the build options (debug/opt/etc.) For building an optimized executable:

shell> scons

This will read in your configuration file, and build WPP. If you have questions, please email Kathleen
McCandless at mccandless2@llnl.gov

7.6 Additional libraries required for the efile command (OPTIONAL)

To utilize the efile material command, WPP requires three additional libraries. Note that these libraries are
only needed if you want to use the efile command.

Efile Option Libraries Version Location

etree 3.0 www.cs.cmu.edu/ euclid/
proj4 4.4.9 proj.maptools.org
cencalvm 0.4.1 ftp://ehzftp.wr.usgs.gov/baagaard/cencalvm/software

To enable the use of the efile command, configure WPP with-DENABLE ETREE. This can be set in the
CXXFLAGS (see configs/tux-all-libs.py).

7.6.1 Euclid etree database query library (OPTIONAL)

Seehttp://www.sf06simulation.org/geology/velocitymodel/querydoc/INSTALL.html
for more details

shell> cd euclid3-1.2/libsrc
shell> make

There is no install target so the files have to be copied to the install directories:

shell> cp *.h ../../../include/.
shell> cp libetree.* ../../../lib/.

Set environment variables which are needed during the cencalvm build. These are not needed during a WPP
compile, just building the cencalvm library

shell> setenv ETREE_LIBDIR ${WPP_TPL}/src/euclid3-1.2/libsrc
shell> setenv ETREE_INCDIR ${ETREE_LIBDIR}
shell> setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${ETREE_LIBDIR}

7.6.2 PROJ4 Projection Library (OPTIONAL)

shell> ./configure --prefix=${WPP_TPL}
shell> make
shell> make install
shell> setenv PROJ4_LIBDIR ${WPP_TPL}/lib
shell> setenv PROJ4_INCDIR ${WPP_TPL}/include
shell> setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${PROJ4_LIBDIR}

Note: Environment variables above are used in cencalvm library build

47

7.6.3 Central California velocity model query library (OPTIONAL)

shell> ./configure --prefix=${WPP_TPL} \
CPPFLAGS="-I${ETREE_INCDIR} -I${PROJ4_INCDIR}" \
LDFLAGS="-L${ETREE_LIBDIR} -L${PROJ4_LIBDIR}" \
CC=${CC} CXX=${CXX} F77=${F77}

shell> make
shell> make install

7.7 Additional library for image3d command (OPTIONAL)

To use theimage3d command, WPP must be built with the-DENABLE BOW directive. This can be set
in theCXXFLAGS(seeconfigs/tux-all-libs.py). The brick of wavelet (BOW) library is a part of
LibGen, we used a version from October 2006. Seewww.cognigraph.com/LibGen/ to download it.

7.7.1 Building BOW

Edit the makescript to unset ZINCLUDE from ../../Gzlib/zlib to .

set ZINCLUDE = .

shell> ./makescript
shell> cp *.h ../../include/.
shell> cp *.a ../../lib/.

7.8 Detailed build example for Mac OS X

This describes how to install WPP and its required libraries in a directory/Users/daniel/wpp using C
shell (csh). It may require you to download and installg77 , (seehttp://hpc.sourceforge.net/).
Also please note this example differs slightly from the directory structure described previously.

[˜/wpp] % pwd
/Users/daniel/wpp
[˜/wpp] % csh
[˜/wpp] % ls
blitz-0.9.tar.gz g77-bin.tar.gz mpich2-1.0.5p4.tar.gz
scons-0.97.tar.gz wpp-v1.0.tar.gz

Start by installing g77 (you must be able to sudo as root to do this)

[˜/wpp] % gunzip g77-bin.tar.gz
[˜/wpp] % sudo tar -xvf g77-bin.tar -C /.
Password:
usr/local/
usr/local/bin/
usr/local/bin/cpp
usr/local/bin/g77
...
...

48

[˜/wpp] % setenv PATH /usr/local/bin:$PATH
[˜/wpp] % g77
g77: no input files
[˜/wpp] % which g77
/usr/local/bin/g77

Now install scons

[˜/wpp] % gunzip scons-0.97.tar.gz
[˜/wpp] % tar -xf scons-0.97.tar
[˜/wpp] % cd scons-0.97
[˜/wpp/scons-0.97] % python setup.py install --prefix=/Users/daniel/wpp/scons
...
...

[˜/wpp/scons-0.97] % setenv PATH /Users/daniel/wpp/scons/bin:$PATH
[˜/wpp/scons-0.97] % cd ..
[˜/wpp] % which scons
/Users/daniel/wpp/scons/bin/scons

Install WPP’s libraries in/Users/daniel/wpp/wpplibs , start with mpich2

[˜/wpp] % mkdir wpplibs
[˜/wpp] % mv mpich2-1.0.5p4.tar.gz wpplibs/
[˜/wpp] % cd wpplibs/
[˜/wpp/wpplibs] % gunzip mpich2-1.0.5p4.tar.gz
[˜/wpp/wpplibs] % tar -xf mpich2-1.0.5p4.tar
[˜/wpp/wpplibs] % cd mpich2-1.0.5p4
[˜/wpp/wpplibs/mpich2-1.0.5p4] % setenv WPP_TPL /Users/daniel/wpp/wpplibs
[˜/wpp/wpplibs/mpich2-1.0.5p4] % setenv CC gcc
[˜/wpp/wpplibs/mpich2-1.0.5p4] % setenv CXX g++
[˜/wpp/wpplibs/mpich2-1.0.5p4] % setenv F77 g77
[˜/wpp/wpplibs/mpich2-1.0.5p4] % ./configure --prefix=${WPP_TPL} \

--disable-f77 --disable--f90 | & tee configure.log
[˜/wpp/wpplibs/mpich2-1.0.5p4] % make |& tee make.log
[˜/wpp/wpplibs/mpich2-1.0.5p4] % make install | & tee install.log
[˜/wpp/wpplibs/mpich2-1.0.5p4] % setenv PATH ${WPP_TPL}/bin:$PATH
[˜/wpp/wpplibs/mpich2-1.0.5p4] % which mpd; which mpirun;
/Users/daniel/wpp/wpplibs/bin/mpd
/Users/daniel/wpp/wpplibs/bin/mpirun
[˜/wpp/wpplibs/mpich2-1.0.5p4] % mpd &
[1] 8732
[˜/wpp/wpplibs/mpich2-1.0.5p4] % mpdtrace
datan
[˜/wpp/wpplibs/mpich2-1.0.5p4] % make testing

Here some tests failed (16 to be precise) but it did not seem to matter for the WPP installation. Now let’s
install blitz++:

49

[˜/wpp/wpplibs/mpich2-1.0.5p4] % cd ..
[˜/wpp/wpplibs] % cd ..
[˜/wpp] % mv blitz-0.9.tar.gz wpplibs/
[˜/wpp] % cd wpplibs/
[˜/wpp/wpplibs] % gunzip blitz-0.9.tar.gz
[˜/wpp/wpplibs] % tar -xf blitz-0.9.tar
[˜/wpp/wpplibs] % cd blitz-0.9
[˜/wpp/wpplibs/blitz-0.9] %
[˜/wpp/wpplibs/blitz-0.9] % ./configure --prefix=${WPP_TPL}
[˜/wpp/wpplibs/blitz-0.9] % make lib
[˜/wpp/wpplibs/blitz-0.9] % make install
[˜/wpp/wpplibs/blitz-0.9] % make check-testsuite

All tests passed, woo hoo!Finally we install WPP: copy the filemacconfig.py (see below) into
/Users/daniel/wpp/wpp-v1.0/configs/macconfig.py

[˜/wpp/wpplibs/blitz-0.9] % cd ..
[˜/wpp/wpplibs] % cd ..
[˜/wpp] % gunzip wpp-v1.0.tar.gz
[˜/wpp] % tar -xf wpp-v1.0.tar
[˜/wpp] % setenv WPPCONFIG /Users/daniel/wpp/wpp-v1.0/configs/macconfig.py
[˜/wpp] % cd wpp-v1.0
[˜/wpp/wpp-v1.0] % scons

If all works you should now see:

‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘

____ __ ____ .______ .______
\ \ / \ / / | _ \ | _ \

\ \/ \/ / | |_) | | |_) |
\ / | ___/ | ___/

\ /\ / | | | |
__/ __/ | _| | _|

__ __ ____ ____ _______ _______. __
			\ \ / /	____	/		
			\ \/ /		__	(----‘	
			\ /	__	\ \		
‘----.		\ /		____.----)		__	
_______		__	__/	_______	_______/ (__)		

in /Users/daniel/wpp/wpp-v1.0/optimize

‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘

Now we shall invoke the example from Section 1.2:

[˜/wpp/wpp-v1.0] % cd tests/examples/

50

[wpp-v1.0/tests/examples] % cp ../../optimize/wpp .
[wpp-v1.0/tests/examples] % mpirun -np 4 ./wpp lamb.in

It might be a good idea to save the following lines into a file calledwppsetup.csh then you can type
source wppsetup.csh in csh when you want to runwppusing mpirun or if you want to recompile.

setenv PATH /Users/daniel/wpp/scons/bin:$PATH
setenv WPP_TPL /Users/daniel/wpp/wpplibs
setenv PATH ${WPP_TPL}/bin:$PATH
setenv CC gcc
setenv CXX g++
setenv F77 g77
setenv WPPCONFIG /Users/daniel/wpp/wpp-v1.0/configs/macconfig.py

Alternatively you could copy the following lines into your˜/.profile file:

export PATH=/Users/daniel/wpp/scons/bin:$PATH
export WPP_TPL=/Users/daniel/wpp/wpplibs
export PATH=${WPP_TPL}/bin:$PATH
export CC=gcc
export CXX=g++
export F77=g77
export WPPCONFIG=/Users/daniel/wpp/wpp-v1.0/configs/macconfig.py

Save the text below asmacconfig.py and change the line:

env.Replace(WPPLIBDIR = os.path.join(os.sep,
’Users’, ’daniel’, ’wpp’, ’wpplibs’))

to point to your library directory.

[wpp-v1.0/configs/] % cat macconfig.py
-*- python -*-
import os

Bring in information from the SConstruct file
Import(’env’)

To locate your third party libraries built for wpp, set the "tool" directory
env.Replace(WPPLIBDIR = os.path.join(os.sep,

’Users’, ’daniel’, ’wpp’, ’wpplibs’))

Set a different C++, C and Fortran compiler.
env.Replace(CXX = os.path.join(env[’WPPLIBDIR’], ’bin’, ’mpicxx’))
env.Replace(CC = os.path.join(env[’WPPLIBDIR’], ’bin’, ’mpicc’))
env.Append(FORTRAN = os.path.join(os.sep, ’usr’, ’local’ , ’bin’, ’g77’))

Set C and C++ compiler flags
env.Append(CCFLAGS = ’ -DHAVE_MPI_CPP -Wno-long-double’)
env.Append(CXXFLAGS = ’ -DHAVE_MPI_CPP -Wno-long-double’)

51

Depending on which Fotran compiler you use, you may need this option
env.Append(F77FLAGS = " -fno-underscoring -fcase-upper")
env.Append(FORTRANFLAGS = env[’F77FLAGS’])

Any other system libraries that may be required
env.Append(EXTLIBS = ’g2c’)

MPI Library, includes for C++ bindings
mpi2cxx = os.path.join(env[’WPPLIBDIR’], ’include’, ’mpi2c++’)

env.Append(WPPINCDIRS = os.path.join(os.sep, ’usr’, ’include’ , ’malloc’))

52

Index

block options
see sub-region options, 35
vp, vs, r, ps, vpgrad, vsgrad, rhograd, 36

command
block, 35
damping, 41
efile, 36
fileio, 38
grid, 34
image, 39, 40
projection, 41
restart, 41
sac, 39
source, 37
time, 35
vfile, 36

command line options
-v version info, 4

coordinate system, 3

efile options
model, logfile, vsmin, vpmin, water, query,

resolution, etree, xetree, 37
see sub-region options, 35

fileio options
name, path, verbose, printcycle, 38

geographic coordinates, 10
grid options

location - az, lat, lon, 34
size - x, y, z, h, nx, ny, nz, 34

grid size, 18

image options
file, mode, 39
location - x, y, z, i, j, k, 39
timing - time, timeInterval, cycle, cycleInter-

val, 39
image3d options

file, mode, topdirmod, logifymin, logifymax,
compressionFactor, verbose, sample, 41

timing - time, timeInterval, cycle, cycleInter-
val, 41

parallel execution, 3

restart options
file, dumpInterval, fromCycle, 41

sac options
location - x, y, z, i, j, k, lat, lon, depth, 39
sta, sample, file, type, writeEvery, eventDate,

eventTime, 39
source options

Aki and Richards - strike, dip, rake, 38
location - x, y, z, i, j, k, depth, lat, lon, 38
moment - m0, Mxx, Myy, Mzz, Mxy, Mxz,

Myz, 38
point force - f0, Fx, Fy, Fz, 38
t0, freq, type, 38

source time dependence
GaussianInt, Gaussian, RickerInt, Ricker, Ramp,

Triangle, Sawtooth, Smoothwave, Brune,
BruneSmoothed, 38

srun, 3
sub-region options

x1, x2, x, y1, y2, y, z1, z2, z, i1, i2, i, j1, j2, j,
k1, k2, k, 35

time options
t, steps, 35

units, 3

vfile options
see sub-region options, 35
type, file, vp, vs, r, ps, scaling, float, 36

53

Bibliography

[1] K. Aki and P.G. Richards.Quantitative Seismology. University Science Books, second edition, 2002.

[2] P. Goldstein, D. Dodge, M. Firpo, and L. Miner.International Handbook of Earthquake and Engineer-
ing Seismology, volume 81B, chapter SAC2000: Signal processing and analysis tools for seismologists
and engineers, pages 1613–1614. International Association of Seismology and Physics of the Earth’s
Interior, 2003.

[3] B. Gustafsson, H.-O. Kreiss, and J. Oliger.Time dependent problems and difference methods. Wiley–
Interscience, 1995.

[4] H. Lamb. On the propagation of tremors over the surface of an elastic solid.Phil. Trans. Roy. Soc.
London, Ser. A, 1904.

[5] Harold M. Mooney. Some numerical solutions for Lamb’s problem.Bulletin of the Seismological
Society of America, 64, 1974.

[6] S. Nilsson, N.A. Petersson, B. Sjögreen, and H.-O. Kreiss. Stable difference approximations for the
elastic wave equation in second order formulation. Technical Report UCRL-JRNL-222276, Lawrence
Livermore National Laboratory, 2006. Accepted for publication in SIAM J. Numer. Anal.

54

	Getting started
	Running WPP
	Introductory example: Lamb's problem

	Coordinate system, units and the grid
	Geographic coordinates

	Sources, time-functions and grid sizes
	Sources and time-functions in WPP
	Gaussian
	GaussianInt
	Ricker
	RickerInt
	Triangle
	Sawtooth
	Ramp
	Smoothwave
	Brune
	BruneSmoothed
	VerySmoothBump

	How fine does the grid need to be?
	Lamb's problem revisited

	The material model
	The block command
	Modeling water with blocks

	The vfile command
	The efile command
	Modeling water with Etree models

	Output options
	Setting the output directory
	Time-history at a point: the sac command
	2-D cross-sectional data: the image command
	Volumetric data: the image3d command
	Restart files

	Keywords in the input file
	Specifying the grid parameters (grid) [required]
	Specifying the time parameters (time) [required]
	Specifying the model [required]
	specifying a box shaped sub-region
	basic block command (block)
	velocity file (vfile)
	etree database files (efile)

	Specifying the source (source)
	Specifying output
	commands to control stdout (fileio)
	SAC files (sac)
	2D slices of data (image)
	3D volumetric data (image3d)
	saving and restoring the simulation (restart)

	Specifying numerical simulation controls
	curl-curl damping command options (in water only)
	Controlling solid body motion (projection)

	Building WPP
	Supported platforms
	Build tools
	Directory structure
	Third party library (TPL) build instructions
	Message Passing Interface (MPI) library (REQUIRED)
	BLITZ++ array library (REQUIRED)

	Configuring and building WPP
	Invoking scons to build WPP

	Additional libraries required for the efile command (OPTIONAL)
	Euclid etree database query library (OPTIONAL)
	PROJ4 Projection Library (OPTIONAL)
	Central California velocity model query library (OPTIONAL)

	Additional library for image3d command (OPTIONAL)
	Building BOW

	Detailed build example for Mac OS X

