
JADE Computer Note 103
Sep 20th, 2003

A Guide to the
Resurrected JADE Data and Software

Pedro A. Movilla Fernández

Contents

1 Introduction 1

2 Description of the Programs 2

2.1 The Tracking Simulation . 2

2.2 The JADE Supervisor . 3

2.3 The ZE4V Formatting . 5

2.4 The JADE Event Display . 6

3 Description of the JADE Data 9

3.1 Data Formats . 9

3.1.1 BOS Records . 9

3.1.2 ZE4V Records . 10

3.2 Data Preprocessing History . 10

3.3 Currently Usable Files . 11

3.3.1 Available ZE4V Versions of Real Data . 12

3.3.2 Available ZE4V Versions of MC Data . 12

3.3.3 Available BOS Versions of MC Data . 13

3.4 Calibration Files . 13

4 JADE Program Libraries 14

4.1 Location . 14

4.2 Organisation . 14

4.3 Installation . 16

5 Handling of the Main Programs 16

5.1 mcjade . 17

5.2 superv . 21

5.3 ze4v . 27

5.4 jadesim . 30

5.5 jadez . 34

6 Utility Programs 37

6.1 QCD Event Generator Package and CPROD Interface 37

6.2 Example Program for Processing ZE4V Data . 39

6.3 Conversion Tool for the JADE Calibration Files 39

i

7 The Reactivation of the JADE Software 39

7.1 Original Source Code . 39

7.2 Tasks . 40

7.3 Handling of the Precompiler Code . 40

7.4 Software Interfaces . 40

7.4.1 Former DESY Library and IBM/370 FORTRAN Intrinsics 41

7.4.2 PLOT-10 Terminal Control System . 42

7.4.3 Remarks to Bit/Byte Handling Problems 44

7.5 Further Code Changes . 47

8 Remaining Tasks 49

A JADE BOS Banks 50

B JADE Data and Monte Carlo Files 51

B.1 ZE4V Data . 51

B.2 ZE4V MC . 51

B.3 BOS MC and CPROD files . 51

B.4 Raw JADE Data (FPACK format) . 52

C JADE Interactive Graphics Commands 56

ii

A Guide to the

Resurrected JADE Data and Software

Pedro A. Movilla Fernández
(pedro@mppmu.mpg.de)

JADE Computer Note 103
Sep 20th, 2003

Abstract

This software note reviews the currently usable JADE data and the resurrected JADE
software and includes a brief instruction manual for the detector simulation, the event re-
construction software and further utility programs.

1 Introduction

The present software note describes those parts of the JADE software and data sets which were
resurrected within the framework of the re-analysis of the JADE data [1]. It is mainly intended
as a guide for the correct handling of various stand-alone programs: the simulation of the
JADE detector (MCJADE), the event analysis program formerly known as the JADE “Supervisor”
(SUPERV), the JADE event display (JADEZ), and a data formatting package useful for top level
physics analyses of multihadronic data (ZE4V). Detailed information about these programs are
spread more or less incoherently over various ”historical” JADE notes, JADE computer notes,
and Ph.D. theses. The present note is an attempt to summarise the most relevant information
taken from these sources and the program code itself. It might serve as a first orientation and
a starting point to solve still remaining tasks.

The reanimation of the JADE software was mainly motivated by the necessity to perform tests
of Quantum Chromodynamics at PETRA energies on the basis of state-of-the art methods. The
programs considered here are essential to study the impact of the limited detector resolution and
acceptance on the measurement of physical observables like event shapes and particle spectra.
Some of the recently performed QCD analyses (e.g. [2, 3, 4]) are already based on newly generated
detector simulation samples with modern underlying e+e− event generators.

A bigger part original software was developed on the former data acquisition computer (NORD-
10S/50) of the JADE experiment as well as on the offline analysis computers (IBM/370) of
the DESY computer centre [5]. Unfortunately, the documentation of the program libraries is
partially rather imprecise and ambiguous. Anyhow, it was possible to adapt the programs on
current computer platforms [1]. The most complete and successful tests were performed on IBM
RS/6000 AIX machines. An adaption of the complete libraries to other computer platforms
should be straight forward.

The note is organised as follows1. Section 2 gives an introductory overview of the main actions
and functions of the programs, i.e. it sketches the simulated physical processes in the detector

1The reader who is not interested in all the technical details described in the note but want to use the programs
should proceed to Section 4.1 and Section 4.3 for installation and Section 5.4 for running the programs.

1

and the main event analyses steps. Section 3 focuses on the structuring and the preprocessing
history of the JADE data and describes the currently available data files. Section 4 describes the
organisation of the program libraries and explains how to install them. The instruction guide
for handling the main programs is presented in Section 5 which also includes a brief technical
description of program flow. Section 6 describes some utility programs to handle the input and
output data of the programs. The following two sections are intended only for those who want
to perform further code development: Section 7 gives some technical details on the adaption
adaption of the JADE software on current computer platforms, and Section 8 concludes with a
summary of the remaining problems related to the software and the data.

2 Description of the Programs

In the following, the functionality of the reactivated parts of the programs based mainly on the
standard settings of the steering parameters is summarised. See the references cited for more
details. Some more technical information how to run these programs is given in Section 5. A
description of the components of the JADE detector mentioned below can be found in [6].

2.1 The Tracking Simulation

MCJADE [7, 8] is the main steering routine for the simulation of the JADE detector response
(“tracking simulation”). The program contains a detailed encoding of the geometry and the
material composition of the detector. It passes a four-vector particle configuration externally
provided by an event generator through the simulated JADE apparatus. Scattering processes
through the various components and the probability of secondary meson decays are calculated
at regular intervals along the particle trajectory. Monte Carlo methods are used to simulate the
response of various subsystems, e.g. hits in the Jet Chamber and the energy deposited in the
Lead Glass shower counters. The simulation of hits in the Jet Chamber is performed with 100%
accuracy at this stage, with no noise or ”dead” drift cells.

The program considers the following particles: photons, electrons, muons, pions, protons and
neutrons, charged kaons and K0

L. Charged particles are taken through helix trajectories up to
the coil or the end caps of the Lead Glass, respectively. Multiple scattering off the traversed
material (i.e. beam pipe, pressure vessel wall, Jet Chamber cell walls, drift gas) as well as the
energy loss due to ionisation and bremsstrahlung is taken into account. Also nuclear interactions
in the pressure wall and in the solenoid are considered. The position of the responding wires
and the drift times are calculated taking magnetic field dependencies into account.

Neutral particles are tracked linearly from the interaction point to the Lead Glass. At each
material layer, the photons are tested for conversion, with the resulting e+e− pair tracked
through the detector like two charged particles. The simulation of the energy deposition in the
Lead Glass is based on the empirical shower profiles in Ref. [9, 10, 11], taking light guide effects,
possible hadronic interactions and the energy loss between the Inner Detector and the shower
counters into account. Hadronic showers as well as low energetic electromagnetic showers are
approximated in one dimension w.r.t. the direction of incident particle, whilst the evolution
of the shower of high energetic electrons and photons is based on a three-dimensional shower
profile [11]. Conversion and absorption losses in the material in front of the Lead Glass surface
as well as energy fluctuations due to the varying penetration depths of photons are considered.

2

In case of minimal ionising particles, the energy may also be deposited directly, i.e. without
any shower development. Nuclear interactions of neutral hadrons are neglected. The readout
thresholds of the Lead Glass counters are set like in the experiment.

The tracking program contains also a simulation of the tagging system [12].

In the standard version of MCJADE, only track hits in the Jet Chamber and, depending on the
detector configuration date, in the Vertex Chamber are generated. The program currently
neither supports a simulation of the Z Chamber data nor the Muon System response. In the
past, also a program version including the simulation of the Muon System was in use [13].
Unfortunately, the corresponding software libraries could not be retrieved as yet.

A more detailed simulation of the Lead Glass showers which is known as the “Tokyo Shower
Program” [14, 15] is available but not reactivated as yet. This program considers the yield
of Čerenkov photons induced by relativistic particles and also takes various secondary effects
(reflexion and absorption effects within the counters and light guides, detection efficiencies of
the photo multipliers) into account. This version was used in special JADE studies but never
became standard at PETRA times due to the extreme computing time of the showers.

For historical reasons, the simulation of the resolution and inefficiencies of the JADE detector
(”smearing simulation”) as well as of the triggers is separated from the pure tracking simulation.
Currently, these tasks are embedded within the standard JADE Supervisor, see below.

2.2 The JADE Supervisor

The JADE Supervisor SUPERV [16] coordinates various standard analysis routines used for the
reconstruction of both real and Monte Carlo events. The present version supports an event
analysis based on the data from the Jet Chamber, the Lead Glass calorimeter, and the Muon
System. For the reasons given above, the latter is not relevant for Monte Carlo data provided
by the present version of MCJADE. The program also comprises a simulation of the real detector
resolution in case of unsmeared Monte Carlo events, as is the case for the standard MCJADE

output.

Track Finding

The pattern recognition of tracks [17, 6] in the Jet Chamber is performed in the r-φ plane
because the measurement of the drift time is by two orders of magnitudes more precise than the
measurement of the z coordinate. First, triplets of adjacent wires which lie on a straight line
are searched for and then connected to form track elements within each cell. Tentative parabola
fits to the associated hits are performed, thus resolving most of the left-right ambiguities. Track
elements in different cells are combined by extrapolating the resulting curves within given limits,
starting in the outermost ring and going inwards. A fit is made to all points by a parabola or,
in case of low track momenta, by a circle. Finally, all hits in the vicinity of the trajectory are
re-examed and added to the track if they agree with within a given tolerance. For the points
selected in this way, a straight line fit is attempted in the r-z plane which is repeated after
eliminating badly fitting hits.

Several subroutines are available for refining the track fitting procedure, e.g. by adding vertex
constraints or by performing a three-dimensional helix fit. These are not considered in the

3

standard version of SUPERV, but an implementation is straight forward. An extended version
of the Supervisor that also includes additional analysis steps like track refitting, time-of-flight
analysis, the calculation of the specific ionisation loss dE/dx and more is embedded in the
interactive JADE graphics program JADEZ, see next Section.

The present version of the Supervisor does not contain an analysis of the Vertex Chamber and
Z Chamber data, since the corresponding software was never included in the standard libraries.

Cluster Finding

The cluster analysis algorithms are described in detail in [18, 19, 9]. The energy deposited in
a Lead Glass block is calculated from the photo multiplier signals using conversion constants
derived from an individual calibration of each block and a subsequent fine tuning at run time.
Clusters are reconstructed by firstly searching for adjacent counters which had registered pulses
above a fixed threshold value. Overlapping showers are identified by searching for nearby sep-
arable energy maxima within a coherent responding Lead Glass region. The sum of the block
energies gives a first approximation for the cluster energy.

In the next step, the tracks found in the Inner Detector are extrapolated into the Lead Glass and
then checked for correlation with clusters, taking multiple scattering and measurement errors
into account. The cluster energies are corrected for associated tracks. Unassociated clusters
are supposed to be photons. In case of associated clusters, a classification scheme depending on
cluster energies and track momenta is applied in order to check for electron or photon candidates.

The point of impact of an incident particle is estimated by calculating the energy weighted
coordinates of the Lead Glass blocks. In case of electron and photon candidates, the energy
dependent location of the shower maximum is taken into account. In a later step, the deter-
mination of the barycentre of the clusters is refined by fitting a three-dimensional theoretical
shower profile [9].

The raw cluster energies are corrected for various effects which were determined from a detailed
simulation of showers as a function of the shower energy and the angle of incidence [19, 20].
Among others things, the starting point of the shower in the material in front of the Lead Glass
surface, the point of impact on the Lead Glass surface, the angle dependency of Čerenkov light
yield, the read out thresholds, and the leaking of showers are taken into account.

Smearing and Trigger Simulation

Since the Inner Detector tracking is normally done with a fine resolution, a supplementary
simulation of the real detector resolution of the MCJADE output events is necessary. At PETRA
times it was common practice to handle the tracking and the smearing simulation separately
in order to save valuable computing time2. Once a tracking simulation of the ideal detector
has been performed, the resulting MC data banks are available for further MC processing using
the smearing conditions of different data taking periods but with one and the same detector
configuration.

2For example, the pure tracking of a typical multihadronic event on the historical IBM machines took 5
seconds [10] on the average.

4

10

20

30

40

50

1979 1980 1981 1982 1983 1984 1985 1986

 Jahr

√s [GeV]

dead cells
replaced

LG blocks
replaced

vertex chamber
Z chambers
installed

FADC
installed

Figure 1: The diagram shows the history of the PETRA centre-of-mass energies and the corresponding
detector status relevant for both the tracking and the smearing simulation. The vertical solid lines mark
major changes of the hardware configuration, the dashed lines indicate the different data taking periods
with constant smearing conditions.

The standard JADE Supervisor version allows to steer the smearing simulation subroutines3.
The following effects depending on the conditions of the various data taking periods are consid-
ered [21, 8]: A smearing of the drift times and z coordinates, the generation of random hits, the
elimination of hits according to wire efficiencies and inoperative (“dead”) cells, the merging of
nearby hits due to the limited double hit resolution. Furthermore, Lead Glass entries below a
readout threshold are deleted.

Finally, a simulation of the T1 and T2 triggers [8] is performed subsequently by simply testing
Lead Glass thresholds and logical combinations of drift cells with a minimum number of hit
wires, both of which are based on the preceding simulation of tracks and Lead Glass energies.

Major changes of both the hardware configuration and the smearing conditions encoded in the
JADE simulation as well as the centre-of-mass energies valid for the respective detector status
are summarised chronologically in Figure 1.

2.3 The ZE4V Formatting

The program ZE4V basically extracts the most relevant event analysis information as e.g. output
by the JADE Supervisor (e.g. track momenta from the pattern recognition and cluster energies

3It would be straight forward to organise the smearing step in another way, e.g. as a stand-alone program or
in the framework of the tracking simulation MCJADE.

5

from the Lead Glass analysis) and converts the data into so-called ZE4V records, see [22] for
a detailed description. This data format allows a faster access to the event information and
is more suitable for top level multihadron studies than the Supervisor result BOS banks. A
description of these data banks and of the ZE4V data is given in Section 3. The program is also
able to read information from so-called TP data banks [23], another useful format suited for top
level physics analyses.

In addition to the pure formatting, various cuts are imposed to the event information before
writing it into a ZE4V record. Each track is required to have at least 20 hits in the r-φ plane and
12 hits in the r-z plane. The radial distance Rmin between the track and the event vertex and
the absolute value of the z coordinate of the track origin must not exceed 50mm and 350mm,
respectively. The minimum momentum of a track must be greater than 50MeV/c. A Lead
Glass cluster is accepted as a photon candidate and kept in the record, if after subtracting the
minimum ionising energy for each connected track, the remaining cluster energy exceeds 50MeV.

During JADE operation, the ZE4V package never became part of the standard JADE libraries.
Several private program versions exist which were adapted for the special needs of individual
analyses. The present reactivated program performs additional analysis steps for electron can-
didates and also includes a simulation of the energy loss dE/dx of tracks in the case that Monte
Carlo data is processed.

2.4 The JADE Event Display

The interactive graphics program JADEZ [24] is an extended version of the JADE Supervisor
allowing for detailed graphical representations of the individual analysis steps and of the detector
components. The reconstruction details and the event display options can be steered very
flexibly by keyboard control and mouse actions. The steering commands are described in detail
in Section 5.5 and in Appendix C.

The default view of the event displays the central detectors, the Time-Of-Flight (TOF) ho-
doscope, and the Lead Glass shower array in the r-φ projection. Figure 2 shows a simulated
JADE event at a centre-of-mass energy of

√
s = 35GeV, corresponding to the detector con-

figuration of the year 1986. The top and the bottom of the event display contain some text
information like run and event number, data period, trigger information, and a brief summary
of the detector response. The energies shown in the Lead Glass blocks are in MeV and represent
the sum of all energies in the complete row of blocks along the z direction. The TOF results
are displayed in nanoseconds with the counter numbers also shown. The Jet Chamber and the
Vertex Chamber hits are drawn with their mirror hits. The right top and right bottom part of
the event display shows the orthogonal projections of the same event.

The figure at the bottom is a graphical representation of some of the main event reconstruction
results. Obviously, the left-right ambiguities in the Jet Chamber were resolved successfully,
random hits were rejected, and track elements found in the individual cells are connected to
tracks4. Furthermore, the cluster analysis was capable of identifying photon candidates.

The program supports a variety of further analysis steps as well as the manual editing of events
and the recalibration of the data,

4Note that the present version of the event analysis does not involve the Vertex Chamber data.

6

Figure 2: A newly simulated event at
√
s = 35GeV displayed by the JADE interactive graphics program

JADEZ in the r-φ projection. The upper plot shows the simulated hits in the Jet Chamber and the Vertex
Chamber (including left-right ambiguities), TOF entries and the sum of energies deposited in the Lead
Glass. The lower plot represents various results of the event reconstruction. The solid lines represent
the tracks found by the pattern recognition programs, the dashed lines indicate the results of the cluster
analysis.

7

Figure 3: A zoomed section of the reconstructed event shown in Figure 2 compared with the underlying
four vector data delivered by an external QCD event generator. The lines represent the extrapolated
trajectories of the initial particle configuration and of particles originating from secondary interactions
with the detector material (dotted lines are charged particles, wavelike lines are photons).

Figure 3 shows a zoomed section of the same event, with the initial particle four vector config-
uration supplied by a QCD event generator5 on top. Obviously, there is a correlation between
the simulated detector response and the four vector input. Furthermore, secondary interactions
which are also apparent in the real data are visible in the simulation (e.g. photon bremsstrahlung,
e+e− conversion, and multiple scattering). Various further event display pictures of these type
qualitatively demonstrate that the simulation and the analysis software packages work reliably.

Note that the historic version of the JADE graphics provided only a monochromatic view of
the event. In the reanimated version, colours were introduced in order to improve the graphical
representation of both the detector signals and the analysis information.

5
Pythia 5.7

8

3 Description of the JADE Data

This section is intended to give a principal idea of how the currently available JADE data are
structured. A summary of the processing history and a list of data files is presented.

3.1 Data Formats

All available JADE data, i.e. real data after the REDUC1/REDUC2 reduction steps [25, 26],as
well as the Monte Carlo data generated for the present reanalysis, are mainly organised in the
framework of the data management system BOS [27], version 1979. It was introduced in the
1970ties for the handling of the online and offline data flow of high energy physics experiments.
A JADE BOS record contains the full and detailed information about the response of all detector
subsystems and the event reconstruction results.

Several compact data formats with compressed JADE event information were used in the past for
various physics studies. The already mentioned ZE4V [22] format was initiated by a subgroup
of the JADE collaboration particularly for the studies of multihadronic final states, allowing for
a simplified handling of event information independently from BOS. Another commonly used
(but BOS based) data format with reconstructed and summarised JADE events is known as
the TP [23] format. Corresponding files were not retrieved as yet. However, the software for
creating TP data banks is partially available but not reactivated as yet.

3.1.1 BOS Records

Within the framework of BOS, all event data and analysis information are structured in banks of
variable length. A JADE event record is a dynamically arranged ensemble of standardised BOS
banks that represent the subsystems of the detector (the raw Jet Chamber data, the Lead Glass
ADC counts, etc.) or event analysis result information (tracks from the pattern recognition,
Lead Glass cluster, etc.). A complete JADE event record consists of about roughly two dozen
BOS banks.

A BOS bank is identified by a bank name and a bank number. Each bank has a header of four 32
bit words for administrative purposes (bank name, bank number, pointer to the next bank with
the same name, number of data words), followed by the data part. For illustrative purposes,
some of the most important BOS banks are sketched in the following:

The Jet Chamber data is supplied by the BOS bank named JETC [28] which is a bank of 16 bit
words. The first part of JETC contains pointers to the first hit in each of the 96 drift chamber
cells. In the second part, each measured hit is referred to by a sequence of four 16 bit integer
words representing the wire and hit number (combined to one 16 bit integer), the measured
pulse amplitudes at the two wire ends (ADC counts) and the drift time (a multiple of a given
time unit). The results of the track finding programs are stored in the track bank PATR [29]
and the hit label bank JHTL [30]. Each track in PATR is represented by a group of 32 bit integer
words and floating point numbers, giving information about the curvature, the fit type, the
corresponding fit parameters, the fit quality etc. The hit label bank contains two 16 bit words
for each measured hit which encodes the correlation between hits and tracks (e.g. distance
between hit and fitted track). The results of different analysis steps are labelled by different
numbers of the tracking bank. For example, PATR/10 (i.e. bank PATR number 10) is usually the

9

standard pattern recognition result bank, and PATR/8 may refer to the result of a refined track
fitting procedure, see e.g. [31, 32].

The raw Lead Glass data are supplied by the bank ALGL [18]. Basically, it contains ADC
counts (16 bit words) and the corresponding channel numbers (16 bit words) of hit blocks in
the Lead Glass hodoscope. The pulse heights converted to MeV (after calibration) and sorted
according to the clusters are stored in the bank ALGN [18]. The bank LGCL [18] contains the final
cluster analysis results, each cluster is represented by groups of 16-/32-bit integer and floating
point numbers giving information about cluster energies and directions, shower profiles, track
correlation, etc.

The names of the most important data banks and the corresponding references to explanatory
JADE Notes and JADE Computer Notes are summarised in Appendix A. The raw data and
reconstruction banks are generally organised as compact mixtures of 16 bit integers, 32 bit
integers, and floating point numbers, since at PETRA times data acquisition and processing
was dictated by the demand of saving memory resources. From the today’s point of view this
structuring of the data is extremely problematic since the correct accessing of a data words
or single bits in BOS banks might depend on the endian convention of the computer platform
(Section 7).

3.1.2 ZE4V Records

The ZE4V data format is intended to be administrated autonomously without using BOS,
although the ZE4V software itself handles them within the BOS environment. A ZE4V event
record is a mixture of 16 and 32 bit words. It starts with a global header part containing
information about the structuring of the event record and about global event properties. Then
follows the particles section with the measured quantities of the reconstructed charged particles
and photons. Each particle section begins with a general part (identical for charged and neutral
particles) containing the four momentum, charge etc. of the particle. This is followed either by
a specific section for charged particles (containing e.g. the number of Inner Detector hits or the
DOCA point of a track) or a specific section for neutral particles (containing e.g. the uncorrected
cluster energy, the number of responding Lead Glass blocks). A ZE4V record also foresees a
Monte Carlo section filled with the four vectors of the initial parton/hadron configuration of a
simulated event.

3.2 Data Preprocessing History

The JADE data have passed a multiple level trigger and various filtering programs. The first
level trigger T1 [33] was an energy trigger based upon the fast analogue signals of the Lead Glass.
The track trigger T2 [34] used the signals from the Jet Chamber, and the third level trigger
T3 [35] was based on the Muon Filter drift data. The trigger actions are summarised in [36, 6].
Parallel to the read-out, the events were processed by fast online filtering algorithms [36] (see
also [37, 38] for more details) in order to reject background events like cosmic events, beam-
gas interaction and electronic noise. The accepted events were directly transferred from the
data acquisition computer6 to the IBM mainframes7 of the DESY computer centre. The data

6A NORD-10S coupled with a NORD-50 by Norsk Data [39].
7IBM/370

10

acquisition system is described in detail in [40]. Both the online and the offline data flow were
managed within the BOS framework.

After a general reformatting procedure [6] and before entering any individual analysis chains, the
data were passed through a two-staged offline filtering procedure known as REDUC1 [25] and
REDUC2 [26], in order to further enrich the fraction of signal events in the data samples. The
standard cuts imposed at this stage are partially based on fully reconstructed event information
as e.g. supplied by the result banks PATR and LGCL of the Supervisor.

All currently available BOS raw data banks underwent these processing steps. In case of the
ZE4V data, the additional quality cuts for tracks and clusters described in Section 2.3 were
imposed.

3.3 Currently Usable Files

In 1997, the raw JADE BOS banks were transferred from the IBM computers of the DESY
computer centre onto EXABYTE cartridges [41]. The IBM data has been converted into a
machine independent word format using the FPACK conversion program [42] with the default
format ‘B32’, which means that the dynamical BOS bank data were rigidly copied word by word
as 32 bit patterns, irrespective of the fact that the BOS data banks are dynamically built up
by a mixture of data words of different types and lengths. Up to now, neither the FPACK data
were retranslated into the original BOS banks, nor the reactivated software has been extended
for handling FPACK records. As a consequence, the original raw JADE data are not readable
as yet, although the reactivated software should be capable of reading and processing binary
BOS banks with big endian scheme. In contrast to that, the format of the newly generated BOS
banks provided by the present detector simulation is suitable for the JADE Supervisor as long
as both programs run on the same computer platform.

Up to now, the following files are usable for the purpose of analyses:

• Real JADE data in ASCII formatted ZE4V: All usable real data on which the
JADE reanalysis is based as yet are available as plain text files logically structured like
ZE4V records. When transferring these data from the old IBM tapes to modern data
carriers, the memory consuming ASCII format was chosen in order to guarantee a simple
and unambiguous access to the information also on later computer platforms.

• MC JADE data:

– ASCII formatted ZE4V: The same as mentioned above applies also for some
“historical” detector Monte Carlo files preprocessed in the 1980ties.

– Binary formatted BOS: These are newly created BOS data banks from both the
detector simulation MCJADE and the subsequent event analysis programs SUPERV and
ZE4V described in Sections 2.1, 2.2, 2.3.

– Binary formatted ZE4V: These files were generated after processing the simulated
BOS banks with the ZE4V program (Section 2.3)

The currently usable files with the corresponding numbers of events are listed in Appendix B.

11

3.3.1 Available ZE4V Versions of Real Data

Two versions of data samples with enriched multihadronic events packed in the ZE4V format are
available as yet, commonly referred to as “9/87” and “5/88” data. The data belonging to the first
one were rescued from the original IBM computers of the DESY computer centre [43], the data
belonging two the second version were retrieved from magnetic IBM tapes found at the Physics
Department of the Heidelberg University [44]. The notations presumably correspond to the
reconstruction version based on the so-called “TP” event analysis program, see [45, 46, 32, 23].
The information stored in the ”general particle sections” of the ZE4V records (Section 3.1)
indicate that the currently available ZE4V data were not derived from the standard Supervisor
result banks (PATR, LGCL) but from the TP result banks (Appendix A). As already mentioned,
the ZE4V program provides also the processing of these banks. In contrast, the newly created
Monte Carlo ZE4V records are based on the SUPERV result banks.

Unfortunately, no detailed documentation of the exact preprocessing which the present data
underwent could be retrieved, so the differences between the two data versions are not clarified
up to now. Some information about presumably standard event reconstruction steps is given in
various JADE Computer Notes [45, 31, 47, 48, 49, 32], of which some of them explicitly refer to
TP program options.

Table 1 summarises the number of events after applying the multihadronic selection criteria [1]
to both data versions for selected run periods and energy bins. Generally, the 9/87 data sample
contains less multihadronic events. In case of the energy bin around 44GeV, a considerable
amount of events is missed in the 9/87 version compared to the 5/88 data.

3.3.2 Available ZE4V Versions of MC Data

The currently available preprocessed ZE4V Monte Carlo samples were obviously derived from
TP records as well, and not from the Supervisor result banks. They corresponding detector
simulation was run at centre-of-mass energies at

√
s = 35GeV and 44GeV, with the hardware

configurations of 1982, 1985 and 1986, respectively. Apart from the event reconstruction details,
the parameter settings of the underlying event generator (mostly Jetset 6.3 parton shower
plus string fragmentation model) are not known with absolute certainty. They are presumably
given in [50, 51].

In contrast, the processing history of the newly generated ZE4V records is of course not affected
by any of these ambiguities (Section 2). The data files are based on the QCD event generators
Pythia 5.7, Herwig 5.9, Ariadne 4.08, and Jetset 6.3, which were run at centre-of-mass
energies about

√
s =14, 22, 35, 38 and 44GeV with the detector configuration dates listed in

Appendix B. The parameter settings are described in detail in [1]. It must be reemphasised
that these Monte Carlo samples underwent only the standard analysis procedure described in
Section 2.2, without further refining steps. Different from that, the references cited above
indicate that the final analysis of the real data mentioned in Section 3.3.1 does include various
refinement steps (like 3-dimensional helix fit to Jet Chamber hits with common vertex constrain).
Furthermore it is likely [32] that the 9/87 reconstruction considers also the data provided by
Vertex Chamber and the Z-Chamber.

12

√
s range data taking run L 〈√s〉 multihadrons

[GeV] periods periods [pb−1] [GeV] 9/87 5/88

14.0 Jul-Aug 1981 7968-8629 1.46 14.0 1734 1792

22.0 Jun-Jul 1981 7592-7962 2.41 22.0 1390 1408

33.8 - 36.0 Feb 1981 - Aug 1982 6193-12518 61.7 34.6 14372 14347

35.0 Feb-Nov 1986 24214-30397 92.3 35.0 20688 20925

38.3 Oct.-Nov. 1985 23352-24187 8.28 38.3 1587 1605

43.4-46.6 Jun 1984 - Oct. 1985 16803-23351 28.8 43.8 3940 4397

Table 1: JADE multihadronic event statistics from selected data taking periods. L denotes the corre-
sponding integrated luminosities, 〈√s〉 die weighted means of the respective centre-of-mass energies.

3.3.3 Available BOS Versions of MC Data

The complete BOS files output by MCJADE, with Pythia as underlying event generator, and also
random samples of the SUPERV result banks on which the newly generated ZE4V records are
based were kept for later purposes and cross checks (Appendix B). All of these files are suitable
to be directly processed by the Supervisor or the interactive JADE graphics.

The currently available MCJADE BOS banks might for example be useful for future tests of the
already mentioned refined event reconstruction steps which are still inactive but highly desirable
to be included in the Supervisor.

3.4 Calibration Files

For the same reasons mentioned in Section 3.3, the files with the JADE calibration constants were
converted to ASCII text files. For the reanalysis, these files were reconverted to a binary format
suitable to be processed by the present JADE Supervisor version. Some obvious formatting errors
made when rescuing the files were found in a certain sets of constants. They were repaired by
hand as far as they could be detected by visible inspection.

The JADE calibration scheme is described in detail in [52]. Further information about the
calibration constants can be found in [53, 54, 55]. The currently relevant calibration data with
about 17 different groups of constants reside in three files (see Section 4 for the structuring of
the resources) with the following generic names:

bupdat0, bupdat1: These are the complete sets of calibration constants which also include a
list of so-called “spinning” Lead Glass blocks, i.e. Lead Glass blocks which sent permanent
electronic noise and are thus useless for analysis. This list of noisy blocks changes from
run to run and is needed whenever the Lead Glass data is calibrated. It was e.g. relevant
for the REDUC1 [25] step and was used in the past only in special cases of a recalibration
of Lead Glass pulse heights. bupdat0 contains the constants up to run 10000, bupdat1
contains the constants from run 10000 on.

aupdat1: This is a considerably compressed version of the files mentioned above, without the
memory and time consuming list of spinning block constants. Usually, aupdat1 is the
standard calibration file.

13

The calibration data are not organised in BOS banks. Whenever needed, the calibration files are
read sequentially by a standard subroutine called e.g. by the JADE Supervisor (Section 5.2).
Basically, a record of the calibration file has a header with administrative information (like the
name of the constants group, the time from which on the constants are valid etc.), followed
by the calibration constants, see [52] for explicit information. Note that the binary converted
calibration files are platform dependent just as the binary BOS banks. A conversion tool is
supplied (Section 6) to translate the ASCII files into the correct binary format valid on the
current computer platform used.

The calibration constants are not needed for MC data, but nevertheless the present Supervisor
program asks for the calibration files also in this case. A complete test of the reliability of the
calibration files could not be performed until now since the raw FPACK formatted data are not
readable as yet.

4 JADE Program Libraries

4.1 Location

The JADE software and the calibration files reside in a tar archive file located in

http://home.cern.ch/∼movilla/jadesoft.gtar.gz,
http://www.mppmu.mpg.de/∼pedro/jadesoft.gtar.gz.

After downloading, type the command ‘gtar xzfv jadesoft.gtar.gz’ in order to extract the
source code and the installation tools.

4.2 Organisation

The top directory jadesoft/ of the software package is structured into subdirectories containing
the following resources:

src0/ — The original untouched JADE source code retrieved from the former DESY IBM.
src/ — The modified JADE source code needed for the installation.
main/ — The modified source code of the main programs.
lib/ — The location of the compiled libraries.
bin/ — The location of the executables.
job/ — The steering jobs for the main programs.
util/ — Some utility programs.
cal/ — The JADE calibration files.
info/ — Information about JADE luminosities and run periods.

• The directory src/ contains the software resources which are relevant for the installation
of the programs: the BOS system (version 1979), main parts of the JADE libraries, the
emulation software for some obsolete DESYLIB functions, for the PLOT-10 Terminal
Control System and for various IBM/370 FORTRAN functions:

14

jmc/ — ”Tracking simulation” software.
jadegs/ — General source code, includes also the ”smearing simulation” code.
patrecsr/ — Inner Detector pattern recognition software.
source/ — Lead Glass analysis software.
vertex/ — Vertex finding software.
wertex/ — Vertex finding software (newer version).
jademus/ — Muon Chamber analysis software.
tagg/ — Tagging system software.
toflib/ — TOF system software.
grafix/ — Graphics event display code.
zlib/ — ZE4V packing software.
jadesr/ — Obsolete analysis routines not needed so far.
boslib/ — BOS data management system.
interface/ — Emulation software.

• The directory src0/ with the untouched software contains basically the same directories,
except interface/, vertex/ and wertex/. The latter two libraries were originally em-
bedded within jadegs but were reorganised here for practical reasons. Furthermore, src0
contains the following resources:

jade56/ — JADE simulation version including the “Tokyo Shower Program”.
tp9lib/ — TP9 event analysis software.

• For practical reasons, the main programs and the corresponding user steering routines
(Section 5) are located in main/:

mcjade/ mcmain.f mcjade.f mcuser.f . . . — The tracking simulation.
superv/ jdmain.f user.f . . . — The JADE Supervisor.
jadez/ gphmain.F xuser.F — The interactive JADE graphics.
ze4v/ ze4vjb.f — The ZE4V packing program.

• The calibration files (Section 3.4) are located in the directory cal/:

aupdat1-ori — Compressed calibration file for all runs (ASCII format).
bupdat0-ori — Extended calibration file for runs 1-10000 (ASCII format).
bupdat1-ori — Extended calibration file for runs > 10000 (ASCII format).
aupdat1 — Corrected version of aupdat1-ori.
bupdat0 — Corrected version of bupdat0-ori.
bupdat1 — Corrected version of bupdat1-ori.
aupdat1.b — Binary version of aupdat1 (standard calibration file).
bupdat0.b — Binary version of bupdat0.
bupdat1.b — Binary version of bupdat1.

Only the binary versions are relevant for the event processing.

• The directory util/ contains various utility routines (see Section 6):

mcgen/ — Modified OPAL MC package with CPROD interface
ccal/ — Conversion tool to generate binary formatted calibration files.
zread/ — Program to read ZE4V data.
Scripts/ — Some installation tools.
Pbin/, Rbin/ — Further programs needed for installation.

15

4.3 Installation

For the installation of the libraries and the programs, execute gmake within the root directory
jadesoft/. Up to now, a complete installation is only supported on RS/6000 AIX platforms
using the xlf compiler8 and the cpp compiler preprocessor. The compilation procedure is
specified by the following files:

GNUmakefile — The make file.
GNUmake-objects — The list of object files relevant for the program libraries.
GNUmake-rules — The rules to compile the FORTRAN files.
Incdep.ksh — A tool to extract #include dependencies.

To perform complete installation of the libraries and the main programs, simply type ‘gmake all’.9

But also partial installations or removals are possible.

- ‘gmake all’ performs complete installation

- ‘gmake <lib>’ compiles the library <lib> (<lib> = jadegs, patrecsr, . . .)

- ‘gmake lib’ compiles all libraries

- ‘gmake <main>’ creates the executables (<main> = mcjade, superv, jadez, ze4v)

- ‘gmake clean’ removes all .a-, .o-files and also the src/<lib>/TMP directories

- ‘gmake mclean’ removes all temporary make files

- ‘gmake aclean’ removes all archive files

The generated libraries and executables are located in lib/ and bin/, respectively10. Various
environment variables must be set before installation. See the comments in GNUmakefile for
further explanations.

5 Handling of the Main Programs

The directory job/ contains the various shell scripts suited for the main programs:

mcjade/mc.ksh — steers the tracking simulation mcjade

superv/sv.ksh — steers the JADE Supervisor superv
ze4v/ze.ksh — steers the ZE4V packing program ze4v

jadesim/jadesim — steers the whole simulation and analysis procedure

The jadesim script is the recommended tool for running the JADE simulation. All input/output
is steered via old fashioned FFREAD cards. The main task of the shell scripts is to fix the
FFREAD card entries relevant for the job and to administrate various input and output files.
In the following, the action of the programs are briefly described. Most of the switches in the
scripts are self-explanatory.

8Available RS/6000 AIX platforms at the MPI are: iwsatlas2, the iwsh1 cluster, the comps cluster.
9Note that up to one minute may pass before the first visible action.

10The xlf compiler prints various xlf warning messages regarding some risky FORTRAN constructs in the
code. They seem to be harmless so far, but see Section 7.

16

5.1 mcjade

The tracking simulation mcjade processes the 4-vector configuration files provided externally by
HEP event generators. The events contained in these files must be in the so-called CPROD-
format [56, 57, 58] (as e.g. provided by the programs described in Section 6). The program
passes such CPROD records event by event to the tracking simulation and outputs the generated
response of the various detector subsystems (e.g. Jet Chamber hits, Lead Glass entries) as binary
BOS banks (Section 3.1.1, Appendix A). The detector configuration and various tracking options
can be fixed by the calling script mc.ksh, see below.

Usage:

• Input files:

– The binary CPROD 4-vector data file (suffix .cprod).

– The random number generator status file mcjade.stat of a previous mcjade run. If this
file does not exist, the default random number seed is used to initialise the random number
generator.

• Output files:

– A binary BOS file with the tracking result banks (suffix .bos).

– The random number generator status file mcjade.stat.

– Optional: A control histogram file (suffix .hist) and a text file (suffix .bnk) with the BOS
banks contents in a readable format.

• FFREAD card steering variables: (<. . .> are placeholders for generic file names.)
MCSTART ON, OFF initialisation of the random number generator

detector configuration date:
YEAR 1979 . . . 1986 year
MONTH 1 . . . 12 month
DAY 1 . . . 31 day

tracking options:
SMEAR ON, OFF smear photon and electron energies
CONVERT ON, OFF photon conversion in outer tank and coil
ABSORB ON, OFF absorption losses
SHOW3D ON, OFF 3 dim shower profile fit
VERTEX ON, OFF ON: perform Vertex Chamber tracking

OFF: consider old beam pipe geometry and beam pipe counters
(hardware configuration before May 1984)

number of events to be tracked:
FIRST 1,2,. . . first event to read from CPROD file
LAST 0,1,. . . last event to read from CPROD file (0: process until end of file)
MCNPRI 1,. . .,100,. . . max. number of events with 4-vector dump

I/O files:
MCVECT <genout>.cprod CPROD input file
MCBOS <mcjade>.bos output file with the tracking result BOS banks
MCBANK <mcjade>.bnk output tracking result banks (ASCII format, only for tests)
BANKS ON, OFF print out option for this file
MCHIST <mcjade>.hist control histogram file
HISTO ON, OFF print out option for this file

17

Description

The program flow is sketched in Figure 4 (it is not a flow chart but nevertheless helpful for a first
orientation). The program starts with the routine MCMAIN where the BOS system, the HBOOK
histogramming package, and the FFREAD I/O steering package are initialised. Here, also the
random number generator is prepared for the current run. The initial seed from which to start
the random number sequence can by demand be provided externally by a random number status
file (mcjade.stat).

After reading the FFREAD card entries, the master program MCJADE is called. The first action
of MCJADE is to initialise the status of the JADE detector, i.e. the geometrical constants, the
characteristic physical and electronic values, the default tracking options, etc. The corresponding
default parameter settings are passed to the tracking program by linking the common blocks of
the block data located in the file jadegs/jadebd.F, which is of central administrative importance
for the whole JADE software. At the beginning, the tracking options and various information
about the active software packages used for tracking are printed out.

Each event loop starts with doing some event initialisation and passing the 4-vector configuration
of the currently read event from the external file to the common block /CPROD/. Each particle
is then passed through the detector material, with the corresponding tracking status stored and
updated in the BOS bank VECT/0. Particles originating from secondary interactions with the
detector material are stored in the bank VECT/1. The four vectors and further particle properties
of the first events are dumped. See Figure 4 for an overview of further tracking steps and of
the most important tracking subroutines involved. For detailed information check the references
cited in Section 2.1. At the end of an event loop, the tracking results are arranged in BOS banks
(Appendix A) and written out. The most important are JETC containing Jet Chamber data,
and ALGN containing the simulated Lead Glass response. At the end of the program, the file
mcjade.stat is updated with the current status of the random number generator.

If need be, the routines MCMAIN(mcmain.f) and MCUSER(mcuser.f) are the appropriate places
for easy modifications of further steering and output options which are not foreseen to be changed
in mc.ksh. Some important switches are contained in the common blocks:

/TODAY/ — contains the detector configuration date
/CFLAG/ — contains general tracking option flags
/CVFLAG/ — contains input data validation flags

/TODAY/ and /CFLAG/ are set in MCMAIN (mcmain.f) via the FFREAD card entries shown on
Page 17. /CVFLAG/ steers the validation routine MCVALI(jmc/mcvali.f) [59] which works off a
list of input data consistency tests (like particle type code checks or consistency checks for the
particle input masses, momenta and energies). Additional steering common blocks introduced
for the software reanimation are also set in MCMAIN:

/MYIO/ — I/O steering of histogramming/additional printouts
/CPFORM/ — endian format flag

/MYIO/ allow for communication with a user specific subroutine MCUSER(mcuser.f) introduced
here for test purposes. The user routine is executed once at the end of each particle loop and is
called by WRTMCB(jmc/wrtmcb.f), which is responsible for writing out the BOS events.

18

MCMAIN initialise BOS, FFREAD, HBOOK

MCJADE tracking simulation master routine

s JINIT initialises MC tacking

s EVTINI begin of event loop: initialises MC event

s JGETEV read CPROD event from file

s JGETVC begin of particle loop: get next particle from VECT bank

s MCTAGM TAGGING SYSTEM tracking routine

s TRCDET/TRCDTV INNER DETECTOR TRACKING for charged particles (excl./
incl. Vertex Chamber) from starting point up to Coil or Lead Glass

PIKMUF/PIKDEC tests for Pion/Muon decay
TRKADC Kaon decay
JPRFRE/JPRABS propagates particle through non-absorbing/absorbing medium
JVTXCH Vertex Chamber tracking
JCHAMB Jet Chamber tracking
JRING/JTRAPZ propagates particle through Jet Chamber ring/rohacell structure
SETBPC sets beam pipe counters
SETTOF/ACTOF sets TOF counters
JMULSC tests for multiple scattering
JELOSS calculates energy losses
JPRTOF propagates particle through TOF counters
JPRTLO/JPRTHI propagates particle between vessel wall and rohacell
JSTEP does the stepping through the Inner Detector

JTRKGM PHOTON TRACKING from starting point up to the Lead Glasss
TRKGAM/TRKGMV tracking excl./incl. Vertex Chamber

EEPAIR tests for conversion into a e+e− pair in a radiator
SETTOF/ACTTOF sets TOF counters

JTRNTR

K0
L
/N TRACKING from starting point up to the Lead Glass

s
TRKADC tests for Kaon decay

TRCOIL PARTICLE TRACKING THROUGH COILs
TRLGL PARTICLE TRACKING THROUGH THE LEAD GLASSs
TRLGSH/TRLGS6 tracking with old/new block configuration

ELGOBS calculates observed energy from true energy
ELSMR calculates energy smearing
SHOWR calculates energy loss in an electromagnetic shower
HDECLS calculates energy loss for hadrons
SHMAX calculates average depth of an electromagnetic shower
ENGLOS calculates energy loss of electrons in coil
POSEND/ANGBAR calculates position/angular dependencies

WRTMCB end of particle loop: fills BOS banks, writes out events

Figure 4: Schematic overview of important MCJADE tracking subroutines.

19

/CPFORM/ contains a flag which tells the 4-vector reading procedures JGETEV(jmc/jgetev.f)

and BRVECT (jmc/brvect.f) the endian format of the current computer platform. These sub-
routines were modified in order to allow for the correct processing of CPROD files generated
on both big endian and little endian machines. At the beginning, MCMAIN uses the function
ENDIAN(mcmain.f) to match the endian schemes of the read CPROD file and of the platform
where mcjade runs.

Remarks

It was found that the tracking program runs robustly. No remaining serious bugs were detected
after generating some millions JADE events. Some attention must be paid to the following.

• The newly simulated JADE detector contains tiny but artificial “dead zones”. This is
due to the higher computing precision of the RS/6000 platform presently used for particle
tracking compared to the original IBM/370, as a consequence of the different floating point
representations (the basis of the mantissa bits is 16 on the IBM/370 and 2 on the RS/6000,
the latter obeying the IEEE standard.). Caused by rounding errors in the calculation of
the particle trajectories and of the geometrical acceptances of the detector subsystems,
the program sometimes fails to assign a particle to one of two adjacent detector parts if
the currently calculated particle position is coincidentally located nearby the boundaries
between. Resulting infinite loops (approximately each 105 th event) were found in the
Inner Detector algorithms JCHAMB(jmc/jchamb.f) and JPRTHI(jmc/jprthi.f). They
were removed so far, but further potential infinite loops in other parts of the tracking
program cannot be excluded for future MC runs.

• An often produced warning message originates from the validation subroutine MCVALI.
They mostly refer to energy-momentum mismatch of very low energetic particles which
can be regarded as harmless. In case of multihadronic events, it rarely happens that an
input four vector configuration is rejected (as is at times the case in events distorted by
hard photon bremsstrahlung). It was found that is desirable to disable the vertex checks.

• The random number seeds are administrated by a new subroutine called MCRAND(mcjade/mcrand.f).
It ensures that the current status of the random number generator is ported correctly be-
tween subsequent MCJADE runs (via the status file mcjade.stat). For random number gen-
eration, a modified version of the CERNLIB subroutine RANMAR (interface/ranmar.f)
is used, since it was found that the original version (V-113 from 1996) does not handle
the random numbers counters correctly. Furthermore it was modified in order to permit
a direct and fast initialisation of the administrative common block of RANMAR (this is in
particular important when processing huge CPROD files).

Anyone who intends to experiment with the code should know that, in general, a) the source
code of a routine is contained in a file named like the procedure but in lower case (with the suffix
.f, .for, .F), and that b) several program versions might reside in a library. It was common
practice to mark an obsolete program version by adding a ‘0’ and a new version by adding a ‘9’
to the file base name. (For example, two versions of the procedure ELGOBS exist which reside
in the files source/elgobs.f and source/elgobs0.f, and the routine MCTAGM is contained in
jmc/mctagm.F and jmc/mctagm9.F.)

20

5.2 superv

The Supervisor superv handles the output banks of mcjade and is also capable of processing real
JADE data banks. In case of unsmeared Monte Carlo tracking banks (as delivered by mcjade),
firstly a smearing simulation is performed, which is then followed by the event reconstruction.
The analysis results (Inner Detector tracks, Lead Glass calorimeter clusters, etc.) are written
out as binary BOS banks (Section 3.1.1, Appendix A). Some analysis options can be set in the
calling script sv.ksh, see below.

Usage:

• Input files:

– The mcjade output BOS banks (suffix .bos).

– The random number generator status file superv.stat of a previous superv run (needed for
the smearing simulation). If this file does not exist, the default random number seed is used
to initialise the random number generator.

• Output files:

– A binary BOS file with the result banks (suffix .bos).

– The random number generator status file superv.stat.

– Optional: A control histogram file (suffix .hist) and a text file (suffix .bnk) with the BOS
banks contents in a readable format.

• FFREAD card steering variables: (<. . .> are placeholders for generic file names or paths.)
SVSTART ON, OFF initialisation of the random number generator

event analysis options:
AUPDAT1 <PATH>/aupdat1.b standard calibration file
BUPDAT0 <PATH>/bupdat0.b 1. extended calibration file
BUPDAT1 <PATH>/bupdat1.b 2. extended calibration file

(set either AUPDAT1 or BUPDAT0 and BUPDAT1)
ZSRFTV ON, OFF refitting of tracks / common z vertex fits

(still not reactivated)
VERTEX ON, OFF additional vertex analysis routines

(still not reactivated)

I/O files:
MCBOS <mcjade>.bos input file to process (BOS format)
FIRST 1,2,. . . first event to read from this file
LAST 0,1,. . . last event to read from this file

(0: process until end of file)
SVBOS <superv>.bos output file with superv result banks (BOS format)
SVBANK <superv>.bank output file with superv result banks

(ASCII format, only for tests)
BANKS ON, OFF print out option for this file

. . . further variables relevant for tests only . . .

Description

The program flow is sketched in the Figures 5-6. At the beginning, the BOS system and various
analysis packages are initialised. Further initialisations of HBOOK, FFREAD, the random num-

21

On call,
if INDEX=

Description

0 Initial call, before first event read.
1 Called at the beginning of each new run.
2 Called immediately after event is read.
3 Lead Glass energies have been computed.
4 Fast Z vertex has been found,

Jet Chamber Calibration was performed.
5 Inner Detector pattern recognition has been run.
6 Energy clusters in the Lead Glass have been found.
7 Inner Detector tracks and clusters have been associated.
8 Unused.
9 Muon analysis has been done (not supported).

*10 If last event is read, set INDEX = 13 on return.
*20 Called immediately after event is read but before Inner Detector

smearing is done.
100 Called before end of job.

On return,
if INDEX=

Description

1 The current event will be dropped, and next one will be read.
11 The event will be written out, and a new one will be read.
12 The job will be terminated normally.
*13 The event will be written out, and the job will be terminated

normally.
else Go to the level given by INDEX.

Table 2: The meaning of the Supervisor steering index. New level indices are marked with *.

ber generator, and user specific demands are performed by the steering routine USER(user.f)

called repeatedly at various stages of the event analysis. The standard JADE block data residing
in jadegs/jadebd.F are linked in the same way as in MCJADE.

The event loop starts with reading the event from the BOS file. If data of Monte Carlo type is
detected, the program extracts the geometrical constants previously used in the tracking process
(these are passed through special calibration and status records at the beginning of each MC
file) and overwrites the default block data settings. Then the program follows with calling a
set of subroutines performing a supplementary simulation of the Inner Detector resolution and
efficiencies. Similar to the tracking simulation, the current random number seeds are passed be-
tween two consecutive Supervisor runs using a status file (superv.stat). Usually, Monte Carlo
events must be marked at generation stage with run numbers < 100 (as is by default the case in
MCJADE). This information and further important markers relevant for event reconstruction are
supplied by the general information bank HEAD [28].

The program continues with a printout of detector status information, the smearing constants
(if appropriate), the trigger conditions for the current run, the MC tracking options chosen
previously, and information about various analysis options or software packages used for the
event reconstruction. The event analysis chain following is outlined in Table 2. At various
points in the program, control is passed to the USER routine which can make decisions about

22

JDMAIN

SUPERV master routine

LGINIT initialises Lead Glass analysiss
INITZV initialises fast Z vertex calculations
VTXINI initialises vertex packages
USER(0) initialises FFREAD, HBOOK, further I/Os
EVREAD start of event loop: reads a JADE events

RDMTCO/RDJETC SMEARING SIMULATION steering routine

s
RDTRIG sets trigger conditions
RDRESO/RDRESV smear drift times and z values (Jet Chamber/Vertex Chamber)
RDMODN/RDMODV further smearing of drift data (Jet Chamber/Vertex Chamber)
RDRDMH/RDRNHV generates random hits (Jet Chamber/Vertex Chamber)
RDMERG/RDMRGV merges random hits(Jet Chamber/Vertex Chamber)
RDINEF/RDIEFV kills hits acc. to wire inefficiencies (Jet Chamber/Vertex Chamber)
RDDOUB/RDDOUV kills hits acc. to double hit resolution (Jet Chamber/Vertex Chamber)
RDDDCL kills hits in dead ceals

RDALGN delete Lead Glass blocks below readout thresholds

KALIBR handle JADE calibration constantss
RUNFIX/KLREAD/CNEWID handle calibration constants
MUREG handles Muon Chamber constants

INPATC/INPATR initialise pattern recognitions
USER(1)/USER(2) new run/new events
LGCALB LEAD GLASS CALIBRATIONs
USER(3)s
JETCAL JET CHAMBER CALIBRATIONs
ZVERTF FAST Z VERTEX CALCULATIONs
USER(4)s
PATREC PATTERN RECOGNITION master routines

PATRC1 pattern recognition up to backtracings
SRTEL searches track elements within a cell
FLINEL finds line elements in one cell
FTRKEL finds track elements from line elements

BACKTR performs backtracing
LFRT extracts left right ambiguity
FXYZ calculates coordinates of associated hits found
XYFIT performs parabola or circle fit
BAKPAK tests all possible connections of track elements
BSIDE matches tracks going through cell side walls
INTJN1/RINCON joins track elements in one cell/ across ring boundaries
PATROL searches hits missed by the pattern recognition program

KNTREL pattern recognition final fits
XYFIT/PATROL
ZRFIT fits linearly the r-z coordinates of tracks

MCTR4V performs MC backtracings
USER(5)s

Figure 5: Schematic overview of SUPERV subroutines (part 1).

23

LGANAL 1. STEP LEAD GLASS ANALYSISs
CALCOR performs Lead Glass calibration correction for systematic effectss

BBCORR

LGCCTL searches for clusters in the three Lead Glass parts separatelys
LGCLUS

LGCLPB processes clusters in the barrel parts
LGCLPC processes clusters in the end cap part

USER(6)s
LGCDIR 2. STEP LEAD GLASS ANALYSISs

ILCTRC/LGCHC2 traces Inner Detector tracks to Lead Glass surfaces
INTOLG links tracks to clustersss
LGAVDP/LGAVDE calculates average depth of a shower for barrel/end caps

s

LGTHCR performs polar angle correction for barrel clustersss
LGESMR smears cluster energies for unsmeared MCss
LGECOR

calculates incident energy from measured energy

ENGLOS corrects for energy loss in outer tank wall, coil etc.
LKCORR corrects for leakage of photon showers
THCORR corrects for energy loss due to readout thresholds
ANGBAR corrects for energy dependence of Čerenkov light

collection efficiency

USER(7)s
MUANA MUON ANALYSIS master routines

MUANAC converts muon signals to coordinatess
MUANAF searches for muon trackss
MUFFLE follows Inner Detector hits to find assoc. Muon Chamber hits

MUFFLS steps through detector, considering energy loss, mult. scattering etc.
MUFFLY/MUFFLX associates hits to extrapolated tracks
MUFFLT re-tracks fits and searches for missing regions

MUCUTS analyses Muon Chamber results

USER(9)s
EVWRIT end of particle loop: writes out JADE BOS events
USER(100) before end of job

Figure 6: Overview of SUPERV subroutines (part 2).

24

what to do next: At each call, an INDEX value is passed to USER to indicate at which point or
level the Supervisor has just finished. Thus it is possible to perform individual analysis steps
based on the event processing made so far. On return, the INDEX value usually is incremented
before passing the control back to the Supervisor, in order to continue with the analysis. By
setting INDEX appropriately, it is also possible to skip or repeat a level, or to skip the current
event. The meaning of the INDEX values is summarised in Table 2.

If a read event is the first event of a new run, the calibration constants are read from either the
aupdat or the bupdat files (Section 3.4) and fixed for the current run: The raw data bank ALGL

is subject of the Lead Glass calibration which automatically is performed if the bank ALGN is not
present in the current event record (Section 3.1.1). The calibration routine for the Jet Chamber
acts on the raw data bank JETC, with the converted data stored in the same bank JETC but with
a different bank number. For Monte Carlo data, the Jet Chamber and Lead Glass calibration
is not needed.

Then, a fast Z vertex calculation is performed which is merely based on Jet Chamber hit coor-
dinates located in the JETC bank and not on fully reconstructed tracks. The results are written
in the bank ZVTX. Thereafter, the pattern recognition algorithms are called if no PATR bank was
found in the event record at this stage of the analysis (except for the special bank PATR/12

tentatively filled by the preceding tracking program). The tracks found and the corresponding
fit results are stored in the banks PATR/10 and JHTL/10 (Section 3.1.1).

The Lead Glass analysis is subdivided into two stages. In the first step, clusters are searched for,
and cluster energies are computed, thus creating the result bank LGCL. In the second step, the
clusters are checked for association with the Inner Detector tracks, and various energy corrections
are performed. The bank LGCL is partly overwritten with the new results.

Finally, the Muon Chamber analysis is performed with the results stored in MUR1 and MUR2.
As already mentioned, the Muon analysis is unfortunately not relevant in case of Monte Carlo
events generated by the present tracking programs.

For further detailed information about the analysis check Section 2.2 and references therein.
Note that in order to repeat a Supervisor level, one has not only to set the USER routine INDEX
value appropriately but also to delete the corresponding result banks mentioned above.

Remarks

No serious bugs were found in the program as yet. Various error messages are printed out during
a Supervisor session which (to my best knowledge) can be regarded as harmless.

• The most frequently produced error message is related to subroutine PATROL(patrec/patrol.F)
which searches and records hits missed by the pattern recognition programs. If sufficient
new hits are found, a refit is made, and PATROL is recalled again. In approximately every
50th event, PATROL returns the error code 8, which means that too many refits are done.
In this case, the routine stops and returns those hits already found. This observation may
be related to the higher computing precision of the current platform.

• The routine ILCTRC(source/ilctrc.f) which is responsible for the extrapolation of Inner
Detector tracks to the Lead Glass surface finds sometimes a track originating from outside
the Inner Detector.

25

• The general copy routine MVCL(interface/bitbyte.f) often prints a warning message
when it operates on empty BOS banks.

• Note that negative event numbers may appear in a Supervisor error messages since the
HEAD bank considers only a 16 bit integer word to store event numbers.

Some attention should be paid to the following:

• It is desirable and straight forward to implement the track fitting package ZSRFTV [48]
(zsrftv.F and further files located in jadegs/) and the vertex analysis package VERTEX [60]
(see wertex/ and vertex/) in the Supervisor. An appropriate place for doing this is
the USER routine when called with INDEX=5, i.e. after the standard pattern recognition
programs have finished. Corresponding switches for enabling/disabling these additional
analysis steps are already foreseen in the steering shell script sv.ksh.

• The random number seeds are handled by the same subroutine MCRAND(mcjade/mcrand.f)
used by the tracking simulation. New USER level indices 20 (on call) and 13 (on return)
were introduced in order ensure a correct bookkeeping of the random number generator
status.

• Further utility routines/functions were introduced intended to be used within USER sub-
routine.

– The file superv/ana.F offers a set of subroutines for INDEX dependent histogramming
of detector observables at various Supervisor levels.

– The file superv/showb.f contains routines for dumping BOS banks in a readable
form. This utility is valuable for various checks.

26

5.3 ze4v

The main task of the program is to compress the JADE BOS events into the handy ZE4V
records. Besides the I/O controls, there are some few options and switches relevant for the
various additional analysis steps mentioned in Section 2.3. These can be set by the calling shell
script ze.ksh, see below.

Usage:

• Input files:

– The superv output BOS banks (suffix .bos).

– The random number generator status file ze4v.stat of a previous ze4v run (needed e.g. for
the dE/dx simulation). If this file does not exist, the default random number seed is used to
initialise the random number generator.

• Output files:

– A binary BOS file with the ze4v banks (suffix .bos).

– The random number generator status file ze4v.stat.

FFREAD card steering variables:

ZSTART ON, OFF initialisation of the random number generator

I/O files:
SVBOS <superv>.bos input file with the JADE events in BOS format
EVTREAD 0,1. . . max. number of events to read from this file

(0: process until end of file)
EVTSCP 0,1. . . initial events to skip
ZE4V <ze4v>.ze4v output ZE4V data file (BOS format)
ZE4VOUT 0,1. . . max. number of events to write out into

this file (0: write out until end of reading the input file)
ZE4VPRT 1,. . .30,. . . max. number of readable ZE4V bank prints
ZBOS <ze4v>.bos output file with the full JADE BOS events
EVTOUT 1,. . .50,. . . max. number of full BOS events to write into this file

(0: write out until end of reading input file)
ZBANK <ze4v>.bnk output file with JADE BOS events

(ASCII format, only for tests)
BANKS ON, OFF print out option for this file

. . . further variables relevant only for tests. . .

. . . further analysis options. . .

Description

A sketch of the program flow is shown in Figure 7. The main program ZE4VJB starts with the
initialisation of BOS, FFREAD and I/O steering. Various analysis options are printed out. After
allocating the BOS files and calibration files, the program checks whether the ZE4V records have
to be created from TP banks or from PATR/LGCL banks. Within the present software structuring
only the latter option is relevant.

The master routine ZE4VPK(zlib/ze4vpk.for) extracts the information from the BOS banks
and fills successively the header part, the tracks part and cluster part of a ZE4V record. A switch

27

ZE4VJB master routine

(initialisation of BOS, FFREAD, I/O)

BREAD begin of event loop: reads BOS events
KLREAD reads calibration filess
ZE4VIN initialises ZE4Vs
ZE4VTP creates ZE4V records from TP banks

ZE4VPK CREATES ZE4V RECORDS FROM PATR/LGCL BANKS
s

(fills header part of ZE4V record)

MCREDU tests multihadronic cuts for MC reductions
ZE4VVX fetches event vertexs

(fills MC part of ZE4V record)

(fills track part of ZE4V record)

PRTCOI fetches track parameterss
CRDOCA calculates track momentum and DOCA points
ZE4VMC performs Monte Carlo trace backs
EAMCDE dE/dx simulation master routines
DXMCGN performs dE/dx simulation for a track

DXMCSP calculates amplitudes
DSORTO calculates truncated mean

ZE4VEA electron analysis master routines
. . .

(fills cluster part of ZE4V record)

BWRITE end of event loop: writes out BOS/ZE4V records

Figure 7: Schematic overview of subroutines called by the present ZE4V version.

variable IMODE allows for selective processing of tracks and clusters. By default, all tracks and
clusters fulfilling the requirements stated in Section 2.3 are used. Track momenta and DOCA
points are calculated using the PATR and HEAD information.

The events read are checked for multihadronic preselection criteria and marked with a corre-
sponding cut flag (MCREDU(zlib/zmcredu.f)). The event vertex is recalculated, thus supersed-
ing the fast Z vertex calculation of the preceding Supervisor run. The run dependent radial
coordinates are taken from the calibration files, whilst the Z vertex is calculated using fully
reconstructed tracks.

28

In case of Monte Carlo events, the program performs a particle traceback to the initial hadrons
and partons based on the information stored in the bank TR4V, which has been generated pre-
viously by the JADE Supervisor. The traceback results are foreseen to be stored in the header
section of the ZE4V bank. For simulated data, also a supplementary simulation of the specific
energy losses of tracks is done.

The present program version allows for calling for a software package to analyse electron can-
didates, thus recalling some of the Supervisor subroutines. But note that neither the analysis
results stored in the final BOS banks nor the particle sections of the ZE4V records are overwrit-
ten by these additional actions.

The program ends with a printout of various statistics. In addition of writing out pure ZE4V
records, the user may output the full JADE events in BOS format. The random number seeds
are administrated in the same way like in MCJADE and SUPERV using a status file (ze4v.stat).

Remarks

• It is straight forward to prevent the program from ignoring the previous Z vertex cal-
culation results, as e.g. supplied by the recommended VERTEX fitting package (which is
desirable to be implemented in the Supervisor).

• It might be desirable to produce other data formats than ZE4V records, e.g. HBOOK
NTuple files11. To do this, one has to replace/complement the BOS record writing routine
BWRITE by an appropriate conversion routine.

• The newly generated MC files (Section B) do not contain any event tree information, but
the write out option for the Monte Carlo traceback might be easily activated by resetting
the variable NPRONM (maximum number of partons) in ZE4VPK from 0 to a sufficient high
value.

• ZE4V events are written out as normal BOS records, each event consisting only on one BOS
bank with the name ZE4V. However, for the subsequent analyses it is possible and desirable
to process ZE4V files without using the BOS framework. An appropriate FORTRAN
template for reading ZE4V data is presented in Section 6.

11It is aimed [61] to bring the JADE data in the NTuple format currently used by the OPAL collaboration, in
order to uniformly access both JADE and OPAL data for the purpose of common QCD studies.

29

5.4 jadesim

jadesim is a tool for steering the four individual process levels as a whole, i.e. 4-vector genera-
tion, tracking simulation, event analysis, and ZE4V formatting. The shell script allows to start
and to end the event generation at an arbitrary process level. The entire process flow with the
dependencies of the programs on the generated data banks is visualised in Figure 8. The most
important steering variables are set in the head of the script and are summarised in Table 3.

Steering variables:

• The variable $ecm fixes both the centre-of-mass energy
√
s relevant for event generation

and the detector configuration date used for the tracking and the smearing simulation.
The most common combinations of centre-of-mass energies and corresponding detector
configuration considered by $ecm are summarised in Table 4. It is straightforward to
extend the script also for more detector configurations.

• The variable $gen specifies the event generator. Various event generation parameters are
fixed in FFREAD card templates of which some general entries are edited by jadesim.
Up to now, the event generators listed in Table 5 are available for the production of the
CPROD 4-vector files.

• The variables $file gen, $file mc and $file sv define the first process level to consider
in a jadesim job. Here and in the following, the suffixes ‘ gen’, ‘ mc’, ‘ sv’ and ‘ ze’ refer
to the generator step, the mcjade step, the superv step, and the ze4v step, respectively.
The variables are arrays whose contents are taken as the locations of the input CPROD or
BOS files needed for the next process level. An array may also be empty. Only specified
files corresponding to the highest preprocessed level are relevant. For example,

set file gen = (<genout>.cprod)

set file mc = (<mcjade>.bos)

set file sv = ()

causes jadesim to start the Supervisor using <mcjade.bos> as input file. The variable
$file gen is ignored in this case. It is allowed to specify more than one input file, e.g.

set file mc = (<mcjade>.bos.1 <mcjade>.bos.2)

or

set file mc = (<mcjade>.bos.*)

which means that all mcjade tracking files with the basename <mcjade>.bos have to be
processed successively in a jadesim job. If neither of the arrays are set, the procedure
starts with the event generation specified by the variable $gen and the corresponding
FFREAD card templates.

• The variable $end defines the last level to process. The values allowed are:

$end = 1 — event generator
$end = 2 — mcjade

$end = 3 — superv

$end = 4 — ze4v

30

variable values allowed meaning

$ecm 14, 22, 35a, 35b, 38, 44 identifier for the c.m.s. energy and
detector configuration

$nev tot total number of events to generate
$nev seq max. number of events to generate

per sequence
$start seq 1,2,. . . initial sequence number

$gen jt63, py57, hw59,
hw58d, ar48p, cj623

identifier of the event generator used for
4-vector generation

$file gen

$file mc

$file sv

<genout>.cprod

<mcjade>.bos

<superv>.bos

names of the input files needed for the low-
est process level (<. . .> denote the generic
file names with the path).

$end 1, 2, 3, 4 number for the highest level to process

$save gen

$save mc

$save sv

$save ze

no, yes saving options for output CPROD and
BOS files

$sdir working directory with the output files
$aupdat1 standard calibration file
$bupdat0 1. extended calibration file
$bupdat1 2. extended calibration file

Table 3: The most important steering variables in jadesim.

$ecm
√
s[GeV] tracking smearing date

14 14.0 17.07.1981
22 22.0 17.06.1981
35a 34.6 17.05.1982
35b 35.0 17.05.1986
38 38.3 01.10.1985
44 43.8 17.05.1985

Table 4: Common combinations of c.m.s. energies and configuration dates as fixed by the variable $ecm.

$gen generator files needed

py57 Pythia 5.7 GEN.CARD

hw58d Herwig 5.8d GEN.CARD

hw59 Herwig 5.9 GEN.CARD

ar48p Ariadne 4.08 GEN.CARD

cj623 Cojets 6.23 GEN.CARD
cj623inp.dat
cj623tab.dat

jt63 Jetset 6.3 GEN JT63.CARD

Table 5: Event generators available for 4-vector production in CPROD format.

31

jadesim s

event
generator

?¶
µ

³
´4-vector CPROD file

¾mcjade

?¶
µ

³
´tracking BOS banks

¾
¾ calibration files

¾

superv

?¶
µ

³
´analysis BOS banks

¾
ze4v

?¶
µ

³
´ZE4V data

Figure 8: Schematic illustration of the process levels steered by jadesim.

• The variable $nev seq allows to split the whole generation process with a total number of
$nev tot events into sequences generating subsamples with a maximum number $nev seq

of events. This is useful to avoid huge single data files (in particular the Supervisor result
BOS banks).

• The variable $start seq is the initial sequence number which basically acts as a book
keeping parameter needed for labeling the output files of a sequence. Setting start seq=1

forces the simulation to use the default random number seeds. Otherwise, the last entries
of the status files

mcrnset.dat mcjade.stat superv.stat ze4v.stat

(if existing) are used for the initialisation of the random number generator of the corre-
sponding subprocesses.

• Finally, the variables $save gen, $save mc, $save sv and $save ze are memory freeing
options for the respective process levels. If the value of a variable is “yes”, the corre-
sponding generated output files are kept, otherwise they are removed immediately at the
end of a processing sequence. E.g.,

set file gen = no

set file mc = yes

set file sv = no

set file ze = yes

keeps all tracking simulation files (e.g. in order to run the Supervisor again on the same
tracking files but with different smearing conditions), and also the ZE4V data needed for
further analyses.

32

Output files:

A jadesim run creates the subdirectories gen/, mc/, sv/ and ze/ containing the output files of
the corresponding active process levels. The file basenames have the generic form

gen/<generator type> <c.m.s energy>

mc/mc <generator type> <c.m.s energy> <configuration date>

sv/sv <generator type> <c.m.s energy> <configuration date>

ze/ze <generator type> <c.m.s energy> <configuration date>

with the <. . .> brackets denoting identifiers for the various parameter settings of the jobs. Various
suffixes are appended to the file names which have the following meaning:

.cprod — 4-vector CPROD file

.bos — binary BOS files (Section 3.1.1)

.ze4v — ZE4V files (Section 3.1.2)

.log — mcjade/superv/ze4v program log files

.bnk — BOS banks in readable format (memory consuming, suitable for tests only)

.hist — mcjade/superv control HBOOK histogram files (only for tests)

In addition, the running jadesim sequence numbers are appended to the file names.

It is foreseen to run jadesim not only interactively but also in batch mode12.

12Unfortunately, the IBM Job Management System “LoadLeveler” used for doing this on the AIX cluster of
the MPI is not supported any longer.

33

5.5 jadez

jadez starts the interactive JADE graphics session. The recommended working directory for
doing this is job/jadez/ where some useful files are located:

higz windows.dat — HIGZ window display attributes.
F11OLS.GRAPHICS.PROFILE.MACROS — predefined macros for the JADEZ

command interpreter.
F11LHO.AUPDAT1 — soft link to the standard JADE

calibration file (Section 3.4).

Usage

1. Before starting the session it might be desirable to adjust the HIGZ windows attributes
given in higz windows.dat.

2. Type ‘jadez’ to start the program.

3. The program then requests the data file with the full JADE events in BOS format to be
viewed: answer by entering e.g. the path of a mcjade or superv result bank file.

4. If the allocation was successful, the calibration files are requested. Simply press ENTER
for the default calibration file (aupdat1.b) linked by F11LHO.AUPDAT1, or type in the file
names of the extended calibration files (bupdat0.b and bupdat1.b).

Thereafter, the first BOS record of the specified file with JADE events is read and graph-
ically displayed in a HIGZ window. In addition, various Supervisor information is printed
out as plain text on the terminal where jadez has been started. The graphics programs
shows the default view of the JADE detector as described in Section 2.4.

5. The command line interpreter prompts with “--->” and waits for further input, i.e. a
command or a macro name. You can also type in a 1-line sequence of commands sepa-
rated by semi-colon. Most of the available commands are listed and briefly explained in
Appendix C. Further descriptions can be found in job/jadez/HELP and in [24].

6. Type ’STOP’ to end the graphics session and to output the Supervisor statistics.

The following illustrates some commands useful to steer the graphics session:

If the events already have passed the track pattern recognition and the Lead Glass analysis,
than it is sufficient to know that the command ’N’ fetches the next event, or that the command
’FIND’ fetches an event by run and event number.

In case that raw data or MC data are read, the JADE Supervisor analysis actions can be
performed. Similar to the Supervisor (Section 5.2), control is passed to a USER analysis steering
routine. At each analysis level, stop flags can be set with the ’LEVELS’ command. This allows
to cause a halt of the analysis at a level of interest and to view the results so far. By default,
the stop flags are set at level 2 (that is, before any analysis is attempted) and 6 (after pattern
recognition and Lead Glass cluster analysis are performed) are set. The command ’C’ takes you
from one stop level to the next stop level (see Table 2 for details). Note that for unsmeared

34

Monte Carlo data the smearing simulation is appended immediately after the event has been
read.

For a graphical representation of measured quantities in the Inner Detector and the Lead Glass,
you can type ’RA’, ’RB’ or ’RC’ for a r-φ view and ZXA, ZXB or ZXC for a z-x view (the final
letters ’A’, ’B’, ’C’ refer to different sections and subsystems to be displayed). The standard view
automatically displayed after reading an event or after proceeding to the next active Supervisor
level is by default given by the first two entries of the macro file F11OLS.GRAPHICS.PROFILE.MACROS
and can be changed using the command ’CSTV’. At each analysis level, the detector hardware
may be displayed on top of the current event view by typing the ’DET’ command. Projection
views of the event can be superimposed with the ’PRO’ command.

The commands ’RES’ and the ’VRES’ recall the main event reconstruction results corresponding
to the current Supervisor level. Various other commands exist for performing further analysis
steps or displaying detailed analysis details.

The command ’TRUE’ superimposes the true Monte Carlo four vector input onto the current
view. The ’ZOOM’ command allows to scale a section of the current view marked with the
mouse.

To save the current view of the event for a later print out, the command ’H’ can be used to
generate a PostScript file. The generic file name is JADE.<nnn>.eps, where <nnn> is a counter
starting from 001 and incremented each time the command ’H’ is entered.

Description

The main program GPHMAIN(jadez/gphmain.F) initialises the PLOT-10 graphics emulation and
the default graphics setup, allocates the BOS data sets and the calibration files. The program
calls the standard JADE Supervisor SUPERV(jadegs/superv.F) with the actions already de-
scribed in Section 5.2.

User control is passed to a USER routine (jadez/xuser.F) adapted for the additional demands
of the JADE graphics. After processing an active Supervisor stop level, USER calls the master
routine SCANNR(grafix/scannr.F) which is the master routine for the interactive graphics
control. It steers the event and detector hardware display, the graphical representation of the
analysis results, and the handling of the keyboard and mouse control. SCANNR also handles
additional analysis steps requested by user commands.

Those interactive actions affecting only the graphical representation of the event are passed
through a separate display routine DISPLY(graphix/disply.F). Other commands causing ad-
ditional analysis actions are handled by SCANNR itself. Main routines called by SCANNR and
DISPLY are

KOMMAN (grafix/komman.F): the command interpreter,

EVDISP (grafix/evdisp.F): the master routine for displaying a event,

JADISP (grafix/jadisp.F): the master routine for drawing the JADE detector hardware,

RSDISP (grafix/rsdisp.F): the master routine for drawing the analysis results.

See the files cited for further detailed documentation.

35

Remarks

• Almost all graphics commands work properly and do the requested actions. However, a
few experts commands listed in [24] (e.g. ’EDIT’) do not work error-free as yet since they
were not properly adapted here (for time reasons).

• aupdat1.b is the standard calibration file for the graphics session. The extended calibra-
tion files bupdat0.b and bupdat1.b are only needed in case of the recalibration of the
Lead Glass.

• After the generation of a PostScript printout of a JADE event using the ’H’ command, the
picture shown on the HIGZ window must be rebuild at least once for the next printout to
get the complete graphics.

• Note that the detector hardware display colours on the HIGZ screen (white lines, dark
background) appear intentionally reversed in the PostScript representation.

• Various calls to the new subroutine SETCOL(interface/setcol.F) were implemented in
the program code in order to introduce colours in the graphics display. The display at-
tributes (colours and line widths) of detector parts or analysis results can easily be changed
in the block data subroutine CPLTCOL(interface/setcol.F).

36

6 Utility Programs

The directory util/ contains the following tools: an MC package to generate QCD events suited
for further processing by the JADE detector simulation, a simple FORTRAN template to read
and process ZE4V data, and a program to convert the JADE calibration files into binary format.

6.1 QCD Event Generator Package and CPROD Interface

The event generator code and various driver routines were taken from the QCD group of the
OPAL collaboration, namely the MC package version 105 [62]. Basically, the following modifica-
tions were performed which are based on this program version: 1) The code was slightly adapted
for additional use on AIX platforms, 2) the former Jetset 6.3 generator was implemented, and
3) a CPROD interface needed for the tracking simulation MCJADE was build in.

Resources

The software is located in util/mcgen/ and is structured as follows:

src/: contains event generator and general analysis source code.

Pythia 5.7/Jetset 7.4 [63, 64] — pythia5722.car jt74opal.car pymaxi.car

Jetset 6.3 [65, 66] — jt63jade.car

Ariadne 4.08 [67] — ariadne408.car

Herwig 5.9, Herwig 5.8d [68] — herwig58.car herwig58d2.car

Cojets 6.23 [69] — cj623d.car

general analysis packages — px114.car ckern105.car

mc/: contains the modified OPAL MC package mc105j lib.car (includes various QCD analyses
routines)

pythia/: contains the Pythia job script py57.ksh.

jetset/: contains the Jetset job scripts jt63.ksh and jt74.ksh.

ariadne/: contains the Ariadne job script ar408p.ksh.

herwig/: contains the Herwig job scripts hw58d.ksh and hw59.ksh.

cojets/: contains the Cojets job script cj623.ksh.

lepton/: contains a simple lepton pair generator and a corresponding job script.

Plib/, Pbin/: contain the installed libraries and executables (Linux platform)

Rlib/, Rbin/: contain the installed libraries and executables (AIX platform)

37

Installation

The software is handled by the PATCHY source code management system13 provided by the
CERN library. The compilation is supported on both Linux and AIX environment, for which
the following installation tools are available:

• mcgen/src/Inst.ksh installs the MC libraries.

• mcgen/mc/mc105j lib.ksh compiles various general MC handling subroutines.

• The executable for an event generator job can be generated by the corresponding job shell
scripts (py57.ksh, jt74.ksh, . . .) with the argument “comp” passed to the script.

• mcgen/Install.ksh is a simple tool to perform overall installation.

Usage

To start an event generator, run one of the corresponding job scripts mentioned above but
without passing any arguments. All of these scripts are structured similarly into a compilation
part and a program execution part that includes a build in FFREAD I/O handling. The event
generation can be steered by various shell script variables and FFREAD card entries:

$MCSTART ON, OFF switch for random number generator initialisation
$MC4VEC ON, OFF switch for 4-vector file generation
$NAME basename of the output files

MCEVFILE $NAME.<suff> name of the 4-vector output file
<suff>=cprod: generate CPROD file
otherwise: generate readable text files (for tests)

MCNEVT number of events to generate
MCECMS center of mass energy
MCISR ON, OFF switch for initial photon radiation

. . . MC modelling parameters . . .

. . . MC analyses options . . .

Examine the scripts for further explanations. The random number seeds of a job are stored in
the files mcrnset.dat and mcrncnt.dat. Set MCSTART=OFF to force the program to use these
files to initialise the event number generator for the next run.

By default, the following files are generated:

$NAME.cprod — 4-vector CPROD file
$NAME.hist — MC analysis histogram file

The output CPROD file is binary and thus platform dependent, but note that the tracking
program MCJADE was modified in order to accept files with both big endian and little endian
schemes.

13The antiquated PATCHY structure of the original software was kept unchanged as far as possible. It would
be desirable to manage the programs with a modern code management system like e.g. CVS.

38

6.2 Example Program for Processing ZE4V Data

The directory util/zread/ contains a simple self-explanatory FORTRAN template zread.f

to read both ASCII formatted and binary ZE4V files. In case of binary ZE4V, the program is
capable of processing both big endian and little endian schemes. The script zread.ksh can be
used for compilation.

6.3 Conversion Tool for the JADE Calibration Files

The directory util/ccal/ provides a FORTRAN program conv.f for converting the ASCII
formatted calibration files aupdat1, bupdat0 and bupdat1 (located in jadesoft/cal/) into the
binary files needed for the JADE Supervisor. Since the reading of the binary calibration files is
dependent on the endian scheme as yet, one has to perform the conversion on the same platform
where the JADE Supervisor is intended to run. The program rconv.f can be used to reconvert
the binary file for test purposes and to check the entries of specified constants records. The
script ccal.ksh performs the compilation.

7 The Reactivation of the JADE Software

This section summarises the various technical details concerning the adaption of the JADE
software on current computer platforms. The typical problems described in the following may
be helpful for further code changes or code reactivation intended.

7.1 Original Source Code

The JADE code consists of a mixture of different FORTRAN language standards, precompiler
languages, and IBM/370 assembler code. Since the beginning of the software development
(with the oldest code fragments dated in 1974) FORTRAN IV was the primary programming
language, but later on, more and more programs were written in the better readable SHELTRAN
and FORTRAN 77 languages. Thus the code generally became more and more transparent.

The major part of the JADE library source code as well as the whole BOS library is written
in FORTRAN IV. A considerable part of the Inner Detector pattern recognition software was
developed in SHELTRAN which allows for some kind of “structured” FORTRAN programming.
A similar precompiler language called MORTRAN was used to program a few graphics and vertex
analysis routines. Various analysis routines developed in the last stage of the JADE experiment,
in particular the ZE4V package and the TP9 program, are based on standard and extended
FORTRAN 77. Various frequently called time consuming procedures stemming from former
DESY and CERN libraries are written in IBM assembler. These are e.g. fast copy routines for
moving data banks, and various procedures for binary operations on data words.

The FORTRAN code is full of old-fashioned and nowadays deprecated features, like the copious
use of ENTRY and alternate RETURN statements, arithmetic IF branches, ASSIGN and assigned
GO TO statements. Apart from a few exceptions, implicit variable declaration rules for variables
are thoroughly applied. Half word (16 bit) integers are implicitly assigned to variable names
beginning with H.

39

Generally, a compact programming style was applied throughout major parts of the software in
order to save processing and memory time, thus making it difficult to understand the processing
flow.

7.2 Tasks

Parts of the code were modified and tested using various compilers on different platforms (DEC
alpha OSF1, SGI mips IRIX, HP-UX system). Finally the code was optimised for the XLF com-
piler14 supplied by IBM for use with the AIX operating systems and RS/6000 architectures. It
supports the full FORTRAN 77 language standard but also various IBM and industry extensions
to the FORTRAN language.

In order to revive the programs described in Section 5, the following objectives were considered:

• The translation of the SHELTRAN and MORTRAN code into standard FORTRAN 77
language.

• The emulation of parts of the DESY library [70].

• The emulation of IBM/370 FORTRAN intrinsic functions.

• The emulation of parts of the Tektronix PLOT-10 terminal control system [71] and of
various routines of the terminal interface package IPS [72].

• The removal of various platform dependencies.

• Some code modifications necessary to remove inconsistencies or to suppress residual com-
piling errors or warning messages.

7.3 Handling of the Precompiler Code

The translation of the SHELTRAN code to FORTRAN 77 was performed using the precompiler
sheltran from the Gronigen University [73]15. The procedures affected are mainly pattern
recognition programs in src0/patrecsr/ and further track fitting routines in src0/jadegs/.
In various cases it was necessary to modify some SHELTRAN constructs which are forbidden
by the precompiler version used here (e.g. IF (. . .) XFOR statements).

The MORTRAN code found was translated to FORTRAN by hand, since only a few subroutines
are affected. These are vertex finding routines modified for use with the Vertex Chamber hard-
ware (src0/vertex.s/vertex.s.seq) which are only called within framework of the graphics
package.

7.4 Software Interfaces

Interfaces were programmed in order to emulate the functionality of obsolete software packages
as far as they really are needed by the JADE software. The emulation software is located in the
directory src/interface/.

14See http://www.ibm.com/software/awdtools/fortran/xlfortran/library/ for further information.
15Unfortunately, the whole precompilation procedure (performed at the very beginning of the software resur-

rection) is not automated in the present make file for the JADE library as yet.

40

7.4.1 Former DESY Library and IBM/370 FORTRAN Intrinsics

An emulation of various former DESYLIB procedures and IBM/370 specific FORTRAN func-
tions [70] reside in

biby.f dlib.f

The files contain mostly mathematical functions, bit and byte handling procedures and copy rou-
tines. They are partially available as “fast” IBM assembler code (e.g. src0/jmc/mvcl.assembler,
src0/jadegs/mvb.assembler). Some of the affected procedures are simply dummy routines
now, other are interfaces to appropriate CERN library routines [74]. The bit and byte manip-
ulation routines are of particular importance since the JADE software makes good use of it
in order perform data access and manipulation. Generally, the corresponding functions were
ported to FORTRAN and mapped directly onto the CERNLIB package BITBYT (M421).

Remarks

• The functionality of the DESYLIB random number generators RN and FNORM is now re-
produced by the CERNLIB subroutines RANMAR and RNORML from the MATHLIB package
(V113). Note that a modified version of RANMAR (interface/ranmar.F) is used, see Sec-
tion 5.1.

• The intrinsic type declarations of various IBM/370 specific functions are not valid for the
XLF compiler used here. Hence, to prevent e.g. the DESYLIB routines TBIT (logical) and
SHIFTL (integer) to be treated implicitly as real functions, an explicit type declaration in
the calling routine (LOGICAL TBIT) or a renaming of the function name (SHFTL→ ISHFTL)
(such that the proper implicit declaration rules apply) is needed.

• The JADE software copiously uses the former assembler routine MVCL to transfer a given
number of consecutive bytes between data arrays. The present emulation is an interface
to the CERNLIB subroutine CBYT. The interface is capable of accessing both half word
and full word arrays at arbitrary byte addresses.

Accessing half word arrays via MVCL might lead to a misalignment of data words (i.e. the
memory addresses are not divisible by 4; this causes either a bus error or an unaligned
access interrupt). A modified version MVCL2 was introduced for these few cases. Avoiding
unaligned data access was a general issue also for various other emulation routines.

• Some routines exist in two versions which only differ with respect to their address ranging
capability (MVCL/MVC, SETSL/SETS). This distinction is obsolete in the present emulation,
hence the small range versions were mapped onto the corresponding long range versions.

• For the emulation one has to consider that the arguments of various routines may be
data types of different word lengths, i.e. either halfwords (16 bit integers) or full words
(32 bit integers) or even a mixture of both. In order to prevent the affected routines from
returning results which depend on the endian convention of the current computer platform,
the arguments passed to an emulation routine must be rearranged appropriately before
passing them to the CERNLIB function.

For example: The former generic function LOR performs a logical OR operation of two bit
patterns which are provided by two arguments. For the present emulation, a full word

41

(LOR(IX,IY), IX, IY being 32 bit integers) and a half word version (HLOR(HX,HY), HX, HY
being 16 bit integers) of this routine was introduced. The interface directly maps the full
integer version LOR directly onto the CERNLIB function MBYTOR. The half word version
HLOR also calls MBYTOR but with reversed half word arrangement, if needed, depending on
the endian convention of the current platform. The result of the operation is in turn a half
integer word (note that MBYTOR is a full integer function and always requires full integer
arguments). As a third case, the generic LOR may be called with arguments of mixed sizes.
It was found that in this case calling HLOR with previously converting the full integer to
a half integer argument lead to well-defined results (since in all observed cases the full
integer argument is < 65536).

Alternative and possibly more elegant ways of handling these data manipulations might
exist, but there is no way to circumvent an explicit consideration of the byte ordering
at least at one point of the emulation routine. The emulation checks the endian format
of the current platform using the routine MACHINE (interface/biby.f). Note that the
BITBYT package itself is platform independent. See Section 7.4.3 for further remarks.

7.4.2 PLOT-10 Terminal Control System

The JADE interactive graphics is mainly based on the PLOT-10 software package [71] to generate
graphics on Tektronix storage-tube display terminals, and on some routines provided by the
interface software for IPS16 terminals [72]. The philosophy of PLOT-10 is, as the name suggest,
to generate graphics in the same manner as drawing objects with pencil on a sheet or using a
plotter. The user may work in an arbitrary user defined “virtual coordinate” system or in the
“screen coordinate” system. Subroutine calls are available to transform the contents of the user
window into a screen window. Various subroutines exist to generate lines and points, for drawing
segments in polar coordinates and for adding structured text to the graphics. In the present
emulation, the PLOT-10 subroutines were mapped onto appropriate HIGZ17 routines [75]. The
interface is contained in the files

plot10.F ips.f setcol.F cplot10.for cpltcol.for.

Some features of the emulation are summarised in the following:

• The status of the PLOT-10 graphics, in particular the current coordinates of the “display
terminal beam”, is administrated by the common block /PLOT10/(cplot10.for). All
PLOT-10 emulation subroutines communicate with each other via this common block.
The “beam” position is affected by most graphics actions (including text output) and is
permanently updated in /PLOT10/.

• Further graphics features (background and line colours, line widths) which were newly
introduced in the present emulation are set by the subroutine SETCOL(setcol.F). Calls to
this subroutine are now implemented in various JADEZ display routines in order to provide
coloured graphics. The additional graphics attributes are passed through the subroutines
via the common block /PLTCOL/ (cpltcol.for).

16Interactive Plotting System
17High Level Interface to Graphics and ZEBRA

42

• The former terminal initialisation routine INITT has now the job to initialise ZEBRA, the
HIGZ package and the PAW storage (IGSTRT(plot10.F)). The default graphics attributes
and colours are set, and the PostScript file and metafile control needed for a later printout
are activated (PSOPEN(plot10.F)). The subroutine FINITT ends the graphics session, i.e.
it terminates HIGZ (IGFIN(plot10.F)).

• The former definitions of the virtual window (DWINDO) and the screen window (TWINDO)
are more or less interfaced to the HIGZ subroutines ISWN (performs normalisation trans-
formation window definition) and ISVP (performs normalisation transformation viewport
definition). The virtual coordinates are in floating point representation, the screen coor-
dinates are in 4096×4096 integer raster units.

• Subroutines exist for drawing solid and dashed lines, points, and for doing (invisible)
move operations. Each operation can be performed in virtual or screen coordinate space.
Moreover, each graphic action can be specified using absolute or relative coordinates with
respect to the current “display terminal beam” position.

Actions in absolute screen coordinates are supplied by the subroutines

DRWABS (line), PNTABS (point), DSHABS (dash), and MOVABS (move).

Each graphic action can be performed in four different ways, e.g.

DRWABS/DRWREL (draws line in absolute/relative screen coordinates)

DRAWA/DRAWR (draws line in absolute/relative virtual coordinates)

All drawing actions are emulated by a central subroutine DRAW(plot10.F), which is basi-
cally an interface to the HIGZ drawing routines IPL (draws lines) and IPM (draws markers).

PLOT-10 provides the subroutines RSCALE and RROTAT to scale or to rotate the coordinate
system, respectively, prior to calling the drawing routines with relative arguments. Within
the emulation, the corresponding transformation parameters are fixed by these routines
and then passed to the subroutine DRAW via a central PLOT-10 steering common block
/PLOT10/.

• The various subroutines to output single alphanumeric characters (ANCHO) or character
strings (ANSTR, EOUTST) to the graphics screen are basically mapped onto the HIGZ sub-
routine ITX and appendant graphics attribute routines. This also applies for the former
software character generator routines (SYSSYM, USRSYM) which allow for adding text of
arbitrary size and orientation in the graphics.

Additional terminal I/O routines (TRMIN, TRMOUT) exist which originally were intended
to transmit character strings between the terminal and the graphics application avoiding
FORTRAN I/O. In the emulation, these commands are simply rebuilt using FORTRAN
READ and WRITE statements, i.e. these commands generate I/O streams on the X terminal
from where jadez was started, and not on the HIGZ screen. This solution was found to
be generally more appropriate for the purposes of the interactive JADE graphics.

• PLOT-10 allowed for fetching screen or virtual coordinates, respectively, via a graphic
cursor using the routines SCURSR and VCURSR. In the emulation, the joystick actions used
formerly to flash a hair cross on the screen are replaced by appropriate mouse actions,
with the cursor position provided by the HIGZ subroutine IGLOC.

43

• Some subroutines formerly used for hardcopy printout (HDCOPY, HDCEXT, HDCDST) have
now the function to output the current HIGZ display as a PostScript file. This is done
by calling PSCLOS(plot10.F) which deactivates the metafile and closes the currently open
PostScript file. A subsequent call of PSOPENmakes the next graphics display again available
for PostScript printout.

• The IPS subroutines GETPDD and FREEDD were formerly used to allocate and deallocate
data sets. The functionality of these subroutines was emulated using FORTRAN I/O
statements including an appropriate handling of error codes and administration of file
names.

7.4.3 Remarks to Bit/Byte Handling Problems

Because the first software revival steps were tried on different platforms, it was attempted to
make at least the program interfaces described above insensitive to the byte endian schemes.
Unfortunately, the code itself contains highly platform dependent features which only can be
eliminated by code changes. This section intends to point out the typical bit and byte handling
problems with the JADE software.

Integer values are typically stored in one of three sizes: one-byte, two-byte, or four-byte. The
ordering of the bytes (i.e the order in which a sequence of bytes are stored in computer mem-
ory) for the integer varies depending on the operating environment on which the integers were
produced. Big endian is an order in which the “big end” (most significant value MSB in the
sequence) is stored first (at the lowest storage address). Little endian is an order in which the
“little end” (least significant value LSB in the sequence) is stored first. For example, consider
the four bytes representing the full (32 bit) integer IW = A1A2B1B2 (hexadecimal) and a half (16
bit) integer array HW(2) of dimension 2 related to the full integer via the FORTRAN statement
EQUIVALENCE (IW,HW(1)). On a big endian computer, the integer is stored as

address: (MSB) 1000 1001 1002 1003 (LSB)

bytes: A1 A2 B1 B2 big endian
half words: A1A2 B1B2

HW(1) HW(2)

(if A1 is stored at storage address 1000, for example, A2 will be at address 1001, and so on),
with HW(2) being the least significant half word. On a little endian system, it is stored as

address: (LSB) 1000 1001 1002 1003 (MSB)

bytes: B2 B1 A2 A1 little endian
half words: B1B2 A1A2

HW(1) HW(2)

(B2 at address 1000, B1 at 1001, and so on). Here, HW(1) is the least significant half word. Note
that within both the big endian and little endian byte orders, the bits within each byte are big
endian. The following platforms are considered big endian: IBM/370 computers (used formerly
for JADE DAQ and offline analyses), RS/6000 AIX, HP-UX, SGI IRIX, SUN Solaris, Macintosh
MacOS. The following platforms are considered little endian: VAX/VMS, DEC Alpha UNIX,
Intel Linux.

44

Within the JADE software, data arrays like those residing in the BOS common block /BCS/

are commonly addressed in units of both full integer and half integer units, in the same way
as described above. As a consequence, manipulations of the data may explicitly depend on the
byte storage order:

• Consider the integer arrays I, J and the half integer array HJ related to each other via

INTEGER I(1),J(1)

INTEGER*2 HI(2)

EQUIVALENCE (HI(1),I(1))

In the following, the symbols and represent single half integers and two consecutive
half integers forming a full integer, respectively, with the two half integers arranged from
left to right according to increasing storage addresses, i.e. HI(1) HI(2) . Now consider a
logical OR operation between the two numbers 4 and 8 stored in these data arrays which
have to be passed to the IBM/370 intrinsic LOR function. If the operands are full integers,
a straightforward emulation would act on the storage schematically like as follows:

I=4

J=8

LOR(I,J) = LOR(0 4 , 0 8) = 0 12 = 12 (big endian case)

LOR(I,J) = LOR(4 0 , 8 0) = 12 0 = 12 (little endian case)

i.e. it would provide identical results on big endian and little endian machines since the
access to the data is not affected by the internal representation of the integer values.
On the other hand, an IBM/370 programmer thinking always in big endian convention
probably tempts to address the same operation in the following way:

HI(2)=4

J=8

LOR(HI(2),J) = LOR(4 , 0 8) = 0 12 = 12 (big endian case)

whereby he knows that the half integer argument of LOR is extended to a full word by filling
zeros from the ‘left’ (i.e. from the MSB side of the word). On a little endian machine,
the FORTRAN emulation of LOR has first to perform the correct half word assignment
according to the programmers intention (avoiding word misalignments of the data arrays
passed to LOR), in order to prevent the routine from returning wrong results like:

LOR(HI(2),J) = LOR(4 , 8 0) = 8 4 = 524292 (little endian case)

The JADE source code is full of pitfalls like these. As already mentioned in Section 7.4.1,
introducing an integer and a half integer version was found to provide an unambiguous
and robust solution of the problem.

• At numerous places in the program, bit masks stored in integer and half integer arrays
are set and tested for decision making. A customary way to handle single bits in the
JADE software looks like as follows (taken from subroutines XYFIT(patrec/xyfit.F)

and INPATR(patrec/inpatr.F)). Firstly, bit patterns are usually set by integer value
assignment. For example, the statement IXYF = 3 sets the two least significant bits of the
integer IXYF to 1 and the other bits to 0. To test a bit pattern in a later stage of the
program, the IBM/370 intrinsic function TBIT is often used to find out whether a given bit

45

is set (returning the value TRUE) or not (returning the value FALSE). In the JADE software,
the LSB is tested via the statement

IF(TBIT(IXYF,31)) . . .

hence relying on the IBM/370 bit numbering scheme where bit number 31 denotes the LSB
and bit number 0 denotes the MSB. In contrast, on the DEC alpha, LSB is bit number 1
and MSB is bit number 32. This has to be considered within the emulation interface to
CERNLIB function JBIT that works with an universal bit numbering scheme. Using the
whole integer words and the logical AND in the form

IF(LAND(IXYF,1).EQ.1) . . .

instead of explicitly numbering the bit would have been an elegant way to circumvent any
of these platform dependencies from the outset.

• The following example demonstrates a type of platform dependence which can not be
compensated by programming an appropriate emulation interface and is generally hard
to detect: At the end of the event loop in MCJADE, the JADE data are organised in BOS
banks and then written out in binary format. The Lead Glass data bank ALGN (output by
the subroutine STALGN(jmc/stalgn.f)) starts with two half words containing a descriptor
with various smearing flags which indicate certain MCJADE actions on the Lead Glass arrays.
In the default case, the flags are set by integer value assignment

ILGL(1)=2 =

{

0 2 (big endian case)

2 0 (little endian case)

The tracking history of the Lead Glass data is then passed to the JADE Supervisor via this
integer word. Unfortunately, the cluster analysis subroutine LGCDIR(source/lgcdir9.F)
checks the smearing flags by explicitly inquiring the most significant half word of the
corresponding integer word and puts the value into the second element of a half integer
array called HELP. Finally, an integer IHELP related to HELP via EQUIVALENCE is used to
check the smearing flags:

LAND(IHELP,2) =

{

2 (big endian case)
0 (little endian case)

To conclude, the communication between the affected parts of MCJADE and SUPERV depend
on the endian convention in a way which does not strike at a first glance. Its removal
requires some code modification: either the flag word must be build up in STALGN in terms
of half integer words, or the access of the information must be performed in LGCDIR by
inquiring full integer words.

Due to the unstructured build-up of the source code it is not possible to detect all code inherent
platform dependencies of the latter type with a maintainable effort. This gives reason to attempt
running the JADE software always on big endian platforms.

Note that the existence of different endian schemes is not per se a problem. Moving unformatted
data files (like the JADE BOS banks) between big endian and little endian computers requires
only that the byte orders of the read data banks must be inverted before data processing. The
actual dependencies on the internal representation of the numbers are only caused by the fact
that bit and byte manipulation are not performed consistently in units of a fixed word length,
say, 32 bit words.

46

7.5 Further Code Changes

Further code modifications were performed in order to suppress various XLF compiling warnings
or errors and to prevent the programs from (logical) run time errors. Among other things, the
code contains various IBM FORTRAN extensions which are not properly handled by the XLF
compiler. See the following examples:

• The code uses the DEFINE FILE and the direct access READ statements to allocate and read
data files containing records of fixed length <rl> (e.g. RDDA(bos/rdda.F)):

DEFINE FILE <u>(<m>,<rl>,U|E,<irec>)

READ(<u>’<irec>) . . .

where <u> represents the logical unit number, <m> the maximum number of records, and
<irec> the running record number incremented after reading a record. U|E refer to unfor-
matted and formatted records, respectively. This FORTRAN extension had to be replaced
by standard FORTRAN OPEN/READ.

• Data records of previously unknown word lengths are usually accessed by calling a reading
subroutine in the following way (see e.g. EVREA1 called by KLREAD(jadegs/klread.F) or
BFRD called by BREAD(bos/bread.for)):

SUBROUTINE EVREA1(NUNIT,. . .,NWORD,. . .)

DIMENSION IDATA(NWORD)

READ(NUNIT) NWORD,IDATA

. . .

The number of words NWORD of the currently read record ought to be provided by the first
word of the record itself and is intended to be stored into the array IDATA. This feature is
not supported by the XLF compiler since NWORD is not defined prior to the READ statement
(e.g. NWORD=0). In the modified program version, the number NWORD is first supplied by
tentatively reading the first word of the record. After backspacing the record, the reading
subroutine is then called again with the well defined value for NWORD.

• DATA statements were found in the executable part of procedures. This features is not
supported by the XLF compiler.

• In some cases, the access to common block variables contradicts the declared common
block sizes or the array dimensions. This may be due to a mismatch between differ-
ent code development versions. E.g., KLREAD writes more words in common /CVCCAL/

(patrecsr/mvccal.for) via MVCL than foreseen by the array declarations of this common
block. As a serious consequence, the data residing in the storage succeeding /CVCCAL/

are partially overwritten. Another example: The calibration flag array LBMC residing in
common block /CMCCAL/ is of dimension 15 in the JADE block data jadebd.F and of
dimension 16 in KLREAD. But actually, the present code version demands that it had to be
extended to dimension 17.

• It was found that the argument list of some CALL statements do not match the argument
list of the subroutine called (e.g. ZSFIT(jadegs/zsfit.F), VTXCRV(grafix/vtx.F)). This
mismatch was corrected.

47

• Different from the original program version, all BLOCK DATA subroutines are now named.

• Alternate return labels in a CALL statement are preceded by an ampersand ‘&‘, whereas
the XLF compiler requires an asterisk ‘*‘.

• There exist some risky and ambiguous DO loop constructs which the XLF compiler might
interpret differently from the programmers intention.

1. The following type of construction was found e.g. in JRECAL (jadegs/jrecal.F),
TAGGTP (tagg/taggtp.F):

GO TO 100

· · ·
DO 100 I=1,10

· · ·
100 CONTINUE

From the context of the cited programs it is apparent that, in case of the unconditional
GO TO branch, the CONTINUE statement ought to be a simple “no operation”. Instead,
the XLF compiler handles the CONTINUE as the end of the DO loop, with the loop
counter variable I set to a value defined by the program flow prior to the branch
(I=0 if no value assignment was performed previously). This ”misinterpretation” was
corrected here by introducing a labelled CONTINUE assigned to the GO TO statement
but behind the end of DO loop.

2. The second curio found are jumps from outside into DO loops. This feature is for-
bidden in standard FORTRAN but nevertheless is (by demand) accepted by the
XLF compiler which prints only a compiling warning message. Such constructions
look like those sketched in example a) below (found in PATROL (patrol.F), TRUTH
(grafix/truth.F)):

a)

DO 100 I=1,10

· · ·
GO TO 900

910 CONTINUE

· · ·
100 CONTINUE

· · ·
RETURN

900 CONTINUE

· · ·
GO TO 910

b)

DO 100 I=1,10

· · ·
GO TO 900

· · ·
100 CONTINUE

· · ·
RETURN

900 CONTINUE

· · ·
GO TO 100

In the normal context, the program exits the DO loop prematurely by a conditional or
unconditional branch to another part of the program. After further processing, the
program jumps back into the DO loop and continues the loop using the “frozen” former
value of the loop control variable (the XLF compiler allows even a reassignment of
the loop variable). This construct effectively simulates a kind of a fast subroutine
call from within in a DO loop but without time consuming data stacking.

Since the XLF compiler seems to act in agreement with the programmers intention,
no code modification was performed, but it is unlikely that this feature is accepted

48

by other compilers. This has to be considered when attempting to adapt the code on
other platforms.

Last but not least, example b) (taken from subroutine PATROL) shows a similar con-
struct. Here, it is not clear if the re-jump to label 900 was intended to force the
program to continue with the DO loop or to proceed with the subsequent code. With
regard to the comments of example 1, the latter case was assumed here, and the code
was modified accordingly.

8 Remaining Tasks

The resurrection of main parts of the JADE software was quite successful so far, thus giving
reason to be optimistic with regard to still existing problems to solve. This section recapitulates
in brief various remaining JADE software revival tasks and further desirable code improvements,
of which some of them are already mentioned in the present note.

The following code modifications should be straightforward:

• The implementation of the still unused but available refined event analysis routines (e.g.
three dimensional track refitting with vertex constrain) into the JADE Supervisor (Sec-
tion 5.2).

• Programming an interface to output fully analysed JADE events into (OPAL like) HBOOK
NTuple files, instead into ZE4V records (Section 5.3).

Further partially more complex tasks are:

• Make the JADE raw data (REDUC1/REDUC2) (Section 3.2) usable for analysis:

– Either convert FPACK records back into binary BOS banks (either big endian or
little endian, with the floating point numbers transformed to IEEE standard),

– or program an appropriate FPACK interface for the Supervisor.

• Test the converted JADE calibration files (Section 3.4) and the calibration procedure using
the raw data and already preprocessed data.

• Transfer all the raw data currently residing on EXABYTE cartridges deposited at DESY
to a more professional data storage management system (e.g. CASTOR at CERN).

• Reactivate the Tokyo Shower Simulation program for the Lead Glass Calorimeter (Sec-
tion 2.1).

• Retrieve and reactivate the Muon System simulation code18.

• Adapt the JADE software to PC Linux or Macintosh platforms. Power PCs with Linux
are “bi-endian”, i.e. they support both big endian and little endian addressing modes.
Once a mode is selected, all subsequent memory loads and stores are determined by the
memory-addressing model of that mode19.

18It is possible that this part of the software is completely lost [41].
19Note that IBM has now a beta version of XL FORTRAN compiler for Power PC Linux

49

A JADE BOS Banks

In the following, the most important JADE BOS banks processed by the detector simulation,
the JADE Supervisor, and the ZE4V packing software are summarised. See the listed references
to the corresponding JADE Notes and JADE Computer Notes for further detailed information
about the structuring of these banks. The format of most data banks is described in JADE Note
32 and Supplements 1-6. The general handling of BOS data is explained in [27].

BOS bank name Ref. explanation

HEAD [28] General event information / BOS pointer table
Lead Glass:
ALGL [18] Raw Lead Glass data (real data only)
ALGN [18] Calibrated Lead Glass data

Inner Detector:
JETC [76, 28] Raw + calibrated Jet Chamber data
VTXC [77] Raw + calibrated Vertex Chamber data

Muon System:
MUEV [78, 79] Raw Muon System data∗)
Trigger:
TRIG [80, 81, 82, 35, 33, 34, 83] Trigger information

Tagging System:
ATAG [84, 28, 82] Raw information from Forward Detector
ATBP [82] Beam Pipe counter raw data
ATOF [82] Time-of-Flight counter raw data
LATC [28, 84, 82, 83] Information about which Latches were set

by the detector parts
TAGC [84, 28] Tagging Drift Chamber data

Monte Carlo Information:
VECT [56, 57, 7, 58] Monte Carlo four vector data
PALL [56, 58] Monte Carlo trace back information

Event Analysis Results:
TAGG [84, 28] Tagging system results

ZVTX [85] Fast Z vertex
LGCL [18] Lead Glass cluster analysis results
PATR [29] Inner Detector pattern recognition results
JHTL [30] Hit Label information for PATR

MUR1, MUR2 [86] Muon analysis result banks∗)

Top Level Analysis Results:
ZE4V [22] ZE4V packing result bank
TPEV [46, 23] Global event data from TP9 reconstruction∗)
TPVX [46, 23] Vertex data from TP9 reconstruction∗)
TPTR [46, 23] Particle data from TP9 reconstruction∗)

∗) The Muon System simulation and the TP9 analysis programs are not reactivated as yet.

50

B JADE Data and Monte Carlo Files

This section gives an overview of the available ZE4V, BOS and CPROD files. Most of the data
reside in compressed gtar archive files stored on CASTOR20 tapes at CERN.

The general format of the ZE4V data is described in [22]. The format descriptors for the ASCII
versions can be found in the corresponding file headers. ZE4V file names are marked with the
suffix “.ze4v.<n>”, where <n> is the running file number. The program zread (Section 6) is
a FORTRAN template suitable for reading and processing both ASCII and binary formatted
ZE4V files.

The BOS files partially consist of the BOS banks listed in Appendix A. The MC tracking banks
were newly generated using the program mcjade (Section 5.1). They are suited for further
processing with the JADE Supervisor superv (Section 5.2) and the program ze4v (Section 5.3).
BOS files have the suffix “.bos.<n>”.

B.1 ZE4V Data

All multihadronic JADE data are available as ZE4V records in ASCII format, i.e. plain text
files. Two different versions called 9/87 and 5/88 exist, see Section 3.3 for details. The JADE
events are sorted by increasing run and event numbers. The present samples are subdivided
according to the period of data taking. The corresponding archive files with the respective
number of events (#) and storage occupancies are listed in Table 6.

B.2 ZE4V MC

Preprocessed detector Monte Carlo files based on the Jetset 6.3 generator are available as
ASCII formatted ZE4V records. The simulations are based on the detector configurations of
1982, 1985, and 1986, at centre-of-mass energies

√
s = 35 and 44GeV, respectively. The historic

labels “ps2” and “sh” in the file names refer to the Jetset parton shower simulation with
and without coherent branching, respectively [87]. There are some uncertainties about the
knowledge of the parameter settings of the underlying event generator. They are presumably
given in [50, 51]. See Table 6 for a list of the archive files.

The newly generated detector simulation data reside in binary formatted ZE4V files. They
are based on the event generators Pythia 5.7, Herwig 5.9, Ariadne 4.08, and Jetset 6.3,
which were run at centre-of-mass energies about

√
s =14, 22, 35, 38 and 44GeV. The parameter

settings are described in [1]. The corresponding archives files are listed in Table 7.

B.3 BOS MC and CPROD files

The complete mcjade tracking banks with Pythia as underlying physics generator were also
kept. They have been used to produce the MC ZE4V records mentioned above and are contained
in the files listed in Table 7. In addition, the CPROD 4 vector files from all event generators
suited to be processed by mcjade are available for the most relevant c.m.s. energies, see Table 8.

20CERN Advanced STORage manager

51

B.4 Raw JADE Data (FPACK format)

All raw JADE data (after REDUC1/REDUC2 cuts) are available in FPACK format. At present,
they reside on EXABYTE cartridges deposited at the DESY laboratory in Hamburg, Ger-
many [41]. A test sample suitable for FPACK conversion tests is located in

/castor/cern.ch/user/m/movilla/jade/dat/reduc/fpck4.f11kuh.jade.events.

PREPROCESSED JADE DATA
location: /castor/cern.ch/user/m/movilla/jade/dat/ze4v

version period # total # per file # of archive name storage
(max.) files occupancy

9/87 1979-85 79872 3000 27 tr7985.v987.gtar.gz 102 MB

9/87 1986 29433 3000 10 tr86.v987.gtar.gz 50 MB

5/88 1979-85 81454 5000 17 tr7985.v588.gtar.gz 108 MB

5/88 1986 29433 5000 6 tr86.v588.gtar.gz 50 MB

PREPROCESSED JADE MC
location: /castor/cern.ch/user/m/movilla/jade/mc-old/

tracking
√
s # total # per file # of archive name storage

year [GeV] (max.) files occupancy

1982 35 31914 4000 8 ld63ps2.e35.tr82.gtar.gz 54 MB

1985 44 23933 4000 6 ld63sh.e44.tr85.gtar.gz 43 MB

1986 35 39868 4000 10 ld63ps2.e35.tr86.gtar.gz 70 MB

1986 35 39880 4000 10 ld63sh.e35.tr86.gtar.gz 69 MB

further historic MC files with unclear processing history are located in

/castor/cern.ch/user/m/movilla/jade/mc-old/special/

Table 6: List of usable preprocessed ZE4V data.

52

NEW JADE MC
location: /castor/cern.ch/user/m/movilla/jade/mc/. . .

tracking
√
s archive name # total # per file storage

date [GeV] (max.) occupancy

Pythia 5.7 . . ./pythia/

Jul/17/81 14.0 py57 14.0 81-07-17.gtar.gz 100000 5000 685MB

Jun/17/81 22.0 py57 22.0 81-06-17.gtar.gz 100000 5000 812MB

May/17/82 34.6 py57 34.6 82-05-17.gtar.gz 300000 5000 2.8GB

May/05/86 35.0 py57 35.0 86-05-17.gtar.gz 499999 5000 4.8GB

Oct/01/85 38.3 py57 38.3 85-10-01.gtar.gz 100000 5000 1.0GB

May/17/85 43.8 py57 43.8 85-05-17.gtar.gz 199999 5000 2.1GB

Herwig 5.9 . . ./herwig/

Jul/17/81 14.0 hw59 14.0 81-07-17.gtar.gz 99877 5000 79MB

Jun/17/81 22.0 hw59 22.0 81-06-17.gtar.gz 99923 5000 92MB

May/17/82 34.6 hw59 34.6 82-05-17.gtar.gz 299820 5000 315MB

May/05/86 35.0 hw59 35.0 86-05-17.gtar.gz 499708 5000 553MB

Oct/01/85 38.3 hw59 38.3 85-10-01.gtar.gz 99947 5000 107MB

May/17/85 43.8 hw59 43.8 85-05-17.gtar.gz 199886 5000 221MB

Ariadne 4.08 . . ./ariadne/

Jul/17/81 14.0 ar48p 14.0 81-07-17.gtar.gz 100000 5000 82MB

Jun/17/81 22.0 ar48p 22.0 81-06-17.gtar.gz 100000 5000 97MB

May/17/82 34.6 ar48p 34.6 82-05-17.gtar.gz 299998 5000 334MB

May/05/86 35.0 ar48p 35.0 86-05-17.gtar.gz 499998 5000 586MB

Oct/01/85 38.3 ar48p 38.3 85-10-01.gtar.gz 100000 5000 113MB

May/17/85 43.8 ar48p 43.8 85-05-17.gtar.gz 199998 5000 235MB

Jetset 6.3 . . ./jetset/

Jul/17/81 14.0 jt63 14.0 81-07-17.gtar.gz 100000 5000 85MB

Jun/17/81 22.0 jt63 22.0 81-06-17.gtar.gz 100000 5000 101MB

May/17/82 34.6 jt63 34.6 82-05-17.gtar.gz 299996 5000 357MB

May/05/86 35.0 jt63 35.0 86-05-17.gtar.gz 399998 5000 503MB

Oct/01/85 38.3 jt63 38.3 85-10-01.gtar.gz 100000 5000 122MB

May/17/85 43.8 jt63 43.8 85-05-17.gtar.gz 199999 5000 255MB

Table 7: List of newly generated BOS and ZE4V data.

53

CPROD Files
(location: /castor/cern.ch/user/m/movilla/jade/cprod/. . .)√
s [GeV] archive name storage occ.

Pythia 5.7 . . ./pythia/

14.0 py57.14.0.gtar.gz 95MB
22.0 py57.22.0.gtar.gz 110MB
34.6 py57.34.6.gtar.gz 371MB
35.0 py57.35.0.gtar.gz 673MB
38.3 py57.38.3.gtar.gz 128MB
43.8 py57.43.8.gtar.gz 268MB

Herwig 5.9 . . ./herwig/

14.0 hw59.14.0.gtar.gz 88MB
22.0 hw59.22.0.gtar.gz 103MB
35.0 hw59.35.0.gtar.gz 601MB
38.3 hw59.38.3.gtar.gz 124MB
43.8 hw59.43.8.gtar.gz 259MB

Ariadne 4.08 . . ./ariadne/

14.0 ar48p.14.0.gtar.gz 84MB
22.0 ar48p.22.0.gtar.gz 98MB
35.0 ar48p.35.0.gtar.gz 570MB
38.3 ar48p.38.3.gtar.gz 118MB
43.8 ar48p.43.8.gtar.gz 245MB

Jetset 6.3 . . ./jetset/

14.0 jt63.14.0.gtar.gz 83MB
22.0 jt63.22.0.gtar.gz 100MB
34.6 jt63.34.6.gtar.gz 360MB
35.0 jt63.35.0.gtar.gz 482MB
38.3 jt63.38.3.gtar.gz 125MB
43.8 jt63.43.8.gtar.gz 265MB

Table 8: List of newly generated CPROD files.

54

55

C JADE Interactive Graphics Commands

The following is a list of most commands available within the JADE event display program
jadez (Section 5.5). Further information can be found in [24].

Views:

RA displays the central detectors and TOF counters in the r-φ view

RB displays the central detectors, TOF counters and barrel Lead Glass (LG) in the r-φ view

RC displays the central detectors, TOF counters, barrel LG and Muon Chambers in the r-φ
view

ZXA displays the central detectors and TOF counters in the z-x view

ZXB displays the central detectors, TOF counters and barrel Lead Glass (LG) in the z-x view

ZXC displays the central detectors, TOF counters, barrel LG and Muon Chambers in the z-x
view

ZYA, ZYB, ZYC work like ZXA, ZXB and ZXC, respectively, but display the subdetectors in the
z-y view

RU displays the rolled-out view of the LG and the forward detector

VC displays the Vertex Chamber in the r-φ view

CYL displays a perspective view of the Jet Chamber and the barrel LG

DET displays the detector hardware on top of the current view

PRO displays projections of the two orthogonal views

EC displays end cap LG hits in r-φ views

TRLG displays the T1 trigger conditions

TRG2 displays the T2 trigger conditions

CSTV changes the standard view and the automatic display of the event and the detector

Analysis results:

RES displays Inner Detector (ID) and Lead Glass analysis results

TR displays ID hits with various options

TRUE displays the original 4-vectors in Monte Carlo events

VX displays vertex finding results with several options

DEDX displays energy loss analysis results with several options

56

TOF displays time-of-flight analysis results with several options

AX displays the event jet axes with several options

CLUS displays the Lead Glass energy clusters in the RU view (see below)

VFIT performs a vertex fit of chosen tracks

MASS computes the effective mass of a group of particles

Control:

N goes to next event

FIND fetches an event by run number and event number

MORE switches to a new input data file

LEVELS changes the JADE Supervisor stop flags (see Section 5.2)

C continues to the next JADE Supervisor level with the stop flag set

OPT flips any of the drawing flags

STAT displays status of the drawing flags

ZOOM changes scale and/or origin of the current view (clipping boundaries are set with mouse
clicks)

RESET returns to the standard scale and origin

STOP stops the program

Extras:

H generates a PostScript copy of the display

PICK returns the coordinates of the cross-hairs on the screen moved by the mouse

DRAW invokes a drawing routine for circles, lines, points

COM adds a comment to the picture

MACRO creates a macro command sequence

EDITMAC edits a user defined macro

DELMAC deletes a user defined macro

RENAMAC renames a user defined macro

57

References

[1] P.A. Movilla Fernández. Studien zur Quantenchromodynamik und Messung der starken
Kopplungskonstanten αS bei

√
s = 14-44GeV mit dem JADE-Detektor. PhD thesis, RWTH

Aachen, 2003. PITHA 03/01, MPI-PhE 2003/01.

[2] P.A. Movilla Fernández. Determinations of αS at
√
s = 14 GeV to 44 GeV Using Resummed

Calculations. 2002. MPI-PHE-2002-08, contributed to XXXVIIth Rencontres de Moriond
on QCD and Hadronic Interactions, Les Arcs, France, 16-23 Mar 2002.

[3] P.A. Movilla Fernández. αS and Power Corrections from JADE. 2002. MPI-PHE-2002-
12. Proceedings of 31st International Conference on High Energy Physics (ICHEP 2002),
Amsterdam, The Netherlands, 24-31 Jul 2002.

[4] Mona Blumenstengel and Stefan Kluth. Fragmentation Functions Using e+e− Data from
PETRA and LEP. 2002.

[5] JADE Progress Report. JADE Note 22, 1978.

[6] B. Naroska. e+e− Physics with the JADE Detector at PETRA. Phys. Rept., 148:67, 1987.

[7] E. Elsen. Detector Monte Carlo. JADE Computer Note 54, 1982.

[8] E. Elsen. Multihadronerzeugung in der e+e−-Vernichtung bei PETRA-Energien und Ver-
gleich mit Aussagen der Quantenchromodynamik. PhD thesis, Universität Hamburg, 1981.

[9] K. Meier. Untersuchung der Photonproduktion bei Elektron-Positron Annihilationen am
Speicherring PETRA. PhD thesis, Universität Hamburg, 1987.

[10] K. Meier. Monte Carlo Simulation of Electromagnetic Showers in the Lead Glass. JADE
Computer Note 70, 1984.

[11] N. Magnussen. New Shower Functions for SF5/SF6 and New MC and Data Routines for
Meier LG Shower Fitting. JADE Note 136, 1986.

[12] A.J. Finch. Tagging System Monte Carlo. JADE Computer Note 86, 1986.

[13] C.K. Bowdery. Production of Inclusive Dimuon Events in Electron Positron Annihilation
at PETRA Energies. PhD thesis, Victoria University of Manchester, 1982. HEP-T-105.

[14] S. Yamada. Čerenkov Light Detection Efficiency for the JADE Lead Glass Counter. JADE
Note 20, 1977.

[15] J.E. Olsson. The Subroutine NPECR6. JADE Computer Note 20 Supplement 1, 1987.

[16] C. Bowdery and J.E. Olsson. The JADE SUPERVISOR Program. JADE Computer Note
73, 1984.

[17] J.E. Olsson, P. Steffen, M.C. Goddard, G.F. Pearce, and T. Nozaki. Pattern Recognition
Programs for the JADE Jet Chambers. Nucl. Instrum. Meth., 176:403–407, 1980.

[18] S. Yamada. Analysis Program for Lead Glass Counters. JADE Computer Note 14D, 1984.

[19] D.D. Pitzl. Reconstruction of Cluster Energies in the Barrel Lead Glas. JADE Computer
Note 101, 1988.

58

[20] D.D. Pitzl. Quellen von Photonen in hadronischen Ereignissen der Elektron-Positron Ver-
nichtung. PhD thesis, Universität Hamburg, 1989.

[21] J. Hagemann, J.E. Olsson, and R. Ramcke. Inner Detector Smearing and Trigger Simula-
tion. JADE Computer Note 66, 1983.

[22] G. Eckerlin and M. Zimmer. A New Compact Data-Format Description of Bank - ZE4V.
JADE Computer Note 99, 1988.

[23] C.K. Bowdery and J.J. Pryce. The New TP Program Version 9. JADE Computer Note
102, 1988.

[24] C. Bowdery and J.E. Olsson. JADEZ - The JADE Graphics Program. JADE Computer
Note 85/D, 1986.

[25] M. Goddard, J.E. Olsson, and P. Steffen. Cuts of First Data Reduction. JADE Computer
Note 38, 1980.

[26] J.E. Olsson. A General Second Reduction Program. JADE Computer Note 43, 1980.

[27] V. Blobel. B O S: Bank Organization System. Dynamic Storage Organization with FOR-
TRAN. Hamburg DESY - Internal Report F14-77-01, 1977.

[28] W. Bartel. IBM Data Banks. JADE Computer Note 23, 1979.

[29] P. Steffen. Track Bank from Pattern Recognition Program. JADE Computer Note 12, 1979.

[30] P. Steffen. Hit Lable Bank Created by PATREC. JADE Computer Note 21, 1979.

[31] E. Elsen and K.H. Hellenbrand. Re-Analysis of Multihadronic Events. JADE Computer
Note 83, 1985.

[32] W. Bartel. Minutes of the JADE Software Meeting on Dec. 14, 1987 at DESY. JADE
Computer Note 98, 1988.

[33] E. Gadermann and H. Krehbiel. Trigger Scheme, Realization of T1. JADE Note 30, 1978.

[34] M. Helm, H. Krehbiel, and H. Riege. Trigger T2 (Jet Chamber Fast Track Recognition).
JADE Note 31, 1979.

[35] J. Allison and H. Prosper. Muon Trigger. JADE Note 28, 1977.

[36] H.E. Mills. Online Event Filtering in the JADE Data Acquisition System. Nucl. Instrum.
Meth., A247:525, 1986.

[37] P. Dittman. Online Event Analysis in the NORD50. JADE Note 78, 1981.

[38] H.E. Mills. Online Event Analysis in the NORD50. JADE Note 78 Supplement 1 and 2,
1985/1986.

[39] H.E. Mills. Introduction to Using the JADE NORD10S/50 Computers. JADE Note 92,
1983.

[40] D. Cords, P. Dittmann, R. Eichler, and H.E. Mills. The Data Acquisition System for the
JADE Detector. Nucl. Instrum. Meth., A245:137, 1986.

59

[41] J.E. Olsson. Private communication.

[42] F-Package for Input/Output (Version 1.00/00), 1994.

[43] J.E. Olsson, G. Eckerlin, and E. Elsen, 1996. Private communication.

[44] P. Bock, J. von Krogh, et al., 1997. Private communication.

[45] S. Yamada, C. Bowdery, and E. Elsen. The JADE TP Program. JADE Computer Note
79, 1984.

[46] C Bowdery and S. Yamada. Format of the Generation 8 TP banks. JADE Computer Note
80, 1984.

[47] J. Spitzer. How to Use New ID Calibration. JADE Computer Note 94, 1987.

[48] E. Elsen and J. Spitzer. A General s-z Fit Routine. JADE Computer Note 95, 1987.

[49] J. Spitzer. Improved Resolution with Z-Chamber Hits. JADE Computer Note 95 Supple-
ment 1, 1987.

[50] M. Zimmer. Die Fragmentation von b-Quarks. PhD thesis, Ruprecht-Karls-Universität,
Heidelberg, 1989.

[51] G. Eckerlin. Vergleich der starken Wechselwirkung von b-Quarks und leichten Quarks in
e+e−-Reaktionen bei 35 GeV. PhD thesis, Ruprecht-Karls-Universität, Heidelberg, 1990.

[52] P. Steffen. The JADE Calibration Scheme. JADE Computer Note 68, 1983.

[53] P. Steffen. New Convention for Calibration Data. JADE Computer Note 58, 1982.

[54] E. Elsen and Olsson. J. Calibration for the 1986 REDUC1 and Standard Status of Ruther-
ford Tapes. JADE Computer Note 89, 1986.

[55] E. Elsen and J. Olsson. REDUC1 and REDUC2 for 1986 Data. JADE Computer Note 92,
1987.

[56] Monte Carlo Formats. JADE Computer Note 10, 1978.

[57] E. Elsen. Monte Carlo Tracking. JADE Computer Note 26, 1979.

[58] C. Bowdery. Monte Carlo Traceback. JADE Computer Note 69, 1983.

[59] C. Bowdery. Monte Carlo Data Validation. JADE Computer Note 72, 1984.

[60] P. Dittmannn. How to Use the Vertex Fit Program. JADE Computer Note 32, 1980.

[61] Ch. Pahl. PhD thesis, Ludwigs-Maximilians-Universit”at, (in Vorbereitung).

[62] S. Kluth. Private communication.

[63] T. Sjöstrand. High-Energy Physics Event Generation with PYTHIA 5.7 and JETSET 7.4.
Comput. Phys. Commun., 82:74–90, 1994.

[64] T. Sjöstrand. PYTHIA 5.7 and JETSET 7.4 Physics and Manual. CERN-TH-7112-93.

60

[65] T. Sjöstrand. The Lund Monte Carlo for Jet Fragmentation and e+e− Physics: JETSET
Version 6.2. Comput. Phys. Commun., 39:347, 1986.

[66] T. Sjöstrand and M. Bengtsson. The Lund Monte Carlo for Jet Fragmentation and e+e−

Physics: JETSET Version 6.3: an Update. Comput. Phys. Commun., 43:367, 1987.

[67] Leif Lönnblad. ARIADNE Version 4: A Program for Simulation of QCD Cascades Imple-
menting the Color Dipole Model. Comput. Phys. Commun., 71:15–31, 1992.

[68] G. Marchesini et al. HERWIG: A Monte Carlo Event Generator for Simulating Hadron
Emission Reactions with Interfering Gluons. Version 5.1 - April 1991. Comput. Phys. Com-
mun., 67:465–508, 1992.

[69] R. Odorico. COJETS 6.23: A Monte Carlo Simulation Program for p̄p, pp Collisions and
e+e− Annihilation. Comput. Phys. Commun., 72:238–248, 1992.

[70] DESY R-INFO 79/C, 1977; DESY R-INFO 77/C, 1979.

[71] Tektronix Inc. PLOT-10 Terminal Control System - User’s Manual., 1976.

[72] P.K. Schilling. IPS User’s Guide., 1982. Hamburg Desy - Internal Report R2-81-1.

[73] K.G. Begeman. SHELTRAN. Kapteyn Laboratorium Groningen, 1991. Manual.

[74] CERNLIB - Short Writeups. CERN Program Library.

[75] HIGZ - High Level Interface to Graphics and ZEBRA. CERN Program Library (Q120).

[76] R.D. Heuer, T. Nosaki, J. Olsson, and P. Steffen. Conventions of Jet Chamber Formats for
Pattern Recognition and Related Programs. JADE Computer Note 5, 1978.

[77] J. Hagemann, C. Kleinwort, and R. Ramcke. Vertex Chamber Software. JADE Computer
Note 100, 1988.

[78] R. Barlow. The JADE Muon Monte Carlo. JADE Computer Note 67, 1983.

[79] R. Barlow. Production of Inclusive Dimuon Events in Electron Positron Annihilation at
PETRA Energies. PhD thesis, Victoria University of Manchester, 1982.

[80] M. Helm and B Naroska. IBM Trigger Banks. JADE Computer Note 23a, 1979.

[81] B Naroska. Trigger Words. JADE Computer Note 23b, 1979.

[82] D. Cords. Logical Record Format for Online Data. JADE Note 32 and Supplements 1-6,
1979.

[83] B. Naroska. Tentative Allocation of New Trigger Words and Trigger Bits. JADE Note 82,
1981.

[84] G. Hughes and H. Wriedt. Data Format of the Tagging Banks. JADE Computer Note 16,
1979.

[85] B. Naroska. Bank Created by the Z Vertex Reconstruction. JADE Computer Note 17,
1979.

61

[86] J. Allison, C. Bowdery, I. Duerdoth, J. Hassard, H. Mccann, and H. Prosper. Muon Software
Information. JADE Computer Note 22, 1979.

[87] G. Eckerlin. Private communication.

62

