
NASA Technical Memorandum 101953

ii
t Initial Operating Capability for the

Hypercluster Parallel-Processing Test Bed

Gary L. Cole and Richard A. Blech
Nationul Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

and

Angela Quealy
Sverdrup Technology, Inc.
NASA Lewis Research Center Group
Cleveland, Ohio

Prepared for the
Fourth Conference on Hypercubes, Concurrent Computers, and Applications
cosponsored by the U. S. Department of Energy (Applied Mathematical
Sciences Program), Strategic Defense Initiative Organization (Office of
Innovative Science and Technology), Joint Tactical Fusion Program
Office, U.S. Air Force (Electronic Systems Division), Air Force Office
of Scientific Research, and NASA Ames Research Center
Monterey, California, March 6-8, 1989

5

4

INITIAL OPERATING CAPABILITY FOR THE

HYPERCLUSTER PARALLEL-PROCESSING TEST BED

Gary L . Cole and Richard A . B lech
Nat iona l Aeronautics and Space Admin is t ra t ion

Lewis Research Center
Cleveland, Ohio 44135

and

Angela Quealy
Sverdrup Technology, I n c .

NASA Lewis Research Center Group
Cleveland, Ohio 44135

ABSTRACT

The NASA Lewis Research Center is
investigating the benefits of parallel processing
to applications in computational fluid and
structural mechanics. To aid this investiga-
tion, NASA Lewis is developing the Hyperclus-
ter , a multiarchitecture, parallel-processing
test bed. This paper describes the initial oper-
a ting capability (IOC) being developed for the
Hypercluster. The IOC will provide a user with
a programming/operating environment that is
interactive, responsive, and easy to use. The
IOC effort includes the development of the
Hypercluster operating system (HYCLOPS).
HYCLOPS runs in conjunction with a vendor-
supplied disk operating system on a front-end
processor (FEP) to provide interactive, run-
time operations such as program loading, ex-
ecution, memory editing, and data retrieval.
Run-time libraries, that augment the FEP
FORTRAN libraries, are being developed to
support parallel and vector processing on the
Hypercluster. Special utilities are being pro-
vided to enable passage of information about
application programs and their mapping to the

the FEP and the Hypercluster are being han-
dled by dedicated processors, each running a
message-passing kernel, (MPK). A shared-
memory interface allows rapid data exchange
between HYCLOPS and the communications
processors. Input/output handlers are built into
the HYCLOPS-MPK interface, eliminating the
need for the user to supply separate 110 sup-
port programs on the FEP.

* operating system. Communications between

*

INTRODUCTION

NASA Lewis relies heavily on computa-
tional fluid mechanics (CFM) and computa-
tional structural mechanics (CSM) to simulate
the behavior of aerospace propulsion systems
and components. The computer codes are com-
putationally intensive, and solution times range
from hours to days, even on today’s supercom-
puters. Computing times and memory require-
ments will increase rapidly as the need for
more accurate and complex simulations grows.

To make CFM/CSM codes practical for
applications such as propulsion system design,
analysis, and on-line support of experiments,
methods must be found to speed up solutions.
Parallel processing technology offers potential
for significant reductions in the computation
time of these problems. In recent years, a
number of different architectures have been
proposed that generally fall into the categories
of shared or distributed memory machines. A t
present i t is not clear which types or combina-
tions of architectures will be most suitable for
the propulsion applications. Also, i t may be
necessary to develop new algorithms to take
full advantage of promising multiprocessor
architectures.

processing to computational mechanics prob-
lems, NASA Lewis is conducting studies both
in-house (Refs. 1 and 2) and through support of
university research. To aid these studies,
NASA Lewis researchers are developing the
Hypercluster, a multiarchitecture, parallel-
processing test bed. The Hypercluster is not

In order to assess the benefits of parallel

meant to compete with commercial parallel
processors, but rather to provide a low-cost,
unified approach to investigating combinations
of parallel algorithms and architectures for a
variety of applications. It will also provide
insight into the suitability of emerging com-
mercial parallel processors for these
applications.

The Hypercluster architecture is similar
to that of a hypercube, except that each node
consists of multiple scalar and/or vector pro-
cessors, communicating through shared mem-
ory. The result is a combination of both shared
and distributed memory architectures, which
allows emulation of a wide variety of architec-
tural configurations. A commercial front-end
processor (FEP) serves as the user interface to

making the Hypercluster as user oriented as
possible. An initial operating capability (IOC)
has been defined to provide basic programming
and operating functions, as well as other capa-
bilities. The IOC requires the development of
new and modified software tools that reside on
the FEP. The IOC is designed to provide a con-
venient, versatile programming and operating
environment and to make parallel processing
transparent to the user.

Past in-house experience with parallel
processing hardware and software is being used
as a basis for the IOC development. First-
generation multiprocessor hardware (Ref. 3)
and software (Refs. 4 to 8) were developed as
part of the real-time multiprocessor simulator
(RTMPS) project. The RTMPS was designed for
real-time solution of one-dimensional, ordinary
differential equation models of air-breathing
propulsion systems. The IOC effort is extending
those capabilities to allow solution of models,
characterized by multidimensional, partial dif-
ferential equations.

This paper describes the IOC design,
planned capabilities, and development ap-
proach. An overview of the Hypercluster test
bed and the FEP is provided first, followed by
a description of the major IOC software ef-
forts. The current s ta tus of the project and
some anticipated enhancements are also
presented.

HYPERCLUSTER SYSTEM CONFIGURATION

I the Hypercluster.
Considerable effort is being devoted to

The general Hypercluster system con-
figuration is shown in Fig. 1. The major hard-
ware elements are the Hypercluster test bed,

and a front-end processor (FEP). The FEP is
the user ' s communication link to the Hyper-
cluster. It has the usual peripheral equipment
for storage and display (terminals, disk drives,
and printers).

The Hypercluster architecture consists
of clusters of processors a t nodes, with the
nodes interconnected by links in a hypercube
fashion. A four node version is currently being
implemented and is shown schematically in
Fig. 2. The communication links (CLs) allow
communication between nodes and consist of
two control processors (CPs) communicating
through dual-ported memory. An identical
link is used to connect a Hypercluster node to
the FEP. More than one node can be linked to
the FEP if desired. Each node can consist of
any number and combination of processors.
Scalar and vector processors (SPs and VPs)
are currently being used. The VPs act as per-
ipherals to the SPs. Processors within a node
communicate through shared memory, which
may be dual-ported memory on the processor
board itself, or a separate memory board.
The combination of distributed and shared
memory allows for emulation of a wide variety
of architectures, either through software by
the way i t is programmed, or through hardware
by rearranging the resource complement of
each node. The SPs and VPs are used to per-
form application program computations.
The CPs could also be used but this may de-
grade their performance as communications
processors. The CP ' s main function is to co-
ordinate communications over the links and
supervise the operation of processors within a
node. This can be done without interrupting
the SPs or VPs, which may be busy with appli-
cation programs. All Hypercluster compo-
nents are commercially-available, except for
the communic a t ion-link dual-po r t memories.
Additional details concerning the Hypercluster
hardware are given in Ref. 9.

Executive software, referred to as the
message-passing kernel (MPK), runs on each
CP to perform the communications and super-
visory functions. The MPK, which also runs
on each SP, efficiently routes information
through the Hypercluster. It uses fast shared-
memory communication whenever possible, or
a message-passing protocol if necessary. The
MPK, developed in-house, uses a layered ap- .
proach to define the various kernel elements.
The outermost layer consists of interfaces to
the Hypercluster operating system HYCLOPS,
which resides on the FEP, allowing interaction

2

4

between the FEP and the Hypercluster. A spe-
cial in-house utility tests the Hypercluster
hardware (memory, interrupts, etc.), loads the
MPK from FEP disk files, and initializes it for
the desired configuration. Loading the MPK,
rather than having i t reside on PROMS, pro-
vides greater flexibility for debugging and up-
grading the MPK and allowing for Hypercluster
configuration chvges . The MPK is described
in detail in Ref. 10.

The FEP is a commercially-available
Motorola VME-based development system with
a 68020 processor. The FEP-resident disk oper-
ating system (DOS) is a version of Motorola's
VERSAdos that provides the usual utilities,
such as an assembler, linkage editor, text edi-
tor, and file handling services. A FORTRAN
77 compiler and associated libraries are used to
develop application programs. The DOS also
provides task and memory management
services and a multitasking capability, all of
which provide essential support to the operat-
ing environment. A Hypercluster operating sys-
tem HYCLOPS, that runs in conjunction with
the DOS, is being developed to provide run-
time operations such as program loading, ex-
ecution control, and data handling. Data and
information exchanges between the Hyperclus-
ter and FEP take place over the FEF/node
communication links.

DESCRIPTION OF IOC CAPABILITIES

The goal of the IOC effort is to provide a
user-oriented environment for programming
and operating the Hypercluster system. This
means developing software tools that are easy
to learn and use, are interactive to provide
flexibility, and make the parallel processing as-
pects of the Hypercluster transparent to the
user. The software must be developed in a
manner that will be compatible with a test-bed
system. That is, the tools must be easy to de-
bug and allow upgrade/expansion of their capa-
bilities. The software needed to support these
objectives is shown in Fig. 3. New software
being developed for the IOC is designated by
shaded items. Existing software that requires
modification for the IOC is designated by items
with hatching. The remaining software is resi-
dent on the FEP or is generated as part of the
programming proc ess.

Programming Environment

An application program begins with the
development of source code in FORTRAN, the
only language currently supported by the IOC.
Source code can be created on the FEP or
ported to the FEP from mainframes via local
area networks. Data flow analyses, such as
vectorizing and partitioning the code into par-
allel tasks, must be done manually, since the
current FEP-resident compiler does not have
those capabilities. However, compilers on
NASA Lewis mainframe computers are avail-
able to aid the user in that process. The user is
currently responsible for targeting programs to
particular nodes and processors.

In order to support operating environment
functions, data base files a re required that de-
scribe the application program(s) to the operat-
ing system HYCLOPS. A data-base approach
was taken because a similar technique was used
successfully with the RTMPS project (Refs. 3
to 7). The data base files contain records of in-
formation that describe the programs and their
variables. A typical record for a program vari-
able would include information such as i ts data
type and precision (e.g., realjinteger, single/
double), starting address in memory, number of
dimensions and dimension size. Two utilities
are needed to create the necessary data base
files. The mapping utility sets up shared mem-
ory, if required, for programs on the same node
but different processors and maps the parallel
paths onto the hardware. The mapping utility
also creates files to simplify and automate the
Hypercluster loading process in the operating
environment. A data-base utility creates files
that support HY CLOPS interactive functions,
such as the modification and display of pro-
gram variables. Both utilities are designed to
prompt the user for required information.

Existing FEP-residen t utili ties compile,
assemble and link the source programs to pro-
duce the executable application load (object)
modules. The linker automatically calls in
three support libraries. The FORTRAN library
is required for mathematical functions, 110 sup-
port, and run-time error handling. In order to
generate object code that is executable on the
Hypercluster processors i t was necessary to ob-
tain and modify an assembly source code ver-
sion of the library. A run-time library of

3

vector processing operations and error handling
was acquired with the vector boards purchased
for the Hypercluster. These library routines
also required modification. The parallel pro-
cessing library provides procedures to support
data transfers and synchronization between
nodes and special I/O. This library takes advan-
tage of services provided by the MPK. The
FORTRAN, vector-processing, and parallel-
processing libraries eliminate the need for any
user-supplied procedures. The user simply in-
cludes the required library calls in the
FORTRAN source code.

Operating Environment

Once programming is complete, operating
functions are required to load and execute the
object module(s) and to retrieve application
results. There are no FEP-resident utilities to
support these functions. To provide these func-
tions, a new Hypercluster operating system
HYCLOPS is being developed. I t runs on the
FEP in conjunction with the resident DOS. The
HYCLOPS multitask design, providing the nec-
essary functions to achieve the IOC goals, is
shown in Fig. 4. There are three major tasks.
Shared memory provides for communications
required between tasks and the FEP, as well as
for storage of application results and advisory
messages.

with the functions necessary for executing the
application programs. Its menus and prompts
make it easy to learn and use, and virtually
eliminates the need to know FEP-DOS com-
mands. Responses to prompts can be entered
interactively via the keyboard or "automatic-
ally" via predefined files. For example, the
user can designate file names and the node and
processor destinations to load executable ob-
ject modules. Or the user can select the load
function, which will automatically load the
modules from database files. To do this, only
the application program name is required. A
self-documenting session history records all
user entries, as well as pertinent task prompts,
and saves messages from the message advisory
task. The session history was a powerful fea-
ture included in RTMPOS (Refs. 6 and 7). The
file is useful for reviewing session progress and
coordinating i t with results. It can also be used
as an input file to HYCLOPS to recreate the
session without making manual keyboard en-
tries. The interactive task has a number of

The interactive task provides the user

features to minimize response time. The appli-
cation data base is read into memory for faster
access than from disk files. The MPK message-
passing protocol is used to exchange data
between the FEP and the Hypercluster. Mes-
sages between the FEP and specific Hyperclus-
te r processors are directed through the nearest
FEP link if more than one exists. Shared mem-
ory between the FEP and CPs on the FEP bus
results in direct transfer of data between the
FEP and the dual-port interface memory. It
also results in "automatic" conversion between
bytes of information and the desired data
types, such as real numbers, which is discussed
in the next section.

The interactive task supports the follow-
ing user functions. As described above, appli-
cation object modules can be loaded interac-
tively or automatically via the application data
base. If the auto mode is selected, the applica-
tion data base is first loaded into FEP memory.
A data base manager provides functions for
editing and manipulating the data base. Values
for initializing selected program variables will
be included in the data base and set a t run
time. Mohfication and display of memory lo-
cations anywhere in the Hypercluster can be
accomplished by means of the memory editor
function. When an application data base is
used, program variables can be specified to the
memory editor symbolically by name. This fa-
cilitates debugging of programs. Once loaded
and initialized, the application programs can be
executed on the Hypercluster interactively.
The execution mode manager can be invoked
from any menu, allowing the user to RUN,
STOP, or RESUME execution. Selection of
RUN causes all loaded processors throughout
the Hypercluster to begin execution a t the pro-
gram entry point. STOP causes all loaded pro-
cessors to stop execution. The RESUME mode
allows all loaded processors to resume execu-
tion from the point a t which they halted due to
a STOP. The mode manager also allows the
user to display the current RUNISTOP status
of all Hypercluster processors. Another major
interactive task function is assignment of files
to retrieve application results. A maximum of
10 FORTRAN output units can be assigned by
the user a t m time. The user specifies the
FORTRAN unit number, the file name to be
written to, and the file type (i e . , formatted or
unformatted). If an existing file is specified,
the user has the option of overwriting i t , ap-
pending to i t , or specifying a new file name. A

4

user-transparent data advisory task, described
below, is started by HYCLOPS to support each
output unit. The tasks are terminated by a
FORTRAN CLOSE command included in the ap-
plication program or interactively by the user.
Display of active units and associated files is
menu selectable. The interactive task can be
terminated and restarted without affecting the
data advisory tasks, which will not be
interrupted.

A separate message advisory task
retrieves error messages originating in the
Hypercluster. The messages are displayed on a
user-selected message device and saved in the
session history file. The task services system
errors, such as a bus error, as well as run-time
errors supported by the vec tor-processing,
parallel-processing, and FORTRAN libraries.
An example of the latter would be a divide by
zero. Depending on the severity of the error,
the MPK can halt all Hypercluster processors.
In that case, a register dump is produced for
the processor having the error. This task func-
tions automatically and is transparent to the
user.

results, a generic data advisory task is created
each time the user assigns a FORTRAN unit to
a file. If programs on different processors have
duplicate unit numbers, the user is required to
coordinate the write statements to avoid un-
wanted interlacing of data, (if necessary). This
can be done by making appropriate calls to the
parallel-processing library. The MPK transfers
results from the originating processor to a data
buffer in the application results data segment
of shared memory. The MPK places a pointer
to the buffer in the data advisory task 's
queue. The task transfers the data to the disk
file using the FEP-DOS I/O services. Once the
transfer is complete, the task clears the queue
and makes the data buffer available for reuse.
This approach for retrieving results eliminates
the need for the user to supply special output
programs on the FEP.

In order to support retrieval of applicaton

IOC SOFTWARE DEVELOPMENT APPROACH

The new software tools shown in Fig. 3
are being developed in three phases - design,
programming, and testing. Because the data-
base and mapping utilities and HYCLOPS are
coupled through the data base files, these soft-
ware efforts must be closely coordinated. To
minimize development time, the utilities and
HYCLOPS are designed to take advantage of as
much FEP-resident software as possible. The

programming environment design uses
command/control files to automate the code
generation process, where possible, and will al-
low advanced compilers and data-flow-analysis
tools to be incorporated, as they become avail-
able. As shown in Fig. 3 , the HYCLOPS design
makes use of task initialization files. These
are text files that can be easily edited to ac-
count for changes in operating environment
features without having to reprogram/recomp-
ile HYCLOPS tasks. For example, the message
advisory task uses a file that contains the mes-
sage-advisory shared-memory-segment a t tri-
butes, including starting address, size, and
number of message buffers.

A top-down programming approach is
being used so that IOC software can be
expanded and easily modified. Pascal is used
as the programming language, as much as possi-
ble, to maximize portability of the IOC to other
FEPs. The FORTRAN and vec tor-processing li-
braries were supplied by the vendor in assembly
language. The parallel-processing library is
programmed in assembly language to maximize
processing speed on the Hypercluster. Some
HYCLOPS procedures are programmed in as-
sembly language because standard Pascal does
not support certain operations, such as writing
to specific memory addresses. All assembly
language routines are specific to Motorola
68000-series processors. But most are rela-
tively simple and can easily be retargeted to
hardware from other manufacturers. Typical
software interfaces are shown for HYCLOPS in
Fig. 5. Actual proportions of Pascal and assem-
bly code is not represented. HYCLOPS is pri-
marily composed of a Pascal kernel. An assem-
bly language interface is required for HYCLOPS
to initiate a message to the MPK. This is done
by writing to specific memory addresses in the
CP that links the FEP to the Hypercluster.
Sometimes the message will be a request for
data from the Hypercluster (e.g., the value of a
program variable). In that case, HYCLOPS pro-
vides a return address in FEP memory that cor-
responds to a Pascal record of the required data
type and precision (e.g., real, single). This
eliminates the need for a conversion between
the bytes of information being returned and the
required data types. The same approach is
used when sending data to the Hypercluster.
Both Pascal and assembly language interfaces
are required between HYCLOPS and the FEP-
resident DOS. Pascal is used mainly to inter-
face with the DOS I/O utilities. Assembly lan-
guage is used to interface with DOS utilities
such as task and memory management.

5

Testing and debugging of IOC software is
done to the extent possible as programming
proceeds. Simple FORTRAN programs are
being written to test the three libraries sup-
porting the compiler. Each HYCLOPS function
is tested as it is developed and added to the in-
teractive task. A representative CFM applica-
tion will be selected to test and demonstrate
the entire IOC, before making the Hypercluster
system generally available to users. The choice
of a relatively simple code is important to pre-
vent massive calculations or other program
complications from interfering with testing of
data transfers, vector operations, etc. Demon-
stration of the benefits of parallel/vector pro-
cessing is not a primary objective of this test.

CONCLUDING REMARKS

Design and development of an initial operating
capability (IOC), that provides user-oriented
programming and operation of the Hypercluster
parallel-processing test bed, has been
described, The Hypercluster architecture, cou-
pled with the IOC, should provide researchers
in computational mechanics with a unique facil-
ity for exploring the benefits of advanced algo-
rithms and computer architectures to their
applications. The IOC effort requires develop-
ment of new and modified software tools that
reside on a front- end processor (FEP) and
make use of the resident disk operating system
(DOS) facilities.

Sufficient software tools are currently in
place to begin programming applications in
FORTRAN. Libraries of procedures to support
FORTRAN functions, vec tor-processing, and
parallel-processing have been developed/
modified, thus eliminating the need for user-
supplied procedures. The user simply includes
the required library calls in the FORTRAN
source code. The new Hypercluster operating
system, HYCLOPS, currently has capabilities
for interactively loading and executing applica-
tion programs. Data advisory tasks can be as-
signed to FORTRAN output units a t run time
to retrieve application results, eliminating the
need for any user-supplied output support pro-
grams. A HYCLOPS message advisory task re-
trieves and displays system and run-time error
messages from the Hypercluster to the user.

Additional capabilities are still being
added to the programming environment. The
new parallel-processing library is in the proc-
ess of being tested. Data-base and mapping
utilities are being added to simplify loading of
applications and to support interactive

capabilities being added to HYCLOPS (e.g.,
symbolic editing of program variables a t run
time). Command/control files for "automat-
ing" the programming process are being deve-
loped. HYCLOPS capabilities being added
include a unique self-documenting session his-
tory file and optional input of user entries from
the keyboard or predefined disk files. The ses-
sion file can also be used as input to HYCLOPS
to recreate the session without making manual
keyboard entries. The additional capabilities
are planned for completion by the second quar-
te r of 1989.

Testing of computational fluids applica-
tions has already begun. Since the Hyperclus-
t e r is a test-bed environment, i t is expected
that refinements will be made based on user
experience, as well as enhancements and addi-
tions based on the availability of new/advanced
software tools (e.g., compilers with vectorizing
and partitioning capabilities). The need for
on-line graphical-display of application results
must be addressed. The possibility of conver-
sion to a more standard FEP operating system,
such as UNIX, is being investigated. This
would provide port ability of the programming/
operating environment to a variety of worksta-
tions, which in turn would increase the availa-
bility of graphics and bet ter data-flow-analysis
tools. Although multiple FEPs can be con-
nected to the Hypercluster test bed, i t is cur-
rently viewed as a single-user system. Neither
HYCLOPS nor the MPK provide resource man-
agement, but could be modified to do so.
Enhancement of run-time debug capability,
such as the ability to more easily set and
remove break points a t strategic instructions,
should also be addressed.

1.

2.

3 .

6

REFERENCES

E. J . Milner, R.A. Blech, and R.V. Chima,
Time-Parti tioning Simulation Models for
Calculation on Parallel Computers; NASA
TM-89850, 1987.
R.A. Mulac, M.L. Celestina, J . J .
Adamczvk, K.P. Misenades, and J.M.
Dawson,"The Util izatkn of I
cessing in Solvin
Average-Passage Equation System for Mul-

?arailel Pro-
g the Inviscid Form of the

tistage Turbomachinery, AIAA Paper
87-1108, June 1987.
R.A. Blech and A.D. Williams, Hardware
Configuration for a Real-Time Multipro-
cessor Simulator, NASA TM-88802, 1986.

4.

5.

6.

7.

D. J . Arpasi, RTMPL - A Structured Pro-
gramming and Documentation Utility for

8.

Real-Time Multiprocessor Simulations,
NASA TM-83606, 1985.
D. J . Arpasi, Real-Time Multiprocessor 9.
Programming Lanmage, (RTMPL) - Users
Manual, NASA TP-2422, 1985.
G.L.-Cole, Operating System for a Real-
Time Multiprocessor Propulsion System
Simulator, NASA TM-83605, 1984.
G.L. Cole, Operatinp System for a Real-
Time Multiprocessor Propulsion System
Simulator - Users Manual, NASA TP-2426,
1985.

10.

D. J . Arpasi, and E. J . Milner, Partitioning
and Packing Mathematical Simulation
Models for Calculation on Parallel Com-
puters, NASA TM-87170, 1986.
R.A. Blech, The Hypercluster: A Parallel
Processing Test-Bed Architecture for
Computational Mechanics Applications,

R.A. Blech, A. Quealy, and G.L. Cole,
Message-Passing Kernel for the Hyperclus-
ter Parallel-Processing Test Bed, NASA
TM-101952, 1989. Proceedings of the
Fourth Conference on Hypercubes, Concur-
rent Computers, and Applications.(to be
published Monterey, CA, Mar. 6-8, SIAM,
Philadelphia, PA, 1989).

NASA TM-89823, 1987.

I COMMUNICATION
LINK(s)

FEP BUS I
t I

FEP
PERIPHERAL
EQUIPMENT

Figure 1. - Hypercluster system configurathn.

I

VP - VECTOR PROCESSOR
CP - CONTROL PROCESSOR
SP - SCALAR PROCESSOR
U - COMMUNICATION LINK
M - SHARED MEMORY

VP ; VP I U

FRONT - END PROCESSOR BUS

Figure 2. - Hyperduster test bed architecture.

7

COMPLIER

ASSEMBLER
1 Q APPLK;.

PP = PARALLEL PROCESSING
VP = VECTOR PROCESSING
FORT. = FORTRAN
APPLK). - APPLlCATtON

OPERATING
ENVIRONMENT

IN IT IA L .
FILES

HYCLOPS

Figure 3. - Ioc progrmrninwop0raUng environment.

0 HYCLOPS

DATA 11 I ADVISORY

HYPERCLUSTE R

SHARED
FRONT - END
PROCESSOR (FEP)

FEP - LINK
CONTROL

Figure 4. - OperaUw envlrOfWn0flt (HYCLOPS) m lultitask structure.

Figure 5. - Hyperduster operating system
(HYCLOPS) software interfaces.

8

Im
1. Report No. 2. Government Accession No.

NASA TM-101953

National Aeronautics and 1 Space Administration

3. Recipient’s Catalog No.

Report Documentation Page

7. Author@)

Gary L. Cole, Richard A. Blech, and Angela Quealy

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

8. Performing Organization Report No.

E-4647

10. Work Unit No.

505-62-2 1

11. Contract or Grant No.

13. Type of Report and Period Covered

I I

4. Title and Subtitle 1 5. Report Date

12. Sponsoring Agency Name and Address

Initial Operating Capability for the Hypercluster
Parallel-Processing Test Bed

Technical Memorandum

6. Performing Organization Code

17. Key Words (Suggested by Author@))

Operating Systems; Multiprocessor programming;
Multiprocessors; Hypercube; Parallel processors

I

18. Distribution Statement

Unclassified - Unlimited
Subject Category 62

19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page) 21. No of pages 22. Price’

Unclassified 10 A02

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

14. Sponsoring Agency Code 1
I

15. Supplementary Notes

Prepared for the Fourth Conference on Hypercubes, Concurrent Computers, and Applications, cosponsored by
the U.S. Department of Energy (Applied Mathematical Sciences Program), Strategic Defense Initiative Organization
(Office of Innovative Science and Technology), Joint Tactical Fusion Program Office, U.S. Air Force
(Electronic Systems Division), Air Force Office of Scientific Research, and NASA Ames Research Center,
Monterey, California, March 6-8, 1989. Gary L. Cole and Richard A. Blech, NASA Lewis Research Center;
Angela Quealy, Sverdrup Technology, Inc., NASA Lewis Research Center Group, Cleveland, Ohio 44135.

16. Abstract

The NASA Lewis Research Center is investigating the benefits of parallel processing to applications in computa-
tional fluid and structural mechanics. To aid this investigation, NASA Lewis is developing the Hypercluster, a
multi-architecture, parallel-processing test bed. This paper describes the initial operating capability (IOC) being
developed for the Hypercluster. The IOC will provide a user with a programming/operating environment that is
interactive, responsive, and easy to use. The IOC effort includes the development of the Hypercluster Operating
System (HYCLOPS). HYCLOPS runs in conjunction with a vendor-supplied disk operating system on a Front-
End Processor (FEP) to provide interactive, run-time operations such as program loading, execution, memory
editing, and data retrieval. Run-time libraries, that augment the FEP Fortran libraries, are being developed to
support parallel and vector processing on the Hypercluster. Special utilities are being provided to enable passage
of information about application programs and their mapping to theqerat&i$ystem. Communications between
the FEP and the Hypercluster are being handled by dedicated processors, each running a Message-Passing
Kernel, (MPK). A shared-memory interface allows rapid data exchange between HYCLOPS and the communica-
tions processors. Input/output handlers are built into the HYCLOPS-MPK interface, eliminating the need for the
user to supply separate I/O support programs on the FEP.

