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FOREWORD

The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the
Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental
Health Sciences of the National Institutes of Health (NIEHS/NIH).  Three agencies contribute resources to the
program:  NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease
Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug
Administration (NCTR/FDA).  Established in 1978, the NTP is charged with coordinating toxicological testing
activities, strengthening the science base in toxicology, developing and validating improved testing methods, and
providing information about potentially toxic substances to health regulatory and research agencies, scientific and
medical communities, and the public. 

The Toxicity Study Report series began in 1991.  The studies described in the Toxicity Study Report series are
designed and conducted to characterize and evaluate the toxicologic potential of selected substances in laboratory
animals (usually two species, rats and mice).  Substances selected for NTP toxicity studies are chosen primarily on
the basis of human exposure, level of production, and chemical structure.  The interpretive conclusions presented
in the Toxicity Study Reports are based only on the results of these NTP studies.  Extrapolation of these results to
other species, including characterization of hazards and risks to humans, requires analyses beyond the intent of
these reports.  Selection per se is not an indicator of a substance’s toxic potential.

The NTP conducts its studies in compliance with its laboratory health and safety guidelines and FDA Good
Laboratory Practice Regulations and must meet or exceed all applicable federal, state, and local health and safety
regulations.  Animal care and use are in accordance with the Public Health Service Policy on Humane Care and
Use of Animals.  Studies are subjected to retrospective quality assurance audits before being presented for public
review.

NTP Toxicity Study Reports are indexed in the NIH/NLM PubMed database and are available free of charge
electronically on the NTP website (http://ntp.niehs.nih.gov) or in hardcopy upon request from the NTP Central
Data Management group at cdm@niehs.nih.gov or (919) 541-3419.
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SUMMARY

Background
Genistein is an isoflavone that occurs in soy products including soy-based infant formulas.  Genistein is one of a class
of chemicals known as “environmental estrogens” that can affect the hormone activities and possibly reproductive
function of wildlife and humans through exposure.  The NTP conducted a series of studies on three such chemicals
to detect if exposure to such chemicals over the course of multiple generations could have any cumulative effect on
animals’ reproductive systems or development of cancers.  This report describes a preliminary short-term study to
assess the effects of genistein on rats and to determine appropriate doses to be used in the multiple-generation
long-term studies.

Methods
We gave groups of 10 pregnant female rats genistein mixed in their feed at concentrations of 5, 25, 100, 250, 625, or
1,250 parts per million (ppm), continued the diet until they gave birth and through lactation, and then gave their pups
the same diet until 50 days after birth.  The animals were then examined for changes in their body and organ weights,
reproductive system, immune system, or neuroanatomy. 

Results
Both the mothers and the pups exposed to the highest concentration of genistein had lower body weights at the end
of the studies.  Female pups receiving 250 ppm or more developed hyperplasia of the mammary glands; male pups
exposed to as little as 25 ppm developed hypertrophy of the mammary gland, and male pups receiving 250 ppm also
developed hyperplasia of the mammary gland.  There was an increase in vaginal metaplasia in female pups receiving
625 ppm or more.

Conclusion
Exposure of mother and pup rats to genistein resulted in precancerous lesions of the mammary gland in both sexes
of pups and of the reproductive system in female pups.  From this study, doses of 625 ppm were considered too high
for long-term studies, so maximum doses of 500 ppm genistein in feed were selected for subsequent
multigenerational studies.  
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ABSTRACT

GENISTEIN

CAS No. 446-72-0

Chemical Formula:  C15H10O5 Molecular Weight:  270.23

Synonym: 4N,5,7-Trihydroxyisoflavone

Genistein is a naturally occurring isoflavone that interacts with estrogen receptors and multiple other molecular

targets.  Human exposure to genistein is predominantly through consumption of soy products, including soy-based

infant formula and dietary supplements.  A series of short-term studies with genistein was conducted with two goals:

1) to obtain data necessary to establish dose levels for subsequent multigeneration reproductive and chronic toxicity

studies and 2) to evaluate the effects of genistein on endpoints outside the reproductive tract.  The data generated

from these studies have been reported previously in the peer-reviewed literature or in technical reports (Appendix C).

In addition, selected data from these studies were analyzed and discussed in the National Toxicology Program’s

Report of the Endocrine Disruptors Low-Dose Peer Review (NTP, 2001).  The present report focuses on the

reproductive and general toxicology endpoints evaluated.  Data obtained in separate evaluations of behavioral,

neuroanatomical, neurochemical, and immunological endpoints, as well as the assessment of serum genistein levels,

are also discussed to put in better perspective the selection of doses for the multigenerational and chronic studies.

Genistein was administered in an irradiated soy- and alfalfa-free diet (Purina 5K96) at exposure concentrations of 0,

5, 25, 100, 250, 625, or 1,250 ppm to 10 vaginal plug-positive, female Sprague-Dawley rats starting on gestation

day 7 and continuing throughout pregnancy.    These dietary exposure concentrations resulted in ingested doses of

approximately 0.3, 1.7, 6.4, 16, 38, and 72 mg genistein/kg body weight to dams in the 5, 25, 100, 250, 625, and

1,250 ppm groups, respectively.  Dietary exposure of the dams continued through lactation, during which time
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ingested doses were approximately 0.6, 3.5, 14, 37, 84, and 167 mg/kg per day.  Pups from five litters, culled to eight

per litter with an equal sex distribution on postnatal day (PND) 2, were maintained on the same dosed feed as their

mothers after weaning until sacrifice at PND 50.  Ingested doses were approximately 0.6, 3, 11, 29, 69, and

166 mg/kg per day for male pups and 0.6, 3, 12, 31, 73, and 166 mg/kg per day for female pups.  Body weight and

feed consumption of the treated dams prior to parturition showed decreasing trends with increasing dose, and both

parameters were significantly less than those of the controls in the 1,250 ppm group.  A significant exposure

concentration-related effect on litter birth weight was observed, but no exposed group differed significantly from the

control group in pairwise comparisons.  Pups in the 1,250 ppm group had significantly decreased body weights

relative to controls at the time of sacrifice (males, 9% decrease; females, 12% decrease).  The most pronounced organ

weight effects in the pups were decreased ventral prostate weight (absolute weight, 28% decrease; relative weight,

20% decrease) in males at 1,250 ppm and a trend toward higher pituitary gland to body weight ratios in both sexes.

Histopathologic examination of female pups revealed ductal/alveolar hyperplasia of the mammary glands at

exposure concentrations greater than 250 ppm.  Ductal/alveolar hyperplasia and hypertrophy also occurred in males,

with significant effects seen at exposure concentrations of 25 ppm or greater for hypertrophy and 250 ppm or greater

for hyperplasia.  Abnormal cellular maturation (mucocyte metaplasia) in the vagina was observed at 625 and

1,250 ppm, and abnormal ovarian antral follicles were observed at 1,250 ppm.  In males, aberrant or delayed

spermatogenesis in the seminiferous tubules relative to controls was observed at 1,250 ppm.  Histologic evaluation

indicated a deficit of sperm in the epididymis at 625 and 1,250 ppm relative to controls, although testicular spermatid

head counts and epididymal spermatozoa counts did not show significant differences from controls at these exposure

concentrations.  Control females showed a high incidence of renal tubule mineralization, and the severity of this

lesion was significantly increased at exposure concentrations of 250 ppm or greater.  Males showed no renal tubule

mineralization below 250 ppm, but incidence and severity increased with increasing exposure concentration at

250 ppm and greater.

The primary goal of the current study was to provide information for the selection of exposure concentrations to be

used in subsequent multigenerational and chronic studies.  These long-term studies were designed to address multiple

aspects of the endocrine disruptor hypothesis, that is, the hypothesis that exposures of human and wildlife

populations to endocrine-active compounds contribute to adverse reproductive tract effects and cancers of hormone-

sensitive organs.  In particular, the long-term consequences of low dose exposures that may produce subtle initial

effects, the magnification of those effects across generations, and the reversibility of those effects were to be

investigated.  The goal was to select a high exposure concentration that would not induce overt toxicity in the dams

or pups but would induce observable effects in the reproductive organs of the pups without severely impairing

fertility in the F1 generation.  The 1,250 ppm exposure concentration was clearly ruled out for further testing based

on the effects on body weights, histopathologic observations in males and females, and a reduction in the proportion
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of mated dams producing litters.  While the effects observed at 625 ppm would not be predicted to significantly

impair reproduction, the observation of significant effects at 250 ppm (hyperplasia in the mammary gland of both

sexes), together with the suggestion of subtle effects at this exposure concentration and less in the parallel

immunotoxicity and neuroanatomical surveys, a high exposure concentration between 250 and 625 ppm was deemed

appropriate for the purposes of the multigenerational reproductive toxicology study and the chronic study of

genistein.  A high exposure concentration for the multigenerational and chronic studies was thus set at 500 ppm.  A

low exposure concentration of 5 ppm, where no significant effects were observed in the reproductive dose range-

finding, and an intermediate exposure concentration of 100 ppm were also selected.
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ENDOCRINE DISRUPTORS

Numerous chemicals have been implicated as potential modulators of the activity of endogenous hormones in

wildlife and humans either through direct interaction with hormone receptors or by modifying hormone synthesis or

metabolism (Colborn and Clement 1992; Colborn et al., 1993).  Because of the wide range of physiological processes

that are influenced by endogenous hormones, such modulating chemicals could have a multiplicity of effects,

including effects on reproduction, nervous system function and behavior, immune responses, bone, the cardiovascular

system, and carcinogenesis.  A large body of work on long-term reproductive organ toxicity, including

carcinogenesis, in animals and humans exposed in utero or perinatally to the potent estrogen diethylstilbesterol (DES)

has underlined the potential consequences of exposure to hormonally active agents at critical time periods in

development (Herbst et al., 1971; Gill et al., 1977; Robboy et al., 1977; McLachlan et al., 1980; Newbold

et al. ,1990; Santti et al., 1994).  These data led to the hypothesis that exposure to endocrine-disrupting chemicals

during development has been and continues to be a contributory factor to human reproductive problems (e.g., reduced

sperm counts, reproductive tract malformations), reproductive tract cancers, and other endocrine-influenced

endpoints.  Chemicals with the ability to modulate endocrine signaling pathways are widespread and occur naturally

(e.g., phytoestrogens), as well as being produced synthetically for use in a variety of products, including pesticides

used on crops and animals and in the production of polymers used in food packaging materials.  While the association

between exposure to pharmacological doses of DES at critical developmental time points and adverse effects in

humans has been clearly defined, the association of lower levels of less potent hormonally active agents, or endocrine

disruptors, and toxicity in humans has not been clearly documented (NRC, 1999). 

Following a 1994 meeting sponsored by the National Institute of Environmental Health Sciences (NIEHS) entitled

“Estrogens in the Environment III,” NIEHS (1995) proposed to expand and develop mammalian animal models to

determine if environmentally relevant doses of endocrine-disrupting chemicals and mixtures of these chemicals

during exposure windows that included development could cause reproductive problems or influence the incidence

of reproductive tract cancers.  Investigation of the potential for magnification of subtle reproductive effects over

multiple generations, the importance of exposure windows, and whether effects are reversible or are imprinted to

carry over across generations were also deemed to be important.  The utility of such a program was endorsed by the

National Toxicology Program (NTP) Board of Scientific Counselors at their meeting on October 18, 1994.   The

OVERVIEW 
OF THE ENDOCRINE DISRUPTOR STUDIES
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series of studies related to this initiative were conducted under Interagency Agreement between the NIEHS/NTP and

the Food and Drug Administration/National Center for Toxicological Research (FDA/NCTR).   Study protocols were

generated and dose range-finding studies were initiated at NCTR in 1997. 

STUDY RATIONALE AND GENERAL STUDY DESIGN

The overall goal of this series of studies was to evaluate the long-term consequences of doses of endocrine-active

agents that produced subtle, short-term effects in exposed animals.  The idea behind the studies was to evaluate

aspects of the “endocrine disruptor hypothesis,” which is the hypothesis that environmental exposure to endocrine-

active chemicals is contributing to a variety of adverse effects in wildlife and humans (NRC, 1999).  As originally

conceived, the plan was to evaluate neurobiological, behavioral, immunological, reproductive, and chronic toxicities

in the main studies.  This plan was modified to assess all of these endpoints in short-term studies prior to the main

studies that focused on reproductive and chronic toxicity.   The compounds selected for multigenerational studies

were three agents that vary in estrogenic potency:  the soy isoflavone, genistein; the industrial intermediate,

p-nonylphenol; and the potent and widely used synthetic estrogen, ethinyl estradiol.

A short-term dose range-finding study was conducted for each compound to assess general and reproductive toxicity,

behavioral toxicity, neurotoxicity, and immunotoxicity.  Pregnant females were given dosed feed (a soy- and alfalfa-

free rodent diet) from gestation day 7 (GD 7) until the pups were weaned, and the pups were continued on the same

diet as their dams until termination.  Separate sets of animals were bred for the reproductive, behavioral, and

immunological studies.  One pup per sex per litter from the reproductive study was used for the neurotoxicity study.

Data from the reproductive/general toxicity study were the primary data used for selection of exposure concentrations

for the subsequent multigenerational reproductive toxicology and chronic studies, although data from the other

studies were considered in choosing the range of exposure concentrations to be tested.  All of these studies, as well

as the subsequent multigenerational and chronic studies, utilized outbred CD (Sprague-Dawley) rats from the NCTR

breeding colony.  The Sprague-Dawley rat was selected because of its widespread use in reproductive toxicology

studies, including those conducted by the NTP, its robust breeding performance, and its relatively low background

incidences of testicular Leydig cell tumors and large granular lymphocyte leukemia relative to the F344 rat

commonly used in NTP carcinogenesis studies.  The relatively high background incidences of pituitary gland and

female mammary gland tumors in Sprague-Dawley rats were recognized as a possible concern.  The relatively poor

breeding performance of the F344 rat would have presented a considerable challenge to the conduct of the studies

described here, as it would for any evaluation of reproductive toxicity.  Reproductive toxicity testing guidelines (for

example, those of the EPA, FDA, and OECD) generally indicate that animals with low fecundity not be used.  While

the studies described in this report were underway, the use of the Sprague-Dawley rat, particularly the Charles River
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CD (SD) rat, to screen for endocrine-active substances has been a subject of controversy due to the reported lower

sensitivity of this strain to estrogenic agents for some endpoints relative to other strains, including the F344 (Parker

and Tyl, 2003; Spearow, 2004).  On the other hand, there is some evidence that this strain may be more sensitive to

the estrogen receptor-mediated responses to tamoxifen than the F344 rat (Bailey and Nephew, 2002), and the

response of various strains to estrogens appears to depend on the endpoint and the agent (Parker and Tyl, 2003;

Spearow, 2004).  This debate continues, and there is no consensus at this time as to what strain or combination of

strains would be optimal for screening for endocrine-active agents.  The Sprague-Dawley rat continues to be used

widely in reproductive toxicity studies.  As mentioned previously, the present studies utilized outbred female CD

(Sprague-Dawley) rats from the NCTR breeding colony.  This colony was established at NCTR in 1972 using

Sprague-Dawley rats from the Charles River Laboratories.  The NCTR colony at present is a distinct substrain of

Sprague-Dawley rat and has been previously shown to differ substantially from the Charles River and other strains

of SD rat in terms of body weight, which is lower than that reported for other substrains, and survival, which is longer

than that reported for other substrains (Duffy et al., 2001).  The sensitivity of the NCTR CD rat to the potent estrogen

ethinyl estradiol was evaluated as part of this series of studies and reported separately (NTP, 2008a,b).  

It was intended that exposure concentrations that were within the range of human exposures and/or below previously

reported no-observed-adverse-effect-levels be incorporated in the main studies.  The experimental design was

intended to determine if subtle effects would be magnified in subsequent generations and if observed effects were

reversible.  In standard reproductive toxicity studies conducted for regulatory purposes, high doses are chosen to

produce some maternal toxicity, while the low dose is selected with the goal of not producing parental effects

(CFSAN, 2000; OECD, 2004).  The high dose for chronic studies is set as the maximum tolerated dose.  In the present

series of studies, the goal was to select a high dose, based on the results of the reproductive toxicity dose range-

finding study, that did not produce significant maternal toxicity but did produce reproductive tract lesions in the

offspring of a degree that would not severely affect reproductive capacity in the first generation.  The questions

addressed in the chronic studies were whether doses producing subtle modifications of the reproductive tract could

produce chronic toxicity and whether any observed chronic toxicity was induced by early developmental exposure

or rather required continuous long-term exposure. 

The need to maintain consistent dietary composition was taken into account in the design of this series of studies.  A

soy- and alfalfa-free diet (PMI 5K96) with consistently low concentrations of the phytoestrogens genistein and

daidzein was utilized in all studies.  A preliminary study indicated that rats fed this diet had reproductive capacity

equivalent to rats fed NIH-31 diet, the standard soy- and alfalfa-containing diet used at the test facility (NCTR),

although feed consumption in both sexes and the body weights of males fed PMI 5K96 were significantly lower than

in rats fed NIH-31.
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Design of the Multigenerational Reproductive Toxicology and Chronic Studies 

Conducted Subsequent to the Dose Range-Finding Studies

As in the short-term studies, the multigenerational reproductive toxicology and chronic studies were conducted with

the NCTR CD (Sprague-Dawley) rat and test compounds were administered in the soy- and alfalfa-free 5K96 diet.

The design of the multigenerational reproductive toxicology and chronic studies is outlined in Figure 1.  For the

multigenerational reproductive toxicology studies, males and females of the original parental generation (F0) were

placed on the 5K96 diet at weaning, and dosed feed was administered starting on PND 42, approximately 1 month

before breeding.  The F0 generation was maintained on dosed feed until termination at PND 140.  For breeding, one

male was cohabited with one female for 14 days or until a vaginal plug (in situ or in pan below cage) was detected.

Subsequent generations (F1 through F4) were bred similarly.  The F1 and F2 generations were exposed to the test

compound administered in the diet continuously from conception through termination at PND 140; the F3 generation

was removed from exposure at weaning (PND 21) and continued on control feed until PND 140, while the

F4 generation received no dietary exposure to the test compound.  The F4 generation was bred to produce an

unexposed F5 generation.  The F5 litters were terminated at weaning following collection of basic litter information.

Standard toxicological data and reproductive development and performance data were collected for all generations,

and organ weights and histopathology data were collected for 25 randomly selected animals per sex per exposure

concentration for each generation at necropsy.

Chronic toxicity, which is reported separately, was also examined for two test compounds (genistein and ethinyl

estradiol).  Three exposure windows were examined in the chronic studies (Figure 1):  continuous exposure from

conception through 2 years (designated F1 continuous, or F1C), exposure from conception through PND 140

followed by control diet to 2 years (designated F1 truncated at PND 140, or F1T140), and exposure from conception

through weaning followed by control diet to 2 years (designated F3 truncated at PND 21, or F3T21).  The

F3 designation for the F3T21 exposure groups indicates that these animals were siblings of the F3 animals from the

multigenerational reproductive toxicology study.  Because of the number of animals required for the chronic study

of each test chemical, separate sets of animals were used for the multigenerational reproductive toxicology study and

the F1 generation chronic study.  The assessment of chronic toxicity resulting from dietary exposure from conception

through weaning was conducted with animals from the F3 generation of the multigenerational reproductive

toxicology study.
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FIGURE 1
Dosing Schedule for the Multigenerational Reproductive Toxicology and Chronic Studies
* The F4 generation was mated similarly to generations F0 to F3 to produce the F5 generation
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PHYSICAL PROPERTIES, PRODUCTION, USE, AND EXPOSURE

Genistein belongs to the class of chemicals designated isoflavones.  It has a molecular weight of 270.23 and in pure

form is a pale-yellow crystalline solid that is practically insoluble in water but freely soluble in methanol and ethanol

(Merck, 1996).  In nature, genistein is primarily found in legumes where it is produced by a branch of the

phenylpropanoid pathway of secondary metabolism through the action of the enzyme isoflavone synthase on the

flavanone intermediate naringenin (Dixon and Ferreira, 2002; Jackson and Rupasinghe, 2002).  Products derived

from soybeans are the primary source of human exposure to genistein.  Genistein content of soybeans varies

according to the cultivar and season, and processing of the soybean and soyfoods further affects both the genistein

content and the form of genistein present (Gugger, 2002; Jackson and Rupasinghe, 2002).  The aglycone form of

genistein (shown above) is present primarily in fermented products such as miso and tempeh, whereas in whole

soybean and nonfermented products such as tofu or soy drinks, genistein exists predominately as the glucoside

conjugate (genistin) or acetyl or malonyl derivatives of genistin.  Glucosides and glucoside derivatives are

hydrolyzed to the aglycone genistein in the gut by gut bacteria or gut wall enzymes.

Intake patterns and isoflavone content of ingested products vary widely, but the Committee on Toxicity of Chemicals

in Food Consumer Products and the Environment of the United Kingdom has recently estimated an approximate rank

order of daily isoflavone exposure as follows:  infant on soy formula (40 mg genistein/day), average Japanese

INTRODUCTION

GENISTEIN

CAS No. 446-72-0

Chemical Formula:  C15H10O5 Molecular Weight:  270.23

Synonym: 4N,5,7-Trihydroxyisoflavone
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consumer (25 to 100 mg/day), vegetarian consumer (3 mg/day), and the average British consumer (1 mg/day)

(CTCF, 2003).  The typical ingestion by the average consumer in the United States is likely to be similar to that by

a British consumer.  Data on isoflavone intake from dietary supplements are sparse, but the CTCF estimated that

manufacturers’ recommended daily dosages would result in exposures of 29 to 88 mg isoflavones per day, or about

0.4 to 1.3 mg/kg per day for a 70 kg person.  On a body weight basis, infants consuming soy formula are exposed to

the highest doses, with mean doses estimated to be 6 to 9 mg/kg per day (Setchell et al., 1997).

The consumption of diets with high levels of soy has been proposed to have multiple beneficial effects, including

chemopreventive activities against various cancers and alleviation of some of the adverse consequences of

menopause, although the epidemiological evidence for many of these beneficial effects is controversial (Adlercreutz,

2002; Messina et al., 2006; Sacks et al., 2006; Trock et al., 2006; Williamson-Hughes et al., 2006).  Diets high in soy

contain multiple agents that may contribute to these effects, and consumption of these diets is also associated with

lower calorie and fat intake.  Nonetheless, much research attention has focused on the isoflavones, and particularly

genistein, as the active components contributing to (or responsible for) the beneficial effects of soy.  This is due to

the demonstrated interaction of soy isoflavones, particularly genistein, with estrogen receptors, effects on hormone

synthesis and metabolism and sex hormone binding proteins, and genistein’s ability to modulate multiple enzymes

involved in growth regulation, including tyrosine kinases and topoisomerases.  These activities have been extensively

reviewed (see above references).  Genistein has been demonstrated in numerous studies to act as an estrogen by

stimulating uterine growth in immature or ovariectomized rodents and has been shown to induce a similar, though

not identical, pattern of gene expression as ethinyl estradiol in the developing rat uterus (Naciff et al., 2002) and in

developing rat testes and epididymides (Naciff et al., 2005).  Recent studies, published after the present study was

completed, have also indicated that genistein at concentrations above 1 µM can modulate the expression of androgen-

regulated genes and peroxisome proliferator activated receptor-"- and -(-regulated genes (Dang et al., 2003; Mezei

et al., 2003; Takahashi et al., 2004; Kim et al., 2005), thus adding to the potential complexity of genistein-mediated

effects.   The association of diets containing soy with lower rates of many common Western health problems has led

to the development of concentrated isoflavone-containing plant extracts for use as dietary supplements (Hodgson

et al., 1998; Nestel et al., 1999; Kurzer, 2003).  In addition, soy-based infant formulas have been available for

decades, and infants consuming soy formula have been shown to have concentrations of circulating isoflavones as

high as 5 to 10 µM (Setchell et al., 1997).  

Research assessing the potential adverse effects associated with isoflavone consumption is directed toward defining

any potential risk from exposure to a range of doses of isoflavones during different life stages.  Developmental stages

are of particular concern because of the demonstrated adverse consequences of exposure to hormonally active agents,

such as diethylstilbestrol, during development (Bern, 1992; Newbold, 1995; NIH, 1999), although potential adverse
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stimulatory effects of genistein on reproductive and breast tissues of postmenopausal women also require particular

attention (Petrakis et al., 1996; Hargreaves et al., 1999).  With regard to potentially estrogenic effects of genistein in

estrogen-responsive tissues in humans, several studies in female nonhuman primates have failed to demonstrate

estrogenic effects of soy protein isolate or soy isoflavone mixtures that included genistein up to doses approximating

10 mg/kg per day genistein and resulted in serum levels of genistein equivalent to those achieved from high dose soy

ingestion in women (Wood et al., 2004, 2006a,b,c).

Adverse effects of soy-containing foods and soy components on reproductive processes of animals had been reported

prior to the initiation of this study (East, 1955; Stob, 1983; Price and Fenwick, 1985), and some human studies had

suggested that the consumption of soy products can have hormonal effects in women (Wilcox et al., 1990; Cassidy

et al., 1994; Baird et al., 1995; Cassidy and Bingham, 1995; Nagata et al., 1997, 1998; Xu et al., 1998; Duncan et al.,

1999).  It has been suggested further, based on studies in ovariectomized rodents and nonhuman primates, that

beneficial effects of soy and its component isoflavones on the cardiovascular system and bone occur at doses that do

not adversely affect the reproductive tract (Anthony et al., 1996; Ishimi et al., 1999).  In addition, inhibition of

chemically induced mammary cancer in rats has been reported at doses that did not produce adverse effects on

reproductive tissues (Murrill et al., 1996; Fritz et al., 1998).  Given the potential range of effects of soy and its

components and the magnitude of human exposure, it is important to conduct comprehensive toxicological

evaluations of these agents to better understand potential adverse effects that could result from their use in products

such as dietary supplements and soy infant formula.

GENETIC TOXICITY

While much of the focus on the potential induction or modulation of cancer development by genistein has been on

its activity as a phytoestrogen, the potential for genotoxicity has also been evaluated.  Genistein has been tested for

mutagenicity in Salmonella typhimurium strains TA97, TA98, TA100, TA102, TA1535, and TA1538 with and

without a rat liver S9 metabolic activation system, and the results were negative (Bartholomew and Ryan, 1980;

Nagao et al., 1981; McClain et al., 2006).  Misra et al. (2002) also reported a statistically significant but modest (less

than twofold) positive mutagenic response in TA100 with S9 activation using an isoflavone mixture containing 40%

to 50% genistein, 18% to 25% daidzein, and 1% to 4% glycitein.

Genistein has been shown to bind to DNA topoisomerase II to produce DNA strand breaks (Markovits et al., 1989;

Snyder and Gillies, 2002).  DNA strand breaks, micronucleus formation, and mutations at the hypoxanthine

phosphoribosyltransferase and thymidine kinase genes in mammalian cells in vitro have been reported with and

without coincubation with a rat liver S9 metabolic activation system at concentrations as low as 3 to 5 µM (Yamashita

et al., 1990; Record et al., 1995; Kulling and Metzler, 1997; Morris et al., 1998; Kulling et al., 1999; Boos and
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Stopper, 2000; Snyder and Gillies, 2003; Di Virgilio et al., 2004; McClain et al., 2006).  Of particular concern was

the demonstration of genistein-induced translocations and deletions in the mixed-lineage leukemia (MLL) gene in

hematopoietic mononuclear cells isolated from umbilical cord blood, because this gene is associated with acute

myelogenous leukemia (AML) (Strick et al., 2000).  Epidemiological studies have been interpreted to suggest a

possible association between consumption of diets high in DNA topoisomerase II inhibitors, although not necessarily

genistein, with the development of MLL-positive AML (Ross et al., 1996; Spector et al., 2005).  In vivo studies with

genistein in mice and rats, however, have not demonstrated an increase in micronucleus frequency (Record et al.,

1995; Misra et al., 2002; McClain et al., 2006) nor an increase in mutations in the lac I or cII genes of several organs

of transgenic Big Blue rats (Chen et al., 2005; Manjanatha et al., 2005).  Misra et al. (2002) reported that an

isoflavone mixture containing 40% to 50% genistein, 18% to 25% daidzein, and 1% to 4% glycitein did not enhance

neoplasm formation in p53 knockout mice at a dietary concentration that delivered 50 to 60 mg genistein/kg body

weight per day.  A subsequent gavage study indicated that this isoflavone mixture did not induce neoplasms in any

organ in p53 knockout mice at doses up to 2,500 mg/kg per day for 6 months (Johnson et al., 2006).  Morris et al.

(2003) did report an increasing proportion of small intestine cells in S-phase and a decreasing proportion in G0 over

an exposure concentration range of 100 to 2,000 ppm dietary genistein (approximately 17 to 460 mg/kg per day) in

C57BL6 mice, which they interpreted as consistent with in vivo inhibition of DNA topoisomerase II.  A clinical study

in 20 prostate-cancer patients who received 300 mg genistein (approximately 4 mg/kg per day) for 28 days followed

by 600 mg genistein per day for 56 days was reported by Miltyk et al. (2003).  These doses resulted in plasma levels

of total genistein ranging from 4 to 27 µM and aglycone levels ranging from 0.02 to 0.32 µM.  There was no evidence

of increases in DNA strand breaks, micronucleus formation, or translocations in the MLL gene in peripheral

lymphocytes.  Thus, while the ability of genistein to induce chromosomal damage has been clearly demonstrated in

in vitro systems, conditions under which such damage may be induced in vivo have not been demonstrated.  In

addition, genistein was reported to be negative in the in vitro Syrian hamster embryo cell transformation assay

(Harvey et al., 2005).

STUDY RATIONALE AND DESIGN

Given the potential range of effects of soy and its components and the magnitude of human intake, comprehensive

toxicological evaluations of these agents are needed to better understand potential adverse effects that could result

from their use.  The purpose of the present study was to provide data for selection of the dietary levels of genistein

to be used in subsequent multigenerational and chronic toxicity studies.  Dose levels for the dose range-finding study

were selected to cover both human isoflavone exposure levels and doses, on a body weight basis, that had been

reported in previous studies to have effects on target organs.  The doses selected (0, 5, 25, 100, 250, 625, and

1,250 ppm) were anticipated to give a range of exposures from less than 1 mg/kg per day to greater than 50 mg/kg

per day.  The actual ingested doses of genistein calculated from food consumption and body weight data at various

stages of the experiment are shown in Table 1.
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TABLE 1
Mean Genistein Intake for Dams and Pups Calculated from Feed Intake and Body Weight Dataa

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

Pregnant dams
(GD 7 to parturition) 0 0.3 ± 0.0 1.7 ± 0.2 6.4 ± 1.0 15.9 ± 1.8 38.2 ± 9.1 71.6 ± 11.4

Lactating damsb

(Pup PND 1 to PND 14) 0 0.6 ± 0.2 3.5 ± 1.0 14.0 ± 4.7 37.3 ± 11.5 84.0 ± 34.7 167.2 ± 49.9

Pups after weaning
(PND 21 to PND 50)
Males 0 0.6 ± 0.1 3.0 ± 0.4 10.8 ± 2.1 28.7 ±  4.8 68.9 ± 10.1 166.4 ± 49.7
Females 0 0.6 ± 0.1 2.9 ± 0.4 11.7 ± 1.9 30.5 ± 4.7 72.7 ± 9.9 166.1 ± 32.9

a
Data are presented as mg genistein/kg body weight per day ± standard deviation 

b
Data used for calculation of ingested dose during the lactation period (PND 1 to 21) were limited to PND 1 to 14 because of significant 
direct consumption of feed by pups between PNDs 14 and 21.
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PROCUREMENT AND CHARACTERIZATION OF GENISTEIN

Genistein for this study was obtained from Toronto Research Chemicals, Inc. (North York, Ontario, Canada), in one

lot (1-BP-118-3).  Identity and purity analyses were conducted by the study laboratory, the National Center for

Toxicological Research (NCTR), Jefferson, AR (Appendix A).  Reports on analyses performed in support of the

reproductive dose range-finding study of genistein are on file at the NCTR.

The chemical, a pale-yellow solid, was identified as genistein using mass spectrometry and 1H- and 13C-nuclear

magnetic resonance (NMR) spectroscopy.  The purity of lot 1-BP-118-3 was determined using 1H- and 13C-NMR

spectroscopy and high-performance liquid chromatography (HPLC).  Both 
1
H- and 13C-NMR spectroscopy results

indicated the presence of a single impurity (1.1%, mole/mole) containing an ethyl group that was tentatively

identified as ethanol.  The purity profile obtained using HPLC indicated a purity of at least 99%.  The overall purity

was determined to be 99% or greater.

To ensure stability, the bulk chemical was stored at –70° C, protected from light, in opaque white plastic containers

provided by the chemical manufacturer.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS

The dose formulations were prepared approximately every 1 to 3 weeks by mixing genistein with soy- and

alfalfa-free Purina 5K96 feed (Table A1).  The specifications for this diet can be found in the multigenerational

reproductive toxicology and chronic genistein Technical Reports (NTP, 2007, 2008c).  Homogeneity and stability

studies of the 5 ppm dose formulation were performed by the study laboratory using HPLC.  Homogeneity was

confirmed, and the stability of the dose formulations was confirmed for at least 22 days stored at 4° ± 2° C in stainless

steel cans protected from light.

During the reproductive dose range-finding study, the dose formulations were analyzed five times by the study

laboratory using HPLC.  All 13 dose formulations analyzed were within 10% of the target concentrations (Table A2).

MATERIALS AND METHODS
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REPRODUCTIVE DOSE RANGE-FINDING STUDY

One week prior to breeding to untreated F0 males, 70- to 80-day-old F0 female Sprague-Dawley rats from the study

laboratory’s breeding colony were shifted from the standard NIH-31 pellet diet to the soy- and alfalfa-free Purina

5K96 meal diet.    The specifications for this diet can be found in NTP, 2007 and 2008c.  The NIH-31 diet has been

reported to contain approximately 30 ppm of both genistein and daidzein (Thigpen et al., 1999).  Serum levels in the

range of 0.3 to 0.6 µM have been measured in rats consuming this diet (Chang and Doerge, 2000).  The parental

generation in this study was raised on NIH-31 diet and was shifted to the soy- and alfalfa-free 5K96 diet prior to

breeding.  Because the half-life of genistein in serum is approximately 4 hours in female rats (Chang et al., 2000),

the 1-week washout period was sufficient to clear genistein from the circulation.  Two animals per week from this

colony were sent for microbiological surveillance to ensure that the colony was free of parasites and bacterial

pathogens.  Vaginal plug-positive females were assigned to the study and housed individually.  

On gestation day 6 (GD 6, plug date=day 0), 10 untreated dams were randomly assigned to each exposure group to

ensure that five litters would be obtained for each exposure concentration.  Administration of dosed feed (0, 5, 25,

100, 250, 625, or 1,250 ppm genistein) was started on GD 7, and dams were continued on the same diets through

weaning of their litters on postnatal day 21 (PND 21).  Pregnant females were observed twice daily from GD 7 until

parturition, and any signs of abnormal appearance or behavior were recorded.  During this period, feed consumption

and body weights were recorded daily.  

The day of birth was designated as PND 1, and gestation duration was calculated from this date.  Data on litter

production, length of gestation, litter parameters, and pup anogenital distance (AGD) were collected and are reported

on all litters produced, but only five litters per exposure group were randomly selected for further evaluation.  Blood

samples were collected from two control dams whose litters were not used, one at 1 month and one at study

termination, for microbiological surveillance according to the protocols of the study laboratory’s Sentinel Animal

Program.  The sera were analyzed for antibody titers to rodent viruses, and all sentinel animals were examined for

ectoparasites, endoparasites, and bacterial pathogens.  All results were negative.  At weaning, all other dams were

euthanized and not otherwise evaluated.  Statistical analysis of dam body weight and feed consumption during

pregnancy was limited to the dams producing the five litters kept on the study, except for the control group where the

data from two dams used for microbiological surveillance were also included.  

On PND 1, the number of live and dead pups, litter weight (live pups), sex ratio, and any gross malformations were

recorded for the F1 animals.  On PND 2, the pups were weighed, litters were randomly standardized to four males

and four females each, AGD was measured on all pups with an ocular micrometer, and the pups were identified by

paw tattoo.  During litter randomization, littermates were kept together.  Pups were fostered within exposure groups
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when necessary; however, this was rare (a total of five males, one each in the 0, 25, and 625 ppm exposure groups

and two in the 1,250 ppm group), and none of the reported necropsy data are from fostered pups.  There was a

shortage of pups in the 1,250 ppm group, in that one litter had only six pups (three/sex).  A litter mean AGD for each

sex was calculated from three measurements made on each pup by a reader blind to exposure group.  Pups were

monitored daily for developmental landmarks, including day of eye opening, incisor eruption, ear unfolding, fur

development, and timed righting reflex.  

On PNDs 4, 7, 14, and 21, body weights and number of pups alive and dead were recorded.  At weaning on PND 21,

the pups were individually identified by tail tattoos, housed in same sex pairs, and continued on the same dosed feed

as their dams until the day prior to sacrifice on PND 50.  Feed consumption and body weights of the pups were

recorded weekly between PNDs 21 and 49.  Starting on PND 21, female pups were monitored daily for vaginal

opening, and male pups were examined for preputial separation and testicular descent.  Feed and filtered tap water

were provided ad libitum throughout the experiment.  Additional details of the study design and animal maintenance

are summarized in Table 2. 

Necropsies were performed on three male and three female pups per litter; the fourth pup of each sex in each litter

was removed and used for the neuroanatomical studies reported in Appendix B.  Animals were fasted overnight prior

to weighing, euthanasia, and necropsy on the following morning, PND 50.  Three animals of each sex from each litter

were examined for organ weights and histopathology.  At necropsy, carcasses were examined for gross lesions, and

lesions and protocol-specified tissues were processed for microscopic evaluation.  Reproductive organs, accessory

reproductive organs, and mammary glands were examined in all exposure groups; all other protocol-specified tissues

were examined in the 0 and 1,250 ppm groups.  If an increase in incidence or severity of lesions was detected

microscopically in any of the specified tissues of the 1,250 ppm animals, those tissues were examined in all the

animals from the intermediate exposure concentration groups.  For females, the ovary/oviduct, uterus, and vagina

were weighed separately, fixed in Bouin’s solution, embedded in paraffin, sectioned, and stained with hematoxylin

and eosin (H&E) for histologic evaluation.  For males, the testis and epididymis were weighed.  The right testis and

epididymis were used for determination of homogenization-resistant spermatids and for sperm analysis, respectively

(Robb et al., 1978).  The left testis and epididymis were fixed in Bouin’s solution and embedded in paraffin.  The

fixed and embedded testes were sectioned and stained with periodic acid-Schiff/hematoxylin to detect different stages

of the seminiferous tubules.  Testes sections did not include the rete testis.  Seminal vesicles with coagulating and

preputial glands were weighed and fixed in 10% neutral buffered formalin (NBF).  The prostate gland was fixed in

NBF, and the dorsolateral and ventral lobes were dissected and weighed separately.  For both sexes, adrenal gland,

bladder, heart, kidney, liver, lung, pituitary gland, spleen, thymus, thyroid gland, ureter, and urethra were collected.

The liver, spleen, and thymus were weighed, fixed in NBF, embedded in paraffin, sectioned, and stained with H&E.
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Pituitary and thyroid glands were weighed after fixation in NBF and then processed for histopathologic evaluation.

Adrenal gland, heart, kidney, lung, and urinary tract were fixed in NBF and processed for histopathologic evaluation.

The third left abdominal mammary gland was prepared as a whole mount fixed in NBF and stained with alum

carmine for qualitative assessment of terminal end buds, terminal ducts, alveolar buds, and lobules. The

corresponding mammary gland from the right side was fixed in NBF, embedded in paraffin, and stained with H&E

for histologic evaluation.  The right femur was removed, measured, and fixed in NBF.  After decalcification, a cross-

section at exactly mid-shaft was stained with H&E.  Bone marrow from the sternum was evaluated histologically.

For all tissues, sectioning was conducted at 4 to 6 µm. 

Microscopic evaluations were completed by the study laboratory pathologist, and the pathology data were entered

into the study laboratory’s Micropath Data Collection System.  The slides, paraffin blocks, and residual wet tissues

were sent to the study laboratory’s Block and Slide Laboratory for inventory, slide/block match, and wet tissue audit.
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TABLE 2
Experimental Design and Materials and Methods in the Reproductive Dose Range-Finding Feed Study 
of Genistein

Study Laboratory
National Center for Toxicological Research (NCTR) (Jefferson, AR)

Strain and Species
Sprague-Dawley/CD23/Nctr BR rats

Animal Source
NCTR breeding colony (Jefferson, AR)

Average Age When Study Began
Gestational day 7 (GD 7)

Date of First Exposure
June 30-July 2, 1997

Duration of Exposure
64 days (GD 7 through PND 49)

Date of Last Exposure
September 2-4, 1997

Necropsy Dates
September 3-5, 1997

Average Age at Necropsy
50 days

Size of Study Groups
5 litters consisting of 4 male and 4 female pups

Method of Distribution
Vaginal plug-positive dams were randomly assigned to dose groups on GD 6; litters were randomly culled to 8 (4 males and 4 females) 
on PND 2.

Animals per Cage
Pregnant dams were housed individually.  Pups were kept with their mothers and then were housed in same sex pairs after weaning on PND 21.

Method of Animal Identification
Paw tattoo, tail tattoo

Diet
Purina 5K96 rodent chow, irradiated (Test Diets, Purina Mills, Richmond, IN), available ad libitum

Water
Millipore-filtered tap water (Jefferson municipal supply) via water bottle, available ad libitum

Cages
Solid-bottom polycarbonate (Allentown Caging Equipment Co., Allentown, NJ), changed weekly

Bedding
Heat-treated hardwood chips (P.J. Murphy Forest Products, Inc., Montville, NJ), changed weekly

Cage Bonnets
Microisolator tops (Lab Products, Inc., Maywood, NJ)



28 Genistein, NTP TOX 79

TABLE 2
Experimental Design and Materials and Methods in the Reproductive Dose Range-Finding Feed Study 
of Genistein

Racks
Stainless steel (Allentown Caging Equipment Co., Allentown, NJ), changed every 28 days

Animal Room Environment
Temperature:  73° ± 5° F
Relative humidity:  50% ± 20%
Room fluorescent light:  12 hours/day
Room air changes:  at least 10/hour

Exposure Concentrations
0, 5, 25, 100, 250, 625, or 1,250 ppm in feed, available ad libitum

Type and Frequency of Observation
From GD 7 until parturition, the dams were observed twice daily, and their daily body weights and feed consumption were recorded.
Reproductive performance of the dams was recorded at parturition.  Dams were sacrificed without further analysis when the pups were weaned
on PND 21.  Pups were observed twice daily and weighed on PNDs 2, 4, 7, 14, and 21, weekly until PND 49, and at sacrifice on PND 50.
Clinical findings were recorded weekly, and feed consumption was measured weekly from PND 21 to 49.  Reproductive and developmental
endpoints were recorded at various time points from PNDs 1 to 49.

Method of Sacrifice
For two pups/sex per litter:  anesthetized with carbon dioxide/oxygen, bled by cardiac puncture, and euthanized with carbon dioxide, following
overnight fasting with water only.  For one pup/sex per litter:  decapitation, following overnight fasting with water only.  (The brain tissue from
these animals was transferred to the NCTR Division of Neurotoxicology for studies not reported here).  The fourth pup of each sex was
overdosed with sodium pentobarbital and then perfused transcardially with 0.9% saline followed by 10% buffered formalin.  The brain was then
prepared for three-dimensional reconstruction and volume measurement as described in Appendix B.

Necropsy
Necropsies were performed on three pups/sex per litter.  Organs weighed were the coagulating gland, epididymis, liver, left and right
ovary/oviduct, pituitary gland, preputial gland, dorsolateral and ventral prostate gland, seminal vesicle, spleen, left and right testis, thymus,
thyroid gland, uterus, and vagina.

Histopathology
Complete histopathology was performed on pups in the 0 and 1,250 ppm groups.  In addition to gross lesions and tissue masses, the following
tissues were examined:  adrenal gland, bone with marrow, clitoral gland, coagulating gland, heart, kidney, liver, lung, mammary gland, ovary,
oviduct, pituitary gland, preputial gland, dorsolateral and ventral prostate gland, spleen, left testis with epididymis and seminal vesicle, thymus,
thyroid gland, ureter, urinary bladder, uterus, and vagina.  Reproductive organs, accessory sex organs, and mammary gland were examined in
the remaining exposed groups; other organs were examined in the remaining exposed groups if lesions were noted in the 1,250 ppm group.

Sperm Count
At the end of the study, sperm samples were collected from the right testis and epididymis of male pups in all exposure groups for spermatid
head counts and epididymal spermatozoa counts.
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STATISTICAL METHODS

For the dams, daily body weights and feed consumption during pregnancy were analyzed by repeated measures

ANOVA using a mixed model approach.  Dunnett’s (1955) test was used to make comparisons between control and

genistein-exposed groups, and contrasts were used to test for linear exposure concentration trends at each time

interval. 

For the pups, body weight gain and total feed consumption data were analyzed by split-plot ANOVA, and daily body

weights were analyzed by repeated measures ANOVA with a split-plot error structure and split-plot analyses at each

time point.  The litter was the whole plot factor, and the subsets of same sex pups in the litter were the subplot factors.

Average male and average female responses per litter were the endpoints analyzed.  Two-sided Dunnett’s tests were

used to make comparisons between control and exposed groups.  Because there was a small number of fostered pups,

separate analyses were conducted using nursing dam and birth dam as the litter identifier.  Conclusions were identical

for both analyses, and reported results are based on the nursing dam as the litter identifier.  Pup organ weights and

measures of sexual maturation (vaginal opening and preputial separation) were analyzed separately by sex using a

nested mixed model ANOVA that contained exposure concentration as a fixed factor and nursing dam nested within

exposure concentration and residual error as random factors.  For organ weights, tests for linear and quadratic

exposure-concentration trends were conducted using contrasts and, for both organ weights and markers of sexual

maturation, two-sided Dunnett’s tests were used to compare means of genistein-exposed groups to the means of the

control group.  Markers of development were similarly analyzed.  Litter size, mean live pup weight, percent male

pups, gestation duration, ovarian follicle counts, testicular spermatid head counts, and epididymal spermatozoa

counts were analyzed by one-way ANOVA and Dunnett’s test.  Analysis of covariance was used to analyze mean live

pup weight and litter mean anogenital distance, with litter size and mean pup weight, respectively, designated as

covariates.  Anogenital distance was analyzed separately by sex.  The proportions of dams producing litters and of

stillborn pups were analyzed using an exact Chi-square test.

Histopathology data were analyzed for genistein effects on lesion incidences and severities by the Jonckheere-

Terpstra test (Hollander and Wolfe, 1973).  Williams’ modification of Shirley’s test (Williams, 1986) was used to

compare exposed groups to the control group.  Estrous cycle stage synchrony between the uterus and vagina was

analyzed in a similar manner.  All statistical tests were conducted at the "=0.05 level.

QUALITY ASSURANCE METHODS

This study was conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations

(21 CFR, Part 58).  The Quality Assurance Unit of the NCTR performed audits and inspections of protocols,
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procedures, data, and reports throughout the course of the studies.  Separate audits covering completeness and

accuracy of the pathology data, pathology specimens, final pathology tables, and a draft of this NTP Toxicity Study

Report were conducted.  Audit procedures and findings are presented in the reports and are on file at the NCTR.  The

audit findings were reviewed and assessed by NCTR staff, and all comments were resolved or otherwise addressed

during the preparation of this Toxicity Study Report.
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REPRODUCTIVE DOSE RANGE-FINDING STUDY

Body Weights and Feed Consumption of Dams During Pregnancy

Body weights and feed consumption of the dams during pregnancy are shown in Figures 2 and 3, respectively.  Body

weight gain during pregnancy was affected by genistein only in the 1,250 ppm group.  Although there was not a

strictly linear decrease in body weights with exposure concentration, a linear trend test was significant for gestational

days (GDs) 12 to 21 (Table 3).  In pairwise comparisons with the control group, the mean body weights of the

1,250 ppm group were significantly less than those of the controls on GDs 20 and 21.  The 1,250 ppm group mean

feed consumption (Figure 3) was significantly less than that by the control group.  Total body weight gain and pooled

feed consumption from GDs 8 through 21 of the 1,250 ppm group were significantly less than the totals seen in the

control group (66% and 80% of the control group values, respectively; Tables 3 and 4).

RESULTS

FIGURE 2
Body Weights of Dams During Pregnancy in the Reproductive Dose Range-Finding Feed Study of Genistein
n=5 for all groups except the controls, where n=7.  Data from the five dams from each exposed group whose litters
were kept on the study were analyzed.  For the controls, data from two additional dams that produced litters that
were used as microbiological sentinels were included.
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FIGURE 3
Feed Consumption of Dams During Pregnancy 
in the Reproductive Dose Range-Finding Feed Study of Genistein
n=5 dams per exposure group except for the 625 ppm group 
on gestation day 17, where n=4, and the controls, where n=7
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TABLE 3
Body Weights of Dams During Pregnancy in the Reproductive Dose Range-Finding Feed Study 
of Genisteina

Gestation Dayb 0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

7 286 ± 6 291 ± 4 297 ± 11 280 ± 6 293 ± 12 291 ± 9 282 ± 10
8 291 ± 7 301 ± 5 305 ± 12 282 ± 6 299 ± 11 294 ± 10 283 ± 8 
9 295 ± 8 306 ± 4 308 ± 10 287 ± 5 303 ± 12 296 ± 10 284 ± 8 

10 299 ± 8 311 ± 4 310 ± 12 293 ± 6 306 ± 12 298 ± 9 286 ± 8
11 302 ± 8 317 ± 4 314 ± 12 299 ± 6 310 ± 13 300 ± 9 287 ± 8
12

c
306 ± 8 320 ± 3 320 ± 13 302 ± 6 315 ± 12 301 ± 9 289 ± 8

13
c

309 ± 9 325 ± 4 321 ± 13 305 ± 6 314 ± 13 304 ± 10 291 ± 7 
14

c
312 ± 9 328 ± 4 330 ± 12 311 ± 6 323 ± 12 308 ± 10 293 ± 9 

15
c

320 ± 10 339 ± 4 338 ± 13 313 ± 6 330 ± 11 316 ± 10 294 ± 9 
16

c
330 ± 10 348 ± 4 347 ± 13 326 ± 6 339 ± 12 320 ± 10 298 ± 6

17
c

341 ± 10 357 ± 4 357 ± 12 336 ± 4 347 ± 12 333 ± 9 309 ± 6
18

c
353 ± 11 369 ± 4 373 ± 12 348 ± 7 364 ± 12 346 ± 12 316 ± 6

19
c

360 ± 13 382 ± 5 386 ± 14 356 ± 6 376 ± 13 356 ± 10 327 ± 6
20

c
373 ± 14 396 ± 5 398 ± 13 370 ± 8 387 ± 15 363 ± 11 334 ± 5*

21
c

382 ± 15 405 ± 5 414 ± 14 378 ± 7 400 ± 15 376 ± 12 346 ± 2*

* Significantly different (P#0.05) from the control group by Dunnett’s test
a

n=5 in all groups except the control group, where n=7
b

GD 0 is the first day a dam was observed to be vaginal plug positive
c

Significant (P#0.05) linear dose trend as determined by contrasts

TABLE 4
Feed Consumption of Dams During Pregnancy in the Reproductive Dose Range-Finding Feed Study 
of Genisteina

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

Feed consumption (g) 306 ± 14 316 ± 10 334 ± 14 284 ± 10 297 ± 11 275 ± 21 244 ± 12*

* Significantly different (P#0.05) from the control group by Dunnett’s test
a

n=5 in all groups except the control group, where n=7
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Effects of Genistein on Litter Production, Gestation Duration, Litter Parameters

There was an apparent treatment effect on the proportion of vaginal plug-positive dams that delivered litters

(Chi-square, P<0.05), with only five of 10 animals in the 1,250 ppm group producing litters compared with eight to

10 litters produced in all other groups (Table 5).  Genistein exposure was not significantly related to gestation

duration, litter size, proportion of dead pups, or sex ratio.  Mean live pup body weight was lower in the 1,250 ppm

group than in the controls, but while an analysis of covariance, with litter size as the covariate, indicated a significant

exposure concentration effect, comparison of each exposed group to the controls by Dunnett’s test indicated that the

mean pup body weight of the 1,250 ppm group was not significantly different from that of the controls (P=0.07).  

Effects of Dietary Genistein on Anogenital Distance, Pup Developmental Landmarks, 

and Body Weight

Genistein had no apparent effect on anogenital distance measured on postnatal day (PND) 2 in either sex (Table 5).

There were no significant exposure-related effects on landmarks of sexual development (age of testicular descent and

preputial separation in males and age of vaginal opening in females); although the time of vaginal opening in the

1,250 ppm group was approximately 2.9 days earlier than that in the controls (Table 6), this difference was not

significant (P=0.08).  Since the means in the 1,250 ppm groups for multiple markers of development appeared to

differ from those in the controls, litter means were analyzed by one-way ANOVA.  Significant effects of exposure

concentration and linear exposure concentration trends toward delay were observed for righting reflex, eye opening,

and ear unfolding in males, and for eye opening and ear unfolding in females (Table 6).  Pairwise comparisons

indicated that the 1,250 ppm groups were significantly different from the controls for eye opening and ear unfolding

in males and females, and the 625 ppm group was significantly different from the control group in the case of the

righting reflex in females.  No significant differences in the timing of the appearance of fur were observed (Table 6).

The delay observed in these endpoints may be related to the lower body weights of the pups in the 1,250 ppm groups,

particularly since means for nearly all endpoints were delayed in the 1,250 ppm groups, although not significantly so

in all cases.

The mean body weights of male and female pups are shown in Figure 4.  The weekly mean body weights of the

1,250 ppm groups were significantly less than those of the control groups at PND 14 and at all subsequent time points

through PND 49.  The total body weight gains of male and female pups from birth to termination of the study are

shown in Table 7.  Genistein affected total body weight gain in a similar manner for both sexes, with weight gains in

the 1,250 ppm groups lower than those in the controls.
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TABLE 5
Litter Data for Rats in the Reproductive Dose Range-Finding Feed Study of Genistein

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

Litters/plug-positive 
femalesa 9/10 9/10 10/10 9/10 10/10 8/10 5/10

Gestation
duration (days)b,c 22.3 ± 0.3 22.8 ± 0.1 22.7 ± 0.2 22.9 ± 0.1 22.6 ± 0.2 22.0 ± 0.0 22.4 ± 0.2

Total pups/litterb 10.6 ± 1.6 14.4 ± 0.8 11.6 ± 1.0 13.8 ± 1.0 12.2 ± 1.1 12.0 ± 1.1 10.4 ± 1.3

Stillborn pups/
total pups 3/95 4/130 0/116 2/124 0/122 3/96 0/52

Male pups (%)b 48.5 ± 7.7 49.3 ± 4.4 56.9 ± 4.9 53.8 ± 3.9 57.2 ± 5.7 52.3 ± 5.3 42.3 ± 5.8

Mean live pup 
weight (g)b,c 6.79 ± 0.26 6.27 ± 0.17 6.74 ± 0.16 6.47 ± 0.23 6.45 ± 0.25 6.29 ± 0.20 6.14 ± 0.60

Male anogenital 
distance (mm)c,d

n 9 5 8 6 8 6 5

3.58 ± 0.20 3.30 ± 0.02 3.58 ± 0.13 3.69 ± 0.19 3.40 ± 0.06 3.30 ± 0.08 3.17 ± 0.15

Female anogenital 
distance (mm)c,d

n 8 5 8 6 8 6 5

2.13 ± 0.13 2.03 ± 0.15 1.94 ± 0.03 2.30 ± 0.18 2.17 ± 0.16 2.05 ± 0.15 2.02 ± 0.10

a
Significant effect of exposure concentration indicated by exact Chi-square test (P<0.05)

b
Mean ± standard error, data from all litters born are included

c
Significant main effect of exposure concentration (P<0.05)

d
Litter means ± standard error are presented for all litters in which anogenital distance (AGD) was measured.  Plugged dams were delivered 
to the study over a 2-week period from the NCTR breeding colony.  The dams were randomly allocated to exposure groups on arrival, and 
approximately 80% of the dams were expected to litter.  Since it was not known which of the allocated dams would litter and become part 
of the five litters per exposure group kept on study, the AGD of each pup in each litter that could potentially become assigned to the study 
was measured.  The five litter positions per exposure group were filled with the first available litters that did not contain fostered pups or 
have an inattentive dam.  If a litter was born to an exposure group that already had five litters assigned, AGD was not measured. One litter 
in the control group had all males, thus accounting for the difference in litter number for males and females in that exposure group.
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TABLE 6
Developmental Landmarks in Rat Pups in the Reproductive Dose Range-Finding Feed Study of Genisteina

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

Male
Righting reflex

b,c
1.80 ± 0.41 2.00 ± 0.35 1.50 ± 0.32 1.00 ± 0.21 2.10 ± 0.42 2.75 ± 0.28 2.40 ± 0.27

Fur development 8.10 ± 0.71 9.10 ± 0.57 9.70 ± 0.44 9.00 ± 0.32 8.75 ± 0.46 9.50 ± 0.63 8.60 ± 0.95
Eye opening

b,c
16.35 ± 0.38 16.40 ± 0.24 16.30 ± 0.49 16.35 ± 0.33 15.60 ± 0.51 17.50 ± 0.31 18.00 ± 0.45

d

Ear unfolding
b,c

17.60 ± 0.60 17.80 ± 0.37 17.47 ± 0.49 18.20 ± 0.20 17.40 ± 0.24 18.60 ± 0.24 19.40 ± 0.51
d

Incisor eruption
c

10.20 ± 0.46 10.75 ± 0.34 10.85 ± 0.33 10.40 ± 0.40 10.60 ± 0.30 11.21 ± 0.28 11.32 ± 0.34
Testicular descent 22.50 ± 0.43 22.00 ± 0.43 22.42 ± 0.32 22.20 ± 0.37 21.80 ± 0.50 22.90 ± 0.10 22.85 ± 0.58
Preputial separation 42.20 ± 0.27 42.42 ± 0.21 41.38 ± 0.58 41.45 ± 0.32 42.20 ± 0.32 42.94 ± 0.37 43.53 ± 0.41

Female
Righting reflex

b
2.05 ± 0.62 2.47 ± 0.35 2.00 ± 0.33 1.70 ± 0.27 2.90 ± 0.30 3.70 ± 0.36

d
2.57 ± 0.39

Fur development 7.70 ± 0.54 9.20 ± 0.63 9.60 ± 0.40 9.05 ± 0.28 9.20 ± 0.37 9.50 ± 0.67 8.50 ± 0.98
Eye opening

b,c
16.30 ± 0.37 16.40 ± 0.24 16.20 ± 0.49 16.20 ± 0.37 15.60 ± 0.51 17.60 ± 0.24 18.10 ± 0.40

d

Ear unfolding
b,c

17.60 ± 0.60 17.80 ± 0.37 17.50 ± 0.39 18.20 ± 0.20 17.40 ± 0.24 18.60 ± 0.24 19.27 ± 0.41
d

Incisor eruption 10.00 ± 0.45 11.00 ± 0.48 10.65 ± 0.33 10.60 ± 0.29 10.55 ± 0.44 11.40 ± 0.20 11.18 ± 0.22
Vaginal opening 33.25 ± 0.32 32.05 ± 0.55 33.30 ± 0.60 32.55 ± 0.44 31.60 ± 0.37 32.60 ± 0.69 30.33 ± 0.50

a
Postnatal day; litter mean ± standard error (n=5)

b
Significant main effect of exposure concentration (P<0.05)

c
Significant linear exposure concentration trend (P<0.05)

d
Significantly different (P<0.05) from the control group by Dunnett’s test
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FIGURE 4
Body Weights of Rat Pups 
in the Reproductive Dose Range-Finding Feed Study of Genistein
Generally n=20 pups per exposure group
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Effects of Genistein on Terminal Body Weights and Absolute and Relative Organ Weights

Males

The mean terminal body weight of 1,250 ppm male pups was 10% less than that of the controls (Table 8).  Absolute

liver weight was significantly increased in the 250 ppm group (Table 8).  Relative liver weight was significantly

increased in the 1,250 ppm group, but absolute liver weight was not increased in this group, and this effect appeared

to be secondary to the decreased body weight noted above.  The absolute thymus weight of 1,250 ppm males was

22% less than that of the controls, but the relative weight of the thymus in this group was not significantly affected.

Absolute and relative ventral prostate gland weights were significantly decreased in the 1,250 ppm group (28% and

20%, respectively), and relative pituitary gland weight was significantly increased in this exposed group.  No

significant quadratic trend components were detected.  Mean weights of the dorsolateral prostate gland were

generally increased in the exposed groups, and those of the ventral prostate gland were increased in the 100 ppm

group; none of these increases were statistically significant.

Females

The mean terminal body weight of 1,250 ppm female pups was 12% less than that of the controls (Table 9).  In

females, a significant positive trend was observed for relative pituitary gland weights (Table 9).  Pairwise

comparisons using Dunnett’s test showed a significantly increased relative pituitary gland weight (19%) in the
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TABLE 7
Total Body Weight Gains of Rat Pups in the Reproductive Dose Range-Finding Feed Study of Genisteina

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

Male
n 20 20 19 20 20 20 17

196 ± 2 196 ± 2 199 ± 3 193 ± 3 201 ± 4 197 ± 5 174 ± 4*

Female
n 20 20 20 20 20 20 18

153 ± 3 153 ± 3 151 ± 2 145 ± 2 153 ± 2 143 ± 2 132 ± 2*

* Significantly different (P<0.05) from the control group by Dunnett’s test
a

Weights are given in grams as mean ± standard error.  Pup body weight gains (from birth to study termination) were analyzed using a 
split-plot model with nursing litter as the whole-plot unit, the exposure concentration of genistein as the whole-plot factor, and the sex 
of the pup as the split-plot factor.  The response was fitted with the fixed effects of exposure concentration, sex, and an exposure 
concentration × sex interaction.  The variance was fitted with the random effects litter dam nested within exposure concentration and a
residual error term.  The exposure concentration and sex main effects were significant (P=0.0004 and 0.0001, respectively), but the 
exposure concentration × sex interaction was not (P=0.54).  Since the exposure concentration × sex interaction was not significant, the 
exposure concentrations were compared independently of sex.  For the pooled sexes, the test for linear trend was significant (P=0.0001), 
although body weight gain did not strictly decrease with exposure concentration.  When this analysis was rerun without the 1,250 ppm 
group, the linear trend was no longer significant (P=0.33).
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TABLE 8
Organ Weights and Organ-Weight-to-Body-Weight Ratios for Male Rat Pups
in the Reproductive Dose Range-Finding Feed Study of Genisteina

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

n 15 15 15 15 15 15 15

Necropsy
body wt 188.23 ± 1.86 187.55 ± 3.25 194.31 ± 4.20 184.89 ± 2.27 197.10 ± 3.93 190.01 ± 5.71 170.56 ± 4.04*

Epididymis
Absolute 0.272 ± 0.010 0.285 ± 0.009 0.286 ± 0.008 0.290 ± 0.006 0.283 ± 0.008 0.286 ± 0.012 0.269 ± 0.008
Relative 0.145 ± 0.006 0.152 ± 0.005 0.148 ± 0.004 0.157 ± 0.003 0.144 ± 0.004 0.150 ± 0.003 0.158 ± 0.003

Liver
Absolute

b
6.660 ± 0.136 7.070 ± 0.183 7.164 ± 0.161 6.594 ± 0.140 7.470 ± 0.202* 6.743 ± 0.210 6.605 ± 0.218

Relative
b

3.533 ± 0.062 3.780 ± 0.105 3.696 ± 0.075 3.565 ± 0.055 3.793 ± 0.076 3.552 ± 0.058 3.868 ± 0.081*
Pituitary Gland

Absolute
c

9.1 ± 0.4 9.1 ± 0.3 9.0 ± 0.4 9.2 ± 0.3 10.1 ± 0.5 9.8 ± 0.5 10.1 ± 0.3
Relative

b,c
0.0048 ± 0.0002 0.0048 ± 0.0002 0.0046 ± 0.0002 0.0050 ± 0.0002 0.0051 ± 0.0002 0.0051 ± 0.0002 0.0060 ± 0.0002*

Preputial Gland
Absolute 93.1 ± 7.4 79.6 ± 6.1 70.6 ± 5.8 84.5 ± 5.5 94.9 ±  3.7 98.1 ± 3.1 94.3 ± 6.0
Relative

b,c
0.050 ± 0.004 0.042 ± 0.003 0.037 ± 0.003 0.046 ± 0.003 0.048 ± 0.002 0.052 ± 0.002 0.056 ± 0.004

Dorsolateral Prostate Gland
Absolute 0.139 ± 0.007 0.148 ± 0.008 0.161 ± 0.007

d
0.144 ± 0.006 0.154 ± 0.007 0.149 ± 0.010 0.142 ± 0.007

Relative 0.074 ± 0.004 0.079 ± 0.004 0.082 ± 0.003
d

0.078 ± 0.003 0.078 ± 0.004 0.077 ± 0.004 0.083 ± 0.004
Ventral Prostate Gland

Absolute
b,c

0.158 ± 0.004 0.150 ± 0.009 0.155 ± 0.007
d

0.173 ± 0.008 0.151 ± 0.008 0.137 ± 0.009 0.113 ± 0.003*
Relative

b,c
0.084 ± 0.002 0.080 ± 0.006 0.079 ± 0.004

d
0.093 ± 0.004 0.076 ± 0.004 0.071 ± 0.004 0.067 ± 0.002*

Seminal Vesicle/
Coagulating Gland

Absolute 0.157 ± 0.013 0.141 ± 0.011 0.176 ± 0.014
d

0.161 ± 0.015 0.172 ± 0.016 0.164 ± 0.014 0.155 ± 0.012
Relative 0.084 ± 0.007 0.075 ± 0.005 0.089 ± 0.006

d
0.086 ± 0.007 0.086 ± 0.007 0.084 ± 0.007 0.090 ± 0.006

Spleen
Absolute 0.528 ± 0.014 0.556 ± 0.016 0.589 ± 0.020 0.502 ± 0.018 0.615 ± 0.021 0.576 ± 0.028 0.544 ± 0.024
Relative 0.281 ± 0.007 0.298 ± 0.011 0.304 ± 0.008 0.272 ± 0.009 0.312 ± 0.008 0.302 ± 0.011 0.321 ± 0.016

L. and R. Testis
Absolute 2.267 ± 0.059 2.204 ± 0.035 2.157 ± 0.054 2.239 ± 0.041 2.254 ± 0.044 2.212 ± 0.098 2.068 ± 0.065
Relative 1.208 ± 0.037 1.118 ± 0.029 1.114 ± 0.030 1.212 ± 0.023 1.146 ± 0.017 1.156 ± 0.033 1.211 ± 0.018

Thymus
Absolute

b,c
0.764 ± 0.023 0.736 ± 0.018 0.733 ± 0.034 0.663 ± 0.025 0.728 ± 0.028 0.656 ± 0.022 0.598 ± 0.024*

Relative 0.406 ± 0.013 0.393 ± 0.010 0.382 ± 0.025 0.359 ± 0.013 0.371 ± 0.016 0.351 ± 0.018 0.351 ± 0.012
Thyroid Gland

Absolute 16.3 ± 0.9 15.2 ± 0.5 19.1 ± 1.4 19.1 ± 1.2 23.9 ± 2.7 21.6 ± 2.7 19.3 ± 2.5
Relative 0.0086 ± 0.0005 0.0082 ± 0.0004 0.0099 ± 0.0007 0.0103 ± 0.0006 0.0122 ± 0.0015 0.0113 ± 0.0012 0.0113 ± 0.0014*

* Significantly different (P<0.05) from the control group by Dunnett’s test
a

Mean ± standard error; the values given are based on individual pups.  Organ weights were compared across the exposure groups using a 
mixed effects ANOVA with litter as a random factor to account for possible litter effects.  Body weights and absolute weights of the 
epididymis, liver, dorsolateral and ventral prostate gland, seminal vesicle/coagulating gland, spleen, testes, and thymus are given in grams; 
absolute weights of the remaining organs are given in milligrams.  Organ-weight-to-body-weight ratios (relative weights) are given as 
g organ weight/g body weight × 100.

b
Significant main effect of exposure concentration (P<0.05)

c
Significant linear exposure concentration trend (P<0.05)

d
n=14
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TABLE 9
Organ Weights and Organ-Weight-to-Body-Weight Ratios for Female Rat Pups
in the Reproductive Dose Range-Finding Feed Study of Genisteina

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

n 15 15 15 15 15 15 15

Necropsy
body wt 148.07 ± 2.68 147.59 ± 3.29 148.04 ± 2.83 143.35 ± 1.90 147.88 ± 2.68 139.50 ± 2.71* 130.55 ± 2.06*

Liver
Absolute 5.348 ± 0.154 5.304 ± 0.183 5.360 ± 0.132

e
5.003 ± 0.154 5.540 ± 0.140 5.168 ± 0.111 4.982 ± 0.116

Relative
b

3.614 ± 0.087 3.584 ± 0.062 3.629 ± 0.052
e

3.483 ± 0.078 3.747 ± 0.068 3.715 ± 0.082 3.814 ± 0.055
L. and R. Ovary

Absolute 87.4 ± 2.2 95.7 ± 4.7 88.7 ± 2.8 92.0 ± 3.7 91.2 ± 5.9 97.7 ± 4.5 83.3 ± 10.5
Relative 0.059 ± 0.002 0.065 ± 0.003 0.060 ± 0.002 0.064 ± 0.002 0.062 ± 0.004 0.071 ± 0.004 0.064 ± 0.008

Pituitary Gland
Absolute

c,d
9.9 ± 0.2 9.9 ± 0.2 8.9 ± 0.5 10.2 ± 0.5 10.9 ± 0.5 11.1 ± 0.4 9.7 ± 0.2

Relative
b,c,d

0.0067 ± 0.0002 0.0068 ± 0.0002 0.0061 ± 0.0004 0.0071 ± 0.0003 0.0074 ± 0.0003 0.0080 ± 0.0002*0.0074 ± 0.0002
Spleen

Absolute 0.446 ± 0.014 0.458 ± 0.015 0.446 ± 0.012 0.385 ± 0.009 0.440 ± 0.020 0.418 ± 0.016 0.401 ± 0.014
Relative 0.302 ± 0.009 0.310 ± 0.008 0.302 ± 0.008 0.269 ± 0.005 0.297 ± 0.012 0.300 ± 0.011 0.308 ± 0.011

Thymus
Absolute

b
0.571 ± 0.016 0.634 ± 0.026 0.606 ± 0.033 0.583 ± 0.018 0.588 ± 0.014 0.556 ± 0.024 0.520 ± 0.023

Relative 0.387 ± 0.011 0.430 ± 0.015 0.411 ± 0.024 0.408 ± 0.014 0.400 ± 0.013 0.400 ± 0.018 0.398 ± 0.016
Thyroid Gland

Absolute 15.7 ± 1.8 15.5 ± 0.8 17.9 ± 1.9 17.3 ± 1.3 21.1 ± 2.4 17.9 ± 1.2 19.3 ± 2.8
Relative 0.0106 ± 0.0011 0.0106 ± 0.0005 0.0121 ± 0.0013 0.0121 ± 0.0008 0.0141 ± 0.0015 0.0130 ± 0.0009 0.0149 ± 0.0023

Uterus
Absolute

d
0.334 ± 0.024 0.330 ± 0.032 0.290 ± 0.017 0.288 ± 0.018 0.314 ± 0.018 0.412 ± 0.047 0.294 ± 0.034

Relative
c,d

0.228 ± 0.017 0.227 ± 0.022 0.196 ± 0.011 0.201 ± 0.012 0.212 ± 0.011 0.298 ± 0.035 0.224 ± 0.024
Vagina

Absolute 0.127 ± 0.007 0.130 ± 0.004 0.122 ± 0.006 0.116 ± 0.006 0.134 ± 0.006 0.127 ± 0.005 0.123 ± 0.007
Relative

b
0.086 ± 0.005 0.088 ± 0.003 0.083 ± 0.004 0.081 ± 0.004 0.091 ± 0.004 0.091 ± 0.004 0.094 ± 0.006

* Significantly different (P<0.05) from the control group by Dunnett’s test
a

Mean ± standard error; the values given are based on individual pups.  Organ weights were compared across the exposure groups using a 
mixed effects ANOVA with litter as a random factor to account for possible litter effects.  Body weights and absolute weights of the liver, 
spleen, thymus, uterus, and vagina are given in grams; absolute weights of the remaining organs are given in milligrams.  Organ-weight-
to-body-weight ratios (relative weights) are given as g organ weight/g body weight × 100.

b
Significant linear exposure concentration trend (P<0.05)

c
Significant main effect of exposure concentration (P<0.05)

d
Significant quadratic exposure concentration trend (P<0.05)

e
n=14

625 ppm group.  No significant differences in the weights of reproductive organs were noted between the exposed

and control groups of females.  Since females were in random cycle stages at the time of necropsy, only major effects

on reproductive organ weights would have been detected. 

Clinical Chemistry

Examination of the summary statistics of the clinical chemistry and hematology data collected indicated little or no

effect of treatment.  The thyroid stimulating hormone (TSH) values, however, showed considerable variation and a

possible treatment effect.  These data were further examined because of the known ability of isoflavones to inhibit
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thyroid peroxidase activity and the fact that thyroid peroxidase activity in the animals from this study and similarly

treated animals was shown to be depressed by genistein treatment (Chang and Doerge, 2000).  No significant

differences from the controls were observed in any exposed group for TSH or thyroid hormones, nor were lesions

noted in the microscopic evaluation of the thyroid gland.

Histopathologic Examination of Male and Female Organs

and Measures of Sperm Production

Males

No gross abnormalities, including retained or small testes, retention of Mullerian duct remnants, or hypospadias,

were detected in male pups during necropsy.  Exposure concentration-dependent increases in the incidences of

minimal to mild hypertrophy and hyperplasia in mammary gland alveolar and duct epithelium were observed.  The

incidences of hypertrophy of the alveoli and ducts were significantly increased in groups exposed to 25 ppm or

greater, and the incidences of alveolar hyperplasia were significantly increased in groups exposed to 250 ppm or

greater (Table 10).  Hyperplasia of the alveoli is defined as a relative increase of tubuloalveolar patterns of growth,

characterized by alveoli attached to or in close approximation to branched, linear arrays of hypertrophied ducts.

While the peripubertal age of the animals complicated the evaluation of spermatogenesis, there was evidence of

exposure-related effects in the testis and epididymis.  Seminiferous tubules showed retention of elongated spermatids

in Stages X-XII and depletion of spermatids and degeneration of spermatocytes at earlier stages in the 1,250 ppm

group.  These effects were diagnosed as “abnormal spermatogenesis,” and while this was observed in males in

several exposure groups, including controls, the incidence of this lesion was significantly increased in the 1,250 ppm

group.  A significantly increased incidence of hypospermia in the head of the epididymis, consistent with the

testicular effect, occurred in the 1,250 ppm group.  One male in each of the 625 and 1,250 ppm groups had marked

hypospermia (data not shown).  In contrast to the histopathologic evaluation, testicular spermatid head counts and

epididymal spermatozoa counts showed no statistically significant differences between the exposed and control

groups (Table 11).  A significant increase in the incidence of chronic inflammation of the dorsolateral prostate gland

occurred in the 1,250 ppm group (Table 10).  The inflammation was characterized by dense infiltration of lymphoid

cells and more sparse infiltration of granulocytes into the stroma of the gland and occasional glandular alveoli.  The

incidence of depleted secretory fluid in the ventral prostate gland was significantly increased in 1,250 ppm males.

Outside of reproductive tract tissues and the mammary gland, the only other significant histopathologic effect of

genistein exposure in males was renal tubule mineralization; incidences of this lesion were significantly increased in

groups exposed to 250 ppm or greater (Table 10).
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TABLE 10
Incidences of Selected Nonneoplastic Lesions in Male Rat Pups
in the Reproductive Dose Range-Finding Feed Study of Genistein

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

Mammary Gland
a

13 13 14 15 15 14 13
Hypertrophy, Alveoli

b,d
0 2 (2.0)

c
4* (1.0) 4* (1.8) 7** (1.7) 9** (1.7) 8** (1.9)

Hypertrophy, Ducts
d

0 2 (2.0) 5* (1.0) 4* (1.5) 6** (1.5) 9** (1.4) 8** (1.0)
Hyperplasia, Alveoli

d
1 (1.0) 2 (2.0) 2 (1.0) 3 (1.7) 8** (1.6) 13** (1.7) 7** (1.7)

L. Testis 15 15 15 15 15 15 14
Abnormal

Spermatogenesis
e

2 (1.0) 0 3 (1.0) 0 2 (2.0) 2 (2.0) 7** (1.1)

L. Epididymis 15 15 15 15 14 15 14
Hypospermia

f
3 (1.3) 5 (1.4) 4 (2.3) 3 (1.3) 3 (2.3) 7 (1.7) 9** (2.3)

Dorsolateral Prostate Gland 15 15 14 15 15 15 14  
Inflammation

d
6 (2.7) 3 (1.7) 4 (1.8) 3 (2.0) 4 (1.8) 9 (2.0) 12** (2.7)

Ventral Prostate Gland 15 15 14 15 15 15 14
Depletion of Secretory

Fluid
e

0 0 0 0 0 1 (4.0) 2* (2.0)

Kidney 15 15 15 15 15  15 14  
Mineralization,

Renal Tubule
d

0 0 0 0 5** (1.2) 5** (1.2) 11** (1.5)

* Significantly different (P<0.05) from the control group by Shirley’s test
** P<0.01
a

Number of animals with tissue examined microscopically
b

Number of animals with lesion
c

Average severity grade of lesions in affected animals:  1=minimal, 2=mild, 3=moderate, 4=marked
d

Significant exposure concentration-related trend (P<0.001) by the Jonckheere-Terpstra test
e

P<0.05
f

P<0.01

TABLE 11
Testicular Spermatid Head Counts and Epididymal Sperm Counts in Male Rat Pups
in the Reproductive Dose Range-Finding Feed Study of Genisteina

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

n 7 12 10 11 9 7 7

R. Testicular Spermatid
Head Counts (10

6
) 64.84 ± 3.22 63.76 ± 3.03 57.10 ± 4.98 62.51 ± 2.59 59.86 ± 3.69 66.95 ± 4.44 61.22 ± 4.18

R. Epididymal Spermatocyte
Counts (10

6
) 52.14 ± 11.01 75.82 ± 5.95 62.61 ± 9.12 70.01 ± 6.18 62.85 ± 8.91 76.97 ± 13.08 68.28 ± 7.58

a
Counts per gram tissue are presented as mean ± standard error.  Differences from the control group were not significant by Dunnett’s test.
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Females

No gross lesions were observed in female pups at necropsy, but microscopic evaluation indicated exposure-related

effects in the reproductive tract and mammary gland (Table 12).  All females in the 1,250 ppm group showed mild

to marked departure from normal morphology of the reproductive tract and/or lack of synchrony in cycle stage in the

various components of the reproductive tract.  The ovary of all 1,250 ppm females showed mild to moderate bilateral

degeneration of the antral follicles.  This lesion was not observed in the ovary of any control females.  Antral follicles

in 1,250 ppm females appeared to be more numerous and were in various stages of degeneration.  Corpora lutea were

smaller and appeared to be fewer in number than in the controls.  Corpora lutea of 1,250 ppm animals were

characterized by the presence of large foamy leuteinized cells with cell cords separated by well-developed capillaries

and sparse connective tissue, and appeared most similar to the morphology expected for diestrus.  These corpora lutea

appeared to be hormonally active and not undergoing cyclic regression at the normal rate, if at all.  There was little

evidence of the vacuolar degeneration and apoptosis of luteal cells that usually accompany normal cyclicity.  Whereas

control animals showed remnants of at least one, and often two, waves of corpora lutea from previous cycles, no

evidence for such remnants was seen in the animals exposed to 1,250 ppm genistein.  The ovarian interstitial

compartment of 1,250 ppm females was sparse and atrophic, characterized by smaller diameter, fewer cells, and a

looser structure that suggested edema.  Primordial, growing, and antral follicles were enumerated in five sections

from each ovary of 12 to 15 animals in each exposure group, and no exposure-related differences were apparent

(Table 13).  Only follicles that included a normal ovum were recorded in the follicle counts; this likely accounted for

the fact that follicle counts did not reflect the histopathologic observation of increased antral follicles.

The remainder of the reproductive tract in many 1,250 ppm females showed effects consistent with the disturbance

of ovarian function and contrasted markedly with controls. Both uterine and vaginal structures showed an

inappropriate combination of changes that reflected influences of estrus, metestrus, and diestrus.  Abnormal cellular

maturation in the vagina of nine 1,250 ppm animals was observed and labeled as mucocytic metaplasia, a term that

denotes marked departure from normal cyclic morphologic changes in the epithelium.  This included hypertrophy of

the mucinous layer that reflects the progesteronal influence during proestrus.  The apparent increased progesteronal

drive in the 1,250 ppm group is consistent with the observation of persistent corpora lutea.  In addition, four animals

in the 625 ppm group were diagnosed with moderate vaginal mucocytic metaplasia in the absence of detectable

ovarian degeneration.  The increased mucocytic metaplasia in the 625 and 1,250 ppm groups was significant. 

Genistein treatment was found to affect the mammary gland in females.  Both whole mounts and hematoxylin and

eosin-stained sections were evaluated and led to similar diagnoses.  The most prominent effect of genistein on the

female mammary gland was hyperplastic proliferation of alveolar complexes into compact lobules, with significantly

increased incidences of this lesion in groups exposed to 250 ppm or greater.  The incidence of hyperplasia of the

epithelium of mammary gland alveoli was significantly increased in the 1,250 ppm group.
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TABLE 12
Incidences of Selected Nonneoplastic Lesions in Female Rat Pups
in the Reproductive Dose Range-Finding Feed Study of Genistein

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

Ovary
a

15 15 15 15 15 15 15
Degeneration,

Antral Follicles,
Bilateral

b,d
0 0 0 0 0 0 15** (2.1)

c

Vagina 15 15 15 14 15 15 14
Metaplasia, Mucocyte

d
0 0 0 0 1 (2.0) 4** (3.0) 9** (3.0)

Mammary Gland 15 15 14 15 15 15 15
Hyperplasia, Lobules

d
0 1 (1.0) 1 (1.0) 0 3* (1.3) 6** (1.7) 8** (2.3)

Hyperplasia, Alveoli
e

6 (1.3) 8 (1.4) 6 (1.7) 6 (1.2) 7 (1.0) 10 (1.2) 11** (2.0)

Kidney 15 15 15 15 15 15 15  
Mineralization,

Renal Tubule
e

13 (1.1) 15 (1.3) 13 (1.2) 15 (1.1) 15** (1.5) 15** (1.5) 15** (1.6)

* Significantly different (P<0.05) from the control group by Shirley’s test
** P<0.01
a

Number of animals with tissue examined microscopically
b

Number of animals with lesion
c

Average severity grade of lesions in affected animals:  1=minimal, 2=mild, 3=moderate, 4=marked
d

Significant exposure concentration-related trend (P<0.01) by the Jonckheere-Terpstra test
e

P<0.001

TABLE 13
Follicle Count Summary of Female Rat Pups in the Reproductive Dose Range-Finding Feed Study
of Genisteina

0 ppm 5 ppm 25 ppm 100 ppm 250 ppm 625 ppm 1,250 ppm

n 15 14 14 15 12 14 15

Primordial 17.13 ± 2.23 9.00 ± 1.29 18.71 ± 2.86 18.33 ± 2.70 17.58 ± 4.17 19.50 ± 4.23 23.73 ± 3.00
Growing 2.67 ± 0.45 2.14 ± 0.52 4.36 ± 0.63 3.20 ± 0.54 4.42 ± 1.00 2.64 ± 0.59 3.53 ± 0.71
Antral 2.53 ± 0.49 3.29 ± 0.54 3.14 ± 0.71 3.67 ± 0.55 3.75 ± 0.48 2.71 ± 0.47 2.33 ± 0.51

a
Counts are presented as mean ± standard error.  Differences from the control group were not significant by Dunnett’s test.
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Renal tubule mineralization was observed in a high proportion of females in all groups; however, this lesion was

significantly increased in severity in groups exposed to 250 ppm or greater (Table 12). 

Summary of Results of Neurotoxicology, Behavioral, and Immunotoxicology Studies

The following studies were conducted in parallel with the reproductive toxicology study described above.  An

identical test system was used, although the behavioral and immunotoxicology studies used only 0, 25, 250, and

1,250 ppm groups.  The results are reported in detail elsewhere, as indicated by the references.

Neurotoxicology Study  

One male and one female from each litter in the reproductive toxicity assessment (sacrificed on PND 50) were

selected for assessment of the volume of the sexually dimorphic central nucleus (SDN) of the medial preoptic area

of the hypothalamus and hypothalamic content of vasopressin and $-endorphin (Appendix B and Scallet et al., 2003).

The results indicated that a possible effect of genistein was to reduce (i.e., feminize) the volume of the SDN in male

animals receiving the intermediate doses of genistein (25, 100, and 250 ppm), while the higher doses had no effect.

However, there was a lack of consensus among multiple raters of this endpoint, so that caution is necessary in

interpreting this result (Appendix B).  While no effects on hypothalamic $-endorphin content were detected,

vasopressin levels were significantly elevated in the 1,250 ppm group.  These results were consistent with both the

known effects of estradiol and the findings (see below) of the behavioral assessments that indicated increased sodium

preference in genistein-exposed rats.

Behavioral Study

In behavioral assessments (Flynn et al., 2000), groups of 12 pregnant rats were fed soy-free diets containing 0, 25,

250, or 1,250 ppm genistein beginning on GD 7, and offspring were fed these diets through PND 63.  Male and

female offspring were assessed for levels of sexually dimorphic behaviors:  open field activity, play behavior, running

wheel activity, and consumption of saccharin- and sodium chloride-flavored solutions.  Intake of the sodium-flavored

solution was increased, with rats in the 1,250 ppm group drinking significantly more than those in the 0 ppm group;

intake of plain water was unaffected.  While there was a statistically significant dose effect on play behavior, no

exposed group was significantly different from the control group in pairwise comparisons.  Running wheel activity

and saccharin-flavored solution consumption showed significant sex differences but no significant effects of

genistein treatment.  Gestational duration, total and live pups per litter, and total and live litter sex ratios were not

significantly affected; however, average birth weight per live pup and offspring body weights from PNDs 42 to 77

were significantly decreased in the 1,250 ppm group.  Body weight and food intake for the dams were also

significantly decreased in the 1,250 ppm group.
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Immunotoxicology Study

For immunotoxicity evaluations, a third set of animals was treated as described above with 0, 25, 250, and 1,250 ppm

genistein in the diet.  In these studies, both the dams (after exposure for 65 days) and the pups (on PND 63, after

exposure for 77 days) were evaluated.  Evaluations (n=10 per sex per exposure group) included spleen and thymus

weights as well as assays for humoral mediated immunity (spleen antibody-forming cell response to sheep red blood

cells), cell-mediated immunity (proliferative response to anti-CD3 stimulation), nonspecific immunity (natural killer

cell activity), quantitation of cell subpopulations (lymphocyte subpopulations, macrophages, and natural killer cells),

and hematopoietic function (bone marrow cell number and numbers of macrophage, granulocyte-monocyte, and

erythrocyte progenitors).

On the day of sacrifice, whole spleens or bone marrow cells were placed in tubes with the appropriate medium,

packed in wet ice and shipped to the Medical College of Virginia Campus/Virginia Commonwealth University

(Richmond, VA) for assay evaluation on the following day.  Exposure to genistein resulted in statistically significant

increases in the relative spleen weight (% body weight) in F1 generation males at the low and high exposure

concentrations and in all exposed groups of F1 females.  The pups of both sexes, but not the dams treated only as

adults, showed enhanced T-cell activity in all exposed groups as measured by anti-CD3 (a T-cell receptor) antibody-

mediated spleen cell proliferation.  The biological consequences of this apparent developmental effect of enhanced

cell-mediated immunity are not clear; they could be beneficial or adverse (by enhancing autoimmune responses)

depending on the host environment.  Changes in B and T cell populations and alterations in bone marrow progenitor

cell populations were also seen in the pups, but not the dams, and these effects varied according to dose and sex (NTP,

1998; Guo et al., 2002, 2005).  In the dams, increases in natural killer cell activity were observed at 250 and

1,250 ppm, but this effect was not observed in pups.  Thus, effects on immunological endpoints were detected at

exposure concentrations as low as 25 ppm genistein, although the biological consequences of these changes were not

evaluated.

Serum Genistein Determination  

Serum isoflavones were also determined in animals from the 0, 25, 250, and 1,250 ppm groups of the immunotoxicity

study at sacrifice on PND 63 (Holder et al., 1999).  It was determined that 97% or more of the total circulating

genistein existed as conjugates (primarily glucuronides) and that 1% to 3% was aglycone, the form of genistein that

interacts with estrogen receptors.  Serum concentrations ranged from approximately 10 nM in the 25 ppm group to 6

to 9 µM in the 1,250 ppm group, which spans the range of serum concentrations of humans consuming soy products.
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The doses of genistein ingested by the rats in this study spanned a range that covered estimated human isoflavone

exposures resulting from consumption of soy foods in adults (approximately 1 mg/kg per day) and of soy infant

formula (6 to 9 mg/kg per day) (Setchell et al., 1997) up to approximately 170 mg/kg per day.  The mean dose

ingested by dams during pregnancy was near 50% of the dose ingested by the dams during the lactation period or by

the pups after weaning.  While the ingested doses in the highest dose groups are well above typical human ingestion

levels, the serum levels of genistein achieved over the dose range tested in the present study, even at the high end of

the dose range (approximately 10 µM total genistein at 1,250 ppm in pups at termination of the study), are within a

range achievable in humans consuming soy products (Setchell et al., 1997).  Whitten and Patisaul (2001) have also

pointed out the need for higher ingested doses of genistein in rodents to produce blood levels found in humans.  

Pups were also presumably exposed to genistein in utero and while nursing.  Limited data are available on placental

transfer of genistein, but these data indicate that the fetus is exposed to genistein after maternal ingestion of genistein

or soy.  Genistein was detected in fetal plasma and the brain 2 hours after oral dosing of pregnant rats (Doerge et al.,

2001).  Total genistein concentrations were lower in fetal plasma than in the plasma of the dams, although the percent

present as unconjugated aglycone was higher than in the dams, possibly due to the less efficient glucuronidation

capacity of the fetus.  In humans, transplacental transfer of genistein has been demonstrated in studies that have

detected isoflavones in amniotic fluid (Adlercreutz et al., 1999; Foster et al., 2002).  Transfer of genistein to human

breast milk following consumption of soy has been reported (Franke and Custer, 1996; Franke et al., 1998).  In

rodents, the degree of transfer of ingested genistein to milk is unclear.  Fritz et al. (1998) reported significant levels

of genistein in the milk of rats following dietary administration of genistein from conception (0.14 µM in the milk of

dams consuming 250 ppm genistein that had serum levels of 0.42 µM genistein), and Weber et al. (2001) reported

high concentrations of isoflavones in the plasma of infant rats and reasoned that there was efficient transfer of

genistein from the mother’s plasma to milk, although milk concentrations were not reported.  On the other hand,

Lewis et al. (2003) reported less efficient transfer to the milk of dams administered genistein by gavage, with a milk

level of 0.63 µM in dams with plasma levels of 6.7 µM.

Multiple effects of genistein were observed in this study at the highest exposure concentration tested, 1,250 ppm, and

the extent of these effects clearly eliminated 1,250 ppm for consideration for use in subsequent multigenerational and

chronic toxicity studies (NTP, 2007, 2008c).  Maternal body weight gain and feed consumption during pregnancy

DISCUSSION
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were decreased.  In males exposed to 1,250 ppm, effects that were considered in dose selection for the main studies

included decreased body weight gain; decreased ventral prostate gland weight and secretory material; increased

relative pituitary gland weight; increased incidences of inflammation of the dorsolateral prostate gland; hyperplasia

of the alveoli and hypertrophy of the alveoli and ducts of the mammary gland and epididymal hypospermia; and

abnormal spermatogenesis (depletion and retention of elongated spermatids).  In females, effects at 1,250 ppm

included decreased body weight gain; increased incidences of ovarian degeneration, vaginal metaplasia, and

mammary gland hyperplasia; and increased severity of renal tubule mineralization.  In addition, the dams in the

1,250 ppm group produced fewer litters than the control or other exposed groups.  At 625 ppm, fewer effects were

observed, with increased incidences of mammary gland hyperplasia and renal tubule mineralization as the only

effects in males and increased relative pituitary gland weight and increased incidences of vaginal metaplasia,

mammary gland hyperplasia, and renal tubule mineralization in females.  At 250 ppm, the sole effects in the

reproductive toxicity study were increased incidences of mammary gland hyperplasia/hypertrophy and renal tubule

mineralization in males and females.  At 25 ppm, the incidence of hypertrophy of the male mammary gland was

significantly increased relative to controls.  In parallel studies conducted under identical conditions, immune cell

alterations (NTP, 1998; Guo et al., 2002, 2005), an apparent decreased volume of the sexually dimorphic central

nucleus of the medial preoptic area of the hypothalamus in males (Appendix B), and decreased thyroid peroxidase

activity were reported at 25 ppm genistein, although no thyroid hormone changes or thyroid gland lesions were found

to be associated with this decrease in thyroid peroxidase activity (Chang and Doerge, 2000).  While the effects of

genistein at 625 ppm were mild and would not have been considered to have a major impact on reproductive capacity,

given the facts that effects were observed at lower exposure concentrations, that the goals of the long-term studies

included the evaluation of the long-term consequences and potential magnification of subtle effects, that the limited

sample size in the dose range-finding study restricted the power of the study to detect effects, and that an extended

exposure period would be used in the early generations of the planned multigenerational and chronic studies,

500 ppm was selected as the high exposure concentration for the multigenerational and chronic studies (NTP, 2007,

2008c).  A low exposure concentration of 5 ppm, where no significant effects were observed in the current

reproductive dose range-finding study, and an intermediate exposure concentration of 100 ppm were selected.

Data from the current reproductive dose range-finding study described above, together with data on immunological,

behavioral, and neurotoxicological endpoints and serum isoflavone levels generated in studies conducted under

identical conditions, were the sole data considered in selecting doses for the subsequent multigenerational and

chronic toxicity studies (NTP, 2007, 2008c).  In recent years, particularly over the time period during which the

studies described in this report were conducted, there have been multiple studies of the effects of genistein or soy

extracts containing genistein on male and female reproductive organs in experimental animals.  These studies have

come to mixed conclusions on the degree to which genistein induces adverse effects in reproductive tissues.  These
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differing conclusions may in part reflect the differences in experimental design, including species and strain used,

route of administration, exposure window, and base diets used in the studies.  Nonetheless, it is of interest to compare

the results of the current study to those reported by others using various developmental exposure models.

The ratio of litters produced to number of plug-positive dams assigned to exposure groups was significantly lower in

the 1,250 ppm group.  Since dosing was begun after implantation, this suggests a possible effect on post-implantation

viability or resorptions.  However, no effect of treatment on litter size was observed in the 1,250 ppm litters that were

produced, nor were significant treatment effects on these endpoints noted in the 1,250 ppm groups of the parallel

immunotoxicity and behavioral studies, nor in the study of Takagi et al. (2004) where a similar dosing regimen

(1,250 ppm dietary genistein in a soy-free diet from GD 15 through PND 11) was used.  Thus, it appears that the

reduced number of litters produced in the 1,250 ppm group in the current reproductive dose range-finding study may

have been a chance observation.  Maternal body weight gain during pregnancy was significantly depressed in the

1,250 ppm group, and while mean pup birth weight of the 1,250 ppm group was slightly depressed, but not

significantly less than that of the controls in the reproductive study, mean body weight was significantly less in the

1,250 ppm group in the behavior study (Flynn et al., 2000).  

No significant effect on anogenital distance (AGD) was found in the present study, although mixed and relatively

modest effects of genistein or soy on AGD have been reported.  The administration of dietary genistein (1,000 ppm)

from GD 1 to PND 56 (Casanova et al., 1999) or a soy-containing diet from GDs 0 to 20 (Weber et al., 2001)

increased (masculinized) anogenital distance in female pups.  Casanova et al. (1999) also found a significantly

increased anogenital distance in female pups of dams fed a soy-containing diet versus a soy-free diet.  On the other

hand, Levy et al. (1995) reported a decreased AGD in female pups born to dams that had been treated with 5 mg

genistein by subcutaneous injection on GDs 16 to 20.  Levy et al. (1995) found that 5 mg of genistein, but not 25 mg,

administered to dams from GDs 16 to 20 by subcutaneous injection decreased the AGD in newborn males.  On the

other hand, it was reported that male pups of dams receiving a diet containing approximately 600 ppm soy

phytoestrogens throughout gestation had increased ratios of anogenital distance to body weight just before birth at

GD 20.5, although no significant difference was observed on PND 3 (Weber et al., 2001).  A diet containing 200 ppm

soy phytoestrogens had no effect.  The overall results suggest that phytoestrogens may be able to masculinize or

hyperfeminize female pups depending on the treatment conditions, but the long-term biological meaning of these

small and sometimes transient effects on anogenital distance is not clear.

In the reproductive dose range-finding study reported here, genistein had no significant effect on the onset of male

puberty, as assessed by preputial separation.  Likewise, while the female pups in the 1,250 ppm group showed a mean

time of vaginal opening approximately 3 days earlier than controls, no exposed group was significantly different from
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controls in pairwise comparisons.  Wisniewski et al. (2003) reported a delayed time of preputial separation along with

reduced testosterone concentrations and impaired reproductive behavior in Long Evans rats exposed to 5 or 300 ppm

dietary genistein during gestation and lactation.  Genistein effects on the timing of male puberty have generally not

been observed in other studies (Casanova et al., 1999; Lewis et al., 2003; Masutomi et al., 2003), although

Masutomi et al. (2003) did report preputial separation accompanying a lower body weight than controls in rats fed

1,000 ppm genistein from GD 15 to PND 10.  In female rats, the timing of vaginal opening, which is measured by

the age or the body weight at which vaginal patency is achieved and occurs near the time of the first ovulation, is the

most readily measured marker of the attainment of puberty.  The timing of the onset of puberty is complex and can

be altered by the levels or timing and pattern of release of controlling hormones from the hypothalamus and pituitary

gland as well as direct effects on the ovaries (Goldman et al., 2000).  Levy et al. (1995) administered genistein by

subcutaneous injection to pregnant dams on GDs 16 through 20 at two dose levels (5 mg and 25 mg, or about 12 and

60 mg genistein/kg body weight per day) and found a delay in vaginal opening only at the lower dose.  Other studies

in mice or rats with injected, gavage, or dietary genistein or with dietary soy protein isolate have generally reported

an acceleration of vaginal opening or no effect (Lamartiniere et al., 1998a; Casanova et al., 1999; Badger et al., 2001;

You et al., 2002a; Lewis et al., 2003; Nikaido et al., 2004).  In two recently reported experiments using

developmental exposure windows somewhat different from that used in the current study, acceleration of vaginal

opening was reported within the exposure concentration range used in the current study.  You et al. (2002a) reported

accelerated time of vaginal opening in females exposed to 300 or 800 ppm genistein in feed from GD 0 through the

experiment.  The 300 ppm diet yielded a genistein dose of between 20 and 40 mg/kg body weight, depending on the

stage of the experiment.  Lewis et al. (2003) reported accelerated vaginal opening in pups injected subcutaneously

with 2 mg/kg daily from birth to PND 7 and then gavaged with 40 mg/kg through PND 21.  In the same experiment,

an identical exposure regimen using 10-fold lower doses had no effect on the timing of vaginal opening.  Takagi et al.

(2004), on the other hand, did not observe an acceleration of vaginal opening when exposing rats to 1,250 ppm

genistein in a soy- and alfalfa-free diet from GD 15 to PND 11, and Nagao et al. (2001) saw no acceleration of

vaginal opening after gavage dosing of rat pups with up to 100 mg/kg genistein on PNDs 1 through 5.

The female reproductive tract showed histological changes in the 1,250 ppm group of the current reproductive dose

range-finding study that indicates a significant impairment of reproductive processes at that exposure concentration.

Given the preferential affinity of genistein for estrogen receptor $ (Kuiper et al., 1997, 1998), the relatively high

concentration of this receptor in the ovary (Kuiper et al., 1997), and the high level of genistein aglycone available to

interact with the estrogen receptor (Doerge et al., 2001), the ovary would be expected to be a likely target for

genistein action.  Prolonged cycles and increased time in estrus or diestrus have been observed in animals treated

prepubertally with genistein (Lamartiniere et al., 1995; Murrill et al., 1996; You et al., 2002a; Kouki et al., 2003;

Takagi et al., 2004; and Nikaido et al., 2004).  Genistein-induced ovarian degeneration and abnormal cycling in rats,
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as observed in the present study, have been described previously following neonatal treatment of rats with high doses

of genistein (three subcutaneous doses of 5 mg/animal on PNDs 2, 4, and 6) (Lamartiniere et al., 1995).  Similar

doses administered to older prepubertal animals and dietary administration of 25 or 250 ppm from conception

through weaning did not result in ovarian toxicity, although mammary gland differentiation was affected by both

treatments (Fritz et al., 1998).  On the other hand, Awoniyi et al. (1998) reported that dietary genistein at 5 ppm from

GD 17 through weaning or continuing until PND 70 had lasting effects on the ovary.  The effects reported,

degenerating follicles and a persistent interstitial compartment, were similar to those seen in the present study.  Those

effects were persistent in animals that had been removed from dosed feed at weaning, suggesting that in utero and/or

lactational exposure was responsible for the effects.  Nagao et al. (2001) administered genistein to Sprague-Dawley

rat pups at 12.5 to 100 mg/kg per day by gavage on PNDs 1 through 5 and necropsied the animals at 21 days or

18 weeks of age.  In the older animals, all dosed groups showed an increase of abnormal cycles and a decreased

fertility index (number of animals pregnant/number of animals copulated).  Some animals in the 50 and 100 mg/kg

groups showed atrophic ovaries with atretic follicles and no corpora lutea, but lesions were not observed in the lower

dose groups.  Lamartiniere et al. (1998b) detected ovarian toxicity only at high (5 mg/rat) doses of genistein

administered subcutaneously to neonatal rats, and Kang et al. (2002) reported no ovarian lesions with maternal

gavage exposures of 0.4 or 4 mg/kg body weight per day.  Jefferson et al. (2002) treated neonatal mice (PNDs 1

through 5) with subcutaneous injections of 1, 10, or 100 µg per day and found induced expression of estrogen

receptor ", an increased number of ovulated oocytes at the lowest dose, and a decrease in the number of ovulated

oocytes at the higher doses.  A dose-related increase in multioocyte follicles was also observed, but unlike the

induction of estrogen receptor ", this effect was not observed in estrogen receptor $ knockout mice.  The present

results are in agreement with those of Fritz et al. (1998) in that no ovarian toxicity was noted in doses lower than

1,250 ppm.  The specific experimental factors (e.g., genetic, dietary, environmental) that account for the differences

in the doses at which adverse ovarian effects were observed are not clear.  Despite the lack of morphologic evidence

of ovarian toxicity at 625 ppm in the current study, a significantly increased incidence of vaginal metaplasia was

observed at 625 ppm.  A similar low incidence of mucinification of the vaginal epithelium in the absence of ovarian

toxicity in adult female rats treated orally for 28 days with 400 or 1,000 mg genistein/kg body weight per day was

reported by Okazaki et al. (2002).

Observed effects of genistein on organ weights were relatively few in the current reproductive dose range-finding

study.  Consistent with an estrogenic effect (Wiklund et al., 1981), relative pituitary gland weights showed an

increasing linear dose trend, with significant differences from controls in the 625 ppm and 1,250 ppm groups in

females and males, respectively.  In males, both the relative and absolute ventral prostate gland weights showed

decreasing linear trends and were significantly lower in the 1,250 ppm group.  Casanova et al. (1999) found no

significant effects of genistein on ventral prostate gland weights of pups exposed to 200 or 1,000 ppm under similar
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conditions to those used in the present experiment, but they reported a marginally significant increase in ventral

prostate gland weight at 200 ppm when the individual pup was used as the unit of analysis.  The current study data

show slight but nonsignificant elevated ventral prostate gland weight at 100 ppm and dorsolateral prostate gland

weights at several intermediate exposure concentrations.  In addition, quadratic dose trends were not significant for

either the ventral or the dorsolateral prostate glands, and none of these results was altered when the individual pup

was used as the unit of analysis.  Histologically, treatment-related effects on inflammation of the dorsolateral prostate

gland, a lesion present in some control animals, and depletion of secretory fluid in the ventral prostate gland were

noted only at 1,250 ppm.  Thus, under the exposure conditions used in the present study, genistein had relatively little

effect on the prostate gland.  This is generally consistent with the literature on genistein effects on the prostate gland.

Lund et al. (2001) reported that rats exposed to a soy diet containing 600 ppm total phytoestrogens through gestation

and throughout life had decreased prostate gland weight relative to rats receiving a phytoestrogen-free diet.  Nagao

et al. (2001) did not observe changes in the rat adult ventral prostate gland weight, the only prostate gland lobe

examined, at oral genistein doses between 12.5 and 100 mg/kg per day on PNDs 1 to 5.  Strauss et al. (1998) found

that while ventral prostate gland weight was reduced in NMRI mice subcutaneously injected with 50 or 500 mg/kg

per day on PNDs 1 to 3, hyperplasia and abnormal prostate gland histology, similar to that produced by neonatal

treatment with potent estrogens, was observed only in the high dose animals as adults.  Based on parallel studies with

adult male mice, the authors of the latter study concluded that neonates were much less sensitive than adults to the

estrogen-like actions of genistein and that adverse effects on the prostate gland in neonates did not occur at doses

likely to be encountered through the diet.  Kang et al. (2002) dosed dams by gavage with 0.4 or 4 mg genistein/kg

body weight per day from GD 6 to PND 20 and examined the F1 offspring at several ages.  The prostate gland weight

was significantly increased in the 4 mg/kg group at PND 70 but not on PND 100, indicating a transient effect.  A

similar transient effect on prostate gland weight in mice has also been reported (Kyselova et al., 2004).  Fritz et al.

(2002) administered dietary genistein at 250 ppm and 1,000 ppm for 2 weeks after weaning and found a reduction in

the growth of lateral prostate gland type 1 buds at the high dose but no evidence of toxicity.

Effects of genistein on the testis and the epididymis at 1,250 ppm were noted in the histologic evaluation in the

reproductive dose range-finding study, consistent with a possible disruption of or delay in spermatogenesis, although

this was not reflected in the testicular spermatid head count or the epididymal spermatocyte counts.  Sperm are just

beginning to appear in the epididymis at this age, and the dilute sperm number may contribute to considerable

variability in the spermatocyte counts in the homogenates.  In any case, interpretations of these changes are

complicated by the peripubertal age of the animals.  Degenerating germ cells are common in pubertal animals

undergoing the first wave of spermatogenesis, with the cell type undergoing degeneration highly dependent on the

age of the animal (Russell et al., 1987).  At the relatively late pubertal stage at which the animals in this study were

examined, it would be expected that predominantly elongated spermatids would be degenerating (Russell et al.,
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1987).  This was observed to be the case in 2 of 15 control animals examined, but more so in the high dose animals,

and degeneration of earlier generations of germ cells was also seen.  Roberts et al. (2000) found no effect of 5 ppm

dietary genistein administered from GD 17 to PND 21, PND 70, or PND 130, with all animals necropsied at PND 70

or 130, and Nagao et al. (2001) found no effect on sperm counts or serum testosterone after neonatal gavage

administration of genistein at doses ranging from 12.5 to 100 mg/kg per day.  On the other hand, Fisher et al. (1999)

reported increased testes weight at PND 75 in animals given subcutaneous injections of 4 mg genistein/kg body

weight between PNDs 2 and 12.  A transient reduction in efferent duct epithelial cell height was observed in early

life and was abolished by PND 25.  Additionally, Atanassova et al. (2000) found that both a soy-containing diet and

genistein administered to neonates by subcutaneous injection at 4 mg/kg per day from PNDs 2 to 18 retarded

spermatogenesis in neonatal Wistar rats.  Kang et al. (2002) found no effects on sperm number or the distribution of

cell types or their numbers in adult rats whose mothers were exposed to 0.4 or 4 mg genistein/kg body weight per

day by gavage from GD 6 to parturition and then from PNDs 2 to 20.  Robertson et al. (2002) found that soy-

containing feed could partially reverse the deficient spermatogenesis observed in aromatase knockout mice.  A recent

report indicated that rats treated with a mixture of soy-derived isoflavones (45% genistein, 200 and 2,000 ppm in the

diet) during adulthood (treatment for a year starting at 10 weeks of age) resulted in no effects on testicular or

epididymal weights or on sperm count, motility, or morphology (Faqi et al., 2004).  Likewise, feeding genistein at

250 or 1,000 ppm from PNDs 21 to 35 had no effect on testis weight or histology, in contrast to the decreased weight

and altered morphology induced by 75 ppb DES (Fritz et al., 2003).  Kyselova et al. (2004) found in a

multigeneration drinking water study that 2.5 and 25 mg genistein/kg body weight reduced the weights of testes,

prostate glands, and seminal vesicles in 30-day-old male CD-1 pups, but the effect was not seen at 90 days of age in

adults.  Decreased acrosome staining was reported in sperm from these mice, but there was no dose-response for this

effect, and there was no impact on fertility.  Adachi et al. (2004) treated ICR mice subcutaneously with 1 mg

genistein or 50 µg DES per day on PNDs 1 to 5 and showed that both compounds had similar effects on gene

expression in the testes, including downregulation of androgen receptors and estrogen receptor ".  However, while

DES showed histologic effects and induced an increase in apoptotic cells in the testis, genistein was without effect.

Fielden et al. (2003) found no effects of lower gavage doses of genistein, ranging from 0.1 to 10 mg/kg, administered

during gestation and lactation on gene expression or spermatogenesis in mice.  Finally, in a primate study by Sharpe

et al. (2002), male marmosets fed soy formula had a depressed neonatal testosterone surge and increased Leydig cell

number in the testis.  In a follow-up study of these animals, no effects of soy formula feeding on the timing or

progression of puberty, fertility, or development or length of the penis were observed (Tan et al., 2006).  Testis weight

and Sertoli and Leydig cell numbers were increased in the marmosets exposed to soy formula as infants.  Thus, the

data available to this point show mixed evidence for a biological effect of soy and genistein on the rodent and primate

testis, but with the exception of the study of Wisniewski et al. (2003) mentioned previously, which reported adverse

reproductive effects in male Long-Evans rats at 5 ppm genistein, clear adverse reproductive outcomes or other long-

term testicular toxicity have not been demonstrated.  
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Mineralization of renal tubules, or nephrocalcinosis, is a sex-related lesion common in untreated female rats and

influenced by diet composition (Ritskes-Hoitinga and Beynen, 1992).  Dietary genistein at 250 ppm and above

induced a significant increase in the incidence and/or severity of this lesion in both sexes.  Control males did not show

signs of nephrocalcinosis.  This lesion has been reported to be induced by estrogen treatment in males

(Ritskes-Hoitinga and Beynen, 1992) and could be related to the estrogenic activity of genistein.  On the other hand,

treatment-related increases in incidences of nephrocalcinosis in males have not been noted after dietary

administration of 17$-estradiol or 17"-ethinyl estradiol to rats (Schardein, 1980; Biegel et al., 1998).  While the

nephrocalcinosis induced in males by genistein was mild and would not be expected to impact longevity or fertility,

the fact that this lesion has been observed in animals treated under the same protocol with nonylphenol (Latendresse

et al., 2001) is of interest.

The mammary gland showed treatment-related effects in both sexes.  The effects of genistein on the female mammary

gland have been reported in studies evaluating the ability of the isoflavone to act as a chemopreventive agent against

chemically induced mammary carcinogenesis in rodents.  The basic findings have been that, like more potent

estrogens, genistein administered perinatally and prepubertally inhibits mammary carcinogenesis induced by

subsequent carcinogen exposure (Brown and Lamartiniere, 1995; Brown et al., 1998; Fritz et al., 1998; Lamartiniere

et al., 1998a).  This effect presumably is related to the stimulation of mammary gland differentiation, perhaps related

to modulation of growth factor response pathways (Brown et al., 1998).  The effects of dietary genistein on mammary

carcinogenesis and development were previously observed at dietary concentrations of 25 and 250 ppm, doses at

which no ovarian or uterine effects were seen (Fritz et al., 1998).  Hilakivi-Clarke et al. (1999a) have also shown that

prepubertal genistein inhibits later carcinogen-induced mammary carcinogenesis and stimulates mammary gland

differentiation in the rat.  However, this group has also reported that restricting genistein exposure to the prenatal

period results in a less differentiated mammary gland in mice (Hilakivi-Clarke et al., 1998) and rats (Hilakivi-Clarke

et al., 1999b) and an increased susceptibility to carcinogen exposure in rats at PND 50 (Hilakivi-Clarke et al., 1999b).

In the present study, mammary gland structures were not quantified, but the qualitative assessment of the mammary

gland was in agreement with the results reported by Fritz et al. (1998) for a similar dietary exposure regimen, in that

more differentiated lobules were more prevalent at PND 50.  In this study, the number and size of terminal end buds

were also increased and significant effects were seen only at 625 and 1,250 ppm in females.  The observed lobulo-

alveolar development of the mammary gland is generally what would be expected from increased exposure to

progesterone (Shyamala, 1999), so that the mammary gland effects observed here, particularly in the 1,250 ppm

group, could be, in part, secondary effects resulting from genistein’s effect on the ovaries or from increased

production of prolactin.
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Treatment-related effects on duct and alveolar mammary gland epithelium of male rats in the present study were seen

at 25 ppm or greater.  While the incidence and severity of hypertrophy diagnosed in the male mammary gland were

statistically significant at 25 ppm, the incidences of hyperplasia were only statistically significant at 250 ppm or

greater.  Since the biological significance of hypertrophy in the absence of hyperplasia is unclear, the clearly

biologically significant effects of genistein thus occurred at 250 ppm.  You et al. (2002b) have also reported that the

mammary gland of male rat pups was more sensitive than the mammary gland of females to genistein.  Male pups

exposed to 800 ppm, but not those exposed to 300 ppm dietary genistein in utero and during lactation from GD 1

through PND 22, showed increased ductal branching when examined at the end of the exposure period.  The literature

on normal development and xenobiotic or estrogenic effects on male mammary tissue is sparse.  In studies of dietary

17$-estradiol (10 and 50 ppm) (Biegel et al., 1998) and/or 17"-ethinyl estradiol (0.08 ppm) (Schardein, 1980),

examination of the mammary glands in adult males indicated feminization.  Cardy (1991) reported that treatment of

male rats with a dopamine antagonist resulted in male mammary glands with a tubuloalveolar structure typical of

females and speculated that an increase in prolactin resulting from the drug treatment may have been responsible for

the feminizing effect.  Cardy (1991) also suggested that the male mammary gland may be a valuable marker tissue

for endocrine active compounds.  Genistein has been reported to increase prolactin concentrations in ovariectomized

female rats fed 750 ppm genistein (Santell et al., 1997) and to stimulate prolactin production in pituitary gland cells

in culture (Stahl et al., 1998), but the hormonal status of the animals in the present study was not evaluated.

In summary, the results of this dose range-finding study provide evidence of the potential of dietary genistein to affect

multiple estrogen-sensitive organs in both male and female rats.  Results reported in the literature leave questions as

to the nature of adverse effects that may be produced by genistein and the doses at which such effects occur.  The

study reported here indicated effects in both males and females, and these effects will be further evaluated in

multigenerational and chronic studies (NTP, 2007, 2008c) conducted in the same experimental model as this dose

range-finding study.  The 1,250 ppm exposure concentration was clearly ruled out for further testing based on the

effects on body weights, histopathologic observations in males and females, and a reduction in the proportion of

mated dams producing litters.  While the effects observed at 625 ppm would not be predicted to significantly impair

reproduction, the observation of significant effects at 250 ppm (hyperplasia in the mammary gland of both sexes),

together with the suggestion of subtle effects at this exposure concentration and lower in the parallel immunotoxicity

and neuroanatomical studies, suggested that a high exposure concentration between 250 and 625 ppm would be

appropriate for the purposes of the multigenerational reproductive toxicology and chronic studies.  Accordingly, the

highest exposure concentration for the multigenerational reproductive toxicology and chronic studies was set at

500 ppm.  A low exposure concentration of 5 ppm, where no significant effects were observed in the reproductive

dose range-finding study, and an intermediate exposure concentration of 100 ppm were also selected.
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CHEMICAL CHARACTERIZATION
AND DOSE FORMULATION STUDIES

PROCUREMENT AND CHARACTERIZATION OF GENISTEIN
Genistein for this study was obtained from Toronto Research Chemicals, Inc. (North York, Ontario, Canada), in
one lot (1-BP-118-3).  Identity and purity analyses were conducted by the study laboratory, the National Center for
Toxicological Research (Jefferson, AR).  Reports on analyses performed in support of the reproductive dose range-
finding study of genistein are on file at the National Center for Toxicological Research.

Lot 1-BP-118-3 of the chemical, a pale-yellow solid, was identified as genistein by the study laboratory using mass
spectrometry and 1H- and 13C-nuclear magnetic resonance (NMR) spectroscopy.  All spectra were consistent with
the structure of genistein, and the mass spectrum was similar to that of a reference standard sample of genistein
obtained from Sigma Chemical Company (St. Louis, MO).  The mass, 

1
H-, and 13C-NMR spectra are presented in

Figures A1, A2, and A3, respectively.

The purity of lot 1-BP-118-3 was determined by the study laboratory using 1H- and 13C-NMR spectroscopy and
high-performance liquid chromatography (HPLC).  HPLC was performed with a Phenomenex ODS-3 column
(250 mm × 4.6 mm, 5-µm particle size, Phenomenex, Torrance, CA) and a solvent system of
70% water/30% acetonitrile adjusted to pH 3.0 using 0.1% formic acid.  The flow rate was 0.2 mL/minute;
ultraviolet detection at 260 nm was used.

1
H- and 13C-NMR spectroscopy results both indicated the presence of a single impurity (1.1%, mole/mole)

containing an ethyl group that was tentatively identified as ethanol.  The purity profile obtained using HPLC
indicated a purity of at least 99%.  The overall purity of lot 1-BP-118-3 was determined to be 99% or greater.

To ensure stability, the bulk chemical was stored at –70° C, protected from light, in opaque white plastic bottles.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS
The dose formulations were prepared approximately every 1 to 3 weeks by mixing genistein with soy- and
alfalfa-free irradiated Purina 5K96 feed (Table A1).  A premix was prepared by hand and then blended with
additional feed in a Patterson-Kelly twin-shell blender for 45 minutes using an intensifier bar.  The 250 and
1,250 ppm dose formulations were prepared directly, and the 5, 25, 100, and 625 ppm dose formulations were
prepared by geometric dilution of the more concentrated formulations.  Formulations were stored at 4° ± 2° C,
protected from light in stainless steel cans for up to 22 days.

Homogeneity and stability studies of the 5 ppm dose formulation were performed by the study laboratory using
HPLC as previously described.  Stability studies were conducted for 17 days under simulated animal room
conditions (21.1° to 24.4° C), 8 weeks at 10° to 21° C, and 32 weeks at 4° C.  Homogeneity was confirmed, and
stability was confirmed for at least 22 days for dose formulations stored in stainless steel cans protected from light
at 4° ± 2° C.

During the reproductive dose range-finding study, the dose formulations were analyzed five times by the study
laboratory using HPLC.  All 13 dose formulations analyzed were within 10% of the target concentrations
(Table A2).
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FIGURE A1
Mass Spectrum of Genistein
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FIGURE A2
1
H-Nuclear Magnetic Resonance Spectrum of Genistein
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FIGURE A3
13C-Nuclear Magnetic Resonance Spectrum of Genistein
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TABLE A1
Preparation and Storage of Dose Formulations 
in the Reproductive Dose Range-Finding Feed Study of Genistein

Preparation
Genistein was mixed with soy- and alfalfa-free irradiated Purina 5K96 feed to give the required concentrations.  A premix of feed and genistein
was prepared, then layered into the remaining feed and blended in a Patterson-Kelly twin-shell blender with the intensifier bar on for
45 minutes.  The 250 and 1,250 ppm dose formulations were prepared by mixing the appropriate quantity of bulk genistein into the
Purina 5K96 feed.  By geometric dilution, the 625 ppm dose formulation was derived from the 1,250 ppm dose formulation, and the 5, 25, and
100 ppm dose formulations were derived from the 250 ppm dose formulation.  The dose formulations were prepared four times during the
study.

Chemical Lot Number
1-BP-118-3 

Maximum Storage Time
22 days

Storage Conditions
Stored at 4° ± 2° C, protected from light, in stainless steel cans

Study Laboratory
National Center for Toxicological Research (Jefferson, AR)

TABLE A2
Results of Analyses of Dose Formulations Administered to Rats 
in the Reproductive Dose Range-Finding Feed Study of Genistein

Target Determined Difference
Date Prepared Date Analyzed Concentration Concentrationa from Target

(ppm) (ppm) (%)

June 17, 1997 June 17, 1997 250 255 +2
250 255 +2

June 20, 1997 5 5.09 +2
25 24.8 –1

100 102 +2

June 23, 1997 June 23, 1997 625 618 –1
1,250 1,263 +1

July 15, 1997 July 15, 1997 25 22.9 –8
250 243 –3

1,250 1,244 0

August 6, 1997 August 12, 1997 5 4.74 –5
100 92.7 –7
625 613 –2

a
Results of duplicate analyses.
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NEUROHISTOLOGICAL AND NEUROCHEMICAL
TOXICITY OF GENISTEIN

OVERVIEW
Genistein is a plant-derived estrogenic isoflavone commonly found in consumer products such as soy milk, dietary
supplements for treating menopausal symptoms, etc.  In choosing neurotoxicological endpoints to evaluate
potentially adverse effects of genistein, it is logical to first examine endpoints that have been well-established for
detecting effects associated with estrogen, viewed as the prototypical parent compound for the endocrine disruptors
such as genistein.

Estrogen has been widely documented to influence the early development of the sexually dimorphic central
nucleus (SDN) of the medial preoptic area (MPOC) in rats; exposure during the critical perinatal period results in a
masculine adult SDN (larger than in a female) and masculine adult reproductive behaviors.

Vasopressin is a neurosecretory peptide synthesized in neurons of the paraventricular nucleus of the hypothalamus
and secreted into the bloodstream from axons extending into the posterior lobe of the pituitary gland.  Estradiol has
also been widely observed to influence the synthesis or content of vasopressin found in the hypothalamus of
developing or adult rats, resulting in functional alterations of fluid retention and blood pressure.

The endogenous opiate peptide $-endorphin is synthesized both in neurons of the hypothalamic arcuate nucleus, as
well as in pituitary cells, primarily of the neurointermediate lobe.  It has been reported that exposure to estradiol
valerate selectively damaged hypothalamic $-endorphin-containing neurons, resulting in reduced hypothalamic
content of $-endorphin, increased µ-opiate receptors, and increased sensitivity to the analgesic effects of morphine
injections.  Lower doses of estradiol have been found to increase hypothalamic $-endorphin.

Our neurotoxicological approach to the evaluation of genistein effects on rats of the range-finding study has thus
focused mainly on the neurohistological endpoint of the volume of the SDN and the neurochemical endpoints of
hypothalamic content of vasopressin and $-endorphin.

The results indicate that a possible effect of the range-finding dietary exposure to genistein was to reduce the
volume of the adult SDN in male animals receiving the intermediate doses of genistein.  However, an examination
of the methodological issues involved in the measurement of the SDN revealed a lack of consensus between
multiple raters.  Thus we suggest caution at present in accepting uncritically the finding that genistein reduced
male SDN volume, except in the heuristic sense that further research on the potential effects of genistein on SDN
development should be undertaken in the hopes of resolving the differences between raters.

While there were no effects of dietary genistein on hypothalamic $-endorphin content, vasopressin levels were
significantly elevated in the 1,250 ppm genistein group (P<0.05).  This data is consistent with the known effects of
estradiol and accompanied findings by the NCTR neurobehavioral toxicology group that estrogenic “endocrine
disruptors” such as genistein increased sodium preference in exposed rats.

METHOD OF EVALUATION OF THE SEXUALLY DIMORPHIC CENTRAL NUCLEUS

OF THE MEDIAL PREOPTIC AREA
In order to assess the effects of dose, duration of exposure, etc., on the MPOC, we first required a practical method
of quantifying the changes in cytoarchitectonic structures.  A desirable method should provide reproducible,
accurate, and unbiased measurements suitable for statistical analysis, with sufficient ease and rapidity so that a
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large number of brains could be processed.  Most previous approaches to obtain an estimate of MPOC volume
(Table B1) have utilized an extension of a two-dimensional procedure.  The MPOC is outlined on each of several
individual sections; then the area of MPOC on each section is multiplied by the section thickness.  The total
volume is then determined as the sum of the volumes of each individual section.  However, Table B1 reveals
considerable intra- and inter-laboratory variation in the published values for the volume of the MPOC, the most
commonly studied sexually dimorphic hypothalamic nucleus, using this method.

There are also a number of studies which have used computer programs to three-dimensionally reconstruct various
brain regions from serially cut tissue (Toga and Arnicar-Sulze, 1987; Villa et al., 1987; Bertossi et al., 1989; Toga
et al., 1995; Yamaguchi and Goto, 1997).  These approaches offer the advantage of placing measurements within a
three-dimensional framework, where information obtained from all the sections evaluated is included.  Although
the feasibility of such an approach to evaluate the rat MPOC has been demonstrated (Robinson et al., 1986), the
widespread application of such techniques was precluded until recently by the requirement for custom software and
extensive computing resources.  Here, we will briefly describe a protocol for three-dimensional imaging,
reconstruction, and measurement of the anteroventral hypothalamus and its component nuclei.

Tissue Preparation
Brains were sagitally cut through the midline and 3 mm lateral to the midline.  The resulting slabs of tissue were
placed in tissue cassettes and transferred to a Citadel 1000 tissue processor (Shandon, Inc.).  The tissue was then
dehydrated through 70%, 95%, and 100% ethyl alcohol, cleared in xylene and infiltrated with paraplast maintained
at 57° to 62° C under vacuum.  Processed tissue was then embedded with Paraplast X-TRA in a Histocenter 2
tissue embedding center (Shandon, Inc.).

Twenty µm thick serial sections were cut using a RM 2145 rotary microtome (Leica).  Damaged sections 
(. 1/100 slides) were recorded using blank slides.  Sections were stained with 0.04% Cresyl Violet containing
acetic acid (pH to 3.4) on a DRS-601 automatic stainer (Sakura Finetek, Inc.).

Prior to any three-dimensional analysis, the computer and microscope were calibrated with a standard traceable to
the National Bureau of Standards (Geller Microanaytical Laboratory, Peabody, MA).  Following calibration, 4×
digital photomicrographs were taken of the stained sections containing the MPOC using a VANOX-T microscope
(Olympus Optical Co.) attached to a DXC-970MD 3CCD color video camera (Sony Corp.) and a CMA-D2 camera
adapter (Sony Corp.).

The software used for digitizing and three-dimensional rendering of the sections was MCID-M5+ (4.0 Beta 2.4) for
Windows NT (Imaging Research, Inc.).  We manually aligned each digitized image with the image that
immediately preceded it.  Reference points included the third ventricle and the paraventricular nucleus.  Freehand
tracings using a computer mouse were made around the third ventricle (3V) and the MPOC.  The alignment of
these images was further refined by a second alignment using fiducial points placed on the drawings in the center
of the MPOC and the bottom center of the third ventricle.

Using the computer, the sections were then stacked 20 µm apart in three-dimensional space.  A computer-generated
three-dimensional rendering of the MPOC was created from the stack of sequential sections.  The volume of the
MPOC was determined based on the 4× system calibrations.  Volume measurements of the MPOC are reported as
the number of voxels (times their size in cubic mm) that were contained within the surface rendered over the
MPOC outlines within the stack of sequential sections.  Accuracy was confirmed by successful measurement of the
volume of a cube with known dimensions.  The sizes of outlines of the female rat MPOC, as traced independently
by two separate experimenters following the procedures described above, were significantly correlated
(Pearson r=0.79, n=17, P<0.01).
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MPOC Volume (mm3  x 

10
- ± S.E.M.) 

Male                Female 
N 

Animal 

Age Fixative 

Tissue 

processing 

Section 

Thickness 

Histological 

Stain Authors 

4.4±0.25 -- 25m PND 89-131
10% 

formalin 

perfusion 
Paraffin 50 µm Thionin Anderson, 1986  

≈5.0 -- 6m PND 6 10% formalin  
 immersion Paraffin 5 µm Hematoxylin  

 And eosin Vancutsem, 1997  

4.55±0.38 

-and- 

5.70±0.86 

0.46±0.06 

-and- 

0.89±0.11 

11m 

11f 

7-8 

months 

10% 

formalin 

perfusion 

Frozen 

sectioned 
60 µm 

Cresyl 

violet 
Jarzab, 1990 

6.12±±2.01 0.40±±0.03 
4m 

4f 
PND 24 10% formalin  

 perfusion Paraffin 20 µµm Cresyl violet  Present 
Study 

6.46±±1.66 0.56±±0.15 
4m 

4f 
PND 50 10% formalin 

perfusion Paraffin 20 µµm Cresyl violet  Present 
Study 

8.3±1.7 3.2±1.0 
4m 

4f 
-- 

10% formalin  
 perfusion Paraffin 10 µm 

Cresyl 

violet 
Gorski, 1980 

-- ≈4.0 -- PND 49 

10% 

formalin 

immersion 

frozen 

sectioned 
20 µm 

Cresyl 

violet 
Faber, 1993 

≈10.00 ≈4.80 
10m 

6f 
PND 49 

10% 

formalin 

immersion 

frozen 

sectioned 
20 µm 

Cresyl 

violet 
Faber, 1991 

≈16.00 ≈5.80 
3m 

4f 

PND 75-

105 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Jacobson, 1981 

≈18.00 ≈6.00 
5m 

6f 
PND 60 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Dohler, 1982 

19.3±1.9 3.8±2.0 
5m 

5f 

3.5-5.5 

months 

10% 

acrolein 

perfusion  

Celloidin 20 µm 
Cresyl 

violet 
Robinson, 1986 

≈21.00 ≈10.50 
12m 

5f 

PND 14-

31 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Ahmed, 1991 

21.1±1.4 3.9±0.5 
6m 

6f 
Adult 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Bloch, 1988 

≈22.00 ≈12.00 
16m 

16f 
PND 200 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Davis, 1995 

≈24.00 ≈6.00 
5m 

6f 
Adult 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Jacobson, 1980 

24.32 6.51 
12m 

12f 
PND 30 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Rhees, 1990a 

24.38 3.43 -- PND 15 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Rhees, 1990b 

25.30±3.14 

-and- 

≈35.0 

NA 

-and- 

≈5.0 

21m 12 weeks 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Tarttelin, 1988  

25.50 12.33 
6m 

6f 
PND 10 

10% 

formalin 

perfusion 

gelatin 

embedded 
60 µm Thionin Maecker, 1993  

≈32.00 

-and- 

≈18.0 

≈15.00 

-and- 

≈6.0 

5m 

6f 
2 months 

10% 

formalin 

perfusion 

frozen 

sectioned 
60 µm Thionin Dohler, 1984 

Table B1
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In the present study, plus four additional independent sets (n=5 males, 5 females for each set) of control groups,
mean male MPOC volumes ranged from 5.95 to 8.83 mm3 H 10-3 while mean female MPOC volumes ranged
from 0.29 to 0.71 mm3 × 10-3.

The volumes of the MPOC in male and female rats reported here fall within the range of MPOC volumes as
measured by other investigators (Table B1).  In adult rats, the range of MPOC volumes as measured by other
investigators extended from 4.55 × 10-3 mm3 to 32 × 10-3 mm3 in males and 0.46 to 15 × 10-3 mm3 in females
(Table B1).

The rather broad distribution of MPOC volumes reported in the literature suggests it may be important to consider
various factors that may contribute to intra- and interlaboratory variation.  Some error between measurements may
occur during the original drawing of the areas.  For instance, deciding where to outline the nuclei requires
subjective determinations based on detecting shifts in cell density, staining characteristics, and cell morphology of
the particular nucleus.  To make the measurement procedures as objective as possible, one might have two
experimenters draw the structures and then create a composite drawing based on common features (Gorski et al.,
1978).  However, to permanently require two investigators would substantially slow the evaluation process.  We
have instead tried to document that multiple raters could achieve suitable inter-rater reliability of measurement.

EFFECTS OF DIETARY GENISTEIN EXPOSURE ON THE SDN
Pregnant dams were maintained on dosed chow from gestational day 7 (GD 7) until the pups were weaned on
postnatal day (PND) 24.  Pups were then maintained on the chow until sacrifice at PND 50.  To eliminate any
influence from isoflavones that may occur in commercially prepared NIH-31 rat chow, which is the standard rodent
diet used at NCTR, a separate isoflavone-free chow was developed.  This modified chow (Purina 5K96; Test Diets,
Purina Mills, Richmond, IN) had all soy and alfalfa protein removed and replaced with casein and soy oil replaced
by corn oil.  A total of 70 offspring (35 males and 35 females) were exposed via the 5K96 chow to seven different
doses of genistein.  The doses were 0, 5, 25, 100, 250, 625, and 1,250 ppm.  All animals were overdosed with
0.6 mL sodium pentobarbital (60 mg/ml, Veterinary Laboratories, Inc.).  They were then perfused transcardially
with 40 mL of 0.9% saline followed by 350 mL of 10% buffered formalin at a flow rate of 40 mL/minute using a
Masterflex Digi-staltic pump (Cole-Parmer Instrument Co.).  The tissue was then prepared for three-dimensional
reconstruction and volume measurement as described above.

Statistics
SigmaStat 2.03 (SPSS, Inc.) was used to perform all statistical tests.  Two-way analyses of variance were carried
out for MPOC volume data.  Student-Newman-Keuls post hoc tests were carried out on all significant
comparisons.  Results were considered significant at P<0.05.

Results
The MPOC volumes of female rats exposed to chronic dietary genistein did not vary across the different doses
(Figure B1).  However, there were clear dose-related effects of genistein on the development of the male MPOC.
MPOC volumes were clearly smaller in male rats exposed to 25, 100, or 250 ppm of genistein in their diet as
compared to the control rats.

At the higher doses of 625 and 1,250 ppm, male MPOC volumes did not differ from their controls.  There was a
clear sexual dimorphism in the MPOC between male and female controls (8.83 ± 1.40 versus
0.29 ± 0.08 × 10-3 mm3).  This significant sexual dimorphism disappeared at the 100 and 250 ppm doses of
genistein.



B-6 Genistein, NTP TOX 79

EFFECTS OF DIETARY GENISTEIN EXPOSURE ON $$-ENDORPHIN

AND VASOPRESSIN LEVELS IN THE RAT HYPOTHALAMUS
A previous neurobehavioral toxicology study demonstrated that dietary exposure of male or female rats to
genistein increased their intake of a sodium chloride solution in preference to water (Flynn et al., 2000).  For
genistein, only the highest exposure group (1,250 ppm) was significantly affected, although there was a trend for
the lower dose groups to prefer sodium chloride as well.  Previous research has indicated that acute exposure to
17-$-estradiol stimulates the synthesis of vasopressin in hypothalamic paraventicular and supraoptic magnocellular
neurons.  This brain-derived vasopressin is then transported to the posterior pituitary gland, which secretes the
peptide into the circulation (Hashimoto et al., 1981; Roy et al., 1999).  The circulating vasopressin can then cause
increases in a number of important physiological parameters such as blood pressure, sodium retention, fluid intake,
etc. (Silverman et al., 1990).  Because these adverse effects of estradiol exposure are only temporary (during the
period immediately after exposure) and they are reversible (with suspension of dosing), they are known as
“activational” effects.

There is also some evidence for more permanent alterations in hypothalamic peptides produced by estrogenic
compounds (Brawer et al., 1993).  For example, exposure to a single 2 mg/kg intramuscular (IM) injection of
estradiol valerate resulted in a loss of 60% of $-endorphin immunopositive neurons in the arcuate nucleus of the
hypothalamus when measured 8 weeks later:  an “organizational” effect of estrogens (Desjardins et al., 1993).  The
estradiol valerate procedure also resulted in polycystic ovaries, with reduced binding of gonadotropins to cystic
thecal cells (Convery and Brawer, 1991).

Because vasopressin and $-endorphin have been useful biomarkers of both certain activational as well as
organizational effects of estrogenic compounds, we hypothesized that they might be responsive to the effects of
exposure to the phytoestrogen genistein, as well.  Reasoning that altered functioning of the vasopressin system may
have been responsible for the increased salt intake after exposure to the estrogenic “endocrine disrupters,” we
sought to determine if dietary exposure to genistein would indeed increase hypothalamic vasopressin content, as
estradiol had been shown to do.  Moreover, would the dose-response relationship by which genistein increased
hypothalamic vasopressin content be similar to the dose-response by which genistein increased sodium intake?
Because $-endorphin content had also been a useful biomarker for revealing neuronal loss in the hypothalamus
following exposure to estradiol valerate (Desjardins et al., 1993), we measured it as well.

Figure B1
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Materials and Methods

Animals and Groups
Female adult Sprague Dawley rats were date-mated in the NCTR breeding colony.  Experimental dietary exposure
to genistein (0, 25, 250, or 1,250 ppm) began 5 days after the dams were observed to be plug-positive.  The diets
were prepared in isoflavone-free diet as described above.  Offspring were culled to 4 males and 4 females per litter,
and the dams remained on the experimental chows through weaning, whereupon the offspring were continued on
the same chow until they were sacrificed at 77 days of age.  The vivarium was maintained under controlled
environmental conditions (temperature 22° C, relative humidity 50%, 12-hour light/dark cycle with lights out at
1800 hours); rats were housed in plexiglass cages with hardwood chips for bedding.  The experimental rat chows
were available ad libitum.

Dissection, Preparation, and Analysis of Brain Tissue
Rats were sacrificed by asphyxiation with carbon dioxide, and their brains were rapidly removed.  They were
immediately frozen on dry ice and stored at –70° C.  The entire hypothalamus was later dissected out (Glowinski
and Iversen, 1966) and placed in a microfuge tube containing 1.0 mL of cold 0.1N HCl.  Following sonication for
5 seconds each, the samples were centrifuged at 12,000 g for 15 minutes at 5° C in a refrigerated microcentrifuge.
The supernatatants were divided into 100 µL aliquots and stored at –70° C until assayed in duplicate by ELISA for
$-endorphin and arginine-8-vasopressin, using kits from Peninsula Laboratories (San Carlos, CA).  The brains
from 28 rats were used for neuropeptide studies:  controls (n=4), 25 ppm (n=8), 250 ppm (n=8), and 1,250 ppm
(n=8).  These groups each contained equal numbers of males and females.

Statistical Analysis
The $-endorphin and vasopressin data were evaluated by analysis of variance using Sigmastat Software (SPSS
Science, Chicago IL).  There were no differences between the sexes in hypothalamic levels of either peptide, so the
data is presented only as a function of the amount of genistein exposure (one-way ANOVA with four levels of
dose).  Post hoc comparisons were performed according to Fisher’s Least Significant Difference (LSD) approach
using a 0.05 level of significance.

Results
$$-Endorphin
Levels of hypothalamic $-endorphin were not significantly altered by the amount of genistein in the diet
(F(3,24) = 1.774, Pp>0.10).  Figure B2 illustrates the mean levels (in ng/g wet weight of tissue) and the standard
errors of the means for each of the four experimental groups.

Vasopressin
On the other hand, hypothalamic vasopressin levels were significantly different between the four groups of rats fed
with different amounts of genistein in their diet (F(3,24) = 3.122, P<0.05).  Figure B3 illustrates the mean levels
(in ng/gram wet weight of tissue), as well as the standard errors of the means for each of the four dietary groups.
Pairwise comparisons between the groups using Fisher’s LSD approach indicate that the bulk of the effect can be
attributed to the elevated level in the high-dose (1,250 ppm) genistein group.  The 1,250 ppm group was
significantly elevated from the control and 250 ppm groups (P<0.05; Figure B3) but not from the 25 ppm.

Discussion

$$-Endorphin 
The levels of hypothalamic $-endorphin (approximately 200 to 400 ng/g) we measured in the present study are
similar to previous results obtained from rats and mice using radioimmunoassay methods (Scallet, 1982; Hong
et al., 1985; Alessi et al., 1988; Holson et al., 1988; Desjardins et al., 1992; Schipper et al., 1994; Caputo et al.,
1996).  Previous research has reported that estrogenic compounds either increased or decreased hypothalamic
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$-endorphin levels, depending on the circumstances.  Thus, a single dose of 10 µg of estradiol benzoate
administered intramuscularly. to ovariectomized/adrenalectomized rats elevated both $-endorphin and
"-melanocyte stimulating hormone ("-MSH) in the hypothalamus.  The melanophore-darkening hormone "-MSH,
like $-endorphin, is a peptide product of the proopiomelanocortin or POMC gene, found both in the hypothalamus
and the pituitary gland.  This estradiol benzoate regimen also induced sexual receptivity in a subgroup of the
treated animals; the increases in $-endorphin and "-MSH were the largest in the arcuate, ventromedial, and
preoptic hypothalamic regions of the sexually receptive females (Medina et al., 1998).

In contrast, a single intramuscular injection of 2 mg of estradiol valerate (Brawer et al., 1993; Schipper et al.,
1994) resulted in neuronal loss (primarily of $-endorphin immunopositive cells) in the arcuate nucleus of the
hypothalamus.  The neuronal loss was detectable by radioimmunoasssay as a decrease in hypothalamic content of
$-endorphin immunoreactivity (Desjardins et al., 1993).

The studies reporting neuronal loss and decreased $-endorphin immunoreactivity used a 200-fold higher dose of
estradiol than the study that showed an estradiol-induced increase of $-endorphin immunoreactivity.  The former
“organizational” effect was a result of the pathological loss of peptide neurons, while the latter “activational” effect
is probably occurring at a more physiological dose level of estrogen.  It was uncertain whether to expect any
effects of genistein on hypothalamic $-endorphin immunoreactivity under the conditions of the present study, since
we were using a less potent estrogen added chronically to the diet.  In any event, the normal $-endorphin levels we
observed in this study suggest the absence of any pathological loss of $-endorphin neurons.  Moreover, our data
provide no evidence of any genistein-induced “activational” increases of POMC peptides that regulate reproductive
systems in the hypothalamus.

Vasopressin
The levels of hypothalamic vasopressin we observed by ELISA were somewhat lower than in previous reports
using radioimmunoassay methods (Epstein et al., 1983; van der Sluis et al., 1986).  We are uncertain whether
variation between rat strains, sample storage conditions, etc. may have accounted for the differences; however, all
our samples were handled identically and as a single batch throughout the analyses.  In many previous reports,
estrogenic compounds have been reported to alter the levels of hypothalamic vasopressin, as well as other
magnocellular neuropeptides of the hypothalamus.  Thus, vasopressin is not the only neurosecretory peptide
affected by exposure to estrogenic compounds.  For example, some hypothalamic magnocellular neurons express
and secrete primarily oxytocin instead of vasopressin.  Physiologically, oxytocin mediates such things as milk
elaboration and let-down reflexes in the breast, as well as uterine contractions.  Using single cell RT-PCR
(Glasgow et al., 1999) showed that neurons primarily expressing oxytocin mRNA, also expressed at least some
vasopressin mRNA, and vice versa.  Analyses of these neurons for coexisting peptide mRNAs also revealed
corticotropin releasing hormone, cholecystokinin, galanin, dynorphin, and the calcium-binding protein calbindin,
as well as high voltage-activated calcium channel subunit genes.

Using immunohistochemical staining methods, Levin and Sawchenko (1993) had observed the same set of
neuropeptides described by Glasgow et al. (1999) plus an additional blood-pressure regulating peptide,
angiotensin II.  Their observations suggested that corticotropin releasing hormone, cholecystokinin, and
vasopressin all showed evidence of enhanced expression after treatment with 17-$-estradiol.  Using in situ
hybridization in the 17-$-estradiol-treated rhesus monkey hypothalamus, Roy et al. (1999) showed corticotropin
releasing hormone message was increased in the magnocellular neurons, but there was no change in vasopressin
mRNA amounts.  Such an observation of unchanged mRNA concentration may nevertheless be consistent with the
general findings reported above of increased vasopressin peptide, since the amount of vasopressin mRNA may not
be rate-limiting for vasopressin synthesis.

Estradiol is not the only estrogenic compound that has been shown to alter hypothalamic magnocellular peptides.
In the study of Schriefer (1991), diethylstilbesterol treatment (70 µg/day subcutaneously for 2 days) increased
oxytocin but decreased met-enkephalin in magnocellular neurons, as measured by radioimmunoassay.  Vasopressin
was also elevated by about 10%, but the effect was not statistically reliable.  Term pregnant rats, as with
diethylstilbesterol treatment, had elevated oxytocin and decreased met-enkephalin levels, but in addition, they
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showed statistically significant increases in both vasopressin and dynorphin levels.  This group also reported
mRNA measurements consistent with their radioimmunoassay findings.  These findings suggested the possibility
of different, but overlapping, actions of diethylstilbesterol compared to the effects of endogenous steroids elevated
by pregnancy.  Thus, estrogenic compounds are clearly important factors regulating hypothalamic neurosecretion,
which in turn may influence neuroreproductive function.

There is very limited information regarding the effectiveness of different estrogenic compounds given at different
doses by different routes of administration on hypothalamic neuropeptides.  Our data indicate that chronic dietary
exposure to 1,250 ppm of genistein is sufficient to increase the amount of hypothalamic vasopressin that is
detectable by ELISA.  Moreover, the dose-response function we report here for vasopressin elevation is identical to
our earlier observation of the dose-response relationship for dietary genistein to increase rodents’ preferences for
drinking salt-water over tap water (Flynn et al., 2000).

SUMMARY
SDN volume in rats has been a very intriguing endpoint, both when applied for understanding the role of estrogens
and testosterone in normal development and in studies involving experimental exposure to xenobiotic compounds.
Very often, the SDN volume endpoint has been utilized in conjunction with separate functional evaluations of such
things as reproductive status or secondary sexual characteristics.  Our study reported here provided some support
for the notion of a biphasic dose-response effect of genistein causing a reduction of SDN volume (“feminization”)
of the male rat in the dose range of 25 to 250 ppm.  However, enthusiasm for this effect should be tempered by the
knowledge that the littermates of these same rats were not impaired in reproductive performance or in testis
weights.  Moreover, studies of the reproducibility of SDN volume measurement, both historic and our own more
recent one, reveal poor concordance between different investigators.  We believe that the present investigation
raises some concern about the possibility that genistein may feminize SDN volume in male rats, but we strongly
urge caution in relying on SDN volume measurement alone until corroboration from other biomarkers may be
obtained.

The ELISA methodology for neuropeptide analysis, in conjunction with functional/behavioral measures, identified
an effect of genistein on vasopressin that may relate to physiological/functional effects on salt balance, fluid
retention, and blood pressure.  These measures should continue to be useful tools for better characterizing the
neurotoxicology of estrogenic endocrine disruptor compounds.
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VALIDATION STUDY OF SDN MEASUREMENT PROCEDURES
A number of groups, including our own, have investigated the potential effects of developmental exposure to
estrogenic endocrine disrupters on the average size of the SDN.  As we began these studies, we noticed that the
SDN, not even recognized as a distinct nucleus by classical neuroanatomists, presented a considerable challenge to
the morphometrist.  When comparing within and between laboratories (Meredith et al., 2001; Table 1), we found
that there were up to 30-fold differences in the volumes that were reported.  These differences were sometimes
variations between laboratories, but often they were based on reports of a given lab that were simply published in
different years.

To our knowledge, no systematic study of the source of this variability has been attempted.  The purpose of this
validation protocol is to determine the reliability of measurement of the SDN volume by partitioning the variance
of the estimation of the true mean of SDN volume into separate components.

According to Winer, 1971, p. 289 (Winer, B.J., Statistical Principles in Experimental Design, 2nd ed., New York:
McGraw-Hill, 1971), the measurement of a parameter such as the volume of the SDN nucleus can be divided into
several components.  The measurement equals its “true” value, plus an error component due to the measurement
process, and an “anchor point” due to the main effect of the measuring instrument itself.  In our case, the “anchor
point” is the “judge” or decision maker of where to draw the line around the SDN.  This analysis allows one to
address possible systematic differences between observers in whether they typically tend to draw the nuclei in a
more inclusive or more exclusive way.

In fact, when several judges have measured the same parameter in multiple subjects, Winer presents an analysis of
variance to estimate the reliability of the mean of k measurements.  This analysis allows us to consider the
variation between groups of nuclei separately from the variability due to the contribution of multiple judges and
the contribution of variability when a given measure is performed repeatedly. 

In order to understand the reliability of our procedures, the same test set of slides consisting of the SDNs from 15
males was measured by each of four investigators.  Analysis of Variance and correlational analyses were performed
to estimate the mean volume of control as well as nonylphenol and genistein-treated male SDNs.  The sections to
be measured were taken from the genistein and nonylphenol rangefinding experiments (E 2122.15 and E2125.15)
and coded by Dr. Delclos to ensure that all judges were blind to the treatment groups.  The specific sections were
obtained as follows in Table 1.

The resulting data from the remeasured SDNs indicated that the inter-rater correlation coefficients were quite low
(see Figure 1).

By comparison, the earlier correlation coefficient between repeated results of two investigators using our same
methodology was much higher (about 0.79, see above).  However, among other differences, the earlier study only
compared the ability of the two investigators each to measure a set of outlined areas on 17 slides obtained from a
single female animal.  The present study adopted the more stringent standard of requiring blind measurement of 15
completely separate male animals, each SDN being completely reconstructed from a variable number of slides per
animal chosen independently by each investigator. 

Analysis of variance of the data was performed in order to evaluate the effects of Raters as well as effects of
estrogenic treatment and a possible interaction (i.e. did the raters differ in their evaluation of the presence and
degree of an estrogenic effect?).  There was no effect of estrogenic treatment (F(1,10) = 2.03, N.S.), but there was
a significant effect of rater (F(3,30) = 5.94, P<0.01).  No interaction was present (F(3,30) = 1.48, N.S.).  These
results can best be appreciated by looking at Figure 2.
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FIGURE 1

Correlation coefficients (Pearson r) between the four different raters:

1 2 3 4

1 1.00

2 -0.18 1.00

3 0.02 0.13 1.00

4 -0.21 -0.01 0.11 1.00

Figure 2 reveals that while all the Raters were relatively close to one another in their estimates of SDN volume in
untreated control animals (within about a twofold range from lowest to highest), their estimates of shifts in SDN
volume in animals treated with estrogenic compounds were different.  Raters 2, 3, and 4 failed to observe the shift
in SDN volume originally reported by Rater 1.  The significant effect of raters probably stems from the low scores
measured by R3 in both treated and untreated rats, as well as perhaps the low scores from Rater 1 in treated rats.
The absence of a significant interaction, though, demonstrates the lack of a significant difference between the raters
in how the size of the SDNs was rated, with or without estrogenic treatment.

Study Dose Group (ppm) ID # Original Measure 

(X 10
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 µµm

3
) 

2122 0 126a 10.5 

2122 0 130a 6.05 

2122 0 297a 9.95 

2122 100 104a 4.29 

2122 100 321a 1.23 

2122 250 170a 3.03 

2122 250 217 2.77 

2122 250 225 2.75 

2125 0 95a 8.99 

2125 0 206 7.36 

2125 0 290a 5.43 

2125 200 99 0.598 

2125 200 101a 1.37 

2125 200 103 1.59 

2125 200 297 1.34 
 

TABLE 1
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Our results failed to provide additional support for an effect of genistein on SDN volume, since additional raters
did not agree well with the original scoring.  While disappointing, perhaps these results are not surprising given the
large variability characteristic of SDN measurement as presented in Table 1.  It is hoped that refinements in the
techniques may be instituted that will allow more repeatable measurements of SDN volume.  In the meantime, it
seems best to urge caution in the interpretation of the results of SDN volume determinations, such as those
presented in the Body of this report.  While shifts in SDN volume may raise concerns, supplementary functional
information on such things as reproductive success and behavioral competence should be present also in order to
gather more complete information.
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APPENDIX C
ASSOCIATED PUBLICATIONS

List of Publications/Technical Reports derived from or including data from NCTR Experiment E-2122.01
(Range-Finding Study for the Evaluation of the Toxicity of Genistein Administered in the Feed to CD
(Sprague-Dawley) Rats and associated experiments E-2122.13 (Behavioral Toxicology), E-2122.14
(Immunotoxicology), and E-2122.15 (Neurotoxicology):
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