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Exact solutions to magnetized plasma flow
Zhehui Wanga) and Cris W. Barnes
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 11 October 2000; accepted 28 November 2000!

Exact analytic solutions for steady-state magnetized plasma flow~MPF! using ideal
magnetohydrodynamics formalism are presented. Several cases are considered. When plasma flow
is included, a finite plasma pressure gradient¹p can be maintained in a force-free stateJ3B50 by
the velocity gradient. Both incompressible and compressible MPF examples are discussed for a
Taylor-state spheromakB field. A new magnetized nozzle solution is given for compressible plasma
whenUiB. Transition from a magnetized nozzle to a magnetic nozzle is possible when theB field
is strong enough. No physical nozzle would be needed in the magnetic nozzle case. Diverging-,
drum- and nozzle-shaped MPF solutions whenU'B are also given. The electric field is needed to
balance theU3B term in Ohm’s law. The electric field can be generated in the laboratory with the
proposed conducting electrodes. If such electric fields also exist in stars and galaxies, such as
through a dynamo process, then these solutions can be candidates to explain single and double jets.
@DOI: 10.1063/1.1343505#
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I. INTRODUCTION

High-speed plasma wind and cosmic jets are well-kno
phenomena in the universe.1,2 In fusion experiments, when
external energies and/or momentum are used to drive
plasma, plasma motion, such as rotation3–5 and flow along
the magnetic fields,6 is observed routinely.7–9 These diverse
phenomena are examples of plasma flow within a magn
field: the magnetized plasma flow~MPF!. The MPF can be
described by the magnetohydrodynamics~MHD! equations
with the plasma momentum term included.

The MPF is also used to address technology conce
Using a magnetic field instead of a physical boundary
guide the plasma fluid flow in a converging–diverging co
figuration leads to the concept of a ‘‘magnetic nozzle.’’10,11

Magnetically nozzled plasma flow is more desirable over
materially nozzled flow because of the potentially long
lifetime and more controllable operation in the first ca
Magnetic nozzles certainly can be used for propulsion
material processing.12

Theoretical studies of the MPF began in the m
1950s.13–15 Approximate axially symmetric steady-state s
lutions were obtained by Morozov and Solovev.16 Exact in-
compressible solutions were given for a generalized sym
try with one ignorable spatial coordinate.17 Special
axisymmetric, nonsteady MPF was studied by Colwell.18 In
general, without a certain type of symmetry, the MPF pro
lem is too complicated. Computational methods have to
used.19,20

We have obtained several exact solutions to axisymm
ric MPF under various assumptions. Section II briefly p
sents the formulation of axisymmetric MPF. The formalis
introduced will be used in Sec. III B, where purely rotatin
MPF will be discussed, and in Sec. V, where a class of M
solutions with purely poloidal flow and toroidal magnet

a!Electronic mail: zwang@lanl.gov
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field will be derived. In Sec. III, based on known solution
force-free MPF solutions with finite pressure are given. A
plication of the solutions to a special force-free magne
state—a Taylor-state spheromak21–24 is discussed for both
incompressible and compressible flows.

The general compressible MPF formalism was discus
in detail by Morozov and Solovev.25 Transonic MPF with
translational symmetry along thez axis were studied by Lif-
shitz and Goedbloed,26 and works cited therein. We demon
strate the existence of a new axisymmetric magneti
nozzle solution in Sec. IV, and discuss the transition o
magnetized nozzle to a magnetic nozzle. The distinction
tween a magnetized nozzle and a magnetic nozzle is tha
former relies on a material boundary—the physical nozzle
the conventional sense—to accelerate plasma, while the
ter solely relies on the converging–diverging magnetic fi
to confine the plasma flow. One distinction between a m
netized nozzle and a conventional nozzle is that the form
has a magnetic field within the flow. Another distinction b
tween a magnetized nozzle and a conventional nozzle is
the conventional nozzle usually operates with neutral g
and a magnetized nozzle operates most effectively us
plasmas, or ionized gases.

In Sec. V, using the mathematical formalism introduc
in Sec. II, new MPF solutions with purely poloidal flow~the
MPF does not cross ther–z plane! and purely toroidal mag-
netic field are obtained. Realization of the flow in laborato
settings using conducting boundaries are emphasized. T
specific examples are given. The analytic solutions deri
here may also be used to bench mark new computatio
codes.

II. PROBLEM FORMULATION

Steady-state MHD equations with flow have been st
ied in both fusion and astrophysics contexts. Ideal inco
pressible plasma flow was studied by many authors.27–32
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



au
n
m
ar

,
u

be

a

th
d

e

ns
s

le
e

n

,
o

rm
n-

ithin

cal
are

ap-
n-
a

x-
-

g-

by

ty
to
on
e

di-
di-
t.
the

r

958 Phys. Plasmas, Vol. 8, No. 3, March 2001 Z. Wang and C. W. Barnes
Ideal MHD flow equations were also derived by several
thors independently.25,33–36The steady-state ideal MPF ca
be described by the ideal MHD equations with the plas
fluid momentum term included. These equations are F
day’s law in steady state

“3E50, ~1!

Ampere’s law

“3B5m0J, ~2!

divergence-free law for magnetic field

¹•B50, ~3!

ideal Ohm’s law

E1U3B50, ~4!

steady-state single-fluid momentum equation

rU•“U52“p1J3B, ~5!

and the steady-state continuity equation

“•~rU!50, ~6!

wherer is the mass density,U represents the flow velocity
and the other symbols have their usual meanings. By ass
ing axisymmetry in cylindrical coordinates (r , u, z), u can
be ignored. ~The symmetry need not be chosen to
cylindrical.25! From Faraday’s law, Eq.~1!, the electric field
can be expressed as the gradient of a potentialE52“F.
The azimuthal electric fieldEu is zero from axisymmetry.

For axisymmetric configurations, the magnetic field c
be generally expressed in terms of two scalar functionsC
and I, where37 B5“C3“u1I“u. SinceB•¹C50, C5
constant defines a magnetic flux surface. Similarly, from
continuity equation, Eq.~6!, the velocityU can be expresse
in terms of scalar functionsj and G as U5 (1/r) “j3“u
1G“u, wherej5 constant defines a plasma-flow surfac
or so-called streamline.

Introduction of the functionsF, C, I, j, andG modify
the ideal MHD equation set in the following ways: Equatio
~1!, ~2!, ~3!, and ~6! are satisfied automatically. Equation
~1!–~6! reduce to Eq.~4!, the Ohm’s law, and Eq.~5!, the
momentum equation. This set of equations is not comp
without inclusion of an equation of state relating pressurp
and mass densityr.

We can write a general form of the remaining equatio
by defining the Poisson’s bracket for any two quantitiesC
and I as @C,I #5 (]C/]r )(]I /]z) 2(]I /]r )(]C/]z). Then,
the radial and axial Ohm’s laws can be expressed as

2¹F1
G

r 2
¹C2

I

rr 2
¹j50, ~7!

1

r
@C,j#50. ~8!

The momentum balance, Eq.~5!, becomes two equations
one for axial momentum and the second a description
conservation of angular momentum
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1

rr 2
~D@r#

* j“j1rG“G!

52
1

m0rr 2
~D* C“C1I“I !, ~9!

@j,G#5
1

m0
@C,I #. ~10!

Here, the equation of state is assumed to be of the fo
“w5 ¹p/r with w usually known as the enthalpy. The ge
eralized operatorD@r#

* with kernelr is defined as

D@r#
* j[“•S“j

r D2
2

rr

]j

]r
. ~11!

III. FORCE-FREE MPF

Force-free states are defined as plasma states w
which the electromagnetic forceJ3B vanishes. Force-free
conditions are believed widely applicable in astrophysi
environments because forces other than electromagnetic
comparatively much smaller. Force-free states can also
pear within a conducting boundary, a so-called flux co
server, in a laboratory environment. A typical example is
relaxed spheromak state, also known as a Taylor state.38 A
force-free equilibrium with mass flow and finite pressure e
ists for a constant densityr.39 Here, another type of force
free MPF with a finite-pressure profile is given. AssumeE
50 within a plasma. From the ideal Ohm’s law~4!, one
obtainsU3B50. That is, in a ideal MPF within which the
electric field vanishes, the flow has to align with the ma
netic field. This is also the known as the ‘‘frozen-in law.’’ A
general incompressible solution“•U50 was worked out by
Tataronis and Mond,40 where

U5
B

Am0r
, ~12!

for B-aligned plasma flow and a finite pressure sustained
the flow, and

p1
rU2

2
5constant. ~13!

From the incompressible andB-alignedU conditions, it can
be shown thatr is a function of flux surfaces only,r
[r(C). This solution was first derived for theJ3BÞ0
case.40 The well-known solution for a constant-densi
plasma with flow along a magnetic field due
Chandrasekhar27 is a special case. We now apply the soluti
of Eqs.~12! and~13! to the force-free case, and point out th
solution implies a finite plasma pressure with flow. In ad
tion, we will find out that the flow-supported pressure gra
ent is usually different from the magnetic flux gradien
Therefore, equal-pressure surfaces do not coincide with
magnetic flux surfaces.

A. Incompressible MPF with finite pressure

Equations~12! and~13! give a finite-pressure profile fo
any force-free state,
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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B2

2m0
1p5

B0
2

2m0
1p0 , ~14!

where B0 and p0 are integration constants that have t
magnetic-field unit and pressure unit, respectively. This
lution implies that the pressure distribution is independen
the density distribution. The shapes of equal-pressure
faces are shown in Fig. 1 using a spheromak equilibri
magnetic field satisfying“3B5lB and constantl. The
boundary condition was chosen to be a perfectly conduc
cylinder with radiusr 0 and heights extending from2Z0 to
Z0. The pressure and magnetic surfaces are no longer c
cident with each other. There is a significant displacem
between the axis of these surfaces. The displacement
tween the magnetic and pressure surfaces also exists
different kind of plasma flow.36 Assume that the ideal ga
law p5rkBT/M is valid for the present case, wherekB is the
Boltzmann constant,T is the plasma temperature, andM is
the ion mass. Since the plasma density is a function of m
netic flux surfaces, and the plasma pressure is not a func
of the flux surface, the plasma temperatureT is generally not
a function of the flux surface.

B. Compressible MPF with finite pressure

A rotation-only force-free MPF is defined by a flow wit
vanishing poloidal flow componentj50 and solely with fi-
nite toroidal rotational componentGÞ0. Ohm’s law, Eq.~8!,
is satisfied identically. Ohm’s law, Eq.~7!, implies thatF
5F(C), and

FC8 5
G

r 2
, ~15!

whereFC8 stands for the first-order differentiation ofF with
respect toC. Using the force-free condition, the only non
trivial equation left is the momentum Eq.~9!

FIG. 1. Cross section of the magnetic flux surfaces and equal pres
surfaces for a Taylor-state spheromak with incompressible flow paralle
the magnetic fieldUiB.
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r 2
“G50. ~16!

It can be proven for nontrival solutions, that is,CÞC(r ),
which requires

G

r 2
5v0 , ~17!

wherev0 is a constant angular velocity. This is the law
isorotation first discovered by Ferraro,41 and discussed by
many authors later on.28 In general,v0 may be a function of
the magnetic flux surface. However, in the force-free c
discussed here, only constantv0 throughout the plasma is
allowed forCÞC(r ). Since we assumedp5p(r) here, we
can use the usual adiabatic or isothermal equation of sta
the form

p

p0
5

rg

r0
g

, ~18!

with g55/3 for the adiabatic case andg51 for the isother-
mal case. The pressure profile is given by

g

g21

p

r
2

v0
2r 2

2
5

g

g21

p0

r0
2

v0
2r 0

2

2
, ~19!

for gÞ1, and

p5p0 expS v0
2r 22v0

2r 0
2

2 D , ~20!

for g51, the isothermal case. In either case, both the p
sure and the density are functions of radius only. An exam
of the equal-pressure surfaces is shown together wit
Taylor-state magnetic equilibrium in Fig. 2. Again, it is no
ticeable that the pressure and magnetic surfaces are no lo

re
to

FIG. 2. Cross section of the magnetic flux surfaces and equal-pressure
faces for a Taylor-state spheromak with purely toroidal rotation of co
pressible flow.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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coincident with each other. The difference from that of t
incompressible situation is that the equal-pressure surf
are open ended.

IV. NOZZLE-TYPE MPF

According to the well-known gas-dynamics theory, t
continuity equation, Eq.~6!, Bernoulli’s equation U2/2
1* (dp/r) 5 constant and the equation of state, Eq.~18!,
together, when integrated over streamlines in a flow reg
of area A, give rise to the Hugonoit equation@(U2/Cs

2)
21# dU/U 5 dA/A, whereCs[Agp/r is the sound speed
The Hugonoit equation leads to a nozzle type of solution
the flow only when the gas is compressible. Below, we de
onstrate one kind of magnetized nozzle solution for the M
We will consider systems of ionized gas–plasma flow,
neutral gas flow, so that the magnetic field can be effectiv
confining to ions and electrons. Substantial external ene
either in the form of dc electric energy, rf wave energy,
any other form, is needed to maintain a gas in a plasma s
In another scenario, once a plasma is created upstream o
nozzle, if the plasma transit time through the nozzle sys
is much less than the electron–ion recombination time, t
no extra energy is needed along the flow to maintain
plasma state.42

A. Magnetized nozzle

In this subsection, we identify the magnetized compre
ible steady flow conditions so that the equation of state,
~18!, and Bernoulli’s equationU2/21* (dp/r) 5 constant
along the streamlines are still valid. Assume the flow
magnetic-field aligned,UiB. U dotted into the momentum
equation, Eq.~5!, gives

U•“S U2

2
1E dp

r D50, ~21!

which means Bernoulli’s equation is still valid along th
streamlines. To satisfy the continuity equation and
divergence-free condition for the magnetic field, one solut
is that

B5l0rU, ~22!

with l0 a constant. Therefore, Eq.~22!, together with the
continuity equation, Bernoulli’s equation, and the adiaba
equation of state, form a complete set of solutions for m
netized nozzles.

In the special case of vanishing internal plasma curre
J50, one further has that the mass density gradient is al
the flow“r3B50. The continuity Eq.~6!; the equation of
state, Eq.~18!; and Bernoulli’s equation govern the physic
boundary that forms a nozzle-shaped object. Due to the
sence of the electric current within the plasma, the magn
field described is entirely produced by external curr
sources, such as the electric current flowing in the cond
ing coils. Also, due to the absence of the electric curr
within the plasma, there is no acceleration effect from
electromagnetic force in this type of magnetized nozzle. T
inclusion of a background magnetic field, however, may
Downloaded 22 May 2001 to 128.165.156.80. Redistribution subject to A
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beneficial to lower the heat load on the nozzle walls due
the magnetic confinement of charged particles.

B. Magnetic nozzle

A magnetic nozzle is defined as a ‘‘nozzle’’ that uses t
magnetic field instead of a physical boundary~a mechanical
nozzle! to confine the fluid flow.12 A nozzle type of flow
solution is possible if the magnetic field is shaped in a c
ventional converging–diverging nozzle configuration, w
plasma flow along the magnetic field. When the magne
field is strong enough@i.e., l0→` in Eq. ~22!#, then the
conventional physical boundary is no longer needed in
magnetized nozzle and we, therefore, achieve the magn
nozzle operation. One requirement on the strength of
magnetic field is that the ion gyroradius be much less th
the smallest dimension of the magnetic nozzle system. H
ever, due to the fact that an electron gyroradius is much
than an ion gyroradius, the charge separation between
and electrons could induce large electric fields that wo
eventually prevent the charge separation. In other words,
bipolar diffusion will be set up in the steady state. Therefo
to expect that the ion gyroradius is much less than the sm
est dimension of the magnetic nozzle system is too stron
statement.42 For the magnetic field to be effectively confin
ing, the particle diffusion time across the magnetic field m
be much greater than the transit time along the magn
field, that is,

R2

D
@

Lz

Cs
, ~23!

in which R andLz are characteristic dimensions in the rad
and axial directions, respectively.D is the averaged cross
field diffusion coefficient, andCs is the sound speed at th
nozzle throat. In an ideal case, one can use the clas
diffusion coefficientD5r ic

2 n ie , wherer ic5A2miTi /eB0 is
the singly charged ion gyroradius and n ie

5nee
4 ln L/3«0

2A(2p)3miTe
3, while all the symbols have

their usual meanings in plasma physics,e is the electron
charge,ne is the plasma density, etc. Equation~23! implies
(R2/Lz) Cs@2e2 ln L/3«0

2A@1/(2p)3miTi # (r/B0
2) , Ti5Te

is a characteristic temperature,B0 is an average magneti
field, andr5nemi is the mass density. Since the diffusio
mechanism depends on many aspects of the problem, su
the initial spatial distribution of the injection plasma in th
upstream region of the nozzle and the boundary conditio
using the classical diffusion coefficient here only serves
demonstrate the concepts.42 In real experiments, it should no
be surprising when other diffusion forms of the coefficie
work better. An additional constraint is that the plasma m
be collisional enough~the density high enough! for the fluid
approximation to be valid. Otherwise, if the plasma is co
sionless both along and across the magnetic field, a magn
nozzle turns into a mirror-type magnetic-confinement devi
where the total particle energy and the magnetic momen
are conserved for each ion. Since the cross-field diffus
time is much greater than the transit time along the magn
field, the least requirement on the plasma collisionality
that the plasma must be collisional across the magnetic fi
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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~radial diffusion time is much greater than the collision tim!
while it may be collisionless along the magnetic field.42

V. MPF WITH POLOIDAL FLOW

Now we consider cases of MPF with poloidal flow onl
jÞ0, andG50. Some emphasis is put on how to reali
these flows in a laboratory environment using conduct
electrodes. Assume that the plasma flow is perpendicula
the magnetic field,U•B50. Using the axisymmetric formu
lation with stream functionj, magnetic fluxC, poloidal
electric currentI, and plasma rotationG, then theU•B50
condition reduces to“C•“j50. Sincej is nonzero, there-
fore C50 ~or a constant! is a simple solution, which will be
studied below. Other solutions withI nonzero but constan
for this type of MPF have been obtained previously.36 In the
present case, our solutions are more general.

A. Equation reduction

Ohm’s law ~7! under the above assumptions gives

“F1
I

rr 2
“j50, ~24!

which meansF5F(j), and I /rr 2 52Fj8 . Combining this
new form of Ohm’s law and the equation of motion~9!, one
obtains

¹S U2

2
1w1

I 2

m0rr 2D 2
D@r#

* j“j

rr 2
52

I“Fj8

m0
. ~25!

Therefore,

U2

2
1w1

I 2

m0rr 2
5G~j!, ~26!

is a function ofj only. Therefore, Eq.~25! can be written in
a scalar form:

D@r#
* j

rr 2
5

dG~j!

dj
2

rr 2Fj8

m0

dFj8

dj
. ~27!

B. Solutions

Assume the plasma fluid is incompressible with const
densityr. Equation~27! reduces to

D* j

r2r 2
5

dG~j!

dj
2

rr 2Fj8

m0

dFj8

dj
. ~28!

Equation ~28! can have the so-called self-simila
solutions17,43 by introducing a new variable

t[r 2v, ~29!

wherev[v(z) is a function ofz only, and the streamline
function is a function oft only, j5j(t)[j(r 2v). Substitut-
ing this expression into Eq.~28!, one has

v

r2t
F4vtj tt1j ttt

2S vz

v D 2

1j tt
vzz

v G5
dG~j!

dj
2

rtFj8

m0v

dFj8

dj
,

~30!
Downloaded 22 May 2001 to 128.165.156.80. Redistribution subject to A
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in which, j t stands for differentiation ofj with respect tot,
and so forth. Now, seek the solution of the following form

S vz

v D 2

5av1b1
c

v
1

d

v2
. ~31!

Differentiate Eq.~31! with respect toz to obtain

vzz

v
5

3

2
av1b1

c

2v
. ~32!

Using expressions~31! and ~32! for (vz /v)2 and vzz/v,
and collecting terms with equal power ofv, we find that Eq.
~30! corresponds to four ordinary differential equations:

~41ta!j tt1
3
2 aj t50, ~33!

b~j t1tj tt!50, ~34!

c

r2 S j ttt1
1

2
j tD5

dG~j!

dj
, ~35!

and

dj tt

r2
52

rFj8

m0

dFj8

dj
. ~36!

From Eqs.~33! and~34!, it can be proven that ifbÞ0, then
we must havej t50, which is a trivial solution with zero-
flow velocity throughout. For nontrivial solutions we con
clude thatb50. From Eq.~33!, the solution forj is obtained
as

j5
j0

A41ta
. ~37!

There is an additive integration constant labeling streamli
that can be set to zero. It is also understood from the s
similar solution assumption thatt5r 2v(z) with an arbitrary
dependence onz. The velocity field is described by

U5
2a

2j0
2
j3
“~r 2v!3“u. ~38!

The solution to the total energyG(j) is44

G~j!5
c

r2

a

8j0
2
j42

c

r2

a

2j0
4
j61G0 , ~39!

whereG0 is a integration constant. The electric potential
described by45

F5F06E djAF02d
m0

r3

a2

4j0
4
j6. ~40!

Both F0 andF0 are integration constants.
Three examples of this type of MPF are shown: in F

3, for divergingt5(r /r 0)2 exp(2 z/z0), in Fig. 4, for drum-
shapedt5(r /r 0)2 cosh(2 z/z0), and in Fig. 5, for nozzle
shapedt5(r /r 0)2 exp@2(z/z0)

2#. These flow configurations
could be realized in a laboratory environment by setting
conducting boundaries, which are both streamlines and e
potential surfaces at the same time. The conducting elect
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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boundaries are marked in Figs. 3, 4, and 5. Solutions m
also be used to explain astrophysics flow phenomena.
diverging configuration corresponds to the single-jet ca
the nozzle configuration corresponds to the double-jet c
Since electric-field generation is equivalent to the drivi
electric current within a plasma, which can be realiz
through a dynamo process, the laboratory electrode boun
conditions could be replaced by internal dynamo proces
within stars or galaxies.

Realization of these MPF solutions in the laborato
would be of great interest since it is now promising to ha
a detailed comparison of the exact theoretical results w
experiments when the conditions prescribed here are
The MPF has the potential to be used widely, such as
plasma-based electric propulsion and in alternative fus
concepts.46 In addition, generation of the MPF in the labor

FIG. 3. Cross section of an ideal diverging axisymmetric MPF. Streaml
are shown with diverging–conducting-electrode boundaries~marked inner
and outer electrode!. t5(r /r 0)2 exp(2 z/Z0). r 0 , Z0 are characteristic di-
mensions.

FIG. 4. Cross section of an ideal drum-shaped axisymmetric MPF. Cond
ing boundaries and streamlines are marked.t5(r /r 0)2 cosh(2 z/Z0). r 0 , Z0

are characteristic dimensions.
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tory is essential to studying fundamental MPF physics its
In order to apply the results to astrophysical phenomena
essential step is to understand how the dynamo process
to the needed electric field and how a dynamo process wo
arise. Further efforts such as identifying proper astrophys
objects are also expected.

VI. SUMMARY

The magnetized plasma flow is formulated using stea
state ideal MHD equations. Exact MPF solutions are o
tained under various assumptions. When one assumes
the plasma fluid is in a equipotential state, the internal el
tric field E vanishes. Then the MPF is restricted along t
magnetic fieldUiB. When a finite electric field is produce
by external electrodes at different electric potentials or
internal processes within a star or a galaxy, the flow veloc
U does not need to align with the magnetic field.

Based on known solutions to incompressible steady-s
MPF, we discussed the force-free magnetic field MPF w
finite pressure gradients, which can be sustained by velo
gradients. Both incompressible MPF and compressible M
examples are given for a Taylor-state spheromak magn
structure. In the incompressible case, pressure surfaces
closed concentric axisymmetric toroids offset from the fl
surface. In the compressible case, the pressure surface
open-ended concentric cylinders.

Magnetized nozzle solutions are obtained with the m
netic field relating to the mass density and flow velocity
B5l0rU. l0 is a constant proportionality parameter. A ve
special case in which the magnetic field is entirely genera
by external currents outside the plasma,J50, and in which
plasma flow is compressible, is discussed in detail. The tr
sition from a magnetized nozzle to a magnetic nozzle, i
from one with a material confining boundary~mechanical
nozzle! to one without it, is possible when the magnetic fie
is strong enough and shaped in a converging–diverging c
figuration. This type of magnetic nozzle relies on the inter
energy to accelerate particles to supersonic speed with

s

t-

FIG. 5. Cross section of an ideal nozzle-shaped axisymmetric MPF. C
ducting boundaries and streamlines are marked.t5(r /r 0)2 exp@2(z/Z0)

2#.
r 0 , Z0 are characteristic dimensions.
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electromagnetic energy consumption. The electromagn
force effect in the derived general nozzle solution with no
vanishing plasma currentJ will be the topic of future work.

MPF solutions are also given when the magnetic field
purely toroidal, that is, onlyBu is nonvanishing in cylindrical
symmetry, and the flow is purely poloidal, that is, only in t
r –z plane under cylindrical symmetry. Three representat
cases, termed diverging-, drum-, and nozzle-shaped s
tions, are given explicitly. The way to realize these flows
a laboratory environment is to shape the conducting e
trodes at different electric potentials. We expect that wh
the electric field can be generated by the internal processe
a star or galaxy, these MPF may explain observed as
physical flow phenomena.
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