
z/OS

XL C/C++
Compiler and Run-Time Migration Guide

for the Application Programmer

GC09-4913-03

���

z/OS

XL C/C++
Compiler and Run-Time Migration Guide

for the Application Programmer

GC09-4913-03

���

Note!

Before using this information and the product it supports, be sure to read the information in “Notices” on page 121.

Fifth Edition (September 2005)

This edition applies to Version 1 Release 7 of z/OS XL C/C++ (5694-A01), Version 1 Release 7 of z/OS.e XL C/C++

(5655-G52), and to all subsequent releases until otherwise indicated in new editions. This edition replaces

GC09-4913-02. Make sure that you use the correct edition for the level of the program listed above. Also, ensure that

you apply all necessary PTFs for the program.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are

not stocked at the address below. You can also browse the books on the World Wide Web by clicking on ″The

Library″ link on the z/OS home page. The web address for this page is

www.ibm.com/servers/eserver/zseries/zos/bkserv

IBM welcomes your comments. You can send your comments to the following Internet address:

compinfo@ca.ibm.com. Be sure to include your e-mail address if you want a reply.

Include the title and order number of this book, and the page number or topic related to your comment. When you

send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes

appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Part 1. Introduction . 1

Chapter 1. Locating your migration path 3

How this book is organized . 4

A history of IBM C/C++ compilers and libraries 5

Chapter 2. Common questions about migration 11

Will existing Language Environment applications run with z/OS V1R7 Language

Environment? . 11

Will existing C/370 applications work with z/OS V1R7 Language Environment? 11

My application does not run — now what? 12

I attempt to recompile my application and it fails — why? 13

Part 2. From C/370 V2 to z/OS XL C . 15

Chapter 3. Application executable program compatibility 17

Input and output operations . 17

Executable programs that invoke Debug Tool or dbx 17

System Programming C Facility (SPC) executable programs 17

Executable programs with interlanguage calls 18

Initialization compatibility . 19

Initialization schemes . 19

Special considerations: CEEBLIIA and IBMBLIIA 20

Converting old executable programs to new executable programs 20

Considerations for Interlanguage Call (ILC) applications 21

Chapter 4. Source program compatibility 25

Pointer considerations . 25

Input and output operations . 25

SIGFPE exceptions . 26

Program mask manipulations . 26

The realloc() function . 26

Fetched main programs . 27

User exits . 27

Line number control . 27

The sizeof operator . 27

System Programming C (SPC) applications built with EDCXSTRX 27

The __librel() function . 28

Library messages . 29

Prefix of perror() and strerror() messages 29

Compiler messages and return codes 29

_Packed structures and unions 29

Alternate code points . 29

Chapter 5. Other migration considerations 31

Changes that affect user JCL, CLISTs, and EXECs 31

Return codes and messages 31

Changes in data set names 31

Differences in standard streams 31

Passing command-line parameters to a program 32

SYSMSGS ddname . 32

CBCI and CBCXI procedures 32

© Copyright IBM Corp. 1996, 2005 iii

||
||
||

|
||
||

||

||

||

||

Run-time options . 32

Ending the run-time options list 32

ISASIZE, ISAINC, STAE/SPIE, LANGUAGE, and REPORT options 32

STACK default size . 33

STACK parameters . 33

HEAP default size . 33

HEAP parameters . 33

Compiler options . 33

DECK compiler option . 34

HWOPTS compiler option . 34

INLINE compiler option . 34

OMVS compiler option . 34

OPTIMIZE compiler option 34

SEARCH and LSEARCH compiler options 34

TEST compiler option . 34

Language Environment run-time options 35

Changes to putenv() . 35

Precedence of Language Environment over C/370 settings for #pragma runopts

directive . 35

System Programming C (SPC) Facility applications with #pragma runopts . . . 35

Decimal exceptions . 35

Migration and coexistence considerations 35

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions 36

Running different versions of the libraries under CICS 36

CICS abend codes and messages 36

CICS reason codes . 36

Standard stream support under CICS 36

stderr output under CICS . 37

Transient data queue names under CICS 37

HEAP option used with the interface to CICS 37

COBOL library routines . 38

Chapter 6. Input and output operations compatibility 39

Opening files . 39

Writing to files . 39

Repositioning within files . 41

Closing and reopening ASA files 42

Values returned by the fldata() function 43

Error handling . 43

Miscellaneous . 43

VSAM I/O changes . 44

Terminal I/O changes . 44

Part 3. From pre-OS/390 releases of C/C++ to z/OS V1R7 XL C/C++ 45

Chapter 7. Application executable program compatibility 47

Input and output operations . 47

System Programming C Facility (SPC) executable programs 47

Inheritance of run-time options 47

Availability of standard streams and memory files with the LINK macro . . . 48

Heap or stack shortages with the EXEC CICS LINK command 48

STAE and SPIE option mappings to TRAP suboptions 48

Class library execution incompatibilities 48

Chapter 8. Source program compatibility 51

Input and output operations . 51

iv z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

||
||
||
||

SIGFPE exceptions . 51

Program mask manipulations . 51

Line number control . 52

Function return type sizes . 52

_Packed structures and unions 52

Alternate code points . 53

Support of Standard C++ . 53

LANGLVL(ANSI) changes . 53

Compiler messages and return codes 53

Class library source code incompatibilities 53

DSECT utility and packed structures 54

Chapter 9. Other migration considerations 55

Removal of Database Access Class Library utility 55

Changes that affect user JCL, CLISTs, and EXECs 55

CXX parameter in JCL procedures 55

Examples of specifying class library header files at compile time 55

SYSMSGS and SYSXMSGS ddnames 55

Changes in data set names 56

CBCI and CBCXI procedures 56

Decimal exceptions . 56

Migration and coexistence . 56

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions 56

Compiler options . 56

DECK compiler option . 56

ENUM compiler option . 57

HALT compiler option . 57

HWOPTS compiler option . 57

INFO compiler option . 57

INLINE compiler option . 57

LANGLVL(COMPAT) compiler option 57

OMVS compiler option . 58

OPTIMIZE compiler option 58

SEARCH and LSEARCH compiler options 58

SRCMSG compiler option . 58

SYSLIB, USERLIB, SYSPATH and USERPATH compiler options 58

TEST compiler option . 59

Changes to putenv() . 59

Length of external variable names 59

Syntax for the CC command . 59

Time functions . 60

Abnormal termination exits . 60

Standard stream support . 61

Direction of compiler messages to stderr 61

Array new . 61

Compiler listings . 62

Chapter 10. Input and output operations compatibility 63

Opening files . 63

Writing to files . 63

Repositioning within files . 65

Closing and reopening ASA files 66

fldata() return values . 67

Error handling . 67

Miscellaneous . 67

VSAM I/O changes . 68

Contents v

||
||

||

Terminal I/O changes . 68

Part 4. From OS/390 C/C++ to z/OS V1R7 XL C/C++ 69

Chapter 11. Compiler changes between OS/390 C/C++ and z/OS V1R7 XL

C/C++ . 71

Compiler changes . 71

Potential impact on memory requirements 71

Removal of Model Tool support 71

1998 Standard C++ support 71

Addition of the #pragma reachable and #pragma leaves directives 71

Reentrant variables when the compiler option is NORENT 71

Compiler options . 72

Compiler messages and return codes 74

Changes in data set names 74

Compiler listings . 74

Changes that affect c89 invocation 74

Changes that affect user JCL 75

Examples of specifying class library header files at compile time 75

CBCI and CBCXI procedures 75

Changes that affect Interprocedural Analysis 75

IPA object module binary compatibility 75

IPA Link Step defaults . 76

Changes that affect data type support 76

Effect of ARCH level on conversion from floating point to integer type 76

Compiler-defined _LONG_LONG macro 77

Chapter 12. Language Environment changes between OS/390 C/C++ and

z/OS V1R7 XL C/C++ . 79

Name conflicts with run-time library functions 79

Time functions . 81

Direct UCS-2 and UTF-8 converters 81

Default option for ABTERMENC changed to ABEND 81

THREADSTACK run-time option 81

Changes to putenv() . 81

Chapter 13. Class library changes between OS/390 C/C++ and z/OS V1R7

XL C/C++ . 83

IBM Open Class Library . 83

Migrating from USL I/O Stream Library to Standard C++ I/O Stream Library 83

Mixing the C++ Standard I/O Stream Library, USL I/O Stream Library, and C

I/O . 84

Removal of SOM support . 84

Removal of Database Access Class Library utility 84

Part 5. ISO C/C++ Standard migration issues 85

Chapter 14. Migrating to the currently supported Standard C++ 87

Choosing an approach based on your migration objectives 87

Compiler options for compatibility with earlier C/C++ compilers 87

Changes in language features to comply with the currently supported Standard

C++ . 89

LANGLVL(ANSISINIT) and static initialization 89

For-loop scoping . 89

Implicit int and type declarations 90

vi z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

||

|
||
||
||

||
||
||

||

||
||
||

|
||

|
||

||

||

|
||
||
||
||

Changes to friend declarations 90

Exception handling and cv-qualification 90

Language features that comply with the currently supported Standard C++ . . . 91

Keywords . 91

Namespaces and macro definitions 91

The bool type and returned values 91

The mutable keyword and macro definitions 91

Wide character definitions (wchar_t) 92

The explicit keyword . 92

C++ cast operators . 92

Changes to digraphs in the C++ Language 92

Errors due to changes in compiler behavior 92

Access-checking errors . 92

Type definition errors . 93

Errors caused by ambiguous overloads 93

Errors caused by user-defined conversions 93

Syntax errors with new . 94

Changes in template compilations 94

Name resolution . 94

Example of template keyword 96

Template specialization . 96

Explicit call to destructor of scalar type 96

Friend declarations in templates 96

Friend declarations in class member lists 97

Inlined virtual functions in a class 97

Part 6. From earlier releases of z/OS C/C++ to z/OS V1R7 XL C/C++ 99

Chapter 15. Source program compatibility 101

Support of Standard C++ . 101

Application of #pragma unroll() 101

Chapter 16. Changes that affect c89 invocation 103

Chapter 17. Compiler changes 105

Compiler options . 105

Compiler options with default setting changes 105

New compiler option that may affect existing programs 105

Compiler options that are no longer supported 105

CMDOPTS compiler option and conflict resolution 105

TARGET compiler option . 105

Compiler messages and return codes 106

Compiler listings . 106

64-bit compiles and line number information 106

Chapter 18. Compiler invocations 107

Changes that affect c89 invocation 107

Changes that affect xlc invocation 108

Chapter 19. Changes that affect user JCL 109

CBCI and CBCXI procedures 109

Chapter 20. Language Environment changes 111

Changes to enum types in system header files 111

Changes to putenv() . 111

Base locale default currency change 112

Contents vii

||
||
||

||

||

||
||
||

||

||
||

||

||
||
||

||

||
||
||

||

Movement of LOCALDEF utilities 112

_OPEN_SYS_SOCK_IPV6 feature test macro 112

C99 with both LANGLVL(LONGLONG) and LANGLVL(EXTENDED) 113

Floating point support . 113

Hexadecimal floating point notation 113

Floating point special values 114

Chapter 21. Class library changes 115

Removal of IBM Open Class Library 115

Migrating from USL I/O Stream Library to Standard C++ I/O Stream Library 115

Mixing the C++ Standard I/O Stream Library, USL I/O Stream Library, and C

I/O . 116

Part 7. Appendixes . 117

Appendix. Accessibility . 119

Using assistive technologies 119

Keyboard navigation of the user interface 119

z/OS information . 119

Notices . 121

Programming interface information 122

Trademarks . 122

Bibliography . 125

z/OS . 125

z/OS XL C/C++ . 125

z/OS Run-Time Library Extensions 125

Debug Tool . 125

z/OS Language Environment 126

Assembler . 126

COBOL . 126

PL/I . 126

VS FORTRAN . 126

CICS Transaction Server for z/OS 126

DB2 . 127

IMS/ESA . 127

MVS . 127

QMF . 127

DFSMS . 127

INDEX . 129

viii z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

||
||
||
||
||
||

||

Part 1. Introduction

This part provides answers to some common migration questions.

Note that throughout this document, the short form of a product version and release

number (VxRx) is used. For example, this document refers to z/OS® Version 1

Release 4 C/C++ as z/OS V1R4 C/C++. In addition, assume that the modification

level of any referenced product is 0 (zero) unless specifically indicated.

© Copyright IBM Corp. 1996, 2005 1

|
|
|
|

2 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 1. Locating your migration path

This book discusses the implications of migrating applications from each of the

supported compilers and libraries listed in Table 2 on page 5 to the z/OS® V1R7 XL

C/C++ product. To find the section of the book that applies to your migration, see

“How this book is organized” on page 4.

You can use this book to:

v Help determine whether and how you can continue to use existing source code,

object code, and load modules

v Become aware of the changes in compiler and run-time behavior that may affect

your migration from earlier compilers or from earlier versions of the compiler

Note: In most situations, existing well-written applications can continue to work

without modification.

This book does not:

v Discuss all of the enhancements that have been made to the z/OS V1R7 XL

C/C++ compiler and z/OS V1R7 Language Environment®.

Note: For a list of books that provide information about the z/OS V1R7 XL

C/C++ compiler and its debugger and utilities, refer to “Bibliography” on

page 125.

v Show how to change an existing C program so that it can use C++.

Note: For a description of some of the differences between C and C++, see

z/OS XL C/C++ Language Reference.

In this book, references to the products listed in the first column of Table 1 also

apply to the products in the second column.

 Table 1. Product references

References to these products Also apply to these products

IBM® SAA® AD/Cycle® Language

Environment/370

AD/Cycle C/370™ Language Support Feature

Language Environment (MVS® & VM) R4 IBM Language Environment for MVS & VM

Language Environment (MVS & VM) R5 IBM Language Environment for MVS & VM

Language Environment (MVS & VM) R6 IBM Language Environment for MVS & VM

C/MVS™ V3R1 or V3R2 compiler C component of the C/C++ for MVS/ESA™

V3R2 or V3R1 compiler

C++/MVS™ V3R2 compiler C++ component of the C/C++ for MVS/ESA

V3R2 compiler

© Copyright IBM Corp. 1996, 2005 3

|

|

|
|
|
|

|

|
|

|
|

|
|

|

|
|

|
|
|

|

|
|

|
|

||

||

|
|
|

||

||

||

||
|

||
|

Table 1. Product references (continued)

References to these products Also apply to these products

C/370 compiler

Note: You cannot migrate directly from the

C/370 V1 compiler to the z/OS XL C

compiler. You must first migrate to the C/370

V2 compiler. If you are migrating a program

that has been run successfully only with a

C/370 run-time environment, contact your

service representative.

Any of the following:

v The IBM C/370 V1R1 or V1R2 compiler

(MVS and VM) compiler and the IBM

C/370 V1R1 library

v The IBM C/370 V2R1 compiler (MVS and

VM and VSE) compiler and the IBM C/370

V2R1 library

v The IBM SAA AD/Cycle C/370 V1R0

compiler and the IBM C/370 V2R0 library

v The IBM SAA AD/Cycle C/370 V1R2

compiler and the IBM C/370 V2R2 library

Pre-OS/390® C/C++ compilers

Note: If you are migrating a program that

has been run successfully only with a

pre-OS/390 C/C++ compiler, contact your

service representative.

Any of the following:

v AD/Cycle V1R1 or V1R2 compiler

v C/MVS V3R1 or V3R2 compiler

v AD/Cycle C/370 compilers

v IBM C++ for MVS V3R2 compiler and

Language Environment R5

OS/390 C/C++ compilers

Note: If you are migrating a program that

has been run successfully only with the

OS/390 V1 C/C++ compiler, contact your

service representative.

Any of the following:

v OS/390 V1R1, V1R2, or V1R3 C/C++

compiler

v OS/390 V2R4, V2R5, V2R6, V2R7, V2R8,

V2R9, or V2R10 compiler

“Earlier releases” of the z/OS C/C++ compiler

Note: Service is still available for z/OS

C/C++ V1R4 through z/OS C/C++ V1R6.

Any of the following:

v z/OS C/C++ V1R1

v z/OS C/C++ V1R2

v z/OS C/C++ V1R3

v z/OS C/C++ V1R4

v z/OS C/C++ V1R5

v z/OS C/C++ V1R6

z/OS z/OS.e

Note: As of z/OS V1R7, the OS/390 V2R10 C/C++ compiler is no longer shipped

with the z/OS product.

How this book is organized

v Part 1 contains some general answers to common migration questions.

v Part 2 describes the considerations for migrating from one of the C/370

compilers.

v Part 3 describes the considerations for migrating from any of the pre-OS/390

releases of C/C++, or any release of z/OS Language Environment.

v Part 4 describes the considerations for migrating from one of the following:

– OS/390 C compilers

– z/OS V1R1 C compiler

v Part 5 describes migration issues related to Programming languages - C/C++

(ISO/IEC 14882:2003(E)), which documents the C++ Standard.

v Part 6 describes the considerations for migrating from one of the earlier releases

of the z/OS C/C++ compiler.

Introduction

4 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

||

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|

|

|

|

|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|

|

|

|

|

|

|

||
|

|
|

|
|

|

|
|

|
|

|
|
|

|
|

|
|

A history of IBM C/C++ compilers and libraries

Table 2 lists the versions of the C and C++ compilers and run-time libraries in the

order in which they were first released. You can use this table to help determine

which changes described in this book apply to your migration.

 Table 2. A history of IBM C/C++ compilers and libraries

Short name Product

number

GA date Description Service status

C/370 V1R1 5688-040

5688-039

1988

1988

C/370 V1R1 Compiler

C/370 V1R1 Library

Service

discontinued

C/370 V1R2 5688-040

5688-039

1989

1989

C/370 V1R2 Compiler

C/370 V1R2 Library

Service

discontinued

C/370 V2R1 5688-187

5688-188

1991

1991

C/370 V2R1 Compiler

C/370 V2R1 Library

AD V1R1 5688-216 1991 AD/Cycle C/370 V1R1 Compiler (follow-on to C/370

V2R1 compiler)

Service

discontinued

LE V1R1 5688-198 1991 Language Environment/370 V1R1 Library(first

release of Language Environment/370; follow-on to

C/370 V2R1 Library)

Service

discontinued

LE V1R2 5688-198 1992 Language Environment/370 V1R2 Library Service

discontinued

AD V1R2 5688-216 1994 AD/Cycle C/370 V1R2 Compiler:

v Runs on either LE V1R3 or C/370 V2R2

v Generates code for either LE V1R3 or C/370

V2R2

LE V1R3 5688-198 1994 Language Environment/370 V1R3 Library, also

shipped as part of AD/Cycle C/370 Language

Support Feature.

Service

discontinued

C/370 V2R2 5688-188 1994 C/370 V2R2 Library (follow-on to the C/370 V2R1

Library; intended to help customers migrate to

LE/370).

C/C++MVS

V3R1

5655-121 1995 C/C++ for MVS/ESA V3R1 Compilers, follow-on to

AD V1R2 compiler (first release of C++ on MVS).

Service

discontinued

LE V1R4 5688-198 1995 LE V1R4 Library for MVS & VM (also shipped as the

MVS/ESA SP™ 5.2.0 C/C++ Language Support

Feature).

Service

discontinued

C/C++/ MVS

V3R2

5655-121 1995 C/C++ for MVS/ESA V3R2 Compilers (the successor

of the C/C++MVS V3R1 compiler).

LE V1R5 5688-198 1995 LE V1R5 Library for MVS & VM (also shipped as

part of MVS/ESA SP 5.2.2 C/C++ Language Support

Feature).

Service

discontinued

OS/390 V1R1 5645-001 March

1996

OS/390 V1R1 includes the C/C++ for MVS/ESA

V3R2 compilers and the OS/390 V1R1 Language

Environment.

Service

discontinued

OS/390 V1R2 5645-001 Sept 1996 OS/390 V1R2 C/C++ (follow-on to OS/390 V1R1

C/C++; includes optimization options to improve the

execution-time performance of C code). OS/390

V1R2 Language Environment is packaged with

OS/390 V1R2.

Service

discontinued

Introduction

Chapter 1. Locating your migration path 5

|
|

|
|
|

||

||
|
|||

||
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|

||
|
|
|
|
|
|

||||
|
|
|

||||
|
|

|
|

|||||
|

||||

|

|
|

|

||||
|
|

|
|

||||
|
|

|

|
|
|||
|
|
|

||||
|
|

|
|

|
|
|||
|
|

||||
|
|

|
|

|||
|
|
|
|

|
|

||||
|
|
|
|

|
|

Table 2. A history of IBM C/C++ compilers and libraries (continued)

Short name Product

number

GA date Description Service status

OS/390 V1R3 5645-001 March

1997

OS/390 V1R3 C/C++ (follow-on to OS/390 V1R2

C/C++; includes optimization options to improve the

execution-time performance of C++ code). OS/390

V1R3 Language Environment is packaged with

OS/390 V1R3.

Service

discontinued

OS/390 V2R4 5647-A01 Sept 1997 OS/390 V2R4 C/C++ (follow-on to OS/390 V1R3

C/C++; includes performance improvements for

DLLs, conversion of character string literals, and

support for the Program Management Binder).

OS/390 V2R4 Language Environment is packaged

with OS/390 V2R4.

Service

discontinued

OS/390 V2R5 5647-A01 March

1998

OS/390 V2R5 C/C++ (functionally equivalent to

OS/390 V2R4 C/C++). OS/390 V2R5 Language

Environment is packaged with OS/390 V2R5.

Service

discontinued

OS/390 V2R6 5647-A01 Sept 1998 OS/390 V2R6 C/C++ (follow-on to OS/390 V2R4

C/C++; includes support for the IEEE binary

floating-point and the long long data types,

improvements to the handling and format of packed

decimal numbers in C++, and the TARGET(OSV1R2)

suboption). OS/390 V2R6 Language Environment is

packaged with OS/390 V2R6.

Service

discontinued

OS/390 V2R7 5647-A01 March

1999

The compiler is functionally equivalent to the OS/390

V2R6 C/C++ compiler. OS/390 V2R7 Language

Environment is packaged with OS/390 V2R7.

Service

discontinued

OS/390 V2R8 5647-A01 Sept 1999 The compiler is functionally equivalent to the OS/390

V2R6 C/C++ compiler. OS/390 V2R8 Language

Environment is packaged with OS/390 V2R8.

Service

discontinued

OS/390 V2R9 5647-A01 March

2000

OS/390 V2R9 C/C++ (follow-on to OS/390 V2R6

C/C++). It includes the following:

v Compiler options and suboptions:

– CHECKOUT(CAST)

– COMPRESS

– CVFT

– DIGRAPH (for C)

– IGNERRNO

– INITAUTO

– IPA(OBJONLY)

– PHASEID

– ROCONST

– ROSTRING

– STRICT

– TARGET enhancements to suboptions

v Directives:

– #pragma leaves

– #pragma option_override

– #pragma reachable

OS/390 V2R9 Language Environment is packaged

with OS/390 V2R9.

Service

discontinued

Introduction

6 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

||
|
|||

|||
|
|
|
|
|
|

|
|

||||
|
|
|
|
|

|
|

|||
|
|
|
|

|
|

||||
|
|
|
|
|
|

|
|

|||
|
|
|
|

|
|

||||
|
|

|
|

|||
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

Table 2. A history of IBM C/C++ compilers and libraries (continued)

Short name Product

number

GA date Description Service status

OS/390 V2R10 5647-A01 Sept 2000 OS/390 V2R10 C/C++ (follow-on to OS/390 V2R9

C/C++). It introduced the following:

v Compiler options and suboptions:

– COMPACT

– GOFF

– IPA(LEVEL(2))

– XPLINK

v Enhancements to the following compiler options

and suboptions:

– SPILL

– TARGET

v Improvements to:

– #pragma option_override

– Packed decimal optimization in C

In addition:

v Support for the IBM System Object Model™

(SOM®) was dropped.

v OS/390 V2R10 Language Environment was

packaged with OS/390 V2R10.

service

discontinued

z/OS V1R1 5694-A01 Mar 2001 z/OS V1R1 C/C++ is functionally equivalent to

OS/390 V2R10 C/C++.

service

discontinued

z/OS V1R2 5694-A01 Oct 2001 z/OS V1R2 C/C++ is fully compliant with

Programming languages - C++ (ISO/IEC

14882:2003(E)), with support for:

v namespaces

v type bool and associated keywords bool, true,

and false

v class-member-modifying keywords mutable and

explicit

v C++ cast operators const_cast, dynamic_cast,

reinterpret_cast and static_cast

v new template model

v Run Time Type Identification (RTTI)

v C++ Standard Library, including the Standard

Template Library (STL).

It also includes the following enhancements:

v IBM Open Class® Library new level

v Enhanced ASCII and Large File support in C++

Standard I/O Stream Library

v IPA support for XPLINK

z/OS V1R2 Language Environment is packaged with

z/OS V1R2.

service

discontinued

z/OS V1R3 5694-A01 Mar 2002 The compiler is functionally equivalent to the z/OS

V1R2 C/C++ compiler. z/OS V1R3 Language

Environment is packaged with z/OS V1R3.

Service

discontinued

z/OS V1R4 5694-A01 Sept 2002 The compiler is functionally equivalent to the z/OS

V1R2 C/C++ compiler. z/OS V1R4 Language

Environment is packaged with z/OS V1R4.

Introduction

Chapter 1. Locating your migration path 7

|

||
|
|||

||||
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|

|
|

||||
|
|
|

||||
|
|

|

|
|

|
|

|
|

|

|

|
|

|

|

|
|

|

|
|

|
|

||||
|
|

|
|

||||
|
|

|

Table 2. A history of IBM C/C++ compilers and libraries (continued)

Short name Product

number

GA date Description Service status

z/OS V1R5 5694-A01 Mar 2004 z/OS V1R5 includes:

v Optimization level OPT(3), based on Profile

Directed Feedback (PDF), as well as other

optimization improvements

v Loop unrolling control

v Debug information format based on Dwarf (The

existing debug information format is still

supported.)

Using IBM Open Class Library for development is no

longer supported.

z/OS V1R5 Language Environment is packaged with

z/OS V1R5.

z/OS V1R6 5694-A01 Sept 2004 z/OS V1R6 C/C++ supports compilation of 64-bit

programs, which is enabled by the LP64 option.

z/OS V1R6 C/C++ introduces the following new

compiler suboptions: ARCH(6), TARGET(zOSV1R6), and

TUNE(6).

It introduces the __attribute__((aligned(n)))

keyword, which is used in a declaration to specify an

alignment for a declared variable.

Note: For information about this keyword, see

http://gcc.gnu.org.onlinedocs. The Standard C++

Library was provided as an XPLINK DLL in the

previous releases. Support has been added for a

non-XPLINK DLL version of this library. This can be

used in sub-system environments where XPLINK is

not supported.

z/OS V1R6 provides an invocation utility that

facilitates portability of applications between AIX®

and z/OS C/C++ compilers. If you use the xlc utility

to invoke the compiler, the following commands will

also accept AIX options syntax as well as z/OS

options syntax:

v cc - to compile C programs

v c89 - to compile C programs

v cxx - to compile C++ programs

v c++ - to compile C++ programs

z/OS V1R6 provides new commands and suffixes

that support compiler flexibility and code portability.

For more information, see Chapter 18, “Compiler

invocations,” on page 107.z/OS V1R6 Language

Environment is packaged with z/OS V1R6.

Introduction

8 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

||
|
|||

||||

|
|
|

|

|
|
|

|
|

|
|

|

||||
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|

|
|
|

|

http://gcc.gnu.org/onlinedocs

Table 2. A history of IBM C/C++ compilers and libraries (continued)

Short name Product

number

GA date Description Service status

z/OS V1R7 5694-A01 Sept 2005 As of z/OS V1R7:

v The OS/390 V2R10 compiler is no longer shipped

with the z/OS product.

As of z/OS V1R7, targeting z/OS V1R3 and

earlier releases is no longer supported. The

earliest release that can be targeted is zOSV1R4.

v A recompile using the _OPEN_SYS_SOCK_IPV6

feature test macro will expose new definitions in

certain run-time library functions. For more

information, see “_OPEN_SYS_SOCK_IPV6

feature test macro” on page 112.

v A recompile with the LANGLVL compiler option on a

compiler designed to support C99 may cause

compiler error messages to be issued. For

information on avoiding these errors, see “C99

with both LANGLVL(LONGLONG) and

LANGLVL(EXTENDED)” on page 113 and

“LANGLVL(ANSISINIT) and static initialization” on

page 89.

v There are changes in hexadecimal floating point

notation and floating point special values for C99

that can affect the behavior of well-formed

applications complying with Programming

languages - C (ISO/IEC 9899:1990) and earlier

versions of the base documents. For more

information, see “Floating point support” on page

113.

v The xlc compiler invocation utility emits default

compiler options when you specify the CMDOPTS

compiler option. For more information, see

“CMDOPTS compiler option and conflict

resolution” on page 105 and “Changes that affect

xlc invocation” on page 108.

v The directive #pragma unroll() works only with

for loops. For more information, see “Application

of #pragma unroll()” on page 101.

z/OS V1R7 Language Environment is packaged with

z/OS V1R7.

Introduction

Chapter 1. Locating your migration path 9

|

||
|
|||

||||

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|

|

Introduction

10 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 2. Common questions about migration

This chapter describes the kind of migration impacts that you may encounter, and

the possible solutions.

Will existing Language Environment applications run with z/OS V1R7

Language Environment?

Yes, in nearly all situations, existing well-behaved Language Environment

applications can be run with z/OS Language Environment without any modifications.

A well-behaved application is one that relies on documented interfaces only.

Example: The z/OS XL C/C++ Run-Time Library Reference states that the

remove() function returns a nonzero return code when a failure occurs. The

following code fragments show the correct and incorrect ways to call the remove()

function and to check the return code:

Incorrect method

 if (remove("my.file") == -1) {

 call_err();

 }

 .

 .

 .

Correct method

 if (remove("my2.file") != 0) {

 call_err();

 }

 .

 .

 .

As of LE/370 V1R3. the value of the return code from the remove() function

changed. If an LE/370 V1R2 program was coded incorrectly, and checked for a

specific value, as in the first code fragment, a source change is required when the

code is migrated. This situation is common when an application relies upon

undocumented interfaces. However, if the program was coded correctly, and it did

not check for a specific nonzero return code, as in the second fragment, no source

changes are required.

Will existing C/370 applications work with z/OS V1R7 Language

Environment?

A C/370 application is created using the IBM C/370 Version 1 or Version 2 compiler

and library, or the AD/Cycle C/370 V1R2 compiler with the TARGET(COMPAT) option

and the C/370 V2R2 library. A well-behaved C/370 application, in most situations,

works with z/OS Language Environment without any modifications.

Two common migration problems that you may encounter relate to interlanguage

calls:

v You must relink applications that contain interlanguage calls between C/370 and

Fortran before running them with z/OS Language Environment

v You can run them with z/OS Language Environment only after they are relinked.

You cannot continue to run them with the C/370 library.

© Copyright IBM Corp. 1996, 2005 11

|

|

|

|

|

The same rules apply to applications that contain interlanguage calls between

C/370 and COBOL, unless you relink them with the C/370 V2R1 or V2R2 library

with the PTF for APAR PN74931 applied. This PTF replaces the C/370 V1R2

link-edit stubs so that they tolerate Language Environment. After your application is

relinked using the modified C/370 V1R2 stubs, you can run the application with

either the C/370 V2 run-time library or with Language Environment. Refer to

“Executable programs with interlanguage calls” on page 18 for more information

about COBOL and Fortran interlanguage calls.

Though there are other migration items (described in the following chapters) that

may affect your application, these are the most serious ones.

My application does not run — now what?

If your application does not run, it may be either a migration problem, or an error in

your program that surfaces as a result of a new design feature in the run-time

library. Do the following:

1. Verify the concatenation order of your libraries.

If you have a load module built with both C/370 library parts and z/OS

Language Environment parts, ensure that you are not accidentally initializing

your environment using the C-PL/I Common Library rather than z/OS Language

Environment. The PDS with the low level qualifier SCEERUN (which belongs to

z/OS Language Environment), must be concatenated ahead of the PDS with the

low level qualifier SIBMLINK (which belongs to the C-PL/I Common Library).

Refer to the section “Initialization compatibility” on page 19 for more information.

2. Use environment variables to obtain the “Old Behavior”.

Under z/OS Language Environment, you can use the ENVAR run-time option to

specify the values of environment variables at execution time. With some

environment variables, you can specify the “old behavior” for particular items.

The following setting provides you with “old behavior” for the greatest number of

items:

ENVAR("_EDC_COMPAT=32767")

The value assigned to _EDC_COMPAT is used as a bit mask. If you assign a value

of 32767, the library uses “old behavior” for all of the general compatibility items

currently defined by _EDC_COMPAT. For more information about _EDC_COMPAT and

its possible values, refer to the z/OS XL C/C++ Programming Guide.

If _EDC_COMPAT solves your migration problem, you can use it with the ENVAR

run-time option, as shown above, or in a call to setenv() either in the CEEBINT

High-Level Language exit or in your main() program. Using CEEBINT only

requires you to relink your application, but adding a call to setenv() in the

main() function requires a recompile and obviously a relink. See the z/OS XL

C/C++ Run-Time Library Reference for more details about setenv(). You may

also refer to the z/OS XL C/C++ Programming Guide for more details about the

setenv() function.

3. Relink your application.

You must relink your C/370 application before running it with z/OS Language

Environment, if your application:

v Contains ILCs between C and Fortran, or between C and COBOL.

Refer to “Executable programs with interlanguage calls” on page 18 for more

information.

v Is an SPC application that uses the library

v Contains calls to ctest()

Introduction

12 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

When you relink an application with z/OS Language Environment, you ensure

that it contains no links to non-z/OS Language Environment interfaces.

4. Review the migration items documented in this book.

If you find a migration item in this manual that you think may affect your

application, use the workaround described in this book. If a relink or a setting of

an environment variable is not suggested, you must change your source, and

then recompile and relink your application.

5. Look for uninitialized storage.

In some cases, applications will run with uninitialized storage, because the

run-time library may inadvertently clear storage, or because the storage location

referenced is set to zero.

Use the STORAGE and HEAP run-time options to find uninitialized storage. We

recommend STORAGE(FE,DE,BE) and HEAP(16,16,ANY,FREE) to determine if your

application is coded correctly. Any uninitialized pointers will fail at first reference

instead of accidentally referencing storage locations at random.

Note: Your program will run slower with these options specified. Do not use

them for production, only development.

6. Look for undocumented interfaces.

It is possible that your application has dependencies on undocumented

interfaces. For example, you may have dependencies on library control blocks,

specific errno values, or specific return values. Alter your code to use only

documented interfaces, and then recompile and relink.

7. If you followed steps 1 on page 12 through 6, but cannot run your existing load

module under z/OS Language Environment, contact your System Programmer

to determine whether or not all service has been applied to your system.

Often, the problem you encounter has already been reported to IBM, and a fix is

available.

8. If you have verified with your System Programmer that all service has been

applied to your system, ask your Service Representative to open a Problem

Management Record (PMR) against the applicable IBM product.

For information on how to open a PMR, see the APAR member in data set

CBC.SCCNDOC.

I attempt to recompile my application and it fails — why?

The compiler no longer supports some features from previous releases. Some of

these changes relate to language standards such as ISO. This book describes

these changes, and the alterations you may need to make to your code. For

example, you can no longer compile or link a program that uses the IBM Open

Class Library; instead, you should use the Standard C++ Library.

The amount of memory required by the compiler sometimes changes from release

to release. If you cannot recompile an application that you successfully compiled

with a previous release of the compiler, try increasing the region size.

Introduction

Chapter 2. Common questions about migration 13

|
|

14 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Part 2. From C/370 V2 to z/OS XL C

Note: You cannot migrate directly from the C/370 V1 compiler to the z/OS XL C

compiler. You must first migrate to the C/370 V2 compiler. If you are

migrating a program that has been run successfully only with a C/370

run-time environment, contact your service representative.

This part discusses the implications of migrating applications to the z/OS XL C

compiler when applications were created with one of the compilers and one of the

libraries from the following lists:

Compilers:

v The IBM C/370 V2 compiler, 5688-187

v The AD/Cycle C/370 V1R2 compiler with the TARGET(COMPAT) compiler option,

5688-216

Libraries:

v The IBM C/370 V2 library, 5688-188, and C-PL/1 Common Library, 5688-082

In this part, z/OS V1R7 may also be referred to as z/OS Language Environment, or

Language Environment.

© Copyright IBM Corp. 1996, 2005 15

|

|
|
|
|

|
|
|

|

|

|
|

|

|

16 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 3. Application executable program compatibility

This chapter will help application programmers understand the compatibility

considerations of application executable programs.

An executable program is the output of the prelink/link or bind process. For more

information on the relationship between prelinking, linking, and binding, see the

section about prelinking, linking, and binding in z/OS XL C/C++ User’s Guide. The

output of this process is a load module when stored in a PDS and a program object

when stored in a PDSE or HFS.

Generally, C/370 executable programs execute successfully with z/OS V1R7

Language Environment without source code changes, recompilation, or relinking.

This chapter highlights exceptions and shows how to solve specific problems in

compatibility.

Executable program compatibility problems requiring source changes are discussed

in Chapter 4, “Source program compatibility,” on page 25.

Note: The terms in this section having to do with linking (bind, binding, link,

link-edit) refer to the process of creating an executable program from object

modules.

Input and output operations

If programs that ran successfully with the C/370 V2R1 library have dependencies

on any of the input and output behaviors listed in Chapter 6, “Input and output

operations compatibility,” on page 39, these programs might require source

changes before they can run under z/OS Language Environment.

Executable programs that invoke Debug Tool or dbx

When migrating your application from C/370 to z/OS V1R7 Language Environment,

you must relink modules that contain calls to ctest(). The old library object,

@@CTEST, must be replaced as described in “Converting old executable programs

to new executable programs” on page 20 and in “Considerations for Interlanguage

Call (ILC) applications” on page 21. After you replace the old objects, the new

modules are executable under z/OS Language Environment.

System Programming C Facility (SPC) executable programs

There are two types of SPC programs: the ones that still require the run-time

library, and the ones that do not.

With z/OS Language Environment, only the SPC executable programs that use the

z/OS XL C/C++ run-time library need to be relinked. You can relink applications

either from executable programs or from text decks using the z/OS Language

Environment text libraries.

v If you relink from text decks, you can use the JCL that originally built the

application. However, you must modify it to point to the z/OS Language

Environment static or resident library (SCEELKED).

v If you relink from executable programs, you will need to do a CSECT

replacement for the appropriate part, such as EDCXSTRL, EDCXENVL, and EDCXHOTL.

© Copyright IBM Corp. 1996, 2005 17

|
|
|
|

|
|
|
|
|
|

Note: If your SPC module has been built with exception handling, the automatic

library call is not enabled when you relink, so you must explicitly include the

new routine @@SMASK.

Executable programs with interlanguage calls

You must relink C/370 executable programs that contain interlanguage calls (ILCs)

to or from COBOL before you can execute them under z/OS Language

Environment. Old executable programs that contain ILCs to and from assembler or

PL/I language modules do not need to be relinked.

Before you can relink your C/370-COBOL ILC application under the C/370 V2R2

library so that it can run under either the C/370 V2R2 library or Language

Environment, you must obtain and apply the PTF for APAR PN74931 for the V2R1

or V1R2 link-edit stubs. This PTF replaces the link-edit stubs so that they tolerate

Language Environment. After your application is relinked using the modified V2, you

can run the application with either the V2R1 or V2R2 run-time library, or with

Language Environment.

Before you can relink your C/370-COBOL ILC application so that it will only run

under z/OS Language Environment, you must replace the old library objects

@@C2CBL and @@CBL2C, as described in “Converting old executable programs

to new executable programs” on page 20 and “Considerations for Interlanguage

Call (ILC) applications” on page 21. After you replace the old objects, the new

modules will be executable only under z/OS Language Environment.

Fortran-C ILC was not supported prior to Language Environment V1R5 and C/MVS

V3R1, for Language Environment-conforming applications. Before you can use

Fortran and C ILC routines, you must relink all Fortran-C ILC applications

containing pre-Language Environment C or Fortran library routines.

Table 3 outlines when a relink of ILC applications is required, based on languages

found in the executable program:

 Table 3. Migrations that require relinking

Language Relink required

Assembler No

PL/I No

Fortran Yes

COBOL Yes

Note: If the C/370 ILC application is built

(relinked) after the PTF for APAR PN74931

is applied, no relink is required to run under

z/OS V1R7 XL C/C++. Otherwise a relink is

required.

Note: If you have multiple languages in the executable program, then the sum of

the restrictions applies. For example: if you have C, PL/I and Fortran in the

executable program, then it should be relinked because Fortran needs to be

relinked.

Refer to z/OS Language Environment Writing Interlanguage Communication

Applications for more information.

From C/370 to z/OS V1R7 Language Environment

18 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Initialization compatibility

Both z/OS V1R7 Language Environment and C/370 modules use static code and

dynamic code. Static code sections are emitted or bound with the main program

object. Dynamic code sections are loaded and executed by the static component.

The sequence of events during initialization for C/370 modules differs from that for

z/OS V1R7 Language Environment modules. The key static code for both C/370

and z/OS Language Environment modules is an object named CEESTART, which

controls initialization at execution. Its contents differ between the products, thus

there is an old and a new version of CEESTART. The key dynamic code for z/OS

Language Environment is CEEBINIT, which is stored in SCEERUN. The key

dynamic code for IBM C/370 Version 1 and Version 2 is IBMBLIIA, which is a

Common Library part stored in SIBMLINK. The Common Library is used by the

C/370 V2 libraries.

Initialization schemes

The tables in this section describe the initialization schemes for the CEESTART and

IBMBLIIA modules:

v Table 4 describes the initialization scheme for IBM C/370 Version 1 and Version

2.

v Table 5 describes the initialization scheme for z/OS Language Environment.

v Table 6 describes the z/OS Language Environment initialization scheme for

C/370 executable programs.

The following describes the IBM C/370 Version 1 and Version 2 initialization

scheme:

 Table 4. IBM C/370 Version 1 and Version 2 initialization scheme

Stage Description

Load The old CEESTART loads IBMBLIIA.

Initialize IBMBLIIA initializes the Common Library.

Run The Common Library runs C/370-specific initialization.

Call The main program is called.

The following describes the initialization scheme:

 Table 5. z/OS Language Environment initialization scheme

Stage Description

Load The new CEESTART loads CEEBINIT.

Initialize CEEBINIT initializes z/OS Language Environment.

Run z/OS Language Environment C-specific initialization is run.

Call The main program is called.

 Table 6. z/OS Language Environment initialization scheme for C/370 executable programs

Stage Description

Load The old CEESTART loads CEEBLIIA (as IBMBLIIA).

Initialize CEEBLIIA (IBMBLIIA) initializes z/OS Language Environment.

Run z/OS Language Environment C-specific initialization is run.

From C/370 to z/OS V1R7 Language Environment

Chapter 3. Application executable program compatibility 19

|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|
|

|
|

||

||

||

||

||

||
|

|

||

||

||

||

||

||
|

||

||

||

||

||

Table 6. z/OS Language Environment initialization scheme for C/370 executable

programs (continued)

Stage Description

Call The main program is called.

In Table 6 on page 19, compatibility with old executable programs depends upon

the program’s ability to intercept the initialization sequence at the start of the

dynamic code and to perform the z/OS Language Environment initialization at that

point. This interception is done by providing a part named CEEBLIIA, which has

been assigned the alias IBMBLIIA. This provides “initialization compatibility”.

Special considerations: CEEBLIIA and IBMBLIIA

The only way to control which environment is initialized for a given old executable

program (when CEEBLIIA is assigned the alias of IBMBLIIA) is to correctly arrange

the concatenation of libraries.

The version of IBMBLIIA that is found first determines the environment (Language

Environment or Common Library) that is initialized.

v If you intend to initialize the Common Library environment, ensure that SIBMLINK

is concatenated before SCEERUN.

v If you intend to initialize the z/OS Language Environment environment, ensure

that SCEERUN is concatenated before SIBMLINK.

Converting old executable programs to new executable programs

Some sites might have some old executable programs that will require the C/370

Common Library environment unless they have been converted to use z/OS

Language Environment. These are incompatible modules that, for example, contain

ILCs to COBOL or that use the library function ctest() to invoke the Debug Tool.

There are three different methods of converting old modules to new modules, so

that they will run under z/OS Language Environment:

v Link from original objects using z/OS Language Environment. EDCSTART and

CEEROOTB must be explicitly included.

v Relink the old executable program with z/OS Language Environment using

CSECT replacement. EDCSTART and CEEROOTB must be explicitly included.

Figure 1 on page 21 shows an example of a job that uses this method. The job

converts an old executable program to a new executable program by relinking it

and explicitly including the z/OS Language Environment CEESTART to replace

the old C/370 CEESTART.

This is a general-purpose job. The comments show the other include statements

that are necessary if certain calls are present in the code. Refer to

“Considerations for Interlanguage Call (ILC) applications” on page 21 for the

specific control statements that are necessary for different kinds of ILCs with

COBOL.

From C/370 to z/OS V1R7 Language Environment

20 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|

||

||
|
|
|
|
|
|

v For modules that have a C main(): Replace the old executable program by

recompiling the source (if available). Recompile the source containing the main()

function with the z/OS V1R7 XL C/C++ compiler, and then relink the objects with

z/OS Language Environment. This creates a version of CEESTART for z/OS

Language Environment. This is an alternative to explicitly including EDCSTART

when linking from objects.

Considerations for Interlanguage Call (ILC) applications

This section lists the linkage editor control statements required to relink modules

that contain ILCs between C and COBOL, and C and Fortran. The object modules

are compatible with the z/OS Language Environment; however, the ILC linkage

between the applications and the library has changed. You must relink these

applications using the JCL shown in Figure 1 and the control statements that fit your

requirements from the following list. The INCLUDE SYSLIB(@@CTDLI) is only

necessary if your program will invoke IMS™ facilities using the z/OS XL C library

function ctdli() and if the z/OS XL C function was called from a COBOL main

program.

Control statements for various combinations of ILCs and compiler options are as

follows. The modules referenced by SYSLMOD contain the routines to be relinked.

1. C main() statically calling COBOL routine B1 or dynamically calling the COBOL

routine through the use of fetch(), where B1 was compiled with the RES option.

Relink the C module:

 MODE AMODE(31),RMODE(ANY)

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

 INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL

 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

 INCLUDE SYSLMOD(SAMP1)

 ENTRY CEESTART MAIN ENTRY POINT

 NAME SAMP1(R)

//Jobcard information

//*

//**//

//*RELINK C/370 V1 or V2 USER MODULE FOR Language Environment *//

//**//

//*

//*

//LINK EXEC PGM=HEWL,PARM=’RMODE=ANY,AMODE=31,MAP,LIST’

//SYSPRINT DD SYSOUT=*

//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR

//SYSLMOD DD DSN=TSUSER1.A.LOAD,DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(10,10))

//SYSLIN DD *

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

 INCLUDE SYSLIB(@@CTEST) NEEDED ONLY IF CTEST CALLS ARE PRESENT

 INCLUDE SYSLIB(@@C2CBL) NEEDED ONLY IF CALLS ARE MADE TO COBOL

 INCLUDE SYSLIB(@@CBL2C) NEEDED ONLY IF CALLS ARE MADE FROM COBOL

 INCLUDE SYSLMOD(HELLO)

 ENTRY CEESTART

 NAME HELLO(R)

/*

Figure 1. Link Job for Converting Executable Programs

From C/370 to z/OS V1R7 Language Environment

Chapter 3. Application executable program compatibility 21

2. C main() statically calling COBOL routine B2 or dynamically calling the COBOL

routine through the use of fetch(), where B2 was compiled with the NORES

option. Relink the C module:

 MODE AMODE(24),RMODE(24)

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

 INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL

 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

 INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES

 INCLUDE SYSLMOD(SAMP2)

 ENTRY CEESTART MAIN ENTRY POINT

 NAME SAMP2(R)

3. C main() fetches a C1 function that statically calls a COBOL routine B1

compiled with the RES option. Relink the C module:

 MODE AMODE(31),RMODE(ANY)

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

 INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL

 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

 INCLUDE SYSLMOD(SAMP3)

 ENTRY C1 ENTRY POINT TO FETCHED ROUTINE

 NAME SAMP3(R)

4. C main() fetches a C1 function that statically calls a COBOL routine B1 that is

compiled with the NORES option. Relink the C module:

 MODE AMODE(24),RMODE(24)

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

 INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL

 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

 INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES

 INCLUDE SYSLMOD(SAMP4)

 ENTRY C1 ENTRY POINT TO FETCHED ROUTINE

 NAME SAMP4(R)

5. A COBOL main CBLMAIN compiled with the RES option statically or

dynamically calls a C1 function. Relink the COBOL module:

 MODE AMODE(31),RMODE(ANY)

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

 INCLUDE SYSLIB(IGZEBST)

 INCLUDE SYSLIB(@@CBL2C) REQUIRED FOR COBOL CALLING C

 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

 INCLUDE SYSLMOD(SAMP5)

 ENTRY CBLRTN COBOL ENTRY POINT

 NAME SAMP5(R)

6. A COBOL main CBLMAIN compiled with the NORES option statically or

dynamically calls a C1 function. Relink the COBOL module:

 MODE AMODE(24),RMODE(24)

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

 INCLUDE SYSLIB(IGZENRI)

 INCLUDE SYSLIB(@@CBL2C) REQUIRED FOR COBOL CALLING C

 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

 INCLUDE SYSLMOD(SAMP6)

 ENTRY CBLRTN COBOL ENTRY POINT

 NAME SAMP6(R)

7. C main() calls a Fortran routine. Relink the C module:

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

 INCLUDE SYSLIB(@@CTOF) REQUIRED FOR C CALLING Fortran

From C/370 to z/OS V1R7 Language Environment

22 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

 INCLUDE SYSLMOD(SAMP7)

 ENTRY CEESTART MAIN ENTRY POINT

 NAME SAMP7(R)

8. A Fortran main() calls a C function. Relink the C module:

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED

 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED

 INCLUDE SYSLIB(@@FTOC) REQUIRED FOR Fortran CALLING C

 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS

 INCLUDE SYSLMOD(SAMP8)

 ENTRY CEESTART MAIN ENTRY POINT

 NAME SAMP8(R)

For other related Fortran considerations, refer to z/OS Language Environment

Programming Guide.

From C/370 to z/OS V1R7 Language Environment

Chapter 3. Application executable program compatibility 23

From C/370 to z/OS V1R7 Language Environment

24 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 4. Source program compatibility

This chapter describes the changes that you may have to make to your source

code when moving applications to the z/OS V1R7 XL C/C++ product.

Note: You cannot migrate directly from the C/370 V1 compiler to the z/OS XL C

compiler. You must first migrate to the C/370 V2 compiler. If you are

migrating a program that has been run successfully only with a C/370

run-time environment, contact your service representative.

It considers programs created with one of the following compilers and one of the

following libraries.

Compilers:

v The IBM C/370 V2 compiler, 5688-187

v The AD/Cycle C/370 V1R2 compiler with the TARGET(COMPAT) compiler option,

5688-216

Libraries:

v The IBM C/370 V2 library, 5688-188, and C-PL/1 Common Library, 5688-082

Chapter 5, “Other migration considerations,” on page 31 has information on run-time

options, which may also affect source code compatibility.

Pointer considerations

According to the ISO C Standard, pointers to void types and pointers to functions

are incompatible types. The C/370 V2, AD/Cycle C/370, C/MVS V3, and z/OS XL C

compilers perform some type checking, such as in assignments, argument passing

on function calls, and function return codes.

Note: If you are not conforming to ISO rules for the use of pointer types, your

run-time results may not be as expected, especially when you are using the

OPTIMIZE compiler option.

Example: With the C/370 V2, the AD/Cycle C/370, and the C/MVS V3 compilers,

you could not assign NULL to an integer value. The following was not allowed:

 int i = NULL;

With the C/MVS V3R2 and z/OS XL C compilers, you can assign NULL pointers to

void types if you specify LANGLVL(COMMONC) when you compile your program.

Input and output operations

If programs that ran successfully with the C/370 V2R1 library have dependencies

on any of the input and output behaviors listed in Chapter 6, “Input and output

operations compatibility,” on page 39, these programs might require source

changes before they can run under z/OS Language Environment.

Note: You cannot migrate directly from the C/370 V1 compiler to the z/OS XL C

compiler. You must first migrate to the C/370 V2 compiler. If you are

migrating a program that has been run successfully only with a C/370

run-time environment, contact your service representative.

© Copyright IBM Corp. 1996, 2005 25

|
|
|
|

|

|

|
|

|

|

|

|
|
|
|

|
|
|

|
|

|

|
|

|
|
|
|

|
|
|
|

SIGFPE exceptions

Decimal overflow conditions were masked in the C/370 library before V2R2. The

conditions were enabled when the packed decimal data type was introduced in the

AD/Cycle C/370 V1R2 compiler, and continue to be enabled with z/OS V1R7

Language Environment. If you have old load modules that accidentally generated

decimal overflow conditions, these modules may raise unexpected SIGFPE

exceptions in the z/OS Language Environment. You cannot migrate such modules

to the new library without altering the source.

Note: It is unlikely that such modules are present in a C-only environment. These

unexpected exceptions may occur in mixed language modules, particularly

those using C and assembler code where the assembler code explicitly

manipulates the program mask.

Program mask manipulations

Programs created with the C/370 V1 or V2R1 compiler and library that explicitly

manipulated the program mask may require source alteration to execute correctly

under z/OS Language Environment. Changes are required if you have one of the

following types of programs:

v A C program containing interlanguage calls (ILCs), where the invoked code uses

the S/370™ decimal instructions that might generate an unmasked decimal

overflow condition, requires modification for migration. There are two methods for

migrating the code. The first one is preferred:

– If the called routine is assembler, save the existing mask, set the new value,

and when finished restore the saved mask.

– Change the C code so that the produced SIGFPE signal is ignored in the called

code. Example: In the following example, the SIGNAL calls surround the

overflow-producing code. The SIGFPE exception signal is ignored, and then

reenabled:

 signal(SIGFPE, SIG_IGN); /* ignore exceptions */

 ...

 callit(): /* in called routine */

 ...

 signal(SIGFPE, SIG_DFL); /* restore default handling */

v A C program containing assembler ILCs that explicitly alter the program mask,

and do not explicitly save and restore it, also requires modification for migration.

If user code explicitly alters the state of the program mask, the value before

modification must be saved, and the value restored to its former value after the

modification. You must ensure that the decimal overflow program mask bit is

enabled during the execution of C code. Failure to preserve the mask may result

in unpredictable behavior.

These changes also apply in a System Programming C environment, and to

Customer Information Control System (CICS®) programs in the handling and

management of the PSW mask.

The realloc() function

When the realloc() function is used with z/OS Language Environment, a new area

is always obtained and the data is copied. This is different from IBM C/370 V2,

where, if the new size was equal to or less than the original size, the same area

was used.

From C/370 V2 to z/OS V1R7 XL C/C++

26 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|
|
|
|
|

|
|
|
|

Programmers may want to ensure that their source code has no dependencies on

the behavior of the old version of the realloc() function, so that their code is

compatible with z/OS Language Environment.

Fetched main programs

IBM C/370 V2 programs that are fetched must be recompiled without a main entry

point. Under z/OS Language Environment, any attempt to fetch a main program will

fail.

User exits

If both CEEBXITA and IBMBXITA are present in a relinked C/370 module,

CEEBXITA will have precedence over IBMBXITA.

Line number control

The AD/Cycle C/370 V1R2 compiler ignored the #line directive when either the

EVENTS or the TEST compiler option was in effect. The z/OS XL C compiler never

ignores #line.

The sizeof operator

Example: The following is an example of how the behavior of sizeof, when applied

to a function return type, was changed in the C/C++ MVS V3R2 compiler:

 char foo();

 ..

 s = sizeof foo();

If the example is compiled with a compiler prior to C/C++ MVS V3R2, char is

widened to int in the return type, so sizeof returns s = 4.

If the example is compiled with C/C++ MVS V3R2, or with any OS/390 C/C++

compiler, the size of the original char type is retained. In the above example, sizeof

returns s = 1. The size of the original type of other data types such as short, and

float is also retained.

With the OS/390 V2R4 C/C++ and subsequent compilers, you can use #pragma

wsizeof or the WSIZEOF compiler option to get sizeof to return the widened size for

function return types if your code has a dependency on this behavior. For more

information on #pragma wsizeof, see z/OS XL C/C++ Language Reference. For

more information on the WSIZEOF compiler option, see z/OS XL C/C++ User’s Guide.

System Programming C (SPC) applications built with EDCXSTRX

If you have SPC applications that are built with EDCXSTRX and that use dynamic

C library functions, note that the name of the C library function module has changed

from EDCXV in C/370 V2 to CEEEV003 in z/OS Language Environment. Change

the name from EDCXV to CEEEV003 in the assembler source of your program that

loads the library, and reassemble.

From C/370 V2 to z/OS V1R7 XL C/C++

Chapter 4. Source program compatibility 27

|
|
|

|

|
|
|

The __librel() function

The __librel() function is a System/370™ extension to SAA C. It returns the

release level of the library that your program is using, in a 32-bit integer. In z/OS

Language Environment, it has a field containing a number that represents the

library product.

The __librel() return value is a 32-bit integer intended to be viewed in

hexadecimal format as shown in Table 7. The hexadecimal value is interpreted as

0xPVRRMMMM, where:

v The first hex digit P represents the product.

v The second hex digit V represents the version.

v The third and fourth hex digits RR represent the release.

v The fifth through eighth hex digits MMMM represent the modification level.

 Table 7. The librel return values for supported products

Product librel value

C/370 V2R2 0x02020000

LE V1R5 0x11050000

OS/390 V1R2 0x21020000

OS/390 V1R3 0x21030000

OS/390 V2R4 0x22040000

OS/390 V2R6 0x22060000

OS/390 V2R7 0x22070000

OS/390 V2R8 0x22080000

OS/390 V2R9 0x22090000

OS/390 V2R10 0x220A0000

z/OS V1R1 0x220A0000

z/OS V1R2 0x41010000

z/OS V1R3 0x41030000

z/OS V1R4 0x41040000

z/OS V1R5 0x41050000

z/OS V1R6 0x41060000

z/OS V1R7 0x41070000

In IBM C/370 V2, the high-order 8 bits were used to return the version number.

Now these 8 bits are divided into 2 fields. The first 4 bits contain the product

number and the second 4 bits contain the version number.

You must modify programs that use the information returned from __librel(). For

more information on __librel(), see the z/OS XL C/C++ Run-Time Library

Reference.

From C/370 V2 to z/OS V1R7 XL C/C++

28 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

Library messages

There are differences in messages between C/370 and z/OS Language

Environment. Some run-time messages have been added and some have been

deleted; the contents of others have been changed. Any application that is affected

by the format or contents of these messages must be updated accordingly. Do not

build dependencies on message contents or message numbers.

Refer to z/OS Language Environment Debugging Guide for details on run-time

messages and return codes.

Prefix of perror() and strerror() messages

All perror() and strerror() messages in C under z/OS Language Environment

contain a prefix (in IBM C/370 Version 1 and Version 2 there were no prefixes to

these messages). The prefix is EDCxxxxa, where xxxx is a number (always 5xxx)

and the a is either I, E, or S. See z/OS Language Environment Run-Time

Messages for a list of these messages.

Compiler messages and return codes

There are differences in messages and return codes between the C/370 compilers

and the z/OS XL C compiler. Message contents have changed, and return codes for

some messages have changed (errors have become warnings, and the other way

around). Any application that is affected by message content or return codes must

be updated accordingly. Do not build dependencies on message content,

message numbers, or return codes. See z/OS XL C/C++ Messages for a list of

messages.

_Packed structures and unions

With the z/OS XL C compiler, you can no longer do the following:

v Assign _Packed and non-_Packed structures to each other

v Assign _Packed and non-_Packed unions to each other

v Pass a _Packed union or _Packed structure as a function parameter if a

non-_Packed version is expected (or the other way around)

If you attempt to do so, the compiler issues an error message.

Alternate code points

The following alternate code points are not supported by the z/OS XL C compiler:

v X’8B’ as alternate code point for X’C0’ (the left brace)

v X’9B’ as alternate code point for X’D0’ (the right brace)

These alternate code points were supported by the C/370 and AD/Cycle C/370

compilers (the NOLOCALE option was required if you were using the AD/Cycle C/370

V1R2 compiler).

From C/370 V2 to z/OS V1R7 XL C/C++

Chapter 4. Source program compatibility 29

30 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 5. Other migration considerations

This chapter provides additional considerations on migrating applications to z/OS

V1R7 XL C/C++ that were created with one of the following compilers, and with one

of the following libraries.

Compilers:

v The IBM C/370 V2 compiler, 5688-187

v The AD/Cycle C/370 V1R2 compiler with the TARGET(COMPAT) compiler option,

5688-216

Libraries:

v The IBM C/370 V1 library, 5688-039, and C-PL/1 Common Library, 5688-082

v The IBM C/370 V2 library, 5688-188, and C-PL/1 Common Library, 5688-082

Changes that affect user JCL, CLISTs, and EXECs

This section describes changes that may affect your JCL, CLISTs and EXECs.

Return codes and messages

Library return codes and messages have been changed, and JCL, CLISTs and

EXECs that are affected by them must be changed accordingly (or else the

CEEBXITA exit must be customized to emulate the old return codes). IBM C/370

Version 1 and Version 2 return codes were from 0 to 999. However, the z/OS

Language Environment return codes have a different range. These return codes are

documented in z/OS Language Environment Debugging Guide.

Return codes greater than 4095 are returned as modulo 4095 return codes. The

return code for an abort is now 2000; it was 1000. The return code for an

unhandled SIGFPE, SIGILL, or SIGSEGV condition is now 3000; it was 2000.

Compiler message contents and return codes have changed. You must change

JCL, CLISTs, and EXECs that are affected by them. Refer to “Compiler messages

and return codes” on page 29 for more information.

Changes in data set names

The names of IBM-supplied data sets may change from one release to another.

See the z/OS Program Directory for more information on data set names.

Differences in standard streams

Under z/OS Language Environment there is no longer an automatic association of

ddnames SYSTERM, SYSERR, SYSPRINT with stderr. Command line redirection of the

type 1>&2 is necessary in batch to cause stderr and stdout to share a device.

In IBM C/370 Version 1 and Version 2, you could override the destination of error

messages by redirecting stderr. z/OS Language Environment determines the

destination of all messages from the MSGFILE run-time option. See the section on

the MSGFILE run-time option in the z/OS Language Environment Programming Guide

for more information.

© Copyright IBM Corp. 1996, 2005 31

|

|

|
|

|

|

|

Passing command-line parameters to a program

In IBM C/370 Version 1 or Version 2, if an error was detected with the parameters

being passed to the main program, the program terminated with a return code of 8

and a message indicating the reason why the program was not run. For example, if

there was an error in the redirection parameters, the message would indicate that

the program had terminated because of a redirection error.

Under z/OS Language Environment, the same message will be displayed, but the

program will also terminate with a 4093 abend, reason code 52 (x’34’). For more

information about reason codes see z/OS Language Environment Debugging

Guide.

SYSMSGS ddname

The method of specifying the language for compiler messages has changed.

Instead of specifying a messages data set for the SYSMSGS ddname, you must now

use the NATLANG run-time option. If you specify a data set for the SYSMSGS ddname, it

will be ignored.

Note: For information about the NATLANG run-time option, see the z/OS Language

Environment Customization and the z/OS Language Environment

Programming Reference.

CBCI and CBCXI procedures

As of z/OS V1R5, the CBCI and CBCXI procedures contain the variable CLBPRFX.

If you have any JCL that uses these procedures, you must either customize these

procedures (for example, at installation time) or modify your JCL to provide a value

for CLBPRFX.

Run-time options

This section describes changes that may affect your run-time options.

Ending the run-time options list

In C/370 V1 and V2, when passing only run-time options to a C/370 program, you

did not have to end the arguments with a slash (/). With z/OS Language

Environment, you must end the arguments with a slash.

With z/OS Language Environment, if you have no run-time options and the input

arguments passed to main() contains a slash, you must prefix the arguments with a

slash. JCL, CLISTs, and EXECs that are affected by the slash must be changed

accordingly.

ISASIZE, ISAINC, STAE/SPIE, LANGUAGE, and REPORT options

Use the z/OS Language Environment equivalent for the IBM C/370 Version 1 and

Version 2 run-time options on the command line and in #pragma runopts.

 ISASIZE/ISAINC becomes STACK

LANGUAGE becomes NATLANG

REPORT becomes RPTSTG

SPIE/STAE becomes TRAP

The C/370 run-time options are mapped to z/OS Language Environment

equivalents. However, if you do not use the z/OS Language Environment options,

From C/370 V2 to z/OS V1R7

32 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|

during execution you will get a warning message which cannot be suppressed. JCL,

CLISTs and EXECs that are affected by these differences must be changed

accordingly.

STACK default size

The default size and increment for the STACK run-time option have changed. If you

have not indicated the size and increment, STACK will be allocated differently when

your program is running under z/OS Language Environment. The defaults in IBM

C/370 Version 1 and Version 2 were 0K size and 0K increment. The defaults under

z/OS Language Environment without CICS are 128K size, 128K increment, and

BELOW, and with CICS are 4K size, 4080 increment, and ANYWHERE. With CICS the

default location has changed to ANYWHERE.

To summarize, in z/OS Language Environment, the IBM-supplied defaults are

STACK(128K,128K,BELOW,KEEP) without CICS and STACK(4K,4080,ANYWHERE,KEEP)

with CICS.

STACK parameters

The parameters for the STACK run-time option are all positional in z/OS Language

Environment; in IBM C/370 Version 1 and Version 2, only the first two were. The

keyword parameter could be specified if the first two were omitted. Now, to specify

only ANYWHERE you must enter: STACK(,,ANYWHERE).

HEAP default size

The default size and increment for the HEAP run-time option have changed. If you

have not indicated the size and increment, HEAP will be allocated differently when

running under z/OS Language Environment. The defaults in IBM C/370 Version 1

and Version 2 were 4K size and 4K increment. The defaults under z/OS Language

Environment without CICS are 32K size and 32K increment and with CICS are 4K

size and 4080 increment.

Two new parameters have been added, initsz24 and incrsz24. They determine

how much of the heap is allocated and incremented below the 16M line.

For information about these parameters, see the z/OS Language Environment

Programming Reference.

To summarize, under z/OS Language Environment, the IBM-supplied defaults are

HEAP(32K,32K,ANYWHERE,KEEP,8K,4K) without CICS and

HEAP(4K,4080,ANYWHERE,KEEP,4K,4080) with CICS.

HEAP parameters

In IBM C/370 Version 1 and Version 2, the first two of the four parameters for the

HEAP option were positional. The keyword parameters could be specified if the first

two were omitted. Under z/OS Language Environment, all parameters are

positional. To specify only KEEP, you must enter HEAP(,,,KEEP).

Compiler options

This section describes changes that may affect your compiler options.

From C/370 V2 to z/OS V1R7

Chapter 5. Other migration considerations 33

DECK compiler option

In IBM C/370 V1, the DECK compiler option directed the object module to the data

set associated with SYSLIN. With the z/OS XL C compiler, as with the AD/Cycle

C/370 and IBM C/370 V2 compilers, the object module is directed to the data set

associated with SYSPUNCH.

As of z/OS V1R2, the DECK compiler option is no longer supported. The replacement

for DECK functionality that routes output to DD:SYSPUNCH, is to use

OBJECT(DD:SYSPUNCH).

HWOPTS compiler option

In IBM AD/Cycle C/370 V1, the HWOPTS compiler option directed the compiler to

generate code to take advantage of different hardware. As of z/OS V1R2, the

HWOPTS compiler option is no longer supported. The replacement for it is the

ARCHITECTURE option.

INLINE compiler option

The defaults for the INLINE compiler option have changed. In the past, the default

for the threshold suboption was 250 ACUs (Abstract Code Units). With the C/MVS

V3 and z/OS XL C compilers, the default is 100 ACUs.

OMVS compiler option

In IBM AD/Cycle C/370 V1, the OMVS compiler option directed the compiler to use

the POSIX.2 standard rules for searching for files specified with #include directives.

As of z/OS V1R2, the OMVS compiler option is no longer supported. The replacement

for it is the OE option.

OPTIMIZE compiler option

In the C/370 V2R1 and subsequent compilers, OPTIMIZE mapped to OPT(1).

As of OS/390 V2R6, the C compiler maps both OPTIMIZE and OPT(1) to OPT(2).

SEARCH and LSEARCH compiler options

The include file search process has changed. Prior to the C/MVS V3R2 compiler, if

you used the LSEARCH option more than once, the compiler would only search the

libraries specified for the last LSEARCH option. The z/OS XL C/C++ compiler

searches all of the libraries specified for all of the LSEARCH options, from the point of

the last NOLSEARCH option.

Similarly, if you specify the SEARCH option more than once, the z/OS XL C/C++

compiler searches all of the libraries specified for all of the SEARCH options, from the

point of the last NOSEARCH option. Previously, only the libraries specified for the last

SEARCH option were searched.

TEST compiler option

As of the OS/390 C/C++ compilers, the default for the PATH suboption of the TEST

option has changed from NOPATH to PATH. Also, the INLINE option is ignored when

the TEST option is in effect at OPT(0), but the INLINE option is no longer ignored if

OPT(1), OPT(2), or OPT(3) is in effect.

As of C/C++ MVS V3R2, a restriction applies to the TEST compiler option if you are

using the z/OS XL C/C++ compiler. Now, the maximum number of lines in a single

From C/370 V2 to z/OS V1R7

34 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

source file cannot exceed 131,072. If you exceed this limit, the results from the

Debug Tool and z/OS Language Environment Dump Services are undefined.

Language Environment run-time options

If occurrences of ISASIZE/ISAINC, STAE/SPIE, LANGUAGE, and REPORT runopts are

specified by #pragma runopts in your source code, you may want to change them to

the z/OS Language Environment equivalent before recompiling. These options are

mapped to the z/OS Language Environment equivalent, but if you do not change

them, you will get a warning or informational message during compilation.

Changes to putenv()

As of z/OS V1R5, the C/C++ function putenv() changed to place the string passed

to putenv() directly into the array of environment variables. This behavior assures

compliance with the POSIX standard. Before the change, the storage used to define

the environment variable passed into putenv() was not added to the array of

environment variables. Instead, the system copied the string into system allocated

storage. To restore the previous behavior of putenv(), set environment variable

_EDC_PUTENV_COPY to YES.

For additional information on putenv() and _EDC_PUTENV_COPY, see z/OS XL C/C++

Run-Time Library Reference. You may also refer to z/OS XL C/C++ Programming

Guide, for information on putenv() and _EDC_PUTENV_COPY.

Precedence of Language Environment over C/370 settings for #pragma

runopts directive

If you link together C/370 and z/OS Language Environment object modules, and

both modules contain #pragma runopts, the #pragma runopts settings in the

Language Environment object module will take precedence.

System Programming C (SPC) Facility applications with #pragma

runopts

If you code a program for use in the SPC environment and you use #pragma

runopts to specify the heap or stack directives, the z/OS XL C compiler will expand

these directives according to the z/OS Language Environment defaults and rules.

Thus, the program may behave differently under z/OS Language Environment.

Decimal exceptions

z/OS Language Environment provides support for the packed decimal overflow

exception using native S/390® hardware enablement (as did the C/370 V2R2

library).

The value of the program mask in the program status word (PSW) is 4 (decimal

overflow enabled).

Migration and coexistence considerations

The following points identify migration and coexistence considerations for user

applications:

v CICS programs running under z/OS Language Environment are enabled for

decimal exceptions.

From C/370 V2 to z/OS V1R7

Chapter 5. Other migration considerations 35

v The C packed decimal support routines are not supported in an environment that

exploits asynchronous events.

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions

There are changes to application/program behavior for SIGTERM, SIGINT, SIGUSR1,

and SIGUSR2 exceptions from C/370 V2.

The differences or incompatibilities are:

v The defaults for the SIGINT, SIGTERM, SIGUSR1, and SIGUSR2 signals changed in

LE/370 Release 3, from what they were in C/370 V1 and V2 and LE/370 V1R1

and V2R2. These changes were carried into z/OS V1R7 Language Environment.

In the C/370 library and LE/370 V1R1 and V1R2, the defaults for SIGINT,

SIGUSR1, and SIGUSR2 were to ignore the signals. As of LE/370 V1R3, the defaults

are to terminate the program and return a return code of 3000. For SIGTERM, the

default has always been to terminate the program, but the return code is now

3000 whereas before it was 0.

v Applications that terminate abnormally will not drive the atexit list.

Running different versions of the libraries under CICS

You cannot run two different versions of the C/370 run-time libraries within one

CICS region.

Sometimes a C/370 Version 2 CICS interface (EDCCICS) and the z/OS Language

Environment CICS interface can be present in a CICS system through CEDA/PPT

definitions and inclusion of modules in the APF STEPLIB. Even if both versions are

present, the z/OS Language Environment version will be initialized by CICS when

the region is initialized.

CICS abend codes and messages

Abend codes such as ACC2 that were used by IBM C/370 Version 1 and Version 2

under CICS are not issued under z/OS Language Environment. An equivalent z/OS

Language Environment abend code is issued instead; for example, 4nnn.

CICS reason codes

Reason codes that appeared in the CICS message console log have been

changed. The new ones are documented in the z/OS Language Environment

Debugging Guide.

Standard stream support under CICS

Under CICS, with z/OS Language Environment, records sent to the transient data

queues associated with stdout and stderr with default settings take the form of a

message as follows:

ASA
terminal

id
transaction

id
sp Time Stamp

YYYYMMDDHHMMSS
sp data

1 4 4 1 14 1 108

where:

ASA is the carriage-control character

From C/370 V2 to z/OS V1R7

36 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

terminal id is a 4-character terminal identifier

transaction id is a 4-character transaction identifier

sp is a space

Time Stamp is the date and time displayed in the format

YYYYMMDDHHMMSS

data is the data sent to the standard streams stdout and

stderr.

C/370 V2 used a different format.

stderr output under CICS

Output from stderr is sent to the CICS transient data queue, CESE. CESE is also

used by z/OS Language Environment for run-time error messages, dumps, and

storage reports. If you previously used this file exclusively for C/370 stderr output,

you should note that the output may be different.

Transient data queue names under CICS

Transient data queue names are mapped as follows under z/OS Language

Environment:

 Old name New name

CCSI CESI

CCSO CESO

CCSE CESE

HEAP option used with the interface to CICS

In C/370 V1R2 and V2, the location of heap storage under CICS was primarily

determined by the residence mode (RMODE) of the program.The logic for

determining the location of heap was as follows:

RMODE = 24
below the

line?

Is
HEAP(...BELOW)

specified?

Allocate heap
ANY

Allocate heap
below 16M line

Yes

Yes

No

No

Allocate heap
below 16M line

Figure 2. Heap location logic

From C/370 V2 to z/OS V1R7

Chapter 5. Other migration considerations 37

|

With z/OS Language Environment, the location of heap storage is determined only

by the HEAP(...ANYWHERE|BELOW) options. RMODE does not affect where the heap

is allocated. Where the location of heap storage is important, you may want to

change source accordingly.

COBOL library routines

All of the language libraries in z/OS Language Environment are packaged as a

single unit in SCEERUN. Because of this packaging, for C-only applications, z/OS

V1R7 Language Environment

From C/370 V2 to z/OS V1R7

38 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 6. Input and output operations compatibility

Changes were made to input and output support in the C/370 V2R2 and LE/370

V1R3 libraries. These changes also apply to z/OS V1R7 Language Environment. If

your programs performed input and output operations with the C/370 V2R1 library,

you should read the changes listed in this section.

References in this chapter to previous releases or previous behavior apply to the

products listed above.

You will generally be able to migrate “well-behaved” programs: programs that do not

rely on undocumented behavior, restrictions, or invalid behaviors of previous

releases. For example, if library documentation only specified that a return code

was a negative value, and your code relies on that value being -3, your code is not

well-behaved and is relying on undocumented behavior.

Another example of a program that is not well-behaved is one that specifies

recfm=F for a terminal file and depends on Language Environment to ignore this

parameter, as it did previously.

However, you may still need to change even well-behaved code under

circumstances described in the following section.

Opening files

v When you call the fopen() or freopen() library function, you can specify each

parameter only once. If you specify any keyword parameter in the mode string

more than once, the function call fails. Previously, you could specify more than

one instance of a parameter.

v The library no longer supports uppercase open modes on calls to fopen() or

freopen(). You must specify, for example, rb instead of RB, to conform to the

ANSI/ISO standard.

v You cannot open a non-HFS file more than once for a write operation. Previous

releases allowed you, in some cases, to open a file for write more than once. For

example, you could open a file by its data set name and then again by its

ddname. This is no longer possible for non-HFS files, and is not supported.

v Previously, fopen() allowed spaces and commas as delimiters for mode string

parameters. Only commas are allowed now.

v If you are using PDSs or PDSEs, you cannot specify any spaces before the

member name.

Writing to files

v Write operations to files opened in binary mode are no longer deferred.

Previously, the library did not write a block that held nn bytes out to the system

until the user wrote nn+1 bytes to the block. The z/OS Language Environment

library follows the rules for full buffering, described in z/OS XL C/C++

Programming Guide, and writes data as soon as the block is full. The nn bytes

are still written to the file, the only difference is in the timing of when it is done.

v For non-terminal files, the backspace character ('\b') is now placed into files as

is. Previously, it backed up the file position to the beginning of the line.

v For all text I/O, truncation for fwrite() is now handled the same way that it is

handled for puts() and fputs(). If you write more data than a record can hold,

© Copyright IBM Corp. 1996, 2005 39

|
|
|
|

and your output data contains any of the terminating control characters, '\n' or

'\r' (or '\f', if you are using ASA), the library still truncates extra data;

however, recognizing that the text line is complete, the library writes subsequent

data to the next record boundary. Previously, fwrite() stopped immediately after

the library began truncating data, so that you had to add a control character

before writing any more data.

v You can now partially update a record in a file opened with type=record.

Previous libraries returned an error if you tried to make a partial update to a

record. Now, a record is updated up to the number of characters you specify, and

the remaining characters are untouched. The next update is to the next record.

v z/OS Language Environment blocks files more efficiently than some previous

libraries did. Applications that depend on the creation of short blocks may fail.

v The behavior of ASA files when you close them has changed. In previous

releases, this is what happened:

 Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n\n

abc\n\n abc\n\n\n

abc\n abc\n

In this release, you read from the file what you wrote to it. For example:

 Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n

abc\n\n abc\n\n

abc\n abc\n

In previous products, writing a single new-line character to a new file created an

empty file under MVS. z/OS Language Environment treats a single new-line

character written to a new file as a special case, because it is the last new-line

character of the file. The library writes a single blank to the file. When you read

this file, you see two new-line characters instead of one. You also see two

new-line characters on a read if you have written two new-line characters to the

file.

The behavior of appending to ASA files has also changed. The following table

shows what you get from an ASA file when you:

1. Open an ASA file for write.

2. Write abc.

3. Close the file.

4. Append xyz to the ASA file.

5. Open the same ASA file for read.

 Table 8. Appending to ASA files

abc Written to file, fclose()

then append xyz

What you read from file after fclose(), fopen()

Previous release New release

abc ==> xyz \nabc\nxyz\n same as previous release

abc ==> \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc ==> \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n ==> xyz \nabc\nxyz\n same as previous release

abc\n ==> \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

From C/370 V2 to z/OS V1R7

40 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Table 8. Appending to ASA files (continued)

abc Written to file, fclose()

then append xyz

What you read from file after fclose(), fopen()

Previous release New release

abc\n ==> \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n\n ==> xyz \nabc\n\n\nxyz\n \nabc\n\nxyz\n

abc\n\n ==> \nxyz \nabc\n\n\nxyz\n same as previous release

abc\n\n ==> \rxyz \nabc\n\n\rxyz\n same as previous release

v The behavior of DBCS strings has changed.

1. I/O now checks the value of MB_CUR_MAX to determine whether to interpret

DBCS characters within a file.

2. When MB_CUR_MAX is 4, you can no longer place control characters in the

middle of output DBCS strings for interpretation. Control characters within

DBCS strings are treated as DBCS data. This is true for terminals as well.

Previous products split the DBCS string at the '\n' (new-line) control

character position by adding an SI (Shift In) control character at the new-line

position, displaying the line on the terminal, and then adding an SO (Shift Out)

control character before the data following the new-line character. If

MB_CUR_MAX is 1, the library interprets control characters within any string, but

does not interpret DBCS strings. SO and SI characters are treated as ordinary

characters.

3. When you are writing DBCS data to text files, if there are multiple SO (Shift

Out) control-character write operations with no intervening SI (Shift In) control

character, the library discards the SO characters, and marks that a truncation

error has occurred. Previous products allowed multiple SO control-character

write operations with no intervening SI control character without issuing an

error condition.

4. When you are writing DBCS data to text files and specify an odd number of

DBCS bytes before an SI control character, the last DBCS character is

padded with a X'FE' byte. If a SIGIOERR handler exists, it is triggered.

Previous products allowed incorrectly placed SI control-character write

operations to complete without any indication of an error.

5. Now, when an SO has been issued to indicate the beginning of a DBCS string

within a text file, the DBCS must terminate within the record. The record will

have both an SO and an SI.

Repositioning within files

v The behavior of fgetpos(), fseek() and fflush() following a call to ungetc()

has changed. Previously, these functions have all ignored characters pushed

back by ungetc() and have considered the file to be at the position where the

first ungetc() character was pushed back. Also, ftell() acknowledged

characters pushed back by ungetc() by backing up one position if there was a

character pushed back. Now:

– fgetpos() behaves just as ftell()does.

– When a seek from the current position (SEEK_CUR) is performed, fseek()

accounts for any ungetc() character before moving, using the user-supplied

offset.

– fflush() moves the position back one character for every character that was

pushed back.

From C/370 V2 to z/OS V1R7

Chapter 6. Input and output operations compatibility 41

If you have applications that depend on the previous behavior of fgetpos(),

fseek(), or fflush(), you may use the new _EDC_COMPAT environment variable so

that source code need not change to compensate for the new behavior.

_EDC_COMPAT is described in z/OS XL C/C++ Programming Guide.

v For OS I/O to and from files opened in text mode, the ftell() encoding system

now supports higher blocking factors for smaller block sizes. In general, you

should not rely on ftell() values generated by code you developed using

previous releases of the library. You can try ftell() values taken in previous

releases for files opened in text or binary format if you set the environment

variable _EDC_COMPAT before you call fopen() or freopen(). Do not rely on

ftell() values saved across program boundaries. _EDC_COMPAT is described in

z/OS XL C/C++ Programming Guide.

v For record I/O, ftell() now returns the relative record number instead of an

encoded offset from the beginning of the file. You can supply the relative record

number without acquiring it from ftell(). You cannot use old ftell() values for

record I/O, regardless of the setting of _EDC_COMPAT. _EDC_COMPAT is described in

z/OS XL C/C++ Programming Guide.

v If you have used ungetc() to move the file pointer to a position before the

beginning of the file, calls to ftell() and fgetpos() now fail. Previously, ftell()

returned the value 0 for such calls, but set errno to a non-zero value. Previously,

fgetpos() did not account for ungetc() calls. See z/OS XL C/C++ Programming

Guide for information on how to change fgetpos() behavior by using

_EDC_COMPAT.

For example, suppose that you are at relative position 1 in the file and ungetc()

is performed twice. ftell() and fgetpos() will now report the relative position -1,

which is before the start of the file, causing both ftell() and fgetpos() to fail.

v After you have called ftell(), calls to setbuf() or setvbuf() may fail.

Applications should never call I/O functions between calls to fopen() or

freopen() and calls to the functions that control buffering.

Closing and reopening ASA files

The behavior of ASA files when you close and reopen them is now consistent:

 Table 9. Closing and reopening ASA files

Written to file

Physical record after close

Previous behavior New behavior

abc Char abc (1) same as previous release

Hex 4888

0123

(1)

abc\n Char abc (1) same as previous release

Hex 4888

0123

(1)

abc\n\n Char abc

0

(1)

(2)

Char abc (1)

(2)

Hex 4888

0123

F

0

(1)

(2)

Hex 4888

0123

4

0

(1)

(2)

From C/370 V2 to z/OS V1R7

42 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Table 9. Closing and reopening ASA files (continued)

Written to file

Physical record after close

Previous behavior New behavior

abc\n\n\n Char abc

-

(1)

(2)

Char abc (1)

(2)

Hex 4888

0123

6

0

(1)

(2)

Hex 4888

0123

4

0

(1)

(2)

abc\r Char abc

+

(1)

(2)

same as previous release

Hex 4888

0123

4

E

(1)

(2)

abc\f Char abc

1

(1)

(2)

same as previous release

Hex 4888

0123

F

1

(1)

(2)

Values returned by the fldata() function

There are minor changes to the values that the fldata() library function returns. It

may now return more specific information in some fields. For more information on

fldata(), see the “Input and Output” section in z/OS XL C/C++ Programming

Guide.

Error handling

The general return code for errors is now EOF. In previous products, some I/O

functions returned 1 as an error code to indicate failure. This caused some

confusion because 1 is a possible errno value as well as a return code. EOF is not a

valid errno value.

Programs that rely on specific values of errno may not run as expected because

certain errno values have changed. As of OS/390, V1R5 Language Environment,

error messages have the format EDC5xxx. You can find the error message

information for a particular errno value by applying the errno value to EDC5xxx (for

example, 021 becomes EDC5021), and looking up the EDC5xxx message in z/OS

Language Environment Debugging Guide.

Miscellaneous

OS/390

v The inheritance model for standard streams now supports repositioning.

Previously, if you opened stdout or stderr in update mode, and then called

another C program by using the ANSI-style system() function, the program that

you called inherited the standard streams, but moved the file position for stdout

or stderr to the end of the file. Now, the library does not move the file position to

the end of the file. For text files, the position is moved only to the nearest record

boundary not before the current position. This is consistent with the way stdin

behaves for text files.

From C/370 V2 to z/OS V1R7

Chapter 6. Input and output operations compatibility 43

|
|
|
|
|
|

v The values for L_tmpnam and FILENAME_MAX have been changed:

 Constant Old values New values

L_tmpnam 47 1024

FILENAME_MAX 57 1024

v The names produced by the tmpnam() library function are now different. Any code

that depends on the internal structure of these names may fail.

VSAM I/O changes

v The library no longer appends an index key when you read from an RRDS file

opened in text or binary mode.

v RRDS files opened in text or binary mode no longer support setting the access

direction to BWD.

Terminal I/O changes

v The library will now use the actual recfm and lrecl specified in the fopen() or

freopen() call that opens a terminal file. Incomplete new records in fixed binary

and record files are padded with blank characters until they are full, and the

__recfmF flag is set in the fldata() structure.

Previously, MVS terminals unconditionally set recfm=U. Terminal I/O did not

support opening files in fixed format.

v The use of an LRECL value in the fopen() or freopen() call that opens a file sets

the record length to the value specified.

Previous releases unconditionally set the record length to the default values.

v The use of a RECFM value in the fopen() or freopen() call that opens a file sets

the record format to the value specified.

Previous releases unconditionally set the record format to the default values.

v For input text terminals, an input record now has an implicit logical record

boundary at LRECL if the size of the record exceeds LRECL. The character data in

excess of LRECL is discarded, and a '\n' (new-line) character is added at the end

of the record boundary. You can now explicitly set the record length of a file as a

parameter on the fopen() call.

The old behavior was to allow input text records to span multiple LRECL blocks.

v Binary and record input terminals now flag an end-of-file condition with an empty

input record. You can clear the EOF condition by using the rewind() or

clearerr() library function.

Previous products did not allow these terminal types to signal an end-of-file

condition.

v When an input terminal requires input from the system, all output terminals with

unwritten data are flushed in a way that groups the data from the different open

terminals together, each separated from the other with a single blank character.

The old behavior is equivalent to the new behavior, except that two blank

characters separate the data from each output terminal.

From C/370 V2 to z/OS V1R7

44 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Part 3. From pre-OS/390 releases of C/C++ to z/OS V1R7 XL

C/C++

This part discusses the implications of migrating to the z/OS V1R7 XL C/C++

product when applications were created with one of the following compilers and one

of the following libraries:

Compilers:

v AD/Cycle C/370 V1R2 compiler without the TARGET(COMPAT) compiler option (refer

to Part 2 when the TARGET(COMPAT) option is specified), 5688-216

v IBM C/C++ for MVS/ESA V3R1 compiler, 5655-121

v IBM C/C++ for MVS/ESA V3R2 compiler, 5655-121

v IBM OS/390 C/C++ V1R1 compiler, 5645-001

Libraries:

v IBM SAA AD/Cycle Language Environment/370 V1R1, 5688-198

v IBM SAA AD/Cycle Language Environment/370 V1R2, 5688-198

v IBM SAA AD/Cycle Language Environment/370 V1R3, 5688-198

v IBM Language Environment for MVS & VM

v AD/Cycle C/370 Language Support Feature of MVS/ESA SP V5R1, 5655-068

and 5655-069

v C/C++ Language Feature of MVS/ESA SP V5R2, 5655-068 and 5655-069

v IBM OS/390 V1R1 Language Environment, 5645-001

Notes:

1. The OS/390 V1R1 compiler and library are equivalent to the final MVS/ESA

compiler and library.

2. As of z/OS V1R2, the C++ compiler supports Programming languages - C++

(ISO/IEC 14882:2003(E)). There are some changes in compiler behavior that

are incompatible with previous C++ compilers. Refer to Chapter 14, “Migrating

to the currently supported Standard C++,” on page 87 for more details.

This part does not discuss converting a C program to C++. The only C++ compiler

migration considerations covered are those between different versions of the C++

component of the IBM C/C++ for MVS/ESA compilers and the z/OS V1R7 XL

C/C++ compiler.

In this part, references to the products in the first column of the following table also

apply to the products in the second column.

 Table 10. Product references

References to these products Also apply to these products

LE/370 V1R3 MVS/ESA SP V5R1AD/Cycle C/370

Language Support Feature

Language Environment R4 C/C++ Language Feature of MVS/ESA SP

V5R2

Language Environment R5 C/C++ Language Feature of MVS/ESA SP

V5R2M2

© Copyright IBM Corp. 1996, 2005 45

|
|

|

|

|

|
|

|

|
|

|
|
|
|

|
|

|
|

Table 10. Product references (continued)

References to these products Also apply to these products

OS/390 V1R1 IBM C/C++ for MVS/ESA V3R2 compiler and

IBM Language Environment for MVS and VM

V1R5

46 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|

Chapter 7. Application executable program compatibility

Generally, C/370 executable programs execute successfully with z/OS V1R7

Language Environment without changing source code, or recompiling or relinking

programs.

This chapter:

v Highlights exceptions.

v Helps application programmers understand and resolve the compatibility issues

that might occur when they migrate application executable programs from a

pre-OS/390 release of C/C++ to z/OS V1R7 XL C/C++.

Executable program compatibility problems that require source changes are

discussed in Chapter 8, “Source program compatibility,” on page 51.

Notes:

1. An executable program is the output of the prelink/link or bind process. For

more information on the relationship between prelinking, linking, and binding,

see the section about prelinking, linking, and binding in z/OS XL C/C++ User’s

Guide.

2. The terms in this section having to do with linking (bind, binding, link, link-edit)

refer to the process of creating an executable program from object modules.

3. The output of a prelinking, linking, or binding process depends on where the

executable programs are stored:

v When the programs are stored in a PDS, the output is a load module.

v When the programs are stored in a PDSE or HFS, the output is a program

object.

Input and output operations

If programs that ran successfully with the C/370 V2R1 library have dependencies

on any of the input and output behaviors listed in Chapter 6, “Input and output

operations compatibility,” on page 39, these programs might require source

changes before they can run under z/OS Language Environment.

System Programming C Facility (SPC) executable programs

If you have an LE/370 V1R1 or V1R2 SPC application that was built with exception

handling, you must do the following:

v Relink it with z/OS V1R7 Language Environment, using the SCEESPC data set.

v Explicitly include the new routine @@SMASK because an automatic library call

is not enabled when you relink.

Note: When you use the EDCXERR, EDCXABRT and EDCXHDLR options to link

object modules, you are building exception handling into the application.

Inheritance of run-time options

As programming issues with the compiler are resolved, there have been changes in

the inheritance of run-time options.

© Copyright IBM Corp. 1996, 2005 47

|
|
|

|
|
|
|

|
|

|

|
|

|
|

|

|
|

Availability of standard streams and memory files with the LINK macro

With LE/370 V1R1MO, when the LINK macro was used to initiate one C main()

from another, any run-time options specified in calling a child main() were ignored.

The parent run-time options were inherited. The conditions left unhandled in the

child were propagated to the parent.

As of LE/370 V1R1M1, run-time options are no longer propagated.

With LE/370 V1R1MO, using the LINK macro to initiate a child main() restricted you

from using both standard streams and memory files in the child.As of LE/370

V1R1M1, these restrictions no longer apply. The parent’s standard streams and

memory files are shared by the child.

Heap or stack shortages with the EXEC CICS LINK command

With LE/370 V1R1, run-time options were inherited from an ancestor whenever an

EXEC CICS LINK command was used. Application developers who used STACK and

HEAP to tune CICS C applications had to take particular note of this because a large

heap or stack size specified in the first run unit of a transaction chain of run units

could cause shortages when it was allocated for each unit.

As of later releases of Language Environment, run-time options are no longer

inherited.

STAE and SPIE option mappings to TRAP suboptions

STAE and SPIE options have been replaced with the TRAP option. We recommend

that you use the TRAP option, not STAE and SPIE. However, for ease of migration, the

STAE and SPIE options are supported as long as the TRAP option is not explicitly

specified.

 Table 11. STAE and SPIE option mappings to TRAP suboptions

If the following legacy options are in

effect . . .

The result is that of the following TRAP

suboptions

STAE and SPIE TRAP(ON,SPIE)

NOSTAE and NOSPIE TRAP(OFF)

STAE and NOSPIE TRAP(OFF)

NOSTAE and SPIE TRAP(OFF)

Class library execution incompatibilities

There are execution incompatibilities for applications that use the following class

libraries:

v Collection Class Library from C++ for MVS/ESA V3R1M0, V3R1M1 or V3R2M0

v Application Support Class Library from C++ for MVS/ESA V3R1M0, V3R1M1 or

V3R2M0

You can no longer recompile and relink applications that use these class libraries.

As of z/OS V1R5, development with the IBM Open Class Library (IOC) is not

supported. You can no longer compile and link applications that use IOC classes.

This includes all the classes, templates, and facilities that are described in IBM

From Pre-OS/390 Releases to z/OS V1R7

48 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|
|

|

|
|
|
|

||

|
|
|
|

||

||

||

||
|

|

Open Class Library Reference with the two exceptions noted below. Run-time

support is provided for existing applications that use IOC, but this support will be

removed in a future release.

The following classes are still supported for application development:

v UNIX® System Laboratories (USL) I/O Stream Library

v USL Complex Mathematics Library

As of z/OS V1R5, the name of the element that provides this application

development support has changed from IBM Open Class Library to Run-Time

Library Extensions. The directory path for the header file has changed from

/usr/lpp/ioclib to /usr/lpp/cbclib.

Although support for these classes is not being removed at this time, it is

recommended that you migrate to the Standard C++ iostream and complex classes.

This is especially important if you are migrating other IOC streaming classes to

Standard C++ Library streaming classes, because combining USL and Standard

C++ Library streams in one application is not recommended. For more information

about these classes, see C/C++ Legacy Class Libraries Reference.

For information about migrating away from these classes, see IBM Open Class

Library Transition Guide.

From Pre-OS/390 Releases to z/OS V1R7

Chapter 7. Application executable program compatibility 49

|
|
|
|

50 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 8. Source program compatibility

In general, you can use source programs with the z/OS V1R7 XL C/C++ product

without modification, if they were created with one of the following:

v AD/Cycle C/370 compiler running with Language Environment V1R2 or later

v C/C++ for MVS V3R1 or V3R2 compiler programs running with Language

Environment V1R4 or later

This chapter highlights the exceptions and shows how to solve specific problems in

compatibility.

Chapter 9, “Other migration considerations,” on page 55 has information on run-time

options, which may also affect source code compatibility.

Input and output operations

If programs that ran successfully with the C/370 V2R1 library have dependencies

on any of the input and output behaviors listed in Chapter 6, “Input and output

operations compatibility,” on page 39, these programs might require source

changes before they can run under z/OS Language Environment.

SIGFPE exceptions

Decimal overflow conditions were masked in V1R1 and V1R2 of LE/370. These

conditions were enabled when the packed decimal data type was introduced in the

AD/Cycle C/370 V1R2 compiler, and continue to be enabled with z/OS V1R7

Language Environment.

If you have old load modules that accidentally generated decimal overflow

conditions, they may behave differently with z/OS V1R7 Language Environment by

raising unexpected SIGFPE exceptions. Without source alteration, such modules

cannot be migrated to the new library, and are unsupported. It is unlikely that such

modules will occur in a C-only environment. These unexpected exceptions may

occur in mixed language modules, particularly those using C and assembler code

where the assembler code explicitly manipulates the program mask.

Program mask manipulations

Programs created with LE/370 V1R1 or V1R2 that explicitly manipulated the

program mask may require source alteration to execute correctly under z/OS V1R7

Language Environment. Changes are required if you have one of the following

types of programs:

v A C program containing assembler interlanguage calls (ILC), in which the invoked

code uses the S/370 decimal instructions that might generate an unmasked

decimal overflow condition, requires modification for migration. There are two

methods for migrating the code. The first one is preferred:

– Preferred: Modify the assembler code to save the existing mask, set the new

value, and when finished, restore the saved mask.

– Change the C code so that the produced SIGFPE signal is ignored in the called

code. Example: In the following example, the SIGNAL calls surround the

overflow-producing code. The SIGFPE exception signal is ignored, and then

reenabled:

© Copyright IBM Corp. 1996, 2005 51

|
|
|
|

signal(SIGFPE, SIG_IGN); /* ignore exceptions */

 ...

 callit(): /* in called routine */

 ...

 signal(SIGFPE, SIG_DFL); /* restore default handling */

v A C program containing assembler ILCs that explicitly alter the program mask,

and do not explicitly save and restore it, also requires modification for migration.

If user code explicitly alters the state of the program mask, the value before

modification must be saved, and restored to its former value after the

modification. You must ensure that the decimal overflow program mask bit is

enabled during the execution of C code. Failure to preserve the mask may result

in unpredictable behavior.

These changes also apply in a System Programming C environment, and to

Customer Information Control System (CICS) programs in the handling and

management of the PSW mask.

Line number control

The AD/Cycle C/370 and C/MVS V3R1 compilers ignored #line when either the

EVENTS or the TEST compiler option was in effect.

As of C/MVS V3R2, the compiler does not ignore #line.

Note: For information about using #line, refer to z/OS XL C/C++ Language

Reference

Function return type sizes

Example: The following is an example of how the behavior of sizeof, when applied

to a function return type, was changed in the C/C++ MVS V3R2 compiler:

 char foo();

 ..

 s = sizeof foo();

If the example is compiled with a compiler prior to C/C++ MVS V3R2, char is

widened to int in the return type, so sizeof returns s = 4.

If the example is compiled with C/C++ MVS V3R2, OS/390 C/C++ compiler, or z/OS

XL C/C++ compiler, the size of the original type is retained. In the above example,

sizeof returns s = 1. The size of the original type of other data types such as

short and float is also retained.

If you are using OS/390 V2R4 C/C++ and subsequent compilers, and you require

sizeof to return the widened size for function return types, then you must use

#pragma wsizeof together with the WSIZEOF compiler option. For more information on

#pragma wsizeof, see the z/OS XL C/C++ Language Reference. For more

information on the WSIZEOF compiler option, see the z/OS XL C/C++ User’s Guide.

_Packed structures and unions

If you are migrating from an AD/Cycle C/370 compiler to the z/OS XL C compiler,

you can no longer do the following:

v assign _Packed and non-_Packed structures to each other

v assign _Packed and non-_Packed unions to each other

From Pre-OS/390 Releases to z/OS V1R7

52 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

|
|

|

|
|

|
|

v pass a _Packed union or _Packed structure as a function parameter if a

non-_Packed version is expected (or the other way around)

If you attempt to do so, the compiler issues an error message.

Alternate code points

The following alternate code points are not supported by the z/OS XL C/C++

compilers:

v X'8B' as alternate code point for X'C0' (the left brace)

v X'9B' as alternate code point for X'D0' (the right brace)

These alternate code points were supported by the C/370 and AD/Cycle C/370

compilers (the NOLOCALE option was required if you were using the AD/Cycle C/370

V1R2 compiler).

Support of Standard C++

As of z/OS V1R7, the C++ compiler supports Programming languages - C++

(ISO/IEC 14882:2003(E)), which documents the currently supported C++ standard.

For more information, see Chapter 14, “Migrating to the currently supported

Standard C++,” on page 87.

LANGLVL(ANSI) changes

As of the C/C++ MVS V3R2 compiler, if you specify LANGLVL(ANSI), the compiler

recognizes char, unsigned char, and signed char as three distinct types.

As of z/OS V1R2 C++, if you specify LANGLVL(ANSI), the compiler will conform to

the currently supported Standard C++. See Chapter 14, “Migrating to the currently

supported Standard C++,” on page 87 for details.

Compiler messages and return codes

There are differences in messages and return codes between different versions of

the compiler. Message contents have changed, and return codes for some

messages have changed (some errors have become warning, and in very rare

situations, some warnings have become errors). You must update accordingly any

application that is affected by message contents or return codes. Do not build

dependencies on message content, message numbers, or return codes. Refer

to z/OS XL C/C++ Messages for a list of compiler messages.

Class library source code incompatibilities

There are source code incompatibilities for applications that use the following class

libraries:

v Collection Class Library from C++ for MVS/ESA V3R1M0, V3R1M1 or V3R2M0

v Application Support Class Library from C++ for MVS/ESA V3R1M0, V3R1M1 or

V3R2M0

You can no longer recompile and relink applications that use these class libraries.

As of z/OS V1R5, development with the IBM Open Class Library (IOC) is not

supported. You can no longer compile and link applications that use IOC classes.

This includes all the clases, templates, and facilities that are described in IBM Open

From Pre-OS/390 Releases to z/OS V1R7

Chapter 8. Source program compatibility 53

|

|
|
|
|

|
|
|

Class Library Reference with the two exceptions noted below. Run-time support is

provided for existing applications that use IOC, but this support will be removed in a

future release.

The following classes are still supported for application development:

v UNIX System Laboratories (USL) I/O Stream Library

v USL Complex Mathematics Library

As of z/OS V1R5, the name of the element that provides this application

development support has changed from IBM Open Class Library to Run-Time

Library Extensions. The directory path for the header file has changed from

/usr/lpp/ioclib to /usr/lpp/cbclib.

Although support for these classes is not being removed at this time, it is

recommended that you migrate to the Standard C++ iostream and complex classes.

This is especially important if you are migrating other IOC streaming classes to

Standard C++ Library streaming classes, because combining USL and Standard

C++ Library streams in one application is not recommended. For more information

about these classes, see C/C++ Legacy Class Libraries Reference.

For information about migrating away from these classes, see IBM Open Class

Library Transition Guide.

DSECT utility and packed structures

Header files generated by the DSECT utility now use #pragma pack rather than

_Packed for packed structures. In rare cases, you may have to modify and

recompile your code.

From Pre-OS/390 Releases to z/OS V1R7

54 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|
|

Chapter 9. Other migration considerations

This chapter provides additional considerations on migrating applications from the

compilers and libraries listed in Part 3, “From pre-OS/390 releases of C/C++ to

z/OS V1R7 XL C/C++,” on page 45 to the z/OS V1R7 XL C/C++ feature.

Removal of Database Access Class Library utility

As of OS/390 V2R4 C/C++, the Database Access Class Library utility is no longer

available.

Changes that affect user JCL, CLISTs, and EXECs

This section describes changes that may affect your JCL, CLISTs, and EXECs.

CXX parameter in JCL procedures

With C++ for MVS/ESA V3R2, OS/390®, and z/OS C++ compilers, the CBCC,

CBCCL, and CBCCLG procedures, which compile C++ code, now include

parameter CXX. You must include this parameter if you have written your own JCL

to compile a C++ program. Otherwise, you invoke the C compiler.

When you pass options to the compiler, you must specify parameter CXX. You must

use the following format to specify options:

run-time options/CXX compiler options

Examples of specifying class library header files at compile time

In z/OS V1R1 and earlier compilers, using the following JCL on the compile step

would work, although it was not recommended:

//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR

// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR

// DD DSN=CBC.SCLBH.H,DISP=SHR

As of z/OS V1R2, the logical record length for the SCLBH data sets has been

increased from 80 bytes to 120 bytes. Due to this change, the SYSLIB job card

shown above no longer works, and must be removed from your JCL. In its place,

you must use the SEARCH compiler option.

Example:

SEARCH(//’CEE.SCEEH.+’,//’CBC.SCLBH.+’)

Using the SEARCH compiler option instead of a SYSLIB concatenation allows the

C++ compiler to search for files based on both the file name and file type.

SYSMSGS and SYSXMSGS ddnames

With the C/C++ for for MVS/ESA V3R2, OS/390, and z/OS XL C/C++ compilers, the

method of specifying the language for compiler messages has changed. At compile

time, instead of specifying message data sets on the SYSMSGS and SYSXMSGS

ddnames, you must now use the NATLANG run-time option. If you specify data sets

for these ddnames, they are ignored.

Note: For information about the NATLANG run-time option, see the z/OS Language

Environment Customization and the z/OS Language Environment

Programming Reference.

© Copyright IBM Corp. 1996, 2005 55

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

Changes in data set names

The names of IBM-supplied data sets may change from one release to another.

See the z/OS Program Directory for more information on data set names.

CBCI and CBCXI procedures

As of z/OS V1R5, the CBCI and CBCXI procedures contain the variable CLBPRFX.

If you have any JCL that uses these procedures, you must either customize these

procedures (for example, at installation time) or modify your JCL to provide a value

for CLBPRFX.

Decimal exceptions

z/OS Language Environment provides support for the packed decimal overflow

exception using native S/390 hardware enablement, as did LE/370 V1R3, Language

Environment V1R4, and Language Environment V1R5.

The value of the program mask in the program status word (PSW) is 4 (decimal

overflow enabled).

Migration and coexistence

The following points identify migration and coexistence considerations for user

applications:

v As of LE/370 V1R3, CICS programs were enabled for decimal exceptions.

v The C packed decimal support routines are not supported in an environment that

exploits asynchronous events.

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions

As of LE/370 V1R3, there were changes to application/program behavior for

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions from previous releases of the

LE/370 product. These changes in behavior carried over into the z/OS V1R7

Language Environment product.

The differences or incompatibilities are:

v The defaults for the SIGINT, SIGTERM, SIGUSR1, and SIGUSR2 signals changed in

LE/370 V1R3, from what they were in C/370 V1R1 and V1R2 and LE/370 V1R1

and V1R2. In the C/370 library and LE/370 V1R1 and V1R2, the defaults for

SIGINT, SIGUSR1, and SIGUSR2 were to ignore the signals. As of LE/370 V1R3, the

default is to terminate the program and return a return code of 3000. For

SIGTERM, the default has always been to terminate the program, but the return

code is now 3000 whereas before it was 0.

v Applications that terminate abnormally will not drive the atexit list.

Compiler options

This section describes changes that may affect your compiler options.

DECK compiler option

In IBM C/370 V1, the DECK compiler option directed the object module to the data

set associated with SYSLIN. With the OS/390 C and the z/OS V1R1 C compiler, as

with the AD/Cycle C/370 and IBM C/370 V2 compilers, the object module is directed

to the data set associated with SYSPUNCH.

From Pre-OS/390 releases to z/OS V1R7

56 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

As of z/OS V1R2, the DECK compiler option is no longer supported. The replacement

for DECK functionality that routes output to DD:SYSPUNCH, is to use

OBJECT(DD:SYSPUNCH).

ENUM compiler option

z/OS V1R2 introduced the ENUM option as a means for controlling the size of

enumeration types. The default setting, ENUM(SMALL), provides the same behavior in

previous releases of the compiler. If you want to use the ENUM option, it is

recommended that the same setting be used for the whole application; otherwise,

you may find inconsistencies when the same enumeration type is declared in

different compilation units. Use the #pragma enum, if necessary, to control the size of

individual enumeration types (especially in common header files).

HALT compiler option

As of C++ for MVS/ESA V3R2, the C++ compilers do not accept 33 as a valid

parameter for the HALT compiler option.

HWOPTS compiler option

In IBM AD/Cycle C/370 V1, the HWOPTS compiler option directed the compiler to

generate code to take advantage of different hardware. As of z/OS V1R2, the

HWOPTS compiler option is no longer supported. The replacement for it is the

ARCHITECTURE option.

INFO compiler option

As of z/OS V1R2, the INFO option default has been changed from NOINFO to

INFO(LAN) for C++.

As of z/OS V1R6, the INFO option is supported by the C compiler.

Note: The CHECKOUT C compiler option will continue to be supported for

backward compatibility only.

INLINE compiler option

For C, the default for the INLINE compiler option was changed to 100 ACUs

(Abstract Code Units) in the MVS/ESA V3R1 compiler. Hence, with the C for

MVS/ESA V3 and the z/OS XL C compilers, the default is 100 ACUs. In the past,

the default was 250 ACUs.

For C++, the z/OS V1R1 and earlier compilers did not accept the INLINE option but

did perform inlining at OPT with a fixed value of 100 for the threshold and 2000 for

the limit. As of z/OS V1R2, the C++ compiler accepts the INLINE option, with

defaults of 100 and 1000 for the threshold and limit, respectively. As a result of this

change, code that used to be inlined may no longer be inlined due to the decrease

in the limit from 2000 to 1000 ACUs.

LANGLVL(COMPAT) compiler option

In IBM C++ for MVS/ESA V3, the LANGLVL(COMPAT) option directed the compiler to

generate code that is compatible with older levels of C++. As of z/OS V1R2, the

LANGLVL(COMPAT) compiler option is no longer supported.

From Pre-OS/390 releases to z/OS V1R7

Chapter 9. Other migration considerations 57

OMVS compiler option

In IBM AD/Cycle C/370 V1, the OMVS compiler option directed the compiler to use

the POSIX.2 standard rules for searching for files specified with #include directives.

As of z/OS V1R2, the OMVS compiler option is no longer supported. The replacement

for it is the OE option.

OPTIMIZE compiler option

In the AD/Cycle C/370 compilers:

v OPT(0) was mapped to NOOPT

v OPT and OPT(1) were mapped to OPT(1)

v OPT(2) was mapped to OPT(2)

v OPT(3) was added to complete the list of opt levels

In the C/C++ for MVS/ESA V3 compilers, and the OS/390 V1R1 compiler:

v OPT(0) was mapped to NOOPT

v OPT, OPT(1) and OPT(2) were mapped to OPT

In the OS/390 V2R6 C/C++ compiler:

v OPT(0) was maped to NOOPT

v OPT, OPT(1) and OPT(2) were mapped to OPT(2).

While the OPT level mapping for the C/C++ for MVS/ESA V3 and OS/390 V2R6

compilers is the same, the optimization is different. The underlying compiler

technology within these compilers has changed significantly.

SEARCH and LSEARCH compiler options

The include file search process has changed. Prior to the C for MVS/ESA V3R2

compiler, if you used the LSEARCH option more than once, the compiler searched

only the libraries specified for the last LSEARCH option. The z/OS XL C/C++ compiler

searches all of the libraries specified for all of the LSEARCH options, from the point of

the last NOLSEARCH option.

Similarly, if you specify the z/OS XL C/C++ SEARCH option more than once, the z/OS

C/C++ compiler searches all of the libraries specified for all of the SEARCH options,

from the point of the last NOSEARCH option. Previously, only the libraries specified for

the last SEARCH option were searched.

SRCMSG compiler option

In IBM C++ for MVS/ESA V3, the SRCMSG option directed the compiler to add the

corresponding source code lines to the diagnostic messages that are written to

stderr. As of z/OS V1R2, the SRCMSG compiler option is no longer supported.

SYSLIB, USERLIB, SYSPATH and USERPATH compiler options

In IBM C/C++ for MVS/ESA V3, the SYSLIB, USERLIB, SYSPATH and USERPATH

compiler options directed the compiler to specified include files. As of z/OS V1R2,

these compiler options are no longer supported. Instead, you use the SEARCH and

LSEARCH options to find include files.

From Pre-OS/390 releases to z/OS V1R7

58 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

|

|

|

|

|
|
|
|

TEST compiler option

As of the OS/390 C/C++ compilers, the default for the PATH suboption of the TEST

option has changed from NOPATH to PATH. Also, the INLINE option is ignored when

the TEST option is in effect at OPT(0), but the INLINE option is no longer ignored if

OPT(1), OPT(2), or OPT(3) is in effect.

As of C/C++ MVS V3R2, a restriction applies to the TEST compiler option. Now, the

maximum number of lines in a single source file cannot exceed 131,072. If you

exceed this limit, the results from the Debug Tool and z/OS Language Environment

Dump Services are undefined.

As of z/OS V1R6, when using the c89/c++ utility, the -g flag has changed from

specifying the TEST option to DEBUG(FORMAT(DWARF)).

Note: For 64–bit environments only, you can use the new environment variable

{_DEBUG_FORMAT} to determine the debug format (DWARF or ISD) to

which the –g flag option is translated. For information about this new

environment variable and the c89/c++ utility, see z/OS XL C/C++ User’s

Guide.

Changes to putenv()

As of z/OS V1R5, the C/C++ function putenv() changed to place the string passed

to putenv() directly into the array of environment variables. This behavior assures

compliance with the POSIX standard. Before the change, the storage used to define

the environment variable passed into putenv() was not added to the array of

environment variables. Instead, the system copied the string into system allocated

storage. To restore the previous behavior of putenv(), set environment variable

_EDC_PUTENV_COPY to YES.

For additional information on putenv() and _EDC_PUTENV_COPY, see z/OS XL C/C++

Run-Time Library Reference. You may also refer to z/OS XL C/C++ Programming

Guide, for information on putenv() and _EDC_PUTENV_COPY.

Length of external variable names

As of z/OS V1R3, external names (such as entry points and external references)

can be up to 32,767 bytes long.

The z/OS V1R2 binder imposes a limit of 1024 characters for the length of external

names. Both the OS/390 C++ compiler and z/OS C++ compiler may sometimes

generate mangled names that are longer than this limit. This could occur more often

when using the Standard Template Library with the z/OS V1R2 C++ compiler.

Should you encounter this problem:

v Reduce the length of the C++ class names.

v Use #pragma map to map the long name to a short one.

v For NOXPLINK applications, use the prelinker.

Syntax for the CC command

With the C/C++ for MVS/ESA V3R2, OS/390, and z/OS XL C/C++ compilers, you

can use a new syntax to invoke the CC command.

From Pre-OS/390 releases to z/OS V1R7

Chapter 9. Other migration considerations 59

|
|

At customization time, your system programmer can customize the CC EXEC to

accept only the old syntax (the one supported by compilers before C/C++ for

MVS/ESA V3R2), only the new syntax, or both syntaxes.

You should customize the CC EXEC to accept only the new syntax, because the

old syntax may not be supported in the future.

If you customize the CC EXEC to accept both the old and new syntaxes, you must

invoke it using either the old or the new syntax, not a mixture of both. Be aware

that the old syntax does not support Hierarchical File System (HFS) files.

Refer to the z/OS Program Directory for more information about installation and

customization, and to the z/OS XL C/C++ User’s Guide for more information about

compiler options.

Time functions

You should customize your locale information. Otherwise, in rare cases, you may

encounter errors. In a POSIX application, you can supply time zone and alternative

time (for example, daylight) information with the TZ environment variable. In a

non-POSIX application, you can supply this information with the _TZ environment

variable. If no TZ environment variable is defined for a POSIX application or no _TZ

environment variable is defined for a non-POSIX application, any customized

information provided by the LC_TOD locale category is used. By setting the TZ

environment variable for a POSIX application, or the _TZ environment variable for a

non-POSIX application, or by providing customized time zone or daylight

information in an LC_TOD locale category, you allow the time functions to preserve

both time and date, correctly adjusting for alternative time on a given date.

Refer to the z/OS XL C/C++ Programming Guide for more information about both

environment variables and customizing a locale.

Abnormal termination exits

The abnormal termination exits CEEBDATX (for batch) and CEECDATX (for CICS)

are now automatically linked at install time for z/OS Language Environment; the

sample exit is no longer required. These exits were only available in the sample

library in LE/370 V1R3. They allow you to automatically produce a system dump

(with abend code 4039), when abnormal termination occurs. In previous releases of

Language Environment, only a Language Environment-formatted dump was

generated (which continues to be produced under z/OS V1R7 Language

Environment).

For a non-CICS application, you can trigger the dump by ensuring that SYSUDUMP

is defined in the GO step of the JCL that you are using (for example, by including

the statement SYSUDUMP DD SYSOUT=*). If SYSUDUMP is not included in your

JCL, or is defined as DUMMY, the dump will be suppressed. As of C/C++ for

MVS/ESA V3R1, the standard JCL procedures shipped with the compiler do not

include SYSUDUMP.

In a CICS environment, you automatically receive the default transaction dump

unless you disable it by using the CEMT transaction, and by specifying the

dumpcode ’4039’.

You can also modify CEEBDATX and CEECDATX to suppress the dumps. The exits

are available in the z/OS V1R7 Language Environment.

From Pre-OS/390 releases to z/OS V1R7

60 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Standard stream support

Under CICS, with z/OS Language Environment, records sent to the transient data

queues associated with stdout and stderr with default settings take the form of a

message as follows:

ASA
terminal

id
transaction

id
sp Time Stamp

YYYYMMDDHHMMSS
sp data

1 4 4 1 14 1 108

where:

ASA is the carriage-control character

terminal id is a 4 character terminal identifier

transaction id is a 4 character transaction identifier

sp is a space

Time Stamp is the date and time displayed in the format

YYYYMMDDHHMMSS

data is the data sent to the standard streams stdout and

stderr

This format was associated with stderr for all releases of Language Environment.

However, it has only been used for stdout since LE/370 Release 3; therefore, you

should be aware of this change if you are migrating to z/OS V1R7 Language

Environment.

Direction of compiler messages to stderr

All messages produced by the C/C++ for MVS/ESA V3R2 and z/OS XL C++

compilers are sent to stderr. In the past, some messages were sent to stdout.

Array new

In the C++ for MVS/ESA V3R1 compiler, the array version of new was not initially

supported. It is supported in a PTF (APAR PN72107) available for the C++ for

MVS/ESA V3R1 compiler, and it is also supported in the C++ for MVS/ESA V3R2

and later C++ compilers.

Example: If you are migrating from the base C/C++ for MVS/ESA V3R1 compiler to

z/OS V1R7 XL C/C++, and you have written your own global new operator, it is no

longer called when you create an array object:

 void* operator new (MyClass *, size_t sz) {

 g_new_count++;

 return MyMalloc(sz);

 }

 main() {

 X new_array[10]; // the global new operator

 // shown above will not be called if the fix for

 // APAR PN72107 or the V3R2

 // compiler is installed

 }

You have to add an overloaded operator to new[] if you require this for arrays.

From Pre-OS/390 releases to z/OS V1R7

Chapter 9. Other migration considerations 61

Compiler listings

As of OS/390 C/C++ V2 R6, OPT(1) maps to OPT(2). The compiler listing no longer

contains the part of the pseudo-assembler listing that was associated with OPT(1).

Listing formats, especially the pseudo-assembler parts, will continue to change from

release to release. Do not build dependencies on the structure or content of

listings. For information about C listings or the C++ listings for the current release,

refer to z/OS XL C/C++ User’s Guide.

From Pre-OS/390 releases to z/OS V1R7

62 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 10. Input and output operations compatibility

Changes were made to input and output support in the C/370 V2R2 and LE/370

V1R3 libraries. These changes also apply to z/OS V1R7 Language Environment.

You should read the changes listed in this section if your programs performed input

and output operations with the following products:

v LE/370 V1R1

v LE/370 V1R2

References in this chapter to previous releases or previous behavior apply to the

products listed above.

You will generally be able to migrate “well-behaved” programs: programs that do not

rely on undocumented behavior, restrictions, or invalid behaviors of previous

releases. For example, if library documentation only specified that a return code

was a negative value, and your code relies on that value being -3, your code is not

well-behaved and is relying on undocumented behavior.

Another example of a program that is not well-behaved is one that specifies

recfm=F for a terminal file and depends on Language Environment to ignore this

parameter, as it did previously.

However, you may still need to change even well-behaved code under

circumstances described in the following section.

Opening files

v When you call the fopen() or freopen() library function, you can specify each

parameter only once. If you specify any keyword parameter in the mode string

more than once, the function call fails. Previously, you could specify more than

one instance of a parameter.

v The library no longer supports uppercase open modes on calls to fopen() or

freopen(). You must specify, for example, rb instead of RB, to conform to the

ANSI/ISO standard.

v You cannot open a non-HFS file more than once for a write operation. Previous

releases allowed you, in some cases, to open a file for write more than once. For

example, you could open a file by its data set name and then again by its

ddname. This is no longer possible for non-HFS files, and is not supported.

v Previously, fopen() allowed spaces and commas as delimiters for mode string

parameters. Only commas are allowed now.

v If you are using a PDS or a PDSE, you cannot specify any spaces before the

member name.

Writing to files

v Write operations to files opened in binary mode are no longer deferred.

Previously, the library did not write a block that held nn bytes out to the system

until the user wrote nn+1 bytes to the block. The z/OS Language Environment

library follows the rules for full buffering, described in z/OS XL C/C++

Programming Guide, and writes data as soon as the block is full. The nn bytes

are still written to the file, the only difference is in the timing of when it is done.

v For non-terminal files, the backspace character ('\b') is now placed into files as

is. Previously, it backed up the file position to the beginning of the line.

© Copyright IBM Corp. 1996, 2005 63

v For all text I/O, truncation for fwrite() is now handled the same way that it is

handled for puts() and fputs(). If you write more data than a record can hold,

and your output data contains any of the terminating control characters, '\n' or

'\r' (or '\f', if you are using ASA), the library still truncates extra data;

however, recognizing that the text line is complete, the library writes subsequent

data to the next record boundary. Previously, fwrite() stopped immediately after

the library began truncating data, so that you had to add a control character

before writing any more data.

v You can now partially update a record in a file opened with type=record.

Previous libraries returned an error if you tried to make a partial update to a

record. Now, a record is updated up to the number of characters you specify, and

the remaining characters are untouched. The next update is to the next record.

v z/OS Language Environment blocks files more efficiently than some previous

libraries did. Applications that depend on the creation of short blocks may fail.

v The behavior of ASA files when you close them has changed. In previous

releases, this is what happened:

 Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n\n

abc\n\n abc\n\n\n

abc\n abc\n

In this release, you read from the file what you wrote to it. For example:

 Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n

abc\n\n abc\n\n

abc\n abc\n

In previous products, writing a single new-line character to a new file created an

empty file under MVS. z/OS Language Environment treats a single new-line

characters written to a new file as a special case, because it is the last new-line

character of the file. The library writes a single blank to the file. When you read

this file, you see two new-line characters instead of one. You also see two

new-line characters on a read if you have written two new-line characters to the

file.

The behavior of appending to ASA files has also changed. The following table

shows what you get from an ASA file when you:

1. Open an ASA file for write.

2. Write abc.

3. Close the file.

4. Append xyz to the ASA file.

5. Open the same ASA file for read.

 Table 12. Appending to ASA files

abc Written to file, fclose()

then append xyz

What you read from file after fclose(), fopen()

Previous release New release

abc ==> xyz \nabc\nxyz\n same as previous release

abc ==> \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc ==> \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

From Pre-OS/390 Releases to z/OS V1R7

64 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Table 12. Appending to ASA files (continued)

abc Written to file, fclose()

then append xyz

What you read from file after fclose(), fopen()

Previous release New release

abc\n ==> xyz \nabc\nxyz\n same as previous release

abc\n ==> \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc\n ==> \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n\n ==> xyz \nabc\n\n\nxyz\n \nabc\n\nxyz\n

abc\n\n ==> \nxyz \nabc\n\n\nxyz\n same as previous release

abc\n\n ==> \rxyz \nabc\n\n\rxyz\n same as previous release

v The behavior of DBCS strings has changed.

1. I/O now checks the value of MB_CUR_MAX to determine whether to interpret

DBCS characters within a file.

2. When MB_CUR_MAX is 4, you can no longer place control characters in the

middle of output DBCS strings for interpretation. Control characters within

DBCS strings are treated as DBCS data. This is true for terminals as well.

Previous products split the DBCS string at the '\n' (new-line) control

character position by adding an SI (Shift In) control character at the new-line

position, displaying the line on the terminal, and then adding an SO (Shift Out)

control character before the data following the new-line character. If

MB_CUR_MAX is 1, the library interprets control characters within any string, but

does not interpret DBCS strings. SO and SI characters are treated as ordinary

characters.

3. When you are writing DBCS data to text files, if there are multiple SO (Shift

Out) control-character write operations with no intervening SI (Shift In) control

character, the library discards the SO characters, and marks that a truncation

error has occurred. Previous products allowed multiple SO control-character

write operations with no intervening SI control character without issuing an

error condition.

4. When you are writing DBCS data to text files and specify an odd number of

DBCS bytes before an SI control character, the last DBCS character is

padded with a X'FE' byte. If a SIGIOERR handler exists, it is triggered.

Previous products allowed incorrectly placed SI control-character write

operations to complete without any indication of an error.

5. Now, when an SO has been issued to indicate the beginning of a DBCS string

within a text file, the DBCS must terminate within the record. The record will

have both an SO and an SI.

Repositioning within files

v The behavior of fgetpos(), fseek() and fflush() following a call to ungetc()

has changed. Previously, these functions have all ignored characters pushed

back by ungetc() and have considered the file to be at the position where the

first ungetc() character was pushed back. Also, ftell() acknowledged

characters pushed back by ungetc() by backing up one position if there was a

character pushed back. Now,

– fgetpos() behaves just as ftell()does

– When a seek from the current position (SEEK_CUR) is performed, fseek()

accounts for any ungetc() character before moving, using the user-supplied

offset

From Pre-OS/390 Releases to z/OS V1R7

Chapter 10. Input and output operations compatibility 65

– fflush() moves the position back one character for every character that was

pushed back.

If you have applications that depend on the previous behavior of fgetpos(),

fseek(), or fflush(), you may use the new _EDC_COMPAT environment variable so

thatsource code need not change to compensate for the new behavior.

_EDC_COMPAT is described in z/OS XL C/C++ Programming Guide.

v For OS I/O to and from files opened in text mode, the ftell() encoding system

now supports higher blocking factors for smaller block sizes. In general, you

should not rely on ftell() values generated by code you developed using

previous releases of the library. You can try ftell() values taken in previous

releases for files opened in text or binary format if you set the environment

variable _EDC_COMPAT before you call fopen() or freopen(). Do not rely on

ftell() values saved across program boundaries. _EDC_COMPAT is described in

z/OS XL C/C++ Programming Guide.

v For record I/O, ftell() now returns the relative record number instead of an

encoded offset from the beginning of the file. You can supply the relative record

number without acquiring it from ftell(). You cannot use old ftell() values for

record I/O, regardless of the setting of _EDC_COMPAT. _EDC_COMPAT is described in

z/OS XL C/C++ Programming Guide .

v If you have used ungetc() to move the file pointer to a position before the

beginning of the file, calls to ftell() and fgetpos() now fail. Previously, ftell()

returned the value 0 for such calls, but set errno to a non-zero value. Previously,

fgetpos() did not account for ungetc() calls. See z/OS XL C/C++ Programming

Guide for information on how to change fgetpos() behavior by using

_EDC_COMPAT.

For example, suppose that you are at relative position 1 in the file and ungetc()

is performed twice. ftell() and fgetpos() will now report the relative position -1,

which is before the start of the file, causing both ftell() and fgetpos() to fail.

v After you have called ftell(), calls to setbuf() or setvbuf() may fail.

Applications should never call I/O functions between calls to fopen() or

freopen() and calls to the functions that control buffering.

Closing and reopening ASA files

The behavior of ASA files when you close and reopen them is now consistent:

 Table 13. Closing and reopening ASA files

Written to file

Physical record after close

Previous behavior New behavior

abc Char abc (1) same as previous release

Hex 4888

0123

(1)

abc\n Char abc (1) same as previous release

Hex 4888

0123

(1)

abc\n\n Char abc

0

(1)

(2)

Char abc (1)

(2)

Hex 4888

0123

F

0

(1)

(2)

Hex 4888

0123

4

0

(1)

(2)

From Pre-OS/390 Releases to z/OS V1R7

66 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Table 13. Closing and reopening ASA files (continued)

Written to file

Physical record after close

Previous behavior New behavior

abc\n\n\n Char abc

-

(1)

(2)

Char abc (1)

(2)

Hex 4888

0123

6

0

(1)

(2)

Hex 4888

0123

4

0

(1)

(2)

abc\r Char abc

+

(1)

(2)

same as previous release

Hex 4888

0123

4

E

(1)

(2)

abc\f Char abc

1

(1)

(2)

same as previous release

Hex 4888

0123

F

1

(1)

(2)

fldata() return values

There are minor changes to the values that the fldata() library function returns. It

may now return more specific information in some fields. For more information on

fldata(), see the “Input and Output” section in z/OS XL C/C++ Programming

Guide.

Error handling

The general return code for errors is now EOF. In previous products, some I/O

functions returned 1 as an error code to indicate failure. This caused some

confusion, as 1 is a possible errno value as well as a return code. EOF is not a valid

errno value.

Programs that rely on specific values of errno may not run as expected, because

certain errno values have changed. As of OS/390 Language Environment V1R5,

error messages have the format EDC5xxx. You can find the error message

information for a particular errno value by applying the errno value to EDC5xxx (for

example, 021 becomes EDC5021), and looking up the EDC5xxx message in z/OS

Language Environment Debugging Guide.

Miscellaneous

v The inheritance model for standard streams now supports repositioning.

Previously, if you opened stdout or stderr in update mode, and then called

another C program by using the ANSI-style system() function, the program that

you called inherited the standard streams, but moved the file position for stdout

or stderr to the end of the file. Now, the library does not move the file position to

the end of the file. For text files, the position is moved only to the nearest record

boundary not before the current position. This is consistent with the way stdin

behaves for text files.

From Pre-OS/390 Releases to z/OS V1R7

Chapter 10. Input and output operations compatibility 67

v The values for L_tmpnam and FILENAME_MAX have been changed:

 Constant Old values New values

L_tmpnam 47 1024

FILENAME_MAX 57 1024

v The names produced by the tmpnam() library function are now different. Any code

that depends on the internal structure of these names may fail.

VSAM I/O changes

v The library no longer appends an index key when you read from an RRDS file

opened in text or binary mode.

v RRDS files opened in text or binary mode no longer support setting the access

direction to BWD.

Terminal I/O changes

v The library will now use the actual recfm and lrecl specified in the fopen() or

freopen() call that opens a terminal file. Incomplete new records in fixed binary

and record files are padded with blank characters until they are full, and the

__recfmF flag is set in the fldata() structure.

Previously, MVS terminals unconditionally set recfm=U. Terminal I/O did not

support opening files in fixed format.

v The use of an LRECL value in the fopen() or freopen() call that opens a file sets

the record length to the value specified.

Previous releases unconditionally set the record length to the default values.

v The use of a RECFM value in the fopen() or freopen() call that opens a file sets

the record format to the value specified.

Previous releases unconditionally set the record format to the default values.

v For input text terminals, an input record now has an implicit logical record

boundary at LRECL if the size of the record exceeds LRECL. The character data in

excess of LRECL is discarded, and a '\n' (new-line) character is added at the end

of the record boundary. You can now explicitly set the record length of a file as a

parameter on the fopen() call.

The old behavior was to allow input text records to span multiple LRECL blocks.

v Binary and record input terminals now flag an end-of-file condition with an empty

input record. You can clear the EOF condition by using the rewind() or

clearerr() library function.

Previous products did not allow these terminal types to signal an end-of-file

condition.

v When an input terminal requires input from the system, all output terminals with

unwritten data are flushed in a way that groups the data from the different open

terminals together, each separated from the other with a single blank character.

The old behavior is equivalent to the new behavior, except that two blank

characters separate the data from each output terminal.

From Pre-OS/390 Releases to z/OS V1R7

68 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Part 4. From OS/390 C/C++ to z/OS V1R7 XL C/C++

This part discusses the implications of migrating applications that were created with

one of the following compilers and one of the following libraries to the z/OS V1R7

XL C/C++ product.

Notes:

1. As of z/OS V1R7 XL C/C++, OS/390 V2R10 compiler is no longer shipped with

the z/OS product. The OS/390 V2R10 compiler is equivalent to the z/OS V1R1

compiler.

2. The OS/390 V1R1 compiler and library were equivalent to the final MVS/ESA

compiler and library, and are described in Part 3 of this book.

Compilers:

v IBM OS/390 C/C++ V1R2 compiler, 5645-001

v IBM OS/390 C/C++ V1R3 compiler, 5645-001

v IBM OS/390 C/C++ V2R4 (or V2R5) compiler, 5647-A01

v IBM OS/390 C/C++ V2R6 (or V2R7 or V2R8) compiler, 5647-A01

v IBM OS/390 C/C++ V2R9 compiler, 5647-A01

v IBM OS/390 C/C++ V2R10 compiler, 5647-A01

v IBM z/OS C/C++ V1R1 compiler, 5694-A01

Libraries:

v IBM OS/390 V1R2 Language Environment, 5645-001

v IBM OS/390 V1R3 Language Environment, 5645-001

v IBM OS/390 V1R4 Language Environment, 5647-A01

v IBM OS/390 V1R5 Language Environment, 5647-A01

v IBM OS/390 V1R6 Language Environment, 5647-A01

v IBM OS/390 V1R7 Language Environment, 5647-A01

v IBM OS/390 V1R8 Language Environment, 5647-A01

v IBM OS/390 V1R9 Language Environment, 5647-A01

v IBM OS/390 V1R10 Language Environment, 5647-A01

v IBM z/OS V1R1 Language Environment, 5694-A01

© Copyright IBM Corp. 1996, 2005 69

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

70 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 11. Compiler changes between OS/390 C/C++ and

z/OS V1R7 XL C/C++

This chapter describes the compiler changes that you may encounter if you are

migrating from a previous release of OS/390 C/C++ or z/OS V1R1 C/C++ to z/OS

V1R7 XL C/C++. Also refer to Chapter 14, “Migrating to the currently supported

Standard C++,” on page 87 for details on support of Programming languages - C++

(ISO/IEC 14882:2003(E)), which documents the currently supported Standard C++.

Compiler changes

Potential impact on memory requirements

Memory requirements for compilation may increase for successive releases as new

logic is added. If you cannot recompile an application that you successfully

compiled with a previous release of the compiler, try increasing the region size.

Removal of Model Tool support

As of OS/390 V2R10, the Model Tool is no longer available.

1998 Standard C++ support

As of z/OS V1R2, the C++ compiler supports Programming languages - C++

(ISO/IEC 14882:1998(E)). See Chapter 14, “Migrating to the currently supported

Standard C++,” on page 87 for details.

Addition of the #pragma reachable and #pragma leaves directives

These pragmas help the optimizer in moving code around the function call site

when exploring opportunities for optimization. Since the addition of these pragmas

in OS/390 V2R9, the optimizer is more aggressive.

Functions that exhibit the leave and reachable properties must be identified by

these pragmas. The C run-time library functions setjmp and longjmp (and related

functions such as sigsetjmp, siglongjmp) are such functions. If your version of

setjmp.h does not include these pragmas, you should add them to your program

code as follows:

 #pragma leaves (longjmp, _longjmp, siglongjmp)

 #pragma reachable (setjmp, _setjmp, sigsetjmp)

Alternatively, if the functions refer to the C run-time library provided by the system

(or another library that strictly conforms to the C standard), you can turn on the

LIBANSI option.

For more information on using #pragma reachable and #pragma leaves directives,

refer to z/OS XL C/C++ Language Reference.

Reentrant variables when the compiler option is NORENT

In previous releases of the compiler, #pragma variable (name, RENT) had no effect

if the compiler option was NORENT. As of OS/390 V2R9, a variable can be reentrant

even if the compiler option is NORENT.

© Copyright IBM Corp. 1996, 2005 71

|

|
|
|
|
|

|

|

|

|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|

This change may cause some programs that compiled and linked successfully in

previous releases to fail during link-edit in the current release. This applies if all of

the following are true:

v The program is written in C and compiled with the NORENT option

v At least one variable is reentrant

v The program is compiled and linked with the output directed to a PDS and the

prelinker was NOT used. JCL procedures that may have been used to do this in

previous releases are: EDCCL, EDCCLG, EDCL, and EDCLG (not all of these

procedures are available with the z/OS V1R7 compiler).

In previous releases, #pragma variable (name, NORENT) was ignored for static

variables. As of OS/390 V2R10, this pragma is accepted if the ROCONST option is

turned on, and the variable is const qualified and not initialized with an address.

Compiler options

Changes in default settings

ARCHITECTURE compiler option: As of z/OS V1R6, the default value of the

ARCHITECTURE compiler option is 5.

In OS/390 V2R10 to z/OS V1R5 releases, the default value of the ARCHITECTURE

compiler option is 2. In OS/390 V2R9 and previous releases, the default value of

the ARCHITECTURE compiler option is 0.

CHECKOUT(CAST) compiler suboption: This suboption instructs the C compiler

to check the source code for pointer casting that might affect optimization, that is,

those castings that violate the ansi-aliasing rule. (Refer to z/OS XL C/C++ User’s

Guide for more details about ANSIALIAS option.) Prior to z/OS V1R2, the compiler

issued a WARNING message whenever this condition was detected. As of z/OS

V1R2, this message is INFORMATIONAL. If you wish to be alerted by the compiler

that this message has been issued, you can use the HALTONMSG compiler option.

The HALTONMSG option causes the compiler to stop after source code analysis, skip

the code generation, and return with a return code of 12.

DIGRAPH compiler option: As of z/OS V1R2, the DIGRAPH option default for C

and C++ has been changed from NODIGRAPH to DIGRAPH.

INFO compiler option: As of z/OS V1R2, the INFO option default has been

changed from NOINFO to INFO(LAN) for C++.

INLINE compiler option: For C++, the z/OS V1R1 and earlier compilers did not

allow you to change the inlining threshold. These compilers performed inlining at

OPT with a fixed value of 100 for the threshold and 2000 for the limit.

As of z/OS V1R2, the C++ compiler accepts the INLINE option, with defaults of 100

and 1000 for the threshold and limit, respectively. As a result of this change, code

that used to be inlined may no longer be inlined due to the decrease in the limit

from 2000 to 1000 ACUs (Abstract Code Units).

OPTIMIZE compiler option: In the OS/390 V1R2, V1R3, V2R4, and V2R5 C/C++

compilers:

v OPT(0) mapped to NOOPT

v OPT and OPT(1) mapped to OPT(1)

v OPT(2) mapped to OPT(2)

From OS/390 C/C++ to z/OS V1R7 XL C/C++

72 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|

|

|

|

As of OS/390 V2R6:

v OPT(0) maps to NOOPT

v OPT, OPT(1) and OPT(2) map to OPT(2)

ROSTRING compiler option: As of z/OS V1R2, the ROSTRING option default for C

is changed from NOROSTRING to ROSTRING. The default for C++ has always been

ROSTRING.

ROSTRING informs the compiler that string literals are read-only, thus allowing more

freedom for the compiler to handle string literals. If you are not sure whether your

program modifies string literals or not, specify the NOROSTRING compiler option.

ROCONST compiler option: As of z/OS V1R2, the ROCONST option default for C++

is changed from NOROCONST to ROCONST. The default for C remains NOROCONST.

STATICINLINE compiler option: As of z/OS V1R2, the compiler supports the

STATICINLINE compiler option and the default is NOSTATICINLINE. Specify

STATICINLINE for compatibility with C++ compilers provided by previous versions of

the compiler. For more information about STATICINLINE, refer to z/OS XL C/C++

User’s Guide.

TARGET compiler option: The TARGET compiler option allows you to compile an

application using the current compiler, and then link and run the application on a

lower level system. From release to release, the compiler supports a changing list

of TARGET suboptions. As newer releases are added to the list, older releases are

removed. Because of enhancements and optimizations added to the compiler in a

new release, the same TARGET setting may not generate exactly the same code

from one release to the next.

As of z/OS V1R7, targeting z/OS V1R3 and earlier releases is no longer supported.

The earliest release that can be targeted is zOSV1R4.

New compiler option that may affect source code

ENUM compiler option: z/OS V1R2 introduced the ENUM option as a means for

controlling the size of enumeration types. The default setting, ENUM(SMALL), provides

the same behavior that occurred in previous releases of the compiler.

If you want to use the ENUM option, it is recommended that the same setting be used

for the whole application; otherwise, you may find inconsistencies when the same

enumeration type is declared in different compilation units. Use the #pragma enum, if

necessary, to control the size of individual enumeration types (especially in common

header files).

Compiler options that are no longer supported

As of z/OS V1R2, the following compiler options are no longer supported:

v DECK

The replacement for DECK functionality that routes output to DD:SYSPUNCH is to use

OBJECT(DD:SYSPUNCH).

v GENPCH

v HWOPTS

The replacement for HWOPTS is ARCHITECTURE.

v LANGLVL(COMPAT)

v OMVS

From OS/390 C/C++ to z/OS V1R7 XL C/C++

Chapter 11. Compiler changes between OS/390 C/C++ and z/OS V1R7 XL C/C++ 73

|
|

|
|
|
|
|
|
|

|
|

The replacement for OMVS is OE.

v SRCMSG

v SYSLIB

The replacement for SYSLIB is SEARCH.

v SYSPATH

The replacement for SYSPATH is SEARCH.

v USEPCH

v USERLIB

The replacement for USERLIB is LSEARCH.

v USERPATH

The replacement for USERPATH is LSEARCH.

As of OS/390 V2R10, the following SOM-related compiler options are no longer

supported:

v SOM | NOSOM

v SOMEinit | NOSOMEinit

v SOMGs | NOSOMGs

v SOMRo | NOSOMRo

v SOMVolattr | NOSOMVolattr

v XSominc | NOXSominc

As of OS/390 V2R4, the IDL compiler option is no longer available. If you continue

to require IDL for your applications, new IDL or IDL modifications must be coded by

hand. You can then use the IDL compiler to generate your C/C++ source code.

Compiler messages and return codes

From release to release, message contents often change and severity levels may

also change (for example, an error becoming a warning). These changes to the

severity level may affect the return code of the compilation.

You must update any application that is affected by message contents or return

codes. Do not build dependencies on message content, message numbers, or

return codes. See z/OS XL C/C++ Messages for a list of compiler messages.

Changes in data set names

The names of IBM-supplied data sets may change from one release to another.

See the z/OS Program Directory for more information on data set names.

Compiler listings

As of OS/390 V2R6 C/C++, OPT(1) maps to OPT(2). The compiler listing no longer

contains the part of the pseudo-assembler listing that was associated with OPT(1).

Listing formats, especially the pseudo-assembler parts, will continue to change from

release to release. Do not build dependencies on the structure or content of

listings. For information about C listings or the C++ listings for the current release,

refer to z/OS XL C/C++ User’s Guide.

Changes that affect c89 invocation

As of z/OS V1R6, the –g flag option is no longer translated to the TEST compiler

option.

From OS/390 C/C++ to z/OS V1R7 XL C/C++

74 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|
|
|
|

|
|

Note: The TEST and GONUMBER options remain unchanged, but work only with 32-bit

compiles.

A new environment variable _DEBUG_FORMAT has been introduced to enable users to

request the old translation of the -g flag option for 32-bit compiles:

v If _DEBUG_FORMAT equals DWARF (the default), -g is translated to

DEBUG(FORMAT(DWARF)).

v If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old translation).

For non-DLL C++ compiles, a dummy definition side file will be allocated to prevent

the binder from issuing a warning message. If you do want the binder to issue a

warning message, when an export symbol is encountered, specify the DLL=NO option

for the link-editing phase.

For more information, see the c89 utility information in z/OS XL C/C++ User’s

Guide.

Changes that affect user JCL

Examples of specifying class library header files at compile time

In z/OS V1R1 C/C++, OS/390 V2R10, and earlier compilers, using the following

JCL on the compile step would work, although it is not recommended:

//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR

// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR

// DD DSN=CBC.SCLBH.H,DISP=SHR

As of z/OS V1R2, the record size for the SCLBH data sets have been increased

from LRECL=80 to LRECL=120. Due to this change, the SYSLIB shown above will no

longer work, and must be removed from your JCL. The replacement for this is the

SEARCH compiler option, as in the following example:

SEARCH(//’CEE.SCEEH.+’,//’CBC.SCLBH.+’)

Using the SEARCH compiler option instead of a SYSLIB concatenation allows the

C++ compiler to search for files based on both the file name and file type.

CBCI and CBCXI procedures

As of z/OS V1R5, the CBCI and CBCXI procedures contain the variable CLBPRFX.

If you have any JCL that uses these procedures, you must either customize these

procedures (for example, at installation time) or modify your JCL to provide a value

for CLBPRFX.

Changes that affect Interprocedural Analysis

Note: For detailed information about using IPA Link step, refer to the z/OS XL

C/C++ User’s Guide.

IPA object module binary compatibility

Release-to-release binary compatibility is maintained by the z/OS XL C/C++ IPA

Compile and IPA Link as follows:

v An object file produced by an IPA Compile which contains IPA Object or

combined IPA and conventional object information can be used as input to the

IPA Link of the same or later Version/Release of the compiler.

From OS/390 C/C++ to z/OS V1R7 XL C/C++

Chapter 11. Compiler changes between OS/390 C/C++ and z/OS V1R7 XL C/C++ 75

|
|

|

|
|

v An object file produced by an IPA Compile which contains IPA Object or

combined IPA and conventional object information cannot be used as input by

the IPA Link of an earlier Version/Release of the compiler. If this is attempted, an

error diagnostic message will be issued by the IPA Link.

v Note that if the IPA object is reproduced by a later IPA Compile, additional

optimizations may be performed and the resulting application program may

perform better.

Exception: The IPA object files produced by the OS/390 V1R2 C IPA Compile.

These must by recompiled from the program source using an OS/390 V1R3 or later

compiler before attempting to process them with the z/OS V1R7 XL C/C++ IPA Link.

IPA Link Step defaults

As of OS/390 V1R3, the following IPA Link Step defaults changed:

v The default optimization level is OPT(1)

v The default is INLINE, unless NOOPT, OPT(0) or NOINLINE is specified.

v The default inlining threshold is now 1000 ACUs (Abstract Code Units). With

OS/390 C/C++ V1R2, the threshold was 100 ACUs.

v The default expansion threshold is now 8000 ACUs. With OS/390 C/C++ V1R2,

the threshold was 1000 ACUs.

As of OS/390 V2R6, the default optimization level for the IPA Link step is OPT(2).

Changes that affect data type support

Effect of ARCH level on conversion from floating point to integer type

Consider the following piece of code where a floating point type is converted to a

signed integer type:

 double x;

 int i;

 /* ... */

 i = x; /* overflow if x is too large */

 /* value of i undefined */

When the conversion causes an overflow (that is, the floating type value is larger

than INT_MAX), the behavior is undefined according to the C Standard.

The actual result depends on the ARCHITECTURE level (the ARCH option), which

determines the machine instruction used to do the conversion. For example, there

are input values that would result in a large negative value for ARCH(2) and below,

while the same input would result in a large positive value for ARCH(3) and above.

If overflow processing is important to the program, it should be checked explicitly.

For example:

 double x;

 int i;

 if (x < (double) INT_MAX)

 i = x;

 else {

 /* overflow */

 }

From OS/390 C/C++ to z/OS V1R7 XL C/C++

76 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|

|
|
|

|
|

|

|

Compiler-defined _LONG_LONG macro

The long long data type is supported as a native data type when the

LANGLVL(LONGLONG) option is turned on. This option is turned on by default by the

compiler option LANGLVL(EXTENDED). The _LONG_LONG macro is predefined for all

language levels other than ANSI.

As of z/OS V1R6, when LANGLVL(LONGLONG) is turned on, the _LONG_LONG macro is

defined by the compiler.

 Attention: If you have defined your own _LONG_LONG macro in previous compiler

releases, you must remove this user-defined macro before compiling your program.

From OS/390 C/C++ to z/OS V1R7 XL C/C++

Chapter 11. Compiler changes between OS/390 C/C++ and z/OS V1R7 XL C/C++ 77

|

|
|
|
|

|
|

|
|

78 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 12. Language Environment changes between OS/390

C/C++ and z/OS V1R7 XL C/C++

This chapter describes the Language Environment elements that may impact your

migration from a release of OS/390 C/C++ or z/OS V1R1 C/C++ to z/OS V1R7 XL

C/C++.

Name conflicts with run-time library functions

When taking code previously compiled and link-edited on a system earlier than

OS/390 V2R4, and moving to a system at OS/390 V2R4 or later, you might have a

problem with name conflicts if both the following are true:

1. You created functions with the same name as library functions.

2. When linking your application you included the IBM supplied Language

Environment link library before the files that contain your function definitions.

Previous releases of the OS/390 C/C++ run-time headers used the #pragma map

directive to convert many function names into identifiers prefixed with “@@”. For

example, if you included fcntl.h in your source, a reference to open() in your

source code resulted in an external name @@OPEN in the object code. As of OS/390

V2R4 many pragma maps have been eliminated. If you created functions with the

same name as library functions, you must ensure that the file containing your

version of the function precedes the IBM supplied Language Environment link

library in the search order when linking your application. If you have object modules

containing identifiers like OPEN that you want resolved to your version of open(), you

may need to alter your JCL to ensure that your version precedes the IBM supplied

Language Environment link library in the search order.

Also, if you have multiple, interdependent modules that rely on the name mapping

present in prior releases, you cannot recompile one without recompiling the others.

For example, module A includes fcntl.h and calls open() resulting in a reference to

@@OPEN in the object code. Module B implements your version of open() and also

includes fcntl.h, so that the external name of the called function is mapped to

@@OPEN. You must recompile both modules.

Table 14 lists the functions that had pragma maps deleted in OS/390 V2R4.

 Table 14. Functions that had pragma maps deleted

____loc1() __atoe() __atoe_l() __cnvblk() __dlght()

__etoa() __etoa_l() __gderr() __getipc() __ipdbcs()

__ipdspx() __iphost() __ipmsgc() __ipnode() __iptcpn()

__opargf() __operrf() __opindf() __opoptf() __sigerr()

__sigign() __sigpro() __tzone() __wsinit() _longjmp()

_setjmp() _tolower() _toupper() accept() access()

alarm() a64l() basename() bcmp() bcopy()

bind() brk() bzero() catclose() catgets()

catopen() cclass() chaudit() chdir() chmod()

chown() chroot() clearenv() clearenv() close()

closedir() closelog() clrmemf() confstr() connect()

creat() crypt() ctdli() ctdli() ctermid()

ctermid() cuserid() cuserid() dirname() drand48()

dup() dup2() dynalloc() dynfree() ecvt()

encrypt() endgrent() endpwent() erand48() execl()

© Copyright IBM Corp. 1996, 2005 79

|

|
|
|

Table 14. Functions that had pragma maps deleted (continued)

execle() execlp() execv() execve() execvp()

fattach() fchaudit() fchdir() fchmod() fcntl()

fcvt() fdelrec() fdetach() fetch() fetchep()

ffs() fileno() fldata() flocate() fmtmsg()

fnmatch() fork() fstat() fstatvfs() ftime()

ftok() ftw() fupdate() gcsp() gcvt()

getcwd() getdate() getegid() geteuid() getgid()

getgrent() getgrgid() getgrnam() getmsg() getopt()

getopt() getpass() getpgid() getpgrp() getpid()

getpmsg() getppid() getpwent() getpwnam() getpwuid()

getsid() getsyntx() getuid() getutxid() getw()

getwd() glob() globfree() grantpt() hcreate()

hdestroy() hsearch() iconv() index() insque()

ioctl() ioctl() isatty() isnan() jrand48()

kill() killpg() lchown() lcong48() lfind()

link() listen() lockf() lrand48() lsearch()

lseek() lstat() l64a() maxcoll() maxdesc()

memccpy() mkdir() mkfifo() mkstemp() mktemp()

mmap() mount() mprotect() mrand48() msgctl()

msgget() msgrcv() msgsnd() msgxrcv() msync()

munmap() nftw() nice() nlist() nrand48()

open() opendir() openlog() pathconf() pause()

pclose() pipe() poll() popen() ptsname()

putenv() putmsg() putpmsg() putw() random()

re_comp() re_exec() read() readdir() readv()

realpath() recv() recvfrom() regcmp() regcomp()

regerror() regex() regexec() regfree() release()

remque() rexec() rindex() rmdir() sbrk()

scalb() seed48() seekdir() semctl() semget()

semop() send() sendto() setegid() setenv()

setenv() seteuid() setgid() setgrent() setkey()

setpeer() setpgid() setpgrp() setpwent() setregid()

setreuid() setsid() setstate() setuid() shmat()

shmctl() shmdt() shmget() shutdown() sighold()

sigpause() sigrelse() sigset() sigstack() sigwait()

sleep() socket() spawn() spawnp() srandom()

srand48() stat() statvfs() strdup() strfmon()

strptime() svc99() swab() sync() sysconf()

syslog() t_accept() t_alloc() t_bind() t_close()

t_error() t_free() t_listen() t_look() t_open()

t_rcv() t_rcvdis() t_rcvrel() t_snd() t_snddis()

t_sndrel() t_sync() t_unbind() tcdrain() tcflow()

tcflush() tcgetsid() tdelete() telldir() tempnam()

tfind() times() tinit() truncate() tsearch()

tsetsubt() tsyncro() tterm() ttyname() ttyslot()

twalk() tzset() ualarm() ulimit() umask()

umount() uname() unlink() unlockpt() usleep()

utime() utimes() utimes() valloc() vfork()

w_ioctl() w_statfs() wait() waitid() waitpid()

wait3() wordexp() wordfree() write() writev()

From OS/390 C/C++ to z/OS V1R7 XL C/C++

80 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Time functions

You should customize your locale information. Otherwise, in rare cases, you may

encounter errors. In a POSIX application, you can supply time zone and alternative

time (for example, daylight) information with the TZ environment variable. In a

non-POSIX application, you can supply this information with the _TZ environment

variable. If no TZ environment variable is defined for a POSIX application or no _TZ

environment variable is defined for a non-POSIX application, any customized

information provided by the LC_TOD locale category is used. By setting the TZ

environment variable for a POSIX application, or the _TZ environment variable for a

non-POSIX application, or by providing customized time zone or daylight

information in an LC_TOD locale category, you allow the time functions to preserve

both time and date, correctly adjusting for alternative time on a given date.

Refer to z/OS XL C/C++ Programming Guide for more information about both

environment variables and customizing a locale.

Direct UCS-2 and UTF-8 converters

OS/390 V2R9 added new UCS-2 and UTF-8 converters. These are direct

conversions that no longer use the tables built by the uconvdef utility processing of

UCMAPS. If you have modified UCMAPS, UCS-2 and UTF-8 converters will no longer

use those modified UCMAPS. If you still need to use the modifications that you made

to UCMAPS, you will now need to set the _ICONV_UCS2 environment variable to "O".

Refer to z/OS XL C/C++ Programming Guide for more information about the

_ICONV_UCS2 environment variable.

Default option for ABTERMENC changed to ABEND

As of OS/390 V2R9, the default option for ABTERMENC is ABEND instead of RETCODE. If

you are expecting the default behavior of ABTERMENC to be RETCODE, you must

change the setting in CEEDOPT (CEECOPT for CICS). Refer to z/OS Language

Environment Customization for details on changing CEEDOPT and CEECOPT.

THREADSTACK run-time option

As of OS/390 V2R10 Language Environment, the new THREADSTACK run-time option

replaces the NONIPTSTACK and NONONIPTSTACK options. The old options will still be

accepted, but an information message will be issued, telling the user to switch to

the new THREADSTACK option. The old options do not have support for specifying the

initial and increment sizes of the new XPLINK downward growing stack. Refer to

z/OS Language Environment Customization for more information on the

THREADSTACK run-time option.

Changes to putenv()

As of z/OS V1R5, the C/C++ function putenv() changed to place the string passed

to putenv() directly into the array of environment variables. This behavior assures

compliance with the POSIX standard. Before the change, the storage used to define

the environment variable passed into putenv() was not added to the array of

environment variables. Instead, the system copied the string into system allocated

storage. To restore the previous behavior of putenv(), set environment variable

_EDC_PUTENV_COPY to YES.

For additional information on putenv() and _EDC_PUTENV_COPY, see z/OS XL C/C++

Run-Time Library Reference. You may also refer to z/OS XL C/C++ Programming

From OS/390 C/C++ to z/OS V1R7 XL C/C++

Chapter 12. Language Environment changes between OS/390 C/C++ and z/OS V1R7 XL C/C++ 81

Guide, for information on putenv() and _EDC_PUTENV_COPY.

82 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 13. Class library changes between OS/390 C/C++ and

z/OS V1R7 XL C/C++

This chapter describes the changes that you may have to make if you are using

class libraries and migrating to z/OS V1R7 XL C/C++ from a release of OS/390

C/C++ or z/OS V1R1 C/C++XL C/C++. Also refer to Chapter 14, “Migrating to the

currently supported Standard C++,” on page 87 for details on support of

Programming languages - C++ (ISO/IEC 14882:2003(E)), which documents the

currently supported Standard C++.

IBM Open Class Library

As of z/OS V1R5, development with the IBM Open Class Library (IOC) is not

supported. You can no longer compile and link applications that use IOC classes.

This includes all the clases, templates, and facilities that are described in IBM Open

Class Library Reference with the two exceptions noted below. Run-time support is

provided for existing applications that use IOC, but this support will be removed in a

future release.

The following classes are still supported for application development:

v UNIX System Laboratories (USL) I/O Stream Library

v USL Complex Mathematics Library

As of z/OS V1R5, the name of the element that provides this application

development support has changed from IBM Open Class Library to Run-Time

Library Extensions. The directory path for the header file has changed from

/usr/lpp/ioclib to /usr/lpp/cbclib.

Although support for these classes is not being removed at this time, it is

recommended that you migrate to the Standard C++ iostream and complex classes.

This is especially important if you are migrating other IOC streaming classes to

Standard C++ Library streaming classes, because combining USL and Standard

C++ Library streams in one application is not recommended. For more information

about these classes, see C/C++ Legacy Class Libraries Reference.

For information about migrating away from these classes, see IBM Open Class

Library Transition Guide.

Migrating from USL I/O Stream Library to Standard C++ I/O Stream

Library

The values for some enumerations differ slightly between the USL and Standard

C++ I/O Stream libraries. This may cause problems when migrating to the Standard

C++ I/O Stream Library.

The following flags have been added:

v flags for controlling formatting: boolalpha, adjustfield, basefield, floatfield

The following flags have been removed:

v flags for controlling formatting: stdio

v flags for controlling the open mode: nocreate, noreplace, bin

v flags for controlling the io state: hardfail

© Copyright IBM Corp. 1996, 2005 83

|

|
|
|
|
|
|

|
|
|
|

There may be other small differences.

Mixing the C++ Standard I/O Stream Library, USL I/O Stream Library,

and C I/O

While it is possible to mix the Standard C++ I/O Stream Library, the USL I/O Stream

Library, and C I/O, it is not recommended. The USL I/O Stream Library uses a

separate buffer so you would need to flush the buffer after each call to cout by

either setting ios::unitbuf or calling sync_with_stdio(). You should avoid

switching between the I/O Stream Library formatted extraction functions and C stdio

library functions whenever possible, and you should also avoid switching between

versions of the I/O Stream Libraries. For more information, see z/OS XL C/C++

Programming Guide and C/C++ Legacy Class Libraries Reference.

Removal of SOM support

As of OS/390 V2R10, the IBM System Object Model (SOM) is no longer supported

in the C++ compiler.

Removal of Database Access Class Library utility

As of OS/390 V2R4, the Database Access Class Library utility is no longer

available.

From OS/390 C/C++ to z/OS V1R7 XL C/C++

84 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Part 5. ISO C/C++ Standard migration issues

This part discusses the implications of migrating applications that were created with

C/C++ compilers that are not compliant with Programming languages - C++

(ISO/IEC 14882:2003(E)), which documents the currently supported Standard C++.

As of z/OS V1R2, the z/OS C++ compiler was compliant with Programming

languages - C++ (ISO/IEC 14882:1998(E)).

As of z/OS V1R7:

v z/OS XL C/C++ is compliant with the 2003 standard.

v OS/390 V2R10 compiler is no longer shipped with the z/OS product.

As of z/OS V1R7 XL C/C++,

Note: You can identify the ISO Standard level that is supported by the compiler by

checking the standard macro __cplusplus and its value, which remains

unchanged from V1R6. This macro has the value 199711. If you are

compiling a C ++ translation unit, the name _ _cplusplus is defined to the

value 199711L .

© Copyright IBM Corp. 1996, 2005 85

|

|
|
|

|
|

|

|

|

|
|
|
|
|

86 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 14. Migrating to the currently supported Standard

C++

This chapter discusses the implications of migrating applications that were compiled

using a compiler that is not compliant with any ISO/IEC C++ standard.

These compilers include:

v Any release earlier than the z/OS V1R2 C/C++ compiler

v The OS/390 V2R10 C/C++ compiler that was reshipped with z/OS V1R2, V1R3,

V1R4, V1R5, V1R6 C/C++

Note: As of V1R7, the OS/390 V2R10 C/C++ compiler is no longer shipped with

the z/OS product.

Code that compiles without errors in earlier C++ compilers may produce warnings

or error messages in the z/OS XL V1R7 C++ compiler. This could be due either to

changes in the language or to differences in the compiler behavior. Language

elements that may affect your code are shown in the topics “Changes in language

features to comply with the currently supported Standard C++” on page 89 and

“Language features that comply with the currently supported Standard C++” on

page 91. The topic“Errors due to changes in compiler behavior” on page 92 may

also be applicable to the output from your compiler.

Choosing an approach based on your migration objectives

Table 15 shows the different migration scenarios and the recommended approach

for each.

 Table 15. Migration objectives and approaches

Is code compliant with 1998

ISO Standard C++?

Migration objectives Action

Yes (ported or new). Remain compliant with Standard

C++

Use LANGLVL(ANSI)

No Exploit Standard C++ language

features, even if codebases

must be modified

Use the following compiler options and

suboptions to aid the migration process:

v LANGLVL(COMPAT92)

v LANGLVL() suboptions to control individual

language features

Note: See Table 16 on page 88.

v Ignore Standard C++

language features

v Avoid modifying codebases

Use LANGLVL(COMPAT92) to tolerate language

incompatibilities

Compiler options for compatibility with earlier C/C++ compilers

To make your application conform to the C++ Standard, you may need to change

your existing source code. You can use the compiler options and suboptions listed

in Table 16 on page 88 to break up the changes into smaller steps. (For details, see

z/OS XL C/C++ User’s Guide.)

You can also use the following predefined option groups:

© Copyright IBM Corp. 1996, 2005 87

|

|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

||

|
|
||

||
|
|

||
|
|

|
|

|

|
|
|

|
|

|

|
|

|

LANGLVL(COMPAT92)

Use this option group if your code compiles with a previous compiler and

you want to move to z/OS V1R7 XL C/C++ with minimal changes. This

group is the closest you can get to the old behavior of the previous

compilers.

LANGLVL(STRICT98) or LANGLVL(ANSI)

These two groups are identical. Use one of them when you compile new or

ported code that is C++ Standard compliant.

LANGLVL(EXTENDED)

This option group indicates all language constructs available with z/OS XL

C/C++. This enables extensions to the C++ Standard.

The following table lists the options and settings that are included in each group.

Note: Except for TMPLPARSE, all settings have a value of either On (meaning the

suboption is enabled) or Off (meaning the suboption is not enabled).

 Table 16. Compiler options and suboptions for compatibility with previous compilers

Option

Group

compat92 strict98 | ansi extended

KEYWORD(bool) | NOKEYWORD(bool) Off On On

KEYWORD(explicit) | NOKEYWORD(explicit) Off On On

KEYWORD(export) | NOKEYWORD(export) Off On On

KEYWORD(false) | NOKEYWORD(false) Off On On

KEYWORD(mutable) | NOKEYWORD(mutable) Off On On

KEYWORD(namespace) | NOKEYWORD(namespace) Off On On

KEYWORD(true) | NOKEYWORD(true) Off On On

KEYWORD(typename) | NOKEYWORD(typename) Off On On

KEYWORD(using) | NOKEYWORD(using) Off On On

LANGLVL(ANONSTRUCT | NOANONSTRUCT) Off Off On

LANGLVL(ANONUNION | NOANONUNION) On Off On

LANGLVL(ANSIFOR | NOANSIFOR) Off On On

LANGLVL(ANSISINIT | NOANSISINIT) Off On On

LANGLVL(ILLPTOMEM | NOILLPTOMEM) On Off On

LANGLVL(IMPLICITINT | NOIMPLICITINT) On Off On

LANGLVL(LIBEXT | NOLIBEXT) On Off On

LANGLVL(LONGLONG | NOLONGLONG) On Off On

LANGLVL(OFFSETNONPOD | OFFSETNONPOD) On Off On

LANGLVL(OLDDIGRAPH | OLDDIGRAPH) Off On Off

LANGLVL(OLDFRIEND | NOOLDFRIEND) On Off On

LANGLVL(OLDMATH | NOOLDMATH) On Off Off

LANGLVL(OLDTEMPACC | NOOLDTEMPACC) On Off On

LANGLVL(OLDTMPLALIGN | NOOLDTMPLALIGN) On Off Off

LANGLVL(OLDTMPLSPEC | NOOLDTMPLSPEC) On Off On

LANGLVL(TRAILENUM | NOTRAILENUM) On Off On

LANGLVL(TYPEDEFCLASS | TYPEDEFCLASS) On Off On

Standard C++ migration issues

88 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|
|

||||

Table 16. Compiler options and suboptions for compatibility with previous compilers (continued)

Option

Group

compat92 strict98 | ansi extended

LANGLVL(ZEROEXTARRAY | NOZEROEXTARRAY) Off Off On

RTTI | NORTTI Off On On

TMPLPARSE(NO | ERROR | WARN) NO WARN NO

Changes in language features to comply with the currently supported

Standard C++

Refer to the z/OS XL C/C++ Language Reference for details.

LANGLVL(ANSISINIT) and static initialization

As of z/OS V1R5, you can use the LANGLVL(NOANSISINIT) option to maintain the

same order of destruction for statically initialized objects whenever you compile

programs that had previously been compiled with z/OS V1R1 and earlier C/C++

compilers.

As of z/OS V1R2 (when the compiler became fully compliant with Programming

languages - C++ (ISO/IEC 14882:2003(E)), DLLs built by the compiler run object

destructors differently from those created with the earlier C/C++ compilers.

 Table 17. Destruction of statically initialized objects before and after compliance with

ISO/IEC 14882:2003(E)

z/OS V1R1 and earlier C/C++ compilers z/OS V1R2 and later compilers

Destructor calls are run as the last thing on

the atexit list, as part of the termination

code.

If an object is created with the C++ standard

way of initializing (LANGLVL(ANSISINIT)):

v Destructor calls for objects created by

z/OS V1R2 and later compilers are added

to the atexit list. This list will then be run

before the atexit entry for the termination

code.

v Any DLL built with z/OS V1R2 and later

compilers will have the destructors for the

global objects run in the wrong order

relative to other DLLs or main program

that were built with z/OS V1R1 and earlier

C/C++ compilers.

For-loop scoping

In Standard C++, the scope of a variable in a for-loop initializer declaration is to

the end of the loop body. The scope of such variables in the z/OS V1R1 compiler

and earlier C/C++ compilers, is to the end of the lexical block containing the

for-loop. For example:

 int i=0;

 void f()

 {

 for(int i=0; i<10; i++)

 {

 if(...) break;

Standard C++ migration issues

Chapter 14. Migrating to the currently supported Standard C++ 89

|

|

|

|
|
|
|

|
|
|

||
|

||

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

}

 if(i==10) { ... } // �1�

 ...

 }

�1�

v As of z/OS V1R2, this means that i is declared in file scope (::).

v In z/OS V1R1 and earlier C/C++ compilers, this means that the i is declared in

the for-loop. As of z/OS V1R5, to maintain this context use LANGLVL(NOANSIFOR)

option.

Implicit int and type declarations

The use of an implicit int in a declaration is no longer valid in Standard C++, as

shown in the following example:

 const i; // previously meant const int i

 main() { } // previously returned int

Hence, as of z/OS V1R2, the following code is no longer valid:

 inline f() {

 return 0;

 }

To comply with the standard, specify the type of every function and variable. Use

the LANGLVL(IMPLICITINT) option to compile code containing implicit ints.

Changes to friend declarations

As of the z/OS V1R2 C++ compiler, a class named as a friend is not visible until

introduced into scope by another declaration:

 class C {

 friend class D;

 };

 D* p; // error, D not in scope

Friend class declarations must always be elaborated.

 friend class C; // need class keyword

To allow friend declarations without elaborated class names, use

LANGLVL(OLDFRIEND) option.

Exception handling and cv-qualification

As of z/OS V1R2:

v A temporary copy is thrown rather than the actual object itself.

v The cv-qualification in the catch clause is not considered when the type caught is

the same (possibly cv-qualified) type as that thrown or a reference to the same

(possibly cv-qualified) type.

Note: cv is short form for const/volatile.

v New casts also throw exceptions.

This is not the case in z/OS V1R1 and earlier C/C++ compilers. As of z/OS V1R5,

there is no available option to enable the old behavior.

Standard C++ migration issues

90 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

|

|

Language features that comply with the currently supported Standard

C++

Keywords

As of z/OS V1R2, the following names are reserved as keywords and cannot be

used for naming identifiers:

v bool

v explicit

v export

v false

v mutable

v namespace

v true

v typename

v using

If you are compiling old code that uses a keyword (for example, typename) as an

identifier, you can either remove your definition, or use the NOKEYWORD(typename)

option.

Namespaces and macro definitions

Namespaces are not supported in the z/OS V1R1 and earlier C/C++ compilers.

Code that has been ported to pre-z/OS V1R2 from platforms that support

namespaces, may have implemented a workaround by defining namespace as a

macro to nothing.

Example:

 #define std

 #define using

 #define namespace

As of the z/OS V1R5 C/C++ compiler, you need to undefine the macro before you

can compile such code.

The bool type and returned values

The bool type is not supported in the OS/390 V2R9 compiler and earlier C/C++

compilers. Relational operators returned int.

As of z/OS V1R5, relational operators return bool instead of int. To disable this

keyword use the NOKEYWORD(bool) option.

The mutable keyword and macro definitions

As of z/OS V1R2, the mutable keyword allows a class data member to be modified

even though it is the data member of a const object.

The mutable keyword is not supported in the z/OS V1R1 compiler and earlier

C/C++ compilers. Code ported to these compilers from other platforms might have

implemented a workaround by defining mutable as a macro to nothing:

 #define mutable

Standard C++ migration issues

Chapter 14. Migrating to the currently supported Standard C++ 91

|

|

|

|
|
|

|
|
|
|

|

|
|

|
|

|
|
|

|

As of z/OS V1R2, you need to undefine the macro before you can compile such

code.

As of z/OS V1R5, you can use the NOKEYWORD(mutable) option to disable this

keyword.

Wide character definitions (wchar_t)

As of z/OS V1R5, the C/C++ compiler defines wchar_t as a simple type. The z/OS

V1R1 compiler and earlier C/C++ compilers required that wide characters be

defined as typedef.

The explicit keyword

The z/OS V1R1 compiler and earlier C/C++ compilers did not support the explicit

keyword.

The purpose of this keyword is to make what would otherwise be a conversion

constructor into a normal constructor:

Example:

 class C {

 explicit C(int);

 };

 C c(1); // ok

 C d = 1; // error, no conversion constructor

As of z/OS V1R5, you can use the NOKEYWORD(explicit) option to disable this

keyword.

C++ cast operators

z/OS V1R2 introduced new cast operators: const_cast, dynamic_cast,

reinterpret_cast and static_cast. These were not supported in the z/OS V1R1

compiler and earlier C/C++ compilers.

Changes to digraphs in the C++ Language

Programming languages - C++ (ISO/IEC 14882:2003(E)) now defines and, bitor,

or, xor, compl, bitand, and_eq, or_eq, xor_eq, not, and not_eq as alternate tokens

for &&, |, ||, ^, ~, &, &=, |=, ^=, ! and !=.

As of z/OS V1R2, a program that uses any of these alternate tokens as variable,

function, or type names, must be compiled with the NODIGRAPH option to suppress

the parsing of these tokens as digraphs.

Errors due to changes in compiler behavior

This section describes coding that compiles without errors in the z/OS V1R1

compiler and earlier C/C++ compilers but produces errors or warnings in the z/OS

V1R7 compiler. For more details on compiler messages, refer to z/OS XL C/C++

Messages.

Access-checking errors

Example:

 class A {

 class B {

 void f(A::B);

Standard C++ migration issues

92 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|

|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

// A::B is private and cannot be accessed from B

 // void f(B); <—-this is the appropriate change which

 // works for both compilers.

 };

 };

The following code would result in the error CCN5413:"A::B" is already declared

with a different access:

 class A {

 public:

 class B;

 const B& foo();

 private:

 class B {};

 };

This can be solved by either moving the definition of class B to the public part of

class A (before the declaration of foo()) or moving the declaration of the member

function foo to the private of class A (after the class B definition).

Type definition errors

This code will generate error CCN5193: A typedef name cannot be used in this

context. Do not use the typedef-name; instead, use the name of the class:

 class A { };

 typedef A B;

 class C {

 friend class B; // Should be friend class A;

 };

Errors caused by ambiguous overloads

Programming languages - C (ISO/IEC 9899:2003) introduced error messages for

standard floating point and long double overloads of the standard math functions.

As of z/OS V1R5, compiling the following code example will produce an error

message.

Code example:

 #include <math.h>

 int main()

 {

 float a = 137;

 float b;

 b = pow(a, 2.0); // The call to "pow" has no best match.

 return 0;

 }

Error message: CCN5219: The call to "pow" has no best match

Solutions: You can avoid the error if you do either of the following:

v Use the LANGLVL(OLDMATH) option, which removes the float and long double

overloads.

v Cast pow arguments. For example, casting 2.0 to be of type float solves the

problem:

 b = pow(a, (float)2.0);

Errors caused by user-defined conversions

Code example:

Standard C++ migration issues

Chapter 14. Migrating to the currently supported Standard C++ 93

|

|

|
|

|
|

|

|

|

|

//e.C

 struct C {};

 struct A {

 A();

 A(const C &);

 A(const A &);

 };

 struct B {

 operator A() const { A a ; return a;};

 operator C() const { C c ; return c;};

 };

 void f(A x) {};

 int main(){

 B b;

 f((A)b);

 // The call matches two constructors for A instead of calling operator A()

 return 0;

 }

Error messages:

CCN5216: An expression of type “B” cannot be converted to “A”.

CCN5219: The call to “A::A” has no best match.

CCN6228: Argument number 1 is an lvalue of type “B”.

CCN6202: No candidate is better than “A::A(const A&)”.

CCN6231: The conversion from argument number 1 to “const A &” uses the

user-defined conversion “B::operator A() const” followed by an

lvalue-to-rvalue transformation.

CCN6202: No candidate is better than “A::A(const C &)”.

CCN6231: The conversion from argument number 1 to “const C &” uses the

user-defined conversion “B::operator C() const ”.

Potential solutions:

v Changing f((A)b) to the explicit call f(b.operator A())

v Removing the constructor A(const C &)

v Adding a constructor A(B)

v Removing either operator A() or operator C()

Note: The solution you choose depends on your access to classes A, B, and C.

Syntax errors with new

The z/OS V1R1 compiler and earlier C/C++ compilers treated the following two

statements as semantically equivalent:

 new (int *) [1];

 new int* [1];

The first statement is syntactically incorrect even in older versions of the C++

Standard. However, previous versions of C++ accepted it. This inconsistency with

the language standard was corrected in the z/OS V1R2 compiler; the first statement

will now produce a compilation error.

Changes in template compilations

If your code makes use of templates, you will be affected by various changes that

were introduced in z/OS V1R2.

Name resolution

The z/OS V1R1 C++ compiler and earlier C/C++ compilers do not parse or

otherwise process a class or function template definition until it has been

Standard C++ migration issues

94 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

determined that an instantiation of that template is required. Template definitions for

which no instantiation is required are never parsed by the z/OS V1R1 C++ compiler

and earlier C/C++ compilers.

By default, as of z/OS V1R2, the C++ compiler processes class and function

template definitions in two phases:

v When the template definition is encountered by the compiler, the definition is

parsed. Names that are used in the template definition and that are not

dependent on the template parameters are resolved at this time.

v When it is determined that a specific instantiation of the template is required,

names that are dependent on the template parameters are resolved and an

implicit specialization is instantiated.

To approximate the behavior of the z/OS V1R1 C++ compiler and earlier C/C++

compilers, users of the C++ compiler, as of z/OS V1R5, may use the TMPLPARSE(NO)

option to override this default behavior. When the TMPLPARSE(NO) option is in effect,

the first phase described above is delayed until it is determined that an instantiation

is required. Template definitions for which no instantiation is required are not

parsed. The TMPLPARSE(NO) option does not eliminate the distinction between the

two phases.

An unqualified name that is not found by name lookup and not indicated to be a

type by the typename keyword, is assumed to not name a type.

Unqualified name lookup does not consider template-dependent base classes.

Example: As of z/OS V1R2, template-dependent base classes are not searched

during name resolution:

 int *t=0;

 template <class T> struct Base {

 U t;

 };

 template <class T> class C : public Base<T> {

 T f() {

 return t; // refers to global int *t

 }

 };

Example: The keyword typename must be used to mark a qualified dependent

name as a type. The following example illustrates this:

 template <class T> struct A

 {

 typedef int X;

 };

 template <class T> struct B:A <T>

 {

 T::Y b1; //error Y is not a type

 A <T>::X b2; // error X is not a type

 void foo(X); // error X is not a type

 };

The errors can be fixed by changing the definition of B to:

 template <class T> struct B : A <T>

 {

 typename T::Y b1;

 // keyword “typename” tells parser Y is a type

 typename A<T>::X b2;

Standard C++ migration issues

Chapter 14. Migrating to the currently supported Standard C++ 95

// keyword “typename” tells parser X is a type

 void foo(typename A<T>::X);

 // keyword “typename” tells parser X is a type

 };

Example of template keyword

As of z/OS V1R2, the template keyword is used to indicate templates in qualifiers.

For example:

 struct A {

 Template<class T> T f(T t) { return t;}

 };

 template <class T> class C {

 void g(T* a) {

 // The following would become ambiguous without

 // the keyword template

 int i = a->template f<int>(1);

 }

 C<A> c;

Template specialization

As of z/OS V1R2, template specializations must be preceded with the string

template<>. For example:

 template <class T> class C {};

 template <> C<int> { int i; };

Explicit call to destructor of scalar type

This problem is not template-specific, but usually occurs in templates.

Example:

 typedef int INT;

 INT *p;

 // ...

 p->INT::~INT(); // ok in z/OS V1R5 C++

The z/OS V1R1 compiler and earlier C/C++ compilers give a warning to the explicit

destructor call. You can safely ignore this warning.

Friend declarations in templates

Since z/OS V1R2, friend declarations in templates may not have the same

meaning as with earlier C/C++ compilers. For example, the following code will

generate a warning message:

 struct A {} a;

 template <class T> struct S;

 template <class T> void f(T&, S<T>&) {}

 template <class T> A& operator << (A&, S<T>&) { return a; }

 template <class T> struct S

 {

 friend void f (T&, S&); // no explicit arguments

 friend A& operator <<(A&, S&); // no explicit arguments

 };

To migrate this code, the friend declarations should be changed to include explicit

template arguments:

 template <class T> struct S

 {

 friend void f<T> (T&, S&); // explicit argument T

 friend A& operator << <T>(A&, S&); // explicit argument T

 };

Standard C++ migration issues

96 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

Without the explicit arguments, the friend declarations will introduce non-template

functions ’f(int&, S&)’ and ’operator <<(A&, S&)’ into global scope and these

non-template functions (which have no corresponding definition) will be the friends

of S.

With the template argument added explicitly, an instantiation of S, such as S<int>,

will make the template instantiations f<int>(int&, S<int>&) and operator <<

<int> (A&, S<int>&), friends of S.

The z/OS V1R1 compiler and earlier C/C++ compilers would not accept explicit

template arguments on friend declarations. If you wish to maintain compatibility

with earlier C/C++ compilers, the explicit template arguments should be added with

the use of a macro.

Friend declarations in class member lists

A friend declaration in a class member list grants, to the nominated friend function

or class, access to the private and protected members of the enclosing class. In

z/OS V1R1 and earlier C/C++ compilers, friend declarations introduce the name of

a nominated friend function to the scope that encloses the class containing the

friend declaration. As of z/OS V1R2, friend declarations do not introduce the name

of a nominated friend function to the scope that encloses the class containing the

friend declaration.

In the example source file below, the function name lib_func1 is not known to the

z/OS V1R6 C++ compiler at the point at which it is called in the function f. This

source file will not compile successfully.

 // g.C

 // ---

 class A {

 friend int lib_func1(int); // This function is from a library.

 };

 int f(){

 return lib_func1(1);

 }

The example will compile successfully if the following declaration is added to the file

in the global namespace scope at some point prior to the definition of the function

named f.

 int lib_func1(int);

Inlined virtual functions in a class

Whenever a virtual function exists in a class, the compiler generates a virtual

function table for the class and stores a pointer to the table. For any class that has

at least one virtual function that is not defined as inline, the compiler can generate

the virtual function table in the same module as the definition of the first non-inlined

virtual function. Only one copy of the virtual function table for a class will exist.

However, when all virtual functions for a class are inlined, the compiler has

insufficient information to generate a unique virtual function table and, instead,

generates a virtual function table in each module that uses the class.

As of z/OS V1R2, the virtual function table is visible to the binder. Therefore, in the

situation where a class has inlined virtual functions, the binder detects the virtual

function tables in more than one module and generates duplicate object warnings.

Standard C++ migration issues

Chapter 14. Migrating to the currently supported Standard C++ 97

|

|
|
|

98 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Part 6. From earlier releases of z/OS C/C++ to z/OS V1R7 XL

C/C++

This part discusses the implications of migrating applications that were created with

one of the following compilers and one of the following libraries to the z/OS V1R7

XL C/C++ product.

Compilers:

v IBM z/OS V1R2 C/C++ compiler, 5694-A01

v IBM z/OS V1R3 C/C++ compiler, 5694-A01

v IBM z/OS V1R4 C/C++ compiler, 5694-A01

v IBM z/OS V1R5 C/C++ compiler, 5694-A01

v IBM z/OS V1R6 C/C++ compiler, 5694-A01

v IBM z/OS.e V1R3 C/C++ compiler, 5655-G52

v IBM z/OS.e V1R4 C/C++ compiler, 5655-G52

v IBM z/OS.e V1R5 C/C++ compiler, 5655-G52

v IBM z/OS.e V1R6 C/C++ compiler, 5655-G52

Libraries:

v IBM z/OS V1R2 Language Environment, 5694-A01

v IBM z/OS V1R3 Language Environment, 5694-A01

v IBM z/OS V1R4 Language Environment, 5694-A01

v IBM z/OS V1R5 Language Environment, 5694-A01

v IBM z/OS V1R6 Language Environment, 5694-A01

v IBM z/OS.e V1R4 Language Environment, 5655-G52

v IBM z/OS.e V1R5 Language Environment, 5655-G52

v IBM z/OS.e V1R6 Language Environment, 5655-G52

Notes:

1. The z/OS V1R3 and V1R4 compilers are equivalent to the z/OS V1R2 compiler.

2. The z/OS V1R1 compiler and library are equivalent to the OS/390 V2R10

compiler and library, and are described in Part 4 of this book.

3. To aid in migration, the OS/390 V2R10 C/C++ compiler was shipped as part of

z/OS V1R2, V1R3, V1R4, V1R5, and V1R6 C/C++. For information about

migrating applications that were compiled using the OS/390 V2R10 C/C++

compiler (even if the operating system level was z/OS V1R1, V1R2, V1R3,

V1R4, V1R5, or V1R6), see Part 4, “From OS/390 C/C++ to z/OS V1R7 XL

C/C++,” on page 69 and Part 5, “ISO C/C++ Standard migration issues,” on

page 85. As of V1R7, OS/390 V2R10 compiler is no longer shipped with the

z/OS product.

4. The z/OS.e compilers and libraries are functionally equivalent to the

corresponding z/OS compilers and libraries.

© Copyright IBM Corp. 1996, 2005 99

|

|
|
|

|

|

|

|

|
|
|
|
|
|
|
|

100 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 15. Source program compatibility

In general, you can use source programs with the z/OS V1R7 XL C/C++ product

without modification, if they were created with one of the earlier versions of the

z/OS C/C++ compiler.

This chapter highlights the exceptions.

Support of Standard C++

As of z/OS V1R7, the C++ compiler supports Programming languages - C++

(ISO/IEC 14882:2003(E)), which documents the currently supported C++ standard.

For more information, see Chapter 14, “Migrating to the currently supported

Standard C++,” on page 87.

Application of #pragma unroll()

As of z/OS V1R7 XL C/C++, #pragma unroll() works only with for loops.

If your code specifies #pragma unroll() prior to a while or a do loop, the compiler

ignores the pragma directive and generates a warning message.

For detailed information about unrolling loops, refer to:

v z/OS XL C/C++ Language Reference

v z/OS XL C/C++ Programming Guide

v z/OS XL C/C++ User’s Guide

© Copyright IBM Corp. 1996, 2005 101

|

|

|
|
|

|

|
|

|
|
|
|

|
|

|

|
|

|

|

|

|

102 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 16. Changes that affect c89 invocation

As of z/OS V1R6, the –g flag option is no longer translated to the TEST compiler

option.

Note: The TEST and GONUMBER options remain unchanged, but work only with 32-bit

compiles.

A new environment variable _DEBUG_FORMAT has been introduced to enable users to

request the old translation of the -g flag option for 32-bit compiles:

v If _DEBUG_FORMAT equals DWARF (the default), -g is translated to

DEBUG(FORMAT(DWARF)).

v If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old translation).

For non-DLL C++ compiles, a dummy definition side file will be allocated to prevent

the binder from issuing a warning message. If you do want the binder to issue a

warning message, when an export symbol is encountered, specify the DLL=NO option

for the link-editing phase.

For more information, see the c89 utility information in z/OS XL C/C++ User’s

Guide.

© Copyright IBM Corp. 1996, 2005 103

|
|

104 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 17. Compiler changes

Compiler options

Compiler options with default setting changes

None for this release.

New compiler option that may affect existing programs

None for this release.

Compiler options that are no longer supported

None for this release.

CMDOPTS compiler option and conflict resolution

As of z/OS V1R7:

v Default options specified in the configuration file have the same weight as if they

were specified on the command line. The C/C++ compiler cannot distinguish

between an option specified in the configuration file and an option specified on

the command line.

v Any conflict between options and pragmas is resolved in favor of the option.

v The C/C++ compiler no longer requires that default options be specified in the

configuration file.

If you customize your xlc configuration file using the sample default configuration

file shipped in z/OS V1R7 XL C/C++ compiler, you might experience a change in

behavior because the defaults for supported xlc commands are no longer specified

on the options attribute in the configuration file. Instead, the xlc utility emits the

defaults as suboptions of the CMDOPTS compiler option. This may cause a change

in behavior because the z/OS V1R7 XL C/C++ compiler resolves conflicts between

options and pragmas differently, depending on whether options are specified as

suboptions of the CMDOPTS option or explicitly on the command line and in the

options attributes.

TARGET compiler option

The TARGET compiler option allows you to compile an application using the current

compiler, and then link and run the application on a lower level system. From

release to release, the compiler supports a changing list of TARGET suboptions. As

newer releases are added to the list, older releases are removed. Because of

enhancements and optimizations added to the compiler in a new release, the same

TARGET setting may not generate exactly the same code from one release to the

next.

In z/OS V1R6, the following release suboptions were supported: zOSV1R2,

zOSV1R3, zOSV1R4, zOSV1R5, and zOSV1R6.

As of z/OS V1R7, targeting z/OS V1R3 and earlier releases is no longer supported.

The earliest release that can be targeted is zOSV1R4.

© Copyright IBM Corp. 1996, 2005 105

|

|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

Compiler messages and return codes

From release to release, message contents often change and severity levels may

also change (for example, an error becoming a warning). These changes to the

severity level may affect the return code of the compilation.

You must update any application that is affected by message contents or return

codes. Do not build dependencies on message content, message numbers, or

return codes. See z/OS XL C/C++ Messages for a list of compiler messages.

Compiler listings

Do not build dependencies on the structure or content of listings. For information

about C listings or the C++ listings for the current release, refer to z/OS XL C/C++

User’s Guide.

64-bit compiles and line number information

64-bit compiles do not support the GONUMBER compiler option and line number

information is not available within 64-bit compiled objects. The Language

Environment traceback tool and Language Environment dump services also do not

produce line number information in the traceback for 64-bit.

Note: For 32-bit compiles, line number information is still generated and available

for use with debugging.

106 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 18. Compiler invocations

As of z/OS V1R6, compiler invocation is supported by two different utilities:

v c89

v xlc

z/OS V1R6 introduced the following commands:

v xlc command to compile a C program

v xlC and xlc++ commands to compile a C++ program

z/OS V1R6 introduced the following command suffixes:

v _x suffix to compile the program with XPLINK

v _64 suffix to compile the program under LP64

The utility you want to use depends on:

v Whether you need to port code between z/OS and AIX.

v How you want to set up your build environment.

For example, use the command c89_x to compile an ANSI-compliant program with

XPLINK.

Note: For information about how to use these commands and suffixes, see z/OS

XL C/C++ User’s Guide.

 Table 18. Differences between the x89 and xlc compiler invocation utilities

c89 utility xlc utility

Command support No support for AIX options

syntax

The cc, c89, cxx, and c++

commands accept AIX C/C++

as well as z/OS C/C++

options syntax.

Environment setup Determined by configuration

file

Determined by environment

variables

Changes that affect c89 invocation

As of z/OS V1R6, the –g flag option is no longer translated to the TEST compiler

option.

Note: The TEST and GONUMBER options remain unchanged, but work only with 32-bit

compiles.

A new environment variable _DEBUG_FORMAT has been introduced to enable users to

request the old translation of the -g flag option for 32-bit compiles:

v If _DEBUG_FORMAT equals DWARF (the default), -g is translated to

DEBUG(FORMAT(DWARF)).

v If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old translation).

For non-DLL C++ compiles, a dummy definition side file will be allocated to prevent

the binder from issuing a warning message. If you do want the binder to issue a

warning message, when an export symbol is encountered, specify the DLL=NO option

for the link-editing phase.

© Copyright IBM Corp. 1996, 2005 107

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

||

|||

||
|
|
|
|
|

||
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|

For more information, see the c89 utility information in z/OS XL C/C++ User’s

Guide.

Changes that affect xlc invocation

If you customize your xlc configuration file using the sample default configuration

file shipped in z/OS V1R7 XL C/C++ compiler, you might experience a change in

behavior because the defaults for supported xlc commands are no longer specified

on the options attribute in the configuration file. Instead, the xlc utility emits the

defaults as suboptions of the CMDOPTS compiler option. This may cause a change

in behavior because the z/OS V1R7 XL C/C++ compiler resolves conflicts between

options and pragmas differently, depending on whether options are specified as

suboptions of the CMDOPTS option or explicitly on the command line and in the

options attributes.

108 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|

|
|

|
|
|
|
|
|
|
|
|

Chapter 19. Changes that affect user JCL

CBCI and CBCXI procedures

As of z/OS V1R5, the CBCI and CBCXI procedures contain the variable CLBPRFX.

If you have any JCL that uses these procedures, you must either customize these

procedures (for example, at installation time) or modify your JCL to provide a value

for CLBPRFX.

© Copyright IBM Corp. 1996, 2005 109

110 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Chapter 20. Language Environment changes

Changes to enum types in system header files

As of z/OS V1R7 XL C/C++, selected enumerated (enum) type declarations in

system header files are protected to avoid potential execution errors. This allows

you to specify the ENUMSIZE() compiler option with a value other than SMALL

without risking incorrect mapping of enum data types (for example, if they were

used inside of a structure).

With earlier versions of the compiler, if you specified ENUMSIZE() with a value

other than SMALL, data that was declared with certain enum types could be

incorrectly mapped. In some instances, the header files in the library referenced the

types (such as __device_t in the typedef fldata_t), which resulted in a potential

inconsistency between the mapping seen during application execution and that

declared in the library (which is built with the default ENUMSIZE(SMALL)).

Even when you specify ENUMSIZE() with a value other than SMALL, the

enumerations listed in Table 19will always be ENUMSIZE(SMALL).

 Table 19. Protected enumeration type declatations

Header file Enumerations

stdio.h __device_t

search.h

ACTION

VISIT

sys/uio.h uio_rw

sys/wait.h idtype_t

_Ccsid.h __csType

__ledebug.h

asfAmodeType

asfCallbackResult

yvals.h _Mux

Changes to putenv()

As of z/OS V1R5, the C/C++ function putenv() changed to place the string passed

to putenv() directly into the array of environment variables. This behavior assures

compliance with the POSIX standard. Before the change, the storage used to define

the environment variable passed into putenv() was not added to the array of

environment variables. Instead, the system copied the string into system allocated

storage. To restore the previous behavior of putenv(), set environment variable

_EDC_PUTENV_COPY to YES.

This change was implemented in z/OS V1R2 with APAR PQ61928 applied. If you

have this APAR installed on your system, the change is already valid.

For additional information on putenv() and _EDC_PUTENV_COPY, see z/OS XL C/C++

Run-Time Library Reference. You may also refer to z/OS XL C/C++ Programming

Guide, for information on putenv() and _EDC_PUTENV_COPY.

© Copyright IBM Corp. 1996, 2005 111

|

|
|
|
|
|

|
|
|
|
|
|

|
|

||

||

||

|||

||

||

||

|||

||
|

|

Base locale default currency change

Before z/OS V1R6, the default currency for EEC was set to local currency in the

LC_MONETARY category of the locale. If the user wanted to set Euro as currency,

the @euro locales would need to be set using setlocale().

As of z/OS V1R6 the LC_MONETARY information in the base locale is now set to

use the Euro. If you set the base locale, you will now have the Euro as the default

currency. If you want your applications to continue using the old (local) currency,

you will now need to issue setlocale() with the new @preeuro locale as the

parameter.

Behavior of the current @euro locales has not changed.

Movement of LOCALDEF utilities

As of z/OS V1R6, the following LOCALDEF utilities have been moved to new data

sets.

Utility From C/C++ Data Set

To Language Environment

Data Set

LOCALDEF CBC.SCCNUTL CEE.SCEECLST

EDCLDEF CBC.SCCNPRC CEE.SCEEPROC

EDCXLDEF CEE.SCCNPRC CEE.SCEEPROC

CCNELDEF CBC.SCCNCMP CEE.SCEERUN2

CCNLMSGS CBC.SCCNCMP CEE.SCEERUN2

If you use the MVS batch or TSO localedef (LOCALDEF) utility interfaces, you may

need to do the following:

v Add or replace the Language Environment procedures library (CEE.SCEEPROC)

where you currently have the C/C++ procedures library (CBC.SCCNPRC).

v Add or replace the Language Environment clist/exec library (CEE.SCEECLST)

where you currently have the C/C++ clist/exec library (CBC.SCCNUTL). In

addition, you may need to customize the Language Environment customization

member (CEE.SCEECLST(CEE.CEL4CUST)) in addition to customizing the

C/C++ customization member (CBC.SCCNUTL(CBC.CCNCCUST)).

v Add the Language Environment library CEE.SCEERUN2 (in addition to

CEE.SCEERUN) where you currently have the C/C++ library CBC.SCCNCMP.

_OPEN_SYS_SOCK_IPV6 feature test macro

As of z/OS V1R7, a recompile using the _OPEN_SYS_SOCK_IPV6 feature test macro

will expose new definitions in <netinet/ip6.h> and <netinet/icmp6.h>, and the

following new functions in <netinet/in.h>:

 inet6_opt_append() inet6_opt_find() inet6_opt_finish() inet6_opt_get_val()

inet6_opt_init() inet6_opt_next() inet6_opt_set_val() inet6_rth_add()

inet6_rth_getaddr() inet6_rth_init() inet6_rth_reverse() inet6_rth_segments()

inet6_rth_space()

112 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

|

|
|
|

C99 with both LANGLVL(LONGLONG) and LANGLVL(EXTENDED)

C99 incorporates the long long data type as standard. Applications using long

long support and recompiling at z/OS V1R7 may experience problems when:

v Using a compiler designed to support C99

v Not asking for extended features

If an application currently uses the LANGLVL(LONGLONG) compiler option to get at the

long long data type, and also uses certain non-standard long long macros,

recompiling at z/OS V1R7 may cause compiler error messages to be issued, since

these nonstandard definitions are hidden with this combination of compiler and

LANGLVL option.

If an application currently uses LANGLVL(EXTENDED), then the nonstandard definitions

will continue to be exposed since extended features are requested. For those

applications that want to use a compiler designed to support C99, but do not want

extended features, change the source code to use the C99 standard long long

macros, as shown in Table 20.

 Table 20. C99 standard macros to replace non-standard long long macros that cause z/OS

V1R7 errors

Non-standard long long macros C99 standard long long macros

LONGLONG_MIN LLONG_MIN

LONGLONG_MAX LLONG_MAX

ULONGLONG_MAX ULLONG_MAX

The definitions in Table 20 are commonly used with the following functions:

v llabs()

v the following long long numeric conversion functions

– strtoll()

– strtoull()

– wcstoll()

– wcstoull()

Note: If you use the TARGET compiler option with any suboption other than the

zOSV1R7 suboption, you cannot use the new C99 standard macros.

Floating point support

There are changes in hexadecimal floating point notation and floating point special

values for C99.

Hexadecimal floating point notation

Changes in support of hexadecimal floating point notation in the numeric conversion

functions introduced in Programming languages - C (ISO/IEC 9899:1999) can alter

the behavior of well-formed applications that comply with the Programming

languages - C (ISO/IEC 9899:1990) standard and earlier versions of the base

documents. One such example would be:

int what_kind_of_number (char *s){

 char *endp; *EXP = "p+0"

 double d;

 long l;

Chapter 20. Language Environment changes 113

|
|

|
|

|

|

|
|
|
|
|

|
|
|
|
|

||
|

||

||

||

||
|

|

|

|

|

|

|

|

|
|

|

|
|

|

|
|
|
|
|

|
|
|
|

d = strtod(s,&endp);

 if (s != endp && *endp == `\0’)

 printf("It is a float with value %g\n", d);

 else{

 l = strtol(s,&endp,0);

 if (s != endp && (strcmp(endp,EXP)== 0))

 printf("It is an integer with value %ld\n", l);

 else

 return 1;

 }

 return 0;

}

If the function is called with: what_kind_of_number ("0xAp+0"), a ISO/IEC

9899:1990 standard-compliant library will result in the function printing: It is an

integer with value 10. As of Programming languages - C (ISO/IEC 9899:1999),

which documents the C99 standard, the result is: It is a float with value 10.

The change in behavior is due to the inclusion of floating-point numbers in

hexadecimal notation without requiring that either a decimal point or the binary

exponent be present.

Floating point special values

The numeric conversion functions accept the following special values at all times:

v ±inf or ±INF

v ±nanq or ±nanq(n-char-sequence), and ±NANQ or ±NANQ(n-char-sequence)

v ±nans or ±nans(n-char-sequence), and ±NANS or ±NANS(n-char-sequence)

v ±nan or ±nan(n-char-sequence), and ±NAN or ±NAN(n-char-sequence)

Restriction:

v The z/OS XL C/C++ compiler and z/OS Language Environment C/C++ Run-Time

Library do not include _Imaginary or formal support of the IEC 60559 floating

point as described in Annex F and Annex G of the C99 standard.

114 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|

Chapter 21. Class library changes

If you are using class libraries, this chapter describes the changes that you may

have to make if you are migrating from a previous release of z/OS C/C++ to z/OS

V1R7 XL C/C++. Also refer to Chapter 14, “Migrating to the currently supported

Standard C++,” on page 87 for details on ISO Standard C++ support.

Removal of IBM Open Class Library

As of z/OS V1R5, development with the IBM Open Class Library (IOC) is not

supported. You can no longer compile and link applications that use IOC classes.

This includes all the clases, templates, and facilities that are described in IBM Open

Class Library Reference with the two exceptions noted below. Run-time support is

provided for existing applications that use IOC, but this support will be removed in a

future release.

The following classes are still supported for application development:

v UNIX System Laboratories (USL) I/O Stream Library

v USL Complex Mathematics Library

As of z/OS V1R5, the name of the element that provides this application

development support has changed from IBM Open Class Library to Run-Time

Library Extensions. The directory path for the header file has changed from

/usr/lpp/ioclib to /usr/lpp/cbclib.

Although support for these classes is not being removed at this time, it is

recommended that you migrate to the Standard C++ iostream and complex classes.

This is especially important if you are migrating other IOC streaming classes to

Standard C++ Library streaming classes, because combining USL and Standard

C++ Library streams in one application is not recommended. For more information

about these classes, see C/C++ Legacy Class Libraries Reference.

For information about migrating away from these classes, see IBM Open Class

Library Transition Guide.

Migrating from USL I/O Stream Library to Standard C++ I/O Stream

Library

The values for some enumerations differ slightly between the USL and Standard

C++ I/O Stream libraries. This may cause problems when migrating to the Standard

C++ I/O Stream Library.

The following flags have been added:

v flags for controlling formatting: boolalpha, adjustfield, basefield, floatfield

The following flags have been removed:

v flags for controlling formatting: stdio

v flags for controlling the open mode: nocreate, noreplace, bin

v flags for controlling the io state: hardfail

There may be other small differences.

© Copyright IBM Corp. 1996, 2005 115

|
|
|
|

|
|
|
|

Mixing the C++ Standard I/O Stream Library, USL I/O Stream Library,

and C I/O

While it is possible to mix the Standard C++ I/O Stream Library, the USL I/O Stream

Library, and C I/O, it is not recommended. The USL I/O Stream Library uses a

separate buffer so you would need to flush the buffer after each call to cout by

either setting ios::unitbuf or calling sync_with_stdio(). You should avoid

switching between the I/O Stream Library formatted extraction functions and C stdio

library functions whenever possible, and you should also avoid switching between

versions of the I/O Stream Libraries. For more information, see z/OS XL C/C++

Programming Guide and C/C++ Legacy Class Libraries Reference.

From z/OS C/C++ V1R2 to z/OS V1R7 XL C/C++

116 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Part 7. Appendixes

© Copyright IBM Corp. 1996, 2005 117

118 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1996, 2005 119

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

120 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2005 121

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

B3/KB7/8200/MKM

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming interface information

This publication documents intended Programming Interfaces that allow the

customer to write z/OS or z/OS.e XL C/C++ programs.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries or both:

 AD/Cycle AIX C/370

C/MVS C++/MVS CICS

IBM IMS Language Environment

MVS MVS/ESA Open Class

OS/390 S/370 S/390

SAA SOM SP

System Object Model z/OS

122 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 123

124 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

Bibliography

This bibliography lists the publications for IBM products that are related to the z/OS

XL C/C++ product. It includes publications covering the application programming

task. The bibliography is not a comprehensive list of the publications for these

products, however, it should be adequate for most z/OS XL C/C++ users. Refer to

z/OS Information Roadmap, SA22-7500, for a complete list of publications

belonging to the z/OS product.

Related publications not listed in this section can be found on the IBM Online

Library Omnibus Edition MVS Collection, SK2T-0710, the z/OS Collection,

SK3T-4269, or on a tape available with z/OS.

z/OS

v z/OS Introduction and Release Guide, GA22-7502

v z/OS and z/OS.e Planning for Installation, GA22-7504

v z/OS Summary of Message and Interface Changes, SA22-7505

v z/OS Information Roadmap, SA22-7500

v z/OS Licensed Program Specifications, GA22-7503

v z/OS Migration, GA22-7499

v z/OS Program Directory, GI10-0670

z/OS XL C/C++

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Messages, GC09-4819

v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

v z/OS C Curses, SA22-7820

v z/OS XL C/C++ Compiler and Run-Time Migration Guide for the Application

Programmer, GC09-4913

v IBM Open Class Library Transition Guide, SC09-4948

v Standard C++ Library Reference, SC09-4949

z/OS Run-Time Library Extensions

v C/C++ Legacy Class Libraries Reference, SC09-7652

v z/OS Common Debug Architecture User’s Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

v DWARF/ELF Extensions Library Reference, SC09-7655

Debug Tool

v Debug Tool documentation, which is available at:

www.ibm.com/software/awdtools/debugtool/library/

© Copyright IBM Corp. 1996, 2005 125

http://www.ibm.com/software/awdtools/debugtool/library/

z/OS Language Environment

v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

v z/OS Language Environment Run-Time Application Migration Guide, GA22-7565

v z/OS Language Environment Writing Interlanguage Communication Applications,

SA22-7563

v z/OS Language Environment Run-Time Messages, SA22-7566

Assembler

v HLASM Language Reference, SC26-4940

v HLASM Programmer’s Guide, SC26-4941

COBOL

v COBOL for OS/390 & VM Compiler and Run-Time Migration Guide, GC26-4764

v COBOL for OS/390 & VM Programming Guide, SC26-9049

v COBOL for OS/390 & VM Language Reference, SC26-9046

v COBOL for OS/390 & VM Diagnosis Guide, GC26-9047

v COBOL for OS/390 & VM Licensed Program Specifications, GC26-9044

v COBOL for OS/390 & VM Customization under OS/390, GC26-9045

v COBOL Millenium Language Extensions Guide, GC26-9266

PL/I

v VisualAge PL/I Language Reference, SC26-9476

v PL/I for MVS & VM Language Reference, SC26-3114

v PL/I for MVS & VM Programming Guide, SC26-3113

v PL/I for MVS & VM Compiler and Run-Time Migration Guide, SC26-3118

VS FORTRAN

v Language and Library Reference, SC26-4221

v Programming Guide, SC26-4222

CICS Transaction Server for z/OS

v CICS Application Programming Guide, SC34-6231

v CICS Application Programming Reference, SC34-6232

v CICS Distributed Transaction Programming Guide, SC34-6236

v CICS Front End Programming Interface User’s Guide, SC34-6234

v CICS Messages and Codes, GC34-6241

v CICS Resource Definition Guide, SC34-6228

v CICS System Definition Guide, SC34-6226

v CICS System Programming Reference, SC34-6233

v CICS User’s Handbook, SC34-6240

126 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

|

v CICS Family: Client/Server Programming, SC33-1435

v CICS Transaction Server for z/OS Migration from CICS/ESA Version 4.1,

GC34-6219

v CICS Transaction Server for z/OS Release Guide, GC34-6218

v CICS Transaction Server for z/OS Installation Guide, GC34-6224

DB2

v DB2 Administration Guide, SC18-7413

v DB2 Application Programming and SQL Guide, SC18-7415

v DB2 ODBC Guide and Reference, SC18-7423

v DB2 Command Reference, SC18-7416

v DB2 Data Sharing: Planning and Administration, SC18-7417

v DB2 Installation Guide, GC18-7418

v DB2 Messages and Codes, GC18-7422

v DB2 Reference for Remote DRDA Requesters and Servers, SC18-7424

v DB2 SQL Reference, SC18-7426

v DB2 Utility Guide and Reference, SC18-7427

IMS/ESA®

v IMS Version 8: Application Programming: Design Guide, SC27-1287

v IMS Version 8: Application Programming: Transaction Manager, SC27-1289

v IMS Version 8: Application Programming: Database Manager, SC27-1286

v IMS Version 8: Application Programming: EXEC DLI Commands for CICS and

IMS Version 8:, SC27-1288

MVS

v z/OS MVS Program Management: User’s Guide and Reference, SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

QMF

v Introducing QMF, GC26-9576

v Using QMF, SC26-9578

v Developing QMF Applications, SC26-9579

v Reference, SC26-9577

v Installing and Managing QMF on MVS, SC26-9575

v Messages and Codes, SC26-9580

DFSMS

v z/OS DFSMS Introduction, SC26-7397

v z/OS DFSMS Managing Catalogs, SC26-7409

v z/OS DFSMS Using Data Sets, SC26-7410

v z/OS DFSMS Macro Instructions for Data Sets, SC26-7408

v z/OS DFSMS Access Method Services for Catalogs, SC26-7394

Bibliography 127

128 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

INDEX

Special characters
__librel() 28

_packed 54

_Packed structures 29, 52

_Packed unions 29, 52

#line directive 52

#pragma unroll() 101

Numerics
64-bit compiles and line number information 106

A
abnormal termination 36, 56

ABTERMENC default option 81

access-checking errors
avoiding 92

accessibility 119

ambiguous overloads
avoiding 93

ANSI
LANGLVL(ANSI) 53

ARCHITECTURE compiler option 72

array new 61

ASA files
closing 40, 64

closing and reopening 42, 66

writing to 40, 64

Assembler interlanguage calls 18

atexit 36

B
bool

and returned values 91

bool keyword 91

C
C/370 applications

Running with z/OS V1R7 XL C/C++ 11

C++ cast operators
Standard C++ compliance 92

C++ standard compliance 101

CC command 59

CEEBDATX 60

CEEBLIIA 19, 20

CEEBXITA 27

CEECDATX 60

CEEEV003 27

CEESTART 18, 19

changes that affect c89 invocation 74, 103, 107

CHECKOUT(CAST) compiler suboption 72

CICS
abend codes and messages 36

CICS (continued)
and versions of C/370 libraries 36

Application Programmer Interface 37

reason codes 36

standard stream support 36, 61

stderr 37

transient data queue names 37

using HEAP option 37

class library incompatibilities
Application Class

load module 48

source code 53

Collection Class
load module 48

source code 53

IO Stream Class
load module 48, 83

source code 53, 83

CLISTs, changes affecting 31, 55

CMDOPTS compiler option 105, 108

COBOL
interlanguage calls 18

library routines 38

code points 29, 53

command-line parameters
passing to a program 32

z/OS Language Environment error handling 32

Common Library initialization compatibility 19

compatibility
exception handling

as of z/OS V1R2 90

from C/370 V1 or V2 36, 56

input/output
from C/370 V2 39

from pre-OS/390 releases 63

load module
from C/370 V2 11, 17

from pre-OS/390 releases 47

general information 11

other considerations
AD/Cycle C/370 to z/OS V1R7 C 56

AD/Cycle C/370 to z/OS V1R7 XL C/C++ 55

C/370 V1 or V2 compiler to z/OS V1R7 C

compiler 33

C/370 V2 compiler to z/OS V1R7 C compiler 31

C/MVS V3R1 to z/OS V1R7 C 56

from C/370 V2 31

from pre-OS/390 releases 55

NOOPTIMIZE 34, 58, 72

OPTIMIZE 34, 58, 72

PSW mask
from C/370 V2R1 35

from pre-OS/390 releases 56

source program
C/370 V2 compiler to z/OS V1R7 C compiler 25

C++ standard compliance 91

compliance with the Standard C++ 89

from C/370 V2 25

© Copyright IBM Corp. 1996, 2005 129

compatibility (continued)
source program (continued)

general information 13

ISO C++, compiler changes 92

with AD/Cycle C/370 compiler 51

with C/MVS compiler 51

with C++/MVS compiler 51

System Programming C Facility
C/370 V1 or V2 to z/OS Language

Environment 35

C/370 V2 compiler to z/OS V1R7 XL C/C++ 25

compiler invocations 107

compiler options
ARCHITECTURE 72

CHECKOUT(CAST) 72

DECK 34, 56, 73

DIGRAPH 72

ENUM 57, 73

GENPCH 73

HALT 57

header files 111

HWOPTS 34, 57, 73

IDL 74

INFO 57

INLINE 34, 57, 72

IPA 75

LANGLVL(ANSI) 53

LANGLVL(COMPAT) 73

LSEARCH 34, 58

OMVS 34, 58, 73

ROCONST 73

ROSTRING 73

SEARCH 34, 58

SOM 74

SRCMSG 58, 74

STATICINLINE 73

SYSLIB 58, 74

SYSPATH 58, 74

TARGET 73, 105

TEST 34, 59

TMPLPARSE 95

USEPCH 74

USERLIB 58, 74

USERPATH 58, 74

compiler options for compatibility with previous

compilers 88

concatenation of libraries 20

conflicts between options and pragmas 105, 108

conversion overflow 76

ctest() 17

ctime() 60, 81

cv-qualification, as of z/OS V1R5 90

D
data types

long long 77

dbx 17

ddnames
SYSERR 31

SYSPRINT 31

ddnames (continued)
SYSTERM 31

Debug Tool 17

decimal overflow exceptions 35, 56

DECK compiler option 34, 56, 73

destruction of statically initialized objects before and

after ISO/IEC 14882:2003(E) compliance 89

DIGRAPH compiler option 72

digraphs
Standard C++ compliance 92

disability 119

DSECT utility 54

dumps 17

duplicate object warnings 97

E
EDC_COMPAT 12

EDCSTART 18

EDCXV 27

ENUM compiler option 57, 73

enumerations 111

environment variables
_EDC_COMPAT 42, 66

errors
access checking 92

ambiguous overloads 93

avoiding name resolution errors 94

defining types 93

user-defined conversions 93

EXECs
CC 59

changes affecting 31, 55

Existing applications, migrating to z/OS XL C
From C/370 V2 15

Existing applications, running with z/OS V1R7 XL

C/C++ 12, 13

C/370 applications 11

Language Environment applications 11

explicit calls to scalar-type destructors
and Standard C++ compliance 96

explicit keyword 91, 92

and macro definitions 92

export keyword 91

F
false keyword 91

fetched main programs 27

fflush() 65

fflush() function 41

fgetpos() 65

fgetpos() function 41

fopen() 63

for-loop scoping 89

Fortran interlanguage calls 18

freopen() 63

friend declarations in class member lists
and Standard C++ compliance 97

friend declarations in templates
and Standard C++ compliance 96

130 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

friend declarations, changes to 90

fseek() 65

fseek() function 41

function return type 27, 52

G
GENPCH compiler option 73

H
HALT compiler option 57

HEAP run-time option
default size 33

parameters 33

with CICS 37

HFS files, support of 59

HWOPTS compiler option 34, 57, 73

I
IBM Open Class Library 13

IBMBLIIA 19, 20

IBMBXITA 27

IDL compiler option 74

implicit int 90

include files, finding 58

INFO compiler option 57

initialization compatibility 19, 20

INLINE compiler option 34, 57, 72

inlined virtual functions in a class 97

inlining threshold 72

input/output
ASA files

closing and reopening 42, 66

closing files 40, 64

writing to files 40, 64

closing and reopening files
ASA files 42, 66

closing files
ASA files 40, 64

compatibility 39, 63

error handling 43, 67

file I/O changes 39, 63

FILENAME_MAX 43, 67

fldata() 67

fldata() function 43

ftell() encoding 42, 66

L_tmpnam 43, 67

opening files 39, 63

repositioning within files 41, 65

standard streams 43, 67

terminal I/O 44, 68

VSAM I/O 44, 68

writing to files
ASA files 40, 64

other considerations 39, 63

interlanguage calls
Assembler 18

COBOL 18

Fortran 18

interlanguage calls (continued)
PL/I 18

invocation of XL C/C++ compiler 107

ISAINC run-time option 32

isainc with #pragma runopts 35

ISASIZE run-time option 32

isasize with #pragma runopts 35

ISO 53, 71

ISO Standard C++ 87

ISO Standard C++ compliance 87, 88, 89

ISO/IEC 14882:2003(E) compliance
effect on cv-qualification 90

statically initialized objects, destruction of 89

ISO/IEC 14882:2003(E) migration issues 87

J
JCL

changes affecting 31, 55

CXX parameter 55

K
keyboard 119

keywords
bool 91

explicit 91

export 91

false 91

mutable 91

namespace 91

Standard C++ compliance 91

template 96

true 91

typename 91, 95

using 91

L
LANGLVL(ANSI) compiler option 53

LANGLVL(ANSI) compiler suboption 88

LANGLVL(COMPAT) compiler option 73

LANGLVL(COMPAT92) compiler suboption 88

LANGLVL(EXTENDED) compiler suboption 88

LANGLVL(IMPLICITINT) compiler suboption 90

LANGLVL(NOANSIFOR) compiler suboption 89

LANGLVL(OLDFRIEND) compiler suboption 90

LANGLVL(OLDMATH) compiler suboption 93, 94

LANGLVL(STRICT98) compiler suboption 88

Language Environment applications
Running with z/OS V1R7 XL C/C++ 11

Language Environment initialization compatibility 19

LANGUAGE run-time option 32

language with #pragma runopts 35

library functions
ctest() 17

ctime() 60, 81

fflush() 41, 65

fgetpos() 41, 65

fseek() 41, 65

librel 28

INDEX 131

library functions (continued)
localtime() 60, 81

mktime() 60, 81

putenv() 35

realloc() 26

tmpnam() 43, 67

ungetc() 41, 65

line directive 27

line pragma 27

LINK macro 48

listings 62, 74, 106

load modules
compatibility

from C/370 V2 17

from pre-OS/390 releases 47

initialization 19

converting old executable programs 20

System Programming C Facility 17, 47

localtime() 60, 81

LSEARCH compiler option 34, 58

M
macros

_LONG_LONG 77

LINK 48

memory requirement 71

message data sets
NATLANG run-time option 32, 55

messages
contents 31

differences between C/370 and AD/Cycle C/370

V1R2 31

differences between C/370 and Language

Environment 31

differences between C/370 and z/OS Language

Environment 29

differences between C/370 and z/OS V1R7 C 29

differences between compilers 53, 74, 106

direction of messages to stderr 61

perror() 29

prefixes 31

specifying the national language for 32, 55

strerror() 29

migration objectives and recommended approaches 87

mixed language modules and SIGFPE (signal-handling)

exceptions 51

mktime() 60, 81

Model Tool 71

mutable keyword 91

and macro definitions 91

N
name resolution errors

avoiding 94

namespace keyword 91

namespaces
and macro definitions 91

Standard C++ compliance 91

national language for run-time environment,

specifying 32, 55

NATLANG run-time option 32, 55

new
avoiding 94

new, array version 61

NODIGRAPH compiler option 92

NOKEYWORD compiler option 91

NOKEYWORD(bool) compiler suboption 91

NOKEYWORD(explicit) compiler suboption 92

NOOPTIMIZE compiler option 34, 58, 72

NOSPIE run-time option 48

NOSTAE run-time option 48

Notices 121

NULL 25

O
OMVS compiler option 34, 58, 73

Open Class Library 13

opening files 63

OPTIMIZE compiler option 34, 58, 72

overflow processing 76

overloading ambiguities
avoiding 93

overloads of standard math functions
avoiding errors 93

P
packed 54

Packed structures 29, 52

Packed unions 29, 52

PDS 39, 63

PDSE 39, 63

perror() 29

PL/I interlanguage calls 18

pointers 25

POSIX compliance
putenv() 35

pragma
leaves 71

line 27

pack 54

reachable 71

runopts 35

variable 71

wsizeof 52

preprocessor line number control directive 52

program mask 26, 51

program mask and SIGFPE (signal-handling)

exceptions 51

PSW mask 26, 52

R
realloc() function 26

recommended approaches for migration objectives 87

reentrant variables 71

region size 71

132 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

relink requirements
ctest() 17

interlanguage calls with COBOL 18, 21

SPC exception handling 17, 47

REPORT run-time option 32

report with #pragma runopts 35

resolution of conflicts between options and

pragmas 105, 108

return codes differences
between C/370 and Language Environment 31

between C/370 and z/OS V1R7 C 29

between compilers 53, 74, 106

ROCONST compiler option 73

ROSTRING compiler option 73

Run-time options
ending options list 32

HEAP 33

ISAINC 32

ISASIZE 32

LANGUAGE 32

NOSPIE 48

NOSTAE 48

passing to program 32

REPORT 32

slash (/) 32

SPIE 32, 48

STACK 33

STAE 32, 48

THREADSTACK 81

using with CICS 48

S
SCEERUN 19, 20

SEARCH compiler option 34, 58

shortcut keys 119

SIBMLINK 19, 20

SIGFPE exceptions 26

SIGINT 36, 56

signal handling (SIGFPE) exceptions and mixed

language modules 51

signal handling (SIGFPE) exceptions and the program

mask 51

SIGTERM 36, 56

SIGUSR1 36, 56

SIGUSR2 36, 56

sizeof() 27, 52

SOM 84

SOM compiler option 84

source program
compatibility 13

with AD/Cycle C/370 compiler 51

with C/MVS compiler 51

with C++/MVS compiler 51

with earlier releases of the z/OS C/C++

compiler 101

SPIE run-time option 32, 48

spie with #pragma runopts 35

SRCMSG compiler option 58, 74

STACK run-time option
default size 33

STACK run-time option (continued)
parameters 33

STAE run-time option 32, 48

stae with #pragma runopts 35

Standard C++ compliance
access checking errors 92

C++ cast operators 92

digraphs 92

effect on bool type 91

effect on exception handling 90

effect on explicit calls to scalar-type destructors 96

effect on explicit keyword 92

effect on friend declarations 90

effect on friend declarations in class member

lists 97

effect on friend declarations in templates 96

effect on mutable keyword 91

effect on name resolution 94

effect on namespaces 91

effect on support of implicit int 90

effect on template specialization 96

effect on use of templates 94

keywords 91

overloading ambiguities 93

statically initialized objects, destruction of 89

syntax error with new 94

type definitions 93

user-defined conversions 93

standard math functions
avoiding ambiguous overloads 93

avoiding errors 93

statically initialized objects, destruction of 89

STATICINLINE compiler option 73

stderr 31, 37, 61

strerror() 29

syntax, supporting old, new, or both 59

SYSERR ddname 31

SYSLIB compiler option 58, 74

SYSPATH compiler option 58, 74

SYSPRINT ddname 31

system header files 111

System Object Model 74

System Programming C (SPC) Facility
applications built with EDCXSTRX 27

CEEEV003 27

EDCXV 27

relinking modules 17, 47

source changes 27

with #pragma runopts 35

SYSTERM ddname 31

T
TARGET compiler option 73, 105

template keyword 96

template problems
avoiding 94

template specializations
and Standard C++ compliance 96

TEST compiler option 59

PATH suboption 34

INDEX 133

THREADSTACK run-time option 81

TMPLPARSE compiler option 95

true keyword 91

type declarations, enumerated 111

type definitions
as of z/OS V1R5 92

avoiding errors 93

wchar_t as 92

typename keyword 91, 95

U
UCS-2 converters 81

ungetc()
effect upon behavior of fflush() 41, 65

effect upon behavior of fgetpos() 41, 65

effect upon behavior of fseek() 41, 65

unhandled conditions 36, 56

unrolling loops 101

USEPCH compiler option 74

user exits
CEEBDATX 60

CEEBXITA 27

CEECDATX 60

IBMBXITA 27

user-defined conversions
avoiding errors 93

USERLIB compiler option 58, 74

USERPATH compiler option 58, 74

using keyword 91

UTF-8 converters 81

V
variables

reentrant 71

virtual function tables 97

W
wchar_t

as of z/OS V1R5 92

WSIZEOF compiler option 27, 52

X
XL C/C++ compiler invocations 107

xlc invocation 105, 108

134 z/OS V1R7.0 XL C/C++ Compiler and Run-Time Migration Guide for the Application Programmer

����

Program Number: 5694–A01 and 5655–G52

Printed in the United States of America

GC09-4913-03

	Contents
	Part 1. Introduction
	Chapter 1. Locating your migration path
	How this book is organized
	A history of IBM C/C++ compilers and libraries

	Chapter 2. Common questions about migration
	Will existing Language Environment applications run with z/OS V1R7 Language Environment?
	Will existing C/370 applications work with z/OS V1R7 Language Environment?
	My application does not run — now what?
	I attempt to recompile my application and it fails — why?

	Part 2. From C/370 V2 to z/OS XL C
	Chapter 3. Application executable program compatibility
	Input and output operations
	Executable programs that invoke Debug Tool or dbx
	System Programming C Facility (SPC) executable programs
	Executable programs with interlanguage calls
	Initialization compatibility
	Initialization schemes
	Special considerations: CEEBLIIA and IBMBLIIA

	Converting old executable programs to new executable programs
	Considerations for Interlanguage Call (ILC) applications

	Chapter 4. Source program compatibility
	Pointer considerations
	Input and output operations
	SIGFPE exceptions
	Program mask manipulations
	The realloc() function
	Fetched main programs
	User exits
	Line number control
	The sizeof operator
	System Programming C (SPC) applications built with EDCXSTRX
	The __librel() function
	Library messages
	Prefix of perror() and strerror() messages
	Compiler messages and return codes
	_Packed structures and unions
	Alternate code points

	Chapter 5. Other migration considerations
	Changes that affect user JCL, CLISTs, and EXECs
	Return codes and messages
	Changes in data set names
	Differences in standard streams
	Passing command-line parameters to a program
	SYSMSGS ddname
	CBCI and CBCXI procedures

	Run-time options
	Ending the run-time options list
	ISASIZE, ISAINC, STAE/SPIE, LANGUAGE, and REPORT options
	STACK default size
	STACK parameters
	HEAP default size
	HEAP parameters

	Compiler options
	DECK compiler option
	HWOPTS compiler option
	INLINE compiler option
	OMVS compiler option
	OPTIMIZE compiler option
	SEARCH and LSEARCH compiler options
	TEST compiler option

	Language Environment run-time options
	Changes to putenv()
	Precedence of Language Environment over C/370 settings for #pragma runopts directive
	System Programming C (SPC) Facility applications with #pragma runopts
	Decimal exceptions
	Migration and coexistence considerations

	SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions
	Running different versions of the libraries under CICS
	CICS abend codes and messages
	CICS reason codes
	Standard stream support under CICS
	stderr output under CICS
	Transient data queue names under CICS
	HEAP option used with the interface to CICS
	COBOL library routines

	Chapter 6. Input and output operations compatibility
	Opening files
	Writing to files
	Repositioning within files
	Closing and reopening ASA files
	Values returned by the fldata() function
	Error handling
	Miscellaneous
	VSAM I/O changes
	Terminal I/O changes

	Part 3. From pre-OS/390 releases of C/C++ to z/OS V1R7 XL C/C++
	Chapter 7. Application executable program compatibility
	Input and output operations
	System Programming C Facility (SPC) executable programs
	Inheritance of run-time options
	Availability of standard streams and memory files with the LINK macro
	Heap or stack shortages with the EXEC CICS LINK command

	STAE and SPIE option mappings to TRAP suboptions
	Class library execution incompatibilities

	Chapter 8. Source program compatibility
	Input and output operations
	SIGFPE exceptions
	Program mask manipulations
	Line number control
	Function return type sizes
	_Packed structures and unions
	Alternate code points
	Support of Standard C++
	LANGLVL(ANSI) changes
	Compiler messages and return codes
	Class library source code incompatibilities
	DSECT utility and packed structures

	Chapter 9. Other migration considerations
	Removal of Database Access Class Library utility
	Changes that affect user JCL, CLISTs, and EXECs
	CXX parameter in JCL procedures
	Examples of specifying class library header files at compile time
	SYSMSGS and SYSXMSGS ddnames
	Changes in data set names
	CBCI and CBCXI procedures

	Decimal exceptions
	Migration and coexistence

	SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions
	Compiler options
	DECK compiler option
	ENUM compiler option
	HALT compiler option
	HWOPTS compiler option
	INFO compiler option
	INLINE compiler option
	LANGLVL(COMPAT) compiler option
	OMVS compiler option
	OPTIMIZE compiler option
	SEARCH and LSEARCH compiler options
	SRCMSG compiler option
	SYSLIB, USERLIB, SYSPATH and USERPATH compiler options
	TEST compiler option

	Changes to putenv()
	Length of external variable names
	Syntax for the CC command
	Time functions
	Abnormal termination exits
	Standard stream support
	Direction of compiler messages to stderr
	Array new
	Compiler listings

	Chapter 10. Input and output operations compatibility
	Opening files
	Writing to files
	Repositioning within files
	Closing and reopening ASA files
	fldata() return values
	Error handling
	Miscellaneous
	VSAM I/O changes
	Terminal I/O changes

	Part 4. From OS/390 C/C++ to z/OS V1R7 XL C/C++
	Chapter 11. Compiler changes between OS/390 C/C++ and z/OS V1R7 XL C/C++
	Compiler changes
	Potential impact on memory requirements
	Removal of Model Tool support
	1998 Standard C++ support
	Addition of the #pragma reachable and #pragma leaves directives
	Reentrant variables when the compiler option is NORENT
	Compiler options
	Changes in default settings
	New compiler option that may affect source code
	Compiler options that are no longer supported

	Compiler messages and return codes
	Changes in data set names
	Compiler listings

	Changes that affect c89 invocation
	Changes that affect user JCL
	Examples of specifying class library header files at compile time
	CBCI and CBCXI procedures

	Changes that affect Interprocedural Analysis
	IPA object module binary compatibility
	IPA Link Step defaults

	Changes that affect data type support
	Effect of ARCH level on conversion from floating point to integer type
	Compiler-defined _LONG_LONG macro

	Chapter 12. Language Environment changes between OS/390 C/C++ and z/OS V1R7 XL C/C++
	Name conflicts with run-time library functions
	Time functions
	Direct UCS-2 and UTF-8 converters
	Default option for ABTERMENC changed to ABEND
	THREADSTACK run-time option
	Changes to putenv()

	Chapter 13. Class library changes between OS/390 C/C++ and z/OS V1R7 XL C/C++
	IBM Open Class Library
	Migrating from USL I/O Stream Library to Standard C++ I/O Stream Library
	Mixing the C++ Standard I/O Stream Library, USL I/O Stream Library, and C I/O

	Removal of SOM support
	Removal of Database Access Class Library utility

	Part 5. ISO C/C++ Standard migration issues
	Chapter 14. Migrating to the currently supported Standard C++
	Choosing an approach based on your migration objectives
	Compiler options for compatibility with earlier C/C++ compilers
	Changes in language features to comply with the currently supported Standard C++
	LANGLVL(ANSISINIT) and static initialization
	For-loop scoping
	Implicit int and type declarations
	Changes to friend declarations
	Exception handling and cv-qualification

	Language features that comply with the currently supported Standard C++
	Keywords
	Namespaces and macro definitions
	The bool type and returned values
	The mutable keyword and macro definitions
	Wide character definitions (wchar_t)
	The explicit keyword
	C++ cast operators
	Changes to digraphs in the C++ Language

	Errors due to changes in compiler behavior
	Access-checking errors
	Type definition errors
	Errors caused by ambiguous overloads
	Errors caused by user-defined conversions
	Syntax errors with new

	Changes in template compilations
	Name resolution
	Example of template keyword
	Template specialization
	Explicit call to destructor of scalar type
	Friend declarations in templates
	Friend declarations in class member lists
	Inlined virtual functions in a class

	Part 6. From earlier releases of z/OS C/C++ to z/OS V1R7 XL C/C++
	Chapter 15. Source program compatibility
	Support of Standard C++
	Application of #pragma unroll()

	Chapter 16. Changes that affect c89 invocation
	Chapter 17. Compiler changes
	Compiler options
	Compiler options with default setting changes
	New compiler option that may affect existing programs
	Compiler options that are no longer supported
	CMDOPTS compiler option and conflict resolution
	TARGET compiler option

	Compiler messages and return codes
	Compiler listings
	64-bit compiles and line number information

	Chapter 18. Compiler invocations
	Changes that affect c89 invocation
	Changes that affect xlc invocation

	Chapter 19. Changes that affect user JCL
	CBCI and CBCXI procedures

	Chapter 20. Language Environment changes
	Changes to enum types in system header files
	Changes to putenv()
	Base locale default currency change
	Movement of LOCALDEF utilities
	_OPEN_SYS_SOCK_IPV6 feature test macro
	C99 with both LANGLVL(LONGLONG) and LANGLVL(EXTENDED)
	Floating point support
	Hexadecimal floating point notation
	Floating point special values

	Chapter 21. Class library changes
	Removal of IBM Open Class Library
	Migrating from USL I/O Stream Library to Standard C++ I/O Stream Library
	Mixing the C++ Standard I/O Stream Library, USL I/O Stream Library, and C I/O

	Part 7. Appendixes
	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming interface information
	Trademarks

	Bibliography
	z/OS
	z/OS XL C/C++
	z/OS Run-Time Library Extensions
	Debug Tool
	z/OS Language Environment
	Assembler
	COBOL
	PL/I
	VS FORTRAN
	CICS Transaction Server for z/OS
	DB2
	IMS/ESA®
	MVS
	QMF
	DFSMS

	INDEX

