
DRAFT REPORT CONCERNING SPACE
DATA SYSTEM STANDARDS

SPACE COMMUNICATIONS
PROTOCOL SPECIFICATION (SCPS)—

USERS GUIDE
(SCPS-UG)

CCSDS 711.0-G-0.2

DRAFT GREEN BOOK

September 1997

CCSDS 711.0-G-0.2 Page i September 1997

CONTENTS

Section Page

1 INTRODUCTION ...1-1

1.1 PURPOSE AND SCOPE ... 1-1
1.2 ORGANIZATION OF THE REPORT... 1-1
1.3 REFERENCES .. 1-1

2 SCPS-NP..2-1

2.1 FUNCTIONAL OVERVIEW.. 2-1
2.2 ADDRESSING.. 2-2
2.3 INTERNAL ORGANIZATION... 2-6

3 SCPS-SP..3-1

3.1 INTRODUCTION ... 3-1
3.2 FUNCTIONAL OVERVIEW.. 3-1
3.3 SCPS-SP END SYSTEM AND INTERMEDIATE SYSTEM INTERACTION 3-2

4 SCPS-TP AMENDMENTS TO TCP..4-1

4.1 CONNECTION MANAGEMENT AMENDMENTS... 4-1
4.2 DATA TRANSFER AMENDMENTS... 4-4
4.3 ERROR RECOVERY AMENDMENTS.. 4-12
4.4 SELECTIVE ACKNOWLEDGMENT SPECIFICATION................................... 4-14
4.5 SCPS-TP HEADER COMPRESSION SPECIFICATION.................................... 4-18
4.6 MULTIPLE TRANSMISSIONS FOR FORWARD ERROR CORRECTION...... 4-27

5 SCPS-FP USER’S GUIDE..5-1

5.1 MINIMUM USER IMPLEMENTATION.. 5-1
5.2 ACCESS SERVICES... 5-20
5.3 FILE TRANSFER SERVICES .. 5-26
5.4 RECORD ACCESS SERVICES.. 5-33
5.5 INTERRUPT, ABORT, RESTART SERVICES.. 5-43
5.6 FILE OPERATION SERVICES .. 5-46
5.7 MISCELLANEOUS SERVICES ... 5-55
5.8 TYPICAL SCPS-FP SCENARIOS.. 5-56

CCSDS 711.0-G-0.2 Page ii September 1997

CONTENTS (continued)

Figure Page

2-1 Extended End System Address Structure .. 2-4
2-2 Extended Path Address Structure .. 2-5
2-3 Basic End System Address Structure .. 2-5
2-4 Basic Path Address Structure .. 2-5
3-1 SCPS-SP End System and Intermediate System Interactions 3-3
4-1 Receive Queue with No Out-of-Sequence Segments... 4-8
4-2 Out-of-Sequence Queue Formation... 4-9
4-3 Best Effort Receive Threshold Placement ... 4-10
4-4 Best Effort Receive with Fragmented Out-of-Sequence Queue 4-11
4-5 Fragmented Out-of-Sequence Queue after Best Effort Acknowledgment................ 4-12
4-6 Out-of-Sequence Queue for SNACK Example.. 4-16
4-7 SNACK Option Resulting from Out-of-Sequence Queue Example 4-17
4-8 SNACK Options (without SNACK Bit-Vector) Resulting from

Out-of-Sequence Queue Example ... 4-17
4-9 Compressed SCPS-TP Header .. 4-22

Table

2-1 SCPS Network Protocol Address Types.. 2-3
4-1 Compressed Header Bit-Vector Contents.. 4-23

CCSDS 711.0-G-0.2 Page 1-1 September 1997

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

This draft Report is intended to serve as a reference resource for users of the CCSDS Space
Communications Protocol Specification (SCPS) draft Recommendations (references [2]-[5]).
It contains materials originally published as part of the first issue of the draft
Recommendations, as well as some new material intended to clarify some of the protocol
specifications.

Although this draft Report contains rationale and background information specific to selected
specifications in each draft Recommendation, it is not intended to be an exhaustive treatment
of the rationale and requirements associated with the SCPS program of work. A thorough
study of SCPS rationale, requirements, along with application notes, is contained in the SCPS
draft Green Book (reference [1]).

1.2 ORGANIZATION OF THE REPORT

This draft Report is organized into five sections. Section 1 contains introductory elements.
Sections 2-5 contain ancillary information intended to aid users of the SCPS draft
Recommendations, with each section corresponding to one of the four Red Books.

1.3 REFERENCES

NOTE – RFCs referenced in this document are available at the following URL:

http://ds.internic.net/ds/rfc-index.html

[1] Space Communications Protocol Specification (SCPS)—Rationale, Requirements, and
Application Notes. Report Concerning Space Data System Standards, CCSDS 710.0-
G-0.4. Draft Green Book. Issue 0.4. Washington, D.C.: CCSDS, October 1997.

[2] Space Communications Protocol Specification (SCPS)—Network Protocol (SCPS-NP).
Draft Recommendation for Space Data System Standards, CCSDS 713.0-R-3. Red
Book. Issue 3. Washington, D.C.: CCSDS, September 1997.

[3] Space Communications Protocol Specification (SCPS)—Security Protocol (SCPS-SP).
Draft Recommendation for Space Data System Standards, CCSDS 713.5-R-3. Red
Book. Issue 3. Washington, D.C.: CCSDS, September 1997.

[4] Space Communications Protocol Specification (SCPS)—Transport Protocol (SCPS-
TP). Draft Recommendation for Space Data System Standards, CCSDS 714.0-R-3.
Red Book. Issue 3. Washington, D.C.: CCSDS, September 1997.

CCSDS 711.0-G-0.2 Page 1-2 September 1997

[5] Space Communications Protocol Specification (SCPS)—File Protocol (SCPS-FP).
Draft Recommendation for Space Data System Standards, CCSDS 717.0-R-3. Red
Book. Issue 3. Washington, D.C.: CCSDS, September 1997.

CCSDS 711.0-G-0.2 Page 2-1 September 1997

2 SCPS-NP

The SCPS Network Protocol is described in terms of:

– the rules for formatting and parsing protocol data units (PDUs);

– the internal protocol procedures;

– the management interface with its management entity.

The internal protocol procedures define the procedures required for the transfer of
information between SCPS Network entities. They apply to all SCPS Network entities
through which data are to be routed, including those entities that may be called upon to
provide cross support.

The rules for protocol header parsing and formatting govern the construction and
interpretation of SCPS-NP PDUs. The SCPS-NP PDU headers are of variable length and
format, depending upon the capabilities necessary to provide the services required for
particular datagrams.

The management interface specifies the interactions between the SCPS Network and an
external network management entity. These interactions are defined in terms of modifications
to shared state information in the Management Information Base (MIB) and in terms of
specific services provided to and expected from the network management entity.

2.1 FUNCTIONAL OVERVIEW

The SCPS Network provides unicast and multicast data services to its users. These services
allow users to transmit data across a network of spacecraft and ground systems. The SCPS
Network provides an unreliable end-to-end service: end-to-end reliability is provided by
higher layers.

The SCPS Network provides users with a variety of addressing modes to meet the
requirements for bit efficiency and end-system identification. Address modes support unique
end-system identification within a SCPS Network domain, across multiple SCPS Network
domains, and throughout the Internet. The address formats that support these modes are,
respectively, basic addressing, extended addressing, and Internet Protocol version Six (IPv6)
addressing.

The SCPS Network allows users to select the method by which a datagram will be routed
through the SCPS Network. The methods include non-replicated routing and flood routing.
The latter method duplicates datagrams during transmission to improve the probability of
receipt at the expense of network bandwidth.

CCSDS 711.0-G-0.2 Page 2-2 September 1997

Routing of datagrams within the SCPS Network may be static (using routing tables
established by an external management entity) or dynamic (using routing tables that are
maintained both by management and by signaling between SCPS Network entities). The
choice of static or dynamic routing is controlled via the MIB.

The SCPS Network provides a precedence (priority) mechanism. This mechanism affects the
service provided to a datagram in two ways: order of service and service provided during
periods of network congestion. The precedence mechanism allows high-precedence
datagrams to be serviced before lower-precedence datagrams. Further, the precedence
mechanism permits congestion-control mechanisms to discard, when necessary, low-
precedence datagrams before higher precedence datagrams.

2.2 ADDRESSING

An address in the SCPS Network is referred to as an N-Address (for Network Address). An
address family specifies the structural rules required to interpret the internal fields of an
address. The SCPS Network provides users with three address families to meet the needs and
requirements of various missions: the SCPS address family, the Internet Protocol (IP) address
family, and the Internet Protocol version Six (IPv6) address family.

The SCPS address family contains both End System Addresses (identifying a single end
system) and Path Addresses (identifying a pair of communication systems).

The IP address family defines address formats that are appropriate for routing and delivery
across the Internet.

IPv6 format addresses are intended for those programs that do not have significant bit-
efficiency issues and require global addressability.

The SCPS Network Protocol encodes those three address families into five address types. An
address type defines the meaning that the addresses have (that is, whether they identify end
systems or a path between end systems), the number of addresses that appear in a SCPS
Network Protocol header (two addresses if the addresses identify end systems, only one if the
address identifies a path between end systems), and the address family that is valid for the
address. Table 2-1 describes the types of addresses that are supported by the SCPS Network
Protocol.

CCSDS 711.0-G-0.2 Page 2-3 September 1997

Table 2-1: SCPS Network Protocol Address Types

Address
Type

Address
Length

Addresses
per header

Address
Family

Description

Extended End
System Address

4 octets 2 IP or SCPS Registered IP addresses or SCPS
Address family addresses

Extended Path
Address

4 octets 1 SCPS Managed connection between source
and destination(s)

Basic End System
Address

1 octet 2 SCPS Least significant octet of SCPS
Extended End System Addresses

Basic Path
Address

1 octet 1 SCPS Least significant octet of SCPS
Extended Path Addresses

IPv6 Address 16 octets 2 IPv6 Registered IP Version 6 addresses

The following paragraphs first specify the rules associated with each of the addressing families
and then specify the format of each of the address types identified in table 2-1.

2.2.1 ADDRESS FAMILIES

2.2.1.1 SCPS Address Family

All SCPS address family addresses are drawn from the block reserved by the Internet
Assigned Numbers Authority (IANA) for private Internet address spaces. This block is a
subset of the full IP address space, and as such the addresses are 32 bits in length. (These
addresses are represented as four eight-bit quantities separated by periods, e.g. w.x.y.z, where
the range of each of the alphabetic characters is from 0 to 255 decimal.) Specifically, the
range used for the SCPS Address Family is from 10.0.0.0 through 10.255.255.255. Using this
address range, a SCPS address is represented in the form 10.x.y.z, where each value is eight
bits in length. The w octet is constant at 10, decimal. The x and y octets are combined to
form the addressing domain for various programs; the x.y field is known as the Domain
Identifier (D-ID). A single mission may be allocated more than one D-ID for its needs.
Determination of the registration authority to allocate and deallocate domain identifiers is
beyond the scope of this Report.

The z octet is administered by the program that is allocated the Domain Identifier. z is further
divided to support the types of addresses within the SCPS address family. The first seven
significant bits are used to identify addresses. The eighth significant bit denotes whether the
address is a multicast or unicast address and is known as the (M-Flag).

Each allocated domain, therefore, provides 128 SCPS unicast Path Addresses, 128 SCPS
multicast Path Addresses, 128 SCPS unicast End System Addresses, and 128 SCPS multicast
End System Addresses.

CCSDS 711.0-G-0.2 Page 2-4 September 1997

The form 10.x.y.z is the Extended form of a SCPS address. The Basic form of the SCPS
address (i.e., z) may be used if it can be guaranteed (through network configuration) that the
10.x.y portion of the address will be unambiguous through the life of the datagram.

2.2.1.2 IP Address Family

SCPS-TP and SCPS-SP both use the Internet Protocol (IP) address family as their native
mode of addressing. If an address is not in the private address space reserved by IANA, the
address is a registered IP address. The structure of Internet addresses is defined in RFC 791,
section 2.3; RFC 1112, section 4; and RFC 1122, section 3.2.1.3.

2.2.1.3 IPv6 Address Family

IPv6 address formats are a subject of ongoing work. The addresses are 16 octets in length.
The current formats are specified in RFC 1884.

2.2.2 ADDRESS FORMATS

2.2.2.1 Extended End System Address

When two addresses are present in a SCPS-NP datagram, they each identify individual end
systems. One address identifies the source of the data, the other identifies the destination(s).
When each of these addresses is four octets in length, they are Extended End System
Addresses. The format for Extended End System Addresses that belong to the SCPS
Addressing Family is shown in figure 2-1.

Octet MSB
Bit 0

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 LSB
Bit 7

1 Decimal value 10

2 SCPS Domain

3 Identifier (D-ID)

4 End System Identifier M-Flag

Figure 2-1: Extended End System Address Structure

The most significant octet of the SCPS Format Extended End System Address is fixed at
Decimal 10. Octets 2 and 3 of the address are the Domain Identifier.

CCSDS 711.0-G-0.2 Page 2-5 September 1997

2.2.2.2 Extended Path Address

When one address is present in a SCPS-NP datagram, it identifies a “path”, which is roughly a
permanent virtual circuit between a single source and one or more destinations.

Octet MSB
Bit 0

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 LSB
Bit 7

1 Decimal 10

2 SCPS Domain

3 Identifier (D-ID)

4 Path Identifier M-Flag

Figure 2-2: Extended Path Address Structure

2.2.2.3 Basic End System Address

When two addresses are present in a SCPS-NP datagram, they each identify individual end
systems. One address identifies the source of the data, the other identifies the destination(s).

Octet MSB
Bit 0

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 LSB
Bit 7

1 End System Identifier M-Flag

Figure 2-3: Basic End System Address Structure

The parameters of the Basic End System Address are the end system identifier (ES-ID) and
the multicast flag (M-Flag). The M-Flag is a qualifier on the ES-ID to indicate that the
address applies to a group of destinations.

2.2.2.4 Basic Path Address
When one address is present, it identifies a “path”, which is roughly a permanent virtual circuit
between a single source and one or more destinations.

Octet MSB
Bit 0

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 LSB
Bit 7

1 Path Identifier (P-ID) M-Flag

Figure 2-4: Basic Path Address Structure

CCSDS 711.0-G-0.2 Page 2-6 September 1997

Figure 2-4 presents the structure of the Basic Path Address. The address is one octet in
length. The parameters of the Basic Path Address are the path identifier (P-ID) and the
multicast flag (M-Flag). The M-Flag is a qualifier on the P-ID to indicate that the address
applies to a group of destinations.

2.2.2.5 IPv6 Address

IPv6 address formats are a subject of ongoing work. At this time, the addresses are 16 octets
in length. The current formats are specified in RFC 1884. It should be stressed that this is
work in progress, and subject to change. It is anticipated that the formats of these addresses
will stabilize as the SCPS-NP review process progresses.

2.3 INTERNAL ORGANIZATION

The SCPS Network service is provided by three main elements within the network layer: the
SCPS Network Protocol (SCPS-NP), the SCPS Control Message Protocol (SCMP), and
Routing Tables. The SCPS-NP provides services to SCPS Network service users. The
SCMP is an integral part of the SCPS Network Layer, and uses the services provided by the
SCPS-NP to carry its messages. The SCMP interacts with the routing tables and protocols at
other layers to convey and collect control information. Note that the conveyance of control
information by SCMP to other elements within the local system is done via a set of control
mechanisms that are separate and distinct from the data transfer mechanisms. These control
mechanisms do not affect interoperability and are implementation dependent.

Network
Layer SCPS-NP

SCMP
Routing
Tables

In addition to the elements within the network layer, the SCPS Network service is supported
by capabilities that do not reside within the network layer. These capabilities include network
management support for manual configuration of routing tables and maintenance of system
configuration information, routing protocols for automatic configuration of routing tables, and
name-to-address translation services. The network management and routing capabilities are
typically implemented by applications that use application-layer protocols for the exchange of
pertinent information. The name-to-address translation service is beyond the scope of the
SCPS Network Protocol. Other capabilities, such as address resolution, in which a SCPS-NP
address is resolved to a local subnetwork address, may be supported with mechanisms such as
the Address Resolution Protocol (ARP), if appropriate for the particular subnetwork. Use of
these protocols is not precluded by the SCPS-NP, but is subnetwork-specific.

CCSDS 711.0-G-0.2 Page 3-1 September 1997

3 SCPS-SP

3.1 INTRODUCTION

The SCPS-SP defines the services and procedures to provide secure transmission and
reception of Protocol Data Units (PDUs) between communicating entities.

The SCPS-SP specification is described in terms of:

– the services provided to its users;

– the services required from a underlying network layer;

– the internal protocol procedures;

– the rules for formatting and parsing protocol data units;

– the interface with the Security Association (SA) database.

The SCPS-SP user services are defined in terms of primitives that are independent of specific
implementation approaches.

The SCPS-SP presumes an underlying network layer that is capable of receiving Security
Protocol Data Units (S-PDUs), applying, among other things, source and destination
addressing, and transmitting them across the SCPS Network.

The internal protocol procedures define the procedures required for the transfer of
information, securely, between SCPS Network entities. The rules for protocol header
formatting and parsing govern the construction and interpretation of SCPS-SP PDUs. The
SCPS-SP PDU headers consist of variable-length clear and protected headers.

The SCPS-SP operates with the assumption that a Security Association (SA) database exists
that contains pertinent security information for use between the communicating entities such
as the encipher key, the key expiration, the key length, the Initialization Vector (IV) length,
the encipherment algorithm, the integrity algorithm, and the ICV length.

3.2 FUNCTIONAL OVERVIEW

The SCPS-SP provides network security services to its users. It is a connectionless security
service which is a layer-3 subnetwork independent convergence protocol. The SCPS-SP
provides the user with an integrity service, an authentication service, a confidentiality service,
or a combination of all three services.

CCSDS 711.0-G-0.2 Page 3-2 September 1997

NOTE – The establishment mechanism for the encipherment and integrity keys is outside
the bounds of this protocol specification. The keys and other security parameters
may be negotiated using a key-management or SA protocol, or they may be
manually pre-placed into a static SA database.

When integrity services are requested by a SCPS-SP user (e.g., an upper-layer protocol) or
are required as a default action to enforce an administrative security policy, SCPS-SP shall
calculate an ICV over the SCPS-SP clear and protected headers, the user data, which includes
any upper-layer protocol headers, and potentially a secret data stream (e.g., a “secret key”).
The size of the ICV is established in the SA database (integ_alg_ICV_length). However, the
specific manner in which the ICV is calculated shall be determined by the integrity algorithm
as identified by integ_alg_id in the SA database.

When confidentiality services are requested by a SCPS-SP user or are required as a default
action to enforce an administrative security policy, the SCPS-SP shall use the encipherment
key (cipher_key) in conjunction with the encipherment algorithm (conf_alg_id) and algorithm
mode (conf_alg_mode_id) specified in the SA database to encipher the SCPS-SP protected
header and the user data. The SA database is indexed by the source and destination addresses
of the PDU.

When authentication services are requested by a SCPS-SP user, the source and destination
network addresses are encapsulated into the SCPS-SP protected header and then either
integrity and/or confidentiality services are applied, as above. Authentication must be
requested with either integrity, confidentiality, or both. It cannot be provided without one or
both of the other services.

When both integrity and confidentiality services are requested, the SCPS-SP first performs the
integrity service followed by the confidentiality service. As a result, the protected header, the
user data, and the ICV generated by the integrity service are enciphered.

3.3 SCPS-SP END SYSTEM AND INTERMEDIATE SYSTEM INTERACTION

The SCPS-SP may operate between two SCPS-SP End Systems, between a SCPS-SP End
System and a SCPS-SP Intermediate System, or between two SCPS-SP Intermediate
Systems. However, there is a distinction in SCPS-SP operation when an Intermediate System
is involved in the secure communication.

A SCPS-SP-aware Intermediate System plays the role of a security gateway between security-
aware and security-unaware systems. The Intermediate System provides secure operations to
a security front door (e.g., a data handling system on a spacecraft) and allows smaller back-
end systems (e.g., instruments aboard a spacecraft) the freedom to be security unaware.

CCSDS 711.0-G-0.2 Page 3-3 September 1997

PHYSICAL

LINK

NETWORK

SCPS-SP

TRANSPORT

APPLICATION

SCPS-SP ES

PHYSICAL

LINK

NETWORK

TRANSPORT

APPLICATION

PHYSICAL

LINK

NETWORK

TRANSPORT

APPLICATIONPHYSICAL

LINK

NETWORK

SCPS-SP

TRANSPORT

SCPS-SP IS ES

ES

Ground System Spacecraft with onboard payloads

SCPS-SP Endpoints

(common data handler)

security no security

Figure 3-1: SCPS-SP End System and Intermediate System Interactions

When an Intermediate System (acting as a security gateway) is involved, the Intermediate
System has the responsibility to implement SCPS-SP (see 3-1). The End Systems behind the
Intermediate System create an enclave of systems that are unaware of the security protocol or
its services. The Intermediate System is responsible for implementing the security protocol
and performing all required security services on transmission and reception of PDUs. The
enclaved End Systems would send and receive PDUs through the Intermediate System,
unaware of the existence of the security protocol. However, all PDUs to and from the
enclave would be routed through the SCPS-SP-aware Intermediate System. It should also be
noted that since the Intermediate System performs all security processing, all the enclaved End
Systems will be provided the same security services. When using such an Intermediate
System security gateway, it is not possible to provide different security services for each of
the End Systems in an enclave.

A source SCPS-SP End System or Intermediate System must know if an intended destination
system employs SCPS-SP. This may be accomplished via the equivalent of a routing table as
found in systems implementing the Internet Protocol (IP). If the intended destination does not
employ SCPS-SP, the source SCPS-SP system must route the PDUs to a SCPS-SP-aware
Intermediate System acting on behalf of the SCPS-SP-unaware End System. This is
analogous to an Internet Protocol system routing packets to a smart router device because it
lacks direct connectivity to a foreign destination system. The SCPS-SP source End System or

CCSDS 711.0-G-0.2 Page 3-4 September 1997

Intermediate System must establish an SA with the SCPS-SP-aware Intermediate System that
acts as a security proxy for the intended End System.

The SCPS-SP assumes that a Security Association (SA) exists between the communicating
systems which implement the SCPS-SP. That is, between the two SCPS-SP End Systems, a
SCPS-SP End System and a SCPS-SP Intermediate System, or two SCPS-SP Intermediate
Systems. The SA consists of a set of attributes that are used by the SCPS-SP to provide
security services. These attributes are used by the authentication, integrity, and encipherment
services to provide end-to-end security for PDUs.

CCSDS 711.0-G-0.2 Page 4-1 September 1997

4 SCPS-TP AMENDMENTS TO TCP

Section 4 of this document specifies amendments to RFC 793, the Transmission Control
Protocol, and its supporting RFCs. Subsection 4.1 specifies revisions to connection
management. Subsection 4.2 specifies revisions to the data transfer regime. Subsection 4.3
revises error-recovery mechanisms. Subsection 4.4 defines a Selective Negative
Acknowledgment option. Subsection 4.5 specifies the header compression algorithm for use
on SCPS TCP connections.

4.1 CONNECTION MANAGEMENT AMENDMENTS

4.1.1 INITIAL SEQUENCE NUMBER SELECTION

The TCP specification (refer to RFC 793, section 3.3 and RFC 1122, section 4.2.2.9)
recommends that the Initial Sequence Number (ISN) be bound to a (possibly fictitious) clock
that increments roughly once every four microseconds. The purpose of this binding is to
ensure that segments from a previous incarnation of a connection are not misinterpreted as
belonging to the current incarnation of the connection. The use of a clock is valuable in this
case because it ensures that the ISN is not reset if there is a system crash. The rate of ISN
increase is roughly tied to an estimate of the maximum transmission rate anticipated on a
connection and ensures that the ISN clock does not wrap for over four hours.

A SCPS-TP conforming implementation is not required to use a clock as the basis for ISN
selection. As long as ISN selection is robust against a possible crash, increases slightly faster
than the maximum possible transmission rate, and does not wrap too quickly, then the
algorithm used for ISN selection meets the intent of the requirement and is acceptable.

Note also that the ISN does not have to be updated at every clock tick. Rather, it only needs
to be computed at the time a connection is established.

4.1.2 PRECEDENCE HANDLING

Replace RFC 793, section 3.6 with the following:

3.6 Precedence and Security

Security is handled external to the TCP, at a protocol layer that is
conceptually lower in the “stack”. The TCP shall convey a user’s
security requests and replies to the security provider and shall
report responses and indications as required. All other references to
security in this document shall be considered non-normative.

The precedence parameter used in TCP is as defined in the SCPS Network
Protocol. The intent is that connection be allowed at the higher of
the precedence levels requested by the two ports attempting to
connect.

CCSDS 711.0-G-0.2 Page 4-2 September 1997

An endpoint shall request the precedence level specified by the
calling application. (Any local policy constraints on precedence
level requested by the application are outside the scope of this
Report). If the remote TCP responds with a higher precedence level,
the precedence of the connection is raised to the requested level, or,
if local policy prohibits this, a reset is sent.

A listening endpoint that receives a connection request containing a
higher precedence level than the endpoint’s configuration will, if
permitted by local policy, raise its precedence level to that
specified by the remote endpoint and proceed with connection
establishment. If local policy does not permit such an increase in
precedence level, the listening endpoint will reject the connection
with a reset.

If an endpoint has more than one socket with service requests to the
transport protocol pending, the service order of those requests shall
be determined by the precedence level of the socket and shall proceed
starting with the highest precedence level.

4.1.3 NEGOTIATION OF SCPS CAPABILITIES

The availability of certain SCPS-specific capabilities must be negotiated at the time the
connection is established. The SCPS Capabilities Option is defined for that purpose and may
be included only on SYN segments. The endpoint initiating the connection specifies the
desired capabilities to which it has access (via the local implementation). (The determination
of which capabilities to use on a particular connection is implementation specific, possibly
based on information from the routing structures. An application MUST be involved in the
decision to use the Best Effort Transport Service (BETS).)

The specific information that is exchanged on the SCPS Capabilities Option is as follows:

– sender’s willingness to use the BETS;

– sender’s willingness to receive the short form and the long form (communicated
separately) of the Selective Negative Acknowledgment (SNACK) Option;

– sender’s willingness to receive SCPS Compressed TCP format headers;

– sender’s desire to send SCPS Compressed TCP format headers and the connection
identifier to associate with this connection;

– sender’s local availability of Network-layer timestamps suitable for use in compressing
the TCP Timestamps option (see discussion below).

If either endpoint does not send this option, the affected SCPS capabilities (BETS, SNACK,
and SCPS Header Compression) are unavailable on the connection. If either endpoint does
not send the SCPS Capabilities option, the operation of the protocol reverts to standard TCP
operation (if the standard TCP capabilities have been implemented) or a RST segment is sent
to abort the connection attempt (if the standard TCP capabilities have not been implemented).

CCSDS 711.0-G-0.2 Page 4-3 September 1997

The SCPS Capabilities option is formed as follows:

Octet 1

Octet 2

Octet 3

Octet 4

0 1 32 4 5 6 7

BETS Sn1 ComSn2

Connection ID

Option Type = SCPS Capabilities (decimal 10)

Option Length = 4

NL Ts Reserved

The value of the Type octet (decimal 10) is provisional, pending registration with the Internet
Assigned Numbers Authority (IANA). The bits in Octet 3 have the following meaning:

Bit Meaning if = 0 (“Not OK”) Meaning if = 1 (“OK”)
BETS Connection may not operate in BETS

mode.
Sender willing to operate connection in
BETS mode.

SN1 Do not send short form (length = 4) of
SNACK option (refer to 4.5).

OK to send short form of SNACK
option.

SN2 Do not send long form (length > 4) of
SNACK option (refer to 4.5).

OK to send long form of SNACK
option.

Com Do not compress TCP headers. OK to compress TCP headers—send
connection identifier.

NL Ts Network-layer timestamps not available
or unsuitable for use in compressing
TCP timestamps option.

Network-layer timestamps available and
a timestamp accompanies this segment.
If received, suitable, and available at
both ends, use for compressing TCP
timestamps option.

If both TCP endpoints send the BETS bit set to “OK”, the connection will operate in BETS
mode.

If TCP endpoint “A” sends the Com bit set to “OK” and TCP endpoint “B” sends a non-zero
Connection Identifier (Octet 4), then endpoint B will send compressed TCP format headers to
endpoint A.

If compressed headers are in use and both TCP endpoints indicate that use of Network Layer
Timestamps (NL Ts) is acceptable, then outbound timestamps shall be carried in the
timestamps field of the Network-layer header.

CCSDS 711.0-G-0.2 Page 4-4 September 1997

4.2 DATA TRANSFER AMENDMENTS

4.2.1 RECORD BOUNDARY OPTION

As specified in RFC 793, TCP provides a stream-oriented service. There is no mechanism to
delimit individual records. This SCPS extension to TCP defines a Record Boundary option to
allow a user to associate an end-of-record marker with a particular octet in the data stream
and have that marker remain associated with the referenced octet throughout transmission and
delivery.

The use of the Record Boundary option places some requirements on applications.
Applications at both ends of a prospective connection must determine that a Transport service
provides record boundary capability before connection establishment. (The Protocol
Implementation Conformance Statement (PICS) shall state whether an implementation
provides the Record Boundary option. For a run-time method of determining whether the
Record Boundary option is available, refer to the Application Program Interface specification
for the particular system on which the protocol is hosted.) If an application requests BETS
and Record Boundaries, the application developer must ensure that the applications are robust
against the possible loss of a record boundary. This may include incorporating a record length
indication in the application record structure.

The Record Boundary option may be invoked when the user supplies data to the Transport
service for communication to the remote Transport Service User (TSU). To invoke the
Record Boundary option, a TSU provides an API-specific indication to the Transport service
that the final octet of data in this service request represents the end of a record. This end-of-
record indication, when supplied by the TSU, is associated with the last octet in the service
data unit with which it was submitted. The ending delimitation of the record shall be
preserved during transmission (and possible retransmission) and across the remote service
interface interfaces. The sequence number of the octet associated with the record marker shall
be the highest sequence number in the segment carrying the record boundary option, and a
read shall associate the end of record with that octet. The octet associated with the record
boundary option shall not be changed by the Transport Service Provider (TSP). If any portion
of a segment carrying the end-of-record option falls to the right of the receiver’s window, the
end-of-record option is discarded (until the final octet of that segment, with which the end-of-
record option is associated, is received).

The Record Boundary option (RBOpt) is two octets in length and has a Type = 0x19 (25
decimal). It may be requested by an application to be associated with any data in the stream,
with the constraint that the Record Boundary is associated with the final octet of data in the
particular service request (e.g., write call). Use of the record boundary is valid whenever
transmission of data is valid.

The effect of the Record Boundary on the Transport Protocol is that the octet associated with
the end-of-record option shall have the highest sequence number in any segment that carries it.
(That is, it shall be the final octet in the segment.) This applies to the initial transmission and

CCSDS 711.0-G-0.2 Page 4-5 September 1997

any possible retransmissions. (This modifies the effect of the Nagle algorithm and constrains
the Transport protocol in performing repacketization during retransmission. Refer to RFC
896 for a description of the Nagle algorithm.)

4.2.2 ADDITION OF BEST EFFORT TRANSPORT SERVICE

Amend RFC 793, section 1.5, paragraph on “Reliability” to the following:

The TCP provides two modes of operation: Fully reliable Transport
service and BETS. Fully reliable Transport service is provided for
“stateful” applications that depend on all data being reliably
transmitted and received. BETS is provided for two main users: those
that must continue to communicate during degraded conditions with as
much reliability as possible; and those that wish to have the service
of a stream-oriented Transport protocol but wish to sacrifice some
reliability in order to limit buffer use on resource-restricted
systems.

In its fully reliable mode, TCP must recover from data that is
damaged, lost, duplicated, or delivered out of order by the Internet
communication system. This is achieved by assigning a sequence number
to each octet transmitted and requiring a positive acknowledgment
(ACK) from the receiving TCP. If the ACK is not received within a
timeout interval, the data is retransmitted. At the receiver, the
sequence numbers are used to put segments in the correct order and to
eliminate duplicates. Damage is handled by adding a checksum to each
segment transmitted, checking it at the receiver, and discarding
damaged segments.

As long as the TCPs continue to function properly and the Internet
system does not become completely partitioned, no transmission errors
will affect the correct delivery of data. TCP recovers from Internet
communication system errors.

In its best-effort mode, TCP recovers from data that is damaged, lost,
duplicated, or delivered out of order to the extent possible given the
constraints imposed by the user application. The best-effort mode
allows the sender to control the limit on segment retransmission in
order to manage retransmission buffer space. The user has the ability
to specify how many times a segment will be retransmitted (including
zero times, in which the segment is discarded after its initial
transmission and the buffer space is recovered). The sending TCP
maintains a retransmission buffer until a segment is acknowledged,
until the segment exceeds its maximum retransmission threshold, or the
send window fills. When a segment exceeds its maximum retransmission
threshold without acknowledgment or the send window fills, the TCP
treats it as having been acknowledged (rather than aborting or halting
the connection). The sending application may query the SCPS-TP (TCP)
implementation in an API-specific manner to determine the location and
length of segments that were not acknowledged by the receiver. There
may be system-dependent limits on the amount of information that is
kept by SCPS-TP. The implementation shall document the specific
limitations on this capability.

The receiving TCP is configured by its application to operate in best-
effort mode. In this mode, the receiver behaves in the same manner as
fully reliable TCP until an out-of-sequence queue forms. (An out-of-
sequence queue forms when a segment is lost or delayed, but one or
more segments with higher sequence numbers are received. A queue is
formed, but a “hole” for the missing segment is maintained. The queue

CCSDS 711.0-G-0.2 Page 4-6 September 1997

of higher-sequence number segments is the out-of-sequence queue.)
When an out-of-sequence queue is formed and when the receive buffer
space that has been used reaches x% of available space, the receiving
TCP will (a) issue an acknowledgment that acknowledges the data in the
missing segment plus any data in the out-of-sequence queue that would
be acknowledgeable were the missing segment received, (b) issue an
error/warning/advisory to receiving application identifying size of
the hole (in octets), and then (c) deliver the subsequent in-sequence
data to user.

Amend RFC 793, section 3.7, add the following paragraphs at the end of the section:

Best Effort Transport Service

Objectives

There are two objectives of the Best Effort Transport Service: to
allow communication to continue in the event that the ability of the
receiver to acknowledge data is interrupted independently of the
ability of the sender to transmit data, and to allow a sending
application to establish an appropriate tradeoff between required
connection reliability and use of retransmission buffer resources.
The first objective is aimed specifically at spacecraft operations in
which transmitters and receivers use separate electronics, which may
fail independently of each other. The Best Effort Transport Service
can permit a ground system to continue commanding a spacecraft even if
the spacecraft’s transmitter is damaged and it cannot transmit
acknowledgments. The second objective is aimed at payload users that
wish to send large volumes of data and desire that the data be
delivered correctly, in sequence, and without duplicates, but do not
necessarily require completeness. An example of a potential user of
this service is an imaging application that can tolerate the loss of
an occasional scan line, but does not have the buffer space on board
for fully reliable communication.

Invocation

The Best Effort Transport Service is invoked using the SCPS
Capabilities option. Refer to 4.1.3 for a discussion of this option
and its use.

Sender Operation

TCP uses the occurrence of excessive retransmission of a single
segment as an indication of failure in the network or the remote host.
There are two thresholds, R1 and R2, measuring the amount of
retransmission that has occurred for an individual segment. Refer to
RFC 1122, section 4.2.3.5, for a full description of these two
thresholds. With Best Effort mode, R1 and R2 shall be interpreted as
a count of transmissions (not time nor re transmissions). Further, R2
shall be local to a connection and accessible for reading and writing
by the user application via a Transport-interface option.

For fully reliable operation, R1 is the threshold that indicates a
degraded connection and the need for diagnosis and possible re-
routing. The R2 threshold indicates a broken connection. These
meanings are similar in Best Effort mode, but modified slightly; when
the R1 threshold is reached, it is still an indication that the
connection is degraded, but R1 may not be active on all connections,
depending on the value of R2. R2 is the threshold at which attempted
retransmission of a segment is discontinued.

CCSDS 711.0-G-0.2 Page 4-7 September 1997

If the value of R2 is set to a non-zero positive number, then the
value of R1 shall be set to a value less than that of R2. The value
of R1 shall be set by the local TCP implementation. If the value of
R1 is forced to zero because R2 is set to one, no action will be taken
in response to the R1 threshold being exceeded.

When Best Effort mode is enabled and the R2 limit is set to one, then
segments may be discarded after being initially transmitted rather
than being queued for retransmission.

When Best Effort mode is enabled and the R2 limit is greater than one
and the number of transmissions of the same segment reaches or exceeds
R1, then the same negative advice that is generated for fully reliable
mode may be invoked. (Exceeding the R1 threshold typically results in
an attempt to identify a different route to the destination.)

When Best Effort mode is enabled and either the R2 limit is reached
(or exceeded) for a segment or SND.NXT = SND.UNA + SND.WND, the
sending TCP shall behave exactly as if it had received a positive
acknowledgment that advances SND.UNA to SEG.SEQ of the next segment in
the retransmission queue and that makes no change to SND.WND.
(SND.UNA is the sequence number of the first unacknowledged octet.
SND.NXT is the sequence number of the next octet to be sent. SEG.SEQ
is the sequence number of the first octet in a segment. SND.WND is
the number of octets of unacknowledged data that the sender is
authorized by the receiver to have outstanding.)

If R2 is set to zero by an application, it is an escape value that
indicates that the TCP should not break a connection due to excessive
retransmissions, nor should it invoke the Best Effort Transport
Service. Rather, it is a request to retransmit an “infinite” number
of times. (If R2 is set to zero, R1 behaves as it would for fully
reliable operation in which R2 is set at a “reasonable” threshold.)

The TCP implementation shall provide sending applications with a means
to determine which data elements may not have been acknowledged by the
receiver. (There may be cases in which data segments were received by
the receiver but their acknowledgments were lost. Therefore, possible
reasons for not receiving acknowledgments are: (1) data segments were
lost, or (2) acknowledgments were lost. The sender cannot tell which
of the two reasons is the real reason. Also note that, when in BETS
mode, acknowledgments received from the receiver may contain
acknowledge data that was not received.) The implementation shall
specify the missing data elements by reporting a pair of numbers for
each missing data element. The first number in the pair shall be the
byte offset from the start of the connection to the first byte of
unacknowledged data. The second number in the pair shall be the byte
offset from the start of the connection to the last octet of
unacknowledged data. Once read by the application, the missing-data-
element specification pair will be removed from the list. The TCP
implementation may restrict the amount of memory that is available for
storing these pairs of numbers and, if so, may treat the available
memory as a circular buffer. If an application does not request a
report of missing data elements before the available memory fills,
information could be lost.

For TCP implementations that support the Record Boundary option, the
implementation MAY specify missing data elements by reporting an
additional pair of numbers for each missing data element. The first
number of the additional pair is the record offset from the start of
the connection to the beginning of the unacknowledged data. The
second number of the additional pair is the record offset from the
start of the connection to the end of the unacknowledged data.

CCSDS 711.0-G-0.2 Page 4-8 September 1997

Receiver Operation

1 = old sequence numbers that have been acknowledged
2 = sequence numbers allowed for new reception
3 = future sequence numbers that are not yet allowed

 = segments received without error

21 3

RCV.NXT RCV.NXT
+RCV.WND

Figure 4-1: Receive Queue with No Out-of-Sequence Segments

Figure 4-1 illustrates the normal situation with a receiver that has
received no out-of-sequence segments. Area 1 extends from the initial
sequence number of the connection up to (but not including) the
sequence number RCV.NXT. This represents data that has been received
and acknowledged. Area 2 represents the range of sequence numbers
that are allowed for new segments to be received. This area is
bounded on the low end by the latest sequence number acknowledged
(RCV.NXT), and on the high end by the size of the window (the sequence
number for this bound being RCV.NXT plus RCV.WND). Area 3 shows
sequence numbers that are not yet allowed because of the window size.
The shaded area illustrates segments that have been received. (The
fact that this area corresponds to Area 1 indicates that all data that
has been received has been acknowledged. In some cases, the shaded
area could extend into Area 2, indicating that data had been received,
but not yet acknowledged.)

Figure 4-2 illustrates the receive queue in a situation in which a
segment has either been lost or was corrupted. As before, Area 1
illustrates the sequence number range that has been acknowledged, Area
2 illustrates the sequence number range that is allowed for new
reception, and Area 3 illustrates the sequence number range that is
not yet allowed. Consider, however, the shaded areas representing
segments received and lost. The lighter shading represents segments
that have been received correctly. The darker shading represents
missing segments. Note that RCV.NXT has not (and can not, in fully
reliable operation) advance past the missing segment. Segments can
continue to be received and enqueued for the full sequence-number
range defined by Area 2. When the missing segment(s) from the dark
area are received, all of the segments that are to the right of the
dark area can be acknowledged, and RCV.NXT will move to the right of
the last octet received. Correspondingly, Area 2 will move to the
right, such that the right edge of Area 2 is defined by (the new value
of) RCV.NXT plus RCV.WND.

When operating in Best Effort mode, the receiving TCP must be prepared
to deal with segments that will not be retransmitted. If the
receiving TCP took only the action of the fully reliable TCP while the
sending TCP operated in Best Effort mode, the situation could arise

CCSDS 711.0-G-0.2 Page 4-9 September 1997

that the receiving TCP would wait infinitely for a segment that would
not be retransmitted because the sender’s R2 had been exceeded.

1 = old sequence numbers that have been acknowledged
2 = sequence numbers allowed for new reception
3 = future sequence numbers that are not yet allowed

 = segments received without error

1 3

RCV.NXT RCV.NXT
+RCV.WND

2

 = missing or corrupted segments

Figure 4-2: Out-of-Sequence Queue Formation

As a result of this, in Best Effort mode, the receiving TCP must have
a threshold at which it ceases to wait for an out-of-sequence segment
and simply “moves on.” In fact, two thresholds are required: one
based on the amount of out-of-sequence data received, and one based on
the time that out-of-sequence data has been waiting for delivery. The
size-based threshold, BE1, is defined as a value in octets that
corresponds to a locally administered percentage of the receiver’s
buffer space. The time-based threshold, BE2, is defined as the
interval in locally sized clock ticks after which out-of-sequence data
will be delivered to the user. Figure 4-3 shows the out-of-sequence
queue again, but redefines Area 2 to be the range of sequence numbers
between RCV.NXT and the Best Effort threshold BE1. Area 2 and Area 3
both represent permitted sequence numbers for new reception, together
corresponding to Area 2 from previous figures. Area 4 represents the
sequence number range that is not yet valid.

CCSDS 711.0-G-0.2 Page 4-10 September 1997

segments received without error

missing or corrupted segments

old sequence numbers that have been acknowledged
sequence numbers allowed before Best Effort Receive
operation starts
sequence numbers allowed for new reception
future sequence numbers that are not yet allowed

1
2

2,3
4

 =

1 3

RCV.NXT RCV.NXT
+RCV.WND

2

 =

4

RCV.NXT
+BE1

=
=

=
=

Figure 4-3: Best Effort Receive Threshold Placement

The time-based threshold BE2 is required to ensure that an out-of-
sequence queue representing the end of a transmission neither waits
infinitely for delivery nor requires the connection to be closed to
ensure delivery. When out-of-sequence data is received but no
previously enqueued out-of-sequence data exists (i.e., the transition
from figure 4-1 to figure 4-2 occurs), an interval timer is started.
If the out-of-sequence data is not delivered by the time the BE2
interval elapses, the actions described below are taken.

Figure 4-3 shows a situation in which the out-of-sequence queue has
reached the BE1 threshold. When the receiving TCP is operating in
Best Effort mode and the size of the out-of-sequence queue reaches or
exceeds BE1 or the interval BE2 elapses, then the following actions
shall be taken by the receiver:

a) Issue an acknowledgment that acknowledges the data in the

missing segment plus any data in the out-of-sequence queue that

would be acknowledgeable were the missing segment received.

(In figure 4-2, the acknowledgment would move RCV.NXT to the

right of the rightmost lightly shaded box. Note that this

acknowledgment is a lie - it may be considered to be a

“pseudoacknowledgment” . The data from the darkened area was

never received. This is what differentiates the Best Effort

receiver from the fully reliable receiver.)

b) Issue an error or warning or advisory to receiving application

identifying size of the hole (in octets). (In figure 4-2, the

CCSDS 711.0-G-0.2 Page 4-11 September 1997

size of the dark-shaded box would be reported to the receiving

application as part of an error message. By issuing the

indication in-band, the location of the missing data is

implicit, and only its size need be reported.)

c) Deliver the subsequent in-sequence data to user.

Figure 4-4 shows the slightly more complex case in which the receive
queue has multiple holes in it. In this case, Areas 1 through 4 are
identical to those of figure 4-3, as are the reference points RCV.NXT,
RCV.NXT plus BE1, and RCV.NXT plus RCV.WND. At this point in the
communication, the BE1 threshold has been met, and a Best Effort
acknowledgment must be issued. However, paragraph (a) above indicates
that, rather than issuing an acknowledgment that moves RCV.NXT to the
right edge of Area 2 (RCV.NXT plus BE1), the acknowledgment will move
RCV.NXT to the sequence number indicated by “A” in figure 4-4. This
has the effect of shifting Areas 1 through 4 to the right by the
amount of A minus RCV.NXT octets.

If the missing segment immediately to the right of A is received
before enough new data is received to reach the new Best Effort
threshold, no loss of data is necessary. This is the reason that the
Best Effort acknowledgment does not advance the sequence number to the
end of the Best Effort threshold.

missing or corrupted segments

 segments received without error

=
=

=
=
=

old sequence numbers that have been acknowledged
sequence numbers allowed before Best Effort Receive
operation starts
sequence numbers allowed for new reception
future sequence numbers that are not yet allowed
sequence number in Best Effort Ack

1
2

2,3
4
A

 =

1 3

RCV.NXT RCV.NXT
+RCV.WND

2

 =

4

RCV.NXT
+ BE1

A

Figure 4-4: Best Effort Receive with Fragmented Out-of-Sequence Queue

Figure 4-5 shows the result of issuing the Best Effort acknowledgment
(with “A” as the sequence number). Note that RCV.NXT has been

CCSDS 711.0-G-0.2 Page 4-12 September 1997

advanced to the next hole in the out-of-sequence queue, shifting Areas
1 through 4 to the right. The segment(s) to the left of RCV.NXT that
are darkly shaded are missing. If these segments arrive after RCV.NXT
has advanced, the receiving TCP may discard them. (Alternatively, the
receiving TCP may store them via some out-of-band storage means for
off-line merging with the rest of the data. However, this requires
the receiving TCP to maintain the sequence number and size of each
area of missing data. A Best Effort receiver that will be receiving
large volumes of data will probably exist in a (ground-based) system
with substantial receive buffer capacity. Therefore, it is
anticipated that the threshold BE1 will be able to be set sufficiently
high that most retransmissions will be cleared from the network by the
time BE1 is met or exceeded.)

segments received without error

missing or corrupted segments

old sequence numbers that have been acknowledged
sequence numbers allowed before Best Effort Receive
operation starts
sequence numbers allowed for new reception
future sequence numbers that are not yet allowed

1
2

2,3
4

=

3

RCV.NXT RCV.NXT
+RCV.WND

2

=

4

RCV.NXT
+ BE1

1

=
=

=
=

Figure 4-5: Fragmented Out-of-Sequence Queue after Best Effort Acknowledgment

4.3 ERROR RECOVERY AMENDMENTS

Amend RFC 793, section 3.7, replace the “Retransmission Timeout” section with the
following paragraphs:

Because of the variability of the networks that compose a space-based
internetwork, the retransmission timeout should be dynamically
determined. However, it is possible that some spacecraft have such
limited resources that the dynamic computation of the retransmission
timeout cannot be accomplished. In these cases, the retransmission
timeout may be statically configured via the MIB. The MIB supports
static selection of the retransmission timeout mechanism.

When retransmission timeouts are dynamically determined, the
requirements in this paragraph are in force. The Jacobson algorithm
for computing smoothed round-trip time (RTT) shall be used to estimate

CCSDS 711.0-G-0.2 Page 4-13 September 1997

the RTT and its variance. The Karn algorithm shall be used to select
those RTT measurements that are valid except when the TCP Timestamps
option is present. In such a situation, the retransmission ambiguity
problem cited by Karn’s algorithm does not exist, and the round trip
of a retransmitted segment shall be factored into the RTT estimate.

When the implementation has elected not to provide congestion control,
the following algorithms are not available: Van Jacobson’s Slow Start
algorithm, Van Jacobson’s Congestion Avoidance algorithm, and the
exponential back-off of the retransmission timer for successive
retransmissions.

Implementations that provide congestion control may do so in one of
two ways: by using the standard means within TCP (i.e., Van
Jacobson’s Slow Start Algorithm, Van Jacobson’s Congestion avoidance
algorithm, and exponential back-off) or by using the TCP Vegas
congestion-control mechanisms .

When congestion control is implemented but there is evidence that data
loss is due to corruption, the “exponential backoff” algorithm may
optionally not be invoked. This evidence of corruption rather than
congestion may be obtained from inter-layer signaling or from a MIB-
query. When a connection receives an indication that corruption has
been experienced, it sends the corruption-experienced option (Type =
11, Length = 2, pending registration with the IANA) to the remote TCP
at an implementation-defined rate not to exceed once per round-trip
time, and continuing for no more than two round-trip times after the
previous indication of corruption was received. Receipt of the
corruption-experienced option from a remote TCP shall not cause the
receiver to send a corresponding corruption-experienced option to its
peer.

For retransmissions of data in which there is no indication of
corruption being experienced, the exponential backoff algorithm shall
be used to compute successive Retransmission Timeout values for the
same segment.

When congestion control is implemented, the Jacobson algorithms for
slow start and congestion avoidance or corresponding TCP Vegas
algorithms shall be used when the default source of loss is congestion
and there is no evidence that data loss is due to a cause other than
congestion. The use of these algorithms when there is evidence of
corruption is optional, but may result in reduced performance.

When the TCP receives an indication of a link outage, either from
inter-layer signaling or from MIB-query, it shall suspend
transmission. The retransmission timer shall be suspended. User data
may continue to be enqueued by TCP for transmission, to the extent
that retransmission buffer space permits (this is a local
implementation option). Periodically, at a locally determined rate
(recommended to be some small multiple of the previous retransmission
timeout) the TCP shall send a link-probe segment, consisting of the
first octet of unacknowledged data. (If no unacknowledged data
exists, no link probe is sent. If data is submitted for transmission
during a link outage, the link probes shall commence.) Link probe
segments shall not be interpreted as retransmissions for the purposes
of modification of the retransmission timeout or for invocation of
slow start or congestion avoidance. When the TCP receives a “link
restored” or “link redirect” control message, determines that the link
is available from a MIB-query, or receives an acknowledgment that
arrives at least one RTT after the commencement of the link outage,
normal communication resumes.

CCSDS 711.0-G-0.2 Page 4-14 September 1997

4.4 SELECTIVE ACKNOWLEDGMENT SPECIFICATION

The TCP cumulative acknowledgment mechanism, combined with congestion control,
performs poorly in the SCPS environment. A selective acknowledgment strategy provides
precise information to the sender about missing data and can therefore facilitate a more
prudent retransmission scheme and provide improved performance.

Two selective acknowledgment schemes have been proposed for TCP; neither is in wide use.
The following paragraphs describe the two options and identify the problems with using those
options in the SCPS environment. Subsequently, 4.4.5 presents the SCPS Selective Negative
Acknowledgment Option, which addresses those problems.

4.4.1 THE RFC 1072 SELECTIVE ACKNOWLEDGMENT OPTION

The Selective Acknowledgment (SACK) mechanism defined in RFC 1072 consists of an
option in the TCP header sent by the data receiver to the data sender. The option contains
advisory information regarding non-contiguous blocks of data that have been received and
queued by the receiver. The SACK option does not change the interpretation of the
acknowledgment number in the regular TCP header. The intention is that the data-sender will
optimize retransmissions based on the additional information provided by the SACK option.
The option itself consists of a variable-length list of pairs of 16-bit integers. Each pair defines
a block of contiguous sequence space that corresponds to data that has been received and
queued by the receiver. A pair consists of a Relative Origin and a Block Size for each
isolated, contiguous block of received data. The Relative Origin specifies the first sequence
number in a block, relative to the acknowledgment number in the TCP header. The Block
Size specifies the size in octets of the block of data.

4.4.2 PROBLEMS WITH THE RFC 1072 SACK OPTION

The ability to acknowledge multiple discontiguous blocks is desirable, and is provided by the
Selective Acknowledgment mechanism proposed in RFC 1072; however, three problems exist
with the scheme:

1) The SACK option is large. Because a limit exists on the size of the TCP header (64
bytes, of which 20 bytes are the basic TCP header), and because a SACK option that
specifies n blocks has a length of 4n + 2 bytes, a single SACK option is capable of
specifying at most 10 blocks. If other TCP options are in use, a given SACK option
may not be able to specify even 10 blocks. This limitation reduces the advantage
gained by using Selective Acknowledgments over cumulative acknowledgments,
especially when operating with large windows in a noisy environment.

2) The SACK option is imprecise. When RFC 1323 Window Scaling is enabled, the
window size can effectively be as large as a 30-bit quantity. The SACK option uses a

CCSDS 711.0-G-0.2 Page 4-15 September 1997

16-bit field to identify the location, or Relative Origin, of a block of data within this
window space. Likewise, the Block Size field, which specifies the size in bytes of a
contiguous block of data is a 16-bit quantity. Clearly, these fields cannot address the
entire window space when scaling is enabled. The two solutions to this problem
proposed in RFC 1072 are both inadequate. The first is to expand the SACK Relative
Origin and Block Size fields to 24 or 32 bits each. From the perspective of bit-
efficiency, this solution is unacceptable. In addition, this approach drastically reduces
the number of blocks that can be specified by a SACK option. The second proposal is
to scale the SACK fields by the same value as the window. This solution introduces
imprecision into the acknowledgment, since the SACK option must report block
offsets and lengths in multiples of the window scale factor, which may not be a
multiple of the segment size. To reconcile this imprecision, it is necessary to adopt a
conservative approach and unnecessarily retransmit some data when there is doubt as
to which segments are being acknowledged. This approach also makes inefficient use
of the channel.

3) The SACK option is incompletely specified. RFC 1072 describes the format of the
SACK option, but it does not cover other essential issues, such as when to send a
SACK as the receiver of data, or how to process one as the data sender. RFC 1072
also fails to mention the interaction between the SACK option and the congestion
control algorithms, which governs the system throughput in the event of packet loss in
standard TCP.

4.4.3 THE RFC 1106 NEGATIVE ACKNOWLEDGMENT OPTION

RFC 1106 proposes a Negative Acknowledgment (NAK) option. This extension permits the
data-receiving TCP to inform the sender that a block of data was not received and needs to be
retransmitted. Like the RFC 1072 SACK option, this extension does not alter the meaning of
the regular acknowledgment field in the standard TCP header, but simply provides additional
information that may be ignored without affecting TCP’s current behavior. The NAK option
contains the sequence number of the first byte being NAKed and the number of consecutive
maximum-size segments being NAKed. When the data-sending TCP receives a NAK it may
elect to retransmit the NAKed segments immediately or it may ignore the NAK information.

4.4.4 PROBLEMS WITH THE RFC 1106 NAK OPTION

The RFC 1106 NAK option is reasonably bit-efficient, but it has the ability to signal only a
single “hole” that exists in the sequence space in the receiver’s buffer. A more powerful
mechanism, capable of specifying multiple holes, is desirable in the noisy, long-delay
environment to provide the sender with more complete information about the state of the
receiver’s potentially large out-of-sequence queue. (Note that large send and receive buffers
are required when operating with large windows.)

CCSDS 711.0-G-0.2 Page 4-16 September 1997

4.4.5 SELECTIVE NEGATIVE ACKNOWLEDGMENT OPTION

The SNACK option takes into consideration the strengths and short-comings of the RFC
1072 SACK and RFC 1106 NAK options. The SNACK option is defined to address the
issues identified with the former selective acknowledgment mechanisms and to meet the SCPS
requirements.

The SCPS SNACK is a variable-length TCP option that signals the presence of multiple holes
in the receiver’s resequencing queue in a bit-efficient manner. The SNACK option consists of
four fields: the kind and length fields required of all TCP options, followed by the 16-bit
“Hole1” field and an optional variable-length bit-vector. (If the bit-vector is not included, the
length of the option is fixed at four bytes. If the bit-vector is included, the length of the option
becomes implementation dependent.) Hole1 signals the size of the first hole in the receiver’s
buffer, where the starting location of the hole is specified by the ACK number carried in the
TCP header. The bit-vector maps the sequence space of the receiver’s buffer into Maximum
Segment Size (MSS)-sized blocks, beginning one byte beyond the end of the block specified
by Hole1. Each “0” in the bit-vector signifies that one or more bytes are missing in the
corresponding block of the receiver’s resequencing queue. (Note that any zeroes to the right
of the last “1” in the bit vector are NOT interpreted as a hole.) The length of the bit-vector,
which may vary at the SNACK-sender’s discretion, is determined from the option length. Use
of the SNACK option is enabled by the SCPS Capabilities Option, which may be sent only on
the SYN segment of the connection. Pending approval from the Internet Assigned Numbers
Authority (IANA), SNACK uses option number 15.

=
=

old sequence numbers that have been acknowledged
sequence numbers allowed for new reception

1

mss = 1024 octets
2

RCV.NXT

1
2

segments received without error

missing or corrupted segments

=

=

Figure 4-6: Out-of-Sequence Queue for SNACK Example

CCSDS 711.0-G-0.2 Page 4-17 September 1997

1 8 16 24 32

Kind=15 Length=8 Hole1 Offset = 0

11110110 01000000Hole1 Size = 3

Figure 4-7: SNACK Option Resulting from Out-of-Sequence Queue Example

1 8 16 24 32

Kind=15 Length=6 Hole1 Offset = 0

Hole1 Size = 3

Kind=15 Length=6 Hole1 Offset = 8

Hole1 Size = 1

Kind=15 Length=6 Hole1 Offset = 11

Hole1 Size = 2

Figure 4-8: SNACK Options (without SNACK Bit-Vector) Resulting from Out-of-
Sequence Queue Example

The data-receiver sends an appropriately formed SNACK option on an ACK segment
whenever an out-of-sequence queue forms. There are mission-specific considerations
regarding whether transmission of the SNACK option should be delayed, and by how much,
in anticipation of the missing segment(s) arriving out of order. This decision is
implementation specific and should take into account the probability of segment misordering
by the underlying network(s). Unless segment misordering is highly unlikely, delaying
transmission of the SNACK option may be beneficial. (The SNACK option forces immediate
retransmission; as such, the SNACK sender should be relatively certain that the retransmission
is necessary.)

Upon receipt of a SNACK option, the data-sender retransmits all segments necessary to fill
the signaled holes. (This relatively aggressive retransmission scheme is appropriate when the
goal is to prevent retransmission time-outs, which cost more in terms of link idle time than
unnecessary retransmissions cost in terms of wasted bandwidth.) The data-sender may
process the SNACK option by first retransmitting the segments corresponding to the Hole1
specification. If a bit-vector is present, the data-sender may left-shift the bit vector until the

CCSDS 711.0-G-0.2 Page 4-18 September 1997

last “1” is shifted out, retransmitting the segment corresponding to each “0” encountered in
the process. (This is an example for illustrative purposes, the exact mechanism is
implementation specific. It is STRONGLY RECOMMENDED that retransmissions occur in
the order of ascending sequence numbers.)

4.5 SCPS-TP HEADER COMPRESSION SPECIFICATION

SCPS Header Compression is to be used on SCPS-TP TCP connections that require high bit-
efficiency. The requirement for high bit-efficiency may result from the presence of low-data-
rate links in one or both directions of the communication path, or from high utilization of
those links. For most space missions, link bandwidth is considered a scarce resource, and the
overhead of TCP segment headers is considered too high.

A significant amount of work has been done outside the SCPS activity to reduce the overhead
of TCP/IP headers. This work is documented in RFC 1144. The compression specified in
RFC 1144 is intended for use on low-speed serial links, and addresses the problems of
maintaining interactive response for programs such as telnet. RFC 1144 header compression
operates at the link layer. The link layer maintains connection state tables for inbound and
outbound TCP/IP connections; the state for each connection consists of the last TCP and IP
header sent (outbound) or received (inbound) on that connection. The compressor is
initialized by allocating a connection number to the connection and saving the first TCP/IP
header sent. The initial headers are not compressed. Subsequent headers are encoded by
sending only the changes from the previous header. Additionally, the sequence number,
acknowledgment number, urgent pointer, and window fields are sent as changes to the
previous value. At the receiving side, an uncompressed TCP/IP header is created by applying
the changes to the saved header to create a new TCP/IP header. This new header is saved in
the connection state table and is forwarded to the destination along with the data. Since the
information in the compression state tables will be corrupted if a segment is lost or damaged
(misordering is typically not a problem at the link layer), the (unmodified) TCP checksum is
included in all TCP segments. If the decompressor state is corrupted, the TCP checksum will
fail at the receiving TCP endpoint and the corrupted segment will be discarded.
Retransmissions are forwarded uncompressed by the RFC 1144 compressor, and are used to
resynchronize the decompressor’s state. (Note that if a segment is lost or corrupted, all
segments following it will be decompressed improperly, causing them to be discarded by the
receiving TCP endpoint. This behavior continues until the sending TCP entity retransmits the
lost segment(s), resynchronizing the compressor and decompressor. This is typically not a
problem for RFC 1144 operation, since it is designed primarily for interactive operation in
which there are typically only a few octets of data outstanding at one time.)

The remainder of the discussion of SCPS Header Compression is structured in the following
manner: first, we discuss the problems with using RFC 1144 Header Compression in the
SCPS environment; second, we describe the approach used in solving those problems; finally,
we provide the details of SCPS Header Compression.

CCSDS 711.0-G-0.2 Page 4-19 September 1997

4.5.1 PROBLEMS WITH RFC 1144 HEADER COMPRESSION IN THE SCPS
ENVIRONMENT

The header compression algorithm to be used with the SCPS TCP is derived from the
algorithm specified in RFC 1144. There are problems operating the header compression
specified in RFC 1144 in a SCPS environment, so changes were necessary.

A major problem with RFC 1144 in the SCPS environment results from the way it encodes
and decodes data. RFC 1144 uses delta encoding, which encodes data in terms of the amount
of change since the previous transmission. If a segment is lost or misordered, the
decompression algorithm incorrectly decompresses all segments until the compression state at
the receiver is resynchronized via retransmission. (Retransmissions are sent uncompressed.)
The recovery from the incorrect decompression is accomplished via the normal TCP
retransmission mechanisms, which means that the RFC 1144 forces go-back-n retransmission
once it loses synchronization. Go-back-n retransmission is not a significant problem in a low-
speed serial environment, because the bandwidth-delay product of the network is low, and
little data will be outstanding at any time. As data rates increase, the data loss due to
decompression errors increases. The behavior of the RFC 1144 decompressor when faced
with loss or resequencing is unacceptable in a SCPS environment, because of the bit-
inefficiency of the go-back-n algorithm in moderate to high bandwidth-delay product
environments.

The SCPS networking environment includes satellite constellations that are changing their
link-layer connectivity on a frequent basis. This subverts the RFC 1144 header compression
algorithm, which maintains transport state at the link layer, assuming that the connection is a
low-speed serial (phone) line from a personal computer to a gateway or a remote host. RFC
1144 compression maintains TCP state by tracking changes from one TCP segment to the
next, and resynchronizes by sending an uncompressed TCP/IP datagram whenever the link-
layer state is corrupted. Link-layer state becomes corrupted whenever a packet is lost (due to
lower-layer error detection or to congestion) or is misordered. In a dynamic connectivity
environment, that link-layer state would continually be out of date, and resynchronization
would happen frequently. Since RFC 1144 uses normal TCP retransmission mechanisms to
resynchronize, in addition to a possible deterioration in bit efficiency, the TCP connection
would be hampered by the throughput reductions associated with frequent retransmission.

Finally, RFC 1144 assumes that IP is the Network-layer protocol. This allows compression of
the IP header as well as the TCP header, but forces the compression algorithm to operate at
the link layer. The SCPS effort has addressed Network-layer overhead by defining the SCPS
Network Protocol (SCPS-NP).

Note that much of the text of this section, particularly the discussions of Compressor
Processing, Decompressor Processing, and Error Handling, are adapted with only minor
modifications from RFC 1144. While those modifications are significant, and substantially
affect the ability of the compression software to operate in the SCPS environment, the SCPS

CCSDS 711.0-G-0.2 Page 4-20 September 1997

project is indebted to Van Jacobson for his thorough explanation of the original processes,
which made adaptation much easier.

4.5.2 SCPS HEADER COMPRESSION—APPROACH

Like RFC 1144, SCPS Header Compression uses two main techniques to reduce the size of
TCP headers: It summarizes information that is static for the duration of the connection (by
assigning a connection identifier to replace the port numbers). It omits information that is not
relevant to the segment being sent (such as the urgent field if the URG flag is not set). Unlike
RFC 1144, it does not use delta encoding, nor does it operate at the link layer. The following
paragraphs discuss how SCPS Header Compression addresses the problems identified with the
use of RFC 1144 in the SCPS environment.

SCPS Header Compression attempts to address the loss and mis-sequencing problems of the
RFC 1144 algorithm by operating end-to-end within the Transport layer. That is, Network-
layer header compression is left to the SCPS Network Protocol, and the TCP connection
implements the Transport-layer-specific compression and decompression operations. This
allows the resequencing mechanisms within TCP to be used to avoid go-back-n retransmission
behavior and is unaffected by changes in connectivity.

The use of SCPS Header Compression is requested by the initiating TCP endpoint by
including the SCPS Capabilities option with its (uncompressed) SYN segment. If the
initiating endpoint does not include this option, compression will not be performed on the
connection. The responding TCP endpoint accepts the offer to perform SCPS Header
Compression by including its own SCPS Capabilities option with its SYN ACK segment.
Refer to 4.1.3 for a detailed discussion of the SCPS Capabilities option.

To prevent ambiguity resulting from possible misordering of segments, the full TCP sequence
number must accompany any data-carrying segments. A similar ambiguity exists with
acknowledgments, which are not reliably sent. In addition, the value of the window field
references a particular acknowledgment number to define the upper window edge. When the
possibility of loss or misordering exists, it is important that the window advertisement and the
acknowledgment number that it references not be separated. Therefore, when
acknowledgments are sent, the window size and acknowledgment number are both specified
in the compressed header.

The SCPS Header Compression algorithm supports “piggy-backing” of acknowledgments on
data-carrying segments (as in uncompressed TCP), but it is an implementation option whether
to exercise this ability. The compressor for a particular implementation may send
acknowledgments (and other information not directly related to the data being transferred)
separately from the data in order to ensure a constant header size for data-carrying segments.
(This can aid in packing fixed-length lower-layer frames when bulk data is to be transferred.)
In accordance with the robustness principle stated in RFC 1122 and in TCP, a decompressor
must be prepared to accept piggy-backed acknowledgments even if the compressor in that
implementation does not generate them. (The robustness principle roughly states “be

CCSDS 711.0-G-0.2 Page 4-21 September 1997

generous in what you accept and conservative in what you send,” and is intended to promote
interoperability.)

The compressed SCPS header contains three mandatory fields and several optional fields. The
mandatory fields are the connection identifier, a bit-field indicating what optional fields are
present in the compressed header, and a checksum. (The checksum covers the compressed
header, the user data, and the TCP pseudo-header. This differs from the RFC 1144 approach,
in which the checksum is the unmodified TCP checksum, therefore covering all missing fields
of the TCP header.) The bit-field also carries several flags (such as the Push flag) that do not
correspond to fields in the compressed header.

There are two main implementation approaches for SCPS Header Compression. The first
approach compresses TCP headers after they have been fully generated, and decompresses the
headers into TCP headers for receive-side processing. This approach is easiest to retrofit onto
an existing TCP implementation, but may not be the most efficient. The second approach
generates SCPS Compressed Headers in lieu of generating a TCP header, and operates on the
compressed header directly on the receive side. This approach can improve processing
efficiency if an implementation is being developed “from scratch”. Specifically, the second
approach has direct information regarding whether the intent of a particular segment is data
transfer or acknowledgment. With the first approach, the presence or absence of user data
determines whether this segment is intended for data transfer, and a test for changes in the
acknowledgment number indicates whether an acknowledgment has been “piggy-backed.”

NOTE – the description of compressor and decompressor processing that follows in
subsequent sections is written from the perspective of the first implementation
approach.

SCPS Compressed Headers are differentiated from TCP headers by use of different protocol
numbers in the Transport Protocol Identifier (TP-ID) field of the SCPS-NP. (Alternative
methods for differentiating these packet types exist if the SCPS-NP is not being used: for
example, two CCSDS Path IDs may be allocated to differentiate between compressed and
uncompressed segments.) When the SCPS-NP is in use, TP-ID 6 identifies uncompressed
TCP and TP-ID 5 identifies compressed segments. Refer to the SCPS-NP specification for a
full description of SCPS-NP Transport Protocol Identifiers.

Upon receipt, a packet with a TP-ID indicating Compressed TCP (or an APID indicating the
same) is routed to the decompressor (in the first implementation approach). The checksum is
verified and a TCP segment is reconstructed using the data in the compressed header. Fields
missing in the compressed header are supplied from the receiver’s TCP state or from a
previously reconstructed TCP segment. The reconstructed TCP segment enters the regular
TCP input processing stream after the TCP checksum computation.

CCSDS 711.0-G-0.2 Page 4-22 September 1997

4.5.3 COMPRESSED HEADER FORMAT

The Compressed Packet format is illustrated in figure 4-9. The header begins with a one-octet
connection identifier that is established during the exchange of the SCPS Compression Option
between endpoints, as described above.

The second octet of the compressed header is a bit-vector that identifies the contents of the
compressed header. This bit-vector may, in some cases, extend to the third octet of the
header. When the “More” bit, the MSB of octet 2, is set to one there is a second octet of bit-
vector information present. The contents of the bit-vector are described in detail in table 4-1.

The fields in figure 4-9 that are shown with dashed outlines (after the first octet of the bit-
vector but before the checksum) are only included when necessary. Their presence or absence
is indicated by the corresponding bits in the bit-vector. In the figure, each optional field
shows three elements of information: the bit of the bit-vector that signals its presence; the
name of the field; and the length of the field, in octets. These are shown in the format “Bit:
Name (Length)”.

URG: Urgent Pointer (2 octets)

A: Window (2 octets)

A: Ack Number (4 octets)

S: Sequence Number (4 octets)

TS1: Outbound timestamp (format-dependent)

TS2: Echo reply timestamp (format-dependent)

Opts: Uncompressed TCP Options Length (1 octet)

Opts: Uncompressed TCP Options (data-
dependent)

Pad: Optional Pad (1 octet)

Data

Checksum Octet 1

Checksum Octet 2

Connection ID Octet 1

Octet 2

Octet 3

Octet 4

Octet
9≤n≤64

0 1 32 4 5 6 7

Opts URG RST FINPad

More TS1 RB Push S ATS2 Snack

AckR Not
Assigned

Not
Assigned

.

.

.

Figure 4-9: Compressed SCPS-TP Header

CCSDS 711.0-G-0.2 Page 4-23 September 1997

The two-octet urgent pointer field is included if the URG flag is set in the TCP header.
The window and acknowledgment fields carry the unmodified window and acknowledgment
fields from the TCP header if an acknowledgment update is being sent.

Table 4-1: Compressed Header Bit-Vector Contents

Bit Name Meaning when set to “1” Notes

More Compressed Header Bit-Vector is 16 bits long rather than 8 bits long.

TS1 TCP Timestamp Option is present. See SCPS-
TP 6.2.2.5

TS2 A timestamp reply (TS Echo Reply) appears in the compressed header. See SCPS-
TP 6.2.2.5

RB The last octet of data accompanying this segment is the end of a user-
defined record.

See SCPS-
TP 3.3.1

P The Push bit from the uncompressed TCP header is set.

S The compressed header contains a 4-octet sequence number.

A The compressed header contains a 2-octet window specification and a 4-
octet acknowledgment number.

Opts The compressed header contains uncompressed options.

Pad The compressed header contains one octet of padding.

URG The URG bit from the uncompressed TCP header is set.

AckR The ACK bit from the uncompressed TCP header is set (this field is only
valid when the RST bit is set).

RST The RST bit from the uncompressed TCP header is set.

FIN The FIN bit from the uncompressed TCP header is set.

The sequence number field carries the unmodified sequence number field from the TCP
header, and is present if the segment is retransmittable (i.e., user data is included or the FIN
flag is set).

The TS1 field indicates that a timestamp value to be echoed is present, either as part of the
Network-layer service indication or as part of the compressed header. If the SCPS
Capabilities option negotiation indicated that NL Ts were not available, the timestamp is
located in the compressed header.

The TS2 field indicates that an echo reply timestamp value is present in the compressed
header.

CCSDS 711.0-G-0.2 Page 4-24 September 1997

The uncompressed TCP options length field indicates the length of any TCP options that
accompany the compressed header without themselves being compressed. The uncompressed
TCP options field contains the value of any TCP options that have not been compressed.
(The Record Boundary flag, the TS1 and TS2 flags, and the Snack flag exist in the
compressed header for the purpose of compressing TCP options.)

The Pad flag indicates whether the compressed header has optionally been padded with a
zero-value octet at the end of the compressed header. This bit is optionally set by a
transmitter to ensure that user data starts on an even byte boundary. Its use is implementation
specific. (Note that if there are no other bits set in the second octet of the change mask, the
Pad flag is NOT set to accomplish padding; rather, the MORE flag is set and the second
control octet is left at a value of zero.)

The final field in the Compressed Header is the checksum field. This field is computed using
the standard TCP checksum algorithm and covers the contents of the compressed header, the
user data, and the TCP pseudo-header.

4.5.4 COMPRESSOR PROCESSING

NOTE – This description is written based on a compressor that receives fully formed TCP
segments and translates their headers into compressed format. This is not the only
approach to header compression. A more efficient method is to encode the
compressed headers directly, without the intermediate step of generating the
uncompressed headers. The transformation approach is presented because it lends
itself to simple explanation.

The compressor is invoked with the TCP segment and with access to the TCP state for the
connection to which the segment belongs.

The compressor decides how to format a compressed TCP segment in the following manner:

If the URG flag in the TCP header is set, the urgent data field is copied into the Compressed
header immediately following the bit-vector; the URG bit is set in the bit-vector.

If either the window value or the acknowledgment number has changed from the last segment
sent on this connection, both are copied into the Compressed header and the “A” bit is set in
the bit-vector.

If data accompanies the segment or the FIN flag is set in the uncompressed header (or both),
the sequence number is copied into the Compressed header and the “S” bit is set in the bit-
vector.

CCSDS 711.0-G-0.2 Page 4-25 September 1997

If any of the PUSH, FIN, or RST flags are set in the original TCP header, the corresponding
bits are set in the bit-vector. If the “RST” bit is set, the “AckR” bit is set to the value of the
ACK bit in the uncompressed TCP header.

If the original TCP header contains options, the OPTS bit is set in the change mask. (If all
options are compressible, the OPTS bit may be subsequently reset.) The length of the
uncompressed options is initialized to the length of the options in the TCP header.

The options are examined to determine if any of the following options are present: the
Record Boundary option, the Timestamp option, the NOP (no operation) option, or EOL (end
of list).

All NOP and EOL options are discarded, and the length of the options to be carried in the
uncompressed options portion of the compressed header is decremented by their length.

If the Record Boundary option is present, the “RB” bit is set in the bit-vector and the length
of the uncompressed options is decremented by the length of the Record Boundary option
(two octets).

If the Timestamps option is present, the “TS1” flag is set and if timestamps are not carried
end-to-end by the Network layer, the timestamp value is copied to the compressed header. (If
timestamps are carried by the Network layer, the timestamp is passed to the Network layer in
the lower-layer service call and not carried in the compressed header.) The “TS2” flag is set
and the echo reply portion of the Timestamps option is copied into the compressed header.

If the length of the remaining options is greater than zero, this length is copied into the
compressed header and the remaining options are copied into the compressed header.

If the remaining options’ length is zero, the OPTS flag in the bit-vector is reset.

If the second octet of the bit-vector is zero (no bits set), the “MORE” bit in the first octet is
cleared and the second octet does not appear in the compressed header. If the length of the
compressed header is odd the compressor may optionally pad the header to an even length. If
the second octet of the bit-vector is not present, it may be reinstated to pad the header. If the
second octet of the bit-vector is present, a zero-value octet may be added to the end of the
compressed header and the “PAD” flag may be set in the bit-vector.

At this point, an Internet checksum is computed over the compressed header, data, and TCP
pseudo header, and written into the compressed header. The compressed TCP segment
(consisting of the compressed header and any user data accompanying the original segment) is
passed to the Network layer with the TP-ID value of Compressed TCP.

CCSDS 711.0-G-0.2 Page 4-26 September 1997

4.5.5 DECOMPRESSOR PROCESSING

NOTE – as with the description of Compressor Processing, this description assumes a
decompressor that is only “loosely coupled” to the TCP implementation. That is,
the decompressor creates uncompressed TCP segments, rather than acting on the
field information directly. This is for ease of explanation only.

The decompressor uses the previous packet received on the connection as the means of filling
in fields that are not present in the compressed header. As a result, the decompressor retains
the (uncompressed) header of the previous packet received on the connection as a source for
these fields.

The decompressor receives packets of type “Compressed TCP” from the Network layer,
along with relevant Network-layer information, such as the length of the packet, incoming
source timestamp, and the source and destination addresses. The output of the decompressor
is a TCP segment, for immediate processing by TCP or insertion into the out-of-sequence
queue.

The decompressor uses the Connection Identifier and network addresses to find the TCP
endpoint with which this packet should be associated. If the endpoint is not located, the
segment is discarded and an error is logged.

Once the connection has been identified, the information from the TCP pseudo header is used
to verify the checksum in the compressed packet. If the checksum fails, the packet is
discarded, and an error is logged (triggering the corruption response in the TCP endpoint).

The first octet of the bit-vector is read and the most-significant bit is tested to determine if a
second octet of bit-vector is present. If so, it is read; if not, a zero value is assumed.

The decompressor creates a template of a TCP header, initializing the port information to the
ports corresponding to the current TCP connection. All other fields are initialized to zero.

The flags from the control mask are used to set the flags fields in the reconstructed header: If
PUSH, URG, RST, or FIN are set, their corresponding flags are set in the reconstructed
header. The ACK flag is set to one unless the “RST” bit is set in the bit-vector, in which case
the ACK flag is set to the value of the “AckR” bit of the bit-vector. The SYN flag is reset
(since all SYN segments are used to resynchronize the compressor/decompressor pair).

The bits in the bit-vector are interpreted individually in the order that the compressor set
them:

– If the URG bit is set, the next two octets of the incoming packet are decoded and
copied into the TCP Urgent Pointer field.

CCSDS 711.0-G-0.2 Page 4-27 September 1997

– If the “A” bit is set, the next two octets of the compressed header are decoded and
copied into the window field of the reconstructed header. Then, the 32-bit
acknowledgment number is copied from the compressed header to the reconstructed
header.

– If the “S” bit is set, the 32-bit sequence number is copied from the compressed header
to the reconstructed header.

– If the “RB” bit is set in the bit-vector, a record boundary option is added to the
reconstructed header.

– If the “TS1” and “TS2” bits are set in the bit-vector, a TCP Timestamps option is
generated. The TCP endpoint is tested to determine whether end-to-end NL Ts are in
use. If so, the TCP Timestamps option is generated using the NL T for the TS Value
field of the option (see RFC 1323). If NL Ts are not in use, the contents of the TS
Value field are copied from the compressed header. The contents of the TS Echo
Reply field is then copied from the compressed header. (Note that by having separate
“TS1” and “TS2” bits in the compressed header, the equivalent of RFC 1072
timestamps may be compressed, if desired.)

– If the OPTS bit is set in the change mask, the uncompressed TCP length is read from
the compressed header, and the uncompressed TCP options are copied to the
reconstructed header.

– The reconstructed TCP header is padded, if necessary, to a multiple of 32-bits by using
NOP options, and the resulting header length is encoded into the header.

At this point, all header information from the incoming compressed TCP segment has been
consumed, and only data remains. The reconstructed header is saved for use in
decompressing subsequent compressed packets. The reconstructed segment consisting of the
reconstructed header and the data is processed as usual by TCP.

4.6 MULTIPLE TRANSMISSIONS FOR FORWARD ERROR CORRECTION

The Multiple Forward Transmissions (MFX) capability provides a form of forward error
correction for TCP connections that invoke it. MFX causes the sending TCP entity to send
data on a connection multiple times without waiting for retransmission timeouts or
retransmission requests from the remote TCP entity.

The anticipated use for the MFX capability is in very long delay environments, or in
environments in which the availability of an acknowledgment channel is infrequent. The
significant factor that makes MFX attractive in this environment is that the feedback from the
remote TCP entity, if any, is untimely. This same untimeliness affects the validity of
congestion control information: congestion-related information received from the remote

CCSDS 711.0-G-0.2 Page 4-28 September 1997

TCP entity will probably not reflect the current state of the network, for the purposes of
closed-loop congestion control. As a result, it is anticipated that the MFX capability will be
employed only when closed-loop congestion control (such as Van Jacobson’s congestion
control scheme or the TCP Vegas scheme) is not in use. Current congestion control schemes
such as those mentioned use progression of the acknowledgment number as an indication of
packets having arrived successfully at the destination, without having experienced congestion.
When packets are intentionally duplicated, these algorithms are unable to determine whether
congestion loss has occurred or not, since if any of the multiple transmissions are received the
acknowledgment number advances. Therefore, the MFX capability should not be used on a
connection that also employs either Van Jacobson congestion control or TCP Vegas
congestion control.

The TSU invokes the MFX capability for a particular connection by changing the “MFX”
parameter for that connection from its default value of one. When this value is greater than
one, all segments that require acknowledgment (that is, those that carry user data, or the SYN
flag, or the FIN flag) shall be transmitted the number of times that the MFX parameter
indicates. Multiple forward transmissions shall not count as retransmissions (with respect to
the R1 and R2 thresholds - refer to section 4.2.2 of this document). Note that “pure
acknowledgments”, those that do not carry data, or the SYN flag, or the FIN flag, are not
transmitted multiple times. The remote TCP entity is not informed that the MFX capability
has been enabled for a connection. Rather, the normal TCP protocol mechanisms detect and
discard any duplicate segments that might be received as a result of the multiple transmissions.

If it is necessary to retransmit a segment (as a result of retransmission timeout, or SNACK, or
fast retransmit), the retransmission shall be multiply transmitted. This multiple transmission
shall be counted as a single retransmission for the purposes of R1 and R2 accounting.

Successive segment transmissions by a TCP entity may be interleaved with transmissions of
subsequent segments. Such interleaving is an implementation issue, and is not specified here.

CCSDS 711.0-G-0.2 Page 5-1 September 1997

5 SCPS-FP USER’S GUIDE

This section defines the minimum user implementation and the service interfaces for the
following classes of SCPS-FP services:

– Configuration;
– Access;
– File Transfer;
– Record Access;
– Interrupt, Abort, and Restart;
– File Operations;
– Miscellaneous Services.

In the context of this section, a “user” may be a human or an application program. The
remainder of this section documents the user interface for each user command, examples of
each command, and high-level SCPS-FP protocol actions associated with each user command.

5.1 MINIMUM USER IMPLEMENTATION

The minimum implementation is defined below under REQUIRED. Other alternative
implementations are listed under the OPTIONAL headings.

5.1.1 REQUIRED

Configuration timeout, help, rhelp, autorestart, noautorest, numautor,
suppress, unsuppress

Access open, quit
File Transfer get, put
Record Access raread, raupdt
Interrupt, Abort, Restart Ctrl-C, Ctrl-Y, restart
File Operation size, delete
Miscellaneous site

5.1.2 OPTIONAL BASED ON UNDERLYING FILE SYSTEM/OPERATING
SYSTEM CAPABILITIES

The following commands SHOULD be supported by every SCPS Server-FTP and User-FTP
on systems whose underlying file system and/or operating system supports a directory
structure:

CCSDS 711.0-G-0.2 Page 5-2 September 1997

Configuration <none>

Access <none>

File Transfer <none>

Record Access <none>

Interrupt, Abort, Restart <none>

File Operation ls, mkdir, rmdir, cd

Miscellaneous <none>

5.1.3 OPTIONAL BASED ON MISSION NEEDS

The following commands SHOULD be supported based on the needs of the mission.

Configuration type, struct, mode, sendport, unsendport, status, rstatus,
bets, nobets

Access user

File Transfer proxy

Record Access <none>

Interrupt, Abort, Restart <none>

File Operation rename

Miscellaneous <none>

If a command cannot be implemented due to the lack of file system, operating system and/or
system resource capabilities, the FP application should notify the user that the particular
service is not recognized.

For each of the above commands, the user may use upper case, lower case or a combination
of both to enter the commands. All filenames may be specified with or without full
pathnames. If no pathname is specified, the current working directory is accessed for the
specified service.

5.1.4 CONFIGURATION SERVICES

This section describes the service interfaces for the following configuration services:

– Set data transfer type;
– Set data structure;
– Set transmission mode;
– Enable/Disable use of PORT command for each transfer;
– Enable/Disable reply text suppression;
– Enable/Disable autorestart;
– Set maximum number of automatic restarts;

CCSDS 711.0-G-0.2 Page 5-3 September 1997

– Display configuration status;
– Set idle timeout value for server;
– Request help on FP commands;
– Enable/Disable Best Effort Transport Service Option.

Recommended user/client and server configurations are also provided.

5.1.5 DEFAULT USER/CLIENT CONFIGURATION

Below are the recommended default settings for the user configuration of a client (user) SCPS-FP:

FEATURE DEFAULT
SETTING

Mode Stream
Type Image
Structure File
Autorestart Off
Use PORT On
Max Number of Automatic Restarts 3
BETS Off
BETS Fill Code 255

5.1.6 DEFAULT SERVER CONFIGURATION

Below are the recommended default settings for the configuration of a server SCPS-FP:

FEATURE DEFAULT
SETTING

Mode Stream
Type Image
Structure File
Suppress Reply Text On
Idle Timeout (in Seconds) 300
Autorestart Off
BETS Off
BETS Fill Code 255

5.1.7 SET DATA TYPE (TYPE)

With the TYPE configuration option, the user can specify the data type to be used during the
file transfer: ASCII or binary. Data types are documented in RFC 959, section 3.1.1. The
data type remains as set by the user until the user logs out or another TYPE command is
issued. On re-login or re-connect, the data type reverts to the default configuration.

CCSDS 711.0-G-0.2 Page 5-4 September 1997

The user must have established a connection to the server to use this command.

5.1.7.1 USER INTERFACE SPECIFICATION

TYPE <file type>
where <file type> = A for ASCII

I for binary (image)

5.1.7.2 EXAMPLES

Example 1: Set data type to ASCII.

sfp> TYPE A <enter>

Example 2: Set data type to binary.

sfp> TYPE I <enter>

5.1.7.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The data
types that must be supported by SCPS-FP are documented in 3.4.1 of the SCPS-FP protocol
specification. The User-Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-Protocol-Interpreter (User-PI):

– user command;

– type specified by user.

In response to the user command TYPE, the User-PI saves the data type locally and sends the
protocol command TYPE to the Server-PI via the control connection.

In turn the Server-PI saves the data type locally if the request is error free and responds to the
User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP protocol spec) via the
control connection.

The User-PI forwards the server’s reply to the User-Interface process, which forwards it to
the user. The User-Interface process waits for the next user command.

CCSDS 711.0-G-0.2 Page 5-5 September 1997

5.1.8 SET DATA STRUCTURE (STRUCT)

With the STRUCT configuration option, the user can specify the type of data structure to be
used during the transfer. Data structures are documented in RFC 959, section 3.1.2. The data
structure remains as set by the user until the user logs out or another STRUCT command is
issued. On re-login or re-connect, the data structure reverts to the default configuration.

The user must have established a connection to the server to use this command.

5.1.8.1 USER INTERFACE SPECIFICATION

STRUCT <structure type>

where <structure type> = F (file)

5.1.8.2 EXAMPLES

Example 1: Set data structure type to ‘file’.

sfp> STRUCT F <enter>

5.1.8.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The data
structures that must be supported by SCPS-FP are documented in 3.4.1 of the SCPS-FP
protocol specification. The User-Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;

– data structure specified by the user.

In response to the user command STRUCT, the User-PI saves the data structure type locally
and sends the protocol command STRU to the Server-PI via the control connection.

In turn the Server-PI saves the data structure type locally if the request is error free and
responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP
protocol spec) via the control connection.

CCSDS 711.0-G-0.2 Page 5-6 September 1997

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

5.1.9 SET TRANSMISSION MODE (MODE)

With the MODE configuration option, the user can specify the mode of transmission to be
used during the transfer. Modes are documented in RFC 959, section 3.4. The transmission
mode remains as set by the user until the user logs out or another MODE command is issued.
On re-login or re-connect, the transmission mode reverts to the default configuration.

The user must have established a connection to the server to use this command.

5.1.9.1 USER INTERFACE SPECIFICATION

MODE <mode>

where <mode> = S (stream)

5.1.9.2 EXAMPLES

Example 1: Set mode to stream.

sfp> MODE S <enter>

5.1.9.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The
transmission modes that must be supported by SCPS-FP are documented in 3.4.1 of the
SCPS-FP protocol specification. The User-Interface process waits for the next user
command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;

– transmission mode specified by user.

In response to the user command MODE, the User-PI saves the transmission mode locally and
sends the protocol command MODE to the Server-PI via the control connection.

CCSDS 711.0-G-0.2 Page 5-7 September 1997

In turn the Server-PI saves the transmission mode locally if the request is error free and
responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP
protocol spec) via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

5.1.10 ENABLE USE OF PORT COMMAND (SENDPORT)

With the SENDPORT configuration option, the user indicates that the PORT command
should be used automatically with each file transfer. In this situation, the user-process selects
a value for its data port rather than using its default data port. Per RFC 959, section 3.2, the
user-process default data port is the same as the control connection port. The FP session
remains in the SENDPORT state until the FP session is terminated or the UNSENDPORT
command is issued.

The user does NOT need a connection to the server to use this command.

5.1.10.1 USER INTERFACE SPECIFICATION

SENDPORT

5.1.10.2 EXAMPLES

Example 1: Set configuration so PORT command always used.
sfp> SENDPORT <enter>
“Use of PORT command is on.”

5.1.10.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

user command.

In response to the user command SENDPORT, the User-PI enables the “send port” state flag,
saves it for access by a file transfer command later, and notifies the user, via the User-
Interface process, that a PORT command will be generated for each subsequent file transfer.
This command does NOT cause a PORT command to be sent to the server at this time. The

CCSDS 711.0-G-0.2 Page 5-8 September 1997

“send port” state flag remains enabled until the FP session is terminated or the
UNSENDPORT command is issued.

The User-Interface process waits for the next user command.

5.1.11 DISABLE USE OF PORT COMMAND (UNSENDPORT)

With the UNSENDPORT configuration option, the user indicates that the PORT command
should NOT be used automatically for each file transfer. In this situation the user-process
default data port is used for the file transfer. Per RFC 959, section 3.2, the user-process
default data port is the same as the control connection port. The FP session remains in the
UNSENDPORT state until the FP session is terminated or the SENDPORT command is
issued.

The user does NOT need a connection to the server to use this command.

5.1.11.1 USER INTERFACE SPECIFICATION

UNSENDPORT

5.1.11.2 EXAMPLES

Example 1: Set configuration so PORT command is NOT used automatically.
sfp> UNSENDPORT <enter>
“Use of PORT commands is off.”

5.1.11.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

user command.

In response to the user command UNSENDPORT, the User-PI disables the “send port” state
flag, saves it for access by a file transfer command later, and notifies the user, via the User-
Interface process, that a PORT command will no longer be generated automatically for
subsequent file transfers. The “send port” state flag will remain disabled until the FP session is
terminated or the SENDPORT command is issued.

The User-Interface process waits for the next user command.

CCSDS 711.0-G-0.2 Page 5-9 September 1997

5.1.12 ENABLE REPLY TEXT SUPPRESSION (SUPPRESS)

With the SUPPRESS configuration option, the user may configure the server so that the
server sends the reply code WITHOUT the ASCII reply text. This may be desirable when the
reply text is not needed and a reduction in control message overhead is desired. The FP
session remains in the suppression state until the user logs out or the UNSUPPRESS
command is issued. On re-login or re-connect, the suppression state reverts to the default
configuration.

The user must have established a connection to the server to use this command.

5.1.12.1 USER INTERFACE SPECIFICATION

SUPPRESS

5.1.12.2 EXAMPLES

Example 1: Enable reply text suppression:
sfp> suppress <enter>
“211 Reply Text Suppression Enabled”
Most replies (all except those with message that are parsed by the User-FTP) would come
back with the reply code only. For example,
“200 <CRLF>“ rather than “200 Command Okay<CRLF>”

5.1.12.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

user command.

In response to the user command SUPPRESS, the User-PI sends the protocol command
SUPP to the Server-PI via the control connection.

In turn the Server-PI enables the “suppress reply text” state flag if the request is error free and
responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP
protocol spec) via the control connection. The Server-PI must suppress the reply text for
subsequent protocol commands with the following exceptions: PASV, INTR, SIZE. The
replies for these commands must not be suppressed because they provide information to the
user and/or User-PI that is needed in order to continue processing.

CCSDS 711.0-G-0.2 Page 5-10 September 1997

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

The “suppress reply text” state flag remains enabled until the user logs off the server or the
UNSUPPRESS command is issued. On re-login, the “suppress reply text” state reverts to the
default configuration.

5.1.13 DISABLE REPLY TEXT SUPPRESSION (UNSUPPRESS)

With the UNSUPPRESS configuration option, the user may configure the server so that the
server sends the reply code WITH the ASCII reply text. This is used to “undo” reply
suppression. The FP session remains in the non-suppression state until the user logs out or
the SUPPRESS command is issued. On re-login or re-connect, the suppression/non-
suppression state reverts to the default configuration.

The user must have established a connection to the server to use this command.

5.1.13.1 USER INTERFACE SPECIFICATION

UNSUPPRESS

5.1.13.2 EXAMPLES

Example 1:
Disable reply text suppression:
sfp> unsuppress <enter>
“211 Reply Text Suppression Disabled”
All replies will now come back with the reply code and reply text.

5.1.13.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

user command.

In response to the user command UNSUPPRESS, the User-PI sends the protocol command
NSUP to the Server-PI via the control connection.

In turn the Server-PI disables the “suppress reply text” state flag if the request is error free
and responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP

CCSDS 711.0-G-0.2 Page 5-11 September 1997

protocol spec) via the control connection. The reply text for each command should be
included in the reply.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

The “suppress reply text” state flag remains disabled until the user logs off the server or the
SUPPRESS command is issued. On re-login, the “suppress reply text” state reverts to the
default configuration.

5.1.14 ENABLE AUTORESTART (AUTORESTART)

With the AUTORESTART configuration option, the user may enable automatic restart of file
transfer and specify whether the user should be requested to confirm the restart. If autorestart
is enabled and a file transfer encounters a connection error, the file protocol will automatically
try to restart the transfer at the point of error. The user does not need to specify where to
restart. On re-login or re-connect, the autorestart/no autorestart state reverts to the default
configuration.

When autorestart is disabled and a file transfer aborts for any reason, the Server-PI and User-
PI should rollback changes. When autorestart is enabled and a file transfer aborts, the
partially received file is saved using the given name—changes must not be rolled back.

The user must have established a connection to the server to use this command.

5.1.14.1 USER INTERFACE SPECIFICATION

AUTORESTART

5.1.14.2 EXAMPLES

Example 1: Enable autorestart:
sfp> autorestart <enter>
“200 ARST Command Successful”

5.1.14.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

user command.

CCSDS 711.0-G-0.2 Page 5-12 September 1997

In response to the user command AUTORESTART, the User-PI enables the “autorestart”
state flag, saves the flags for access by a file transfer command later, and sends the protocol
command ARST to the Server-PI via the control connection.

In turn the Server-PI enables its autorestart flag if the request is error free and responds to the
User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP protocol spec) via the
control connection.

The User-Interface process waits for the next user command. This command does NOT cause
an automatic restart of a file transfer to occur at this time.
When autorestart is enabled and an automatic interrupt occurs, the user should be queried to
determine if he/she wants to continue with the autorestart.

5.1.15 DISABLE AUTORESTART (NOAUTOREST)

With the NOAUTOREST configuration option, the user may disable automatic restart of file
transfers. If autorestart is disabled and a file transfer encounters a connection error, the file
transfer is NOT restarted. On re-login or re-connect, the autorestart/no autorestart state
reverts to the default configuration.

The user must have established a connection to the server to use this command.

5.1.15.1 USER INTERFACE SPECIFICATION

NOAUTOREST

5.1.15.2 EXAMPLES

Example 1: Disable autorestart:
sfp> noautorest <enter>
“200 NARS Command Successful”

5.1.15.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

user command.

CCSDS 711.0-G-0.2 Page 5-13 September 1997

In response to the user command NOAUTOREST, the User-PI disables the “autorestart”
state flag, saves the flag for access by a file transfer command later, and sends the protocol
command NARS to the Server-PI via the control connection.

In turn the Server-PI disables its autorestart flag if the request is error free and responds to the
User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP protocol spec) via the
control connection.

5.1.16 CONFIGURE NUMBER OF AUTORESTARTS (NUMAUTOR)

With the NUMAUTOR configuration option, the user can specify the maximum number of
times a failed file transfer should be automatically restarted. For example if a file transfer fails
and autorestart is enabled, the file protocol restarts the transfer until it succeeds or the
NUMAUTOR value is reached, which ever comes first. If the transfer succeeded on the nth
restart and another failure occurs later during the same FP session, autorestart is applied up to
(NUMAUTOR - n) times or until the file transfer succeeds, which ever comes first. The
maximum number of restarts remains as set by the user until the FP session is terminated or
another NUMAUTOR command is issued.

The user does NOT need a connection to the server to use this command.

5.1.16.1 USER INTERFACE SPECIFICATION

NUMAUTOR <decimal-integer>
where <decimal-integer> is greater than 0.

5.1.16.2 EXAMPLES

Example 1: Set maximum number of automatic restarts
sfp> numautor 5 <enter>
“Max restart count: 5 (when autorestart enabled).”

5.1.16.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

CCSDS 711.0-G-0.2 Page 5-14 September 1997

– user command;

– maximum number of automatic restarts specified by user.

In response to the user command NUMAUTOR, the User-PI updates and saves the maximum
number of automatic restarts for access by a file transfer command later and notifies the user,
via the User-Interface process, that the maximum restart count has been changed. The User-
Interface process waits for the next user command.

The maximum number of autorestart tries will remain as specified by the user until the FP
session is terminated or the NUMAUTOR command is issue again.

5.1.17 DISPLAY CONFIGURATION STATUS OF REMOTE/LOCAL SYSTEM
(STATUS)

With the STATUS configuration commands, the user may display the current status of the
configuration options and the connections.

For the local status, the user does NOT need a connection to the server to use this command.
For the remote, the user must have established a connection to the server to use the command.

5.1.17.1 USER INTERFACE SPECIFICATION

For client (local) process: STATUS

For server (remote) process: RSTATUS

5.1.17.2 EXAMPLES

Example 1: Display configuration status of the client
sfp> status <enter>
“ Connected.
 Mode: stream
 Type: Image
 Structure: file
 Autorestart: enabled; Max Number of Automatic Restarts: 3
 Use PORT command: on”

CCSDS 711.0-G-0.2 Page 5-15 September 1997

Example 2: Display configuration status of the server
sfp> rstatus <enter>
“ 211-System Status.
 211-Connected.
 211-Mode: stream
 211-Type: Image
 211-Structure: file
 211-Reply Suppression: enabled
 211-BETS: disabled
 211 Autorestart: enabled”

5.1.17.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

user command.

5.1.17.3.1 Local System

In response to the user command STATUS, the User-PI forwards the User-FP’s current
configuration and connection settings to the User-Interface process. The User-Interface
process forwards the response to the user and then waits for the next user command.

5.1.17.3.2 Remote System

In response to the user command RSTATUS, the User-PI sends the protocol command STAT
to the Server-PI via the control connection.

In turn the Server-PI sends the Server-FP’s configuration and connection settings to the User-
PI as part of the server reply. An appropriate reply is sent via the control connection, as
specified in RFC 959, section 4. The User-PI forwards the server’s reply with current
configuration and connection settings to the User-Interface process. The User-Interface
process waits for the next user command.

5.1.18 CONFIGURE IDLE TIMEOUT PARAMETER (TIMEOUT)

With the TIMEOUT configuration option, the user can specify how long the server be idle
before timing out. The idle timeout remains as set by the user until the FP session is
terminated or another TIMEOUT command is issued.

The user must have established a connection to the server to use this command.

CCSDS 711.0-G-0.2 Page 5-16 September 1997

5.1.18.1 USER INTERFACE SPECIFICATION

TIMEOUT <decimal-integer>

where <decimal-integer> is greater than 0 and represents the number of seconds that should
pass before a timeout occurs.

5.1.18.2 EXAMPLES

Example 1: Set server’s idle timeout to 5 mins (5*60 = 300 seconds)
sfp> timeout 300 <enter>
“200 IDLE Command Successful”

5.1.18.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;

– idle timeout specified by user.

In response to the user command TIMEOUT, the User-PI sends the protocol command IDLE
to the Server-PI via the control connection.

In turn the Server-PI set the idle timeout locally. An appropriate reply is sent via the control
connection, as specified in 3.3 of the SCPS File Protocol specification. The User-PI forwards
the server’s reply to the User-Interface process. The User-Interface process waits for the next
user command.

5.1.19 REQUEST COMMAND HELP FROM REMOTE/LOCAL SYSTEM (HELP)

With the HELP command, the user may request help on the FP commands. Help will list
those commands that are active.

CCSDS 711.0-G-0.2 Page 5-17 September 1997

For the local help, the user does NOT need a connection to the server to use this command.
For the remote help, the user must have established a connection to the server to use the
command.

5.1.19.1 USER INTERFACE SPECIFICATION

For client (local) process: HELP [<string>]

For server (remote) process: RHELP [<string]

5.1.19.2 EXAMPLES

Example 1: Request help from client.
sfp> help <enter>
“GET OPEN
 PUT QUIT
 TIMEOUT TYPE
 HELP STRUCT”

Example 2: Request help from the server
sfp> rhelp <enter>
 “214- RETR STOR IDLE HELP
 QUIT TYPE STRUCT PORT
 214”

Example 3: Request help from the server for specific command.
sfp> rhelp RETR <enter>
 “214 Syntax RETR: <sp> file-name”

5.1.19.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

– user command;
– argument string (usually a specific command), if present.

CCSDS 711.0-G-0.2 Page 5-18 September 1997

5.1.19.3.1 Local System

In response to the user command HELP, the list of active FP user commands is forwarded to
the user if no argument is provided. If an argument is provided, any help on the argument is
forwarded to the user. The User-Interface process then waits for the next user command.

5.1.19.3.2 Remote System

In response to the user command RHELP, the User-PI sends the protocol command HELP to
the Server-PI via the control connection.

In turn the Server-PI sends the Server-FP’s help as part of the server reply. The help response
may be a list of all active server FP commands or help on a specific FP command, if the user
provided a command name with RHELP. An appropriate reply is sent via the control
connection, as specified in RFC 959, section 4. The User-PI forwards the server’s reply to the
User-Interface process which then waits for the next user command.

5.1.20 ENABLE BEST EFFORT TRANSPORT SERVICE (BETS)

The Best Effort Transport Service (BETS), an optional service of the SCPS-TP that is not
available in Commercial-Off-The-Shelf TCP, provides a data transfer service that guarantees
correct and in-sequence data delivery, but possibly with gaps. With this configuration option,
the user enables the BETS option and optionally specifies a fill code to fill any gaps in the
data. BETS is enabled for the FP session but only applies to Get and Put. If BETS is enabled
during a file transfer and a gap is encountered in the data, the file protocol will fill the gaps
with the user-specified fill code or the default fill code if the user does not specify one. On re-
login or re-connect, the BETS/NOBETS state reverts to the default configuration.

The user must have established a connection to the server to use this command.

This option is not interoperable with Commercial-Off-The-Shelf FTP/TCP/IP clients or
servers.

5.1.20.1 USER INTERFACE SPECIFICATION

BETS {<BETS-fill-code>}

where <BETS-fill-code> ::= a decimal integer in the range of 0 to 255
<BETS-fill-code> is an optional argument representing an ASCII character.

CCSDS 711.0-G-0.2 Page 5-19 September 1997

5.1.20.2 EXAMPLES

Example 1: Enable BETS:
sfp> bets <enter>
“211 Best Effort Transport Service Enabled with Fill Code 255”

Example 2: Enable BETS with a fill character:
sfp> bets 0 <enter>
“211 Best Effort Transport Service Enabled with Fill Code 0”

5.1.20.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

– user command;

– BETS fill code.

In response to the user command BETS, the User-PI enables the BETS state flag and sets the
BETS fill code as indicated, saves this information for access by a file transfer command later,
and sends the protocol command BETS to the Server-PI via the control connection.

In turn the Server-PI enables its BETS flag and saves the BETS fill code if the request is error
free and responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS
File Protocol specification) via the control connection.

The User-Interface process waits for the next user command.

5.1.21 DISABLE BEST EFFORT TRANSPORT SERVICE OPTION (NOBETS)

With the NOBETS configuration option, the user specifies that gaps in the data are not
allowed. On re-login or re-connect, the BETS/NOBETS state reverts to the default
configuration.

The user must have established a connection to the server to use this command.

5.1.21.1 USER INTERFACE SPECIFICATION

NOBETS

CCSDS 711.0-G-0.2 Page 5-20 September 1997

5.1.21.2 EXAMPLES

Example 1: Disable BETS:
sfp> nobets <enter>
“211 Best Effort Transport Service Disabled”

5.1.21.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI:

user command.

In response to the user command NOBETS, the User-PI disables the BETS state flag, saves
the flag for access by a file transfer command later, and sends the protocol command NBES to
the Server-PI via the control connection.

In turn the Server-PI disables its BETS flag if the request is error free and responds to the
User-PI with an appropriate reply (as specified in 3.3 of the SCPS File Protocol specification)
via the control connection.

5.2 ACCESS SERVICES

This subsection describes the service interfaces for the following access services:

– start up the SCPS-FP application;

– open connection to server;

– log user into server;

– close connection to server;

– quit file protocol.

5.2.1 START UP SCPS-FP APPLICATION (SFTP)

With the SFTP access command, the user can start up the SCPS-FP application and if a server
is specified, open a control connection to the server.

CCSDS 711.0-G-0.2 Page 5-21 September 1997

5.2.1.1 USER INTERFACE SPECIFICATION

SFTP
or

SFTP <server name>

where <server name> is the name of the server with which to establish a connection.

5.2.1.2 EXAMPLES

Example 1: Start up the SCPS-FP application
SFTP <enter>
“sfp>“

Example 2: Start up the SCPS-FP application and open a control connection to the
server SERVER1.
SFTP SERVER1 <enter>
“Connected to SERVER1.
220 SERVER1 SFTP Server Ready.
sfp>”

5.2.1.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If no arguments are
present, the User-Interface displays the FP application prompt and waits for the next user
command.

If an argument is present, the User-Interface process provides the following information to the
User-PI:

server name.

In response to the user application SFTP being initiated with a server name, the User-PI
initiates a connect request to the designated server.

After the connection has been established and the user has been notified of its establishment,
the User-Interface process displays the FP application prompt and waits for the next user
command.

CCSDS 711.0-G-0.2 Page 5-22 September 1997

5.2.2 OPEN CONNECTION TO SERVER (OPEN)

With the OPEN access command, the user can open a control connection to a specified
server. The Server-PI must not open a new non-proxy connection if an old one is still open.

5.2.2.1 USER INTERFACE SPECIFICATION

OPEN <server name>

where <server name> is the name of the server with which to establish a connection.
5.2.2.2 EXAMPLES

Example 1: Start up the SCPS-FP application and open a control connection to the
server SERVER1.
sfp> OPEN SERVER1 <enter>
“Connected to SERVER1.
220 SERVER1 SFTP Server Ready.
sfp>”

5.2.2.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– server name.

In response to the user command OPEN, the User-PI issues a connect request for the
designated server via SCPS-TP.

Upon receipt of the request, the Server-PI responds to the User-PI with an appropriate reply
(as specified in 3.3 of the SCPS File Protocol specification) via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. At this time the User-Interface process may automatically prompt the user for a
username and password.

CCSDS 711.0-G-0.2 Page 5-23 September 1997

5.2.3 LOG USER INTO SERVER (USER)

With the USER access command, the user can log into a server for which there is already a
connection. Typically, the user need not use this command because the user is automatically
prompted for a username and password after a control connection is established with the
server. This command may also be used to change the user login to another user.

5.2.3.1 USER INTERFACE SPECIFICATION

USER
or

USER <login name at server>

5.2.3.2 EXAMPLES

Example 1: Log in as ‘Smith’ on the currently open server.
sfp> USER smith <enter>
“331 Password required for smith”
“Password: “ <pass word is entered>
“230 User smith logged in.”

5.2.3.3 INTERACTION WITH PROTOCOL

If there are no arguments to USER, then the User-Interface process prompts the user for a
username. The User-Interface process parses the user command and its arguments. If syntax
errors are encountered, the user is notified of the errors and the user command is terminated.
The User-Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– username.

In response to the user command USER, the User-PI sends the protocol command USER to
the Server-PI via the control connection.

In turn the Server-PI validates the username against access list and responds to the User-PI
with an appropriate reply (as specified in 3.3 of the SCPS File Protocol specification) via the
control connection.

CCSDS 711.0-G-0.2 Page 5-24 September 1997

The User-PI forwards the server reply to the User-Interface process which forwards it to the
user. The User-Interface process queries the user for password and gives the password to the
User-PI.

The User-PI sends the protocol command PASS to the Server-PI via the control connection.

The Server-PI determines if the password is correct, logs user into the server if the password
is correct, and responds to the User-PI with an appropriate reply (as specified in 3.3 of the
SCPS File Protocol specification) via the control connection.

The User-PI forwards the server reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for next user command.

5.2.4 CLOSE CONNECTION TO SERVER (CLOSE)

With the CLOSE user command, the user can close the control connection to a currently open
server, thereby logging the user out. The SCPS-FP application remains up and ready for the
next command. This is an optional command.

5.2.4.1 USER INTERFACE SPECIFICATION

CLOSE
or

CLOSE <server-name>

5.2.4.2 EXAMPLES

Example 1: Close connection.
sfp> CLOSE <enter>

5.2.4.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– server to close (either specified by user or defaults to current connection).

CCSDS 711.0-G-0.2 Page 5-25 September 1997

In response to the user command CLOSE, the User-PI sends the protocol command QUIT to
the designated Server-PI via the control connection.

In turn the Server-PI responds to the User-PI with an appropriate reply (as specified in 3.3 of
the SCPS File Protocol specification) via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-PI issues a disconnect request for the server to SCPS-TP. The FP application
is NOT terminated.

5.2.5 QUIT FILE PROTOCOL (QUIT)

With the QUIT access command, the user can close all open connections and quit the SCPS-
FP application.

5.2.5.1 USER INTERFACE SPECIFICATION

QUIT

5.2.5.2 EXAMPLES

Example 1: Quit SCPS-FP
sfp> QUIT <enter>

5.2.5.3 INTERACTION WITH PROTOCOL

The User-Interface receives the user command and provides the following information to the
User-PI: user command.

In response to the user command QUIT, the User-PI sends the protocol command QUIT to
the Server-PI via the control connection.

In turn the Server-PI responds to the User-PI with an appropriate reply (as specified in 3.3 of
the SCPS File Protocol specification) via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-PI issues a disconnect request for the server to SCPS-TP. The FP application
is terminated.

CCSDS 711.0-G-0.2 Page 5-26 September 1997

5.3 FILE TRANSFER SERVICES

This subsection describes the service interfaces for the following file transfer services:

– retrieve a file;
– store a file;
– initiate proxy file transfer (retrieve or store).

5.3.1 RETRIEVE FILE (GET)

With the GET file transfer command, the user can request and receive a file that is stored at a
remote system (server). The GET user command takes one or two pathname arguments. If
the second pathname is not supplied, the GET user command uses the given pathname for
both arguments.

An implementation may trigger special processing based on the second argument. For
example, if the second argument is a dash “-“, an implementation might send the file to the
standard output device (usually the screen). If the second argument is a percent symbol “%”,
an implementation might send the file to the default printer.

If the server supports login access control, the user must be logged in to use this command.

5.3.1.1 USER INTERFACE SPECIFICATION

GET <remote_src_file> <local_dest_file>

where <remote_src_file> ::= <pathname>
<local_dest_file> ::= <pathname>
<pathname> ::= <string>

<pathname> represents the location of the file data. For a file system-based storage
system, <pathname> would be a filename with possibly a directory specification. For a
memory-based storage system (i.e., no file system), <pathname> would take the form
of one of the following:

<address>:<file-length> /for source file

 (e.g., 1:500 = at location 1,
 length of 500)

<address> /for destination file

The <address> and <file-length> are still specified in ASCII form.

CCSDS 711.0-G-0.2 Page 5-27 September 1997

The specification of <local_src_file> is only needed if the user wants to store the file locally
with a different name or display the data to the screen.

5.3.1.2 EXAMPLES

Example 1: Retrieve yourfile.txt and store locally with name same
sfp> GET yourfile.txt <enter>

Example 2: Retrieve yourfile.txt and store locally as myfile.txt.
sfp> GET yourfile.txt myfile.txt <enter>

Example 3: Retrieve yourfile.txt and display contents.
sfp> GET yourfile.txt - <enter>

Example 4: Retrieve file a byte 1 for length 500 and store local at byte 300.
sfp> GET 1:500 300 <enter>

5.3.1.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– name of remote file;
– name of local file (if not specified by user, use remote file name);
– whether or not data should be displayed.

The User-PI forwards the following information to the User-DTP:

– name of local file (if not specified by user, use remote file name);
– whether or not data should be displayed.

If the ‘send port’ state flag is enabled, the User-PI computes a data PORT for the user and
sends the protocol command PORT to the Server-PI via the control connection. The Server-
PI saves the PORT information and responds to the User-PI with an appropriate reply (as
specified in 3.3 of the SCPS File Protocol specification) via the control connection. The User-
PI forwards the server reply to the User-Interface process which forwards it to the user.

CCSDS 711.0-G-0.2 Page 5-28 September 1997

If the BETS state flag is enabled, the User-DTP and the Server-DTP request the BETS option
from the transport service.

The User-DTP listens on data port (the default data port, if SENDPORT was not issued and
PORT was not specifically issued by the user). The User-PI sends the protocol command
RETR to the Server-PI via the control connection.

The Server-DTP opens a data connection to user’s data port and responds to the User-PI via
the control connection with a preliminary reply as specified in 3.3 of the SCPS File Protocol
specification.

Data connection establishment and management for the User-DTP and the Server-DTP is
performed as specified in 3.2 of the SCPS File Protocol specification.

The Server-DTP accesses the local data file and sends its contents to User-DTP via the data
connection.

Upon receipt of the server’s preliminary reply, the User-PI forwards the server reply to the
User-Interface process which forwards it to the user. The User-DTP then begins accepting
the data sent by the Server-DTP (concurrent to the server sending data). If the BETS state
flag is enabled and a gap in the data is detected as the data is received, the User-DTP fills in
the gap with the BETS fill code for the length of the gap. Because the sending Server-FP may
not be aware of any gaps in the data that may appear at the User-FP, it is the responsibility of
the User-FP to notify the user of any gaps in the data and whether the gaps were filled. All
data is stored locally or written to the screen as specified by the user. If the data is to be
stored locally and the file already exists, the file is overwritten with the new data.

If an error is detected on either the data connection or the control connection and the
‘autorestart’ state flag is enabled, the file transfer will be restarted automatically as outlined in
3.2.2 of the SCPS-FP protocol specification.

Upon completion of the transfer or on the occurrence of an error, the Server-PI closes the
data connection and responds to the User-PI with an appropriate reply (as specified in 3.3 of
the SCPS File Protocol specification) via the control connection.

The User-PI forwards the server’s final reply to the User-Interface process which forwards it
to the user. The User-Interface process waits for next user command.

NOTE – A representative scenario of a GET with autorestart is provided in 5.8 below.

5.3.2 STORE FILE (PUT)

With the PUT file transfer command, the user can store a file at a remote system (server).

CCSDS 711.0-G-0.2 Page 5-29 September 1997

If the server supports login access control, the user must be logged in to use this command.

5.3.2.1 USER INTERFACE SPECIFICATION

PUT <local_src_file> <remote_dest_file>

where

<remote_dest_file> ::= <pathname>
<local_src_file> ::= <pathname>
<pathname> ::= <string>
<pathname> represents the location of the file data. For a file system-based storage
system, <pathname> would be a filename with possibly a directory specification. For a
memory-based storage system (i.e., no file system), <pathname> would take the form
of one of the following:

<address>:<file-length> /for source file
 (e.g., 1:500 = at location 1,

 length of 500)
<address> /for destination file

The <address> and <file-length> are still specified in ASCII form.

The specification of <remote-dest-file> is needed only if the user wants to store the file with a
different name (or location) at the server.

5.3.2.2 EXAMPLES

Example 1: Send myfile.txt and store at the server with name same.
sfp> PUT myfile.txt <enter>

Example 2: Send myfile.txt and store at the server as yourfile.txt.
sfp> PUT myfile.txt yourfile.txt <enter>

Example 3: Send file at byte 100 for length 200 and store remote at byte 300.
sfp> PUT 100:200 300 <enter>

5.3.2.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

CCSDS 711.0-G-0.2 Page 5-30 September 1997

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– local file name;
– remote file name (same as local filename, if none specified by user).

The User-PI forwards the following information to the User-DTP:

name of local file.

If the ‘send port’ state flag is enabled, the User-PI computes a data PORT for the user and
sends the protocol command PORT to the Server-PI via the control connection. The Server-
PI saves the PORT information and responds to the User-PI with an appropriate reply (as
specified in 3.3 of the SCPS-FP protocol specification) via the control connection. The User-
PI forwards the server reply to the User-Interface process which forwards it to the user.

If the BETS state flag is enabled, the User-DTP and the Server-DTP request the BETS option
from the transport service.

The User-DTP listens on data port (the default data port if SENDPORT was not issued and
PORT was not specifically issued by the user). The User-PI sends the protocol command
STOR to the Server-PI via the control connection.

The Server-DTP opens a data connection to user’s data port and responds to the User-PI via
the control connection with a preliminary reply as specified in 3.3 of the SCPS-FP protocol
specification.

Data connection establishment and management for the User-DTP and the Server-DTP is
performed as specified in 3.2 of the SCPS-FP protocol specification.

Upon receipt of the server’s preliminary reply, the User-PI forwards the server reply to the
User-Interface process which forwards it to the user. The User-DTP then begins sending the
local file contents to the Server-DTP via the data connection. If the file already exists, the file
is overwritten with the new data.

If an error is detected on either the data connection or the control connection and the
‘autorestart’ state flag is enabled, the file transfer is restarted automatically as outlined in 3.2.2
of the SCPS-FP protocol specification.

The Server-DTP then begins accepting the data sent by the User-DTP (concurrent to the user-
DTP sending data. If the BETS state flag is enabled and a gap in the data is detected as the
data is received, the Server-DTP fills in the gap with the BETS fill code for the length of the
gap. All data is stored locally.

CCSDS 711.0-G-0.2 Page 5-31 September 1997

Upon completion of the transfer or on the occurrence of an error, the Server-PI closes the
data connection and responds to the User-PI with an appropriate reply (as specified in 3.3 of
the SCPS-FP protocol specification) via the control connection.

The User-PI forwards the server’s final reply to the User-Interface process which forwards it
to the user. The User-Interface process waits for next user command.

NOTE – A representative scenario of a PUT with autorestart is provided in 5.8 below.

5.3.3 INITIATE PROXY FILE TRANSFER (PROXY)

With the PROXY transfer command, the user can initiate a data transfer between two remote
systems via the control of one local system. Control connections are established between the
local system and remote system A and between the local system and remote system B. The
data connection is established between remote system A and remote system B.

In order to use this command, the user must have opened connections to two servers. The last
connection opened is the active server. The first one is the passive server. If a server supports
login access control, the user must be logged in to use this command.

5.3.3.1 USER INTERFACE SPECIFICATION

PROXY GET <remote-src-file> <local-dest-file>
or

PROXY PUT <local-src-file> <remote-dest-file>

<remote-src-file>, <local-dest-file>, <local-src-file>, and <remote-dest-file> are as defined for
the GET and PUT commands.

5.3.3.2 EXAMPLES

Example 1:
Send a file from Server2 to Server1 via proxy transfer.
sfp> open Server1 <enter>
sfp> open Server2 <enter>
sfp> proxy put myfile.txt <enter>

Example 1:
Retrieve a file from Server1 to Server2 via proxy transfer.
sfp> open Server1 <enter>
sfp> open Server2 <enter>
sfp> proxy get myfile.txt <enter>

CCSDS 711.0-G-0.2 Page 5-32 September 1997

5.3.3.3 INTERACTION WITH PROTOCOL

In order for this command to work, the user must have opened control connections between
the client and remote server “a” and between the client and remote server “b”. For the
purposes of this discussion, it is assumed that the connection to remote server “a” was made
first and the connection to remote server “b” second. This makes server “a” the passive
server and server “b” the active (current) server.

The User-Interface process parses the user command and its arguments. If no arguments are
specified, the User-Interface process should prompt the user for the command (and its
arguments) that should be performed in proxy. If syntax errors are encountered, the user is
notified of the errors and the user command is terminated. The User-Interface process waits
for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

user command to issue in proxy and its parameters.

The User-PI sends the protocol command PASV to the Server-“a”-PI via the control
connection.

The Server-“a”-PI determines its data port, includes it in the server reply, and responds to the
User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP protocol specification)
via the control connection.

The User-PI forwards the server reply to the User-Interface process which forwards it to the
user. The User-PI extracts the port information from the PASV reply and uses it as the
argument to the PORT command. The User-PI sends the protocol command PORT to the
Server-“b”-PI via the control connection.

The Server-“b”-PI saves Server-“a’s” data port and responds to the User-PI with an
appropriate reply (as specified in 3.3 of the SCPS-FP protocol specification) via the control
connection.

The User-PI sends the protocol command RETR (on a GET) and STOR (on a PUT) to the
Server-“a”-PI via the control connection.

The User-PI sends the protocol command STOR (on a GET) and RETR (on a PUT) to the
Server-“b”-PI via the control connection.

The following Server-“a” and Server-“b” actions occur concurrently:

CCSDS 711.0-G-0.2 Page 5-33 September 1997

The Server-“a”-DTP listens on its data port. The Server-“a”-DTP responds to the User-PI via
the control connection with a preliminary reply as specified in RFC 959, section 4.

Upon receipt of server “a’s” preliminary reply, the User-PI forwards the server reply to the
User-Interface process which forwards it to the user.

The Server-“b”-DTP opens a data connection to Server-“a”-DTP data port (which it got via
the PASV/PORT command sequences) and responds to the User-PI via the control
connection with a preliminary reply as specified in 3.3 of the SCPS-FP protocol specification.

Data connection establishment and management for the Server-“a”-DTP and the Server-“b”-
DTP is performed throughout the section as specified 3.2 of the SCPS-FP protocol
specification.

Upon receipt of server “b’s” preliminary reply, the User-PI forwards the server reply to the
User-Interface process which forwards it to the user.

For a PUT command, the Server-“b”-DTP sends it file contents to the Server-“a”-DTP via the
data connection and the Server-“a”-DTP concurrently receives the file data and stores it
locally.

For a GET command, the Server-“a”-DTP sends its file contents to the Server-“b”-DTP via
the data connection and the Server-“b”-DTP concurrently receives the file data and stores it
locally.

Upon completion of the transfer or on the occurrence of an error, the Server-“b”-PI closes the
data connection and responds to the User-PI with an appropriate reply (as specified in 3.3 of
the SCPS-FP protocol specification) via the control connection. The Server-“a”-PI also
responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP
protocol specification) via the control connection.

The User-PI forwards the servers’ final replies to the User-Interface process which forwards it
to the user. The User-Interface process waits for next user command.

5.4 RECORD ACCESS SERVICES

This subsection describes the service interfaces for the following record access services:

– retrieve file records;
– update file records.

CCSDS 711.0-G-0.2 Page 5-34 September 1997

5.4.1 RETRIEVE FILE “RECORDS” (RAREAD)

The RAREAD user command is used to transfer records of a remote file, rather than a
complete file, to the user. The record read user command includes the following user-
specified options.

– change directory option
– display option
– forced read option

Each of these options is discussed below.

The change directory option is used to automatically change to a remote working directory if
a directory path is specified in the remote filename. A directory path shall be deemed to be
present if either a backslash “\” or forward slash “/” appear in the filename. If a directory path
is specified in the remote filename of the record read user command, the User-PI shall issue a
change directory SCPS-FP command (CWD) to the Server-FTP to effect a directory change
at the Server-FTP before issuing a record read SCPS-FP command (READ) to the Server-
FTP. The current working directory remains as set here for the rest of the FP session until
another CWD command is executed or the user logs out.

The display option is used by the user to write the specified records to a computer screen
rather than store the records in a local file. If a dash “-” is specified for the local file name, the
record data shall be displayed to the screen.

The forced read option is used to ignore recoverable errors and then to continue the record
read request. The user is willing to except potentially corrupt or incomplete data. If this
option is selected, the user and server processes continue until the read transfer is deemed
completed or an irrecoverable error occurs.

If the server supports login access control, the user must be logged in to use this command.

5.4.1.1 USER INTERFACE SPECIFICATION

raread <SP> <remote-path-src> <SP> <local-path-dest> <SP> <record-id-spec>
<SP> <forced-read-option>

where

<pathname> ::= <string>
<pathname> represents the location of the file data. For a file system-based storage
system, <pathname> would be a filename with possibly a directory specification. For a
memory-based storage system (i.e., no file system), <pathname> would take the form of
one of the following:

CCSDS 711.0-G-0.2 Page 5-35 September 1997

<address>:<file-length> /for source file
 (e.g., 1:500 = at location 1,

 length of 500)
<address> /for destination file

The <address> and <file-length> are still specified in ASCII form.

<remote-path-src> ::= name of file (with or without full pathname) to read from remote
system.

::= <pathname>
<remote-path-src-contents> ::= 1{<record>}many
<local-path-dest> ::= name of file (with or without full pathname) at the local system in

which to store the records read from the remote system OR a dash to
signal that data should be written to screen.

::= <pathname>
<local-path-dest-contents> ::= 1{<record>}many
<record> ::= <octet> | <CCSDS-Pkt-Record>
<CCSDS-Pkt-record> ::= CCSDS Packet

<record-id-spec> ::= <record-id-range> | <record-id> 1{,<record-id-range> | <record-
id>} 9

** no spaces allowed
** record id’s do not have to be in numerical order
** <record-id-end> must be greater than <record-id-start>

<record-id-range> ::= <record-id-start>-<record-id-end>
<record-id-start> ::= <record-id>
<record-id-end> ::= <record-id> | <eof>

<eof> ::= string ‘EOF’, upper and/or lower case permitted

<record-id> ::= Numeric ID of the “record” to access; corresponds an octet number
for file structure and to the CCSDS Packet Sequence Count field of a
CCSDS Packet for CCSDS Packet structures

::= <decimal-integer>

** <record-id> of zero (0) for IMAGE type indicates the first octet of the file

<forced-read-option>::= option to continue read retrieval event if an error is encountered
::= Y | y | N | n ; Default = N; Optional

CCSDS 711.0-G-0.2 Page 5-36 September 1997

5.4.1.2 EXAMPLES

Example 1:
Extract records 1, 2, 5, 10, 11 from “myfile.xyz” and write the records to “localfile” at
the client:

sfp> raread myfile.xyz localfile 1,10,11,5,2 <enter>

Example 2:
Extract record 4 from “myfile.xyz” (after changing to directory /directory1/directory2)
and display data directly to user rather than write to local file:

sfp> raread /directory1/directory2/myfile.xyz - 4 <enter>

Example 3:
Extract records 4-10, 16-22, and 32 from “myfile.xyz”, write the records to “localfile”
at the client and ignore recoverable errors on read.

sfp> raread myfile.xyz localfile 16-22,32,4-10 y <enter>

Example 4:
Extract records 4-10 and all records from 60 through the end of the file, write the
records to “localfile” at the client.

sfp> raread myfile.xyz localfile 4-10,60-eof <enter>

Example 5:
Extract records 4-10 and all records from 60 through the end of the file, write the
records locally at the client. Use addresses for the filenames.

sfp> raread 50:2000 500 4-10,60-eof <enter>
(Remote file starts at memory 50 and goes for length 2000. Local file storage should
start at memory location 500.)

5.4.1.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. This includes
checking the validity of the record ranges. If an EOF string appears in the ranges, the string
should be converted to the number 4294967295. (Note: Nearly all C environments have a
macro ULONG_MAX which yields that number.) The server will trigger on that number and
read to the end of the file.

If syntax errors are encountered, the user is notified of the errors and the user command is
terminated. The User-Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;

CCSDS 711.0-G-0.2 Page 5-37 September 1997

– name or pathname of remote file;
– name or pathname of local file in which to store records;
– list of valid ranges of records (with EOF range converted);
– flag for forced-read-option;
– whether or not records should be displayed.

The User-PI forwards the following information to the User-DTP:

– name of local file in which to store data;
– whether or not records should be displayed.

If the ‘send port’ state flag is enabled, the User-PI computes a data PORT for the user and
sends the protocol command PORT to the Server-PI via the control connection. The Server-
PI saves the PORT information and responds to the User-PI with an appropriate reply (as
specified in 3.3 of the SCPS-FP protocol specification) via the control connection. The User-
PI forwards the server reply to the User-Interface process which forwards it to the user.

If the user specified a pathname from which to access the remote file, the User-PI extracts the
pathname from the filename and sends the protocol command CWD to the Server-PI via the
control connection. The Server-PI changes to the current working directory to that specified
and responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP
protocol specification) via the control connection. The User-PI forwards the server reply to
the User-Interface process which forwards it to the user.

The User-DTP listens on data port (the default data port if SENDPORT was not issued and
PORT was not specifically issued by the user).

The User-PI prepares the control data. The User-PI sends the protocol command READ to
the Server-PI via the control connection.

The Server-DTP opens a data connection to user’s data port and responds to the User-PI via
the control connection with a preliminary reply as specified in 3.3 of the SCPS-FP protocol
specification.

Data connection establishment and management for the User-DTP and the Server-DTP is
performed as specified in 3.2 of the SCPS-FP protocol specification.

Upon receipt of the server’s preliminary reply, the User-PI forwards the server reply to the
User-Interface process which forwards it to the user. The User-DTP then begins sending the
control data to the server-DTP.

The Server-DTP then begins accepting the control data sent by the User-DTP (concurrent to
the user-DTP sending control data) and stores the data locally. After the Server-DTP has
received all of the control data, it keeps the data connection open as specified in 3.2.1.3 of the

CCSDS 711.0-G-0.2 Page 5-38 September 1997

SCPS-FP protocol specification. The Server-DTP reads the remote file and extracts the
selected ranges of records. Then it starts sending the record data to the User-DTP.

The User-DTP begins accepting the data sent by the Server-DTP (concurrent to the server
sending data) and stores the data locally or displays it to a computer screen, as specified by
the user.

Upon completion of the record read or on the occurrence of an error, the Server-PI closes the
data connection and responds to the User-PI with an appropriate reply (as specified in 3.3 of
the SCPS-FP protocol specification) via the control connection.

The User-PI forwards the server’s final reply to the User-Interface process which forwards it
to the user. The User-Interface process waits for next user command.

NOTE – A representative scenario of a RAREAD transaction is provided in 5.8 below.

5.4.2 UPDATE FILE “RECORDS” (RAUPDT)

The RAUPDT user command is used to update octets of a remote file, rather than retransfer a
complete updated file, to the server. This command relies on the user to provide the record
update data which consists of a series of signals that indicate which octets to delete and
modify in the remote file and where to add new data. The updates are made against a copy of
the original remote file and the resulting modified data is written to a new remote file.

The record update user command includes one user-specified option. The change directory
option is used to automatically change to a remote working directory if a directory path is
specified in the remote filename. A directory path shall be deemed to be present if either a
backslash “\” or forward slash “/” appear in the filename. If a directory path is specified in the
remote filename of the record read user command, the User-PI shall issue a change directory
SCPS-FP command (CWD) to the Server-FTP to effect a directory change at the Server-FTP
before issuing a record update SCPS-FP command (UPDT) to the Server-FTP. The current
working directory remains as set here for the rest of the FP session until another CWD
command is executed or the user logs out.

If the server supports login access control, the user must be logged in to use this command.

5.4.2.1 USER INTERFACE SPECIFICATION

raupdt <remote-path-src> <SP> <remote-path-dest> <SP> <local-path-src> <SP> <local-
path-dest> <SP><update-file-path-src>

where <pathname> ::= <string>

CCSDS 711.0-G-0.2 Page 5-39 September 1997

<pathname> represents the location of the file data. For a file system-based storage system,
<pathname> would be a filename with possibly a directory specification. For a memory-based
storage system (i.e., no file system), <pathname> would take the form of one of the following:

<address>:<file-length> /for source file
 (e.g., 1:500 = at location 1,

 length of 500)
<address> /for destination file

The <address> and <file-length> are still specified in ASCII form.

<remote-path-src> ::= name of file (with or without full pathname) to use as source file for
updates on remote system

::= <pathname>
<remote-path-dest> ::= name of file (with or without full pathname) in which to store the

updated source file on remote system
::= <pathname>

<local-path-src> ::= name of file (with or without full pathname) to use as test source
file for update (theoretically it should be a file with the same contents
as <remote-path-src>)

::= <pathname>
<local-path-dest> ::= name of file (with or without full pathname) in which to store the

locally updated source file.
::= <pathname>

<update-file-path-src> ::= name of file (with or without full pathname) in which update
signals are stored locally.

::= <pathname>
<remote-path-src-contents>::= 1{<binary-record>}many |

1{<CCSDS-Pkt-record>}many

<remote-path-dest-contents> ::= 1<binary-record>}many |
1{<CCSDS-Pkt-record>}many

<local-path-src-contents> ::= 1{<binary-record>}many |
1{<CCSDS-Pkt-record>}many

<local-path-dest-contents> ::= 1{<binary-record>}many |
1{<CCSDS-Pkt-record>}many

<octet> ::= 1 8-bit byte
<binary-record> ::=<octet>
<CCSDS-Pkt-record> ::= CCSDS Packet

<data> ::= 1{<binary-record>}<record-count> |
1{<CCSDS-Pkt-record>}<record-count>

CCSDS 711.0-G-0.2 Page 5-40 September 1997

<record-count> ::= Corresponds to the number of octets for file structures and to the
number of CCSDS Packets for CCSDS Packet structures

::= <decimal-integer>

<record-id> ::= Numeric ID of the “record” to access; corresponds an octet number
for file structure and to the CCSDS Packet Sequence Count field of a
CCSDS Packet for CCSDS Packet structures

::= <decimal-integer>

NOTE – <record-id> zero (0) when in IMAGE type indicates the first octet of the file.

<update-file-path-src-contents>::= <update-data>
<update-data> ::=1{<update-signal>}many
<update-signal> ::= <delete-signal><record-id><record-count> |

<change-signal-id><record-id><record-count><data>
<delete-signal> ::= signal to delete record(s) whose start is specified by <record-id>

::= d
<change-signal-id> ::= <addafter-signal> |

<insertbefore-signal> |
<writeover-signal>

<addafter-signal> ::= signal to add (insert) records after the record specified by <record-
id>

::= a
<insertbefore-signal> ::= signal to add (insert) records before the record specified by

<record-id>
::= i

<writeover-signal> ::= signal to write over (replace) records starting at the record specified
by <record-id>

::= w

NOTE – The record range associated with a update signal shall not overlap with the record
range of any another update signal.

5.4.2.2 EXAMPLES

Example 1:
Update “myfile” with updates in “diff_file” and store in “myfile.new” on the server.
Update is first tested against “cfile” and stored in “cfile_new” at the local machine:
sfp> raupdt myfile myfile.new cfile cfile_new diff_file <enter>

CCSDS 711.0-G-0.2 Page 5-41 September 1997

Example 2:
After changing to the directory “dir1”, update “myfile” with updates in “diff_file” and
store in “myfile.new” on the server. Update is first tested against “cfile” and stored in
“cfile_new” at the local machine:

sfp> raupdt /dir1/myfile /dir2/myfile.new cfile cfile_new diff_file <enter>

Example 3:
An example of update data for a record update request follows. The target file
happens to be an ASCII text file.

Original Data:
This is line 1<LF>
This is line 2<LF>
This is line 3<LF>
This is line 4<LF>
This is line 5<LF>
This is line 6<LF>
This is line 7<LF>
Maryx had a little<LF>
This is line 9<LF>
This is line 10<LF>

Desired Data:
this is the first line to add<LF>
this is the second line to add<LF>
This is line 1<LF>
This is line 2<LF>
This is line 3<LF>
This is line 4<LF>
Mary had a little lamb.<LF>
This is line 9<LF>
This is line 10<LF>

Update Data:
**Note in this example the 32-bit numbers (file offset) is designated by a 8 digits in
the number, the 16-bit numbers (length) are designated by 4 digit numbers. File
offset always precedes length. e.g. 000000000061 designates file offset = 0, length
= 61.
i000000000061this is the first line to add<LF>this is the second line to
add<LF>d000000600045w000001050018Mary had a
little<SP>i000001230005lamb.

Example 4:

CCSDS 711.0-G-0.2 Page 5-42 September 1997

Update “myfile” with updates in “diff_file” and store in “myfile.new” on the server.
Update is first tested against “cfile” and stored in “cfile_new” at the local machine.
For this example we assume that both client and server have no file system and
therefore use memory addresses to locate and update data.
sfp> raupdt 300:1000 200 1300:1000 500 5400:200 <enter>
In this example,

300:1000 is “myfile” at memory location 300 for length 1000
200 is “myfile.new” to be stored at memory location 200
1300:1000 is “cfile” at memory location 1300 for length 1000
500 is “cfile_new” to be stored memory location 500
5400:200 is “diff_file” at memory location 5400 for length 200

5.4.2.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– name or pathname of original remote file;
– name or pathname of new remote file;
– name or pathname of local original remote file;
– name or pathname of new local file;
– name or pathname of local file containing update data.

The User-PI forwards the following information to the User-DTP:

name of local file containing update data.

The user-PI ensures that the update data are sorted by offset in ascending order.

The User-PI tests the update against the local original file using the local update data. If an
error occurs during the test update, the User-PI notifies the User-Interface process of the
error. The User-Interface process forwards the error to the user.

If the ‘send port’ state flag is enabled, the User-PI computes a data PORT for the user and
sends the protocol command PORT to the Server-PI via the control connection. The Server-
PI saves the PORT information and responds to the User-PI with an appropriate reply (as
specified in 3.3 of the SCPS-FP protocol specification) via the control connection. The User-
PI forwards the server reply to the User-Interface process which forwards it to the user.

CCSDS 711.0-G-0.2 Page 5-43 September 1997

If the user specified a pathname from which to access the remote file, the User-PI extracts the
pathname from the filename and sends the protocol command CWD to the Server-PI via the
control connection. The Server-PI changes to the current working directory to that specified
and responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP
protocol specification) via the control connection. The User-PI forwards the server reply to
the User-Interface process which forwards it to the user.

The User-DTP listens on data port (the default data port if SENDPORT was not issued and
PORT was not specifically issued by the user).

The User-PI prepares the control data. The User-PI sends the protocol command UPDT to
the Server-PI via the control connection.

The Server-DTP opens a data connection to user’s data port and responds to the User-PI via
the control connection with a preliminary reply as specified in 3.3 of the SCPS-FP protocol
specification.

Data connection establishment and management for the User-DTP and the Server-DTP is
performed as specified in 3.2 of the SCPS-FP protocol specification.

Upon receipt of the server’s preliminary reply, the User-PI forwards the server reply to the
User-Interface process which forwards it to the user. The User-DTP then begins sending the
control data to the server-DTP.

The Server-DTP then begins accepting the data sent by the User-DTP (concurrent to the user-
DTP sending data) and stores the data locally. After the Server-DTP has received all of the
control data, it performs the update against a copy of the designated file using the update data
provided in the control data. After sending the control data, the user-DTP closes the data
connection to indicate the end of the control data to the server-DTP. Upon completion of the
update or on the occurrence of an error, the server-PI responds to the User-PI with an
appropriate reply (as specified in 3.3 of the SCPS-FP protocol specification) via the control
connection.

The User-PI forwards the server’s final reply to the User-Interface process which forwards it
to the user. The User-Interface process waits for next user command.

NOTE – A representative scenario of a RAUPDT transaction is provided in 5.8 below.

5.5 INTERRUPT, ABORT, RESTART SERVICES

This subsection describes the service interfaces for the following interrupt, abort, and restart
services:

– manually interrupt file transfer;

CCSDS 711.0-G-0.2 Page 5-44 September 1997

– manually abort file transfer;
– manually restart file transfer.

5.5.1 MANUAL INTERRUPT (Ctrl-Y)

With the Ctrl-Y command, the user can interrupt a file transfer in such a manner that the user
may restart the file transfer by issuing RESTART followed by the point of restart. Manual
interrupt will be recognized only if a file transfer is in progress.

5.5.1.1 USER INTERFACE SPECIFICATION

Ctrl-Y

5.5.1.2 EXAMPLES

When a file transfer is in-progress and the user would like to interrupt the operation, the user
should press the Ctrl and Y keys down to interrupt the transfer.

5.5.1.3 INTERACTION WITH PROTOCOL

In response to the Ctrl-Y key sequence, the User-PI stops the User-DTP processing and sends
the protocol command INTR to the Server-PI via the control connection.

In turn the Server-PI stops the Server-DTP processing, determines the interrupt point of the
file transfer if the request is error free, and responds to the User-PI with an appropriate reply
(as specified in 3.3 of the SCPS-FP protocol specification) via the control connection.

If the transfer that was in progress was a user-to-server transfer, the User-PI forwards the
server’s reply to the User-Interface process which forwards it to the user. If the transfer that
was in progress was a server-to-user transfer, the User-PI will replace the interrupt point in
the reply with that stored at the User-FP and then forward the server’s modified reply to the
User-Interface process which forwards it to the user.

The User-Interface process waits for the next user command.

NOTE – A representative scenario of an interrupted file transfer is provided in 5.8 below.

CCSDS 711.0-G-0.2 Page 5-45 September 1997

5.5.2 MANUAL ABORT (Ctrl-C)

With the Ctrl-C command, the user can terminate a file transfer before completion. A
manually abort file transfer cannot be restarted by the user. Manual abort will be recognized
only if a file transfer is in progress.

5.5.2.1 USER INTERFACE SPECIFICATION

Ctrl-C

5.5.2.2 EXAMPLES

When a file transfer is in-progress and the user would like to cancel the operation, the user
should press the Ctrl and C keys down to abort the transfer.

5.5.2.3 INTERACTION WITH PROTOCOL

In response to the Ctrl-C key sequence, the User-PI stops the User-DTP processing and sends
the protocol command ABOR to the Server-PI via the control connection.

In turn the Server-PI stops the Server-DTP processing and responds to the User-PI with an
appropriate reply (as specified in 3.3 of the SCPS-FP protocol specification) via the control
connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

NOTE – A representative scenario of an aborted file transfer is provided in 5.8 below.

5.5.3 MANUALLY RESTART FILE TRANSFER (RESTART)

With the RESTART command, the user can restart a previously interrupted file transfer. To
begin a restart, the user specifies the restart command with a restart marker and then follows
the restart command with the original transfer command (e.g., get, put) that was interrupted.

If the server supports login access control, the user must be logged in to use this command.

5.5.3.1 USER INTERFACE SPECIFICATION

RESTART <restart marker>

CCSDS 711.0-G-0.2 Page 5-46 September 1997

where <restart marker> is the point as which to restart the file transfer.

When prompted the user follows up with the GET or PUT command that was interrupted.

5.5.3.2 EXAMPLES

Example 1: A GET on file myfile.txt was interrupted at byte 54.
Restart the file transfer at this point.

sfp> RESTART 54 <enter>
“350 Send GET command”
GET myfile.txt

5.5.3.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– restart point.

In response to the user command RESTART, the User-PI saves the restart point locally for
use during the file transfer and sends the protocol command REST to the Server-PI via the
control connection.

In turn the Server-PI saves the restart point locally for use during the file transfer if the
request is error free and responds to the User-PI with an appropriate reply (as specified in 3.3
of the SCPS-FP protocol specification) via the control connection.

NOTE – The file transfer is not restarted until the file transfer command (e.g., GET or
PUT) is resent.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

5.6 FILE OPERATION SERVICES

This subsection describes the service interfaces for the following file operation services:

CCSDS 711.0-G-0.2 Page 5-47 September 1997

– rename a file;
– delete a file;
– list directory contents;
– create directory;
– delete directory;
– change working directory;
– get size of file.

5.6.1 RENAME A FILE (RENAME)

With the RENAME file operation command, the user can rename a file stored on a remote
system.

If the server supports login access control, the user must be logged in to use this command.

5.6.1.1 USER INTERFACE SPECIFICATION

RENAME <from-name> <to-name>

where <from-name> is the current name of the file
<to-name> is the new name of the file.

5.6.1.2 EXAMPLES

Example 1: Rename file myfile.txt to myfile.doc
sfp> RENAME myfile.txt myfile.doc <enter>

5.6.1.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– the current remote filename;
– the new remote filename.

CCSDS 711.0-G-0.2 Page 5-48 September 1997

In response to the user command RENAME, the User-PI sends the protocol command RNFR
to the Server-PI via the control connection.

In turn the Server-PI saves the current name of the file locally if the request is error free and
responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP
protocol specification) via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-PI sends the protocol command RNTO to the Server-PI via the control
connection.

In turn the Server-PI renames the file specified in RNFR to the name specified in RNTO if the
request is error free and responds to the User-PI with an appropriate reply (as specified in 3.3
of the SCPS-FP protocol specification) via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

5.6.2 DELETE A FILE (DELETE)

With the DELETE file operation command, the user can delete a file from a remote system.

If the server supports login access control, the user must be logged in to use this command.

5.6.2.1 USER INTERFACE SPECIFICATION

DELETE <filename>

where <filename> is the name of the file to delete

5.6.2.2 EXAMPLES

Example 1: Delete file myfile.txt
sfp> delete myfile.txt <enter>

5.6.2.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

CCSDS 711.0-G-0.2 Page 5-49 September 1997

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– name of file to delete.

In response to the user command DELETE, the User-PI sends the protocol command DELE
to the Server-PI via the control connection.

In turn the Server-PI deletes the specified file if the request is error free and responds to the
User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP protocol specification)
via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

5.6.3 LIST DIRECTORY CONTENTS (LS)

With the LS file operation command, the user can list the contents of a directory on the
remote system, if the remote system supports directory structures.

If the server supports login access control, the user must be logged in to use this command.

5.6.3.1 USER INTERFACE SPECIFICATION

LS <directory path>

where <directory path> is either a directory path or a filename.

5.6.3.2 EXAMPLES

Example 1: List all files in the current working directory.
sfp> LS <enter>

Example 2: List all files in the current working directory matching f*.c
sfp> LS f*.c <enter>

Example 3: List all files in the directory /home/jones
sfp> LS /home/jones <enter>

CCSDS 711.0-G-0.2 Page 5-50 September 1997

5.6.3.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– directory to list (use current directory if none specified by user).

The User-PI forwards the following information to the User-DTP:

write output to screen.

If the ‘send port’ state flag is enabled, the User-PI computes a data PORT for the user and
sends the protocol command PORT to the Server-PI via the control connection. The Server-
PI saves the PORT information and responds to the User-PI with an appropriate reply (as
specified in 3.3 of the SCPS-FP protocol specification) via the control connection. The User-
PI forwards the server reply to the User-Interface process which forwards it to the user.

The User-DTP listens on data port (the default data port, if SENDPORT was not issued and
PORT was not specifically issued by the user). The User-PI sends the protocol command
LIST to the Server-PI via the control connection.

The Server-DTP opens a data connection to user’s data port and responds to the User-PI via
the control connection with a preliminary reply as specified 3.3 of the SCPS-FP protocol
specification.

Data connection establishment and management for the User-DTP and the Server-DTP is
performed throughout the section as specified in 3.2 of the SCPS-FP protocol specification.

The Server-DTP performs a directory listing on the specified directory and sends the list of
files to User-DTP via the data connection.

Upon receipt of the server’s preliminary reply, the User-PI forwards the server reply to the
User-Interface process which forwards it to the user. The User-DTP then begins accepting
the data sent by the Server-DTP (concurrent to the server sending data) and writes it to the
screen.

Upon completion of the transfer or on the occurrence of an error, the Server-PI closes the
data connection and responds to the User-PI with an appropriate reply (as specified in 3.3 of
the SCPS-FP protocol specification) via the control connection.

CCSDS 711.0-G-0.2 Page 5-51 September 1997

The User-PI forwards the server’s final reply to the User-Interface process which forwards it
to the user. The User-Interface process waits for next user command.

5.6.4 CREATE DIRECTORY (MKDIR)

With the MKDIR file operation command, the user can create a directory on the remote
system, if the remote system supports directory structures.

If the server supports login access control, the user must be logged in to use this command.

5.6.4.1 USER INTERFACE SPECIFICATION

MKDIR <directory path>

where <directory path> is a directory path.

5.6.4.2 EXAMPLES

Example 1: Create directory XYZ in current working directory
sfp> MKDIR XYZ <enter>

5.6.4.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– name of directory to create.

In response to the user command MKDIR, the User-PI sends the protocol command MKD to
the Server-PI via the control connection.

In turn the Server-PI creates the specified directory if the request is error free and responds to
the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP protocol
specification) via the control connection.

CCSDS 711.0-G-0.2 Page 5-52 September 1997

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

5.6.5 DELETE DIRECTORY (RMDIR)

With the RMDIR file operation command, the user can delete a directory on the remote
system, if the remote system supports directory structures.

If the server supports login access control, the user must be logged in to use this command.

5.6.5.1 USER INTERFACE SPECIFICATION

RMDIR <directory path>

where <directory path> is a directory path.

5.6.5.2 EXAMPLES

Example 1: Delete directory XYZ from current working directory
sfp> RMDIR XYZ <enter>

5.6.5.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– name of directory to delete.

In response to the user command RMDIR, the User-PI sends the protocol command RMD to
the Server-PI via the control connection.

In turn the Server-PI deletes the specified directory if the request is error free and responds to
the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP protocol
specification) via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

CCSDS 711.0-G-0.2 Page 5-53 September 1997

5.6.6 CHANGE WORKING DIRECTORY (CD)

With the CD file operation command, the user can change the current working directory on
the remote system to a different directory, if the remote system supports directory structures.

If the server supports login access control, the user must be logged in to use this command.

5.6.6.1 USER INTERFACE SPECIFICATION

CD <directory path>

where <directory path> is a directory path.

5.6.6.2 EXAMPLES

Example 1: Change current working directory to XYZ
sfp> CD XYZ <enter>

5.6.6.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– name of directory to which to change.

In response to the user command CD, the User-PI sends the protocol command CWD to the
Server-PI via the control connection.

In turn the Server-PI changes the current working directory to the specified directory if the
request is error free and responds to the User-PI with an appropriate reply (as specified in 3.3
of the SCPS-FP protocol specification) via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

CCSDS 711.0-G-0.2 Page 5-54 September 1997

5.6.7 GET FILE SIZE (SIZE)

With the SIZE file operation command, the user request the size of a remote file.

If the server supports login access control, the user must be logged in to use this command.

5.6.7.1 USER INTERFACE SPECIFICATION

SIZE <pathname>

where <pathname> is a string indicating the filename or full pathname with filename of the file
for which to obtain the size.

5.6.7.2 EXAMPLES

Example 1: Get size of ASCII file myfile.xyz:
sfp> size myfile.xyz <enter>
“213 myfile.xyz SIZE 30 bytes, 10 lines”

Example 2: Get size of binary file yourfile.xyz:
sfp> size yourfile.xyz <enter>
“213 yourfile.xyz SIZE 500 bytes”

5.6.7.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– name of file to size.

In response to the user command SIZE, the User-PI sends the protocol command SIZE to the
Server-PI via the control connection.

In turn the Server-PI obtains the size of the file as stored locally if the request is error free and
responds to the User-PI with an appropriate reply (as specified in 3.3 of the SCPS-FP
protocol specification) via the control connection.

CCSDS 711.0-G-0.2 Page 5-55 September 1997

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

5.7 MISCELLANEOUS SERVICES

This subsection describes the service interfaces for the following miscellaneous services:

execute commands specific to remote system.

5.7.1 EXECUTE SITE SPECIFIC COMMANDS (SITE)

With the SITE file operation command, the user can execute a command that is site specific
(i.e., specific to the remote system).

If the server supports login access control, the user must be logged in to use this command.

5.7.1.1 USER INTERFACE SPECIFICATION

SITE <string>

where <string> is command to execute

5.7.1.2 EXAMPLES

Example 1: Execute the ‘chmod’ UNIX command.
sfp> SITE “chmod +x file1” <enter>

5.7.1.3 INTERACTION WITH PROTOCOL

The User-Interface process parses the user command and its arguments. If syntax errors are
encountered, the user is notified of the errors and the user command is terminated. The User-
Interface process waits for the next user command.

If the user command parses correctly, the User-Interface process provides the following
information to the User-PI:

– user command;
– the string (command) to execute at the server.

CCSDS 711.0-G-0.2 Page 5-56 September 1997

In response to the user command SITE, the User-PI sends the protocol command SITE to the
Server-PI via the control connection.

In turn the Server-PI sends the string to the remote system’s operating system for execution.
The Server-PI responds to the User-PI with an appropriate reply (as specified in 3.3 of the
SCPS-FP protocol specification) via the control connection.

The User-PI forwards the server’s reply to the User-Interface process which forwards it to the
user. The User-Interface process waits for the next user command.

5.8 TYPICAL SCPS-FP SCENARIOS

This subsection provides typical scenarios for a standard file transfer (5.8.1, as taken from
RFC 959, section 7), stream mode autorestart for a User-FP to Server-FP file transfer (5.8.2),
stream mode autorestart for a Server-FP to User-FP file transfer (5.8.3), a record update
(5.8.4), a record read (5.8.5), a file transfer manual interrupt (5.8.6), and a file transfer manual
abort (5.8.7). All of these scenarios ignore the PORT command which may be used prior to
the file transfer.

The following Legend applies to the figures in 5.8.2 through 5.8.6:

italicized text - option-related
[] - conditional response
“ ” - user entered

5.8.1 SCENARIO: USER AT HOST U WANTING TO TRANSFER FILES TO/FROM
HOSTS

In general, the user will communicate to the server via a mediating User-FP process. The
following may be a typical scenario. The User-FP prompts are shown in parentheses, ‘---->‘
represents commands from host U to host S, and ‘<----’ represents replies from host S to host
U.

LOCAL COMMANDS BY USER ACTION INVOLVED

sfp (host) multics<CR> Connect to host S, port L,

 establishing control connections.

 <---- 220 Service ready <CRLF>.

 username Doe <CR> USER Doe<CRLF>---->

 <---- 331 User name ok,

 need password<CRLF>.

 password mumble <CR> PASS mumble<CRLF>---->

 <---- 230 User logged in<CRLF>.

CCSDS 711.0-G-0.2 Page 5-57 September 1997

 retrieve (local type) ASCII<CR>

 (local pathname) test 1 <CR> User-FP opens local file in ASCII.

 (for. pathname) test.pl1<CR> RETR test.pl1<CRLF> ---->

 <---- 150 File status okay;

 about to open data

 connection<CRLF>.

 Server makes data connection

 to port U.

 <---- 226 Closing data connection,

 file transfer successful<CRLF>.

 type Image<CR> TYPE I<CRLF> ---->

 <---- 200 Command OK<CRLF>

 store (local type) image<CR>

 (local pathname) file dump<CR> User-FP opens local file in Image.

 (for.pathname) >udd>cn>fd<CR> STOR >udd>cn>fd<CRLF> ---->

 <---- 550 Access denied<CRLF>

 terminate QUIT <CRLF> ---->

 Server closes all

 connections.

CCSDS 711.0-G-0.2 Page 5-58 September 1997

5.8.2 SCENARIO: AUTORESTART OF USER TO SERVER FILE TRANSFER (IN
STREAM MODE)

This scenario illustrates the series of user and SCPS-FP commands that are transferred
between the user, the User-FP (local/client SCPS-FP), and the Server-FP (remote/server
SCPS-FP) when autorestarting a user-to-server transfer. This example assumes that
autorestart is disabled prior to the start of the scenario.

"SFP"
sfp> (open server and login
commands)

220 , 331, 230 replies

sfp> "autorestart"

200 Autorestart enabled

sfp> "put myfile.obj"

150 Opening data connection
in binary mode

(220 , 331, 230 replies)

350 Restarting at xxxx.

150 Opening data connection
in binary mode

226 Transfer completed.
Closing data connection.

FP client started.
Open control conn.
Request Login

Parse PUT
command

Send data to server

Open control connection
Log user on to server

Send replies to user

Enable Autorestart

Actively open 2-way data
connection

Write data locally.

(Open control connection
Log user on to server

Send replies to user)

Close data connection

USER LOCAL (CLIENT) FP REMOTE (SERVER) FP

autorestart req

STOR

150 reply

1. Enable Autorestart

150 reply

Get size of file (data stored so
far == restart marker)

file transfer
request

file data

2. Request restart
marker from server
via SIZE command

3. Initiate RESTart
command at SIZE
marker, if max retries
not exceeded
4. Resend STOR
command

5. Send data starting
at restart marker file data

STOR

REST

350 reply

Re-open data connection

Advance file to restart marker,
Store data locally, starting
at restart marker

SIZE

213 reply

Save restart marker

1a. Error is detected.
IF NECESSARY,
1b. Reconnect
control conn
1c. Relogin

226 reply

150 reply

350 reply

150 reply

226 reply

ARST

200 reply200 reply

CCSDS 711.0-G-0.2 Page 5-59 September 1997

5.8.3 SCENARIO: AUTORESTART OF SERVER TO USER FILE TRANSFER (IN
STREAM MODE)

This scenario illustrates the series of user and SCPS-FP commands that are transferred
between the user, the User-FP (local/client SCPS-FP), and the Server-FP (remote/server
SCPS-FP) when autorestarting a server-to-user transfer. This example assumes that
autorestart is disabled prior to the start of the scenario.

"SFP"
sfp> (open server and login
commands)

220 , 331, 230 replies

sfp> "autorestart"

200 Autorestart enabled

sfp> "get myfile.obj"

150 Opening data connection
in binary mode

(220 , 331, 230 replies)

350 Restarting at xxxx.

150 Opening data connection
in binary mode

226 Transfer completed.
Closing data connection.

FP client started.
Open control conn.
Request Login

Parse GET
command

Store data locally

Open control connection
Log user on to server

Send replies to user

Enable Autorestart

Actively open 2-way data
connection

Send data to client

(Open control connection
Log user on to server

Send replies to user)

Close data connection

USER LOCAL (CLIENT) FP REMOTE (SERVER) FP

autorestart req

RETR

150 reply

1. Enable Autorestart

150 reply

file transfer
request

file data

2. Initiate RESTart
command with last
client marker, if max
retries not exceeded
3. Resend RETR
command

4. Store data starting
at restart marker

file data

RETR

REST

350 reply

Re-open data connection

Advance file to restart marker,
Send data, starting
at restart marker

Save restart marker

1a. Error is detected.
IF NECESSARY,
1b. Reconnect
control conn
1c. Relogin

226 reply

150 reply

350 reply

150 reply

226 reply

200 reply

ARST

200 reply

CCSDS 711.0-G-0.2 Page 5-60 September 1997

5.8.4 SCENARIO: RECORD UPDATE

This scenario illustrates the series of user and SCPS-FP commands that are transferred
between the user, the User-FP (local/client SCPS-FP), and the Server-FP (remote/server
SCPS-FP) for a record update.

"SFP"
sfp> "open <server>"

220 Connected to <server>

sfp> name: "<user>"

331 Password required
Password: "<password>"

230 User <user> logged in

sfp> "cwd <directory>"
250 Requested file action okay,
completed.

sfp> "raupdt"

250 Requested file action okay,
completed.

150 Opening data connection
in binary mode

[557 Requested action not taken.
Remote file does not match local
file.]

226 Transfer completed. Closing
data connection.

sfp>"quit"

221 Goodbye

FP client started.
Actively open control
conn.

Log user on to server

Change remote directory

Change remote directory

USER LOCAL (CLIENT) FP REMOTE (SERVER) FP
fp req.

logon req.

220 reply

open req.

331 reply

Control
Connection
Opened via
SCPS-TP

220 reply

USER

331 reply

password req

230 reply

PASS

230 reply

cwd req

250 reply

CWD

250 reply

update req.

CWD

250 reply

UPDT
open data
connection

control file

[557 reply]

150 reply

close req.

226 reply

[557 reply]

226 reply

logoff req.

221 reply

logoff req.

221 reply

Close control
connection

1. Compute checksum
on local CM file
2. Perform local
update test.
3. Build control file

4. Change directory
if full path given

5. Request update to
be performed

6. Send control file

7. Checksum error -
end of process.

1. Actively open
2-way data connection

2. Store control file locally
3. Read control file to
determine file to update and
difference data to apply to
remote file.

4. Compare remote file
checksum against checksum in
controlfile
5. Update remote file
6. Close data connection
7. Delete control file

150 reply

250 reply

CCSDS 711.0-G-0.2 Page 5-61 September 1997

5.8.5 SCENARIO: RECORD READ

This scenario illustrates the series of user and SCPS-FP commands that are transferred
between the user, the User-FP (local/client SCPS-FP), and the Server-FP (remote/server
SCPS-FP) for a record read.

"SFP"
sfp> "open <server>"

220 Connected to <server>

sfp> name: "<user>"

331 Password required
Password: "<password>"

230 User <user> logged in

sfp> "cwd <directory>"
250 Requested file action okay,
completed.

sfp> "raread"

250 Requested fileaction okay,
completed.

200 PORT command
successful

150 Opening data
connection in
binary mode

[557 Requested action not taken.
Remote file does not match local
file.]
[556 Requested action not taken.
Segment id not found]

226 Transfer completed. Closing
data connection.

OR
258 Requested action forced to
complete with errors.

sfp>"quit"

221 Goodbye

FP client started.
Actively open control
conn.

Log user on to server

Change remote directory

Change remote directory

Save local's data port id

USER LOCAL (CLIENT) FP REMOTE (SERVER) FP
fp req.

logon req.

220 reply

open req.

331 reply

Control
Connection
Opened
via SCPS-TP

220 reply

USER

331 reply

password req

230 reply

PASS

230 reply

cwd req

250 reply

CWD

250 reply

250 reply

read req

CWD

250 reply

200 reply200 reply

PORT

READ

open data
connection

control file

[557 reply]

150 reply

[556 reply]

record data

close req.

226 reply or
258 reply

[557 reply]

[556 reply]

226 reply or
258 reply

logoff req.

221 reply

logoff req.

221 reply

Close control
connection

1. Compute checksum
on local CM file
2. Build control file

3. Change directory if
full path given

4. Listen on data
conn. then specify
data port to receive
data
5. Request read to be
performed

6. Send
control file

7a. Checksum error -
end ofprocess.
7b. Missing data - end
of process.

7c. Store record data
locally

150 reply

1. Actively open 2-way data
connection

2. Store control file locally
3. Read control file to
determine file to read and
segments to extract
4. Locate/Read/Extract
segment ids.
5. Send data to client

6. Close data connection

7. Delete control file

CCSDS 711.0-G-0.2 Page 5-62 September 1997

5.8.6 SCENARIO: MANUAL INTERRUPT OF FILE TRANSFER

This scenario illustrates the series of user and SCPS-FP commands that are transferred
between the user, the User-FP (local/client SCPS-FP), and the Server-FP (remote/server
SCPS-FP) for a manual interrupt of a user-to-server file transfer.

"SFP"
sfp> "open <server>"

220 Connected to <server>

sfp> name: "<user>"

331 Password required
Password: "<password>"

230 User <user> logged in

sfp> "put <parameters>"

150 Opening data connection
in binary mode

"CTRL-Y" (Interrupt signal)

256 Transfer interrupted at xxxx.

sfp> "Restart xxxx"

350 Restarting at xxxx. Waiting for
PUT

sfp> "put <parameters>"

226 Transfer completed.
Closing data connection.

sfp>"quit"

221 Goodbye

FP client started.
Actively open control
conn.

Parse PUT
command

Send data to server

Initiate RESTart
command

Resend STOR command

Send data starting at
restart marker

Log user on to server

Actively open 2-way data
connection

Write data locally.

Close data connection

USER LOCAL (CLIENT) FP REMOTE (SERVER) FP

fp req.

logon req.

220 reply

open req.

331 reply

Control
Connection
Opened via
SCPS-TP

220 reply

USER

331 reply

password req

230 reply

PASS

230 reply

STOR

open data
connection

150 reply

close req.

226 reply226 reply

logoff req.

221 reply

logoff req.

221 reply

Close control
connection

150 reply

1. Interrupt storing of data
2. Determine amount of data
saved so far

file transfer
request

file data

file data

STOR

REST

350 reply

Store data locally, starting
at restart marker

INTR

256 reply

Advance file to restart marker

interrupt request 1. Request interrupt
of file transfer
2. Interrupt sending of
data256 reply

restart request

350 reply

file transfer
request

CCSDS 711.0-G-0.2 Page 5-63 September 1997

5.8.7 SCENARIO: MANUAL ABORT OF FILE TRANSFER

This scenario illustrates the series of user and SCPS-FP commands that are transferred
between the user, the User-FP (local/client SCPS-FP), and the Server-FP (remote/server
SCPS-FP) for a manual abort of a user-to-server file transfer.

"SFP"
sfp> "open <server>"

220 Connected to <server>

sfp> name: "<user>"

331 Password required
Password: "<password>"

230 User <user> logged in

sfp> "put <parameters>"

150 Opening data connection
in binary mode

"CTRL-C" (abort signal)

226 Transfer Aborted.
 Closing Data Connection

FP client started.
Actively open control
conn.

Parse PUT
command

Send data to server

Log user on to server

Actively open 2-way data
connection

Write data locally.

USER LOCAL (CLIENT) FP REMOTE (SERVER) FP

fp req.

logon req.

220 reply

open req.

331 reply

Control
Connection
Opened via
SCPS-TP

220 reply

USER

331 reply

password req

230 reply

PASS

230 reply

STOR

open data
connection

150 reply

close req.

150 reply

1. Abort storing of data
2. Close data connection

file transfer
request

file data

ABOR

226 reply

abort request 1. Request abort of
file transfer
2. Abort sending of
data

226 reply

