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Preface

The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool

system for reliability/availability prediction stems from a peer review of the Computer Aided

Reliability Estimation third generation (CARE Ill) coInputer program that was conducted

in 1980 at tile Research Triangle Institute in North Carolina. A participating reviewer,

Dr. Kistlor Trivedi of Duke University', did a mathenmtical analysis of CARE III and suggested

improvements to enhalme its modeling capability. Because of tile new features and mathematical

changes, NASA decided to create a new capability called HARP. I was then the NASA CARE II1

project engineer and became tile HARP project engineer also. The developmem of CARE III

and HARP continued simultaneously.

HARP was developed by researchers at Duke University under NASA grant NAG1-70.

Many innovative capabilities were developed for HARP by graduate students and their research

advisors. A number of doctoral dissertations contained research that was incorporated into

HARP, which became a joint Duke-Langley development project. Langley's contributions to the

design included two sequence dependency gates, the redesign and implementation of the textual

prompting interface, the integration of all HARP programs with uniform prompts, and other

recommendations such as the incorporation of a stiff ordinary differential solver and the state

truncation technique. Tile first working HARP program was sent. to requesting beta test sites

in 1985.

In 1985 when IBM Corporation announced support for the Graphical Kernel System (GKS),

an ANSI standard that promised portability, Langley encouraged the Duke team to investigate

the development of a graphical user-interface for HARP. The result of this work is tile Graphics

Oriented (GO) program. The GO program was completed at Langley with the help of students

from Old Dominion University (ODU) working in Langley's Voluntary Services Program and

with the help of Sandra Howell Koppen and Pamela J. Haley, The ODU students tested the

prototype GO program that was originally written for an IBM-compatible personal computer

(PC). Koppen took GO from an alpha to a beta program and implemented many new features,

including the sequence dependency gates. Because GKS is not a universally implemented

standard, Haley reimplemented the PC GO program on the Sun Microsystems, Inc., and Digital

Equipment Corporation VAX workstations.

Tanya R. Arthur and DeAnn E. Junchter, two ODU students working under the Langley's

Vohmtary Services Program and my direction, implemented the code for the HARP Output

(HARPO) program. Although I provided the initial design, Arthur made many refinements to

produce tile prototype program. Darrell Sproles, from Computer Sciences Corporation, made

major modifications to the design and reimplemented the code. We jointly refined the design to

bring HARPO to its present state. With the completion of HARPO, the main components for

HiRel (HARP, GO, and HARPO) were finished and beta testing commenced in MW 1991.

Koppen and I also served as the engineering interface to over 100 beta test site users who

carried on the beta test concept that I established at Langley for testing CARE III. Langley

also served as an alpha and beta test site. All code was first extensively tested at Duke then

again at Langley before being distributed to the user community. The beta test program was a

resounding success. The long-term Langley interaction with HARP users (8 yr) and HiRel (2 yr)

brought an important element of practicality to HiRel's usage and development. Many changes

to HiRel resulted from beta site recommendations. These changes included the discovery of

bugs, suggestions for improving the interface, and design modifications. In this regard, I wish to

acknowledge Dr. Tilak Sharma at Boeing Commercial Airplane Group. Sharma saw the power

of the fault tree sequence dependency gates and encouraged tile HARP team to pursue this
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work. Sharma,who hasbecomea trustedfriend overour long association,extensivelytested
HARP and "getsthe prize" for findingthe mostbugsfor anybetasite.

Oneimportantpoint remainsto besaidregardingthe betatestingof reliability/availability
programs.Severalphilosophiesexistfor the justificationof aparticularschemeof testing.Based
onour experiencewith CAREIII andHiRel, tile methodweusedwasextremelyeffective.We
useda wide distribution of usersinvolvedin a largediversity of applicationsrangingfrom
satellitesto submarines.Weimposedfewrestrictionsonour choiceof HiRel users(other than
they beU.S.users)andtheir applications.All distributionwasmadeto unsolicitedrequesters.
Becauseof this wide exposition,HiRel hasbecomea very flexibleand usefulcapability in
manyU.S. industries.Wealsoserendipitouslyfoundaneffectivemechanismto transferNASA
developedtechnologythroughouttile U.S.

Ourexperiencewith CAREIII taughtusthat ausefulprogrameventuallybecomesmodified
to suit the specificneedsof the user.V_'ehad anticipatedandfosteredthis needby distributing
sourcecode. Two additional components of HiRel have emerged as a result, phased-mission

HARP and Monte Carlo HARP. We also learned that useful code gets absorbed into many

company and university computer programs and eventually looses its initial identity. These are

excellent examples of NASA technology transfer.

To my colleagues and friends at Duke and Clemson Universities, I wish to say that the most

rewarding episode of my professional career has been my association with you. Not only did

your efforts produce a product worthy of the 21st century, but you taught me the true meaning

of being a dedicated researcher and the friendship and loyalty it brings. It is a glowing tribute

to your schools and this country to have such high-quality professionals.

Salvatore J. Bavuso
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Chapter 1

Introduction

1.1. HiRel Tool System

The tlybrid Alltomat(_d Reliability Predi('tor (HARP) integrat('d [_eliability (HiR(,I) tool

system for r(qiahility/awtilahility l)r(_(li(M(m (rcfs. 1 an(t 2) offors a tooll)ox of int(,grat_,(t _

reliability�availability programs that can })e u,_cd to customiz(' the user's at)pli(:aii(m in a

workstation or nonworkslation (mvironm(;nt. HiFieI consists of int(>ra(:tivc graphical intmt/()lit put

pr()grams and four r('linbiliiy/availability modeling engines lhat t)r(_vi(tc analyl ical and simulat iv('

solutions t() a wido host of higllly reliabl(, fault-toh_rant system archit(,ctur(,s. Thr('(, Ilil{(,l

programs were d('v('h)t)e(t by r(,s('archcrs at Duk(, Univ('rsity aim Langh,y l_oscarch C(,nt(,r.

The 1ool systeln was (h_sigil(,(t to I)c compatible wilh most comtmting vial fin'ms aim oI)era( ing

SySIOIilS, _-tll(t ,%01110 l)rogl'Itlirls ]lt/V(_ |)o(_11 })("t_q t(',_ted within ill(, a('rosl)a('(, ('()]lllllllllily for (}v('r

S 3.'oars. Many examples of [[i[/(q's use have l><,cu r(,i>ort(,d in th(' lit('ratm'c and al the IIARP

w()rkshop <:(m(iuctod at Dnk( _ Univorsily, ,hlly 10 11. 1990.

The wi(lc rang(, of aI)t)li(:ations of int('r(_st has ('auso(1 ttiI:l(,] to ('volv(, into a fainily ()t"

in(lop(md(,nt programs that c()lnniunical(, with (,a(']l ()lh('r through files that oa(:h pI'OgF;llll

gon(,ra_(,s. In lhis s('nsc, llif/(q ,_fl'¢'rs a l()oll)o× ,)f imvgrai_'d i)l't)gr_/lllS _[1_11 ('_tI1 [)_' CX('('IIIo_t

t() customiz(, tim ns(,r"s at)plicaii(m, t:igur(, 1 ilhistrai('s tlic ltiI_cl l()()l syst('m. Th(, cot(, ()f this

capability cousists (ff th(, r(qiability/availability m(_(t(qiug (_Itl4incs, whi('h aro ('(_lh,('tiv(qy ('alh'd

th(' flybrid Aul(mial('d l{('liabilily Iir('(li(:t.(_r suil(' (fIAt{P/S).

Th(' ln()(teling (mgin(,s are c[mll)ris('d ()f four s(qf-(:(mtain(,(l (,×(,cutal)h, soflwar(' ('(mll)()n('i_in:

th(, ori_imll HARP t)r()gr'<ml also ('all('(l t(,xtiml ttAI_I ) (dcs('ril)('(1 in vols. l and 2 (_f this TI)).

M(mlo Carh)int_'giat('d tIARt ) (XI(II-IIAI¢I >) (r_q'. 3). t)has('d Xli,_i(ni IIAt/P (l)hl-llAl¢t))

(r('f. 4). and X Win<h)w s.vst(,m tlAI{] > (XtlAI+P) (r(ff. 5). hi c(m.jun('ti(m wiih ttw (mgin(, suit<,.

aro two int(,ract iv(, graphical inpm/(>ut put l)ro_rams that vrovi(h _a w()rkslat ion ('uvh'()lml('lit f()r

tliR(,1. Th('s(' programs ar(' (:alh,d lh(, (;raplli(',_ ()ri(,nie(t ((1()) t)rottram (d(,scrib('(1 in v()l. 3 ()i'

ibis TI )) mid lh(' tIAI:_I r) ()litpu, (IIAIII)()) pr(_ra,l ((h,s('rit)(,d in v()l. ,I _)f ibis Tt)). Th( _ 1)a._(,

coinI)()n('lll_ of tlifh'l ((i(). tIAt/I ), MCI-HAI/t)_ and ItARt)()) ar(" avaihtt)h, lhr()ngh NASA's

sol'lwar(, (ti,_lrii)ulion fa('ilily. C()SMI(!.2 I)M-IIAllt ):_ and XItAt/t )l iility ])(! availal)](, fr()lli liwir

rcsp(,ctiv(' d(,v(qop(_rs.

1.2. HARP Suite and Its Applicability

tIAII[)/S is (:(mipris(,d or fore. ('onit)nl(,r t)l'(.l_l'._illl$ that i)r()vi(h, a g(,n('ra] Markov ln()(h'ling

(:at)al)ilily to C(JlIV('lli()lit]y Ino(H illl(] t)rt,(ti('t tlio r(qial)ilitYlaviiilaliility ()f st wid(' vari(qy of

systonis. The t}rinmry int}ul (ox{:(,t)l XIIAtlI )) is a fauli trco thai can l}v in tabular {}r grat)hical

f(}l'lll. (The [)l'ilii;ll'y Xttil2t ) ini}ui is a Mark{iv ln(}(t(,] in grn])}iic f(}l'lll.) T}I(' faiilt lr('(, is

li()t [illlit('([ to t.,h() tra.(titioual couibinatorial lilod(qilig; _/[)l)l'(j_tch. The addition of four sti('ciaI

I ttithq t)rogranis ('an ('l)iliiiiiini(:al[! with ['a(')l oth_,r ii_ a ('olillli()ll ASCII til(, torlllat, a il(,('(,ssary (';lt)alliiity fi_r ('()ini)_ll(,r-

aid(,d (t('<<,;igil (CAD) inliT, rali<)ii.

2 (!O<SM[(_, The Univ_!rsily (if (;('orgia, 2182 [-;a.st Broad SI., Atiwns, (;A 30/i02.

:1 The Boeing Commer(:iM Airplane Group, S(,attle, WA 9_412,1 ('l'ibtk Sharma).

4 Chmis(in University, Dept. of (?oinput(,r Science. (?Iemson, SC 2973,1 (R(kmrt Goist).



Fi_,ur(! 1. Hill(,[: GO, tIAHPO, and tlARP suite of r¢'liat)ility engines.

fault tree gates called depen(lency gates allow tile generation of dynamic fault tree models that,

until now, were not practical to solve with analylical solution techniques. The fault tree, a

familiar and convenient notation for expressing reliability models, is automatically converted bv

HAIIP/S into a Markov model that is solved to produce a reliability/availability prediction. The

numerical results are expressed in tabular or graphical fl)rm with IIAFIPO. tlAI-IP/S also accepts

system reliability/availability models expressed dire('lly in tile fl)rm of a Markov model, where

th(, user inputs the model's origin sta,t.e and (lest.i)mti())l slate together with a state transilion

rate. Unless HiiR,q is used ill an hierarchical fashi()n, this form ()f input Call ])e impractical tbr

lllatl.V nlodeling situations where thousands of Mark()v states must be enumerat(_d.

For fault-tolerant systelllS that use redundancy aim subsystem recontiguration to achieve

ultrahigh predicted reliabilities, even automalic model gen('ration capabilities can t)(, inadequate

to c()[)e with the potentially millions of Markov states necessary to model the system reliability.

The addition of millions of states in models of fault-tolerant systems results fl'om the ne(,(t t.o

account for the fa)llt/error handling mechanisms typically used in tiles(, syst.(_nls. For )nany of

these systems, the extremely large state size (:auses insurlnountal)le computational (ti_culties

that prechule reliability/availability prediction, tIAlq.P/S offers a.n innovative modeling tech-

nique that avoids having to generate and solve such large models by implementing a modeling

technique called behavioral decomposition (reN. 6 and 7). Bc'havioral decomposition ix a math-

ematical technique that exploits two specific behaviors of fault-tolerant systems: (1) the failure

of hardware parts and sut)systeins typically occurs after thousan(ts of hours of operation, and

(2) the time involved in the handling of faults/errors is usually on the order of milliseconds to

seconds. This wide disparity of typically 6 orders of magnitude of the system time constants

forms the mathematical basis of behavioral decomposition that guarantees that the reliability

computation is conservative (reg. 8 and 9). It is conservative in that it predicts a reliability that

is equal to or less than the reliability predicted by the full model.
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A key step in arriving at a conservativereliability predictionin any reliability modeling
activity is for themodelerto insurethat all systemfailuremodeshavebeenaccountedfor in the
modelspecification;otherwise,a conservativeresult is not guaranteed.(Seesection2.1.) For
manyapplications,this practiceis perfectlyacceptableprovidedthat the modelercarlaccount
for the deviationintroducedinto the modelby droppingimprobablefailureor recoveryevents.
Theeffectof this modelingpracticeis a reliabilitypredictionwith lessaccuracythan is possible
with additionalmodelingeffort (whenthemodelis solvable).

The specificationof the systemmodelis totally the responsibilityof the me(icier. Neither
HARP/S noranyothercomputerprogramcanguessthe structureof the modelthat the user
hasconceptionalized.Manymodelingsubtletiesareassociatedwith the reliat)ility modelingof
fault-tolerantsystems.This technologyis newand manyusersareunfamiliarwith the many
conceptsand modelingnuancesthat can make a significant difference in tile results,

One such modeling nuance concerns the HARP/S multifault model for computing the

near-coincident fault probability. HARP, MCI-HARP, and PM-HARP (collectively called

< HARP >) do not model all combinations of multiple faults taken 2, 3 ..... N at a time

exactly and automatically as XHARP does. Rather, they use anottler approximation technique

(critical-pair multifault model) to flmher simplify the computational complexity and to ease lhe

user burden of acquiring nmltifault data that is generally unavailable.

This automatically generated near-coincident multifa.ult model (critical-pair) (tescril)(_s the

condition that causes total system failure as a result of two coexisting faults (not sinmltaneously

occurring, see section 2.7). The condition occurs when a system has already experienced one

fault and is in the process of recovering from it when a second statistically indet)endcnt fault

occurs in another unit ttlat is critically coupled to the one experiencing the first fault. If a second

fault occurs during recovery but is not critically coupled (as specified by the user), the second

fault is not accounted for in the coverage computation. It is accounted for in the rechnl(lancy
exhaustion model.

An example of critically coupled units is two units in a voting triad that is perfornling a

computation required for survival of the system as in a flight control system in a tty-by-wirc

aircraft, r' The probability of a near-coincident fanlt is significant for highly reliable systems

with system failure probabilities of less titan (10 -8) ff)r the mission time of interest. The

near-coincident fault involving two faults is called a critical-pair fault. Most conmler('ial and

military aircraft flight control systems and most existing systems in commercial use today can t)e

effectively nlodeled with the critical-pair fault model when the near-coincident fault is a mission

critical factor. Systems using computers (:all have up to four active reconiigurable t)rt)cessing

units where a majority vote can 1)e effected until two coexisting faults occur.

A system with five processing units (:an survive two coexisting faults, but a third fault causes

system failure. This system requires a critical-triple fimlt model to effectively predict the near-

coincident fault probability. Because the ttARP developers believed that the interest in modeling

such systems is small, the5, did not implement a more complex nmltifault model; instead,

they suggest the automatically generated critical-pair model as a conservative appr()ximation

to critical-triple or higher order models. The degree of conservativeness depends on the system

architecture and can be unacceptably high for some syst.ems.

The rationale to support the critical-pair modeling decision was based on tile belief that the

reliability of computers would continue to increase, making it less probable to have critical-triple

faults. Consequently, predictions of ultrahigh reliabilities would be achieved with four or fewer

5 A fly-by-wire aircraft uses an eh,ctronic computerized flight control system whose function is required for air('raf!

survival, and a.s such, the systems are usually fault-tolerant, with redundant hardware milts and possibly re(tmMant soflware

modules.

3



processors. This trend is in fact occurring which justifies the HARP developer's decision to only

exactly model critical-pair faults (refs. 10 to 13).

For those applications requiring higher order fault models, the HARP developers suggest

that the user modify the < HARP > ASCII files that specify the multifault model exactly.

(See section 2.7.4.) The modification can be accomplished with a common text editor before or
after HARP has generated the appropriate files. XHARP is another alternative that provides

automatic higher order multifault model generation. The < HARP > multifault approximation
model is further discussed in section 2.7, and an example is given in chapter 7. The user is

cautioned to study these multifault models carefully before application. An incorrect selection

of the multifault model options can produce a nonconservative result because a particular option

can drop important failure modes from the reliability computation. However, < HARP >
cannot warn the user of this modeling specification error.

1.2.1. XHARP

More recently, the user has another modeling alternative. An extended behavioral decomposi-
tion model has been developed by researchers at Clemson University (ref. 5) and is implemented

in XHARP. XHARP was designed to expand the modeling capability of the original HARP

behavioral decomposition technique to include exact multifault modeling, multiple entry/exit

fault model transitions, and automatic behavioral decomposition modeling. This capability is
demonstrated in chapter 7. XHARP calls HARP, MCI-HARP, and PM-HARP ms executable

software programs; thus, the entire power of both XHARP and the < HARP > programs are
available to the user.

XHARP provides an X Window system environment for graphically specifying a semi-Markov
chain that is automatically translated into the HARP structure for tile fault-occurrence/repair

model (FORM) and the fault/error handling model (FEHM).

1.2.2. PM-HARP

Phased-mission HARP was developed to facilitate tile analysis of phased missions (refs. 4

and 14). A mission is phased when tile structure of the system (configuration) or component

failure distributions change after each epoch (phase) in the mission (refs. 15 and 16). Multiple

phases of fixed and random durations are allowed. Also, tile system can be specified to be

imperfect at tile beginning of a mission. The GO and HARPO programs are compatible with

PM-HARP; however, the phased-mission specifications may not be specifiable to GO directly.
HARPO may not graph all the phased-mission output data; however, tile output listings are

complete.

1.2.3. MCI-HARP

MCI-HARP is comprised of HARP with a Monte Carlo simulation engine and is fully

integrated with HARP. MCI-HARP can solve all types of models that HARP can when the input

is specified as a dynamic fault tree (the extended fault tree with sequence dependency gates that

HARP accepts). At present, this capability excludes cyclic Markov models that can be specified
to HARP in the Markov chain format that HARP accepts. However, MCI-HARP can solve

certain model types that HARP cannot, such as non-Markovian models that arise when warm

or cold Weibull spares are added to a Weibull fault/occurrence model. An important feature of

MCI-HARP is the use of a variance reduction technique called importance sampling (ref. 17).
Importance sampling makes it feasible to solve large models that contain widely separated time

constants. Such models are called stiff and are common to highly reliable fault-tolerant systems.

Although importance sampling is not a new technology, it has become more useful with the
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recent application to preexisting Marker chain models (refs. 3, 18, and 19). Another importam

feature is MCI-HARP s ability to solve very large models with or without model truncation.

This capat)ility is possil)le because MCI-HARP does not store the entire Markovian slat(, space.

1.2.4. Textual HARP

Three versions of textual IIARP (PC-DOS ItARP 16-t)it version, PC-I)OS HAf/P 32-t)i!

version, and PC-OS/2 HAt/P) arc awdlable for operalion on a persomd COmlmler. Texlmd

HARP ex(,('ules on Sml and DEC workstations with lhe same limits as lhe PC-DOS ttA1RP

32-bit version.

1.2.4.1. PC-DOS HARP 16-Bit Version

\\:(_ developed and tested lhe I)C-I)OS HARP 16-bit version on an IBM PC AT with 512K ()f

memory and have stlcct'ssfully ext,euted it on PC 286, 386, and ,186 class machines. [/('('aus(_ of

memory constraints imposed 1)y MS D()S's (i40K memory limit, PC-D()S IIAIlP 16-1)il version

cannot m()(t('l large models. Th(' limits on the various parameters (hqine(1 in P(?-DOS tlARP

are given in Ial)le l. Ext)an(h'd state size is possit)le with PC's thai have more than 512K ()f

memory t)y changing l he limit sizes of the ttARP pa('kage. (Set' s(,cli()n 5.3.)

Table 1. iIAIIP Paramel('rs

P;lI';tlil('((']"

Max. n(>. of states in Mark,_v chain

(lllay 1)(! 12t.]gor i[ llllll(:._l.[iOli is IINC(t)

Max. no. ¢)f transitions in Mmkov chain

Max. m). ()f

Limit

Textual IIARP

32-bit vermon 16-bil v(,rsion

Sort(,d: 10 0I)(}

Unsorted: 500

Sorwd: 90 00(}

Uns(_rt(,(t: 2(15(I

symbols in me(h,1 15 000

St)rl i'd: 500

iTnsort('d: 51)0

Sorted: .1500

(hts(_rted: 205(I

501)

Max. no. of factors in model

Max. no. of terms in mod(,I

Line leng;th in input tih,

NI}IX. 110. I)f chara('li!l'S ill a l>arallit,_i(_r 1114111("

Max. l('n_th of rates an(t ,'-,tale IIHIlI(!N

Max. no. of nodes in fault Ire(.

Max. 11o. of cotnp[ln(,nl lyl)(,s in fauh twe

Max. no. of basic even'i.s in fault tre,_

(_(:,V('l'ag(' vahl( _ pr('t:isi(m

Max. no. of incoming arcs 1)er fault tree gate

15 000

15 000

_,() char

?,2 char

12 char

256

96

96

No. deI)('mts ()n FEttM

7()

1500

7511

_0 char

32 char

12 char

256

16

16

N(). dep('n(ts on FEttM

16

Note that PC-DOS tiARP 1G-hit version allows the same mm_t)er of n_)dcs in the fault

tree as the hill model (32-bit) v(,rsion of ttAI/P. This tlexibility takes advantage of the fealur(_

of trunea.tion in tlARP, th)wever, since the inaxiiInltn mHnt)er of states allowed in fifacc and

ha(pen 9 of PC-I)OS HARP 16-|)it version ix only 500, the user is advised to use a lrm_cation

level that restricts the model state size to less than 500.

In addition to being tillable to solve large models, I)C-DOS ttARP 16-bit version has some

other restri(:tions. Evaluation of the simple bounds is not possible. Also. Weibull faihu'e rates

are not allowed. Slate-det)en(tent coverage factors cam_ot be used; hence, no near-coincident-

fault calculations are performed. This restriction occurs because the failure probabilities due to

near-coincident faults are comparable with the precision allowed by the PC 16-bit version.



A graphical interface to HARP has been developed with Graphics Software System's

implementation of the Graphical Kernel System (GKS) ANSI standard. An IBM PC AT with

EGA controller and display was used for the development, and VGA is now supported. For more
information, refer to the HARP Graphics Oriented (GO) Input User's Guide (vol. 3 of this TP)

and the HARP Output (HARP@ Graphics Display User's Guide (vol. 4 of this TP).

1.2.4.2. PC-DOS HARP 32-Bit Version

The full HARP capability has been ported to a PC under DOS with Microsoft FORTRAN
Powerstation, and it behaves identically to the UNIX and VAX HARP versions. This extended

DOS version requires a 386 or higher class machine'.

1.2.4.3. PC-OS/2 HARP

Other operating systems such as UNIX or OS/2 executing on a PC remove the 640K memory

restriction and hence the restriction on model size. The full HARP capability has been ported

to a PC under OS/2 and behaves identically to the UNIX and VAX HARP versions. Because
of the unique relationship between DOS and OS/2, ASCII files are totally interchangeable.

Thus, it is possible to execute the GO program under DOS, to execute the full model HARP
capability under OS/2 using the files created with GO, and to graphically display the HARP

results executing HARPO under DOS again. The advantage of this arrangement is that a DOS-

compatible GIKS program need not be upgraded to OS/2 GKS. Also, small models can be worked
entirely on a 286 PC, or just the graphics can be displayed on the PC when an OS/2, UNIX, or

VAX computer is necessary for large models.

1.3. HARP/S Key Features and Overview

The HARP/S key features are summarized as follows:

• Very large system modeling (using MCI-HARP or t)ehavioral decomposition and bounds

with truncation with HARP)

• Flexible method of modeling dynamic behavior (homogeneous/nonhomogeneous Markov
chains)

• Automatic Markov chain generation from a fault tree description (particularly useflfl for
large systems) or direct user input of the Markov chain

• User choice of seven fault/error handling models ranging in complexity from a simple lab-

oratory parameter estimation model to a complex Petri net model for detailed fault/error
handling analysis

• Automatic insertion of fault/error handling models into Markov chains

• Automatic parametric analysis

• Phased-mission analysis

• Non-Markovian models with Weibull cold and warm spares

• Written in ANSI standard FORTRAN and successfiflly ported to many different host

computers, including IBM-compatible 286, 386, and 486 PC's (including AT&T 6300

with 640K), DEC VAX, Sun, CRAY Y-MP, Alliant, Convex, Encore, Gould, Pyramid,

and Apollo

• Runs under MS/PC-DOS and Microsoft Windows NT, OS/2, DEC VMS and Ultrix,
Berkeley UNIX 4.3, and AT&T UNIX 5.2
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• Interactive graphical input/output workstation capability for DEC VAX under VMS, Sun,

and IBM-couqmtible PC

• X Window system graphical model generation

• Extensively and independently tested and applied to practical systems (over 8 3;ears of

industry beta testing and over 100 copies distributed)

• Independently tested and evaluated within NASA

HARP provides the user with a language to input a model and solves it for the system

reliability/availability for user-specified _nission times. It uses beha'uior'al dccompositioT_ to avoid

tile problems of model largeness and model stiffness (refs. 6 aim 7).

The reliability model is decoInposed along temporal lines into a FORM and a FEHM. The

FORM contains information about the structure of the hardware redundancy, about the fault

arrival processes, and about manual (off-line) repair. The user specifies the FOtRM either as a

fault tree or a Markov chain. The FEHM (often called the coverage model) allows for permanent,

intermittent, and transient faults (ref. 20), aim models tile (on-line) recovery procedure necessary

for each type. The FORM/FEHM models are merged according to a user-specified multifault

model. The resulting system reliability/availability model is a simplification of the originally

specified model. The correct specification of the multifaull model is crucial for HARP to produce
a conservative result.

HARP also accepts as input a nominal vahle and a variation on all FORM input parameters.

The nominal value is used for the reliability prediction, and the variation about the nominal wdue

is used in an approximate (simpler) model to generate bounds about the predicted reliability.

Additionally, HARP supports the modeling of time-dependent failure rates [)y allowing a

symbolic failure rat(', to be associated with a Weibull failure distribution. We caution the user

that tile use of Weibull distributions leads to a long solution time because the symbols must

be reevahmted at each time step, but it can also lead to a more accurate model of the system

under study (ref. 21). MCI-HARP's simulation has been shown to be more efficient in solving

Weibull models than a numerical integrator (ref. 3), A new feature in HARP is the use of state

truncatioT_ to fllrther avoid the problem of large inodels.

Input data to reliability models can be inaccurate by as much as hundreds to thousands of a

percent (ref. 22). Because of these large errors and tile recognition that reliability modeling is

more often an art than a science, the user of HARP nmst view the results with a healthy dose

of caution. \Vhen trade-off studies are performed with comparable, input data, tile comt)uted

results are meaningflfl relative to the models being compared. If the user is interested in arriving

at absolute reliability predictions, then much caution should be used in the interpretation of tile

computed results. HARP outputs eight digits plus an exponent. The eight digits are displayed for

the purposes of user calibration, that is, to determine, whether the user's computer is conq)uting

the results that the developers intended. The eight digits do not imply reliability prediction

precision to eight digits.

Experience has shown that next to tedious hand calculations, the most practical method

of developing confidence in the results eoinputed by any reliability predictor is to compare

the computed results of one program with those of a different reliability program. This

recommendation is based on tile authors' interaction with beta test site users over 8 years

where on several occasions, coding bugs were discovered as a resull of tile user's comparison of

HARP results to an in-house company reliability program including sotne obtained from NASA

(such as CAI/E Ill)" and other institutions. The HARP developers also used this technique

6 Computer Aided t/eliahility Es!imation third generation computer program.



extensively (refs. 23 to 26). Some examples of these test cases are sent to beta test site users

with the HARP code. Over 700 test cases comprising over 2000 files were used to test HARP

at Langley during development. A greater nmnber was used at. Duke University.

Textual HARP executes oll DEC VAX workstations under VMS, Sun workstations ureter

UNIX, and IBM-compatible 286, 386, and 486 PC's under MS DOS. Under OS/2 on 386/486

PC's, the flfll HARP capability can be executed. Recompilation only requires an ANSI standard

Fortran 77 compiler, and textual HARP has been compiled with Lahey and Microsoft Fortran

on the PC. It is compatible with a wide range of computing platforms because it was written in

ANSI standard Fortran 77 for wide portability. HARP creates ASCII files that ark compatible

with most computing plat.forms. For example, tiles created under the PC environment can be

executed by a VAX workstation. In this way, a PC can be used as a workstation for input and

output processing, and a VAX workstation can be used for large system number computations.

Textual HARP has an interactive prompting input capability and is ('omposed of three stand-

alone programs: tdr'ive, fiface, and harpen 9. (See fig. 2.) As the user successively executes the

programs in this order, the programs create files that are required by other programs.

TEXTUAL
INPUT

r

XHARP
'GRAPHICAL
INPUT

[GO
/GRAPHICAl

INPUT

HARP / MCI-HARP

CHANGE MODEL

PARAMETERS

TDRIVE

MARKOV
CHAIN
GENERA TOR

FIFACE HARPENG

TRANSITION' MARKOI"
MATRIX CHAIN
SETUP SOLVER

PM-HARP

TDRIVE HFACE IIARPENG

MARKOV IRANSITION MARKO_'
CHAIN MATRIX CIIAIN
GENERA TOR SETUP SOLVER

OUTPUT
LIST1NG5

CHANGE MODEL

PARAMETERS

Vigure 2. HARP execution flow and relationship t,o GO and HARP().

GRAPHICAL1 I

OUTPUT J I

The programs also accept files created with a text editor. Thus, tile user can use tile

interactive input capability or simply input text files. The input to tdrive can also come from files

generated by tile GO program. The output of textual HARP are tabular structured files. These

files can be used as input to HARPO, which allows the user to graphically display the HARP

tabular data in a wide variety of forms in an interactive mode. Thus, as an overview, textual

HARP is by analogy the central processing unit, the GO program is a graphical input to textual

HARP that bypasses textual HARP's interactive input-prompting capability, and HARPO is

the graphical output processor that reads textual HARP's tabular output files. Separate users



guidesfor GOand HARPO(vols.3and4 of this TP) anda tutorial (vol.2of this TP) arealso
available.

Table1 givestile limit onvariousparametersdefinedin HARP.It givesthe useran ideaof
themodelsizesthat canbeeffectivelyhandledby HARP;however,manyof theselimits cant)e
altered.(Seechapter5.)

Tile numberof symbolsin themodelrefersto thesumof the numberof distinct failurerate
symbols,numberof distinct coveragefactors,andthenunlberof stateshavingsymbolicnames.
Tile numberof factorsandtermsin themodelcanbeexplainedasfollows.If a transition in the
MODELNAME.INTfile is 3. A+ 2. p* C1, then there are two terms (3 * A and 2 • p. C1),

five factors (3, *, 2, _,, C1), and three symbols (h, p, C1) associated with the transition. The

arrays containing tim terms and factors are'. used dynamically. In other words, tile arrays, which

are filled symbolically, are converted to the numeric representation when they are fldl. The space
is then reused.

1.4. HARP Version 6.0

HARP version 6.0 (April 1989) has the following additional features. Four novel dynamic

gates have been included in the description of the fault tree. They are the functional dependency

gate, the priority and gate, the cold spare gate, and the sequence-enforcing gate. (See sections 2.5

and 4.4.) These gates can be used t.o model those features of a system frequently characterized

as sequence dependencies, which cannot be modeled by the stmldard and, k/n, and or gates.

Hence, they greatly enhance the modeling capabilities of HARP.

Another feature added to HARP is tile capability to solve stiff models with a special stiff

solver. A stiff solver is automatically invoked in harpen 9 if GERK (nonstiff ordinary (tifferential

equation solver) is taking too many steps to solve tile model. (See section 3.3.2.)

The format of _he MODELNAME.INP file created by harpvn9 during run time has been

altered to nlake it easier for the user to read and modify. The new fornlat makes it much

more robust. (See section 4.5.) tlowever, harpcng still reads in the old format of tile

MODELNAME.INP file. A small change has been nmde in the questions asked by harp_:u 9

in that the last two questions have l)een cornl)in(_(l into one. A siml)le run through ]_arl)cn 9

clearly (tcmonstrates these changes.

In flJ'acc, the user can now choose to create only tile relevant near-coincident fault rate tiles.

[n the older versions, all near-coincident fault rate files were created [)y default. A few warning

and error messages have been altered to clari_ _ their meaning.

1.5. HARP Version 6.1

HARP version 6.1 (November 1989) has the following modiiications. The dynamic sequence-

enforcing gate (see sections 2.5 and 4.4) now requires that all inputs to tile gate except the

first, must be basic events (possibly replicated, i.e., multiph.' basic events with identical faihn'e

distrit)utions). The first input remains unrestricted and thus unchanged from version 6.0. The

(:old spare gate now allows its inputs to be (possibly replicated) basic events, where earlier only

unreplicated t)asic events were accepted.

The output MODELNAME.RES file from program harpen.q has been rename(t

MODELNAME.RS*, where * is an integer from 1 to 9 for comt)atibility with HARPO. For

each run of the same input file, tile integer is incremente(t, beginning with 1.

In addition, the method for determining the near-coincident fault rates is changed. The

new inethod is conservative in that it regards outgoing arcs of the source and target states. In
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previousversions,only the ratesof the target statewereutilized. (Seesection2.7for details.)
Carriage return selected defaults are fully implemented, more extensive warning messages have

been added to the code, and some coding bugs have been fixed.

1.6. HARP Version 7.0

HARP version 7.0 (February 1993) has added two new fault tree gates: the invert (inv) and

exclusive or (xor) gates. The results file now reports the number of transitions in the Markov

chain. This information is useful if the maximum number of covered failures attained by the

Markov chain states exceeds 90 000. Changes to max# are made in fiface and harpeng, and are

useful if tdrive runs out of memory in the POOL(*) array (i.e., increase the value of PLEN or

rerun tdrive with a larger truncation value). (See section 5.3.) When tdrive is invoked and it

senses the presence of existing files, tdrive queries the user to select one of several choices. One

choice is AT. AT allows tile user to append additional fault tree (FT) nodes to an existing tree

in MODELNAME.TXT, but only if the last existing node is not FBOX. If the last node in the

MODELNAME.TXT file is an FBOX node, the MODELNAME.TXT file should be edited to

delete the line containing the FBOX node text prior to executing tdrive. This feature is useful

for huge fault tree files when during entry something goes wrong after many nodes have been

entered. This feature also precludes the need for the user to recreate the entire file. If the user

specifies AT, tdrive reads the contents of the existing MODELNAME.TXT file, prints the last

FT node in the file, and then allows the user to enter the next FT node as usual. A number of

bugs were fixed and are delineated in appendix A.

1.7. HARP Quick Reference

1.7.1. Summary--HARP Capabilities and Limitations

HARP is intended for reliability analysis of reliable fault-tolerant systems with complex

recovery management techniques, particularly those used in flight control systems. The following

sections provide a list of the capabilities and limitations of HARP that were determined during

beta testing. Certain listed capabilities cannot be accomplished during the same execution of

HARP; thus, a fault tree and a Markov chain input specification of the same system would not

both be processed in the same HARP run. However, if a fault tree is specified, HARP creates

the equivalent Markov chain and solves the Markov chain. The converse is not true. The limits

on the size of the problem that HARP can solve depends on the system.

1.7.2. HARP and MCI-HARP Capabilities

• Dynamic fault trees with repeated nodes (i.e., shared basic events)

• Repairable systems (to determine instantaneous availability), which are specified with a
Markovian FORM

• Systems with sequence-dependent failures as dynamic fault trees of Markov chains

• Weibull failure distribution including hot spare repairable systems

• Weibull failure distribution with cold Weibull spares (MCI-HARP)

• Provide guaranteed automatically generated parametric bounds on system reliability (for

a large number of applications of practical interest and all Markov models with ASCII file

editing)

• Provide detailed coverage modeling with a choice of FEHM's
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• Automaticallysolvearbitrary Markovchainsfor mostpracticalsystemsanti, with file
editing,all Markovchains

• Solve truncated models for large systems given as a fault tree and large models with or

without truncation using MCI-HARP

• Systems with cold and warm spares (refs. 27 t.o 30)

1.7.3. HARP Limitations

Mean time t.o failure (MTTF) or mean time between failures (MTBF

Steady-state evaluation

Weibull failure distribution mixed with constant failure rates ill repairable syst.ems

Bounds analysis for systems with Weibull rates or with no absorbing states

Automatic generation of Markov chains for repairable systems

Phased missions; use PM-HARP (ref. 2)

Weibull failure rate for stiff systems (use MCI-HARP)

Weibull failure rate for models containing the cold spare gate and warm spares (see

section 2.9.1); use MCI-HARP (reN. 18 and 19)

Slow recovery with behavioral decomposition

Model systems whose unreliability is less than (10 -15) when FEHM models are included

(unless the epsilon variable parameter EPX is changed, see section 3.3.3)

1.7.4. About Volume 1

Volume 1 of this Technical Paper is a user's guide for the textual ItARP program, which

textually and interactively prompts the user for keyboard entered input data. This vohlnle is

divided into the following chapters:

Chapter 2 discusses the various steps needed to completely specify a system in HARP. It also

discusses the different FEHM types available. Chapter 3 presents the solution techniques used

ill HARP; and chapter 4 presents an ow.,rview of the HARP program and the files il generatt_s

along with the user input. Chapter 5 provides practical information about the ttARP program.

Chapter 6 gives a mathematical description of the nonstandard fault tree dependency gates

and chapter 7 illustrates some advanced modeling techniques. Appendix A lists known hugs

in versions 6.1 and 6.2, and appendix B lists warning and error messages. The tutorial (vol. 2

of this TP) steps the user through several examples and further explains many of the HARP

concepts. Additional applications can be found in references 26 and 29 to 32.
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Chapter 2

Model Specification

2.1. System Mathematical Model Overview

The reliability model that HARP actually solves is always a Markov chain even though it

can be input as a combinatorial or sequence-dependent fault tree. Depending oil tile user's

choice, the model can be a homogeneous (only exponential failure distributions, i.e., constant

failure rates) Markov chain or a nonhomogeneous (at least one Weibull failure distribution,

i.e., nonconstant failure rate) Markov chain. Although these general stochastic models (:over

a wide range of systems, some systems require even more general and coinputationally more

difficult stochastic models. These systems are the highly reliable fault-tolerant variety that use

redundant subsystems for increasing system reliability. These systems often use computers for

real-time-processing control and system management of failed redundant components.

Because failure recovery requires either a random or possibly a deterministic time, a second

component failure can occur while the first is being properly dealt with. The second fault is

called a near-coincident fault. The reliability/availability of highly reliable fault-tolerant systems

is sensitive to the near-coincident fault and is typically the dominant unreliability contributor. To

capture the effects of this important parameter, a semi-Markov chain model is required to account

for the system holding time during system recovery (recovery time) when fault occurrences are

exponentially distributed. If fault occurrences are Weibull distributed, the stochastic model

becomes a mixed-Markov chain, an even more complex mathenmtical model. These stochastic

models are eomputationally costly to solve in the traditional manner and thus severely limits

the size of the model. Thus, HARP was designed to model these systems efficiently.

2.2. Fault/Error Handling Mathematical Model

A mathematical technique that significantly simplifies the solution of both these models is

called behavioral decomposition. The technique makes use of the fact that fault occurrence

times are typically on the order of thousands to tens of thousands of hours, while fault recovery

times are on the o 'der of fractions of a second to seconds. This disparity of event times makes

it possible to solve a FEHM in isolation with respect to the FORM. The solution of the FEHM

model determines the internal (to the FEHM) race condition times of exit from the FEHM

and are expressed as exit probabilities and holding times. Timing considerations are carefully

modeled within the FEHM. Once the exit probabilities and holding times are thus determined,

the behavioral decomposition model assumes that the recovery outcome (FEHM exits) happened

in zero time. The exit probabilities behave as exit path switches with infinitely fast switching

speed. These switch probabilities are often called coverage probabilities in the literature. The

coverage probabilities are automatically incorporated into the Markov chain (i.e., homogeneous

or nonhomogeneous model) and solved with a straightforward ordinary differential equation

solver (GERK).

HARP and XHARP offer two classes of FEHM's: single-fault and multifault models.

The single-fault model capability ranges from simple to complex, while the multifault model

capability is relatively simple. It uses a near-coincident model that causes system failure resulting

from user-specified synergistic critical-pair faults. In contrast, XHARP has a near-coincident

multifault model that is general and removes the critical-pair faults restriction of HARP. The

more general model in XHARP is especially useful for systems where many fault containment

regions are modeled and more than two near-coincident faults can be tolerated.
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2.3. Implementation of System Mathematical Model

The stochastic model that is actually solved, called an instantaneous jump model, is a

computationally efficient approximation of a more comt)h_x mathenlatical model. HARP's

flmdamental mathematical model (behavioral decomt)osition) guarantees lhat the ilislaliLalloolls

jumI) model approximation is conservative (ref. 8). \Vhen the llSPr specifies the correcI model,

the tmreliability prediction is always gI't_tit(_l" than the exact result front the full motM. The user

IiÀllS|. specify the Col'r/_ct slochastic model to IIARP to gllal'_tltt,po a Ct)llsorvaliv(, COlllt)lll at ion.

An incorrectly specified model may 110[ gtmrantee a collsorvat.iv(, rosltlt or iltay produce an overly

cons(wvativ(_ result.

Figm'es 3 and 4 show the relationshil} between the ditferent models involved in the HARP

moth'ling process. Figure 3 shows the use of behavioral decomposition, a.lld figlli'O _1 shows tit(,

explicit specification of Markov chains.
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2.3.1. Behavioral Decomposition Model

The process of reliability/availalfility modeling begins with lhc user's conceplual model (also

called the original or full model), which the modeler has formulal.ed from the syslem under

consideration. This process is not, well underst.ood and further consideration is beyond the scope

of this docmm'nt. The user translates the conceptual model 310 into the ttARP paradigm

M 1 by using the FORM/FEttM and the near-coincident multifanlt model specification (fig. 3)

or by entering it directly as a Markov chain (fig. 4). The choice of which notation to use is

multifaceted att¢t depends on the user's inclination and modeling familiarity, the need to model

near-coincident faults, and modeling complexity.
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2.3.2. Markov Chain Model

Direct entry <)f ._larkov chain fi)r simple models requiring lie llear-coilwideul faul( modeling is

a reasonable choi(:e as is th(' use of the fault ))'ee m)lation shown in fig)re' 3 with())It ])('havi()ral

decomposition. When near-coincident fimlts are needed, (lireet Nlarkov chain (,ntry l)e('()mes

more c()mplicated l)eea.)ase i( may be ))e(:essary t() use )h(' mcthml o./' s/_yy's if notmxpont,nti_d

fault holding time distritmtions are required. Otherwis(_, using direcl ,klarkov chain entry is

limite(t I)y the complexily ()f the m(>(lel. The pr()bh'm is (m(' of m()(hq Sl)ecificalio)), ))el soluli<))).
The sp(,cifieal, ion of a coml)l(,x Nlarkov chaiu is tedious aml error l)ron('.

2.4. Important Modeling Considerations

The use (if (he IIARP capability shown in ligm'e 3 is more convenient than diI'ecl Mark()v chain

entry. The use of behavioral decomposition eliminales the need for the method of s( ages, Ira( )h('

modeling specification of complex Marker chains is still presen( even though the FI':HM m_)d('ling

is simplified. Complex models require the use of the fault tree notalion that is aut()ma(ically
converted into a Marker eha, in, which Calt include faul(/error handling as specitied l)y the user.

For this modeling collvelli(_,llce, )lie user Inllst insur(' that ,'_11 in lhc correct model |hat repres('.llts

the conceptual model.

M1 is a notational model. These user-specified inputs result in the creation of a new and

simpler model through the process of FORM/FEHM merging to creaIe the instantaneous juIup

model (M2). If the original model is an N-plex (one that degrades by one component per

component failure), the instantaneous jump model is automatically generated and is exact;
otherwise, it is an approximation. Editing the automatically generated ASCII tiles also produces

an exact model for any Marker chain. Model M2 in given to an ordinary differential equation

solver that translates 3,I2 into model M3 for solution. Complex models often require several
model translations to make the solution tractable. Errors are introduced in the translation
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process, but the objective is to estimate the total error and report tile desired result in light of
that error.

A useful result has an error that is small with respect to the result. Tile usefulness of the

result with its estimated error also depends on the accuracy of the input data and the user's

model M0, e.g., rationale, assumptions, and simplifications.

Some observations of the HARP modeling process are worthy of further discussion to galvanize

this modeling process in tile user's mind and preclude the misapplication of the program. No

computer program can provide model M0. This process can be aided, but not by HARP directly.

In the process of specifying the HARP paradigm, however, the user's concept of eli0 is often

crystallized. The user must insure that model M1 is equivalent to model _l.I0 or is an acceptable

approximation. HARP nor any other program cannot infer that. M1 and M0 are comparable.

Examples of M1 models are shown in chapter 3. The specification of the near-coincident

multifault model is also a part of M1 but is not shown graphically. Because the FEHM

models can be non-Markovian, model M1 can also be non-Markovian. Behaviora.] decomposition

enables a transformation from a non-Markovian model (which can be extremely difficult to solve

with conventional techniques) into a Markovian model with a significant potential for state-size

reduction. This transformation is tile FORM/FEHM merging process shown in figure 3. The

resulting transformed model (M2) is always a Markovian model. Model M2 is automatically and

mechanically produced by HARP and is a mathematical approximation of model M1. Examples

of transformed M2 models are shown in chapters 3 and 5. The McGough-Trivedi theorem (ref. 8)

guarantees that M2 is mathematically conservative with respect to M1. By forcing the FEHM

events to occur in zero time, tile net effect is that a greater probability of transition to a

system failure state occurs than would occur in reality. This property, which is the essence

of the McGough-Trivedi proof, guarantees that Markovian model M2 produces a conservative

system failure prediction with respect to model M1, the possible non-Markovian model. For this

remarkable achievement, a conservative approximation error is introduced. The magnitude of

the error depends on the disparity of the FEHM and component event times. For highly reliable

fault-tolerant system models, the error is significantly smaller than the component failure rate
data errors.

The most crucial step in the HARP modeling process is to insure that _I0 and M1 are

equivalent or acceptable approximations. When using HARP, the specification of M1 is a manual

process. However, XHARP automatically creates M1 from the user's full-Markov chain and

insures that. the proper fault models are used and that no failure modes are dropped. Because

XHARP requires tile specification of the filll-Markov chain, the size of the model is limited to

tile user's endurance, which results in models of under 50 noncoverage states.

The HARP model generation capability in contrast, is capable of modeling an enormous

number of states) however, insuring that no significant failure modes are ignored in M1 requires

special consideration by the modeler when specifying tile near-coincident failure model. (See

chapter 7.) Three multifault models are offered for the specification of the near-coincident fault

rate to cover the majority of applications of practical interest. In section 2.7, these models are

called tile ALL-inclusive, SAME-type, and USER-defined. Tile multifault models are exact and

automatically generated for N-plex systems when N _< 4 and are approximations to higher order

systems. If greater accuracy is required for the higher system models some manual intervention

is required by the user. Using a text editor to edit the ASCII files generated in HARP is

necessary. Another alternative is to use XHARP, which provides an automated higher order

model generator. The specific models specified by the user depends on the particular system

architecture and whether the modeler intends to achieve a conservative reliability/availability

result or a nonconservative one. Specifying the wrong multifault model to HARP during the M0

to M1 specification can produce a nonconservative result because the incorrectly specified
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multifault model can drop important failure modes from M0. The user must understand how M0

is conceptually related to M1. (See chapters 3 and 7.)

Another issue of importance when considering the use of these models is the degree of

conservatism or nonconservatism produced by the use of the multifault models. The trade-
off that tile user must grapple within any modeling exercise is one of modeling complexity

versus computational accuracy. Because the HARP developers intended HARP to be applied

to practical systems, many mathematical techniques were used to reduce model complexity and
still provide usefill results. Behavioral decomposition and the HARP multifault models were

selected to achieve this purpose. Another extremely useful model reduction technique is the

Markov model truncation scheme described in section 2.8. This technique is especially useflll for

solving extremely large Markov models that can easily result from a modest looking fault tree.

The advantage of behavioral decomposition is that fault/error handling modeling, no matter
how complex the FEHM's and no matter how many FEHM's are included, contributes at most

two additional Markov chain states. The savings in computation for typical systems of interest

can be substantial and makes it entirely feasible to model intricate fault/error handling detail
even when the FEHM itself is non-Markovian as is the case for the Extended Stochastic Petri

Net (ESPN) FEHM model or when deterministic (constant) recovery times are specified in a
number of HARP FEHM models.

The disadvantage of this scheme is that the disparity of the FEHM and FORM event times

affects the accuracy and hence the degree of conservatism of the HARP predictions. The farther
apart the event times, the more accurate the results become. Also a.s the event times approach

each other, the accuracy decreases but the deviation always accunmlates on the conservative

side. For typical highly reliable systems, the time disparity is six or more orders of magnitude,
virtually insuring a result much more accurate than the input data accuracy could ever justify.

As an example of a worst case for disparity, a two triad system with processor failure rates of

10-4/hr showed a conservative deviation of about 80 percent when the event times were on the

same order of magnitude. Please note the significance of this model: The recovery time is about

the same as the expected time to failure of one component. This system is hardly realistic, but

HARP still yields an acceptable result. As the time disparity increases, the accuracy increases.
One order of magnitude difference in time disparity produced a deviation of 6 percent and

0.5 percent with two orders difference. On considering that failure rate values can be in error

by" hundreds to thousands of a percent (ref. 22), the relative deviation resulting from behavioral
decomposition even for this pathological example is minuscule.

The advantage of using HARP's multifault models is that for the majority of practical systems

(up to four critically coupled units), an effective model is automatically generated by HARP.

For systems with more than four critically coupled units, HARP produces less accurate but

always conservative results. (See section 2.7 for selection of conservative fault models.) HARP's
multifault models are also easy to specify and no further (usually unavailable) data are required.

The user has two alternatives if the conservative deviation is unacceptable. Manual editing
of the HARP generated ASCII files allows the specification of detailed multifault models for

more accurate predictions. The XHARP program (see section 1.1) contains an automatic

model generation capability that includes a detailed multifault model that produces more

accurate coverage computations than HARP. The XHARP multifault model places no additional

computational load over HARP but requires more input data from the user (ref. 5). The trade-
off of using these two extended techniques relates to the model size. XHARP requires a Markov

chain input specification, which for large models can be tedious for the user to input. On the

other hand, HARP generates a large model from a fault tree that is relatively easy to specify, but
some file editing is necessary to accurately model the more complex multifault model. When one

needs the modeling power of the HARP FEHM's, no other easier alternative presently exists.
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As stated previously, behavioral decomposition can also t)e applied to mixed-Markov models.

Although no theorem has yet been proven that guarantees a conservative result for this model.

a nonconservative result of a practical system has not yet been (temonstrated. but caution is

advised. The following section describes the various steps necessary to completely specify a

system to be modeled by HARP.

2.5. Fault-Occurrence/Repair Model

The fault-occurrence/repair model contains information about the structure of the system

(how many components of what type and interconnecled in what way) and about the fault arrival

and repair processes (how often does each component type fail and how long does it take to fix

it). This information can be entered either ms a Markov chain or as a fault tree (in the case of

nonrepairable syst.ems), depending on whether a state-space based for small models (lilnitation

is imposed by user willingness to input the model manually) or a fault tree ret)resentation of the

system (for large models) is more appropriate.

A Markov chain is entered as a state-transition rat(, diagram, in which each state represents

a particular configuration of the system. Transitions between states represent milts failing or

being repaired. A fault tree is a model that graphically and logically represents the various

combinations of events occurring in a system that can lead to system failure (ref. 33). The

flmdamental logic gates of fault trees allowed by HARP are the and gate, Ihe or gate, the /,'/ii

gate, tile inv gate, and the xor gate. A k/'n gate is used when the occurrence of ,_:or lnore

of n possible events cause failure. The basic events in the fault tree represent failure of the

components that form the system being modeled.

When the FORM is entered by the user for either a. fault tree or a Markov chain, the

component failure rates are initially specified in symbolic form as symbolic failure rat(' names.

Numerical values are requested later when harp(rig is executed or in some cases by ]iface. This

scheme allows for the efficient solution of the model for performing sensitivity or trade-off

analyses when several sets of numerical data are examined. The specification of symbolic faihn'e

rate nalnes should avoM the use of special characters as these can often interfere with the user's

operating system. In particular, do not use the symbols $ or &.

Four tlynamic dependency gates are available for modeling sequence dependencies. Because

HARP automatically conw_rts a fault tree into an equivalent Markov chain for solution (see

chapter 6), the addition of the dependency gates is a natural extension t.o the more common

combinatorial fault tree gates. Many applications have demonstrated their modeling power

(refs. 18, 19, 32, 26 to 28, and 34 to 2/6). Chapter 6 presents a mathematical description of the

dynantic gates for the user's in-ttepth investigation of powerflfl properties.

The flmctional (tependency gate has one int)ut, the trigger input, one or more depen(lcnt

events, and a normal output. (See fig. 5.) The input event can either be a basic (went or the

outI)ut of some other gate. The dependent events are basic events that (tepen(t (m the trigger

event. When the trigger event occurs, the dependent basic events at'(, forced to occur. The

occurrence of any dependent basic event has no direct effect on tile trigger event. A flmetional

dependency gate is useful when the occurrence of some event (say, a node failure) causes some

other contponents to be unusable (e.g., sensors that can be connecte(t to the node). For this case,

the sensors arc consi<tere<t to have faile<t (but no coverage model is invoked). Tt:e nondel>endent

output froln the (tepen<lency gate reflects the status of the trigger event. This output is t)r<_vi<le(t

to enhance the drawing of large fault trees, and it can t)e use(t instea(t of the trigger input as an

input to some other gate to simplify the drawing of the tree.

The priority and gate is essentially an and gate with two inputs with the added restriction

that tile input events have to occur in order. If the two inputs are A an(t B (fig. 6), then the
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priority and gate fires if both the input events occur and event A occurs before event B. The

gate produces no output if event B occurs before event A.

The cold spare gate has one primary input (the primary functional unit) and one or more cold

spares. (See fig. 7.) All inputs to the cold spare gate must be (possibly replicated) basic events. 7

The gate fires when all input events have occurred, and the gate actually controls the failure

ordering of the alternate units. The active unit always fails stochastically while the alternate

7 A replicated basic event represents multiple failure events having identical failure distributions. Using this replication

notation significantly reduces HARP generated Markov models.
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units are precluded from failing until they become operational. When the primary input unit

fails, it is replaced by the first designated alternate unit. The alternate functional units (or

cold spare units) are not allowed to fail when they arc (tormant. _ However, this rule has one

exception. If a cold spare is fllnctionally dependent on another comt)oncnt (i.e., it is a dependent

event of a functional dependency gate), the cold spare may actually be unavailable (because ()f

tile occurrence of the trigger event) when needed. Hence, a cold spare gate does not prevent one

of its spares from being caused to fail t)y a functional dependency gate. Note also that a spare

component can be shared by two or more cold spare gates (i.e., pooled spares are possible).

The sequence-enforcing gate 9 is similar to the cold spare gate but has solne unique, important,

and subtle properties not present in the cold spare gate. The sequence-enforcing gate controls

the ordering of events in a manner similar to that of the cold spare gate. That is, the input

events are constrained to occur in the left-to-right order in which they appear under tim gate

(i.e., the leftmost event must occur before the event on its immediate right, which must occur

before the event on its immediate right is allowed to occur, etc.). There can be any nmnher of

inputs (see fig. 8), the first of which can be a (possibly replicated) basic event or the output of

some other gate. All inputs other than the first are limited to being (possibly replicated) basic

events. The sequence-enforcing gate differs from the cold spare gate in the way they treat shared

events. Although the specification of the gate is straight forward, its modeling implications are

not. The effect of failures associated with this gate carl be local (relative to the component.) or

global (relative to the entire Markov chain). In some cases, the sequence-enforcing gate can be

used to describe state-dependent FEHM's in a fault tree. (See section 4.7 for the concepts and

chapter 6 for an example.)

Ai+ 1 is only allowed

I tooccur after A i

SEQ

l I oeo

A I

A 2

A
n

Figure 8. Sequence enforcing gate.

Note the restrictions on the inputs of tile four dynamic gates previously described. All inputs

to the cold spare gate must be (possibly replicated) basic events. In the functional dependency

gate, the trigger input can either be a basic event or the output of some other gate, but tile

dependent events must be (possibly replicated) basic events. The priority and gate has no

restrictions on the two inputs. They can be basic events or the output of some other gate. Thus,

two or more priority and gates can be cascaded for more than two sequence dependent inputs.

In the sequence-enforcing gate, all inputs except the first must be (possibly replicated) basic

events. The first input can be a basic event or the output of some other gate. Like priority and

gates, sequence-enforcing gates can also be cascaded. Both gates are cascaded from the left.

Note that the gates cannot be cascaded from the right. (See fig. 9.)

The inv and xor gates were also inlplemented. The inclusion of these gates into a fault

tree produces a noncoherent model that can cause the inexperienced modeler to generate

8 This modeling assumption is often useful to arrive at a best case scenario to give an upper bound on reliability.

_ In earlier publications, this gate is also called a sequence _late. The word _._f_rcm.e] was added to emphasize its fnnction.
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unexpected results. For example, if the top gate in a fault tree is an inv gate, HARP reports

reliability probabilities (numerics) as unreliability probabilities in the output file. The values

are correctly computed, but the inv gate alters the meaning of the reporting labels. These two

additional gates give the user an extensive modeling capability; for example, researchers at Duke

University proved that the set of HARP gates establishes a mapping into the entire noncyclic

(nonrepairable) homogeneous Markov chain state space. (See ref. 36.)

Using HARP as a combinatorial fault tree solver without FEHM's is computationally

inefficient, although convenient for the user accustomed to HARP. When a fault tree contains

sequence dependencies, HARP provides a unique solution technique that can be difficult or

computationally expensive to achieve otherwise. By using the new state truncation option

(section 2.8), these applications become considerably more practical. Fault tree input is

particularly useful for large fault occurrence models especially if fault/error handling is included.

Because HARP converts a fault tree representation into a Markov chain, the user can always

alter the generated Markov chain to include behavior not captured by the fault tree. State

n-tuple notation is provided as an option to aid the user in identifying the Markov chain states.

Mission time is assumed by HARP to have the units of hours even though most fault/error

handling models use a time scale of seconds. The user must therefore express the FEHM time

units as specified by HARP. Chapter 3 provides more detailed information on how to input the

two FORM types into HARP.

2.6. Single Fault/Error Handling Model (FEHM)

The general form of the single FEHM is shown in figure 10. The detailed fault recovery

models capture in a few parameters the sequence of events that occur within the system once

a fault occurs. (See figs. 11 to 13.) A fault can be permanent (always present and capable

of producing errors, e.g., a broken connection), transient (present for only a short time, e.g.,

a glitch in the power line), or intermittent (always present but not always active, e.g., a loose

connection).

All FEHM's defined later in this section except the CARE III FEHM (section 2.6.7) use time

units of seconds to emphasize that these events are fast events. The CARE III FEHM uses time

units of hours to be consistent with the program CARE III.

The FEHM is a connected group of fast states that is replaced by a branch point automatically

in HARP. Its general structure is a single-entry, (up to) four-exit model, that is entered when a
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fault occurs. The exits represent possible outcomes of the attempted system recovery. Transient

restoration R is the event of correct recognition of and recovery from a transient fault before a

second interfering fault occurs. Permanent coverage C is the event of successfully reconfiguring

the system to eliminate a permanent, intermittent, or transient fault (mistaken as permanent),

before a second fault occurs. Single-point failure S represents tile event of a single fault causing

the system to fail without the iuterfe.rence of a second fault. The near-coincident (ref. 37) fault

exit N is taken when a second dependent fa.ult m occurs before another exit is reached. The

FEHM models are described as three exit nlodels by the user (the R, C, and S exits). The

near-coincident failure exit is automatically added by the HARP program.

Many choices are available h_r the specification of the FEHM model, ranging from constant

exit probabilities (VALUES FEHM) to a detailed ESPN (ref. 38) model. Some FEHXI's are

offered t.o simpliily tile modeling and data specification process as much as possible. The

simple models such as the vahles probabilities an.,t moments, probability and distributions, and

probabilities and empirical data are provided h)r users who want to perform sensitivity analyses,

perhaps early in the design stage when reliable data are unavailable. The same models can be

used later in the design process when hardware exists and data caIl be metmured or estimated

as probabilities and recovery time distributions. The more complex FEHM models (ARIES,

CARE III, and ESPN) are superset models of the simpler ones and are useful for studying the

details of fault handling and predicting the effects of various fault recovery behavior on system

reliability/availability.

Parameters of a FEHM are user-specified and thus allow flexibility even while the same FEHM

type is used. The tutorial gives examples of the use of these models and their typica.l values

(vol. 2 of this TP). The user can choose a different FEHM type for each different comt)oncnt

in the system. Selecting a different FEHM type (or diiferent parameters for the same FEtIM

type) for a specific component type in the model is possible with the overriding FEHM option.

(See section 4.7.) The chosen FEHM model is solved in isolation, and the probabilities for each

of the four exits are derived. These probabilities are reflected in the FORM model that is lhen

solved for the reliability/availability of the system. Some options for tile fault/error handling

model are shown in figures 11 to 13, and all are described in tile following sections.

10 Both flmlts are stocl_stically iudependent, but tim se('olM faull (called an interfering fault) wa_s previously sim('itivd hy

the modeler to interact with lhe first to cause system failure.
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2.6.1. No Coverage Model

The NONEoptionspecifiesno coveragemodel. This option is chosenif the userwantsto
assumeperfectfault coverage for a particular component type.

2.6.2. Values Model

For a particular component type, the user may want to allow for imperfect fault coverage but

not use a detailed coverage model. In this case, tile user can input the coverage values for R, C,

and S exits directly. No near-coincident faults are considered for those transitions having values

the same as the coverage model type.

2.6.3. Probabilities and Moments Model

The probabilities and moments model allows the user to enter the probability that each of

the three exits (R, C, and S) are reached. These three exits represent mutually exclusive events;

thus, their probabilities sum to one. For each nonzero exit probability, the user is asked for

the first three moments of the time (in seconds) required to reach the particular exit (given

that the exit is reached). The probability of reaching the fourth (near-coincident fault) exit

is derived from the given moments and the rate of occurrence of dependent near-coincident

faults. (See section 2.7.) When this option is used, the FEHM can be visualized to be a single

semi-Markovian (fast) state that is reduced to a branch point by HARP aggregation methods.

2.6.4. Probabilities and Distributions Model

Under this option, the user specifies an exit probability for the transient restoration,

permanent coverage, and single-point failure exits. For each nonzero exit probability, a

distribution of time to exit is specified as one of the following: constant, uniform, exponential,

hypoexponential, hyperexponential, gamma, and Weibull. These probabilities and distributions

are to be given without regard to the occurrence of a second, near-coincident fault, with a time

unit of seconds. The coverage factors (reflecting the effects of near-coincident faults) are then

automatically derived from this data. As for the previous option, the FEHM can be visualized

as a single semi-Markovian (fast) state that is reduced to a branch point by, HARP aggregation
methods.

2.6.5. Probabilities and Empirical Data Model

The probabilities and empirical data model is similar to the previous two in that the exit

probabilities are given for the three exits of the model. For each nonzero exit probability, the

user provides a histogram listing of the time to exit, again without regard to the occurrence

of a near-coincident fault. For each x, y pair listed in the histogram file, the x-value refers to

the time step in seconds, and the y-value to the probability of reaching the exit during the

associated time interval. The probabilities are specified as a probability mass function (not

a cumulative distribution) and hence must sum to one. The coverage factors (reflecting the

effects of near-coincident faults) are then automatically derived from the data and are used in

subsequent calculations. As for the last two options, the FEHM can be visualized as a single

semi-Markovian (fast) state that is reduced by HARP aggregation methods to a branch point.

2.6.6. ARIES Transient Fault Recovery Model

The ARIES transient fault recovery model (ref. 39) represents a multiphase recovery process

that executes NP successive recovery phases. (See fig. 11.) Transition to the next phase takes
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placeif the pres,mt phase is not effective: the duration of each pha,_e is constant. The recovery

process terminates and normal processing begins if successful recovery is achieved in the presen!

phase. If lralLsi(_lll, recovery is tmsu('c(,ssful after all NP phases, th('It a t)(Wlllllllt"llI I'(K'ovcr_ _

t)rocess is initiated.

Fault

Occurs

{ I -CR) PR I Phase

I,I:Nt N P

PR i
PI++'NP+ I

Figlm' II. AI{IES l'+lult rcc()v<'ry uto+hq.

l:or l.hc ARIES ntodcl, th<' us<,r is asked for lh(' mmlb(w of phases (<11) and the constant

dutatioti and effectiveness ()f each phase. The cfl'ectiveness of phase i is described by the

prolmbilit.y of sttccessfttl t.l+ansi0nt recovery PIP, and the probability of the need for the next

phase of transient recovery ,DE i. The prolmbility of system crash from phase i is then given

by Pt+). where l>I+_ = PE i -- PIPi - t)E/+ I. The lime unil fin" this model is seconds. These

t)arameters are coml)incd t<)gethcr with the transient fault duration to deternfine whether tit(,

Ltrattsitiott to the next phase takes place, that is, to detet'tnittc whether the present phase has 1)een

successful. One other t)araln(,tor is (,nt('red tile c;-ttaslrot)}lic fault recovery t)roba.bility 1 - (71_.

This l)rolmbility is assigned 1,o a criti('al faull that caus('s the cnlirc system to fail 1)(,cruise the

systenl was mml)h' to recover from it. The tutorial (vol. 2 of this TP) provides a dct,aih'd

cxplanat+ion.

2.6.7. CARE III Coverage Model

Another option for the FEItM is a Markov versi,)n of the CARE III single fault model (ref. 40),

shown in figure 12. The CARE III c()verage mode| can t)e used to model l)ermanent, transient,
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and intermittent faults. In the aetivcstate,a fault is bothdetectable(at rate 6) and catm|fie of

producing an error (at rate p). Once all error is produced, if it. is not detected, it propagates to

the output (at rate ,) and causes system failure. If the fault (error) is detected (pi'obability q),

the faulty element is removed from service with i)robability PA or PB. With the complementary

probabilities, the element is returned to service following the detection of the fault. (This

action is based on tile belief that tile detected fault was transient.) Note that both states A D

(active detected) and B D (benign detected) are instantaneous states. The model is internally

solved analytically for the probability of reaching each exit and for the Laplace transform of

the distribution of the time to each exit. Subsequently, tile effect of a near-coincident fault is

incorporated by means of equations (2), (3a) and (3b) in reference 41.

PA

R FAIL S C

Figure 12. CARE III ('overage mt_tlel.

The user is asked for tile probabilities for each of tile three faull types (perlnanent, transient,

and intermittent) and is asked to parameterize an instance of tile CARE III model fi)r each type

that is a,ssigned a nonzero probability. For the permanent model, _:_, 8, and P13 are zero, and

for tile transient model, _t is positive and /_ is zero. B('(:ausc q, PA, an(t PB arc probabilities,

they lie between 0 and 1; because e, 6, and p are rates, they are nonnegative. CARE III is tile

only FEItM me(tel for which the time unit is hours. The three models are solved individually

and are combine(t according to the assigned probabiliti(_s h)r each fault type.

2.6.8. ESPN Model

The HARP ESPN model is discussed in references 38 and 41 to 43 and shown in figure 13.

It models three aspects of a fault recovery process: physical fault behavior, transient recovery,

and recovery from a permanent fault. The fault behavior model captures the physical status

of the fault, such as whether the fault is active or t)enign (if permanent or intermittent) and

whether the fault still exists (if transient). Once the fault is detected, it is temporarily assumed
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to be transient, and an appropriate recovery procedure can commence. The transient recovery

procedure can be attempted more than once. If the detection-recovery cycle is repeated too

many times, a permanent recovery procedure (reconfiguration) is invoked. If the reconfiguration

is successflfl, the system is again operating correctly, although in a somewhat degraded mode.

S _

Fault

TI

P

Permanent [ntermittent

T6

Error

T9

Point

Exists

TIO
N

T5

TII

Counter

k

Locate

Figure 13. HARP ESPN single fault model.

The user inputs to this model are the distribution of time (T1 T14) for each activity and any

_tssociated parameters for the distribution, with a time unit of seconds. (The distritmtions need

not be exponential.) Also requested are the probabilities of correct error detection (q), fault
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detection (d), fault isolation (l), and reconfiguration (r). The user must specify tile number of

attempts at transient recovery, the percentage of faults that are transient, the percentage of faults

that are permanent, and since this model is simulated for solution, tile desired confidence level

and acceptable percent error. The confidence level can be between 60 percent and 98 percent,

and the acceptable percent error can be between 1 and 100. (A moderate error requirement in

the range of 2 to 5 percent is suggested.) 11 The distributions available for individual transitions

in the ESPN model are constant, n-stage Erlang, exponential, log-normal, normal, Rayleigh,

uniform, and Weibull. For more information oil these distributions, see Trivedi (ref. 44).

The ESPN is the only FEHM simulated for solution. During tile simulation, a statistical

analysis of the simulation data is performed. The confidence intervals about the exit probabilities

are generated and compared with the allowable error. If the confidence interval is too wide, the

number of trials is doubled. When the simulation has reached the desired accuracy, the results

are appended to the parameter file. If the user does not change the inputs to the ESPN model in

this file, then the file can be used over again with the same simulation results, thereby avoiding

the simulation run each time. However, if the user has manually changed the inputs with a

text editor, the previous simulation results nmst be discarded; that is, the lower portion of tile

parameter file must be deleted. Rerun harpeng. (See vol. 2 of this TP.)

The simulation of the model uses a random seed value that is derived from the system time.

This method helps to assure a random simulation. However, it also implies that the simulation

runs are not exactly reproducible. Subsequent simulations cannot match earlier runs exactly,

but multiple runs should agree to within the accuracy and confidence requested. For the Convex

computing platform, the user must uneomment the line SEED = 0 and make other changes in

the harps±m source file and reeompile the code.

For this model, the coverage factor for transient restoration, is tile probability of a token

reaching the place labeled Transient Recovery. (See fig. 13.) Coverage is the probability of a

token reaching the place labeled Permanent Recovery and single-point failure is the probability

of a token reaching the place labeled Single-Point Failure. Tile fourth factor, corresponding to

the N exit and representing a near-coincident fault, is derived h'om the relative pa_ssage time to

the three exits, and is discussed in section 3.2.1. For a more detailed description of tile ESPN

model, refer to the tutorial (vol. 2 of this TP).

2.7. Multifault FEHM Near-Coincident Fault Rate Specification

HARP provides a number of detailed single-fault models. However, for modeling coexisting

synergistic multiple faults, HARP only provides three simple computationally fast autonmtically

generated multifault models for use with behavioral decomposition. The detailed mod:,Ung of

multiple faults can be colnputationally expensive and tedious to specify because the modeling

requires the user to input data that are typically unavailable.

The advantage of using the simple multifault HAt/P models is a significant reduction in model

and user input data complexity, because the models are computationally fast and automatically

generated. The disadvantage is a reduction in accuracy, which experience has demonstrated is

typically acceptable (refs. 23 to 26, 41, and 45). _2 The increased deviation resulting from the use

of the simple multifault models is always positioned to produce a conservative result as long as

the significant system failure modes are properly modeled. The amount of deviation and hence

degree of conservatism depends on the system. A measure of the degree of conservatism can

often be determined from HARP's optimistic simple bound.

11 See warning C155 in appendix B.

12 Different reliability programs or ordinary differential equation solxx_rs were used to compare tim reliability of these

systems.
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The optimisticsimpleboundis alwayscorrectfor the instantaneousjump model;however,
whentheoptimisticsimpleboundis correctwith respectto theoriginalmodel,whichoccursin
mostcases,the optimisticsimpleboundcanbeusedasanerror bound. (Seesection3.4for a
discussionof upperandlowerbounds.)

Thenear-coincidentfault rate(therateat whichcatastrophicfaultsoccurfor eachfault/error
handlingmodel)isdeterminedfromthesystemstructuralmodelautomaticallybyprogramfiface.

Tile HARP aggregation technique automatically produces a conservative estimate of system

reliability/availability provided that the correct multifault model is used and no increa_sing

transition rates appear with increasing system component failures in the user's model. Such

system models can be effectively modeled with HARP's behavioral deconlposition but not

automatically. In such cases, the user needs to modify the appropriate ASCII file for near-

coincidence faults. Tile file is one of the following: MODELNAME.ALL, MODELNAME.SAM,
or MODELNAME.USR.

A second option is for the user to use the AS IS Markov chain model to create new complex

multifault models, but the cost of the increased computation and user effort can become

prohibitive for all but simple system models. This method avoids tile use of instantaneous

coverage approximations and produces greater accuracy at greater execution times. Recovery

behavior can appear to require a Markovian submodel; however, non-Markovian recover3; can

"be approximated with the method of stages (refs. 44, 46_ and 47). Another option is to use

XHARP, which automatically generates the model from a user-specified full model.

HARP offers three multifault models: ALL-inclusive, SAME-type, and USER-defined. Tile

application for the ALL-inclusive (ALL) model is the easiest to describe and is comparable with

tile SAME-type (SAME) in ease of use. When the ALL model is selected, the near-coincident

fault rate is based on all pairs of system faults. If the system is composed of a number of

different components, each with a unique failure rate, the ALL model will probably overestimate

the near-coincident fault probability. The degree of over estimation depends on the system

architecture and can be minor or significant. (See section 1.2 and chapter 7.) A rough estimate

of the degree of conservatism can be determined by using the SAME or possibly the USER-

defined (USER) models. These later models typically give an optimistic result when the system

components have different failure rates, but the result is not guaranteed to be optimistic. When

the system is composed of components with the same failure rates, the SAME model computes

a near-coincident fault rate comprised of all pairs of system components with the same failure

rate. _ Thus, HARP produces a guaranteed conservative result. With the USER model, the

user specifies specific pairs of synergistic system faults that constitute a near-coincident fault

condition. The con,servativeness of the USER model depends on the system architecture.

2.7.1. ALL-Inclusive Near-Coincident Fault Rate

Using the ALL model produces a conservative result if typical failure rate and recovery rate

data are used, that is, no increasing transition rates with increasing system component failures.

If these rates are used, editing the ASCII file MODELNAME.ALL is necessary to arrive at an

accurate result. Because all pairs of failures are considered near-coincident by this model, the

degree of conservatism can be large for certain systems. (See chapter 7.) Often, the optimistic

simple bound can be used to quantize tile conservative deviation. (See section 3.4.) Also, if the

user is in doubt as to which nmltifault model to use, the ALL model provides a quick conservative

result that can provide a baseline for comparison of further refined models. HARP automatically

generates the required multi fault models as follows.

1.3 When all system components have the same failure rate, the ALL and SAME models are identical in effect.
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Conservatively,weassumethat a secondnear-coincidentfault anywhere in the system (while

attempting to handle the first fault) causes immediate system failure. This multifault model is

simple to specify. The procedure for determining the near-coincident fault rate is described as
follows.

Let the exit rates of source state i be y_. kr_r and of destination state j be _ _rAr. Then, a

FEHM placed on an arc with rate kIA1 has a near-coincident fault rate (NCFR) given by tim

following:

NCFR=[Emax(kr'gr)Ar]+max(kI-l'_l)AILr¢l

Figure 14 offers some insight for the interpretation of the equation for NCFR for each

multifault model in this section. The NCFR expressions are determined automatically in

program fiface. If a rate parameter cannot be parsed because it contains unknown variables

or added constants, fiface uses a look-ahead method to calculate all rates. This computation is

provided in lieu of program termination to help the user resolve the problem. For the previous

state declarations, the all-inclusive near-coincident fault rate (based on the look-ahead method)

is simply the sum of the outgoing ares of the destination state:

NCFR = E _r/_r

When only the sum of the outgoing arcs is considered, a warning is issued stating that

the results may not be conservative. The ALL-inclusive model is particularly useful for

approximating a multifault model where nonfailure transitions emanate from a recovery FEHM.

An example of this application can be found in chapter 7.

,._ NCFR

Figure 14. NCFR computation.

2.7.2. SAME-Type Near-Coincident Fault Rate

We can assume that only near-coincident faults of the same component type cause system

failure (while attempting to handle a single fault). This multifault model is useful when a system

is composed of subsystems where the components in one subsystem have identical failure rates

but differ from components in another subsystem. This subsystem also has identical failure

rates, and all of its components are synergistically coupled as near-coincident faults within
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the subsystembut not acrossothersubsystems.HARP automaticallygeneratestile required
multifault models as follows.

Again, let tile exit. rates of source state i be _ k,.Ar and Ill(, exit rales of destination state j

be _ (rAt. For a FEHM placed on an arc with rate klA I, we }lave, a near-coincident fault rate

given by the following:

NCFR = max (kl - 1, gl)Al

Tile near-coincident fault rat.e expressions are determined automatically in program fl_facc. If

a rate parameter cannot be parsed because it contains unknown variables or added ('e)llSl3.tllS,

fiface uses a look-ahead method t.o calculate all rates. For these state declarations, the same-type

near-coincident fault rate (based on the look-ahead method) is the Sllln of {tie same-type rates

emanating from the destination state:

NCFR = E glA/

When only the sum of the outgoing arcs is considered, a warning is issued stating that the

results may not be conservative. Unlike the ALL model, the SAME model can automatically

drop failure modes for certain system models. The user is cautioned to insure that no important

failure modes are dropped; otherwise, a nonconservative result can be given. (See ehapler 7.)

2.7.3. USER-Defined Near-Coincident Fault Rate

For some models, tile user may want to define explicitly, for each component, which other

components can interfere with fault recovery, in this case, the user-defined near-coincident fault

rate for the FEHM 1)etween operational states (tepen(ts on the user inpul. K)r example. SUl)l)ose

we have a system consisting of three processors. P 1, P2, and P3 (all distinct with unique failure

rates), a voter V, and a bus B. Suppose further that the l)rocessors are connecled (from the

monitoring point of view) in a ring network so that processor 1)1 detects errors and performs

recovery for processor P2, processor P2 likewise monilors t)3, and 1)3 monitors P1. Thus,

a failure in processor P1 can interfere with recovery in processor 1)2. Similarly. a failure on

processor P2 can interfere wit.h recovery in P3. 13eeause the l)rocess()rs are eonne'('ted by |he"

data bus, a bus failure can interfere with recovery on any of the l)roc(*ssors: Ill(' bus does nol rely

on any other component for recovery. The voter is self-checking; no faults interfere with re('ov('ry

from voter faults. This behavior cannot be captured 1)y the all-inclusive ()r lhe same-tyt)e faull

rates. It is capture(t by declaring that recovery in P1 det)ends on P3 an(l the bus. re('overy

in P2 (h_pends on P1 anet the bus, and recovery in t)3 del)enels on P2 and 1.he bus. ttAliI )

automatically generates the required nmltifault model as follows.

Let the exit rates of source state i t)e _ k,.Ar and of destination state .) be _ 6,A,,. Also

let O 1 be the set of interfering component types for component type I. Then, a FEHM 1)laced

on an arc with rate klA I has a near-coincident fault: rate given I)y lhe following:

NCFR, = [ r¢I,rEDIE max(kr"_")Ar] + IIlax(l_:l- l'gI)AlI* (I E DI)

where I* is the indicator function that takes on value 1 if the subscript expression is true and 0
otherwise.

The near-coincide.nt fault rate expressions are determined automatically in program fiflu:e. If a

rate parameter cannot be parsed because it contains unknown variables or added constants, fl'face

29



usesa look-aheadmethodto calculateall rates. For thesestatedeclarations,the user-defined
near-coincidentfault rate (basedon the look-aheadmethod)is givenby the following:

NCFR= E _rAr
rCD I

When only the sum of the outgoing arcs is considered in determining near-coincident fault

rates, a warning is issued stating that the results may not be conservative. Like the SAME

multifault model, the incorrect use of the USER model could produce a nonconservative result

when important failure modes are dropped. (See section 3.3.2.)

2.7.4. Exact Specification of Near-Coincident Fault Rates

The ALL, SAME, and USER multifault models are provided to automatically generate the

near-coincident fault rates. This automatic capability is extremely useful for all but trivial

models; however, this convenience has a trade-off. The automatic multifault model is not.

capable of generating exact near-coincident for all possible Markov chains. In some cases, an

approximating model such as the ALL model must be chosen to insure a conservative result.

The user has an alternative approach if exact rates are desired and cannot be achieved with

tile automatic model. The user can derive these rates manually and enter them for HARP

computation by editing the MODELNAME.ALL, MODELNAME.SAM, or MODELNAME.USR

files. (See section 4.2.) These ASCII files are readable and easily modified.

Section 4.2.7 shows the format for the near-coincident fault rates. The expressions for the

rates depend on the Markov chain of interest. Section 3.2.1 gives some insight into how the

near-coincident fault rates are related to the coverage, Ci, parameters.

2.7.5. Multiple-Run Near-Coincident or No Near-Coincident Faults

In fiface or harpeng, the user can ignore any near-coincident faults. By specifying no near-

coincident faults in fiface, the system model is much smaller. This selection may be necessary

for extremely large models. (PC HARP 16-bit version does not allow the specification of near-

coincident fmflt rates because of DOS's 640K memory limitation. Other versions do not have

this restriction.) Otherwise, if tile user wants to exercise several different near-coincident fault

type options, none can be specified during the execution of harpen 9.

Thus, whether the user chooses tile Markov chain or fault tree option for specifying the system

structure, the near-coincident fault rates for each instance of a fault/error handling model are

generated automatically. During execution of fiface, the user is asked whether the all-inclusive,

same-type, user-defined or no near-coincident fault rate should be used and what combinations

of these, if any, are to be used in successive harpeng runs, for example, ALL, SAME, USER. In

this way, all options can be exercised during different harpeng execution runs. A discussion of

the various near-coincident fault rate options can be found in volume 2 of this technical paper.

As previously mentioned, an alternative is to model the systems with the AS IS Markov

solution technique. This choice produces greater accuracy at greater execution times. Recovery

behavior can appear to require a Markovian submodel; however, non-Markovian recovery can

be approximated with the method of stages (refs. 44, 46, and 47).

2.8. Truncation of Model Entered as Fault Tree

Frequently, even for a simple model, a large number of states and transitions are produced

upon conversion from a fault tree to a Markov model. This largeness problem is encountered
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despitethe useof behavioraldecomposition.To solvea largemodel,HARP allowsthe user
to truncatethe modelafter a total of K component faults (basic event failures) have occurred

and HARP then computes bounds for the model results (ref. 32). These bounds encompass

the untruncated unreliability/unavailability of the system. Because most systems are designed

to tolerate at most three faults and because the probability of having more than three faults

occurring during certain missions is extremely small, a truncation level of three often produces

values for the bounds that agree up to the third and fourth decimal places. The higher the

truncation level, the tighter the bounds and the greater the computational time. Typically, the

truncation level is selected to be equal to or one greater than tile number of faults the system

was designed to tolerate. A truncation level can be specified when the fault tree FORM is

used. A truncation setting of K = 3 often allows solution of a system with up to _71 equivalent

states (a fault tree with 71 basic events). The execution time for such a truncated model can be

surprisingly low while providing acceptable accuracy (ref. 48).

We integrate the use of fault trees and state truncation in the generation of a Markov model

in the following way. Because a fault tree is often a more compact representation of the system

than a Markov model, the user is given the option of entering the system as a fault tree. The fault

tree is then converted to a Markov model automatically. In the conversion process, all states

of the Markov model reachable by each nmnber of component faults are generated together (all

states reachable by one fault, then all states reachable by two faults, etc.) (rcf. 49). The user can

specify a number of total component faults beyond which the Markov model is to be truncated.

The state generation process then proceeds in a normal fashion only as far a.s the number of

faults specified by the user. Once this number of faults is reached (the truncation line) the state

generation process changes. All transitions from the states at the user-specified truncation level

that would lead to "up" states in the filll-Markov model are directed to special dummy states

in the truncated model. Each dummy state represents an aggregation of all states in the fifll

model that would be reachable along the transition leading to that dummy state. These dummy

states are consequently called truncation aggregation (TA) states. Transitions that would lead
to faihlre states in the filll model lead to failure states in the truncated model a_s well.

In general, the states represented by a TA state can include both system operational states

and system failure states. An optimistic (upper) bound on the system reliability can be obtained

by assuming that all states represented by the TA states are up states. Similarly, a pessimistic

(lower) bound on the system unreliability can be obtained by a_ssuming that each TA state is

forced to be a system failure state (TArt).

As the truncation level increases, more states appear explicitly in the Markov model instead

of being represented in the TA states. Thus, as the truncation level increases, states that were

forced to be failure states are now treated as operational states, which they really are in the

full model. Hence, a model with a greater truncation level would more accurately, represent the

full model than would a model with a smaller truncation level. We would therefore expect the

truncation bounds of the model to become tighter as the truncation level increases. In the limit,

as the truncation level increases, the truncated model becomes identical to the full model and

the bounds from the truncated model converge to the exact reliability value obtained from the
full model.

2.9. FORM Model Parameters

Once the FORM and FEHM submodels and the near-coincident fault rates (if any) have been

specified and the model is ready to be solved, the user needs to specify the parameters used in
the model.

Because the user may not know the exact values of the input parameters, HARP accepts as

input a nominal value and a variation on all input parameters. The nominal value is used for the

31



unreliability prediction, and tile variation about the nonlinal value is used in an approximate

model to generate bounds about the predicted unreliability. The various FORM parameter types

that can be specified are described in tile following sections: Non-Markovian models that involve
Weibull distributions and warm or cold spares are best solved with MCI-HARP (refs. 18 and 19).

2.9.1. Failure Rate Specification

When the FORM model is being built, a symbolic failure rate variable (i.e., lambda or mu)

is used for each component type. At run time, this symbol is defined as either a constant
failure rate or a Weibull failure rate. Constant failure rate refers to tile rate associated with

tile exponential time to failure distribntion. Weibull failure rate refers to the rate associated
with the Weibull failure distribution. Tile Weibull failure rate has two common forms; both are
available in HARP. These two forms arc defined as follows:

h(t) = )_t a-1

h(t) = A(_at _-1 = AaAt a-1

The first form is as defined in reference 44 and tile second is as used in the CARE III

package (ref. 40). When a Weibull failure rate is used to model the failure of a component,
the resulting solution is very slow because the time-dependent transition rate matrix must be

reevaluated at each time step. (MCI-HARP can accelerate the solution significantly for large

systems.) Also, the bounds computations (using the simple model and parameter variations)
are not available when a Weibull failure rate is used. However, the user can still truncate the

model (see section 1.4) and generate truncation bounds that enclose tile unreliability. If the user
tries to model systems with cold or warm spares (i.e., those whose failure rates change when

switched into operation) or mixed Weibull and constant failure rates, HARP issues a warning

that the user is violating the inherent Markovian modeling conditions (ref. 7). _4 Execution of

the code proceeds to completion; however, the warning is listed in the results file as well as on

the screen. (See chapter 7 for details and appendix D for warning messages.)

2.9.2. Repair Rate Specification

When the system being modeled is repairable, the user needs to specify the value of the repair

rate at runtime. The evaluation of parametric bounds is not allowed for repairable systems unless

an absorbing state exists. If any failure rate specified for a repairable system is Weibull and a
constant failure rate is also specified, meaningless results can be produced. (See chapter 7.) A

warning is issued in this case.

The user is. reminded that a nonhomogeneous Markov chain has one time variable that is

the global clock and is initiated at mission time zero to be zero. Repairable units with Weibull

are subject to the same clock; thus, Weibull failure rates are not reset to time zero when repair
is completed. If the user wants to reset the clock to time zero or some other time, then a

more powerful model solver is required as the resulting model is non-Markovian. MCI-HARP is

designed to cover such models.

2.9.3. User-Specified Coverage Parameters

If no FEHM's are used in the system being modeled, the user can specify coverage parameters

during runtime. These parameters can be the coverage factor C, the transient restoration
factor R, and the single-point failure factor S.

14 A cold _,Veibul_ spare is precluded from failing even though the component failure history is reset to mission time zero.

This feature can be useflll as an optimistic estimate.
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Chapter 3

Model Solution

3.1. Conversion of Fault Tree to Markov Chain

If tile FORM is a fault tree, it is internally converted to a Marker chain for solution after

it has been input to HARP. Figure 15 is art example of a fault tree for a system with three

processors and two memory units. When using textual HARP, tile user normally labels a fault

tree with unique node labels. The node labels are assigned to basic events, gates, and the FBOX

symbol, which represents the system failure events. The order of specifying tile node values is

not important, but uniqueness is. The GO program automatically assigns the node values.

Dictionary File

Symbolic
Component Logical Failure FEHM

Type Name Rate File Name

1 Processor Lambda Fehm.car

2 Memory Mu None

Node 3

FBOX ]Node6

Node 5

Nod 1

( "_Node

Node 2

Figure 15. Three-processor tw()-memory system dictionary file anti faull tree.

While inputting the model, the user is requested to crcale a dieli(mary file thai is _ssoeialcd

with the fault tree model. The COllteltts of the dictionary file are shown in tigure 15 and are

associated with the fimlt tree in Ihe same figure. In this example, the user cnlered lhe informa|ion

iL) (.he last two rows of the file, with the exception of indices 1 and 2. The program assigns

(.hese indices to the component logical names (symbols $ arm & are n()t allow('d) i:' in lit(' user

inlm(s. Tit<, indices arc used (.o simplify the uotalion ()f identifying tlm component types in

the fault tree basic evenls. In figure 15, t.hese are shown in the fault tree as the mimbers )o

the right of the * symllols. For node I, the 3"I means thai there are three identical type one

eotnI)onents (l)r¢)eessors) with the satne faihtre rate symllol Latnl)da and FEHM descrihed t)y

the file, Fehm.ear. When basic events are identical replications of a conll)<menl type, |.he 3"1

notaton signals the program to simplify the Marker model 1)y st)eeifying one failure rate syml)ol

instead of three separale ones. In figure 16, (he etRwt of tilt, 3"1 notation is to assign the failure

rate a*A to the transition fl'om (3,2) to (2,2). The user must differentiate colnt)ouenl type indie(,s

from node indices. Any eonlt)onent tyi)e index can be assigned to any node, uniqueness is not

reqttired; however, uniqueness is reqtfired for the node indices.

The fault tree in figure 15 is eonverted by HARP into the Marker chain shown ill figure 16. All

combinations of basic events that leave the system operalional are enumerated; each combination

becomes a state in the Markov chain. Note that the ha.sic event * notation has reduced the

t5 Avoid special characters because they often interfer(_ with the ol)erating sysl, e/ll,
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.,,_, _,_, _'z//,_ )

Figure 16. Three-processor two-nwmory system Markov chain.

number of state combinations. The user does not have to delineate all possible ¢'ombimttions,

only those that are required. In this model, 32 Colnbinations are possible, but only 8 are required.

Exhaustion of redundancy failure states are also generated.

Also note that only a nonrepairable system can be specified t)y lneans of a fimlt tree. (Fault

tree models with repair have not yet been developed.) To too<tel systems with repair for

availability prediction, the user must either input the model directly as a Markov chain or

specify a Nult tree model and then subsequently modit_v the Markov chain MODELNAME.INT

file to include the repair transitions with a text. editor. For details of the algorithm used for

conversion, see chapter 6 and reference 49.

3.2. Modeling Imperfect Coverage

The possibility of imperfect fault coverage is automatically incorporated into the FORM

model Markov chain as follows. Through the (tictionary, each component type in the system Call

have associated with it a fault/error handling model that describes the recovery behavior of that

particular component. The three-processor two-memory system shown as a Markov chain in

figure 16 is used to demonstrate the i(lea of imperfect coverage. (?omponents of type 1 represent

the processors, one of which must be operational for the systenl to remain up. Likewise, one

()f COlIlpOllent type 2 (the inClllOries) is llecessary for operation. Processors fidl with rate A

and memories with rate p. For our example, the states are labeh,d with a pair of mmfl)ers

the first signifying the number of operational processors and the second satisfying the number

of operati(mal memory components. Once the number of processors is exhauste(t, state F1 is

entere(l. Once the number of memory components is exhausted, state F2 is entered. If the user

has specified coverage, the HARP program automatically places a FEHM on the appropriate

arcs, as shown in figure 17. HARP proml)ts the user for dictionary information to define the

FEttM model to be used for a proce.ssor failure this model is used fi>r FEtIM numbers 1, 2,

6, and 7. The FEHM model for memory failures is used in FEHM mmfl)ers 3, 4, and 5. Thus,

the contents of box 1, 2, 6, and 7 are identical but may differ from the contents of box 3, ,i,

and 5, which are also identical to each other). (However, the user may override a FEHM on a

specific arc; see section 4.6.2 and chapter 7.) The difference in the FEHM's (i.e., why they are

nmnbered 1 to 7 rather than just 1 and 2) is in the near-coincident fault rate used to calculate
the N's.
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3.2.1. Automatic Incorporation of Coverage Models

The FEHM models are solved in isolation for the exit. probabilities for the three exits

(R, C, and S) and for some measure of time to exit. The probabilities are then adjusted

according to tim probability of an interfering (near-coincident) fault to produce (state-dependent)

coverage probabilities, which are then used to modify the transition rates in the Markov chain.

Additionally, two failure states are added to the model, one to represent single-point failures
and one to represent near-coincident faults. (See fig. 17.)

R

I{_ 2l*_ N _[_S II I ,

tl

2p N S H] _ ,

Figure 17. Automatic insertion of FEtfM's.

More specifically, assume that a fault of component type 1 in state (i,j) leads to state
(i- l, j) in the perfect coverage Markov chain. In the imperfect coverage Markov chain, this

transition to state (i - 1, j) is completed with probability C(i,j),(i_l,j) , and a transition to the

single-point failure state occurs with probability S(i,j),(i_l,j). A transition back to state (i, j)

occurs with probability r(i,j),(i_l,j) , and a transition to the near-coincident failure state occurs
with the following probability:

N(i,j),(i_l,j) = 1 - C(i,j),(i_l,j) - R(i,j),(i_l,j) - S(i,j),(i_l,j)

This probability of imperfect coverage is then incorporated into the Markov chain by first

reducing the rate of flow from state (i,j) to state (i - 1,j) by multiplying the original rate 7

from state (i,j) into the FEHM of component type 1 })y C(i,j),(i_l,jl and 1)y then adding arcs

from state (i, j) t() the failure states. These additional arcs represent a flow of _S(i,j),(i_ l,j) to

the single-point faihu'e state and a flow of 7N(i,j),(i_ 1,j) to the near-coincident fault failure state.
These computations arc performed for all arcs between operational states. For example, when

(i,j) = (3,2) then 7 is 37. (See fig. 17.)
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Thesecoveragefailurestatescanbedifferentiatedfromthe exhaustionof componentsfailure
state,if theuserdesiresacomparisonof therespectivefailureprobabilities.Figure18showsthe
imperfectcoveragerepresentationof thethree-processor,two-memorysystemof figure15,where
FSPF representsthe single-pointfailurestate,andFNCF representsthe failureof the system
causedby a near-coincidentfault. In this figure,the coveragefactorshavesinglesubscriptsfor
easeof notation. The Markovchainof figure 18is an approximation(seesection2.1) to the
stochasticprocessrepresentedby figure17.

All Si transitions

Figure 18. Imperfect coverage representation of three-processor, two-memory system.

The state diagram of figure 17 is automatically reduced by HARP to that of figure 18; HARP

solves this Markov chain for state probabilities. The FEHM information is captured in tile C, R,

S, and N parameters and is passed to the engine for solution. Note that the stochastic process
represented by figure 18 (fig. 17) is generally rather large and generally non-Markovian. For

instance if all FEHM types chosen are semi-Markovian, then the stochastic process of figure 17

is either semi-Markov (if all failure rates are constant) or nonsemi-Markov (if one or more of the
failure rates is chosen to be Weibull). Similarly, if a simulated FEHM is chosen, the stochastic

process of figure 17 will be more general than a semi-Markov process. Even when a Markovian

FEHM is chosen, the process represented by figure 18 (fig. 17) is generally a very stiff Markov

model. The instantaneous coverage approximation in HARP (fig. 18) avoids the generation and

the solution of the large and stiff stochastic process. This approximation results in considerable
savings in storage and in time. At run time, the user is simply queried as to the numerical values

for the failure (and repair) rates and which near-coincident fault rate calculations are to be used

in the solution of the FEHM's (explained in section 2.7).

The derivation of the C, R, S, and N parameters can be illustrated by way of a simple example

system architecture that is a variation of the three-processor two-memory system, that is,

consideration of only the three-processor part of the three-processor two-memory system. Again,

we automatically incorporate the possibility of imperfect coverage into the perfect coverage
Markov chain, as shown in our three-processor example (fig. 19). While in the coverage model

denoted by FEHM 1, a second processor fault is possible with rate 2 * )_. Therefore, one of the

exits, R, C, or S must be reached before time to the second fault (which is an exponentially

distributed random variable with parameter 2 * )_) if a near-coincident fault is to be avoided.
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J

I

N.3 _ ,\',2 I

Figure 19. Three-processor system. FEHM's with C, S, R, and N exit probabilities.

Figure 20. Three-processor system showing near-coincident faults.

2 * _ * ('.2

2 * A * _,'_

Figure 21. Reduced model of the three-processor system with m,ar-coinciden! faults.

Likewise, while in the coverage model denoted by FEttM 2, another processor fifilure can occur

with rate A.

Assume that FEHM 1 and FEHM 2 in figure 19 are exponentially distrflmted delays with

rate 5. (See fig. 20.) Thus, S = /2 = 0. Note that in lhe absence of a near-coincident fault.

C = 1. I/owever, with the near-coincident fault occurring at the rate 2. A from FEItM 1,

the probability of a successful C exit before the ocem'renee of a second near-coincident fault

b Similarly for FEHM 2, C2- _ The reduced m_Mel isis easily shown to be (':_ = _. .. _+_.

shown in figure 21. In fig,re 21, N:_ = 1 - C:I and :¥2 = 1 - (72. The inclusion of interfering

faults causes the coverage values to become state dependenl. HAF_P aulomatieally derives the
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coverage factors by taking the Laplace transform of the time-to-exit distributions. We compute

the transforms for the single fault model and then substitute the second near-coincident fault

rate for the Laplace transform variable to obtain the state-dependent coverage values. If the

time-to-exit distribution is not available in closed form, a Taylor series expansion of the Laplace

transform yields an expression that depends on the powers of the next fault rate and on the

moments of the distribution. These moments are easily obtained from empirical or simulation
data. See reference 6 for the mathematical derivations.

We need not restrict ourselves to single-state FEHM's. Let us again look at a portion of the

CARE III coverage model that was introduced in section 2.6.7. (See fig. 22.)

;s2
J

N2

2

Figure 22, Permanent CARE III FEHM with N, C, and S exits.

Now the FEHM probabilities when replaced by a branch point are as follows:

6 p q,e 6 p q*e

C3= 6+p+2.), + _+p+2*A* C2- + *--_+2*A 6+p+A 6+p+A _+A

and

p (1 -q)*¢ p (1 --q)*e

$3= 6+p+2*A* $2- *e+2*A 6+p+A c+A

As previously mentioned, these probabilities are determined by HARP based on the user inputs

for the rates and probabilities in the model.

3.2.2. State-Dependent FEHM--Overriding the Default Model

Suppose we want to override the FEHM file associated with a particular component type. In

the three-processor, two-memory example, the processors have a FEHM parameter file entitled

FEHM. HRP. Assume that from state 2, 2 recovery from a processor failure is more closely modeled

by a different FEHM model, which is stored ill FEHM. NEW. In this case, we change the description

of the Markov state transition from 2*LAMBDA; to 2*LAMBDA:FEHM.NEW;. This change does not

affect any other transitions triggered by a processor failure. If we instead want to turn off the

FEHM for this transition, we can use the keyword NONE. For this example, the state transition

is 2*LAMBDA :NONE ;.
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If for a particularcomponenttypethe userhaschosento providethe actualcoveragevalues
(ratherthan usea FEHM model),haschosento ignorenear-coincidentfaults,or haschosento
ignorecoverage,then the defaultmodel(or rather, the lackof a model)cannotbeoverridden.
Theseoriginalchoicesresultsin state-independentcoveragevalues,whichcannotbe later made
statedependent.Likewise,a FEHMcannotbeoverriddenbytyping VALUESbecauseof its state
independence.

3.3. Numerical Solution Techniques

Once the FEHM models have been solved and the state-dependent coverage factors have

been automatically inserted into the model, the Markov chain representation of the FORM

model remains to be solved. Tile Markov chain (such as the one in fig. 18) produces a linear

system of ordinary differential equations as follows:

P'(t)= A(t)P(t) (P(0)= PI)

where P(t) is the column vector of the state probabilities, and A(t) is the associated matrix of

(possibly) time-dependent transition rates (the matrix entry aij (t) represents the transition rate

from state j to state i at time t). This analytic model is solved for the state probabilities Pi(t) in

one of two ways, which are described in the following sections. The reliability and unreliability

of the system are then given by the sums of the appropriate state probabilities:

ie UP states

u(t)= P,(t)
ie DOWN states

Additionally, the probability of each type of failure (exhaustion of redundancy, single-point

failure, near-coincident faults) is reported separately. In case repair transitions are emanating

from down states, HARP uses the previous equation to compute the instantaneous availability

and unavailability.

3.3.1. Default Solution Technique

Under normal circumstances, the Markov chain is solved for the state probabilities with a

variation of the adaptive Runge-Kutta procedure, GERK (ref. 50). GERK has been reliable and

robust for a large variety of models. Although GERK solves stiff systems correctly, it can take

a long time; thus, an alternative solution method has been defined for these systems.

Note that the maximum global error reported in tile .RS* file is the global numerical dis-

cretization error of the differential equation solver (GERK output). It does not include the

round-off error or numerical deviation resulting from behavioral decomposition. Modeling (tevi-

ations contributed by behavioral decomposition are conservative. Model deviations contributed

by the FORM/FEHM merging process depend upon the user's specification of the multifault

model. In most cases, these deviations can be tracked with the simple bounds. (See section 3.4.1.)

When the sojourn times of the FORM and the FEHM's are separated by over 2 orders of mag-

nitude, the HARP results are much more accurate than tile input data supporting the HARP

results. When the sojourn times approach each other, the HARP results become increasingly

more conservative. A warning message is issued to alert the user of this possibility. When

behavioral decomposition is not invoked, GERK specifies the errors in the .RS* file (round-off

error not included).
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3.3.2. Stiff System Solution

If the largest of the transition rates in the Markov chain is bounded by q and the mission

time is t, then the stiffness index of the Markov chain is defined to be their product qt. When qt

is large (say greater than 100), a special stiff solver is invoked.

As mentioned in the previous section, HARP uses a variation of an adaptive Runge-Kutta

procedure to solve tile system of ordinary differential equations derived from the Markov chain

representation of the FORM. It performs well for the transient solution of nonstiff Markov

models. However, in stiff systems, the step size h may need to be intolerably small (because

tile time scale is chosen as a function of the slow failure rates) before acceptable accuracy is

obtained. Thus, substantial computation time requirements result.

HARP uses a special method called TR-BDF2 to deal with the problem of stiffness 16 (ref. 51).

This method combines tile trapezoidal method (TR) with the second-order backward's difference

(BDF2). Because TR-BDF2 is an implicit method 17 (whereas GERK is an explicit method), its

step size can be adaptively changed. Thus, for stiff models, TR-BDF2 takes much less solution

time than GERK. The TR-BDF2 method has provided good accuracy and excellent stability on

stiff problems. The choice of which solver to use is made internally by HARP. MCI-HARP uses

a simulation technique based on the variance reduction technique, called inmortance sampling,

which is effective for solving stiff systems.

3.3.3. Computational Precision

The coverage value precision and hence the system unreliability computation actually depends

primarily upon the FEHM being used in the model. The coverage value precision is 10 -13 for all

FEHM's except ESPN FEHM, which is specified by the user. HARP's unreliability predictions

are valid from unity to 10 -15 and are a function of the precision of the coverage computation

ms determined by the EPX variable. If a smaller value is computed, then a warning message

is issued. If the user requires smaller predictions than 10 -15, the EPX value can be adjusted

as required; however, the user must determine whether the computing platform is capable of

producing that precision. When no FEHM's are used, the unreliability precision is determined

by GERK and the round-off error.

Each coverage model in the HARP engine utilizes an epsilon variable entitled EPX. If a

coverage factor %lls within EPX and 0, the value is set to 0. Likewise, if the coverage factor

falls within the 1.0 - EPX and 1.0, the value is set to 1. In all other cases, the actual computed

coverage value is retained. Whenever the computed coverage value is changed to 0 or 1, the

overall system reliability can be suspect when the unreliability is below 10-15. This problem can

be alleviated by changing the value of the EPX variable in the following files: aries.for, care.for,

dists.for, empir.for, moments.for, and simdrv.for. The value is set twice in each file -once for

the nominal computation and once for the bounds computations.

3.4. Error Bounds

Two different kinds of bounds are provided by the HARP program; simple model (parametric)

bounds and truncation model bounds. Depending on the system being modeled, none, one, or

both kinds of bounds are applicable.

The simple parametric bounds are computed for two distinct classes of models: (1) the AS IS

model that does not use any FEHM's, where behavioral decomposition is not invoked, and

16 Stiffness refers to a mathematical model that contains widely separated time constants associated with a system of

ordinary differential equations.

17 Implicit means dependent variable is not isolated from other terms of the equation, and explicit means it is.
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(2) thosemodelsthat.do invokeFEHM's andbehavioraldecomposition.Both modelscanalso
bemodifiedto reflect,the modelstatereductiontechniquecalledtruncation(section3.4.2).

Tile AS ISmodelis usedstrictly for parametricanalysis,whichreportsthe effect,tmsystem
unreliability asa functionof tile user-specifiedparametricvariation. Thesedataareuseflll for
sensitivityanalyses.Thesimpleparametricboundsfor this modelclassaretrue brandsfor the
originaluser-specifiedmodel(M1).

WhenFEItM's and behavioraldecompositionare invoked,the simpleboundstake on two
manifestations.V_Then no parametric variation is specified and the user selects the simple bounds

computation (prompted by HARP), simple upper and lower bounds arc computed based on

estimated maximum and minimum imperfect coverage and lack of sufficient redundancy. If

parametric variation is also specified, a combined effect is estimated, that is, imperfect coverage

with insufficient redundancy and parametric variation. Unlike the AS IS model, the simple lower

bound on unreliability associated with behavioral decoinposition is a conditionally true bound.

The conditions when it becomes questionable are delineated further in this section.

HARP does not allow bounds to be evahmted when any failure rate is Weibull. When the

system being modeled has repair, bounds are evahmted only when an absorbing state is present

in the model.

3.4.1. Simple Model (Parametric) Bounds

3.4.1.1. AS IS Model

Because many input parameters to the FORM model are not known exactly (e.g., the user

can only know a range of values for the failure rates), tiARP allows the FORM input parameters

to be expressed in terms of ranges of values rather than point estimates. HARP produces upper

and lower bounds on the system unreliability that are a flmction of these ranges of vahles. The

model evaluates the overall system failure probability by" taking the lower bound on the failure,

rates and the upper bound on the repair rates as the best case and by taking the upper bound

on the failure rates and the lower bound on the repair rates as the worst case. It also produces

the predicted unreliability based on the nominal values. The simple parametric bounds for this

model class are true bounds _ for the original user-specified model (Jlll).

3.4.1.2. Models Using Behavioral Decomposition

_¥e approach the analysis of errors t)y decomposing the original model into two simpler models

that can be combined to obtain a conservative unreliability estimate (refs. 9, 52, and 53). The

general form of the simple bounds is given as follows:

P(A U B)< min[1 P(Ahigh)+ P(Bmax)J

P(A (.3 1_) _ max[P(Alow) , P(I3min) ]

The first rule gives the conservative bound aim the second rule gives the optimistic bound. >

The first expression gives the upper unreliability t)ound while the second gives the lower

unreliability bound. The system failure probability P(A) is caused by the lack of sufficient

18 Mislat)eling a failure transition _m a repair transition or vice versa can cause inverted bounds. HARP does n_)t check

for these types of user mistakes.

1,q Validity of these bounds are subject to correct specification of multifault models, where applicable (see section 2.7).
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redundancy.TheprobabilitiesP(Ahigh) and P(Alow) are used instead of P(A) when parametric

tolerance are selected to cause P(A) to be maximum to get P(Ahigh) and P(A) to be minimum to

get P(Alow). The probability of system failure due to imperfect coverage is P(B). When FEHM's

are specified for behavioral decomposition, P(B) is computed for tile minimmn imperfect

coverage to get P(Bmin) and the maximum imperfect coverage to get P(Bmax)- The probability

P(A) is filrther modified when transients are specified in at least one FEHM. The perfect

redundancy model (coverage assumed to be perfect) transition rates are modified by coefficients

that reflect transient restoration probabilities. The net effect reduces the probability of failure

by redundancy exhaustion because transient restoration occurs.

The simple bounds computed by HARP are the bounds on the instantaneous jump model

(3/2, AI3, and M4 of fig. 3), which produces the unreliability result (M4) and can also bound

the user's original model M1 under certain conditions: The simple upper bound on the system

unreliability is always a true (conservative) 2° bound with respect to both the instantaneous

jump model (M2, M3, and M4) and the user-specified model (M1) (provided all failure rates

are constant). 2_

When the automatically generated multifault models are used, the validity of the optimistic

bound with respect to the user-specified model (M1) depends on the use of large numbers of

fault containment regions that require the use of the ALL multifault model. (See chapter 7 for

an example of a practical fault containment model.) Figure 23(a) depicts the normally expected

HARP computations. With many fault containment regions, the situation shown in figure 23(b)

is possible. The lower bound graph is above the full model graph but below the instantaneous

jump model graph. For such system models, a valid accurate lower bound can be obtained by

modifying the HARP generated ASCII files.

Remember that the HARP simple bounds are used for preliminary estimates of unreliability.

They are provided a_s a quick-look computation that can be used in the early stages of system

design when only ranges of parameter values are available. The essence of HARP output is the

nominal result and not the simple bounds. We emphasize that if the model is solved AS IS,

without any FEHM's or with the VALUES FEHM, tile HARP bounds are true bounds for the

user-specified model (_I1), that is, the full model.

3.4.2. Truncation Bounds

As mentioned in section 2.8, truncation bounds are obtained as follows. When the truncated

model is solved, the probability of being in each of the TA states is calculated. By adding these

probabilities to that of the down (failed) states (DS) before the truncation line, we get an upper

bound on the system unreliability (SU). All states beyond the truncation line are assumed to

be failed states. To get a lower bound on unreliability, we add only the probabilities of the

failure states before tile truncation line. Thus, the TA states are automatically considered to be

functional states by HARP. To use some notation, the states in the truncated model are denoted

with a subscript tr and the states in the full model have the subscript full. The bounds on the

system unreliability are given by the following:

Pr(DStr) <__SUfull < Pr(TAtr)+ Pr(DStr)

HARP not only gives the system unreliability but also provides a breakdown of individual

failure probabilities. Failure causes are the exhaustion of different components, FNCF and FSPF.

20 It is conservative in that the reliability of the system being modeled is not less than the HARP reliability estimate.

21 HARP FEHIVI's and multifault models only support single recovery transitions. System models with multiple recovery

transitions can cause the simple upper bound to improperly bound the HARP unreliability result (M4) or the original

model (M1). For such systems, the user (:an edit HARP generated ASCII files or use XHARP. The HARP AS IS model

can also be used to provide accurate results.
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Figure 23. Typical and pathological simple lower bounds.

In a truncated model, HARP gives bounds on the system unreliability as well as individual

failure probabilities. F1 denotes a state where fewer components than the minimum required

of component type 1 are still operational. If an F1 state occurs before the truncation level, we

use the probability of being in the F1 state as a lower bound on the probability of failure due

to exhaustion of component 1. All transitions due to failure of component 1 that fall on the
truncation line and do not lead to state F1 are directed into a state called TA1.

Probability of failure due to exhaustion of component 1, Pr(Flfun), is bounded as follows:

Pr( Fltr ) <_ Pr( Flfull) <_ Pr(TAltr ) + Pr( Fltr )

The bounds on the probability of exhaustion of other components are obtained in a similar

manner. Now we obtain bounds for the probability of a FNCF and a FSPF.
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The probability of being in the FNCF state before the truncation level is a lower bound on

the FNCF probability. The upper bound is taken to be this lower bound probability added to

the combined probability of all TA states:

Pr(FNCFtr) < Pr(FNCFfull ) <_ Pr(TAtr) + Pr(FNCFtr)

The bounds on probability of SPF are obtained in a similar manner as follows:

Pr(FSPFtr) <_ Pr(FSPFfull ) <_ Pr(TAtr) + Pr(FSPFtr)

3.4.3. Combined Bounds

When parametric bounds (via a simple model) are desired from a truncated model, the bounds

are combined in the following way. The simple model solution uses the optimistic parameters

(lowest possible failure rates, highest possible repair rates and coverage factors) to produce an

upper bound on the reliability (Rhigh) of the system (ref. 53).

Rhigh(t ) = 1 -- max[Peshlow(t), Pcovlow(t_

where Peshlow is the system failure probability due to exhaustion of system redundancy

and Pcovlow is the system failure probability due to minimal coverage.

If the model from which the simple bounds are derived is a truncated model, then the

truncation aggregation states are taken to be operational states (for the optimistic bound).

Likewise, the simple model solution uses the pessimistic parameters (highest possible failure

rates, lowest possible coverage factors and repair rates) to produce a lower bound on the

reliability (Rlow) of the system (ref. 53).

Rlow(t ) ---- 1 -- rain [Peshhigh(t) + Pcovhigh(t), 1]

If the model from which the simple model bounds are derived is a truncated model, then the

truncation aggregation states are taken to be failure states (for the pessimistic bounds). The first

type of bounds are reported as simple model bounds, the second type are reported as truncated

model bounds, and the combined bounds are reported as truncated simple model bounds.

The use of behavioral decomposition and the instantaneous jump model factors have been

proven to result in conservative estimates of reliability (ref. 8), when failure rates are constant

(exponential times to failure). Both bounding techniques (simple and truncation) produce

bounds on this conservative estimate of reliability. For practical highly reliable systems, the

HARP (simple and truncation) bounds also encompass the reliability of the original model.

When the disparity of the model sojourn times are too close to guarantee valid bounds, a

warning message is issued.
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Chapter 4

HARP Structure and User Input

4.1. Overview of Program Structure

The HARP solution of a reliability model consists of running three sequential programs:

tdrive for model construction, fiface for interface, and harpeng for solution. (See fig. 24.)

PROGRAM
TDRIVE

PROGRAM
FIFACE

PROGRAM
HARPENG

Figure 2,1. HARP program structure.

In tdrive, the user is stepped through the model construction phase to produce the FORM,

any FEHM's, and a dictionary file for tile system. Tile FORM can be either as a fault tree (for
nonrepairable systems) or a Markov chain, and the FEHM's can be any of tile ones supported

by HARP. For each component in the system, the dictionary file contains the logical name of

the component, the symbolic name for the failure rate, the name of the FEHM parameter file,
and any user-defined near-coincident fault rates. When the name of tile FEHM parameter file

is specified, the user can create the file at that time or specify that it already exists.

Supplied with this model representation, the tdrive program creates several output files that

can be carefully edited and rerun or used by the interface program fiface. By keeping the input

and interface programs separate, the user can use the fault tree or Markov chain information for

any purpose by designing the appropriate interface. The fiface program uses the files created in

tdrive to construct the symbolic transition rate matrix for use by the solution program harpeng.
Additionally, symbol table information and failure state information is passed to the solution

program which translates these representations into the system unreliability over a user-specified

time period. If desired, the optimistic and conservative bounds are also supplied.

4.2. File Naming Conventions

Several files are created when running the HARP program, and the names of these files are

derived from the user-supplied model name. Once the user has specified a model name that model

name is used to create the filenaraes used throughout the HARP program. The model name
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(up to nine characters in length, eight for PC) is appended with three character extensions to

produce the reserved files. Special characters that can interfere with the user's operating system

should be avoided, e.g., avoid using * or & as a model name or extension. Figure 25 shows

the HARP structure and identifies the files with the program segment tdrive, fiface, or harpeng.

The following sections give a representative listing of each of the HARP files. The typical file

contents shown were obtained by running the example of figure 15 through HARP.

PROGRAM
TDRIVE

MODELNAME.DIC

MODELNAME.TXT

MODELNAME FTR

MODELNAME INT
I,

FEHM files

MODELNAME.ALL
I*

MODELNAME.MAT

MODELNAME.SAM

MODELNAME.D1C

MODELNAME.INT

MODELNAME.ALL

MODELNAME.DIC

MODELNAME.MAT

MODELNAME.SAM

• PROGRAM
FIFACE

v

MODELNAME.SYM

MODELNAMEUSR

MODELNAMEINP

MODELNAME.PT*

MODELNAME.SYM

MODELNAME.USR

FEHM files

PROGRAM
HARPENG

MODELNAME.RS*

Figure 25, File structure of HARP,

4.2.1. MODELNAME.TXT

The symbolic textual fault tree description file is entered at the terminal by the user in

program tdrive, h is then converted to MODELNAME.FTR so that it can be converted to a

Markov chain for solution. Typical file contents using the example model in section 5 figure 14
are as follows:

NODE I: TYPE BASIC, 3 OF COMPONENT I

NODE 2: TYPE BASIC, 2 OF COMPONENT 2

NODE 3: TYPE AND , I INPUTS:

NODE 4: TYPE AND , I INPUTS:

NODE 5: TYPE OR , 2 INPUTS:

NODE 6: TYPE FBOX, INPUT: 5

1

2

3 4

4.2.2. MODELNAME.FTR

The fault tree description file is created either from the textual description file (.TXT) in the

tdrive program or directly from the graphics program and is converted to a Markov chain for

solution. Those lines beginning with an 'N' represent Markov chain nodes and those beginning

with an 'A' designate arcs, arrows, or lines (connectors). The fields for the nodes are: N xcoor
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N 1 1

N 2 2

N 3 3

A 1 1

N 4 4

A 2 2

N 5 5

A 3 3

A 4 4

N 6 6

A 5 5

4.2.3.

ycoor type_node node_label. (See voh 3 of this TPformore details.) Typical file contents are
as follows:

16 3.1

16 2*2

19

3 3

19

4 4

17

5 5

5 5

22

6 6

MODELNAME.DIC

The dictionary file contains the logical name for each component type (e.g., processor, sensor),

its symbolic failure rate parameter (e.g., lambda, nm) and the FEHM parameter filename (if

any). It also contains the user-specified interfering component types. This file is created either

by the textual input program or from the graphics program. Typical file contents are as follows:

1 PROCESSOR LAMBDA FEHM.CAR

INTERFERING COMPONENT TYPES: 2

2 MEMORY MU NONE

INTERFERING COMPONENT TYPES:

FEIDS (See section 4.3.2.)

7 6

The dictionary is required for fault tree FORM's. A Markov chain FORM requires the dictionary

if coverage is to be included in the model. The dictionary matches failure rates with the coverage
information file to correctly solve the model. It is designed as a tool for both the user and the

program. The user can make changes in the dictionary file to accommodate any special modeling

requirements. When creating the dictionary, do not use the symbol $ a_s a character in a failure

rate symbol name. This sylnbol causes the program to ask the user to declare the meaning of

tile name without tile symbol $ as well as with it, that is, two symbols result when only one is
intended.

4.2.4. MODELNAME.INT

The symbolic textual Markov chain (lescription file is created by tdrivc. It is rea(t by the

interface program fifacc and is converted to the symbolic transition rate matrix file (.MA@) for
the HARP engine. The first line of the file is SORTED if the Markov chain w_ created from
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a fault treeandeither SORTEDor UNSORTEDif the input wasa Markovchain.Typicalfile
contentsareasfollows:

SORTED

1 2

i 3

2 4

2 5

3*LAMBDA;

2._;

2*LAMBDA;

2*WIJ ;

Refer to section 3.3 for further information on the MODELNAME.INT file.

4.2.5. MODELNAME.MAT

The symbolic textual transition rate matrix is read by the HARP engine. The HARP engine

requires a specific ordering of its matrix, with row and column values of nonzero entries entered

in ascending order. Matrix entry i,j represents a transition rate from state j to state i. For

entry 2,1 in the second row in the following table, for example, means that i = 2 and j = 1 and

3.LAMBDA*C1 is the transition rate from state 1 to state 2. The number 10 in the first row is

the number of model states. Additionally, a symbol X is created and is concatenated to those

transitions leading to the failure due to exhaustion state. It serves as a flag variable for the

bounds computation. The end of the matrix is flagged with value 0,0. This file is created by

program fiface. Typical file contents are as follows:

i0

2 , 1

3*LAMBDA*Cl ;

3, 1

2*MU;

4, 2

2*LAMBDA*C2 ;

5 2

2.I_;

5, 3

3*LAMBDA*C3 ;

6 3

MU*X ;

6 8

4.2.6. MODELNAME.SYM

The symbol table and failure (and possibly operational) state information file also contains

whatever symbol table information can be deduced from the graph. Specifically, for each

coverage factor (i.e., Ci), it lists the symbol type number (always a 3 for FEHM types other

than VALUES) and the parameter file containing the FEHM information. Additionally, for

FEHM type VALUES, the corresponding Ri and Si are listed for each component type with

the "VALUES" designation. In this case, the symbol type numbers are 7 for the Ci_ 8 for Ri,

and 10 for Si. If near coincident fault rates are being considered, the N i values are also printed
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with a symboltypenumberof 9. ThesymbolX, whichappearsin the *.INT file (not shownin
MODELNAME.INT)denotingtransitionto thefailurestate,isassignedthe numericvalue999.

For the followingfile contents,the data canbe interpretedfor figure 17as follows. The
coverageparameterC1 is definedby the FEHM given by the file FEHM.CAt/ and has tile
number3associatedwith it to designatethat the FEHM isnot a "VALUES"FEHM.Figure 17
showsC1asafactorin thetransitionrate,3AC1betweenstates3, 2 and2, 2. The C4 parameter

in the file has the number 7 below it, which designates that C4 is defined by a VALUES FEHM

and the value of C4 is 0.7000000000 with tolerance 0.0000000. Likewise, the probabilities and

tolerances for the R4, N4, and $4 transitions are listed as well. (See section 2.6 for details of

their meaning.)

The user has the option of entering the values for these parameters in program fiface or in

program harpeng. If the user elects to enter the values in the engine, fiface lists the values

as -1.00. All failure states (and operational states whose probabilities are desired) are listed

in this file as well as their location in the matrix. To interpret where a failure state is located,

subtract 1000 from the absolute value of the number listed. This file is created by program

fiface. Typical file contents are as follows:

CI

3

FEHM.CAR

C2

3

FEHM.CAR

C3

3

FEHM.CAR

C4

7

0.700000000000

R4

8

0.100000000000

N4

9

0.100000000000

$4

10

0.100000000000

X

999

0.000000000000

0.000000000000

0.000000000000

0.000000000000

49



END SYMBOL DEFINITION

FI

I007

F2

1006

FSPF

1009

FNCF

I010

END FAILURE STATE DEFINITION

4.2.7. MODELNAME.ALL_ MODELNAME.SAM_ and
MODELNAME.USR

The near-coincident fault rate information files are also created by program fiface. For

each coverage factor (i.e., Ci), they list the symbolic value of the near-coincident fault rate.

MODELNAME.ALL lists the symbolic value of the ALL-inclusive near-coincident fault rate,

MODELNAME.SAM the SAME-type near coincident fault rate, MODELNAME.USR the

USER-defined near-coincident fault rate. Section 2.7 gives more information on user-defined

near-coincident fault rates. Typical file contents for MODELNAME.ALL, MODELNAI\IE.SAM,

and MODELNAME.USR are similar. The following expression Ci is tile near-coincident fault

rate associated with the Ci transition. It is not equal to Ci.

c1

2*LAMBDA+2*MU;

C2

LAMBDA+2*NU;

C3

3*LAMBDA+MU;

C4

2*LAMBDA+NU;

4.2,8. MODELNAME.INP

The MODELNAME.INP is an echo file containing the name of the matrix file and values

for the symbolic rates defined by the user at runtime (of the HARP engine). This file can be

edited after the HARP engine program has completed; thus, the need to enter parameter values

during future runs is eliminated. This file is an output of the HARP engine program. Typical
file contents are as follows:

3P2M. MAT

Symbol No. Symbol Type

1 LAMBDA 1

2 MU 1

Value

O.lO000000D-03

O.lO000000d-O1
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State name: FSPF

State name: FNCF

0.13012236D-05

0.13617744D-06

Reliability = 0.99094265D+00

Unreliability = 0.90573470D-02

Total failure by redundancy exhaustion = 0.90559096D-02

Parametric Bounds using SIMPLE Model:

Lower Bound on Unreliability = 0.90387040D-02

Upper Bound on Unreliability = 0.90745973D-02

See Users Guide, section 3.4.1 for interpretation.

GERK ODE solver: global error value 0.200D-15

relative error value O.IOOD-08

See Users Guide, section 3.3.1 for interpretation.

0 Reports from the GERK ODE solver.

4.2.10. MODELNAME.PT*

A textual file containing the unreliability values for the model is plotted along with the

bounds values (if any) and output by the HARP engine program. In the following table, the

left most column gives the times at which their corresponding unreliability values in the right

column are computed. These values are provided as input data for a user's plotting program.

Tile asterisk (*) is an integer, t)eginning with 1, that is incremented for each rerun of the engine

during the same session. Up to nine runs may be executed during the same session. (Note: if

the program is terminated and then rerun, all files are destroyed and rewritten.) The contents

of this file can be created with a text editor and used as input to the HARPO module. Also, if

data are generated by another program and can be put into the *.PT file formal,, tIARPO can

display that data also, possibly for comparative analysis. Typical file contents are a_s follows:

0.00000000 O.O0000000E+O0

10.00000000 0.90570200E-02

Additionally, the input programs create the fault/error handling model parameter value

definition files. These files have different formats, corresponding to the choice of the fault/error

handling model specification technique. The first line of the file specifies the type of inodel,

such as HARP.SINGLE.FAULT.MODEL, and the necessary parameters follow. Note: these

files do not have the near-coincident-fault rate expressions; instead, the near-coincident fault-

rate expression is an attribute of the particular coverage symbol. Different coverage syml)ols

may have the same fault/error handling model parameter files but use different near-coincident

fault-rate expressions. These files are created in the textual and graphical input programs.
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Refer to section 3.5 for more details on the input file.

4.2.9. MODELNAME.RS*

The MODELNAME.RS* is a textual file with the reliability/unreliability values for the model

is an output of the HARP engine program. Each time the HARP engine is rerun during the same

session, the output is appended at the end of MODELNAME.RS*. The asterisk (*) is an integer,

beginning with 1, that is incremented for each rerun of the engine during the same session. The

HARPO module reads this file to make interactive graphical analysis available. (The HARPO

module expects an upper case filename extension.) Up to nine runs can be executed during the

same session. (Note: if the program is terminatcd and then rerun, all files are destroyed and

rewritten.) Typical file contents are as follows:

HARP

- The Hybrid Automated Reliability Predictor -

Modelname:

3P2M

Release Version 7.0

February 1993

Input description (from dictionary file):

Component type: I Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

O.IO000000D-03 +/-

FEHM file name: FEHM.CAR

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration:

Permanent coverage:

Single-point failure:

Component type: 2 Name: MEMORY

Symbolic failure rate:

MU Constant failure rate:

O.IO000000D-OI +/-

FEHM file name: NONE

ALL-INCLUSIVE near-coincident fault rate used.

Time(in Hours): O.IOOD+02

State Probabilities

State name: F1 0.99203074D-09

State name: F2 0.90559088D-02

0.10000000D-06

O.O0000000D+O0

0.99956467D+00

0.43532615D-03

O.IO000000D-04
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4.3. Inputting a Markov Chain FORM

4.3.1. State Transition Specification

A Markov chain is entered in the following format:

state_x state y rate_transition

The user can enter the information in sorted or unsorted order. If tile sorted option is chosen,

tile state names nmst be integers listed in row-wise order (beginning with the number 1). First,

all transitions emanating from state 1 are listed, then those from state 2, etc. If the unsorted

option is chosen, the state names can be nonintegers listed in any fashion. However, the first

state listed is _kssumed to be the initial state of the Markov chain. It is assigned an initial state

probability of l, while all other states have an initial state probability of 0. Also, if the input

is unsorted, tile size of the model is limited a total of 500 states can be included and up to

2050 transitions. For sorted (or fault tree) input, the mmlber of states is increased to 10000

and the number of transitions to 90000. These limits can be changed, however, as explained

in a section 5.3. For either type of Markov chain input, the state names camlot be more than

13 characters. Comments can be imbedded in the text 1)y beginning and ending a line with the

asterisk (*) so that the line is printed in the MODELNAME.INT file but ignored by program

4.3.2. Failure State Specification

In HARP, any state whose label begins with the letter F is considered a failure state. Four

types of failure states are represented. For failure by redundancy exhaustion, one failure state is

associated with each component type in the system, These failure states are labeled Fi, where i

is the component type number failing and F stands for "failure due to exhaustion." For those

models with imperfect coverage, tile occurrence of a single-point failure and near-coincident fault

failure is recognized by failures states FSPF and FNCF, respectively. These latter two states

are added by the interface program, fiface, automatically. Any other state label beginning with

F contributes to the system unreliability but not. to the specific failure probabilities.

When the Markov chain input type is sorted, the user must enter the state nanms _s mmll)ers;

therefore, a state label beginning with an F is not allowed. In this instance, HARP can recognize

the failure states in one of two ways. First, to run bounds in the engine program, those transitions

entering failure states must have *X appended to them. Therefore, when inputting the FORM,

the user can add this *X to the appropriate transitions to designate the state into which the

transition goes as a failure state. Second, the user can edit the dictionary file (.DIC) by adding

the folh)wing lines for failure ID's (FEIDS) to the end of the file:

FEIDS

fl f2 f3 ... fn

where fl, f2, f3, ..., fll are positive integers that identify the failure states F1, F2, F3 .... , FN,

respectively. Note that adding *X to the failure state in an unsorted Markov chain is not allowed.

4.3.3. Solving Arbitrary Markov Chains

HARP can be used to solve arbitrary (general) Markov chains simply by stating that the

model being described is to be solved AS IS. Under this designation, no FEHM models are
inserted.
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4.3.4. Sorted Versus Unsorted Input

When the FORM input is a fault tree, HARP converts this fault tree into a sorted Markov

chain. However, many systems cannot be modeled using fault trees. Hence, the user must enter
a Markov chain as input. As previously mentioned, the user can enter the Markov chain in

sorted or unsorted order. If the model being evaluated is very large, then the user should input

the Markov chain in sorted order because only 500 states and up to 2050 transitions can be

included in an unsorted model. A sorted model, on the other hand, can have 10 000 states and

up to 90 000 transitions.

Several differences should be noted about sorted and unsorted Markov chains. If in a sorted

Markov chain, ,X's are appended to the failure states, then HARP evaluates bounds on the

reliability. Moreover, only the probabilities associated with tile failure states are given, not those

of the operational states. However, if no *X's or FEIDS are specified in the input, the program

harpeng (solution stage) asks tile user to specify failure states. If the user does not specify any
failure state, the state probabilities of all states are printed while the system reliability is not

given (since no failure states are specified). If the user does specify failure states when asked,

then the system reliability and the failure state probabilities are printed. In either case, bounds
are not evaluated.

For sorted input, if FEIDS are specified, then the resulting failure probabilities are listed in
the order in which the states are listed in the FEIDS. For example, if state 12 is mentioned first

under FEIDS in tile MODELNAME.DIC file, then tile failure state F1 corresponds to state 12
and F2 to the next state mentioned under FEIDS and so on.

4.3.5. Labeling Transitions

The Markov chain transitions are normally symbolically labeled with an expression of the
form: constant * failure rate. Failure rate transitions are denoted by a single failure rate variable

(i.e., A or p) even though HARP does not require the failure rates to be constant. The failure

distribution is specified ms either exponential or Weibull at run time. In general, an arc between

states (i,j) and (i - 1,j) is labeled with the value i * ), (if A is the failure rate of component

type 1). Likewise, an are between states (i,j) and (i,j - 1) is labeled with the value j •/, (if It

is the failure rate of component type 2).

Although most transitions are of the type previously described, transitions between arbitrary
pairs of states with arbitrary labels are certainly permitted. However, the following restrictions

apply:

• There can be only one level of parentheses.

• Only addition and subtraction are allowed within tile parentheses.

• Only addition, subtraction, and multiplication are allowed outside the parentheses.

• The rate expression cannot exceed 23 characters.

• Other than tile previously listed mathematical symbols, only alphabetic characters (upper

or lower case) and numerals are understood by tile HARP engine.

4.4. Inputting a Fault Tree FORM

4.4.1. Replicated Basic Events

To reduce tile size of a model, HARP allows statistically identical components to be combined

into single basic events. A replicated basic event is labeled with an expression of the form

54



Node 4 [/"

(

I FBOX ]Node

Node 6

Node 1

Node 5

)
Node 2 Node 3

Event Repeated

FBOX IN°de8

_ Nt)de 7

Node 1 Node 2 Node 3 Node 4

Evenl Not Repeated

Dictionary File

Symbolic
Component Logical Failure FEHM

Type Name Rate File Name

I Processor Lambda I Fehm.car
2 P2 l,ambda2 None
3 Memory Lambda3 None

Figure 26. [lepcated and distinct basic cv_'uts in IIAIlP.

should not be considered. A flmctional dependency gate has a single trigger input (either a

basic event or the output of another gate in the tree), a normal output (reflecting the s[ }_Iills [)f

the trigger event), and one or more dependent output events. The dependem outputs are basic

events that depend on the trigger event. When the trigger event occurs, the dependent basic

events are forced to occur. The occurrence of any dependent basic _wents has no eft'eel on the

trigger event.

For an example, consider the Cm, syst.em (ref. 20) (shown in fig. 27), which consists of

clusters of processors and memories connected by links. Each cluster consists of eight h>cal switch

interface controllers (S.local), each attached to one processor and one 12K-memory module. Each

processor has 4K of memory on board. The K.ntap is a cluster controller comwcting the S.locals;

the clusters are connected by intercluster communieat.iotls (L.inc). A faull in the K.map renders

the S.locals (and their connected processors and memories) inaccessible, while a fault in the

S.local makes the processors and memories connected to it inaccessible.

The development of the fault tree model for the Cm* system (shown in fig. 28) is simplified

by the use of the flmctional dependency gate. The dependence of the S.loeals on the K.map

can be captured by two flmctional dependency gates, each with a K.map trigger event and

four S.local dependent events. Similarly, the dependence of the processors and memories on the

S.locals is captured in eight fimctional dependency gates, each with an S.local as the trigger event

and the associated processor and memory as the dependent events. The system is considered

operational as long as three processors can communicate with three memories. As long as the

L.inc is operational, the requirements can be satisfied by the components of both clusters (thus

the 6/8 gates). If the L.inc fails, the requirements must be met within one cluster (thus the
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rn • n, representing rn replications of redundant, functionally identical components of type n.

Replication is useful when modeling statistically identical components with the same failure rate

value, for example, three processors (fig. 15). Because HARP converts the fault tree to a Markov

chain for solution, this combination of equivalent components reduces the size of the resulting

Markov chain considerably. Suppose a fault tree has j basic events, each with a replication

factor of k i. If every component were required to fail before the system fails, then the resulting

Markov chain using the multiple basic events would have I-[(ki + 1) - 1 + j states. If the basic

events were all separate, then there would be _ ki basic events and the resulting Markov chain

would have 2_-_ ki states. Consider such a system having 5 basic events, each with a replication

factor of 3. The Markov chain resulting from the tree with replicated basic events would have

1028 states, and the Markov chain resulting from the fault tree without replicated basic events
would have 215 = 32 768 states.

4.4.2. Representation of Shared Events

The user should be aware of a source for potential confusion when constructing fault trees.

The difficulty is only evident when the fault tree contains shared events because HARP uses a

representation for shared events that differs from the one often found in the literature. A shared

event is a basic event that is used more than once in the fault tree, that is, a basic event that

affects the failure of the system in more than one way and thus has more than one parent gate or

box. In the literature, such repeated events are sometimes depicted by multiple occurrences of

its basic event node in the fault tree. However, HARP uses the convention that each basic event

node represents a distinct basic event that is assigned a numeral by the user. If a single basic

event is used in more than one place in the fault tree, then it should still be depicted by only one

basic event node, that is, the same node numeral. This basic event node has multiple outgoing

arcs, one to each parent node, to represent the fact that the event is a shared event. The GO

program (see vol. 3 of this TP) represents a shared event as a double circle. The shared basic

event is initially drawn as a single circle. All other multiple occurring events associated with the

initial basic event are referenced back to the initial single circle basic event. The double circle

notation is provided for drawing convenience and to simplify the drawing by reducing connecting

arcs.

Conversely, two or more basic events with the same label but different node numerals represent

two or more distinct basic events that happen to be the same component type. The fact that

basic events have the same label does not make them a shared event, having the same node
numeral does.

In the fault tree labeled "Event Repeated" in figure 26, a single component, node 2 labeled 2

(P2 in MODELNAME.DIC), appears as an input to two different gates (node 2 is shared). In

the fault tree labeled "Event Not Repeated," two individual components, nodes 2 and 3, are

both labeled 2 (P2 in .DIC), each being an input to only one gate (not shared). In the latter

case, the two individual components, nodes 2 and 3, are functionally different components within

the fault tree, although they happen to have the same label and therefore are the same type of

component.

4.4.3. Example of a Functional Dependency Gate

This section introduces a functional dependency gate that can be used to simplify the

generation of a fault tree model of a system exhibiting structural dependencies of components.

Suppose a system is configured such that the failure of some component (called a trigger

component) causes other dependent components to become inaccessible or otherwise unusable.

In this case, later failures of the dependent components will not further affect the system and
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the basiceventsthat are forcedto occurby a trigger eventdo not counta,scomponentfailures
whendeterrniningthe failure levelof a state. If the first conlponent failure is a trigger event

that removed two additional components, then the resulting state has three component failures.

However, this state is considered to he on the first failure level of tile Markov chain (i.e., it

is a member of the set of states that result from the covered failure of one component only).

A coverage model is included on tile arc representing the failure of the trigger event. Because

no explicit arc represents the occurrence of the dependent b_sic events, no coverage model is
included for these events.

Although the functional dependency gate does not increase the modeling capacity of the fault

tree, it can reduce the effort required to develop a fault tree model of a system with complex

interconnections.

4.4.4. Example of Priority and Gate

The priority and gate is logically equivalent to an AND gate, with the added requirement

that the input events occur in a specific order (refs. 54 and 55). In HARP, the number of inputs

for a priority and gate is limited to two for implementations reasons. However, priority and gates

can be cascaded together to achieve the effect, of multiinput priority and gates. (See fig. 9.) As

an example of the use of a priority and gate in a fault tree, consider a system that consists of two

channels, _s shown in figure 29. Each channel has two sensors, A1 and h2, that are comlect.ed

by a device interface unit (DIU). One sensor is a primary channel, the other is an alternate.

The system begins by operating in channel one. Upon the first failure affecting channel one,

the system switches to channel two if channel two has not experienced any component failures.

After switching to channel two, tile system continues to use channel two until it. fails, at which

time tile system fails. If after the first failure on channel one, tile system does not switch to

channel two, then it remains on chalmel one until channel one fails, at which time the system
fails.

Sensor A I

DIU
Sensor A 1

CPU 1 Channel I

Sensor A2

D|U
Sensor A2

CPU2 Channel 2

Figure 29. Two-channel system.

Figure 30 is a fault tree model of this system. The fault tree for this system utilizes two

priority and gates, which input to two and gates. Ttle leftmost priority and gate represents

the situation where a failure o(:curs on channel one, causing a switch to channel two, and then

channel two fails. The rightmost priority and gate represents the situation where something fails

on channel two (and thus when a failure on channel one occurs the system stays on channel one)

and then channel one fails subsequently.

4.4.5. Example of Cold Spare Gate

As an example of the use of the cold spare gate, consider a system consisting of six

components: A, B, C, D, E, and F. The system operates as a triad, with A, B, and C active
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Figure 28. Fault tree model of Cm* system.

2/4 gates). The outputs of the functional dependency gates need not be used as inputs to any

other gates in this instance.

The fault tree to Markov chain conversion uses the functional dependency gate to alter that

state descriptor. In a state representing the occurrence of a trigger event, the state descriptor is

changed such that all dependent events are recorded as having failed, if they have not already

done so. No coverage model is considered for these dependent component failures to insure that
the possibility of imperfectly covered failure of a component that is unusable or inaccessible

cannot contribute to system failure. (The absence of a coverage model produces an optimistic

result because any coverage value other than unity reduces system reliability.) Furthermore,
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Figure 3(). Fault tree mo(h_l of two-channel system.

3

initially and D, E, and F a.s cold spares (inactive but not subject to failure). Components D

and E can substitute for A if A suffers a covered permanent failure. Component D is the first

alternate; it gets put into active use when A fails. If D then experiences a covered failure, E is

switched into active use. Components D and E cannot fail before they are switched into use.

Component F can substitute for either B or C, whichever fails first. Thus, F is a shared cold

spare (also called a pooled spare). Note that if an external event called G causes a spare called D

to fail, then component D is no longer available for the cold spare gate connected to it

The fault tree model for this system appears in figure 3l. The cold spares dependencies

are captured by the boxes labeled "Cold Spare Gate." The leftmost input to the cold st)are

gate is tile primary component, and the others are the alternates (cold spares) for the primary

component. The order in which the cold spare components input to the cold spare gate (left

to iight) implies the order in which tile spares are switched into active use. Tile output of the

cold spare gate fires when the primary component and all its alternates have failed. For shared

cold spares, the output fires if the primary component has failed, and either its alternate fails

or its alternate has already been switched into active use for another component (and thus is

no longer available for use as an alternate for the primary component). All inputs to cold spare

gates must be basic events (possibly replicated). The input events of the cold spare gate are not

allowed to have Weibull failure rates in HARP. (See section 2.9.l.)

4.4.6. Example of Sequence-Enforcing Gate

Figure 32 shows the use of sequence-enforcing gates to model state dependent FEHM's in

the fault tree notation. This fault tree models a majority voting 2 out of 3 system where perfect

(unity) coverage is assumed for the first failure and a user-specified FEHM is assigned to the

second failure. The details of this model are discussed in chapter 7.
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Figure 31. Fault tree model of system with cold spares.
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FBOX I

P, Q (No FEHM's)
2Pl, 2QI (FEHM's)

Note: Dictionary names are shown here.

I

State-Dependent FEHM's

Figure 32. Fault tree model of system with a sequence-enforcing gate.

4.5. Editing MODELNAME.INP File

The MODELNAME.INP file is an output of harpeng. It is a text file containing the name

of the matrix file and the type and values for the symbolic rates defined by the user at runtime

(of the HARP engine). This file can be edited after the HARP engine program run is complete.

This eliminates the need to enter the parameter values again during future runs of the same

model.

Because the old format of the MODELNAME.INP file was inconvenient for the user, it is

now written in tabular form, as shown in section 4.2. For a Weibull failure rate, the value of the
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symbol refers to the lambda parameter and the variation is the alpha parameter. Also, symbol

type 21 denotes that the symbol has a Weibull failure rate of type 1 and symbol type 22 denotes

that the symbol has a Weibull failure rate of type 2. The ttARP engine program still accepts

any MODELNAME.INP file written in the old format and rewrites it in the new format.

When the system being modeled is large, the symbolic matrix generated by tile model can be

too large to store in the data structures internal to HAt/P. Then, any calculations that require

reevahlation of the symbolic matrix, for example, the computation of bounds, are not possible.

In such cases, the HARP engine does not nee(t the parameter variation values in the input. If

the engine requires the variation vahle mad it has not been specified, then it is assumed to be

zero.

The exact size of the model that causes the generated symbolic matrix to be too large for the

HARP internal data structures cannot be determined because the size of the symbolic matrix

for the too(tel depends on the size aim number of transitions in the model.

4.6. Entering Dictionary in tdrive

The dictionary is both a tool for the user and for tile HARP program. As previously

mentioned, the dictionary is required for fault tree input and for Markov chain input if coverage

modeling is desired. Each component type that can fail in the system should be listed, that

is, processors, sensors, and actuators. (For Markov chain FORM's, do not enter component

repair information in the dictionary.) For each component type, the failure rate symbol is given,

that is, lambda, nm, rho, etc. The tdrive program then asks for the coverage model to be used

(ESPN, ARIES, CARE, distributions, moments, empirical, values, none) for the component type.

The user can then specify a preexisting file containing the appropriate parameter informatioil

or create the FEHM file by supplying a filename into which the model parameters should be

stored. Once this information is given for each component type in the system, the user is asked

about user-defined near-coincident faults (only if there are coverage models other than NONE

or VALUES). For each appropriate component type, the user lists all component types that

can affect the given component type in terms of a second fault crashing the system. Once tile

dictionary is complete, the FORM is entered.

To model certain peculiar features of the system under study, the modeler can alter the

dictionary manually. However, care must be taken in making any changes to the dictionary. For

example, the length of the rate parameters and component names cannot exceed 12 characters.

The user must ensure that the number of component types in the dictionary equals the number

of failure exhaustion states in the MODELNAME.INT file. The grammar associated with the

MODELNAME.DIC file is restrictive; therefore, while making changes, the user should not

delete the blanks at the end of each line. If the interfering component type numbers exceed

more than one line in the dictionary, they should be continued on the next line starting from

the first position (i.e., no blanks at the beginning of the line).

4.7. State-Dependent FEHM--Overriding Default Model

Overriding the FEHM associated with a component type on a specific failure transition is

possible. To do so, a colon is inserted into the transition label before the semicolon, followed by

the name of the new FEHM file or by the word NONE (signifying no FEHM for this transition).

For instance, if the transition label is 4*GAMMA;, we can change the label of the Markov state

transition to 4,GAMMA:FF.ttM.NEW;. This change does not affect any other transitions triggered

by a failure of the specific component type. If we want, we can instead turn off the FEHM for

this transition by using the keyword NONE. For this example, the state transition label then

becomes 4*GAMMA :NONE;.
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In some cases, state dependent FEHM's can be described at the fault tree level with the

sequence gate. (See section 2.5 and chapter 7.) As an example, consider a three-processor system
where each processor has a failure rate of A. When all three processors are operational, the

FEHM associated with the transition is say, FEHM.1. After the first fault (i.e., two operational

processors), the FEHM used is FEHM.2. The system fails when two out of three processors

have failed. This model can be described by a sequence gate with two inputs A and B, where A
occurs before B. Input A has associated failure rate of A1, which is assigned the numerical value

of 3 * A at run time. Input B has associated failure rate of A2, which is assigned the numerical

value of 2 • A at run time. In tile dictionary file, FEHM.1 is assigned to A1 and FEHM.2 is
assigned to A2.

If for a particular component type the user has specified type VALUES in the dictionary,

(rather than a FEHM model), has chosen to ignore near-coincident faults (NONE), or has

chosen to ignore coverage completely, then the default model (or lack of a model) cannot be

overridden. This restriction exists because each of these choices results in state-independent
coverage values, which cannot be later made state dependent. Likewise, a transition cannot be

overridden by typing VALUES because of its state independence.

To make it easier for the user to decipher the state of individual components for a particular

Markov chain state, the MODELNAME.INT file can be optionally augmented by comment lines.

If the user responds affirmatively to the tdrive question "Include state tuples as comments in

the .INT file?", then each line (arc designation) in the MODELNAME.INT file is preceded by
a comment line (beginning with a "*" in the first column). This comment line shows the state

descriptor for the source and destination states for the arc. For example, suppose there is an are

from some state 41 to some other state 56 in the MODELNAME.INT file. Suppose further that
state 41 represents a configuration with three components of type 1, two components of type 2,

and zero components of type 3, and the arc represents a failure of component type 2. Then, the

entry in the MODELNAME.INT file is: 41 56 2*LAMBDA2;. If the MODELNAME.INT file is
commented, then the line preceding this line is: * 3 2 0 -> 3 1 0 2*LAMBDA2;.
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Chapter 5

Technical Information

5.1. Error and Warning Messages

An electronic file called MESSAGES.TXT is included on the tape with the source code; this

file explains the meaning of each error or warning message from HARP. Within each program,

error messages are numbered beginning with 500; warning message numbers are less than 500.

To discern the meaning of an error or warning message, simply search the MESSAGES.TXT

file for the corresponding message number. The text lists the subroutine name and source file

from which the message originated, an explanation of the message, and a course of action (where

possible) for correcting the error.

5.2. Installation of HARP Program

The HARP package, which is received on magnetic media has six directories: TDRIVE,

FIFACE, HARPENG, TESTDIR, EXECUTE, FSOLVER. For a DEC VMS installation, the

user has two options for compiling and linking: using command files or using MMS (Module

Management System) files. In the TDRIVE, FIFACE, and HARPENG directories contain source

files and a FORTIT.COM file and a LINKIT.COM file. The former creates the needed object

modules, and the latter creates the executable. The user can invoke the *.corn files by typing

_FORTIT.COM then _LINKIT.COM in that order for each subdirectory. The MMS file is

entitled DESCRIP.MMS and also appears in each directory ahmg with the *.COM files. Th_ •

user can invoke MMS by typing rams in each subdirectory. For a UNIX installation, Make files

are included in each directory. The user can invoke the Makefiles by typing make in each

subdirectory. The executables are entitled TDRIVE for the driver portion of the code, FIFACE

for the interface and HARPENG for the engine. Once compiled, the user can move these

executable files to a new location. Generally, we operate with these files in the EXECUTE

directory and put this directory in our path. The code is configured to model systems with at

most 10000 states and up to 90000 transitions (excluding diagonals of the matrix as HARP

autonmtically calculates the diagonals). These limits can be changed using the information

provided in the next section.

Once installed, the version can be tested against the three examples in directory TESTDIR.

In addition, scripts of actual runs are found in the EXECUTE directory, named SCRIPT.FT

and SCRIPT.MC. These files create 3P2M1BFT and 3P2M1BMC, respectively. The output files

of these runs are also in directory EXECUTE.

The directory FSOLVER contains the source code for the CFEHM program, an editor for
FEHM's. Use the FORTIT.COM and LINKIT.COM files or DESCRIP.MMS listed therein to

create the DEC VMS executable. Makefiles can be used for UNIX installation. Section 5.4

contains information on the CFEHM program. The accompanying tutorial will help familiarize

the user with running the HARP program.
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5.3. Changing Limit Sizes for HARP Program

The HARP program as received is configured for up to 10 000 states and up to 90 000 tran-

sitions. 2_ In addition, the HARP engine program has a limit of 15000 symbols in the model.

These parameters can all be changed as described in the following sections.

5.3.1. Program tdrive

To change the number of states in program tdrive, perform the following steps:

1. In the ft2mc.for source file, locate the following line (occurs only once) with an editor:

PARAMETER (MSTATS = oldval)

where "oldval" is an integer and represents tile maximum number of states TDRIVE

is currently set to handle. Change "oldval" to the new value "newval" desired for the

number of states.

2. Recompile and relink.

Internally, tdrive uses linked lists implemented by routines that allocate and manage indi-

vidual regions of large integer arrays. Two such arrays are defined in the subroutine FT2MC()

in file ft2mc.f. The array POOL() has its length defined by parameter PLEN; similarly array

DPOOL() has its length defined by parameter DPLEN. If a HARP error message indicates an op-

eration failed because of insufficient memory, increasing PLEN and/or DPLEN and recompiling

the program may prove sufficient.

5.3.2. Program fiface

To change program fiface so that it can run larger problems, the following variables must be

changed. The program fiface has two state and transition sizes those for SORTED input and

those for UNSORTED (or with symbolic state names) input. If input is in sorted order (a fault

tree converted to a Markov chain from TDRIVE is always in sorted order), then the state size

can be up to 10 000 and transitions size up to 90 000. On the other hand, if the input is not in

row-wise order or if the state names are symbolic, then the limits are 500 for state size and 2050

for transition size. If your model is UNSORTED and does not fit in the data structures, first try

to put the MODELNAME.INT file in row-wise order with state names having increasing integer

values beginning with 1. (This scheme is more efficient and easier than altering the code.) If the

state size and transition size are still too small, increase the following sizes for SORTED input.

• NODES: in common block DATACB

The size of this array represents the number of TRANSITIONS in a SORTED model.

DATACB contains the transitions of the SORTED model. Files with this common block

are

covs, fiface, id, nxt, printit, transpose

22 By using the HARP truncation option, considerably greater system models can be solved. System models with 71 basic
events can be solved with a truncation at level 3 by HARP on a VAX or Sun workstation. A truncation level 2 or 1 allows
tim solution of even larger system models (more than 71 basic events) with possible decrease in accuracy. Larger systems
can be solved on larger computing platforms, up to 296 states (96 basic events) with appropriate truncation. A system of

this size, however, requires expanding the default state size of 10000 to well over 60000. (See section 2.8.)
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• ROWPTR: in commonblockDATACB

The sizeof this array'equalsthe numberof STATES+I in a SORTEDmodel. 1ROW-
PTR is an arrayof matrix row offsets,for eachstate in the modelit tells how many
transitionsemanatefrom it. Fileswith this commonblockare

covs, fiface, id, nxt, printit, transpose

• PARMS: in common block CHRDAT

The size of this array equals the number of TRANSITIONS in a SORTED model. PARMS

contains the rate parameters of the SORTED modeh Files with this common block are

covs, id, nxt, printit, transpose

• JAT: in common block TRARRY

The size of this array equals the number of TRANSITIONS in a SORTED modeh Gen-

erally, JAT is the row pointer array. Files with this common block are

id, printit, transpose

• AT: in common block TRARRY

Tile size of this array equals the number of TRANSITIONS in a SORTED model. AT

points to tile character rate parameters for each transition in the model. Files with this
common block are

id, printit, transpose

• IAT: in common block TRARRY

The size of this array equals the number of STATES+I in a SORTED model. Gener-

ally, IAT is the column pointer array. Files with this common block are

Id, printit, transpose

• SYMBOL: in common block COMSYM

Tile size of this array equals the number of STATES allowed in an UNSORTED model.

SYMBOL contains the symbolic name for each state in the UNSORTED model. Files
with this common })lock are

id, nxt

• MCPARM: in common block COMSYM

The size of this array equals tile number of TRANSITIONS allowed in an UNSORTED

model. MCPARM contains the rate parameters for each transition in the UNSORTED
model. Files with this common block are

ld, nxt
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• MCNODE: in conlnlon block DATACA

The size of this array represents the number of TRANSITIONS allowed in an UNSORTED
model. MCNODE contains the transitions of the UNSORTED model. Files with this com-

mon block are

ld

In addition, in routine INITSZ of fiface.for, the following four limits must be changed. Note:

It is unnecessary to change each occurrence of each variable ill the file; instead, change tile
declaration.

• STSIZ--new number of states for sorted input

• TRSIZ--new number of transitions for sorted input

• MCSTZ--new number of states for unsorted input

• MCTRZ--new number of transitions for unsorted input

We also have the following file names and variables that must be changed:

• covs.for: NODES, ROWPTR, PARMS

• fiface.for: NODES, ROWPTR, STSIZ, TRSIZ, MCSTZ, MCTRZ

• ld.for: NODES, ROWPTR, PARMS, JAT, AT, IAT, SYMBOL, MCPARM, MCNODE

• nxt.for: NODES, ROWPTR, PARMS, SYMBOL, MCPARM

• printit.for: NODES, ROWPTR, PARMS, JAT, AT, IAT

• transpose.for: NODES, ROWPTR, PARMS, JAT, AT, IAT

5.3.3. Program harpeng

To increase the number of states in the HARPENG program, the user must change the

following parameters and array dimensions:

• MAXST--the number of states (originally set to 10000)

• TRANS--the number of transitions (originally set to 90 000)

(We generally assume an average of nine transitions per state, but this number can be
lower or higher.)

• MAXSYM--the number of symbols (originally set to 15000) Estimate the number of

symbols in the model. A good estimate is 100 + total number of FEHM instances (i.e.,
C1, C2, ..., CN in the model means N FEHM instances) +3*number of coverage symbols

of type VALUES + number of failure states (number of component types +2) + number

of active states whose probabilities the user wants to see (only applies for unsorted Markov

chain input--see section 2.7.1). The number of symbols can be reduced tremendously by
telling program FIFACE that the user is not interested in near-coincident faults. If so,

the coverage values is state independent, and the number of coverage symbols is reduced

from (total number of FEHM instances) to (number of components with FEHM models).

• MAXFAC--the number of factors (originally set to 15000)

• MAXTRM--the number of terms (originally set to 7500)
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• DIAG: in common block MATRXN

The size of this array equals MAXST. DIAG contains the value of each diagonal en-

try (which is the negative slim z_ of the outgoing arcs for the state; that is, DIAG(2,2) is

the negative sum of all arcs leaving state number 2). Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

• ENTVAL: in common block MATRXN

Tile size of this array equals TRANS. ENTVAL contains the value of each off diago-

nal entry of the transition rate matrix. Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

• SYMENT: in common block MATRXN

The size of this array equals MAXFAC. Along with with FACTYP and NXTFAC,

SYMENT is a vector of symbolic entries. It either contains a pointer to tile symbol

table or a constant (integer, float, or double). Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

• SYMVAL: in common block MATRXN

The size of this array equals MAXSYM. SYMVAL contains the variation value of each

symbol in the model. Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

• SYMVAR: in common block MATRXN

The size of this array equals MAXSYM. SYMVAR contains the variation (if any) of

each symbol in the model. For Weibull failure rates, SYMVAR is the vector of the alpha

parameter value. Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

• SYMNOM: in common block MATRXN

The size of this array equals MAXSYM. SYMNOM contains the nominal vahle of each

symbol in the model. Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

• ROWPTR: in common block COMM1

The size of this array equals MAXST+I. ROWPR contains row pointers into the sparse

matrix data structure. The difference between ROWPTR(i) and ROWPTR(i+I) is the

number of nonzero entries stored for the corresponding row. Files with this common block

are

bounds, eval, fill, gcall, harpeng, set

23 The negative of the sum of the absolute values of the outgoing transition rates.
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• COLIND: in common block COMM1

The size of this array equals TRANS. COLIND contains pointers to the sparse matrix

columns. Files with this common block are

bounds, eval, fill, gcall, harpeng, set

• FACLHD: in common block COMM2

The size of this array equals MAXTRM. Together with NXTTRM, FACLHD constitutes

a term node. The term node stores pointers to symbolic expressions. FACLHD points to

the head of a factor list containing the symbolic expression (see FACTYP, SYMENT, or

NXTTRM). NXTTRM points to the next term in the expression (terms are separated by

a plus or minus). Files with this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym

• NXTTRM: in common block COMM2

This size of this array equals MAXTRM. Together with FACLHD, NXTTRM constitutes

a term node. The term node stores pointers to symbolic expressions. FACLHD points to

the head of a factor list containing the symbolic expression (see FACTYP, SYMENT, or

NXTTRM). NXTTRM points to the next term in the expression (terms are separated by

a plus or minus). Files with this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym

• FACTYP: in common block COMM2

The size of this array equals MAXFAC. Combined with NXTFAC and SYMENT,

FACTYP is a vector of symbolic entries. It contains an integer specifying the type of

factor pointed to by FACLHD: 0 = Constant, 1 = x, 2 = -x, 3 = ' and 4 = '. Files with
this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym

• NXTFAC: in common block COMM2

The size of this array equals MAXFAC. Combined with FACTYP and SYMENT,

NXTFAC is a vector of symbolic entries. It contains a pointer to the next factor in
the term. Files with this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym

• ETLHD: in common block COMM3

The size of this array is between 2 and COLIND, that is, 2 < ETLHD < COLIND.

ETLHD determines how much of the matrix can be read in at one time. If the size of the

array is small, the evaluation takes longer; however, the size of the program is smaller. If

the size of the array is small enough to allow only a portion of the matrix to be read in at

a time, bounds and Weibull failure processes are disallowed. The size of this array should
be stored in MAXENT. Files with this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym
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• SYMNAM: in comnlon block MATRXC

The size of this array equals MAXSYM. SYMNAM contains the name of each symbol
in the model. Files with this common block are

bounds, eval, fill, gcall, get, harpeng, hrputil, sym

• SYMFN: in comm{m })lockMATIIXC

The size of this array equals MAXSYM. SYMFN contains the filename of each

symbol in the model, if the symbol is a coverage factor. Files with this corn,non })lock are

bounds, eval, fill, gcall, get, harpeng, hrputil, sym

• STI)EF

The dimension of STDEF should be changed to I_IAXST in bounds .for, set.for, and

gt:all.for

• WOtlK

Tim {tim{ulsi(}n {}f WORK should 1,e changed t{} (8*_XIAXST+3) in gerk.f{}r and g{'all.f{}r

Also. in r{}ut.ine INITMX {}f hrt}util.for, the f'{}Ilowing five ]imils must }}e change{l:

• MAXST new mmfl}{'rofsiaies

• MAXTRM ,,,w mmfl}er (}f terms

• MAXIPA(_ new mmfl}er {}f Bwtors

• MAXSYM new mm_ber of symt){}ls

• MAXENT new numl}{,r (}f size {}f ETLItl) array

We als{} hay{, the f{}ll{}',ving fib, ramies and varial}les I}IHI lllllSI }}u C}l;'lIlg{_(|. NO|{': It is

mmec{_ssary t,} {:hanp;{, {,ach (}ccurr{,n{'{, {)[each varialfle in the tile; instead, change the {t{,{'lara{ i{m.

• }){nmds.f{}r: I)IAGS. ENTVAI_, SYMENT. SYXIVAL. SY.kIVAIt. SY*IN{)_I. t/{)WI}TI/,

C()IANI). SYMNAM. SYMFN. STI)EF

• ewfl.f{}r: I)IAGS. ENTVAI, SYMENT. SYMVAL. SYMVAII. SYMN()M, II()WI}TI/,

C()LINI). I:ACI,tII). NXTTI/M. FA(2TYP, NXTt:AC. ETIAtl). SYMNANI.

SYMFN

• [ill.[i}r: I)IAGS. t'2NTVAL, SYXlENT, SYMVAL, SYMVAR. SYMNOM. I/()WI}TI/.

('()IANI), FA('IAtl). NXTTI1M, FACTYt }. NXTFAC, ETIAII). SYMNAM.

SYMFN

• gcall.for: I)IA(;S, ENTVAL, SYMENT, SYMVAL, SYMVAIR, SYMNOM, FI()WPTIR,

COIANI), SYMNAM, SYMFN, STI)EF, WORK

• gerk.f{}r: W()IRK

• get.h}r: FACLtlD, NXTTI/M, FACTYP, NXTFAC. ETI,HD. SYMNAM, SYMFN

• harpeng.for: DIAGS, ENTVAL, SYMENT, SYMVAL, SYMVA1R, SYMNOM, ROWPTI/.

COLIND, SYMNAM, SYMFN, WORK

• hrputil.for: FACLHD, NXTTFIM, FACTYP, NXTFAC, ETLHD, SYMNAM, SYMFN,

MAXST, MAXTI1M, MAXFAC, MAXSYM. MAXENT
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• set.for:DIAGS,ENTVAL, SYMENT,SY_I\,%L,SYMVAR,SYMNOM.R()WPTR,
COLIND, FACLttD, NXTTRM, FACTYP,NXTFAC.ETLttI), STDEF

• store.for:DIAGS,ENTVAL, SYMENT.SYM\:AL,SYMVAR.SYMNOM,FACLItD,
NXTTRM. FACTYP.NXTFAC,ETLttD

• synl.for:DIAGS,ENTVAL, SYMENT,SYMVAL,SYM\'SkR.SYMN()M.FACI,HD.
NXTTRM, FACTYP.NXTFAC,ETIMD, SYMNAM.SYMFN

If thesymbolictransitionratematrix fits in these (tata structm'es, then bom_ds and Vfeibull

t,dlure processes are allowed by the program. If the matrix does not lit, then the portion of the

inatrix that is read in at each step is cvahmte(t and the space is reused. Once lhe entire matrix

is ewthmled, the unrelial)ility (or unavailability) is computed.

5.4. CFEHM--An Editor for FEHM Models

The stand-alone program CFE[IM allows the user I o create new FEIIM fih's or change

paramettw values in existing ones. A user creating a new FEtlM file is stepped through the

input as in tdrive, with the same models availal)le, as described in seelion .1.2. In addition to

creating the file, the FEtlM is solved immediately and the exit probabilities are displayed on

the terminal. CFEHM allows the user to change any existing FEttM tiles and supports change

of single parameters, adding phases as in the AllIES Transient I-{ccovery Model or changing

distributions as in the ESPN model. The FEHM tile is display<'tt lint' by line tollowed by the

(Y/N) ot)tion, where yes means lhat the user wants to change a wdue and rto means that the

user wants to rt?t.a.ill the old value. If tit(' change option is t:hosen, the user is t)rompte([ for the

new input and su|)scquelll dependent wdues.

5.5. Solving Large Models

This version of HARP is configured tbr a problem that requires up to 100()0 states. :_l A

problenl of this size can I)e solvetl e,asily on a DEC VAX 750 computer, which is the machine

on which tIARP was develoI)ed. The limiting factor tm the size of the problem is the amount of

storage retluired to store the symt)olic transition rate matrix. On a DE(: VAX 8600 comtmter,

we have solved prt)blems as large as 25 000 states (one user reporled success in solvi))g a sysle))l

with 45()00 states tm a DEC VAX 11-785). This section (tiscllsses some m('thods that the user

can utilize to solve very large i)rt)bh,ms.

If the symbolic matrix is too large to slore ill tim data structures internal to ItAI/P (but tlmre

are still fewer than 10000 states), th(' portion of the matrix thai has |men stored is evaluated.

alia the sl)at:e is reusetl. Tiffs method allows the user lt) solve larger prol)lems (wilhollt incwasing

the data storage rcquirent(,nts) t)ul disallows any (:al(:lflations lhat rcquir(, rcevahlalion of tht'

symbolic matrix (bounds, \Vcibull fidlure rates). If the t)roblem is still too large for ttA1RP

to solve, for examt)le if there are too lltally SylIll)t)ls, tile useI" Call ig;nt)re the consideration of

near-eoitwitlent faults. This action signilicantly re(lllees l.he illlllll)er of distinct symbols in the

inodel because the coverage factors are now state independent.

To solve models that are larger than 10000 states, see the section 4.3, which discusses how

to change the limits on the various variables used in HARP.

5.6. System Resources

When HARP is executed on a DEC VAX 11-700 series computer, the following resources are

required for the default 10 000 state limits:

24 The configured state size of It1000 is the actual number of state occupancy t)robabilities that are computed. By using

the truncation technique of chal)ters 1 and 4, systews with much larger st, ates can be solved. The maximum system size is

2 (all equivalent Markovian states; however, the computational resources required to use this size model may be unavailable.
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• 4096physicalpages(2 MB of real memory)

• 40000virtual pages(20MB virtual addressspace)

Undera UNIX environment,the samebytesof real memoryand virtual addressspaceare
required.The systemparametersmayalsoneedto bechangedto allowa singleusera large
workingset size. Theseparametersincludethe workingset maximumand the virtual page
count.ForexecutionunderMS DOS,seesection1.2.4.
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Chapter 6

Dynamic Fault Tree Gates

6.1. Modeling Nonrepairable Systems of Arbitrary Complexity
With Fault Trees

The dynamic dependency gates for fault tree modeling are not traditional fault tree gates

and will be unfamiliar to most HARP users. This chapter familiarizes the user with the detailed

specification and mathematical model for each dynamic dependency gate. The original research

on the dynamic fault tree gate models is reported in reference 36. As with any modeling language,

the modeler must properly apply these gates according to their specifications.

For the purposes of our discussion we use the following notation. We identify a particular

Markov chain state by listing a set of the components that failed while producing the state in

question. For example, if the system has five different components (one of each type present)

and if components 2 and 5 have failed (first component 2 followed by component 5), then the

system is left in a state denoted by an index I = (2, 5). Because the new fault tree gates model

system behavior for which the sequence in which the components fail is important, the order

in which the components fail can be significant. Therefore, we note that state (2, 5) generally

cannot be equivalent to state (5, 2).

States can also be denoted with tuples, indicating which components are still working and

which have failed. We call these component status tuples because they denote the working status

of all system components. It is not possible to denote the sequence in which the components

have failed with only the component status tuple notation. For example, both state (2, 5) and

state (5, 2) can be denoted by the tuple 10110. For this reason, if the sequence of component

failures is significant, then the Markov chain state labeling method may need to be extended by

appending to the component status tuple some additional information indicating the sequence

in which certain events took place. The form of this additional information is determined by the

structure of the fault tree. For example, an additional element may be added to the component

status region of the tuple for each priority and gate (see section 6.1.3) in the fault tree to indicate

which of the gatc'_ inputs (left or right) fired first (or whether any inputs have fired at all yet).

In this way, states can be denoted that are identical in terms of components working or failed

but which are distinguished by the sequence in which component failures occurred, as expressed

by one or more priority and gates. Yet another type of additional information (described in

section 6.1.4) is appended to the component status region of the state tuple for each cold spare

gate in the fault tree that shares any of its spares with one or more other cold spare gates in the
fault tree.

Components of identical type that serve a redundant function in the system can be grouped

together in what are called replicated basic events. The previous notation is easily extended to

accommodate these: the tuple notation is nonbinary with redundant sets of components denoted

by members of the tuple whose value is greater than one. Conversely, the component failure list

notation can simply contain multiple occurrences of component type i in tile list denoting the

failure of more than one member of the redundant set of components of type i. For example,

if the system containing five types of components has a group of two redundant components of

type 2, the original state tuple (denoting "all components working") is 12111. If one component

of type 2 fails, followed by one component of type 5 failing, followed by the other component of

type 2 failing, the resulting state is denoted by either the component failure list (2, 5, 2) or the

state tuple 10110. If the sequence in which these components fail is significant (for example, if
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state (2,5,2) is distinct from state (2,2,5) in the Markovchain),thenadditional information
needsto beappendedto tile tuple 10110to indicatethesequenceinwhichthecomponentsfailed.
In general,the form of that additionalinformationis determinedby the structureof the fault
tree,mspreviouslydescribed.In mosteases,the componentfailure list notation arepreferred
overthat of the componentstatustuple notationfor reasonsof simplicityandclarity.

We assumethat componenti fails at a constant rate Ai. A state labeled Fj is entered

whenever a component of type j fails and there are no spare components to take its place

(exhaustion of redundancy); thus, a system crash results. We denote the probability of being in

state I at time t by Pi(t), and the Laplace transform for the state by Ll(s ). For example, the

probability and Laplace transform for state (2, 5) are P'2,n(t) and L2,5(s), respectively. The initial

state (the one in which all components are operational) is denoted by the index 0 (e.g., /_l(t)

and Lo(t)).

6.1.1. Functional Dependency Gate

The flmctional dependency gate is the simplest of the sequence-dependent gates to define. It

has an input, called the trigger input, which can be any general event (e.g., the output of any

other fault tree gate or any basic event). For ease of presentation, we assume without loss of

generality that the trigger event is a single unreplicated basic event. The gate also has a numtmr

of dependent events, which nmst be (possibly replicated) basic events. Finally, the gate has an

output (which we call the nondependent output) whose value is always identical to the value

of the input event (i.e., tim nondependent output event occurs if and only if the input event

occurs). This output is provided to simpli_, tile display of complex fault trees where the trigger

event is required as an input to another gate.

Figure 33 depicts the hmctional dependency gate as described here. The trigger event is

event 1, the dependent events are events 3 through n, which can be replicated (i.e., groups of mi

redundant components of type i), and the output event is denoted by the outgoing arc at the

top of the gate. Figure 34 depicts the Markov model that defines the behavior of the functional

dependency gate shown in figure 33, where the states have been labeled with failed component

lists. Figure 35 depicts the same Markov model with the states labeled with component status

tuples. Figure 35 gives a better indication of the component failures than figure 34. The Markov

model contains two states: the initial state depicting the situation before the trigger event occurs

and the final state representing the situation after the trigger event occurs.

Nondependent Output

@_ FDEP

Figure 33. Functional dependency gate.
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Figure 34. Markov model defining action of functional dependency gate with failed component lists.

Figure 35. Markov mode] defining action of flmctional dependency gate with component status tuples.

In figure 35, the initial state tuple indicates that neither the trigger event nor any of the

dependent events (interpreted here as component failures) has occurred by showing that the

trigger component and all dependent components are still operational (all tuple members are

still greater than 0). The final state indicates that the trigger event has occurred (trigger

component has failed), and the action of the gate causes all dependent events to occur ms well

(all dependent components are forced to fail). Thus, all nlembers of the tuple correspond to

dependent events becoming zero (note that the tuple member corresponding to component 2

is still nonzero because component 2 was not dependent on the trigger component). The rate

at which this occurs is the rate of occurrence of the trigger event A1. The output event of

the functional dependency gate is defined to be equal to the trigger event. The Chapman-

Kolmogorov equations and the single-sided Laplace transform equations are given for state 0 in

equations (1) and for state 1 in equations (2) as follows:

dPo(t) _ A1Po(t)]
dt

1

Lo(s)- s + )_1

(a)

dPl(t)

dt - A1Po(t)

sLl(s)= A1Lo(s)

Ll(s)= 1 A1 1
s s+A1

= A1 + --
s+A1

1 1

s s+A1

The probability of the output event of the gate is as follows:

(2)

P,(t) = 1- e-a (3)

Although this example is simple enough to be solved by inspection, we have used a three-step

analysis to obtain a mathematical expression for the gate's output event (and hence a definition

of the action of the gate) to illustrate the general procedure used to analyze all these gates.
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Wefrst identify"a minimalMarkovmodelthat definesthe actionof tile gate. W> then use tile

Laplace transform equation for the output event of the gate. We finally obtain an expression for

the probability of tile output event by inverting the Laplace transform.

6.1.2. Sequence-Enforcing Gate

We next consider the sequence-enforcing gate. This gate carl have any number of inputs.

The leftmost input can be any general event (e.g., the output of any other fault tree gate or

any basic event). Again, for ease of presentation, we _ssume without loss of generality that this

leftmost, event is a single unreplicated basic event. All other inputs to the gate must be (possibly

replicated) basic events. The gate has an output which is on when all gate inputs are on (i.e.,

have occurred). V_ note that when an input leads to a descendent nod(' that is a replicated basic

event, the int)ut event is not considered to occur until all redundant components of the replicated

basic event have failed. Figure 36 shows a sequence-enforcing gate for which the inputs all lead

to unreplicated basic events (representing components 1 through n). The sequence-enforcing

gate constrains tile occurrence of its input events to follow the left-to-right order in which they

appear as inputs to the gate. For example, event 2 is not permitted to occur before event 1.

Similarly, event i + 1 is not permitted to occur before event i. This process is accomplished by

not including in the Markov model any states for which event i + 1 has occurred and event i has

not. The resulting Markov model that corresponds to figure 36 is shown in figure 37.

Gate Output

SEQ

. . ,

Figure 36. Sequence-enforcing gate with unreplicated basic events.

Figure 37. Markov model defining action of n-input sequence-enforcing gate for output event of gate.

Using the Chapman-Kolmogorov equations, we can derive the Laplace transform equation as
follows:

1
Lois) - (4)

s+A 1
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dP1(t)
dt - _go(t)- h2P_(t)

1
Ll(s)- hlL0(s)

s+A2

1 1
= A 1

s+A2s+A1

dP1.....k(t) _ hkP_.....A-_(t)- hk+_P_....._(t)]
dt

I

1

L1,...,k(s)= sTA--_+IAkL1 ..... k-l(s)

1 1 1

dt - hnP1 ... n-l(t)

sLFn(s ) =- hnL1,...,n_l(s )

LFn (s)=- s s + hi
/=1

(5)

(6)

(7)

Equation (7) is the Laplace transform equation for the output event of the sequence-enforcing

gate. Using the following partial fraction expansion method from reference 44:

N(s) __ n Ci

yIn=l (s + ai ) -- E s + a i
i=i

where

N(s) .(84_ai)ls:_ai
Ci = 1-inl(s + ai )

and taking h 0 = O, we can obtain a form of equation (7) that is easily invertible:

1pI _ 1/Ilj=o,_(h_- hi)LFn(S) = hi
s+hk

i=1 k=O

(8)

Inverting equation (8)

gate:

gives the probability of the output event of the sequence-enforcing

n n _Ak te

_=_ k=oIlj--oJ# k(hk-'_j)
(9)

These figures and equations are easily modified to accommodate inputs leading to replicated

basic events. Figure 38 depicts such a sequence-enforcing gate. The corresponding Markov chain

is similar to that depicted in figure 37 except that ml failures of the components of type 1 occur

first followed by m2 failures of the components of type 2, and so on until the mn components of

type n are the last to fail. A straight-forward application of the Chapman-Kolmogorov equations
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showsthat the Laplacetransformfor the gateoutput whenthe gateinputs leadto replicated
basiceventsgeneralizesfrom equation(7) to the following:

1 ]1 fi (mi - j)Ai
LFn(S)-= s _* s +(rn i -j)Ai

(10)

i=1 LJ=O

from which an expression for the probability PFn(t) can be obtained by using the same partial

fraction expansion procedure that was used before.

Gate Output

T

SEQ

. . °

Figure 38. An n-input sequence-enforcing gate with replicated ba_sic events.

6.1.3. Priority And Gate

The sequence-enforcing gate described in the previous section forces component failures to

follow a prescribed sequence in the Markov model by disallowing inclusion of any states in

the model for which component failures have occurred in other than the prescribed sequence.

In contrast, the priority and gate allows these states from the Markov model. However, if

components fail in other than the prescribed sequence for a particular gate, the gate never fires

(i.e., tile output event of the gate never occurs). The output event only occurs if all input events

of the gate occur in the left-to-right sequence in which they appear a,s inputs to the gate. Our

implementation requires that each priority and gate has a maximum of two inputs. However,

two or more priority and gates can be cascaded together to achieve the effect of a multiinput

gate. Therefore, we assume a multiinput priority and gate (an unlimited number of inputs) for

the purpose of our analysis. The inputs of the priority and gate can be any general event (e.g.,

the output of any other fault tree gate or any basic event). As previously noted, when an input

leads to a replicated basic event, that input is not considered to be on (i.e., the event occurred)

until all redundant components in the replicated basic event have failed. Again, for ease of

presentation, we assume without loss of generality that the inputs to the priority and gate lead

to unreplicated basic events. Figure 39 depicts the Markov model that defines the action of a

multi-input priority and gate for which the leftmost input is event 1, the next leftmost is event 2,

up to the rightmost event, which is event n. The Laplace transh)rm equation for the output

event of the gate can be obtained by again using the Chapman-Kolmogorov equations as follows:

1
Lo(s) (11)
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dPl(t)
- A1po(t)- Y_ hkPl(t)

k¢1

1

Ll(s) = s + _-_&#l hk hlLO(s)

=hl
1 1

s + Ek¢l hk s + E_I &

(12)

dPl'"k(t) (Ej¢(1 .....k) hi) P1 ..... k(t)dt - "kkPl""'k-l(t)-

L1,...,k(s ) =
8 + Ej_(1 ..... k) hj

hkL1,...,k-l(s)

1 1

8 + Y_j¢_(1 ..... k) h; hk 8 + Y_j¢(1,...,k-1) hj
...hl n

s + Ei=l hi

(13)

dPFn(t)
-- huR 1..... n-l(t)

dt

sLG_(s)= hnLl,...,n-l(S)

LFn(S) = lhn 1
s s + _j¢(L..,n-1) hj

1 n hi
= - YI

s s + Ek¢(1,...,i-1) hki=1

n 1

= 1-I h_II s + Eke(i,...#)hk
i=1 i=0

• ..hl

(14)

Taking a0 = 0 and ai _-_-j_(1 ..... i) hi, we obtain a form of equation (14) that is easily invertible:

LF,_(s)= i-i h i 1/[Ij=o,jck(a k -aj)
s+a k

i=1 k--0

(15)

Inverting equation (15) gives the probability of the output even of the priority and gate"

n n e_Ak t

PF-_ (t)= H hi E I-Ij=o,j¢k(a k _ aj)
i=0 i=0

(16)

We note here that equations (15) and (16) are identical to the expressions derived by Fussell

(ref. 54) except that our method of numbering the input events of the gate is different.

6.1.4. Cold Spare Gate

The cold spare gate is the most complex gate in the set of sequence dependency gates• All
inputs to the cold spare gate must be (possibly replicated) basic events. The leftmost input
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Figure 39. Markov model defining action of n-input priority and gate.

represents one or more primary units that are initially on-line. All inputs to tile right, of the

leffmost input represent alternate (spare) units or groups of redundant units available as pooled

spares that are initially powered down (i.e., that are cold spares). Upon the failure of any of

the units that are active, replacements are selected from the set of spare units that have not

yet been placed on-line. The spare units must be switched into operation in the left-to-right

sequence in which they appear as inputs to the cold spare gate.

For example, all spare units from the second leftmost input must be activated a_s spares

for failed components before any units from the third leftmost input can be activated. So

long a_s at least ml nonfailed components are present in the set of all components that are

inputs to the cold spare gate (whether on-line or powered down), m] active (i.e., on-line)

components are always being "used" by the cold spare gate. Once enough failures occur so

that all remaining components are active (i.e., no spares remain that are powered down; they

are all on-line replacing components that have previously failed), then the mmfl)er of components

being used by the cold spare gate is the number of tile spare components that have not yet failed.

This number decrea_ses from ml down to 1 as subsequent, failures of tile spare conlponents occur.

Only when all components fl'om all inputs to the cold spare gate have failed does the output of

the cold spare gate turn on (i.e., the output event occurs). Figure 40 depicts the general form

of tile cold spare gate described here.
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Gate Output

CSP

Figure 40. An n-input cold spare gate with replicated basic events.

6.1.4.1. CSP Gate Behavior Without Intergate Interactions

When none of the inputs to a cold spare gate are shared with any other gate in the fault

tree, the operation of this general form of the cold spare gate is defined by the Markov chain

shown in figure 41. The probability of the output event of the gate is obtained by solving the

Markov chain for and summing the probabilities of being in state Fi. This computation can be

achieved with the analysis procedure (used in the previous examples) of deriving the Laplace

transform equation for each Fi state, performing a partial fraction expansion, and then inverting

the resulting expression to obtain the probability expression (in the time domain) of the state F i.

The action of the cold spare gate is often more clearly illustrated when the Markov chain is

labeled with component status tuple notation rather than thc list of component failures notation.

As mentioned in section 6.1, a component status tuple indicates how many of each type of

component in the system is still nonfailed. The term nonfailed refers to both active (on-line)

and cold (off-line) components. Additional information can be added to the component status

tuple of each state to further clarify the action of the cold spare gate. That additional information

has the form of a :second tuple containing one element for each input of the cold spare gate (for

fault trees that have several cold spare gates, one such auxiliary tuple can be added for each cold

spare gate in tile fault tree). The value of each element indicates how many units are currently

being used (i.e., on-line and active) for each input of the cold spare gate. The component

status tuple is separated from the in-use descriptor tuple by a double bar. For example, a state

labeled mira2-" mr_llUlU2""Un is one in which ml components of type 1 are nonfailed (i.e.,

either operating on-line or powered down and awaiting activation), m 2 components of type 2

are nonfailed, ul primary units (of component type 1) are active and on-line (i.e., "in use"), and

u2 units of type 2 are on-line, etc. Note that ui <_ mi for 1 < i < n at all times. The initial "all

components working" state of a Markov chain for the cold spare gate in figure A8 always has

tile form mlm2"" "mnllml0"" 0. This form indicates that the ml primary units are initially

all on-line and working correctly and all spare units used by the cold spare gate are initially

powered down and therefore not yet in use by the gate. In general, a state is vulnerable to

failures of components under a cold spare gate in accordance with nonzero values for the in-use

tuple (i.e., the second tuple denoted by the Ul_._2 .. • Un) of the gate because this tuple is the one

that indicates which components are active for the cold spare gate (and hence eligible to fail).

Figure 42 shows the transitions that can be experienced by a general state in the Markov

chain for the cold spare gate of figure 40 when the component status tuple notation is used.
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Figure 41. Markov chain defining a_:tion of u,-input toM spare gate with replicated basic events.

(We note that u i < u_i and wi < mi for 1 _< i < n, where _'i denotes the number of components

of type i that are still working (i.e., nonfailed).) The incoming transitions eome from upstream

states where for each transition at least one of the u i primary eomponellts has failed.

As an example, the action of the cold spare gate shown in figure 43 is defined by the Markov

chain shown in figure 44. Each state is labeled with a two-part state tuple. The first, part of

the state tuple is the component status tuple. A double bar separates the first part of the luple

from the second part.. The second part of the state tuple is the in-use descriptor tuple for the

eoM spare gate and contains the number of components of each type that are currently being

used by the cold spare gate. That is, the components being used are on-line and performing the

flmctions of the primary units of the cold spare gate that were initially on-line. The second part

of the tuple shows exactly which spares are currently active (replacing failed components).
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Figure 42. General state from Markov chain for cold spare gate with replicated basic events.

Gate Output

T

CSP

Figure 43. Example cold spare gate with replicated basic events.

Initially, tile system begins with all three primary units (all of component type 1) operating

correctly. The two spare components of type 2 and the one spare component of type 3 are off-

line. This status is indicated by the value 300 in the second part of the state tuple of the initial
state in the Markov chain. Eventually, one of the three primary units fails, and one of the spare

components of type 2 is switched on-line to take the place of the failed component. Tile system

moves to the state labeled 22111210. In this case, the second part of the state tuple indicates that

two components of type 1 and one spare component of type 2 are in use by the gate. The other

spare component of type 2 and the spare component of type 3 are still off-line (powered down)
and hence not in use by the gate. Consequently, these two components cannot fail yet because

it is assumed that powered down components do not fail. Once the spare component of type 2

that is selected to replace tile failed component is activated, it can fail at any time after it is
placed on-line. Therefore, the next failure the system experiences can be either one of the two

remaining components of type 1 (in which case the system goes to the state labeled 12111120 ) or

the active component of type 2 (leading the system to go to the state labeled 21111210 ).

When one of the components of type 1 fails, the remaining component of type 2 is activated
to replace the second failed component of type 1, and the system is left operating with one

component of type 1 and two components of type 2 (as indicated by the second part of the
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Figure 4_1. Markov chain defining action of cokl spare gate with replicated t)_ksic events.

state tuple, 120). When tile active component of type 2 fails, the second component of type 2

is activated to replace the first component of type 2 (which just failed), and the system is left

operating with two components of type 1 and one component of type 2 active. This status is

indicated by the second part of the state tuple, 210. Note that the second part of the state

tuple for this state (21111210) has not changed from the second part. of the tuple for the previous

state (221tl210) even though the system has one less component of type 2 in working order.

The second part of the state tuple records only the number of each type of component that is

in use by the cold spare gate, and from the pre.vious state to the current state the mmd)er of

components of each type that are in use ha_s not changed. One component of type 2 has failed

and been replaced by the other component of type 2; thus, the count of active components arc

unchanged.
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Whileinstate21111210thesystemcanexperienceeitherafailureofoneofthetwocomponents
of type1or afailureof thecomponentof type2. Either kindof failureresultsin the lastspare(of
componenttype3) beingactivatedandplacedon-line.If oneof the componentsof type 1fails,
then thesystemgoesto state111II111in whichoneofeachcomponenttypeisoperatingon-line.
If the componentof type2 fails, thesystemgoesto state20111201in whichtwo componentsof
type 1andthe componentof type3 areall operatingon-line.Notethat all or somecomponents
of type2 canfail beforeall componentsoftype 1fail, andcomponentsof type3canbeactivated
beforeall componentsof type 1 fail. The cold spare gate with replicated basic events differs

from the sequence-enforcing gate with replicated events in this respect. The fact that the

cold spare gate enforces the sequence of component activation rather than failure accounts for

this difference. The cold spare gate prevents any components that have not been activated

from failing. Once activated, however, components can fail at any time. Consequently; once

components A and B are both active, component B can fail before component A even though

component A may have been activated before component B. By contrast, the sequence-enforcing

gate enforces the sequence of allowed component failures (or, more generally, the sequence of

event occurrences); thus, all components of type 1 must fail before any components of type 2 or

type 3 can fail.

The remainder of the Markov chain in figure 44 can be similarly interpreted. Note that the

sum of all components in use by the cold spare gate (as indicated by the second part of the

state tuple) always equals the original number of primary units (in this case, three) until fewer

than that number of components remain that have not yet failed. Then, all remaining spare

components have been activated and placed on-line, and subsequent failures are not replaced by

spares (there are no spares left). Thus, degraded system performance results. The output of the

cold spare gate turns on only when one of the states labeled F1, F2, or F 3 is reached.

The system modeled by the fault tree in figure 43 remains operating as long as is at least

one component among the primary and spare units is working. However, sometimes the system

to be modeled has a critical minimum component count, of components that must be operating

for the system to remain functional. For example, suppose the system shown in figure 43 can

only remain operational if at least three components from among the primary and spare units

remained operational. This system can be modeled easily by adding an M-out-@N gate (where

M is one greater than the critical minimum number of components that need to be operational,

and N is the total number of components that are inputs to the cold spare gate) to the cold

spare gate. All inputs to the cold spare gate must also be inputs to the M-out-of-N gate. The

outputs of the M-out-of-N gate and the cold spare gate should then become inputs to an or gate.

Figure 45 shows the system for which at least three components from among the primary and

spare units must be operational in order for the system to be operational. Figure 46 shows tile

resulting Markov chain.

6.1.4.2. CSP Gate Behavior With Spares Shared Between CSP Gates

Unlike the sequence-enforcing gate, the cold spare gate can interact with other gates of the

fault tree in two special ways. The first occurs when two or more cold spare gates share an

alternate (spare) unit (or group of pooled spare units). Figure 47 depicts a situation where

n - 1 system components share a spare unit between them. In the figure, the first cold spare

gate to have its primary unit fail does not "fire" (i.e., the output event does not occur) until

the spare unit subsequently fails. In the meantime, any subsequent failure primary unit of any

other cold spare gate (before the spare unit fails) causes that cold spare gate to fire immediately

because the shared spare is no longer available to replace failing primary units (it has already

been used to replace the first failed primary unit). Figure 48 shows the equivalent Markov model

that defines this interaction between cold spare gates sharing spare units. Tile probability of
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Figure 45. Cold spare gate with critical minimum complement.

3")_i

Figure 46. Markov chain defining action of cold spare gate with critical minimum complement.

the top event of the fault tree of figure 47 is obtained by solving the Markov model in figure 48

for the probability of each of the states labeled F i and then summing the probabilities of those
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Figure47.Faulttreewithn - 1 cold spare gates sharing a spare.
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Figure 48. Markov model defining action of n - 1 spare-sharing cold spare gates.

states. This computation can be accomplished with the analysis method used in the preceding

sections to analyze the Markov models for the other gates.

An additional consideration arises when a replicated basic event representing a group of

pooled spares is shared between two or more cold spare gates. The order in which failures

occur among activated members of such a group of pooled spares can be significant and must be

accounted for in the Markov chain. To illustrate this point, consider the fault tree in figure 49.

The Markov chain for this system is shown in figure 50. The first part of the label of each state
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[:igure .19. Fault tree with ¢'_]¢i st)are _ates sharin_ pooled spares.

is the component status tuple. The next part, separated by a doubh, bar fr(}lll lh{' first tmrl..

is an in-use t.ut}]{, denoting the (:{import{mrs thai are in use by the leftm{}st ('{}hi spare gate in

figure ,19. The las{ t)art of tim st.ate hd){,l (again separated by a (h}u|}]{, bar from the pr{,vious

pare) is an in-use tuple {h'n(}t.ing tit{' components t.hat are in use by tit{, rightm{}st {'old spar{'

gate in figure 19. In this exanq)le, two spare units {}f type 3 are po{}h,d l{}g{'th{'r and shar{'{l t)y

the t.w{} cold spar{? gat.{)S ill t]te faltlt tree. If comt}{ment 1 fails first, one of tit{, {'{}Itlt}{)ll{'ltlS of

ty[}{, :] is a{'tivat{'{t t{) ret}lac{, il.. If ('{}mI}{m{,n{ 2 fails next, the other c{}inl}{m{,nt {if tyl}{' 3 ix

a(:livat{,{1 t.o rcplac{' it. If a {:omt){}lwnl {)f tyt}e 3 (one of the units in l]m r{q)li{'al{'d basic {,venl

latmle(t 2*3) fails next, the {}r{h,r in which t.h{, two contponell.ts of type 3 fail is now signili{'am. If

{he (:{}inp{}n{,nl s{q{,{:t{,d to r{,pla{'{, the failed {:omt){mellt of type 1 fails first, ill{' system l}ehavi{}r

can l)e diff{'r{,nt than if l.he {:{mip{m{'nt sol{,cted to replace the failed {'{)ml)OnCl_t of lyt){' 2 fails

first. The order {)t' faifm'es ix illustra1{'d in figure 5{} in the transitions from sial e 002111}{}1{}}}{)1{}It,

stat,,s 0011 IH{)011]()10 and ()01 l ll}OlOll(){)l. The sot of descendent states of state {}0I I 1ii()011]{)1()

(and h{,nc{' lhe b{,havior {}f lh{' system {me{, it: has reached state {)0111 ]]{}{)1]]{}1(}) ditf'{'rs from lh{.

set ,}f {l{,s{:{,n(hmt stales of st.at.{, {}(}111 ¢1{}1(}]]{}01.This difference in sysl{'m belmvi,)r is a('{'{}m_l{,¢l

f{}r by the facl l]ml the t}r{Jc{!ss of activating; anti replacing failed c{}nq}{}n{,nts has transf{}rm{,{[

the two components of type 3 from being functionally cquiwdent milts (whi{'h they were when

they were otLlin{, pooled spares {hal. W('l'C l)owered down) to being flmctionally distinct llltits ill

the system. This transformat;i(m ncc(1 llof a, lways OCCllF. For example, sllpposc thai in figure 49

two (:ompon(mts of type 1 instead of on(' were at.ta.c}m(1 to the leftmost input of the [eflmost

cold spare gate. Further, suppose that both of tht's{_ components of type 1 have fail{,d and thal

t)oth {}f the components of type 3 were activated to replace them. If the next failure is one of

t.h{', comt){ments of t,yI)e 3, lhen which one of the two actually fails first is not significant. The
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Figure 50. Xlarkov chrtin for fault tree with cold stmrc gates sharing pooled spar('s.

subsequent behavior of the system is the same no matter which component of type 3 fails. On

the other hand, suppose only one of the components of type 1 fails and is replaced t)y one of

the components of type 3, and then the component of type 2 fails and is replaced t)y the other

component of type 3; then suppose the next failure is a component of t,yt)e 3. In this c_se, the

system behavior may depend on which of the two components of type 3 fails first.

This type of sequence dcpen(it" ey can be subtle and dif_cult to track in the Markov chain

for a fault tree that has cold spare gates that share pooled spares, lqo_x_ver, the use of the

auxiliary in-use tuples previously described provides a satisfactory way of accounting for these

sequence dependencies in the Markov chain. This state labeling method, which is perhaps not

the most efficient method of recording sequence dependencies in Markov chain states, makes it

comparatively easy for human modeling engineers to understand what is going on in the Markov

chain (and consequently the fault tree) model of the system.
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6.1.4.3. CSP Gate Behavior for Spare Shared With Functional Dependency
Gate

The second special intergate interaction of a cold spare gate occurs when a spare unit for

a cold spare gate is also a dependent event for a functional dependency gate. Normally, the

cold spare gate disallows the spare from failing before the primary unit fails. However, if the

spare unit is disabled as a result of the failure of some other component through the action of a

functional dependency gate, then the failure of the spare is permitted even though the primary
unit may still be operational. This apparent exception to the cold spare gate definition is needed

because the disabling of a spare unit (modeled with the functional dependency gate ill this way)

is expressed by considering the spare unit as functionally failed, even though the unit mav
not actually have failed. Figure 51 shows tile simplest fault tree that models this situation, and

figure 52 shows the equivalent Markov model that defines this interaction between the functional

dependency gate and the cold spare gate. The normal action of tile cold spare gate would have

prevented state 1,3 (and any of its descendent states) from being generated. The effect is that

component 3 is prevented from failing before component 2 fails, and component 1 is prevented

from failing before component 2. However, because component 3 (the spare of the cold spare
gate) is a dependent event of the functional dependency gate, state 1,a is generated and included

in the Markov chain along with its descendent states. The probability of tile top event of the

fault tree of figure 51 is obtained by solving the Markov model in figure 52 for the probability
of each of the states labeled Fi and then summing the probabilities of those states.

FBOX

Figure 51. Fault tree interaction between functional dependency gate and cold spare gate.

6.2. Fault-Tree-to-Markov-Chain Conversion Algorithm

An arbitrary fault tree can be converted into an equivalent Markov chain with a fault-trce-to-

Markov-chain conversion algorithm. The original version of this algorithm is described in detail

in reference 49. This original algorithm has been expanded to allow the addition of sequence-
dependency gates to the standard set of traditional fault tree gates. A sketch of the updated

algorithm is as follows:
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Figure 52. Markov model interaction between functional dependency gate and cold spare gate.

Algorithm ft2mc

input component failure rates;

input and build internal representation for fault tree;

determine number of basic even nodes;

determine system 'Cinitial operational state'';

open output file;

initialize state @ueue and state table;

place ''initial operational state'' onto the state queue;

while (state queue not empty) do

{

remove next originating state from queue;

for each component i in the state tuple do

{

simulate a failure of one of component i;

evaluate the effect on the resulting state of

Functional Dependency gates;

evaluate the effect on the resulting state of

Cold Spare gates;

evaluate the effect on the resulting state of

Priority-AND gates;

evaluate the effect on the resulting state of

Sequence Enforcing gates;

look up resulting state in the state table;
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if (resulting state is new, i.e. not in

state table) then

if (not system failure) then

add resulting state to queue;

record resulting state in state table;

output arc from originating state to resulting state;

undo simulated failure of one of component i;

} /* End of for loop */

} /* End of while loop*/

close output file;

end ft2mc.

This algorithm has been modified somewhat to allow lumping together of multiple transitions

_om an originating state to a single resulting state. However, this Mgorithm is the simplest

conceptual expressure of the fault-tree-to-Markov-chain conversion algorithm and suffices for

the purpose of describing our work here.
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Chapter 7

Advanced Modeling Techniques
This chapter informs the advanced user of some important modeling features of HARP. The

first section illustrates a technique for specifying FEHM's directly from a fault tree instead of the

typical FEHM specification. The extent to which the FEHM specification can be implemented
in the fault tree notation has not been explored.

Tile second section addresses the application of HARP's nmltifault models to a specific class

of system architectures that use nearly independent fault containment regions. A study has
shown that as the number of fault containment regions increase, HARP's multifault ALL model

produces an increasing greater conservative result.

7.1. State-Dependent FEHM's in Fault Trees

Figure 53 shows the use of the sequence-enforcing gate to force state-dependent FEHM
insertion in a fault tree. The FORM without FEHM's for the model in the figure is an or

gate with the same top event (FBOX) and basic events 3"1 and 3*2. This notation specifies

three units of type 1, shown as P (e.g., a processor) in the figure and three units of type 2,

shown as Q (e.g., buses). By splitting the number of P and Q units and renaming the groups
of two units as 2P1 and 2Q2 (1"1, 1"2, 2*3, 2*4 in HARP notation), different FEHM's can

be assigned to the units. In this example, no FEHM's are assigned to P and Q, but the same

or different FEHM's can be assigned to the 2P1 and 2Q1 units, respectively. The sequence-
enforcing gates enable this capability by precluding the 2P1 and 2Q1 units from failing until

the P or Q unit fails. The modeling effect is that because no FEHM's were specified for the

first P or Q failure, a unity fault/error recovery probability (coverage) is modeled for the first of
these failures. Subsequent failures have the specified FEHM's inserted into the resulting Markov
chain as usual.

P, Q (No FEHM's)
2P1,2QI (FEHM's)

Note: Dictionary names are shown here.

State-Dependent FEHM's

Figure 53. State-dependent FEHM's fault tree. (This figure is identical to figure 32.)

7.2. Approximating Multifault Models

As discussed in section 2.7, HARP offers three simplified models, ALL-inclusive, SAME-

type, and USER-defined, for automatic multifault model generation when invoking behavioral
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decomposition. The penalty for utilizing a simplified multifault model when all failure modes

are captured is an increase in tile conservatism of the unreliability predictions. Tile degree

of conservatism is a function of tile disparity of the FO1RM and FEHM sojourn times. The

advantage of using a simplified multifault model is a considerable reduction in computation and

user effort to define the input for the detailed model. For most systems the simplified models

provide acceptable results (refs. 27, 32, and 34). When this is not the case, the user can modify

the HARP generated ASCII files to get an accurate model with behaxdoral decomt)osition. Using

the AS IS model and using the X Window System (XHARP) are alternative ways to obtain more

accurate results (ref. 5).

Figure 54 is an example of the use of the ALL-inclusive model for a system where transitions

out of recovery states is possible (ref. 5). With behavioral decomposition, HAtiP ignores these

transitions unless the user invokes the ALL-inclusive multifault model, as shown in figure 5.1.

The systenl consists of two triads with failure rates A1 = A2 = 0.25 × 10-l/hr and the recovery

rate 6 = 0.72 × 10'l/hr (_-sec mean recovery). Recovery is always successful, unless a near-

coincident fault occurs. A near-coincident fault in the same triad causes that triad to go off-lira _.

but the system remains operational. A near-coincident fault in the other triad causes a system

failure. Both triads cannot be executing recovery procedures simultaneously, and the system is

operational if at least one triad is operational. For a mission tiine of 100 hr, the unreliability
is 0.504 x 10-9.

chosen.
Figure 55 shows the instantaneous model when the ALL-inclusive model is

3A1

,J

3),j

3A 2

/
/

2A

3A 2 2AI 3A2

C4
Figure 54. Two triad fault-tolerant system full model.
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Figure 55, Two triad fault-tolerant system instantaneous HARP model.

Because HARP uses a simple multifault model (ALL-inclusive model in this case) and

behavioral decomposition, the instantaneous coverage requires that the near-coincident fault

transitions (e.g., from R2 to F3) be modeled as system failures. This instantaneous model
solution produced an unreliability of 0.608 x 10 -9, which is a conservative error of 20.6 percent.

Conservative errors of this magnitude should be acceptable for most applications. If not, the
XHARP system applied to this model yields an unreliability of 0.504 x 10 -9.

7.3. Markovian Models With Hot Weibull Spares

Markov models with _Veibull hot spares behave differently than Markov models with constant

failure rate hot st.ares. Constant failure rate models exhibit the so called memoryless property.
That is, when a spare (warm or cold) is switched in, the spare that has not failed behaves as if
it were brand new. By definition, this condition is guaranteed for a cold spare. The constant

failure rate spare does not remember its past use history.

A Weibull spare, by contrast, does remember its use history. So when a hot Weibull spare is

switched in, it behaves as if it were operating from time zero with the exception that it was not
allowed to fail until it switched in. If the Weibull is a decreasing failure rate, the part that is

switched in has a lower instantaneous failure rate than a brand new part. The opposite is true

for a cold Weibull spare. When the cold Weibull spare is switched in, its instantaneous failure
rate is at maximum. Thus, Weibull cold spares may not increase system reliability as much as a

hot Weibull spare for decreasing rates. This failure behavior differs from what constant failure

rate parts exhibit (ref. 19).

7.4. Non-Markovian Models With Weibull Failure Rates

A Markov chain with nonconstant failure rates such as the Weibull is called a nonhomogeneous
Markov chain. This stochastic process has one time variable (mission dock) that starts at time

zero with a value of zero. When a cold or warm Weibull spare is introduced into such a model,
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another time variable is required that is initiated when the cold or warm spare is activated.

Stochastic processes of this type are called mixed-Markov processes, that is, Markov and scmi-

Markov. Mixed-Markov models are difficult to solve analytically, and HARP does not have this

capability. MCI-HARP uses a specialized Monte Carlo simulation engine that was designed to
solve mixed-Markov models.

A nonhomogeneous Markov chain with Weibull failure distributions is no longer Markovian if

repair is introduced. As in the models previously discussed, a separate clock must be established

to track repaired components. Although MCI-HARP has not been applied in this manner, the

basic capability exists.

NASA Langley Research Center
Hampton, VA 23681-0001
.hme 27, 1994
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Appendix A

Known Bugs in HARP Version 6.1
This appendix lists known bugs in HARP version 6.1. These bugs were fixed in version 6.2.

1. An infinite loop is encountered if the mission time, sampling interval, or variation is entered

as anything but a number.

2. The ESPN FEHM model has the following bugs.

• It does not recognize a net in which all transition firing times are constant and therefore
cannot solve it.

• When only one exit is reachable in the net or the probability of reaching the exit is

sufficiently close to 1.0, an infinite loop occurs as the program keeps doubling tile trials.

• Higher moments of time to reach various exits are sometimes incorrectly set to zero.

• In eases where S exit is a rare event, the outcome of the simulation may vary drastically

and cause the unreliability of the overall system to change dramatically.

• In the case of transient faults, the program does not always simulate the net exactly as

the drawing indicates.

• The seed for the random generator in the UNIX version can repeat itself; hence, the
simulation can have undesired correlation.

3. The ARIES model has the following bugs:

• It does not accurately calculate each exit probability correctly and ignores the variable

that pertains to failure of the recovery hardware. However, the model is correct as defined

in this Technical Paper.

* It incorrectly calculates the moments for each exit in the case that one or more component

failure times are Weibull distributed.

4. Certain combinations of cold spare gates and functional dependency gates give rise to a CSP

gate behavior that has not yet been implemented in HARP. The affected combinations of

gates are somewhat unusual and should rarely be needed. The behavior of the cold spare

gate and its proper uses are defined in full in this Technical Paper. In particular, users of

HARP version 6.1 should avoid combining functional dependency gates and cold spare gates

with shared spares in such a way that an input event of one of the cold spare gates is also a

dependent event of the functional dependency gate.
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Appendix B

Warning and Error Messages
This appendix contains the warning and error messages for tile HARP program.

+++ WARNING ClO0: ILLEGAL PARAMETER IN WEIBULL DEVIATE GENERATOR SUBROUTINE,

ALPHA --0 in DVWEBL +++

File : DEVGEN

Subroutine : DVWEBL

Meaning: If the FEHM model chosen is the HARP default ESPN model, this model is

simulated for solution. In the course of the simulation, deviates of the distributions for the

timed transitions are generated. When the specified distribution is Weibull and alpha, the

shape parameter (ref. 44), is zero, the resulting function is not a distrihution. In this case, the

deviate returned is set to zero.

+++ WARNING C150: MORE TRIALS NEEDED FOR NORMAL APPROXIMATION IN SIMULATOR +++

File: HARPSIM

Subroutine: STATS

Meaning: If the FEIIM model chosen is the HARP default ESPN model, this model is

simulated for solution. This warning may appear during the statistical analysis of the sinmlation

data. In estimating the confidence intervals about the exit prohabilities, a normal apl)roximation

to the binomial distrit)ution is used. This approximation is valid if n*p is groater than 5. (This

rule is discussed more fully in ref. 44.) If n*p is less than 5, then the nmnber of trials is (h)ul)led

an(t the simulation (xmtinues. The initial uumI)er of simulation trials run is 1000. so this message

appears if any of the exit l)robal)ilities are less than 0.005.

+++ WARNING C155: MORE SIMULATION TRIALS ARE NEEDED TO REDUCE PERCENT**** ERROR

TO WITHIN THE VALUE SPECIFIED BY USER +++

File: HARPSIM

Subroutine: STATS

Meaning: If the FEHM nlo(tel chosen is the ttARP default ESPN model, then this model is

simulated for solution. This warning inav appear during the statistical analysis of the sinmlat ion

data. Confidence intervals about the exit probabilities are generated, and a check is ma(te as to

the relative size of tile interval. If the t)and/estimate ('100) is great.er than the percent error

specified by the user, then more trials are needed to reduce the width of the interval (band).

In this case, the number of trials is doubled, and the simulation contimms. The initial number

of simulation trials run is 1000; this number is doubled until percent error in all three exit.

probabilities is less than the value specified by" the user. If this message appears more than 5 or

6 times, the simulation mW be long (maybe an hour), and the user may want to re(hlce tile

percent error requested. Each time this message appears, the percent error for the exit being

analyzed is displayed.
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**** ERROR C500: ILLEGAL VALUE FOR COVVAL ***

File: COVFAC

Subroutine: COVNOM

Meaning: This error is displayed whenever the numeric value for a coverage factor is greater

than 1 or less than zero. If all the inputs are correct, this error signifies that the basic justification

for the behavioral decomposition has been violated. That is, the average amount of time spent in

the coverage model is comparable with the time between failures rather than relatively different

orders of magnitude.

**** ERROR C600: CALLING FOR A DEVIATE FOR NODIS ***

File: DEVGEN

Subroutine: DEVGEN

Meaning: If the FEHM model chosen is the HARP default ESPN model, then this model

is simulated for solution. During the simulation, deviates of the distributions for the timed

transitions are generated. If the user has specified "No Distribution" (believing that the

corresponding transition would never be enabled), and a deviate is called for, then this error is

printed and execution halts.

**** ERROR C750: FEHM FILE NOT FOUND ***

File: COVFAC

Subroutine: COVNOM or COVVAR

Meaning: This error appears if the file containing the parameters to be used for the FEHM

file does not exist. The name of the file requested is displayed. The obvious correction is to be

certain that the FEHM files listed in the dictionary do indeed exist.

**** ERROR C755: UNRECOGNIZED FEHM TYPE ***

File: COVFAC

Subroutine: COVNOM or COVVAR

Meaning: The first line of a file containing the parameters for a FEHM file states the model

type being described. If the COVFAC routine does not recognize the file type, this message is

printed, as is the first line of the FEHM parameter file, and the name of the FEHM file.

**** ERROR C900: INVALID RATE F0R EXPONENTIAL DIST

File: DISTS

Subroutine: EXP or MEXP

Meaning: This message appears if the rate parameter (1/mean) for the (negative) exponential

distribution (for DISTRIBUTIONS FEHM model) is less than or equal to zero. To correct this

error, check the FEHM file(s) to be certain that the specified value of any rate parameter is

positive.
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**** ERROR C905: SCALE PARAMETER FOR WEIBULL IS ZERO

File: DISTS

Subroutine: WEIBL or MWEIBL

Meaning: This message appears if the parameter for the Weibull distribution of time to exit

the FEHM model is illegal. To correct this error, check the FEHM parameter file(s) to be certain

that the scale (rate) parameter for the Weibull distribution is positive.

**** ERROR C9iO: SHAPE PARAMETER FOR WEIBULL IS ZERO

File: DISTS

Subroutine: WEIBL or MWEIBL

Meaning: This message appears if the parameter for the Weibull distribution of time to exit

the FEHM model is illegal. To correct this error, check the FEHM parameter file(s) to be certain

that the shape (alpha) parameter for the Weibull distribution is positive.

**** ERROR C915: HIGH VALUE < LOW VALUE FOR UNIFORM DIST.

File: DISTS

Subroutine: UNIFRM or MUNIF

Meaning: This message appears if tile parameters for the uniform distribution of time to exit

the FEHM model are illegal (i.e., if the upper limit is less than or equal to the lower limit).

To correct this error, check the FEHM parameter file(s) to be certain that the upper and lower
limits are correct.

**** ERROR C920: SCALE PARAMETER FOR GAMMA IS ZERO

File: DISTS

Subroutine: GAMDST or MGMDST

Meaning: This message appears if the scale parameter _r the gamma distribution of time to

exit the FEHM model is zero. To correct this error, check the FEHM parameter file(s) to be

certain that the scale (rate) parameter for the gamma distribution is positive.

**** ERROR C925: SHAPE PARAMETER FOR GAMMA IS ZERO

File: DISTS

Subroutine: GAMDST or MGMDST

Meaning: This message appears if the shape parameter for the gamma distribution of time

to exit the FEHM model is zero. To correct this error, check the FEHM parameter file(s) to be

certain that the shape (alpha) parameter _r the gamma distribution is positive.

**** ERROR C930: ILLEGAL PARAMETER FOR HYPEREXP DIST.

File: DISTS

Subroutine: HYPER or MHYPER

Meaning: This message appears ifa rate parameter or probability _r the hyperexponential

distribution of time to exit the FEHM model is less than or equal to zero. To correct this
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error, check the FEHM parameter file(s) to be certain that the probabilities and rates for the

hyperexponential distribution are positive.

**** ERROR C935: ILLEGAL PARAMETER FOR HYPOEXP DIST.

File: DISTS

Subroutine: HYPO or MHYPO

Meaning: This message appears if a rate parameter for the hypoexponential distribution

of time to exit the FEHM model is less than or equal to zero. To correct this error, check the

FEHM parameter file(s) to be certain that the probabilities for the hypoexponential distribution

are positive.

++++ WARNING E031, WEIBULL FAILURE RATE USED WITH REPAIR

File : FILL

Subroutine : FILSYM

Meaning: The model contains both a (time varying) Weibull failure rate transition and a

constant repair rate transition. The results may ,e meaningless with this combination.

Action: The user needs to analyze the model and determine if the combination of time-varying

transitions with repair transitions is correct.

++++ WARNING E032, WEIBULL FAILURE RATE USED WITH COLD SPARES

File : FILL

Subroutine : FILSYM

Meaning: The r,lodel contains both a (time varying) Weibull failure rate transition and a

cold spare (as specified in the fault tree). The results of the solution of this model are suspect.

Action: Check the model to be sure that it is the one intended.

++++ WARNING E033, BEHAVIORAL DECOMPOSITION ASSUMPTIONS VIOLATED

File : HARPENG

Subroutine : HARPENG

Meaning: The model contains states that are too fast (relative to the slowest FEHM). This

warning arises when the fastest mean time to exit for any FEHM is less than 1000 times the

mean sojourn time in the fastest state. The warning is issued to alert the user that predicted

unreliabilities/availabilities may be overly conservative. The "magic number" 1000 was chosen

based on observed typical system models so that this message does not appear too often.

Action: Check the model to be sure that it is the one intended.

++++ WARNING E060, INVALID INPUT CHARACTER -x- IS IGNORED

File: SCAN

Subroutine: ICLASS

Meaning: A character in the input stream of a symbolic expression cannot be classified asa

digit, upper or lower case alphabetic, operation sign, or parenthesis. It is ignored.
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Action: If an input file is beingused,it shouldbeeditedto removeor correctthe offending
character.If the characteris not.printable(i.e.,a blankor null characterappearsbetweenthe
dashesin theerrormessage),tile offendingcharactermaybea controlcharacter.

++++ SKIP: WARNING E061 - UNEXPECTED END OF FILE

File : FEHMUTL

Subroutine: SKIP

Meaning: Tile SKIP() subroutine skips a specified nunlber of lines in all input file. If all EOF

is enc(mntered unexpectedly during this operation, this warning message is produced.

Action: Check the hlput files for harpc._tg; one of them might be corrupted.

++++ GERK WARNING E200, MANY STEPS

File : GCALL

Subroutine : GCALL

Meaning: This message reflectsan error code of 3 from the GEIRK ODE solver. Thus,

the integration was not completed because inore than 9000 derivative evaluations were needed

(_500 steps). The model may be too stifffor GERK to handle accurately and/or the mission

time may be too long.

Action: Determine whether the stiffness is inherent in the model formulation and/or if the

mission time can be reduced. If the model cannot be changed, then another ODE solver may

be more appropriate.

++++ GERK WARNING E201, TOLERANCES RESET: x.xxx-xx y.yyy-yy

File : GCALL

Subroutine : GCALL

Meaning: This message reflects an error code of 4 or 5 from the GEIRK ODE solver. Code 4

means that the integration was not coinpleted because the solution vanished, making a pure

relatiw_' error test impossible. Thus, GERK must use a nonzero absolute error tolerance to

continue. Code 5 means that the integration was not completed because the requested accuracy

could not be achieved with the smallest allowable stepsize. Thus, GEIIK must increase the error

tolerance before continued integration can be attempted.

Action: No user action is required. The GCALL subroutine automatically sets a positive

absolute error tolerance for a code 4 return and increases the relative error tolerance by a factor

of 10 for a code 5 return.

++++ GERK WARNING E202, MUCH OUTPUT

File : GCALL

Subroutine : GCALL

Meaning: This message reflects an error code of 6 from the GERK ODE solver. Thus, GERK

is being used inefficiently in solving the model; too much output is restricting the natural stepsize
choice.

Action: If convenient, reduce the mission time.
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++++ GERK WARNING E300, (BND) MANY STEPS

File : GCALL

Subroutine : GCALL2

Meaning: This message reflects an error code of 3 fl'om the GE1RK ODE solver. Thus,

the integration was not completed because more than 9000 derivative evaluations were needed

(_500 steps). The model may be too stiff for GE1RK to handle accurately and/or the mission

time may be too long.

Action: Determine whether the stiffness is inherent in the model formulation and/or if the

mission time can be reduced. If the model cannot be changed, then another ODE solver may

be more appropriate.

++++ GERK WARNING E301, (BND) TOLERANCES RESET: x.xxx-xx y.yyy-yy

File : GCALL

Subroutine : GCALL2

Meaning: This message reflects an error code of 4 or 5 from the GERK ODE solver. Code 4

means that the integration was not completed because the solution vanished, making a pure

relative error test impossible. Thus, GERK must use a nonzero absolute error tolerance to

continue. Code 5 means that the integration was not completed because the requested accuracy

could not be achieved with the smallest allowable stepsize. Thus, GEI/K must increase the error

tolerance before attempting continued integration.

Action: No user action is required. The GCALL2 subroutine automatically sets a positive

absolute error tolerance for a code 4 return and increases the relative error tolerance by a factor
of 10 for a code 5 return.

++++ GERK WARNING E302, (BND) MUCH OUTPUT

File : GCALL

Subroutine : GCALL2

Meaning: This message reflects an error code of 6 from the GERK ODE solver. Thus, CLERK

is being used inefficiently in solving the model; too much output is restricting the natural stepsize
choice.

Action: If convenient, reduce the mission time.

**** ERROR E510, NUMBER OF STATES OUT OF RANGE

File : FILL

Subroutine : FILL

Meaning: The number of states specifiedfor the model was either lessthan one or more than

the maximum number allowed by the program.

Action: Redefine the number of states for the model. Ifa larger model isto be run, consult

section 5.3 of this Technical Paper.
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**** ERROR E511, ROW AND COLUMN OUT OF ORDF.R

File: FILL

Subroutine: FILL

Meaning: The program requires that matrix entries be entered ill row-major order so that

the sparse matrix data structure can be built properly (i.e., rows must be entered in ascending

order, and within a row columns must be in ascending order). This message indicates that the

program detected an entry out of this order.

**** ERROR E512, ROW AND COLUMN OUT OF RANGE

File: FILL

Subroutine: FILL

Meaning: The row or column index used to specify amatrix entry is greater than the number
of states.

Action: Rerun fiface for the model.

**** ERROR E530, PARAMETER TYPE UNRECOGNIZED

File: FILL

Subroutine: FILSYM

Meaning: When reading from an echo file, the parameter type given does not match a defined
value.

Action: Rerun the model through haTpen9 without the echo file.

**** ERROR E550, NEW SYMBOL ADDED IN NEXT FAULT RATE EXPRESSION

File : GET

Subroutine : GETNF

Meaning: To reduce tile number of symbol definition and evaluation passes over the symbol

table, no new parameters may be defined by the next fault rate symbolic expression. This error

indicates that a new parameter was introduced in the next fault rate expression.

Action: Be sui'e that any symbols that appear in the near-coincident fault rate expression

appear in tile dictionary.

**** ERROR E570, INCORRECT SYNTAX - EXPRESSION INCOMPLETE

File : SYM

Subroutine : SYMINP

Meaning: Tile symbolic expression was prematurely terminated by a semicolon. Tile

semicolon may have appeared after an operation symbol (+,-, *) or the expression may lack

closing parentheses.

Action: Rerun fiface for the model.
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**** ERROR E580, INCORRECT SYNTAX, UNEXPECTED SYMBOL

OFFENDING SEQUENCE IS:

File : STORE

Subroutine :STORE

Meaning: The symbolic expression does not conform to the proper syntax as implemented in

the syntax table.

Action: Correct the symbolic expression. The following are usual suspects:

1. No multiplicative sign between a token and its coefficient

2. Double --, ++, or ** signs

3. No semicolon

**** ERROR E590, TRYING TO DEALLOCATE WRONG TERM

File : ALLOC

Subroutine : DALLCT

Meaning: A callto the DALLCT subroutine has been made with a pointer to a TERM node

that was not the most recently allocated.

Action: A serious logical error has occurred in the program and should be reported along

with a copy of the input files for this model to the first author of this Technical Paper.

**** EKROR E591, POINTER TO TERM LIST NEGATIVE

File : ALLOC

Subroutine : DALLCT

Meaning: A callto the DALLCT subroutine has been made before a TERM node has been

allocated.

Action: A serious logical error has occurred in the program and should be reported along

with a copy of th,_, input files for this model to the first author of this Technical Paper.

**** ERROR E600, OUT OF SPACE F0R TERM LIST

File : ALLOC

Subroutine : ALLOCT

Meaning: More TERM nodes are required to represent the model than are currently allocated

by the program.

Action: To run such a large model, the program must be recompiled with more storage space

for the data structures FACLHD and NXTTRM. See section 5.3 of this Technical Paper.

**** ERROR E610, OUT OF SPACE FOR FACTOR LIST

File: ALLOC

Subroutine: ALLOCF

Meaning: More FACTOR nodes are required to represent the model than are currently

allocated bythe program.
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Action: To runsucha largemodel,thewogram must be recompiled with more storage space

for the data structures FACTYP, SYMENT. and NXTFAC. See section 5.3 of this Technical

Paper.

**** ERROR E620, OUT OF SPACE FOR SYMBOL TABLE

File : ALLOC

Subroutine : ALLOCS

Meaning: More symbol lable entries are r(_quired to r(_i)resent the model than are ('urrently

allocate(t by the program.

Action: To run such a large mode.I, the program musl be recomt)iled with more storage space

for the symbol table. See section 5.3 of this Technical Pal)er.

**** ERROR E700, IMPROPER CALL TO GERK

File: GCALL

Subroutine: GCALL

Meaning: This messag(_ reflects an error code of 7 fl'om the GEI/K OI)E solver. Thus, a

call to the GEIRK subroutine has been made with invalid input parameters. Possible reasons

are NEQN <= 0, T = TOUT and IFLAG = /, +1, or -1, RELERR < 0, ABSEI{R < 0,

IFLAG = 0, IFLAG < - 2, IFLAG > 7.

Action: A serious logical error has occurred in the program and shouht be reported along

with a copy of the input tiles for this model 1o the firsl author of this Technical Paper. There is
no intermediate circumvention.

**** ERROR E710, WRONG FUNCTION CODE TO SETVAL

File : SET

Subroutine : SETVAL

Meaning: A call 1o the SET¥%L subroutine has been made with all undefined function code.

Action: A serious logical error has occurred in the program and shouht t)e reported along

with a copy of the input flies for this model to lhe first author of this Technical Paper. There is

no intermediate circumvention.

**** ERROR E720, NEGATIVE TRANSITION RATE

File : EVAL

Subroutine : SYMEVL

Meaning: One of the off-diagonal symbolic transition rates has appeared as a negative

number.

Action: Check the values assigned to the symbols, and check the nmneric evaluation of the
rate.

**** ERROR E800, (BND) IMPROPER CALL TO GERK

File: GCALL
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Subroutine: GCALL2

Meaning: This message reflects an error ,:ode of 7 from tile GERK ODE solver. Thus, a

call to the GERK subroutine has been made with invalid input t)arameters. Possible re_sons

are NEQN < = 0, T = TOUT and IFLAG = /, +1, or -1, RELERR < 0, ABSERR < 0,

IFLAG = 0, IFLAG < - 2, IFLAG > 7.

Action: A serious logical error has occurred in the program and should be reported along

with a copy of tile input files for this inodel to the first author of this Technical Paper. There is
no intermediate circumvention.

++++ RDDICT: WARNING FIO0 - FAILURE RATE VARIABLE, rate,

TO0 LONG - TRUNCATED TG size CHARACTERS ++++

File : RDDICT

Subroutine : RDDICT

Meaning: The character string representing a failure rate variable that was read from tile

dictionary was longer than the allowable size for a failure rate variable and was truncated to the

maximum legal size.

Action: Correct the offending failure rate variable in the dictionary or use the truncated one.

++++ FT2MC: WARNING FI02 - STATE TABLE TO0 SMALL TO

REMEMBER ALL SYSTEM STATES, RETRYING... ++++

File : FT2MC

Subroutine : FT2MC

Meaning: To prune tile state search tree, system states are remembered by storing them in

a State Table when they are first generated. If a previously generated state is regenerated at

some point, it does not need to be retested for system failure or added to the queue for later

expansion. Both unique nonfailure states and states that cause overall system failure are stored

in the State Table. When the fault tree causes so many of these states to be generated that

the State Table is filled, this message is printed. FT2MC() tries to reprocess the fault tree by

placing itself in a mode where the states representing system failure are not individually stored,

but instead only a single FE (failure due to exhaustion) state is stored for each component.

The unique nonfailure states are still stored in the State Table. Depending on the fault tree,

the conversion process to a Markov chain may take longer, but this method may allow larger

systems to be processed than could be handled before.

Action: None. If error F508 occurs after FT2MC() makes its second attempt, then the State

Table is too small and the number of states parameters (MSTATS in FT2MC, TABLEN and

PRIME2 in INISTA (in CKSTAT.FOR source file)) must be increased to handle a fault tree of

this size. See section 5.3 of this Technical Paper for information on increasing the number of
states HARP can handle.

++++ FT2MC: WARNING FI03 - MARKOV CHAIN TRUNCATED BEFORE ANY FAILURE

EXHAUSTION STATES WERE REACHED ++++

File: FT2MC

Subroutine: FT2MC
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Meaning: When truncation of the Markov chain to a user-specified number of states is

enabled, the generation of states is stopped after the specified number of components have

failed throughout the system. If the redundancy of each component type in the system is larger

than the user-specified truncation cutoff number of failures, than no FE states have been reached

in the Markov chain when FT2MC stops generating states. This warning message is produced
in that situation.

++++ CKSTAT: WARNING F200 - STATE n FOUND ALREADY IN STATE TABLE

WHILE ATTEMPTING TO ADD TO THE STATE TABLE ++++

File : CKSTAT

Subroutine : CKSTAT

Meaning: When adding a (supposedly) new system state to the State Table, CKSTAT()

found that the state was already present in tile State Table. This action has no functional effect

on the operation of the conversion process, but it may indicate an internal programming problem

somewhere in the FT2MC subsystem,

Action: Report warning message to the first author of this Technical Paper.

++++ INPTRE: WARNING F300 - MAX BASIC COMPONENTS ALLOWED

IN FAULT TREE = maxcmpts ++++

File : INPTRE

Subroutine : INPTRE

Meaning: When entering a textual description of a fault tree, the user has attempted to

specify more basic component nodes than the system currently allows.

Action: Rebuild the FT2MC subsystem with a larger value for tile maximum rmmber of basic

component nodes allowed; that is, increase the MCMPTS parameter in all FORTRAN source

files, recompile, and retink.

++++ INPTRE: WARNING F30i - MAX NO. NODES ALLOWED IN FAULT TREE = maxnodes ++++

File : INPTRE

Subroutine : INPTRE

Meaning: W'hen entering a textual description of a fault tree, the user has attempted to

specify more fault tree nodes than the system currently allows.

Action: Rebuild the FT2MC subsystem with a larger value for the maximum number of

fault tree nodes allowed; that is, increase the MNODES parameter in all FORTRAN source

files, recompile, and relink.

**** ENCSTA: ERROR F400 - # FAILURES EXCEED DECLARED LENGTH OF AN ENCODED STATE

File : ENCSTA

Subroutine : ENCSTA/DECSTA

Meaning: ENCSTA() encodes a system state from a tuple of working components to a list

of tile components that failed to bring the system from its original state to the current STATE.

DECSTA() performs the corresponding inverting conversion. Both routines declare a vector of
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a certain length to hold the encoded state. If more component failures have occurred than can

be stored in the declared vector, this error message is produced. As currently implemented, this

error represents an internal programming error within FT2MC.

Action: Report error to the first author of this Technical Paper.

**** DECSTA: ERROR F401 - CMPNT TYPE cmp SPECIFIED IN ENCODED STATE IS

OUT OF RANGE

File: ENCSTA

Subroutine: DECSTA

Meaning: ENCSTA() encodes a system state from a tuple of working components to a list

of the components that failed to bring the system from its original state to the current STATE.

DECSTA() performs the corresponding inverting conversion. If during the decoding process

DECSTA() encounters in the list of failed components a component type that is not present in

the system, this error message is produced. This error represents an internal programming error
within FT2MC.

Action: Report error to the first author of this Technical Paper.

**** FT2MC: ERROR F500 - FAULT TREE NAME TOO LONG ****

File: FT2MC

Subroutine: FT2MC

Meaning: The modelname passed to FT2MC 0 was too long and was r_ected.

Action: Specify a shorter modelname.

**** FT2MC: ERROR F504 - ERROR OPENING MARKOV CHAIN OUTPUT FILE filename ****

File: FT2MC

Subroutine: FT2MC

Meaning: The FT2MC() subroutine encountered an error while trying to open the Markov

chain output file. This error is an operating system error rather than an FT2MC error.

Action: Consult the oDerating system manuals _r the cause and possible solutions.

**** 0UTARC: ERROR F505 - ERROR retcode RETURNED BY INTCHR() ****

File : FT2MC

Subroutine : OUTARC

Meaning: The OUTARC() subroutine outputs a Markov chain arc between an originating

system state and a new system state produced when a component failsin the originatingstate.

For the component that fails,the number of those components operational before the failure

influences the transition rate of the arc. Thus, the number of components operational before

the failuremust be converted to a character string and printed. The INTCHR() subroutine

encountered an error while attempting to convert this number of components to a character

string. This error represents an internal programming error in FT2MC.

Action: Report error to the firstauthor of this Technical Paper.
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**** FT2MC: ERROR F510 - T00 MANY STATES GENERATED, MAX = mstats

File : FT2MC

Subroutine : FT2MC

Meaning: FT2MC() has generated more than the maximum allowable number of states during
the conversion of the fault tree model into a Markov chain.

Action: Increase the MSTATS parameter in the tdrive source files and recompile tile entire

program.

**** EXTID: ERROR F511 - STATE state_tuple NOT FOUND IN LINKED LIST

File : FT2MC

Subroutine : EXTID

Meaning: As states are generated during the conversion process, they are store(t in a linked

list. This list makes it possible to determine whether each state has l)een generated before or

is being generated for the first time. If the state has been generated before, it will have been

assigned an external ID number when it was created. EXTID() looks up such a previously

generated state in the linked list. to determine its ID numt)er. This error message occurs when
a state that should be in the linked list is not found there.

Action: Report error to the first author of this Technical Paper.

**** FRSTIM: ERROR F512 - INCOMPATIBLE ROOT STATE (state_tuple) FOR

STATE state_tuple

File : CKSTAT

Subroutine : FRSTIM

Meaning: FRSTIM() uses a STATE and its parent state RSTATE in perforniing its function.

At several places, FRSTIM() performs a. consistency check between STATE and RSTATE to

ensure that STATE is indeed a proper descendent state of RSTATE. If this consistency check

fails (i.e., it is determined that STATE could not possibly be a descendent state of RSTATE),

then this error message is produced. This error represents an internal progranmting error in
FT2MC.

Action: Report error to the first author of this Technical Paper.

**** RDDICT: ERROR F600 - DICTIONARY FILE NOT FOUND ****

File : DICT

Subroutine : RDDICT

Meaning: The RDDICT() subroutine was unable to find the dictionary file.

Action: Make sure the dictionary file for tile fault tree (modelname.DIC) exists beR)re the

FT2MC subsystem is called.

**** RDDICT: ERROR F601 - DICTIONARY OVERFLOW, MAX NUMBER OF

COMPONENT TYPES =num ****

File: DICT

Subroutine: RDDICT
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Meaning:TheRDDICT() subroutinefoundthat thedictionaryfile for thefault treecontains
morethan the maximumnumberof componenttypesallowedin a fault tree.

Action: This fault treecannotberunthroughFT2MCunlesstheFT2MCsubsystemisrebuilt
with a largervaluefor MTYPES,which is the limit for the maximumnumberof component
typesallowedin a fault tree.

**** RDDICT: ERROR F602 - ERROR OPENING DICTIONARY FILE ****

File : DICT

Subroutine : KDDICT, WRTDCT

Meaning: The RDDICT() subroutine encountered an error while trying to open the dictionary

file. This error is an operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** RDDICT: ERROR F603 - UNEXPECTED EOL ENCOUNTERED WHILE PARSING NEXT

ITEM FROM INPUT LINE, OFFSET = offset ****

File : DICT

Subroutine : RDDICT

Meaning: The NXTWRD() subroutine encountered an unexpected End-Of-Line while reading

an input line from the dictionary. The dictionary file may be corrupted.

Action: Check the dictionary file. Recreate it if necessary.

**** RDDICT: ERROR F604 - ERROR ENCOUNTERED WHILE PARSING NEXT ITEM FROM

INPUT LINE, OFFSET = offset ****

File : DICT

Subroutine : RDD ICT

Meaning: The RDDICT() subroutine encountered an error while reading an input line from

the dictionary. _Ihe dictionary file may be corrupted.

Action: Check the dictionary file. Recreate it if necessary.

**** RDDICT: ERROR F605 - COMPONENT ENTRIES OUT OF ORDER IN DICTIONARY ****

File : DICT

Subroutine : RDDICT

Meaning: While reading the dictionary file, the RDDICT 0 subroutine found that an entry

for a component was not in consecutive order with the other entries. The dictionary file may be

corrupted or the user may have made an error when creating the dictionary file.

Action: Check the dictionary file. Recreate it if necessary.

**** PASSI: ERROR FT00 - FAULT TREE DESCRIPTION FILE (filename) NOT FOUND ****

File: BLDLST

Subroutine: PASSl
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Meaning: The PASSI() subroutine could not find the graphics specification language input

file containing tile fault tree specification.

Action: Make sure that an input file containing a fault tree specification (either a .FT1R

graphics format input file or a .TXT textual specification language format input file) exists

before the FT2MC subsystem is called.

**** PASS1: ERROR FT01 - UNEXPECTED FIRST INPUT ITEM - OBJECT TOO LONG ****

File : BLDLST

Subroutine : PASS1

Meaning: The first item of every line in a graphics specification language format input file is

either 'N' (indicating that this line describes a fault tree node) or 'A' (indicating that this line

describes an arc). Either item is only one character in length. If tile first, item read from an

input line is longer than one character in length, then there is an error. Tile input file is either

corrupted, or it is not a graphics specification language format input file.

Action: Make sure the input file <ft, reenanm.FTR> has the correct format (graphics

sl)ecification language).

**** PASSI: ERROR F702 - ERROR OPENING INPUT FILE filename ****

File : BLDLST

Subroutine : PASS 1

Meaning: The PASSI() subroutine encountered an error while trying to open the input file

containing the fault tree specification in graphics specification language format. This error is an

operating system error rather than an FT2MC error.

Action: Consult tile operating system manuals for the cause and possible solutions.

**** PASSI: ERROR F703 - ERROR ENCOUNTERED WHILE PARSING NEXT WORD FROM

INPUT LINE: line ****

File : BLDLST

Subroutine : PASS1

Meaning: The NXTWt{D() subroutine encountered an error while reading an input line from

the fault tree specification input file. The input file may be corrupted or contain errors.

Action: Check the input file for format errors. Recreate it if necessary with tdrive or tile

graphics fault tree input facility.

**** PASSI: ERROR F704 - INDEX LIST OVERFLOW, TOO MANY FT NODES ****

File : BLDLST

Subroutine : PASSI

Meaning: Tile fault tree specificationread from tileinput, filehas so many nodes that it

overflowed the index listtable.

Action: Rebuild the FT2MC subsystem with a larger index listsize. Tile FT2MC()

subroutine callsBLDLST() so that the QUEUE array isused for the Index List by BLDLST.
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This doubleduty for the QUEUEarray is possiblebecauseBLDLSTdoesnot usea queueand
FT2MC doesnot usetile indexlist after BLDLST returns. Therefore,spacecanbesavedby
usingthe samearray for both purposes.Consequently,te increasetile indexlist size,increase
QLEN, the sizeof tile QUEUEarray,in the FT2MC() subroutine.

**** PASS2: ERROR F705 - UNEXPECTED FIRST INPUT ITEM - OBJECT TOO LONG ****

File : BLDLST

Subroutine : PASS2

Meaning: The first item of every lille ill a graphics specification language format input file is

either 'N' (indicating that this line describes a fault tree node) or 'A' (indicating that this line

describes an arc). Either item is only one character in length. If tile first item read from all

input line is longer than one character in length, then there is an error. The input file is either

corrupted, or it is not a graphics specification language format input file.

Action: Make sure the input file <MODELNAME.FTR> has the correct format (graphics

specification language).

**** PASS2: ERROR F706 - ILLEGAL FORM FOR M/N GATE LABEL: label ****

File : BLDLST

Subroutine : PASS2

Meaning: This error occurs ifthe length of the token that is supposed to be a label for an

M/N gate islessthan three. An M/N gate labelhas the form: m/n, where m and n are integers.

The label therefore must have a length of at lea.stthree. If itdoes not, then itcannot possibly

be a valid M/N gate label.

Action: Check the input file<ftreename.FTR> for an M/N gate labelwith an illegalformat
and correct it.

**** PASS2: ERROR F707 - TOO MANY BASIC COMPONENTS (LEAVES) IN FAULT TREE ****

File : BLDLST

Subroutine : PASS2

Meaning: The faulttree specificationread from the input filecontains more Basic Component

nodes than the maximum number allowed in a fault tree.

Action: FT2MC cannot process this fault tree unless FT2MC is rebuilt with a larger value

for MCMPTS, the maximum number of Basic Component nodes allowed in the fault tree.

**** PASS2: ERROR F708 - ILLEGAL FAULT TREE NODE TYPE: nodetype ****

File : BLDLST

Subroutine : PASS2

Meaning: A fault tree node type read from the input file is not one of the supported types

defined in the GATES COMMON block. The value for <nodetype> printed as part of the

previous message is an integer value.

Action: Check the input file <MODELNAME.FTR> for an error in one of the fault tree

node description lines.
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**** PASS2: ERROR F709 - LOOKUP IN INDEX LIST FAILED FOR ITEM AT

LOCATION (x,y) ****

File: BLDLST

Subroutine : PASS2

Meaning: Tile PASS2() subroutine could not find an entry ill the index list for one of the

fault tree nodes. This error represents an internal programming error in PASS1 and PASS2.

Action: Report. error to the first author of this Technical Paper.

**** PASS2: ERROR F710 - DEST COORD MISMATCH FOR INCOMING ARC ****

File : BLDLST

Subroutine : PASS2

Meaning: Tire graphics fault tree input facility records both incoming and outgoing arcs for

fault tree nodes in the fault tree specification file that it produces for FT2MC. An incoming arc

description specifies both the node at the source of the arc and the node at the destination of

the arc. The destination node for an incoming arc is the node currently being processed. An

outgoing arc description specifies only the node at the destination of the arc. FT2MC only needs

to concern itself with incoming arcs. FT2MC can determine whether an arc description is for an

incoming arc or an outgoing are by looking for the destination node to be the same as the node

currently being processed. If it is not and no destination node is specified, then the arc is an

outgoing arc and can be ignored. However, if the destination node is specified and it is not the

same as the node currently being processed, then there is an error in the fault tree specification.

This error message is produced in that event.

Action: Check the fault tree specification in the input file <MODELNAME.FTR> and
correct it.

**** PASS2: ERROR F711 - ERROR OPENING INPUT FILE filename ****

File : BLDLST

Subroutine : PASS2

Meaning: The PASS2() subroutine encountered an error while trying to open the input file

containing the fault tree specification in graphics specification language format. This error is an

operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** PASS2: ERROR F712 - ERROR PARSING NEXT WORD FROM INPUT LINE: line ****

File : BLDLST

Subroutine : PASS2

Meaning: The NXTWRD() subroutine encountered an error while reading an input line from

the fault tree specification input file. The input file may be corrupted or contain errors.

Action: Check the input file for format errors. Recreate it if necessary with tdrive, or the

graphics fault tree input facility,
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**** LOOKUP: ERROR F713 - ILLEGAL FUNCT: f ****

File: BLDLST

Subroutine: LOOKUP

Meaning: The value of f in the previous message is an integer. The LOOKUP() subroutine

looks up a fault tree node in the index list and allows the calling routine to either read or write

to the pointer field (points into place table) of the index list entry for the fault tree node. The

calling routine specifies which operation it wants to do through a subroutine argument FUNCT,

where FUNCT = 0 means read and FUNCT = 1 means write. Any other value of FUNCT is

unsupported and produces this error message. This error represents a programming error within
PASS2.

Action: Report error to the first author of this Technical Paper.

**** LOOKUP: ERROR F714 - PLACE AT (x,y) NOT FOUND IN INDEX LIST ****

File : BLDLST

Subroutine : LOOKUP

Meaning: The LOOKUP() subroutine could not find an entry in the index list for one of the

fault tree nodes. This error represents an internal programming error in PASS1 and PASS2.

Action: Report error to the first author of this Technical Paper.

**** PASS3: ERROR F715 - CARDINALITY OF INCOMING ARCS (c) FOR m/n GATE

DO NOT MATCH N = n of M/N GATE ****

File : BLDLST

Subroutine : PASS3

Meaning: The values of c, m, and n in the previous message are integers. The fault tree

specified in the modelname.FTR input file contained an m/n gate whose number of incoming

arcs did not match the parameter n of the gate. Compound arcs (i.e., arcs whose sources are basic

component nodes representing several redundant components) count as several individual arcs

rather than as one arc. For example, a compound incoming arc whose source node is a basic

component node representing three redundant components of type 1 (a 3"1 basic component

node) counts as three individual arcs rather than as one arc.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input file and correct

any m/n gates that do not have exactly n incoming arcs (considering compound arcs as described

previously).

**** PASS3: ERROR F716 - DEPENDENT EVENTS FOR A FUNCTIONAL DEPENDENCY

GATE MUST BE BASIC EVENTS; ARC arc OF NODE node

IS NOT A BASIC EVENT

File : BLDLST

Subroutine : PASS3

Meaning: Functional Dependency gates can have on]y basic event nodes as dependent events

(i.e., all events after the first, or leftmost, incoming arc to the gate). The trigger event (first, or

leftmost, incoming arc) can be any type of event (i.e., the trigger arc may come from any legal
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typeof gateor node).If anydependenteventsof the FunctionalDependencygatearenot basic
events(i.e., the arc doesnot comefrom a basiccomponentnode),then this error messageis
printed.

Action: ExaminetheMODELNAME.FTRor theMODELNAME.TXT input fileandcorrect
anyFunctionalDependencygateswith dependenteventsthat arenot basicevents.

**** PASS3: ERROR F717 - ALL DESCENDENT EVENTS FOR A COLD SPARE GATE MUST

BE UNREPLICATED BASIC EVENTS; ARC arc OF NODE node

IS NOT A BASIC EVENT

File : BLDLST

Subroutine : PASS3

Meaning: Cold Spare gates can have only unreplicated basic event nodes as descendent events

(i.e., all incoming arcs must come from basic component nodes). If any descendent events of the

Cold Spare gate are not basic events, this error message is printed.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input file and correct

any Cold Spare gates with descendeP., _ ,,vents that are not basic events.

**** PASS3: ERROR F718 - PRIORITY-AND GATES MUST HAVE 2 INCOMING ARCS;

NODE node HAS numarcs ARCS

File : BLDLST

Subroutine : PASS3

Meaning: Priority And gates must have exactly two incoming arcs. If a Priority And gate

has any number of incoming arcs other than two, this error message is printed.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input file and correct

any Priority And gates that have other than exactly two incoming arcs.

**** PASS3: ERROR F719 - ALL DESCENDENT EVENTS FOR A COLD SPARE GATE MUST

BE UNREPLICATED BASIC EVENTS; ARC arc OF NODE node

IS A REPLICATED BASIC EVENT

File : BLDLST

Subroutine : PASS3

Meaning: Cold Spare gates can have only unreplicated basic event nodes as descendent events

(i.e., all incoming arcs must come from basic component nodes). If any descendent events of the

Cold Spare gate are replicated basic events, this error message is printed.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input file and correct

any Cold Spare gates with descendent events that are replicated basic events.

**** PASS3: ERROR F720 - COLD SPARE GATES SHARING A SPARE WITH

OTHER COLD SPARE GATE(S) MUST HAVE 2

INCOMING ARCS; NODE node HAS numarcs ARCS

File: BLDLST

Subroutine: PASS3
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Meaning:ColdSparegateswhosespare(dependent)componentis sharedwith anotherCold
Sparegateare restrictedto havingonly one spare. The gatecan thereforehaveonly two
incomingarcs-one for the primarycomponentandonefor its spare(eachof thesemustbean
unreplicatedbasicevent,asdescribedfor errorF719).If a ColdSparegatethat sharesa spare
with anyotherColdSparegate(s)hasanynumberof incomingarcsother than two, this error
messageisprinted. NOTE: ColdSparegatesthat donotshareanyspareswithotherColdSpare
gatesarenot subjectto this restriction;theymayhaveanynumberof incomingarcsup to the
maximum(specifiedby the MARCSparameter).

Action: ExaminetheMODELNAME.FTRor theMODELNAME.TXTinput fileandcorrect
any Cold Spare gates with shared spares that have other than exactly two incoming arcs.

**** PASS3: ERROR F721 - ALL DESCENDENT EVENTS EXCEPT THE LEFTMOST

EVENT OF A SEQUENCE GATE MUST BE BASIC EVENTS;

ARC arc OF NODE node IS NOT A BASIC EVENT

File : BLDLST

Subroutine : PASS3

Meaning: Sequence gates can have only (possibly replicated) basic event nodes as descendent

events (i.e., all incoming arcs must come from basic component nodes) except for the leftmost

descendent event, which can be any general event. If any descendent events of a Sequence gate

other than the leftmost are not basic events, this error message is printed.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input file and correct

any Sequence gates with descendent events that are not basic events.

**** TRVTRE: ERROR F800 - TABLE TO0 SMALL TO HOLD STACK ****

Fi ie : TRVTRE

Subr out ine : TRVTRE, DEPCHK, CSPCHK, PACHK

Meaning: Tile TRVTRE() subroutine uses a stack to simulate a recursive traversal of the

fault tree. This _;ack is stored at the end of the place table constructed by BLDLST(). If

TRVTRE() finds that the stack it needs is too big to fit onto the end of the place table array,

this error message is produced.

Action: FT2MC cannot process this fault tree unless FT2MC is rebuilt with a larger value

for FTLEN, which is the size of the array containing the place table.

**** TRVTRE: ERROR F801 - ILLEGAL PLACE TYPE (nodetype) FOR PLACE node AT

OFFSET offset IN PLACE TABLE ****

File : TRVTRE

Subr out ine : TRVTRE, DEPCHK, CSPCHK, PACHK

Meaning: The values for <nodetype>, <node>, and <offset> in the previous message are

all integers. The TRVTRE() subroutine detected an illegal fault tree node type stored in the

place table. Thus, the place table is probably corrupted. This error represents an internal

programming error in BLDLST and/or TRVTRE.

Action: Report error to the first author of this Technical Paper.
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**** TRVTRE: ERROR F806 - INTERNAL ERROR: FLACE TABLE OFFSET < 0 ( neg val )

File : TRVTRE

Subroutine : TRVTRE, DEPCHK, CSPCHK, PACHK

Meaning: This internal error indicates that a fault tree arc has been flagged as severed and

incorrectly handled.

Action: Report error to the first author of this Technical Paper.

**** TRVTRE: ERROR F807 - CSP GATE AT OFFSET place IN PLACE TABLE

NOT FOUND IN TABLE OF CSP GATES (CSPTAB)

File : TRVTRE

Subroutine : TRVTRE, DEPCHK, PACHK, SEQCHK

Meaning: This internal error indicates a CoM Spare gate in the fault tree was not found in

the table of Cold Spare gates (CSPTAB).

Action: Report, error to the first author of this Technical Paper.

**** CSPCHK: ERROR F808 - LINKED LIST OF CSP GATE DESCENDENTS

(CSPRNT or REPEAT) IS CORRUPTED:

COMPONENT cmpnt IS NOT A DESCENDENT

OF CSP GATE gate AT LOCATION cspoff

IN PLACE TABLE

File : TRVTRE

Subroutine : CSPCHK, DETUSD

Meaning: This internal error indicates that a component that was supt)osed to be a descen(tent

of a Cold Spare gate accor(ting to either the REPEAT linked list or one of the CSPRNT() linked

lists was in fact found not to be a descendent of the specified Cold Spare gate according to the

fault tree data structure (the Place Table). The two internal data structures therefore do not

agree.

Action: Report error to the first author of this Technical Paper,

**** CSPCHK: ERROR F809 - COMPONENT cmpnt HAS SEVERAL CSP GATE

PARENTS, INCLUDING CSP GATE gate

(AT LOCATION cspoff IN THE PLACE

TABLE) WHICH IS SUPPOSED TO HAVE

NO SHARED SPARES

File: TRVTRE

Subroutine: CSPCHK

Meaning: This internal error occurs when a component is supposed to be a descendent of

several Cold Spare gates (according to the CSPRNT() array of linked lists) and one of these

Cold Spare gates is not supposed to share any of its spares with any other Cold Spare gate
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accordingto the SHRDSPfield of its entry in the fault treedatastructure(the PlaceTable).
By definition,the componenthasto besharedbetweentheseveralColdSparegatesto betheir
descendent;thus,the ColdSparegateis eitherincorrectlymarkedasnot sharingspares,or the
CSPRNT()datastructureiscorrupted.

Action: Reporterror to the first authorof this TechnicalPaper.

**** DETUSD: ERROR F810 - CANNOT TELL HOW MANY OF COMPONENT TYPE

compnt ARE BEING USED BY CSP GATE gate

(AT LOC cspoff IN THE PLACE TABLE)

File : TRVTRE

Subroutine : DETUSD

Meaning: This internal error occurs when subroutine DETUSD() is called to try to determine

how many components of a basic event are on-line and in use by a Cold Spare gate that does

not share any of its spares with any other Cold Spare gate. Cold Spare gates that share spares

with other Cold Spare gates have a "components-in-use" descriptor in the state tuple. Cold

Spare gates that do not share any of their spares do not have such a descriptor in the state

tuple. Since DETUSD() determines how many of a components are in use by examining the

appropriate descriptor, it cannot determine how many of the requested components are in use

(because there is no descriptor to examine). Since DETUSD() should never be called for a Cold

Spare gate that does not share its spares, this error is an internal error.

Action: Report error to the first author of this Technical Paper.

**** CVRTXT: ERROR F900 - FAULT TREE NAME T00 LONG ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The modelname passed to CVRTXT() was too long and was r_ected.

Action: Specify a shorter modelnaine.

**** CVRTXT: ERROR F901 - "NODE" MISSING 0N INPUT LINE line ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: A syntax error occurred in an input line read from the IVIODELNAME.TXT file;

the offending lineisprinted forthe user'sinspection. The keyword "NODE" isnot present where

itshould be in the input line.

Action: Edit the input fileMODELNAME.TXT (containing the textual description of the

faulttree) and fixthe syntax error in the appropriate line.

**** CVRTXT: ERROR F902 - TOO MANY NODES, MAX NO. NODES ALLOWED = maxnodes ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The faulttree described in the MODELNAME.TXT input filecontains too many

nodes.
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Action: Rebuild the FT2MC subsystem with a larger value for the maxinmm number of

fault tree nodes allowed; that is, increase the MNODES parameter in all FORTRAN source

files, recompile, and relink.

**** CVRTXT: ERROR F903 - NODE NUMBER MISSING ON INPUT LINE line ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT file;

the offending line is printed for the user's inspection. The number that identifies a node is not

present where it should be in the input line.

Action: Edit the input file MODELNAME.TXT (containing tile textual description of the

fault tree) and fix the syntax error in the appropriate line.

**** CVRTXT: ERROR F904 - "TYPE" MISSING ON INPUT LINE line ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT file;

the offending line is printed for the user's inspection. The keyword "TYPE" is not present where

it should be in the input line.

Action: Edit the input file MODELNAME.TXT (containing the textual description of the

fault tree) and fix the syntax error in the appropriate line.

**** CVRTXT: ERROR Fg0s - TOO MANY BASIC COMPONENTS, MAX NO. = maxcmpts ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: The fault tree described in the MODELNAME.TXT input filecontains too many

basic component nodes.

Action: Rebuild the FT2MC subsystem with a larger value for the maximum number of basic

component nodes allowed; that is, increase the MCMPTS parameter in all FORTRAN source

files, recompile, and relink.

**** CVRTXT: ERROR F906 - "OF" MISSING ON INPUT LINE line ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT file;

the offending line is printed for the user's inspection. The keyword "OF" is not present where

it should be in the input line.

Action: Edit the input file MODELNAME.TXT (containing the textual description of the

fault tree) and fix the syntax error in the appropriate line.

**** CVRTXT: ERROR F907 - "COMPONENT" MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT
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Meaning:A syntaxerror occurred in an input line read from the modelname.TXT file; the

offending line is printed for the user's inspection. The keyword "COMPONENT" is not present

where it should be in the input line.

Action: Edit the input file MODELNAME.TXT (containing the textual description of the

fault tree) and fix the syntax error in the appropriate line.

**** CVRTXT: ERROR F908 - "INPUT" MISSING ON INPUT LINE line ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT file;

the offending line is printed for the user's inspection. The keyword "INPUT" is not present

where it should be in the input line.

Action: Edit the input file MODELNAME.TXT (containing the textual description of the

fault tree) and fix the syntax error in the appropriate line.

**** CVRTXT: ERROR F909 - SOURCE NODE NUMBER MISSING ON INPUT LINE line ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: A syntax error occurred in an input lineread from the MODELNAME.TXT file;

the offending line is printed for the user's inspection. Tile number that identifiesthe node at

the source of an input arc isnot present where itshould be in the input line.

Action: Edit tileinput fileMODELNAME.TXT (containing the textual description of the

fault tree) and fix the syntax error in the appropriate line.

**** CVRTXT: ERROR F910 - "LABEL" MISSING ON INPUT LINE line ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT file;

the offending line is printed for the user's inspection. The keyword "LABEL" isnot present

where it should be in the input lille.

Action: Edit the input file MODELNAME.TXT (containing the textual description of the

fault tree) and fix the syntax error in the appropriate line.

**** CVRTXT: ERROR F911 - NUMBER INCOMING ARCS MISSING ON INPUT LINE line ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT file;

the offending line isprinted for the user'sinspection. The number of incoming arcs for a fault

tree node isnot present where itshould be in the input line.

Action: Edit the input fileMODELNAME.TXT (containing the textual description of the

fault tree) and fixthe syntax error in the appropriate line.
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**** CVRTXT: ERROR F912 - TOO MANY INCOMING ARCS, MAX NO. = maxarcs ****

File: CVRTXT

Subroutine : CVRTXT

Meaning: The fault tree described in tile MODELNAME.TXT input file contains one node

that has too man}' incoming arcs.

Action: Rebuild the FT2MC subsystem with a larger value for tile maximum number of

incoming arcs per node allowed; that is, increase the MARCS parameter ill all FORTRAN

source files, recompile, and relink.

**** CVRTXT: ERROR F914 - ERROR ENCOUNTERED READING SOURCE OF INCOMING

ARC arc IN LINE: line ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: The NXTWRD() subroutine encountered an error while reading the number of the

node at the source of an incoming arc.

Action: Examine the offending input line in the MODELNAME.TXT input file for syntax

errors.

**** CVRTXT: ERROR F915 - ILLEGAL TYPE FOR FAULT TREE NODE ---> type ****

File : CVRTXT

Subr out ine : CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT file;

the offending line is printed for the user's inspection. The input line specifies a fault tree node

whose type is unsupported.

Action: Edit the input file MODELNAME.TXT (containing the textual description of the

fault tree) and fix the syntax error in the appropriate line.

**** CVRTXT: ERROR F916 - "SYSTEM-FAILURE" BOX NOT SPECIFIED, FAULT TREE

INCOMPLETE ****

File : CVRTKT

Subroutine : CVRTXT

Meaning: The fault tree description contained in the MODELNAME.TXT file does not

include a "System-Failure" box (FBOX) at the top node (root) of the fault tree. The FT2MC

subsystem requires all fault trees to have an FBOX or they cannot be processed.

Action: Edit the input file MODELNAME.TXT (containing the textual description of the

fault tree) and add an FBOX node at the top of the fault tree.

**** CVRTXT: ERROR F917 - ERROR OPENING TEXT DESCRIPTION FILE filename ****

File: CVRTXT

Subroutine: CVRTXT
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Meaning: The CVRTXT() subroutine encountered an error while trying to open the text

description file. This error is an operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** CVRTXT: ERROR F918 - ERROR OPENING FAULT TREE FILE filename ****

File : CVRTXT

Subroutine : CVRTXT

Meaning: The CVRTXT() subroutine encountered an error while trying to open the fault

tree file.This error is an operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** CVRTXT: ERROR F919 - NXTWRD() ENCOUNTERED ERROR err PARSING NEXT

ITEM, OFFSET = offset ****

Fi Ie : CVRTXT

Subr out ine : CVRTXT

Meaning: The NXTWRD() subroutine encountered an error while parsing the next item on

the input line from the text description file. The offset within the input line where the error

occurred is printed,

Action: Check the text description file.Edit it if necessary to correct any errors.

**** INPTRE: ERROR F920 - FAULT TREE NAME T0G LONG ****

File : INPTRE

Subroutine : INPTKE

Meaning: The modelname passed to INPTRE() was too long and was rejected.

Action: Specify a shorter modelname.

**** INPTRE: ERROR F921 - RDDICT() RETURNED ERROR err WHILE TRYING T0

READ DICTIONARY FILE ****

File : INPTRE

Subroutine : INPTRE

Meaning: The RDDICT() subroutine returned an error while trying to read the dictionary file.

Several conditions may cause this message. Look at the error messages that occur immediately

before this message to determine the cause.

Action: Report error to the first author of this Technical Paper.

**** INPTRE: ERROR F922 - ERROR OPENING DICTIONARY FILE filenams ****

File : INPTRE

Subroutine : INPTRE

Meaning: The INPTRE 0 subroutine encountered an error while trying to open the dictionary

file.This error is an operating system error rather than an INPTRE error.

Action: Consult the operating system manuals for the cause and possible solutions.
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**** INPTRE: ERROR F923 - ERROR OPENING TEXT DESCRIPTION FILE filename ****

File : INPTRE

Subroutine : INPTRE

Meaning: The INPTRE() subroutine encountered an error while trying to open the text

description file. This error is an operating system error rather than an INPTRE error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** CVRTXT: ERROR F940 - UNEXPECTED OR INVALID TOKEN (token) ON LINE:

line

File : CVRTXT

Subroutine : CVRTXT

Meaning: An unexpected or invalid token was detected during the parsing of tile indicated

line from the .TXT input file.

Action: Check the text description file. Edit it if necessary to correct any error(s).

+++ WARNING 120: CANNOT FIND THE PARAMETER ', *************

IN THE DICTIONARY. RESULTS MAY BE INCORRECT.

File : COVS

Subroutine : NEWREP

Meaning: The user has specified no repair in the model. However, there are rates in the

model not included in the dictionary.

Action: To insure that the results are correct run the program again and respond yes when

questioned about repair.

+++ WARNING IliO: ASSUMING FIRST STATE ENCOUNTERED IN THE .INT

FILE TO BE THE INITIAL STATE OF THE MODEL!

File : FIFACE

Subroutine : MAIN

Meaning: The first line of the .INT file reads either SORTED or UNSORTED. The next line

begins the actual Markov chain entries of the form STATE1 STATE2 RATE; regardless of the

initial FORM type (fault tree or Markov chain), the first state listed (i.e., STATE1) nmst be

tile initial state of the system. HARP gives the initial state a probability of 1.0. This warning

is only given for UNSORTED input.

Action: If the first state listed is not the initial state, edit tile .INT file so that it is the first

state.

+++ WARNING I120: ONLY 96 COMPONENTS ALLOWED ALL OTHERS ARE IGNORED'

files: FIFACE

Subroutine: READIC
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Meaning:Only96componentsareacknowledgedby HARP.Anyadditionalcomponenttypes
will not be readinto thedatastructure.

Action: If the modelhasmorethan 96componenttypes,HARP will not run. The model
mustbe reconstructedwith fewercomponenttypes.

+++ WARNING 1130: ************** IS GREATER THAN 12 CHARACTERS

IT WILL BE TRUNCATED TO: ************

files: FIFACE

Subroutine: READIC

Meaning: Component word length in the dictionary is restricted to 12 characters.

restrictiondoes not affectthe outcome ofthe program.

This

+++ WARNING I135: EXTRANEOUS LINE FOUND AT END OF DICTIONARY FILE: line

files : FIFACE

Subroutine : READIC

Meaning: At the bottom of the dictionary file are listed the state id numbers of all the FEn

(failure due to exhaustion) states and/or the TAn (truncation aggregation) states. There should

be no other lines of data after these state id numbers. If any other lines are found following

them, this warning message is printed.

Action: If the model has more than 96 component types, HARP will not run. The model

nmst be reconstructed with fewer component types.

+++ WARNING I150 - CAN' 'T PARSE *******, NCF RATES MAY NOT BE CONSERVATIVE

File: PARSE, SUMCOF

Subroutine : PARSE, ALLSET

Meaning: The string passed to the parser cannot be converted to a numerical value.

Therefore, the NCF rates will be calculated only by the arcs emanating from the target state

and may not be conservative.

Action: To insure conservative rates, rates should be of the form coefficient*dictionary _rate.

A single rate may also be a numerical value or a repair rate.

+++ WARNING I170 - CAN' 'T FIND OVERRIDING FEHM FILENAME FOR LINE ,WHERE

File : NXTFLT

Subroutine : HIRFND

Meaning: HARP cannot find the overriding FEHM file that was declared in the .INT file.

Action: Send copies of all input files along with the version of the program to the first author

of this Technical Paper.

**** WARNING I190: USE OF OVERRIDING FEHMs

File: COVS

Subroutine: TOADD
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Meaning:OverridingFEHM'sarebeingusedin a modelwheretheremaybemorethan one

rate going from the same source state to the same destination state on the sanle input line.

The program fiflu:e cannot accommodate this situation. If there is only one rate, contimle by

answering yes when prompted to continue.

Action: last the rates explicitly for each transition as follows:

YES: 1 2 3*LAM:NEW:

1 2 2*MU:OLD;

NO: 1 2 3*LAM:NEVf+2*MU:OLD:

*** ERROR I510: ALLOWABLE NUMBER OF TRANSITIONS

EXCEEDED FOR SORTED INPUT

File : LD

Subroutine : LDSORT

Meaning: The number of allowable transitions for the program has been 0xceeded. This

number, TRSIZ, is originally set to 10 000.

Action: Change the value of TI_SIZ in routine INITSZ in fifaee.for, recreate the object

module, and recompile the program.

*** ERROR I511: ALLOWABLE NUMBER OF TRANSITIONS

EXCEEDED FOR UNSORTED OR SYMBOLIC INPUT

File : LD

Subroutine : LODFIL

Meaning: The number of allowable transitions for unsorted input has been exceeded. This

number, MCTRZ, is originally set to 2050.

Action: Change the value of MCTRZ in routine INITSZ in fiface.for, recreate the object

module, and recompile the program. Note, it wouht be better to sort the input (or use numeric

rather than symbolic input) to reduce the run time.

*** ERROR 1520: STATE SIZE EXCEEDED FOR SORTED INPUT

File : LD

Subroutine : LDSORT

Meaning: The number of allowable states for the program has been exceeded. This mlmber,

STSIZ, is originally set to 1000.

Action: Change the value of STSIZ in routine INITSZ in fiface.for, recreate the object module.

and recompile the program.

*** ERROR I521: STATE SIZE EXCEEDED FOR

UNSORTED OR SYMBOLIC INPUT

File: LD

Subroutine: STNUM
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Meaning:Thenumberofallowablestatesforunsortedinput hasbeenexceeded.Thisnumber,
MCSTZ,is originallysetto 500.

Action: Changethe valueof MCSTZ in routine INITSZ in fiface.for,recreatethe object
module,andrecompilethe program.Note,it wouldbebetter to sortthe input (orusenumeric
rather thansymbolicinput) to reducethe run time.

*** ERROR I530: PARAMETER EXCEEDS ALLOWABLE'

SIZE OF ',PSIZE-9, ' TRUNCATING. '

File : LD

Subroutine : LDPARM

Meaning: The variable PSIZE, set in routine INITSZ of file fiface.for has been exceeded.

The rate parameter is set to 32 with 9 characters being allowed for the coefficient, 12 for

tile rate symbol, and the rest for coverage and the multiplicative signs and semicolon (i.e.,

1.2345678*RATPARAMETER*C1234567;). The program actually allows only PSIZE-9, so it

can add the coverage factor without exceeding the size of 32.

Action: The value of PSIZE can be changed in routine INITSZ. However, tile HARP engine

also has a hard limit of 13 characters for tile rate symbol. Also, change the data structure for

PARMS and MCPARM (currently set to 32).

*** FIFACE: ERROR I610 - MISSING KEYWORD "UNSORTED" OR "SORTED"

IN THE .INT FILE. SHOULD BE THE FIRST LINE.

File : FIFACE

Subroutine : MAIN

Meaning: The first line of the .INT file must be one of two keywords: UNSORTED or
SORTED.

Action: Edit the .INT file so that the first line reads SORTED if the .INT file is a converted

fault tree or a Markov chain without symbolic input and in row-wise order or UNSORTED if it

is a Markov chain with symbolic input or not in row-wise order.

*** READIC: ERROR I620 - ERROR IN DICTIONARY FILE LINE:

File : FIFACE

Subrout ine : READIC

Meaning: There must be four entries on the dictionary line in the following format:

i COMPONENT RATE FEHM

The progrmn lists the offending line that has either fewer that, or more than 4 entries. FEHM

may be a filename or the keyword NONE or VALUES.

Action: Edit the .DIC file so that it conforms to the above rules.

*** RDIDS: ERROR I625 - NUMBER OF FEIDS/TAIDS DOES NOT MATCH

THE NUMBER OF COMPONENT TYPES IN THE DICTIONARY

File: FIFACE

Subroutine: KDIDS
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Meaning:At the bottom of tile dictionaryfile are listed the state id numbersof all FEn
(failuredueto exhaustion)statesand/or TAn (truncationaggregation)states.Sincetherecan
beoneFE/TA statefor eachtypeof componentin thesystem,the numberof FEn and/or TAn
state ids shouldbe the sameas the numberof dictionaryentries(which definethe typesof
componentsin the system).If therearenot tile samenumberof FEn or TAn stateids listed
thanascomponenttypesdefinedin the dictionaryfile, this errormessageis produced.

Action: The .DIC file is probablycorrupted.Reruntdrive to recreate it.

*** ERROR 1710: A ZERO ROW IN ROUTINE ORDER

File: TRANSPOSE

Subroutine: ORDER

Meaning: During the transposition,the routine was trying to set the zeroth entry of an array.

Action: Check the input fileror an error.

*** ERROR 1725: ERROR IN EXPRESSION, CHAR

File: PARSE

Subroutine: TOCNVT

Meaning: A character has been _und that should not be in the expression.

Action: Edit the input file to remove the offending sequence.

*** ERROR 1730: ILLEGAL CHARACTER, ****, IN EXPRESSION

File: PARSE

Subroutine: OPRTOR

Meaning: A character has been _und that should not be in the expression.

Action: Edit the input file to remove tile offending sequence.

*** ERROR 1735: STACK IS EMPTY

File: PARSE

Subroutine: POP

Meaning: During parsing an attempt has been made to pop a value off the empty stack.

Action: If a reason _r the error cannot be _und, then send a copy of the input filesand

version number to the first author of this Technical Paper.

++++ CONVRT: WARNING UIO0 - CHAR WORD TO BE CONVERTED TO NUMERIC

CONTAINS NO DIGITS

File: TFHUTL

Subroutine: CONVRT

Meaning: CONVRT() converts a character string representation of a real number into its

numeric data type representation. If the character string that is purported to contain a real
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number in fact contains no digits, this warning is produced. This error probably represents an

internal programming error in tdrive.

Action: In the calling routine, check for a nonnumeric character string being passed to

CONVRT().

++++ CONVRT: WARNING UIOI - EXPONENT CONTAINS NO DIGITS ---> string

File : TFHUTL

Subroutine : CONVRT

Meaning: CONVRT() converts a character string representation of a real number into its

numeric data type representation. If the character string that is purported to contain a real

number contains exponential notation and the exponent contains no digits, this warning message

is produced.

Action: In the calling routine, check for an invalid numeric character string being passed to

CONVaT().

++++ CONVRT: WARNING UI02 - INVALID CHARACTERS: characters DETECTED DURING

CONVERSION OF string FROM CHAR TO NUMERIC

File : TFHUTL

Subroutine : CONVRT

Meaning: CONVRT() converts a character string representation of a real number into its

numeric data type representation. If the character string that is purported to contain a real

number contains nonnumeric characters, this warning message is produced.

Action: In the calling routine, check for an invalid numeric character string being passed to

CONVRT().

++++ DBCHR: WARNING UI04 - ... ROUNDING TO ZERO

File: TFHUTL

Subroutine: DBCHR

Meaning: DBCHR converts a double precision number (RNUM) to a character representa-

tion. To convert the decimal portion of the number, at each iteration tile number (RNUM) is

multiplied by 10 and the integer value subtracted (RNUM = RNUM - INT(RNUM)). Once

RNUM is less than EPSIL, RNUM is rounded to zero.

Action: If this is not satisfactory, change the value of EPSIL. It is initially set to 1.0e-6.

**** ALLOC: ERROR U400 - BOUNDS OF MEMORY POOL EXCEEDED

FiIe : DYNMEM

Subroutine : ALLOC, PSHPTR

Meaning: ALLOC 0 a11ocates regions of a large buffer array for use in linked listtype

applications (emulates a simple dynamic memory facility).If an attempt ismade to a11ocate

space beyond the end of the buffer array,this error message isproduced.
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Action: Increasethe sizeof the bufferarray in tile calling routinewhereit is defined(in
this case,increasethe MPLENor DMPLENparameter,whicheverapplies,in FT2MC()) and
reeompilethe entireprogram.

**** POPPTR: ERROR U401 - STACK UNDERFLOW

File : DYNMEM

Subroutine : POPPTR

Meaning: An underflow situation (stack is empty) was encountered while trying to pop all

item from a stack. This error represents all internal programming error in the tdrive pr()gram.

Action: Report error to the first author of this Technical Paper.

**** GETNOD: ERROR U402 - NODSIZ nodesize IS > MAX NODE SIZE maxmodesize

File : DYNMEM

Subroutine : GETNOD, DSPNOD

Meaniug: While requesting the allocation of memory for a node from the dylmmic Inenlory

emulation routines, the caller has requested a node size greater than the declared nlaxinlunl

allowable node size. This error represents an internal programlning error in the tdrive program.

Action: Report error to the frst author of this Technical Paper.

**** GETLIN: ERROR U500 - INPUT LINE TOO LONG, MUST BE <= vldlen CHAR'S

File: TFHUTL

Subroutine : GETLIN

Meaning: GETLIN() reads a lille from an input file and checks thai lhe line is slot longer

than a certain valid length. If such a line is longer than tile program is expecting, the program

sinlply truncates the input line to the valid length, losing some of the input. When this occurs,

this error message is produce,(h

Action: Ensure that the input file contains data ()f the proper formal expected by the

program.

**** GETLIN: ERROR U501 - ERROR ENCOUNTERED READING INPUT LINE FROM FILE

File : TFHUTL

Subroutine : GETLIN

Meaning: GETLIN() encountered a read error while trying to read a line from an input file.

This error represents an operating system error rather than a GETLIN() error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** ADD2Q: ERROR U601 - OUEUE OVERFLOW ****

File: QUEUE

Subroutine: ADD2Q

Meaning: A queue overflow occurred during an attempt to add a node to a queue that is

already full.
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Action: In the callingroutine,checkfor an infinite loopif the queuelength is largeenough
to hold the queuecontents. If the queuereally is not largeenoughto hold it contents,then
increasethesizeof the queuearray.

**** POPQ: ERROR U602 - QUEUE UNDERFLOW ****

File : QUEUE

Subroutine : POPQ

Meaning: A queue underflow occurred during an attempt to remove a 1,ode from a queue

that is already empty.

Action: In the calling routine, check for a programming error.

**** WRTQ: ERROR U603 - EXCEEDED BOUNDS OF QUEUE ARRAY ****

File : QUEUE

Subroutine : WRTQ

Meaning: While attempting to copy a queue node into the queue array, the bounds of the

queue array were exceeded before the entire node was copied. This error indicates an internal

programming error in the queue package.

Action: Report error to the author of the queue package.

**** PUSH: ERROR UTOI - STACK OVERFLOW ****

File : STACK

Subroutine : PUSH

Meaning: A stack overflow occurred during an attempt to add a node to a stack that is

already full.

Action: In the callingroutine, check for an infiniteloop ifthe stack length islarge enough to

hold the stack contents. Ifthe stack reallyisnot large enough to hold itcontents, increase the

size of the stack array.

**** POP: ERROR U702 - STACK UNDERFLOW ****

File : STACK

Subroutine : POP

Meaning: A stack underflow occurred during an attempt to remove a node from a stack that

isalready empty.

Action: In the callingroutine, check for a programming error.

*** NXTWRD: ERROR U801 - ERROR PARSING NUMERIC VALUE (token) IN LINE: line ***

File: UTIL

Subroutine: NXTWRD

Meaning: An inappropriate character was found in what issupposed to be a numeric token

while parsing that token _oman input line (e.g.,ifan alphabetic character appears in what is
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supposedto bea realor integernumber).This errorindicateseitheranerror in the data in the
input lineor a programmingerror in the callingroutine.

Action: Checkthe data on the input line passedto NXTWRD to makesureit is correct.
Thencheckthe callingroutineto besureit is lookingfor the correcttypeof tokenin the input
line.

**** NXTWRD: ERROR U802 - ILLEGAL FUNCTION ---> f ****

File : UTIL

Subroutine : NXTWRD

Meaning: An illegalvalue was passed to NXTWRD in the FUNCT argument. FUNCT

indicates whether NXTWRD should look for a numeric value (FUNCT = 'N') or a character

value (FUNCT = 'C') for the next token on the input line. Any other value for FUNCT isnot

supported.

Action: In the calling routine, correct the FUNCT argument in the call to NXTWRD.

FUNCT must be either _N' or 'C'.

**** 0PRNDS: ERROR U803 - OPERATOR op NOT FOUND IN WORD word ****

File: UTIL

Subroutine : 0PRNDS

Meaning: The character specifiedas the operator character in a binary operator expression

was not found in the expression.

Action: In the callingroutine, check the value of the binary operator expression passed to

OPRNDS.

**** 0PRNDS: ERROR U804 - ILLEGAL FORM FOR BINARY OPERATOR EXPRESSION ****

File : UTIL

Subroutine : 0PRNDS

Meaning: The binary operator expression passed to OPRNDS did not have the form:

OPERANDI op OPERAND2

Action: In the callingroutine, check the value of the binary operator expression passed to

OPRNDS.

**** INTCHR: ERROR U805 - NUMBER OVERFLOWS CHAR STRING ****

Fi Ie : TFHUTL

Subroutine : INTCHR

Meaning: The character representation of the integer value passed to INTCHR is too long

to fitin the output character variable provided to hold it.

Action: In tilecallingroutine, provide a longer character variable to receive the converted

numeric value.
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**** DBCHR : ERROR U806 - NUMBER OVERFLOWS CHAR STRING ****

File : TFHUTL

Subroutine : INTCHR

Meaning: The character representation of the double value passed to DBCHR is too long to

fit in the output character variable provided to hold it.

Action: In the calling routine, provide a longer character variable to receive the converted
numeric value.

**** DBCHR: ERROR U807 - MAXLEN TOO SMALL FOR ROUTINE ****

File : TFHUTL

Subroutine : DBCHR

Meaning: Tile length of the character array istoo small for DBCHR. DBCHR concatenates

two arrays, each of size lO--one on each side of a decimal point.

Action: Set value of MAXLEN in calling routine to 21.

**** SKPICT: ERROR U900 - UNEXPECTED END-OF-FILE ENCOUNTERED WHILE READING

DICTIONARY FILE

File : DICUTL

Subroutine : SKPICT

Meaning: While the dictionary file was being read, an EOF was encountered before it should

have been. The dictionary file is probably corrupted.

Action: Rerun tdrive and recreate the dictionary file.
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GLOSSARY

Most terms unique to reliability modeling and fault-tolerant systems are defined within the

body of each volume of this Technical Paper. The meaning of some terms are well known to

researchers and users of these technologies but may not be familiar to new users of Hybrid

Automated Reliability Predictor (HARP) integrated reliability (HiRel) tool system. Thus, the

purpose of this glossary is to primarily aid new users.

Availability

Availability is a probabilistic quantity that predicts the operational life of a system that is

subject to line maintenance (repair). Availability is the probability that a system under repair

is operational at a specified time. In a Markov chain model representation, repair is modeled

by adding transitions from states with n + 1 failed components to states with n components.

The transition rate is given as a repair rate. No fault tree model representation has yet been

developed to represent an availability model; therefore, a Markov chain model must be given

to HARP for solution. A fault tree model can be used to specify and generate a preliminary

Markov chain model that the user needs to modify.

Behavioral Decomposition

Behavioral decomposition is a mathematical approximation technique that reduces a complex

fault/error handling model (FEHM) to a branch point in a Markov chain. The effects of the

FEHM are compensated for by modifying state transition rates. The advantage of this technique

is that it greatly reduces the size of Markov models for solution and complex FEHM behavior
that can be non-Markovian modeled.

Bounds or Mathematical Bounds

Large or complex mathematical models often require approximations to keep their solutions

tractable. Bounds are the numerical expressions of the variation in a computed result due to

mathematical approximation or uncertainty in the accuracy of the input data to the models.

Combinatorial Model

A combinatorial model is a stochastic model that relates combinatorial component failure or

success events to a subsystem or system failure or success, respectively. Combinatorial models

do not distinguish the order of failure events.

Coincident Fault

A coincident fault exists at the same time one or more other faults are present. A coincident

fault is not a simultaneous fault.

Conservative Unreliability Result

Mathematical quantities can be expressed in two forms, in exact form, which is usually a

symbolic representation such as the symbol _r, or in an approximate form such as a decimal

representation for 7r as 3.14159. When approximations are necessary, the difference between the

exact quantity (which may not be obtainable) and the computed result (which is obtainable) is

called the error. A conservative unreliability result is one where the error in the computed result

is in the direction of increased unreliability.
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for fault-tolerantsystemmodelsto accountfor fault/error handlingtimes that may not be
exponential.

Sequence-Dependent Model

A sequence-det)endent model is a stochastic nlo(tel that relates ordered component fifilure

or success events to a subsystem or system failure or success, respectively. Sequence-dependem

mo<tels distinguish the order of failure events. These models are more complex than combinato-
rial models and arc also more difficult to solve.

Simultaneous Fault

A simultaneous fault is second fault that occurs at, exactly the same instant in time as a first

fault. Markov chain mo(lels (lo not allow such faults.

Weibull Distribution

A \X_i|)ull distribution ix a two t)arameter distribution that can exhibit lime increasing,

decre_sing, or constant failure rates.
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Critical-Pair Fault

A critical fault is a near-coincident fault involving two faults. HARP uses three multifault

models to account for critical-pair faults: ALL, SAME, and USER.

Extended Behavioral Decomposition

Extended behavioral decomposition is a generalized behavioral decomposition technique that

allows multiple FEHM entry/exit transitions and multifault near-coincident modeling.

Fault Tree

A fault tree is a notational model that uses symbols resembling logic gates that relates failure

events of components or subsystems to failure events of a system composed of components and

subsysteins.

Instantaneous Jump Model

An instantaneous jump model is a Markov model that is an approxinmtion of a more complex

semi-Markov model that produces a conservative result with respect to the semi-Markov model

that is operated ()n mathematically to become the instantaneous jump model.

Multifault Model

A multifault model is a fault/error handling model that accounts for two or more faults, none

occurring simultaneously.

Near- Coincident Fault

A near-coincident fault is second fault that occurs during the time between the occurrence

of a first fault and its recovery.

Near-Coincident Failure

A near-coincident failure is system failure resulting from a near-coincident fault. To reduce

modeling complexity, a near-coincident failure is assumed to result from a near-coincident fault.

Typically, this assumption results in a conservative result.

Optimistic Unreliability Result

An optimistic unreliability result occurs when the error in the computed result is in the

direction of decreased unreliability.

Primitive

A prinfitive is any screen image that is an entity that can be manipulated without dissection,

for.example, a line, a circle, a fault tree gate, etc.

Semi-Markov Models

Semi-Markov models are generalizations of Markov models. In particular, semi-Markov

models allow generalized state holding time distributions. Semi-Markov models are required
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