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Executive Summary

In 1996, the NASA Administrator Dan Goldin and Rhode Island Congressman Patrick

Kennedy challenged researchers in the Department of Geological Sciences at Brown University

to developed a series of projects to apply remotely sensed data to problems of immediate concern

to the State of Rhode Island. The result of that challenge was the project Narragansett Bay

from Space: A Perspective for the 21 st Century. The goals of the effort were to a) identify

problems in coordination with state and local agencies, b) apply NASA technology to the

problems and c) to involve small business that would benefit from incorporating remotely sensed

data into their business operations. The overall effort was to serve two functions: help provide

high quality science results based on remotely sensed data and increase the capacity of

environmental managers and companies to use remotely sensed data. The effort has succeeded

on both these fronts by providing new, quantitative information on the extent of environmental

problems and developing a greater awareness and acceptance of remotely sensed data as a tool

for monitoring and research.

The Rhode Island company that partnered in this effort is Applied Science Associates (ASA),

an internationally recognized as a leader in the development and application of computer tools to

investigate marine and freshwater environments. Using computer models to simulate physical,

chemical, and biological processes, ASA solves problems about our aquatic environment and

human interaction with that environment. The Rhode Island Department of Environmental

Management, Division of Water Resources was the main state partner and provided leadership in

the identification of important problems. This was coordinated through Dr. Chris Deacutis and

was fully supported by this state agency (see attached letter). The effort was also augmented by

the environmental advocacy group Save the Bay who also contributed resources to the project in

terms of people and facilities coordinated though John Torgan. During the project, we also

worked closely with various members of the Environmental Protection Agency including Darryt

Keith of the Atlantic Ecology Division and Nick Prodany of EPA Region 1. Lastly, this project

including the participation and support of the environmental staff at the Brayton Point Power

Plant.

The principal findings of these work are as follows:

• The temperature of Mt. Hope Bay, an arm of Narragansett Bay that receives effluent from

the Brayton Point Power Plant, is on average 0.8°C warmer during the summer and fall

time frame. This higher temperature is due to the effluent from the power plant and

impacts an area of 35 km2.

• The effluent from the power plant is systematically distributed throughout the bay during

the tidal cycle. On the falling tide the plume is detected as a temperature anomaly up to 3

km from the discharge point, and on the rising tide a pool of warmer water is created near

the discharge point. Residual heating of the waters can be detected and suggest a

memory from the previous tidal cycle.

• The tidal dynamics, and thus the effluent mixing, are a strong function of season with

more stratified conditions during the summer and fall leading to a more expressed

thermal plume on the surface than the winter and summer.

• Three dimensional hydrodynamic modeling of the system using independent calibration

amd validation methods provides results that are generally consistent with the remotely
sensed data. This work shows that there is a residual heating of the bay of up to 1°C
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duringcertaintimesof theyear,theplumedynamicsobserved are reproduced in the

model, and that there is a strong seasonal component.

• Remotely sensed data can be incorporated into hydrodynamic model for data

assimilation. The procedures established in this project demonstrate the feasibility of this

approach, and that it significantly improves the model performance. However, the

increase in performance is short lived.

• Remotely sensed data provide a perspective that allows characterization and

quantification of environmental impacts. The results are easily communicated to

environmental managers and can be incorporated into monitoring efforts. The data also

provide details of water's thermal properties not readily evidenced from field and

modeling studies.

• Remotely sensed data have less direct application presently in modeling studies.

Compared to assimilation of in situ data, remotely sensed data lack the time sensitivity,

carry much larger processing costs and do not maintain a high enough accuracy to be

readily integrated into modeling.

• The value of hyperspectral data for determining water optical properties and its

constituents (e.g. chlorophyll, dissolved organic matter, and suspended sediment

concentrations) was explored. It was found that this approach has significant promise in

monitoring the water properties of the Bay and opens up new monitoring capabilities.

We were able to determine the spatial distribution and abundance of phytoplankton,

dissolved organic matter, suspended sediment, and the activity of phytoplankton.

• This project has lead to continuing efforts on the part of the State of Rhode Island to

incorporate remotely sensed data into monitoring efforts and ASA to use remotely sensed

data in modeling.

This project has made a significant contribution to the understanding of thermal effluent and

its impact on the environment. A significant component of community outreach has help to

promote these results as well as a web site devoted to the project and the results have been

viewed by many groups and individuals. While the exact environmental problems that we

encounter in the future will vary considerably, the new perspective that has been generated by

this project will continue. We have also identified an number of basic research areas that are

required to move environmental monitoring and modeling forward to better meet the needs of

environmental managers.

Areas of Need and Concern: The Role of Remote Sensing

Narragansett Bay is the premier natural resource of Rhode Island. It directly affects

important economic activities such as tourism and shellfishing, indirectly it is important for

industries such as boat building and those associated with the Newport Naval facility, and it is a

source of pride for all who live in Rhode Island. Furthermore, the influences of Narragansett

Bay extend beyond its immediate borders as it is an important breeding ground and nursery for

fin fish that form a key element of the Rhode Island and New England fishing industries. As is

typical of heavily used resources, however, the health and functioning capacity of the Bay has

been stressed over the years.

Through the efforts of environmental groups such as Save the Bay, state agencies such as the

Rhode Island Department of Environmental Management, governing bodies, and cooperation

with industry, the health of the Bay has improved dramatically over the last several decades.



Theseeffortshavesucceededby tacklingthemostobviousproblems,readily identifiedthrough
ground-basedsurveys,suchaslargepointsourcesof pollution,sewagetreatment,andthe
dumpingof heavymetals. However,thehealthof NarragansettBayandits ability to sustain
importantcommercialactivitiesis notguaranteed.For example,algalbloomsandincreased
turbidity in theBay arethoughtto be responsiblefor thecontinuingdeclinein eel-grassbeds,
which arecritical nurseriesandhabitatsfor manycommercialspeciesin theBay. Solutionsto
this andotherareasof concerncouldbenefitgreatlyfrom acosteffectiveprogramthatprovides
abetterunderstandingof NarragansettBay andamonitoringcapabilityto trackthehealthand
functioningof theBaythroughtime. Not only would therebeadirectbenefitto the$1.6billion
in commercialactivitiescurrentlycenteredaroundNarragansettBay,but suchaprogramcould
providesupportfor thedevelopmentof newendeavorswhich isanareaof interestfor theRhode
IslandEconomicDevelopmentCorporation.For example,aquacultureis anemergingactivity in
RhodeIslandandlocationsfor theaquaticinfrastructuredependsonknowledgeof manyaspects
of theBay.

Currently,the largestimpedimentto forwardon theseissuesiscost. Measuringand
monitoringwaterqualityanddynamicsin anareaaslargeasNarragansettBay requireslarge
surveysandextensivelaboratoryanalyseswhicharenotpossiblein thecurrentfiscal
environment.Yet thecomplexityof theBayandhow it functionsdemandsthat weunderstandin
greaterdetailwhat thespatialdynamicsof seasonalproductivityare,how this is relatedto
circulation andriver inputs,theaffectson thelife cycleof importantspecies,andwhat theeffects
of landuseandlandusechangein spaceandtime are.

Remotelysenseddataoffer anexcellentopportunityto addresstheseissuesandhelpRhode
Islandpreserveandenhancethefutureof thismostimportantresourceinto thenextmillennium.
Technologicalandanalyticalcapabilitiesdevelopedthroughbasicresearchoverthe lastdecade
makepossibleentirely new,andcosteffectivewaysfor assessingandmonitoringNarragansett
Bay. The specificstrengthsof remotesensingare:

• synopticview (instantaneouscoverageof largeareas)
• multitemporaldataacquisition(for analysisof historicalpatternsthrougharchives

covering30yearsandanalysisof ongoingprocesseswith currentandfuturesensors)
• digital format (allowstheuseof quantitativealgorithmsto extractinformationon the

physicalpropertiesof thebayandits contents).
• newtechnologiesthatallowgreaterspectralandspatialcoverages
• correlationwith otherinformation(productsof remotesensingstudiesarereadily

incorporatedintoGeographicalInformationSystem(GIS)databases)
Thus,by usingremotesensing,wecanaddresssomeof thefundamentalissuesregardingthe

waterquality of NarragansettBay in acosteffectivemanner.Theseresultsarethenmeaningful
informationthat,whenintegratedwith otherdatasourcesandexpertise,will beusedto affect
policy that will guidethefutureof theBay, andassistin theeconomicactivitiesaroundtheBay.
Thegoalsof thiscooperativeagreementwereto investigatetheusesof remotesensingfor
monitoringandanalyzingcoastalwaterswith specificfocustowardstheneedsof thestateof
RhodeIslandandthemanagementof NarragansettBay. A largergoalof this projectwasto
transferresultsandknowledgeto statemanagersandsmallbusinessto fosteragreateruseof
remotelysenseddata. Theparticipationof smallbusinessincooperationwith Brown, thestate,
andNASA wasimplementedto enhancedbusinesscapabilitiesandopportunitiesfor Rhode
Islandto provideamechanismfor thecontinuationof theseeffortsaftertheprojecthasbeen
completed.
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Overall Project Goals

The goals of the project are:

1) To capitalize on the strengths of NASA remote sensing and Mission to Planet Earth to

develop a better understanding of the near shore and estuarine environments of

Narragansett Bay.

2) To work with small business to develop and make these tools and techniques available to
other users in the nation and the world.

3) To work with state and city agencies to integrate this fundamental information into the

ongoing planning and decision-making process.

4) To directly benefit existing and future commercial activities that have ties to Narragansett

Bay.

5) To establish a sustainable commercial future for this activity beyond the commitment of

NASA in this project

Partnerships

For this project to be successful, we needed to have full involvement of relevant state

agencies and to pursue in cooperation specific research and applications activities that ultimately

benefited the state natural resource agencies. Through discussions with Dr. Christopher Deacutis

of the Rhode Island Department of Environmental Management (RIDEM), Water Resource

Division, and others in the RIDEM, an understanding of the general capabilities of remote

sensing in general and NASA's systems in particular was developed. This was coupled with a

thorough overview of the general health of Narragansett Bay as seen by RIDEM where some of

the critical areas of concern were articulated. These activities were followed by additional

discussions with the RI Economic Development Council as well as Save the Bay, a local

grassroots environmental advocacy and education organization, to engage a broader segment of

interested parties and to build a greater perspective on how remotely sensed data could be

usefully applied.

Through these discussions we developed a specific set of research and applications

objectives, described below. A critical element of the partnerships was the full involvement of

the RIDEM Department of Water Resources and Save the Bay throughout the project. They

participated fully in field work in support of the project. All results derived from these efforts

were conveyed in a timely manner to RIDEM where the results were used in their ongoing

monitoring and regulatory efforts.

An important outgrowth of the partnerships with RIDEM and Save the Bay were additional

collaborations with more regional groups such as the Brayton Point Technical Advisory

Committee, the Environmental Projection Agency (EPA), and the University of Rhode Island

(URI). The results of this project have been widely discussed among many arms of the EPA that

operate in the northeast of the U.S. A continued partnership among EPA, Brown, URI, Save the

Bay and the RIDEM is one of the fundamental outgrowths of this project.

Specific Project Objectives

On the basis of detailed discussion of general science problems in Narragansett Bay and

specific regulatory and environmental problems, two principle project areas were defined. In the
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areaof generalscienceproblems,theunderstandingof watercirculation,biology,and
environmentalchangeareoverarchingcritical concernsfor theStateof RhodeIsland. For an
environmentalsystemasdynamicandcomplexasNarragansettBay,resourcesfor measurement
of baysystemsandmonitoringof its healtharelimited. Thusoneclearobjectivewasto explore
theutility of NASA's mostadvancedremotesensingtechnologyto derivecost-effective
measuresof thebasicpropertiesof thisestuarinesystem.Particularareasof interestfor
applicationof informationderivedfrom remotelysenseddatainclude:

Spatialandtemporalpatternsof productivityandtemperature

Timing anddeterminantsof harmfulalgal blooms

Nutrient andenergyexchangesbetweentheestuaryandthecoastalocean

Effectsof circulationandweatherpatterns

Effectsof landuseandland-usechange

Impactof humanactivity onbayprocesses:temperature,turbidity, chlorophyll

Theprojectsoughtto developnewmeasurementscapabilitiesthatcouldbeincorporatedinto
monitoringsystems.This componentof theprojectevaluatedhyperspectraldatathathave
showngreatpromisefor thedevelopmentof quantitativeestimatesof waterproperties,buthave
notbeenfully developedfor estuarineenvironments.

ThemostpressingenvironmentalproblemfacingRhodeIslandatthetimethatthis project
wasinitiatedwasthermalpollution. In 1994apreliminaryreportpreparedby Mark Gibson
documentedacloselink in timebetweenadramaticdeclinein fish abundanceanddiversitywith
a 50%increasein thermaleffluentfrom theBraytonPointPowerplantlocatedonMountHope
Bay, anarmof NarragansettBay. Thepreliminaryreportraisedsignificantconcernsaboutthe
impactof thermaleffluent from thispowerplant,yettherewerealsoconcernsraisedasto the
causality. Did theassociationin timealsotranslateto a specificenvironmentalimpacton the
fish populationsanddiversityof NarragansettBay? While anumberof detailedstudieswere
beingdevelopedto addressaspectsof thiscomplexproblem,RIDEM felt thatatemperature
studythat couldencompasstheentirebayandacrossall seasonswouldbeof greatbenefit. In
addition,therewasonly averyrudimentaryknowledgeof thespecifictemperaturepropertiesof
thebayoverthetidal cycle. Thusaspecificapplicationsprojectwasdevelopedto addressthree
fundamentalquestions:

How doesthetemperatureof NarragansettBayvaryasa functionof seasonandwhatarethe
mainexchangesamongthemajorwaterbodies?

How doesthetemperatureof NarragansettBayvaryasa functionof tideandwhatarethe
main exchangesamongthemajorwaterbodies?

Doesthethermaleffluent from theBraytonPointPowerstationhaveameasurableimpacton
thetemperaturesof anypartof NarragansettBay?

This appliedresearchprojectemployedthreemajorcomponents.Thefirst wasa time-series
analysisof thesurfacetemperatureof NarragansettBaymeasuredremotelyby theLandsatseries
of satellitescoveringthetimeperiod1984-present.Thesecondwasa seriesof hightemporal
resolutiontimeseriesto capturethedynamicsof watertemperaturesoveratidal cycle. This
componentincludedextensivefield campaignsto verify andvalidatetheremotelyacquireddata.
And thethird wasdetailed3-Dhydrodynamicmodelingof watermovementsin Narragansett
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Bay led by Applied ScienceAssociates(ASA). This effort requiredextensiveinputsfrom the
field campaignsandfrom otherancillarydatasources.An outgrowthof this projectwasto
incorporateremotelysenseddatainto themodelingasbotha validationcomponentaswell asto
tuneandoperatethemodelthroughtime (dataassimilation).While ASA commonlyusesin situ
datafor modelvalidationandverification,suchdatais generallylimited to point measurements
of temperature,salinity,anddissolvedoxygen. Theincorporationof spatiallyexplicit
temperaturefields wasa noveldirectionthatrequirednewthinkingondataassimilation.

Thermal Remote Sensing: Assessment of Environmental Impact

and Integration with Hydrodynamic Modeling

The Narragansett Bay estuary runs northward from the coast of Rhode Island (Figure 1), and

has a drainage area of 4660 km 2 (Kremer and Nixon, 1978). Its 2.6 X 109 m 3 of water are spread

over an area of almost 350 km 2, with a mean depth of 7.8 m (Chinman and Nixon, 1985). The

mean tidal prism is much greater than the mean volume of river flow into the bay during an

equivalent period of time, so that the estuary is generally well mixed, although occasionally

stratified (measured by salinity gradients) in the upper bay (Kremer and Nixon, 1978). The

semi-diurnal tide ranges from 0.8 to 1.6 m (Chinman and Nixon, 1985), but the prevailing winds,

northwest during the winter and southwest during the summer, frequently dominate short-term

circulation patterns (Kremer and Nixon, 1978). Water temperatures throughout the year range

from below freezing up to the mid-20s (°C), and the annual water temperature cycle tends to lag

solar radiation by about 40 days (Kremer and Nixon, 1978).
Mount Hope Bay, a central focus for our thermal studies, is a shallow estuary located on the

state boundary between Rhode Island and Massachusetts. It is the northeast component of the

Narragansett Bay system, connecting to the East Passage through Bristol Ferry (at t_e Mt. Hope
Bridge) and to the Sakonnet River at Sakonnet (Figure 1). It has an area of --35 km and an
average depth of 5.5 m. A dredged channel system 120 m wide and 10.5 m deep begins
approximately 3 km northeast of the Mt. Hope Bridge and continues up past Fall River and the
Taunton River. A second channel extends easterly and then northerly toward Fall River and a
third smaller channel extends from the main channel in Fall River northwesterly to the Brayton

Point Station. Three subembayments line the northern boundary of Mt. Hope Bay to the west of
the tauton River mouth: the Lee, Cole and Kickamuit Rivers.

Tidal fluctuations in Mt. Hope Bay range from 1.0 m at neap to 1.68 m at spring with a
mean range of 1.34 m. Tidal currents are typically 10-25 crn/s in the bay but can exceed 2 m/s in
the narrows at Sakonnet. There is little amplitude or phase difference throughout the bay for the

important tidal constituents M2 $2 N20t K1 and M4 (Spaulding and White, 1990).
The major freshwater source is the Tauton River, averaging30 mVs (Ries, 1990). The

Cole River is the only other significant freshwater source at 1.25 m_/s. The Lee and Kickamuit
Rivers do not contribute measurable flows.

The water column is generally well mixed throughout the year although stratified conditions
do occur near the mouth of the Taunton River at Fall River. Previous studies (Dallaire, 1990;

Turner et al, 1990) have shown intermittent stratification from both salinity and temperature

elsewhere in the bay with stronger thermal stratification in the northern reaches.

Spaulding and White (1990) showed that mean density induced flow is small, at a few
centimeters per second, relative to the tidal driven flow. They also reported that wind driven

flows are not important to net circulation. A dye study conducted to assess the travel time from
the Fall River Wastewater Treatment Plant, located on the eastern side of Mt. Hope Bay

(NETSU, 1989), provided some evidence of fast (-50 cm/s) flows in the near surface waters

(less than 1 m deep). The cause of this flow was not examined, however.



TheNarragansettBay ecosystemisphytoplanktonbased,andusuallyexperiencesa bay-wide
winter-earlyspringbloom,severallocalizedshorttermbloomsthroughoutthesummer,anda
latesummerbay-widebloom(KremerandNixon, 1978).Thebayis inhabitedby many
commerciallyimportantfish species,isan importantbreedingandnurseryareafor fish, andthe
benthosis dominatedby clamswhichareharvestedin limitedareas.Thelandsurroundingthe
estuaryis heavilypopulatedandtheestuaryreceivessignificantvolumesof industrialand
municipaleffluents. Although theoverallqualityof thewaterin theestuaryhasimproved
dramaticallyoverthe lastseveraldecades,Gibson(1996) identifiedastrong,temporal
correlationbetweenfish abundanceandchangesin theoperationof apowerplantlocatedon the
upperreachesof NarragansettBay. Specifically,theonsetof a majordeclinein aggregatefin
fish stocksandspeciesdiversityoverthe lastdecadewassignificantlycorrelatedwith a50%
increasein the volumeof effluentdischargedfrom theBraytonPointPowerStation(BPPS)in
1985.

TheBPPSis the largestfossil fuel powerplantin thenortheastUnitedStates.Thiscoal-fired
electricgeneratingfacility is locatedonMountHopeBay in theNarragansettBayestuary
(Figure 1)andreleasesapproximately1.4billion gallons/dayof thermaleffluent(=60m3/sec),or
abouttwice theflow of themajorfreshwatersourceto MountHopeBay,theTauntonRiver. The
cooling wateris extractedfrom theestuaryat adepthof 20 ft returnedwith atypical temperature
riseof 7-10°Coverthe ambienttemperatureof the inputwater. Concernshavebeenraisedabout
the longterm impactsof thethermaleffluenton theMount HopeBayecosystemsuchasthe
effectson dissolvedoxygenandreproductivesuccessof organisms(Jeffries,1994;Lin and
Regier,1995)aswell asthepossibilitythat it maybeafactorin thedeclineof fish stocksin this
bayoverthepast15years(Gibson,1996). However,detailedinformationon thefateof the
thermaleffluentandits spatialandtemporalpropertiesovershortandlongtimeperiodsare
lacking. Thisessentialinformationis requiredin orderto objectivelyassesstheoverallimpactof
thethermaleffluentondiurnalandseasonaltime scalesandto integratethis intoamoredetailed
understandingof the localecology.

Temperatureaffectsorganismsthroughdirectphysiologicalmechanisms.All organisms
haveacertaintolerabletemperaturerange,abovewhichprolongedexposureis lethal. Within
this acceptabletemperaturerange, metabolism,growthrates,reproduction,andrecruitment
successvarywidely. In cold-bloodedmarineorganisms,warmerambienttemperaturesincrease
metabolicratesandrelatedprocesses,suchasfeedingefficiency(Sanfordet al., 1994). Growth
anddevelopmentratesusuallyincreasewith temperature,up to athreshold,beyondwhichexcess
energyis requiredfor survival,andratesdeclineprecipitously.Temperaturevariationsareused
asreproductivecuesfor manypopulations,includingseveralNarragansettBayfish species
(Dixon, 1991). Increasesin bacterialabundancewith temperature(Valiela, 1995),further
compoundthecommunityaffectsof reduceddissolvedoxygenandnutrientconcentrationsin
warm water(Paine,1993).

All of thesetemperature-relatedresponsesaffectdifferent species,andtherepercussionsfor
ecosystemdynamicsdependuponfoodwebinteractions.Despitelackof aclearunderstanding
of themechanismsat work, significantwarmingof coastalmarinesystemshasbeendocumented
to havesubstantialandsometimesunpredictableimpactsuponcommunitycompositionand
structure(Tissotet al., 1991).Thus,a detailedunderstandingof estuarinethermalprocessesand
anthropogenicimpactsuponthemarevital to thesuccessfulmanagementof coastalecosystems
andfisheries.

In thisanalysiswe seekto establishthemagnitudeandscopeof the impactof thermal
effluent from theBPPSin theNarragansettBayestuary,andMountHopeBay in particular. This
studyiscomposedof threemajorcomponents:regionalcharacterizationof thermalpropertiesof
NarragansettBay andtherelationshipto MountHopeBay usingLandsatThematicMapperdata,

8



high spatialandtemporalresolutioncharacterizationof thethermaleffluentasa functionof tidal
cycleduringspringandsummerconditions,andhydrodynamicmodeling. Manyaspectsof these
studieshavebeenpublished(e.g.Mustardet al., 1999;ASA publications)or constitutesenior
andmastersthesisatBrown University(e.g.Sen,1996;1997;Carney,1997,Dave,1998). In
addition,the interim andsummaryresultshavebeenpresentedat numerousmeetings,forums,
andworkshops(e.g.Mustardet al., 1997ab;CarneyandMustard,1997;Swansonet al., 1997).

Regional Characterization of Thermal Properties of Narragansett Bay:

Methods

Landsat Thematic Mapper Data

Since 1981, the Landsat Thematic Mapper (TM) series instruments have acquired

multispectral images of the surface of the Earth from an orbit of 700 km. Of importance to this

investigation, the TM sensor includes one thermal infrared channel that covers the wavelength

region 10.4-12.5 lam from which an estimate of surface temperature can be derived (see below).

The spatial resolution of each picture element (pixel) on the surface in the thermal channel is 120

m x 120 m, or slightly more than 1.4 hectares. From its sun synchronous orbit, this sensor has

the opportunity to re-visit a specific target every 16 days. However, the frequency of actual data
collects is far less than this due to obscuration by clouds and scheduling of spacecraft data

handling resources. Although other sensors have more frequent observations (e.g. the Advanced

Very High Resolution Radiometer acquires thermal data twice a day and these sensors have been

in operation since 1979), they lack the requisite spatial resolution to resolve the thermal

properties of specific regions within Narragansett Bay.

Narragansett Bay is within Landsat TM Path 13, Row 31. For this investigation, we searched

the Landsat TM archives at the United States Geological Survey's Earth Resources Observations

Systems (EROS) data center for any acquisitions of Path 13, Row 31 that met an initial

requirement of <20% cloud cover. This resulted in 35 listed acquisitions from 1981 to 1996.

Unfortunately, many of the scenes had more cloud cover than estimated in the data base, or were

no longer in the archive. A remarkable series of 8 scenes, well distributed across the year 1988

was acquired. However, there were no useable data acquired in the thermal channel for any of

these scenes. Eliminating scenes with no useful data due to obscuration by clouds and other

factors, a final total of 14 scenes reasonably well distributed across the calendar year was

obtained (Table 1, Figure 2).

Temperature Derivation

Radiance measurements from band six of the Landsat Thematic Mapper (wavelength=10.4-

12.51am) were used to derive surface temperatures by applying a form of Plank's Black Body

Equation, which defines the relationship between the radiance emitted from an object at a certain

wavelength and its absolute temperature. First, the image digital number (DN) values were

converted to at sensor radiance by applying the gain and bias of the detectors where:

Ru = ot (DN) + [_

where:
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R u = uncorrected spectral radiance in mW cm "2 Sr-ilam -I

= 0.005632 mW cm -2 Sr-_lam -] DN l

I_ = 0.1238 mW cm -2 Sr-llam "1

Radiance was then converted to a black body temperature (Gibbons et al., 1989):

K 2
T u =

where:
T u = black body temperature in K

K 2 = 1260.56 K

K 1 = 60.776 mW cm "2 Sr-Ilam -]

Because water is not a perfect black body (or a perfect emitter), a correction was made using the

emissivity of water (the ratio between the radiance of a particular "gray body" and that of a black

body at the same temperature) (Avery & Berlin, 1992):

Tk = Tu/E TM

where:

E = emissivity of water = 0.986 (Gibbons et al., 1989)

T k = kinetic temperature in K

Low atmospheric transmissivity can introduce some error into deriving surface temperature

from satellites, as atmospheric constituents (especially water vapor) absorb radiation emitted

from the surface, thus reducing the amount of radiation which actually reaches the sensor. The

atmosphere also emits some radiation due to its own internal heat, in turn increasing at-satellite

radiance. The net effect will typically reduce the magnitude of the at-sensor radiance compared

to the surface radiance, as well as the contrast or dynamic range.

The accuracy and precision of deriving surface temperatures from Landsat TM band six data

have been assessed by Schneider and Mauser (1996), who employed a full atmospheric model to

convert at-satellite radiance to an accurate measure of water leaving radiance (and thus water

temperature) of a lake in Germany for which extensive in situ water temperature data were

available. On average (in 31 images), atmospheric correction increased satellite derived

temperatures by 1.33 K. Thus, we may expect to slightly underestimate temperatures when

corrections are not made, although the exact error is dependent upon specific atmospheric

conditions. Atmospheric corrections also increased spacing, or the temperature step associated

with one DN step, from 0.47 K/DN to 0.63 K/DN. Therefore, temperature differences may also

be slightly underestimated. For their data, Schneider and Mauser (1996) estimated the average

change in temperature difference was +0.16 K/DN.
A critical factor to consider is the relationship between the remotely sensed surface layer and

the bulk water properties. Here we define the bulk water temperatures to include the water

above the thermocline, which in a well mixed estuary may extend to the bottom. All of the

energy exchanges between water and air take place within a very thin surface skin layer, the
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layerthatis sensedremotely.Dueto evaporativecooling in thesurfacelayer,this temperatureis
typically cooler thanthebulk watertemperature,thoughseastate,wind speed,anddiurnal
energyfluxes all affecttherelationship.Theexactnatureof thisrelationshipis complicatedand
hasbeenstudiedby numerousinvestigators.Yokoyamaet al. (1995)showedthatundertypical
coastaloceanconditions,thermalgradientsfrom thesurfaceto 2 meterswereweakto absentand
theyconcludedthat theskin temperaturewasareasonableestimateof thebulk temperature.
Theydid notethatunderextremelycalmconditions,strongthermalgradientsdevelopedin the
nearsurface,sometimesexceedingseveral°C. However,thetimeof maximumdivergencewas
typically between12:00and4:00PM local time. SchneiderandMauser(1996)investigatedthe
relationshipbetweenradiometricmeasurementsof surfacetemperaturesandbulk water
temperatureovermanydiurnalcycles. Onaverage,thetemperaturedifferencewasfoundto be
ata minimum(0.1K) between9 and11am,thestandardcrossingtimeof theLandsatsatellites.
On thebasisof theseandotherstudiesit is concludedthatremotelymeasuredskin temperatures
arerepresentativeof bulk watertemperaturebelowthesurface.

As atestof this relationship,temperaturesderivedfrom thefourteensatelliteimageswere
comparedto in situ measurements to assess the level of accuracy of the calculated temperatures

for this study (Figure 3). In cases where an in situ measurement was available for the day of the

overflight, a direct comparison could be made. Because these situations were rare, any in situ

data available within one day of the overflight were used as estimates. When measurements

were not available within one day, temperatures were linearly interpolated from measurements

within 3 days before and after the scene date.

Satellite-derived temperatures were all within 3°C, and many within 1°C of in situ

measurements. All of the other differences greater than 1°C were satellite underestimates

probably resulted from atmospheric interference. The derived temperatures were used to

compare the general seasonal water temperature trend in the satellite images to actual trends

observed through years of in situ monitoring. The seasonal composite created from fourteen

satellite images which actually span over twelve years (Figure 2) was found to be an appropriate

representation of the general seasonal trends observed over the long term (Figure 4).

While the level of accuracy of the remotely acquired data is important, the goal of this

investigation is to determine if the thermal effluent has a measurable impact on water

temperatures beyond the immediate area of the effluent discharge point. For this purpose we can

take advantage of the high precision of the remote measurements (0.5°C) and image format of

the data and analyze the temperature of each area relative to a baseline, thus eliminating the

uncertainty involved in deriving exact temperatures. For a baseline we chose the mean

temperature of the entire Narragansett Bay estuary. Deviations of specific areas from the estuary

mean were generally within the range of ± 5 DN or ±2.5°C. Given the fact that atmospheric

effects tend to increase the temperature/DN relationship, this range in temperatures may be an

underestimate of the order of 0.8°C, for the largest deviations. A fundamental assumption of this

approach is that the atmosphere does not vary significantly across the scene (=60x90 km). This

assumption will be valid under clear sky conditions. However the presence of clouds or fog may
introduce non-uniform variations and thus scenes with significant clouds or fog were removed

from the study.

Regional Classification of Narragansett Bay

To facilitate studies of the physical characteristics of Narragansett Bay, Chinman and Nixon

(1985) divided the estuary into a series of distinct segments related to basin bathymetry and
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circulationpatterns,anddefinedthedepth,area,andvolumeof eachof thesesegments(Table2).
Baseduponthisbreakdownaswell asobservationsof overalltemperaturepatternsin theestuary,
wedefinedtwelve studyareaswithin NarragansettBay(Figure5), inorderto investigatespatial
variationsin seasonaltemperaturetrends.The "regionalclassification"consistedof categorizing
thebehaviorof thesepre-definedregionsrelativeto thesystemasawhole. Fourareaswere
definedin theupperestuary(GreenwichBay,ProvidenceRiver,UpperNarragansettBay, Mount
HopeBay), andtheWestPassage,EastPassage,andSakonnetRiverswereeachdivided into two
or threesectionssothatestuary-to-oceangradientscouldbedetectedwherepresent.Theknown
physicalcharacteristicsfor eacharea(Table2) provideacontextfor comparisonof their seasonal
temperaturepatterns.Temperaturedatawerealsoextractedfrom two inlandwaterbodiesand
thecoastalocean(Figure5) for comparisonto estuarinecharacteristics.Thetemperatureof the
estuaryasawholewasdefinedasthemeanof thecombinationof all of theNarragansettBay
studyareas.

Surfacetemperaturesignalswereproducedby extractingthemeantemperaturefrom each
studyareaandcalculatingits temperaturedifferencefrom theNarragansettBay meanfor each
scene((regionalmean)- (Narr.Bay mean)).Correlationcoefficientsamongeachof the
normalizedseasonaltemperaturesignalswereusedasameansfor classifyingtheestuaryin
termsof its thermalproperties(Table3). Threenaturalgroupsaredefinedfrom thecorrelations
in Table3, whereeachgroupexhibitsapositivecorrelationamongits membersandanegative
correlationwith theothergroups.

Unsupervised Classification of Narragansett Bay

The regional approach discussed above incorporated knowledge of the estuary's morphology

and circulation patterns to define study areas such that thermal properties could be related to

known physical characteristics, i.e. depth, area, and volume relationships, and tidal and fresh

water flushing. This breakdown was well-suited for gaining an understanding of the seasonal

thermal behavior of different areas of the bay, and comparing them to one another in the context

of their physical characteristics. However, in treating the estuary as twelve large areas, each with

a mean temperature, we fail to maximize the advantages provided by the spatial extent and

resolution of remotely sensed data. The large number of data points does give us great

confidence that the mean temperature is an accurate representation of the study area, but the

process of assigning one value to each pre-defined area may prevent us from observing some

important patterns within the data. By pre-defining the study areas, we assume that each of these

areas behaves as one fairly cohesive system, and that this set of study areas is somewhat

representative of temperature variations within the estuary. Though these assumptions are valid

in the context of a comparison of the properties of different areas, another technique was

employed to obtain a more complete view of the estuary's temperature dynamics.

Unsupervised classification is a commonly used technique in the analysis of remotely sensed

data (e.g. Jahne, 1991; Foody et al., 1990; Jensen, 1996). It is typically applied to multispectral

data of a single date to derive land cover units, but can be readily applied to any multivariate data

set. In contrast to the directed, regional classification, unsupervised classification is a completely

objective method where statistical relationships among data determine which areas could be

treated as cohesive systems. Instead of comparing the averaged seasonal temperature signals of

the selected bay regions, the signals (or vectors) of each pixel are analyzed and grouped into

statistically categorized classes, thereby dividing the estuary into natural groupings based upon

seasonal temperature patterns.
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Theapproachto unsupervisedclassificationthatweemployhereis aclusteringalgorithm
refereedto astheIterativeSelfOrganizingDataAnalysisTechnique(ISODATA, Tou and
Conzales,1977;Sabins,1987;Jain,1989). As an interativetechnique,manypassesaremade
throughthedataset,successivelyrefining theclusteringof thedatato achievethespecific
constraintsimposedon thealgorithmor until no furtherimprovementin theclusteringis made.
Theinitial characteristicsof eachclass(expressedasavector,whichdescribesthevaluesof a
pixel in all bands,or times,in n-dimensionalspace)arechosenrandomly,andthenredefinedas
theclassesareformed.Eachpixel is placedinto theclassto which its vectoris mostsimilar, and
onceall of thepixelsareclassified,anewclassvectoris definedasthemeanvectorof all of the
pixels in theclass. Theimageis thenreclassified,meanvectorsrecalculated,andtheprocess
continuesuntil nosignificantchangeoccursbetweenclassifications.

Unsupervisedclassificationprovidesthedistinctadvantageof objectivity,while allowing
somecontrol over thecharacterof theresults.Theoptimum,minimum,andmaximumnumber
of classesdesired(8, 5, and 14respectively),themaximumallowablevariancewithin a class
(:t:10DN), andtheminimumsizefor aclass(999)wereall inputto shapetheanalysis.By
definingtheseconstraintsandasetof computationalparameters,thesplitting andmergingof
classeswascontrolledwithoutmakinganyassumptionsaboutthespecificcharacterof each
class.

Eight sceneswereselectedfrom thefourteenscenesusedin this studyto performan
unsupervisedclassificationof temperaturedata. All sceneswith anyindicationof atmospheric
interferencewereremovedfrom theinitial setof fourteenaswell asonescenewhereicewas
presentin thebay,anda seasonalspreadwasselectedfrom thoseremaining. Thiswasto
minimize abiasin theresultsfrom thelargenumberof Septemberscenesin thefull dataset.The
waterareadefinedfor classificationincludedall of NarragansettBay andsurroundingfresh
waterbodies,aswell asasmallpartof thecoastalocean.

To testif thespecificselectionof the8sceneshadadirecteffecton theresultingclasses,we
performedseveraltestsof theapproachusingdifferentcombinationsof 8 scenesfrom amongthe
14available,while maintainingaseasonalspreadin thedates,aswell asusingall scenesthat
werefreeof atmosphericinterferenceor ice. As expected,therewereminor differencesamong
thesesolutions. However,thegrosscharacteristicsof themostimportant6 classesdid not
changein thesetests.

Results

The general patterns observed in the seasonal temperature signals of the classes identified by

both the regional and unsupervised classification analyses are intuitive, controlled primarily by

surface to volume ratios of the respective regions (Table 2), and modified to some extent by tidal

exchange among the regions. Estuarine regions lose more heat proportionately than the ocean

during the winter, and gain more heat during the summer. Lakes exhibit an extreme of this

behavior, as they are generally the warmest bodies during the summer and coldest during the

winter. The ocean temperature is obviously much more moderate, due to the relatively vast

volume of these regions.

Although these general results are not at all surprising, they provide the critical context for

assessing the spatial extent, thermal magnitude, and temporal character of the effects of thermal

effluent from the BPPS. In order to apply a Space for Time Substitution, it is critical to establish

that the physical properties of the region selected to be the control are indeed functionally

comparable to the impacted site. As presented in Table 2, Upper Narragansett Bay is the region
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thatmostcloselymatchesthephysicalandfunctionalpropertiesof MountHopeBay.
Employingbothdeductive(regionalclassification)andinductive(unsupervisedclassification)
methodsto thesatellitedata,thesamebasicconclusionis reached;thethermalpropertiesof
MountHopeBayareunique,with relativelygreatertemperaturesin thesummerandfall thanthe
control sites. Theseresultsarediscussedin detailbelow.

Regional Classification

The seasonal surface temperature signals of the twelve Narragansett Bay areas relative to the

Narragansett Bay mean exhibited three different patterns (Figure 6). The upper estuarine regions

were generally warmer than the bay average during the summer, and cooler during the winter,

whereas the lower estuarine regions had the opposite behavior, and intermediate regions had

damped temperature signals relative to the estuary mean. Correlation coefficients among the 12

seasonal temperature signals provide a statistical basis for the breakdown of the estuary into

these three groups (Table 3). Significant correlations (R > 0.6) existed among the members of

each group (although each area was not necessarily correlated with every other area within its

group) and only negative or insignificant correlations existed between areas of different groups.

The seasonal temperature signals of the twelve pre-defined study areas provide the

opportunity to relate thermal properties to the known physical characteristics of each area. In the

lower estuary, the Lower East Passage and Lower West Passage exhibited the most extreme

thermal behavior relative to the Narragansett Bay mean, as they are most influenced by advective

exchange between the estuary and oceanic waters. The strength of oceanic influence in the East

Passage is reflected by the facts that the entire East Passage was classified as lower estuarine and

that the lower East Passage exhibited the strongest "oceanic" signal (Figure 6c). It is known that

on a rising tide, most of the oceanic water enters the estuary through the East Passage, which is

the deepest part of the system (Kremmer and Nixon, 1978). The Upper West Passage and Upper

Sakonnet River formed a transitional group, characterized as a zone of mixing between waters

which are more influenced by shallow water processes and those which are more tidally

influenced (Figure 6b).

The character of the regions within the upper estuarine group were more strongly dependent

upon the varying physical characteristics among the areas (Figure 6a). For example, Greenwich

Bay is shallow with a theoretically high tidal flushing rate and low fresh water input; its seasonal

temperature signal was fairly extreme in comparison to the other upper estuarine areas.

Greenwich Bay's high surface area to volume relationship is the most important factor

determining its thermal behavior. Though the high predicted tidal flushing (the highest among

all areas, Table 2) would tend to counter the effect of the surface to volume ratio and thus the

seasonal temperature fluctuations, studies have shown that there is much less tidal exchange than

expected due to the specific geographic characteristics. The other three upper estuarine areas all

have smaller surface area to volume ratios and weaker seasonal temperature signals. In

comparison, the fresh water lakes, which are shallow and isolated, have even stronger signals

than Greenwich Bay. These relationships suggest that regional surface to volume ratio is the

most important factor in determining thermal characteristics in the upper estuary.

Of all the regions of Narragansett Bay characterized by Kremmer and Nixon (1978), Upper

Narragansett Bay and Mount Hope Bay are the most similar on the basis of physical properties

and location relative to important tidal exchanges with the coastal ocean (Table 2). The two

areas are about the same size and their surface area to volume ratios are nearly identical. Upper

Narragansett Bay flushing times are slightly faster, but are in the same general range as those for
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Mount HopeBay. In anaturalsystem,wewouldexpectthatregionswith similarphysical
characteristicswouldhavecomparableseasonaltemperaturecharacteristics.Thus,basedupon
its similar size,shape,andphysicalforcing,UpperNarragansettBay servesasanappropriate
areafor comparisonto MountHopeBay andits thermal characteristics in a Space for Time

Substitution impact assessment.

The seasonal temperature characteristics of Mount Hope Bay and Upper Narragansett Bay

were somewhat correlated during the winter months, but Mount Hope Bay failed to cool down at

the rate of Upper Narragansett Bay through the fall (Figure 6a). T-tests between Upper

Narragansett Bay and Mount Hope Bay proved their mean temperatures to be significantly

different during the summer-fall period, during which time Mount Hope Bay had a mean

temperature 0.8°C warmer than Upper Narragansett Bay. Greenwich Bay, the Providence River,

and Upper Narragansett Bay all became cooler than the Narragansett Bay mean by early

October, yet Mount Hope Bay was only colder than the bay mean in one January scene.

Unsupervised Classification

The selected water area was successfully divided into six different classes, based upon

seasonal surface temperature signals (Figure 7). The classes consisted of fresh water lakes, the

ocean, the upper estuary, the lower estuary, Greenwich Bay, and Mount Hope Bay, and the total

area covered by each class is given in Table 4. Four additional classes were generated, mainly

consisting of pixels at the boundaries between land and water (not shown). These classes were

all small and their behavior was probably affected by the presence of land in some of the pixels,

so they were not considered further in the analysis.

In general, the fresh water lakes exhibited the strongest seasonal temperature signal relative

to the estuary mean: they were very warm during the summer months and very cold during the

winter. Greenwich Bay behaved similarly, only to a lesser degree. The upper estuary was the

largest class (Table 4), and therefore provided the greatest contribution toward the mean value

for each scene. Thus, the upper estuary temperature signal relative to the mean was fairly weak.

The ocean was significantly warmer than the study area mean during the winter and colder

during the summer, as would be expected, and the lower estuary exhibited temperatures

transitional between the ocean and the upper estuary.

Mount Hope Bay exhibited a unique temperature behavior, as it was on average 0.8°C

warmer than the rest of the upper estuary over the range of scenes analyzed (Figure 8). Unlike

Greenwich Bay, which was relatively warm during the summer and cold during the winter, or the

lower estuary which behaved in an opposite manner, Mount Hope Bay was consistently warm,

only dropping below the estuary-wide average in November, at which point it was still warmer

than the rest of the upper estuary.

One of the strengths of the unsupervised classification is that patterns of seasonal thermal

behavior are objectively mapped. Almost without exception, a consistent sequence of seasonal

thermal behaviors are observed moving from the buffered signals of the coastal ocean, through

the transitional and dominant estuary regions to the shallow estuary and lakes. This can be

observed in Figure 7 through to the highest reaches of Narragansett Bay as well as smaller inlets

along the coast. This general pattern, however, is interrupted in Mount Hope Bay, with a small

cluster of similar seasonal properties on the west side of the Providence River. Significantly, this
correlates with the location of the Manchester Street Power Plant which discharges a relatively

small volume of thermal effluent.
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Discussion

The most striking behavior among the four upper estuarine signals in the regional

classification is that Mount Hope Bay fails to cool from mid-summer through autumn in

comparison to the Narragansett Bay mean (Figure 6). These anomalously warm temperatures

cannot be explained by simple physical characteristics. If anything, Mount Hope Bay's slightly

slower tidal flushing rate in comparison to the other upper estuarine areas (Table 2) would

theoretically cause a stronger cooling affect during the fall. The unique behavior of Mount Hope

Bay is highlighted by the fact that the bay comprises it's own class in the unsupervised

classification. Mount Hope Bay is not distinctively shallow or isolated from tidal waters, in fact

it has very similar physical characteristics to the rest of upper Narragansett Bay. In addition,

there are no natural physical parameters which would cause a water body to remain anomalously

warm year-round

Seasonal temperature patterns in the estuary are a direct result of radiant heat exchange at the

surface and advective exchange with oceanic waters. Both processes are seasonal in nature, such

that heat is gained through the surface during the summer (lost during the winter), and gained

from relatively warm tidal waters during the winter (lost during the summer). The seasonal

temperature signal of a particular area is a direct reflection of the balance between these

processes, which in this region is a function of surface area to volume ratio first and advective

exchange second. The upper estuary reflects a fairly level balance of these processes measured

relative to the study area mean.

Mount Hope Bay, however, exhibits temperatures that are anomalous for the patterns of

seasonal temperatures determined through this analysis. This is illustrated most succinctly in

Figure 9. The seasonal temperature signatures derived from the unsupervised classification were

summed over the 8 scenes to produce a single number. When plotted against the surface to

volume ratio, there is a clear trend from low values for high ratios and high values for low ratios.

Mount Hope Bay, however, departs significantly from this trend

Excess summer warming relative to Upper Narragansett Bay could result from the shallow

average depth of Mount Hope Bay. However, this hypothesis predicts that the bay should also

lose proportionately more heat during the winter, which is not evidence in these data.

Alternatively, we could explain relatively warm temperatures during the winter with a potentially

large tidal influence, but this would similarly lead to cooler temperatures during the summer.

Again, there is no evidence to support this hypothesis through either our understanding of the

physical character of the bay or the analysis of the satellite data.

On average, Mount Hope Bay was typically I°C warmer than the upper estuarine class.

Major alterations to the system's heat budget are required to create an anomaly with the spatial

extent and temporal consistency of this feature. The simplest and most likely explanation for the

relatively warm year-round temperatures in Mount Hope Bay is the constant discharge of

thermal effluent into the bay by the Brayton Point Power Station. The excess heat load is the

only plausible explanation for the consistently warm temperatures in the bay. The extent of the

Mount Hope Bay class (Figure 7), is an indication of the boundaries of the area which was

consistently affected by constant warming. This thermally anomalous area covers an area of

approximately 35 km 2 (Table 4).

Unsupervised classification also facilitated the recognition of smaller scale patterns which

were averaged out by the regional approach. For example, there was an identifiable trace of the

"Mount Hope Bay" class in the upper Providence River, near the location of the Manchester

Street Power Plant (figure 7). Although the thermal affects of this plant were not as visible in the
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satelliteimagesastheplumefrom thelargerBraytonPointStationin MountHopeBay, thefact
that waterin theupperProvidenceRiver exhibitedsimilar seasonalbehaviorto thatof Mount
HopeBay (thetemperatureof which is knownto bedrivenby theinfluenceof thermaleffluent)
suggeststhattheManchesterSt.Plantmayafterall havean identifiableeffecton thethermal
propertiesof adjacentwaters.Thispotentialeffectdoeshoweveroccurona muchsmallerscale
thantheapparentinfluenceof BPPSonMountHopeBay.

Thealmostyear-roundpersistenceof adecreasingtemperaturegradientwith distancefrom
theBraytonPointPowerStationin MountHopeBaysuggeststhattheplant's thermaleffluent
constantlydrivesthedistributionof heatwithin thebay. Thepersistenttemperaturegradientand
theextentof theMountHopeBayclassin theunsupervisedclassificationbothsuggestthat the
influenceof theplant'sthermaleffluentis widespreadthroughoutthebay,andis not anisolated
feature.

Effects of Tides on the Distribution of Temperature in Mount Hope Bay:

Methods

Resolution of the effects of tides on the distribution of temperature requires a temporal

sampling that allows the movements of water bodies to be resolved. In the Landsat analyses

described above, each image was acquired on different dates and years, as well as different times

within the tidal cycle. When organized according to tidal cycle, we can identify certain key

characteristics (e.g. maximum extent of the plume is correlated with acquisition during

maximum ebb tides) and hypothesize the movements of water bodies as a function of tide.

However, tidal movement is affected by season (i.e. salinity and temperature stratification) and

more importantly winds and these must be understood if such data can be evaluated for use in

data assimilation. Thus, it is imperative to assess water movements with carefully controlled

data acquisitions where essential driving parameters (winds, salinity, etc.) can be measured

simultaneously with remotely sensed water temperatures.

Over the course of this project we implemented four measurement campaigns with sufficient

temporal resolution to identify the movements of water bodies and the temperature distribution

in Mount Hope Bay. These are listed in Table 5 with the timing and range of the tides on the

days of the overflights given in Table 6. Three were specifically supported by in situ

measurement campaigns while one occurred as a target of opportunity during a period when a

suite of in situ sensors was deployed. The measurement campaigns included moored instruments

as well as profiles of water properties on the day of the overflights. The moored instruments
consisted of thermisters located at 0.2, 0.5, 1.0, 2.0, and 4.0 meters below the surface placed at

30 locations in Mount Hope Bay (Figure 10). These instruments acquired data at 15 minute

intervals and were placed in the water 14 days before the expected day of the overflight and left

in the water at least two weeks following the overflight. The thermister data were used to

validate the calibration of radiance to temperature from the remotely acquired data. They were

also used for model validation and to generate interpolated temperature fields to compare the 3-

dimensional temperature fields derived from the in situ sensors with the surface temperature field

derived from the remotely sensed data.

Due to the seasonal variations in salinity and temperature in the Narragansett Bay estuary,

the overflight campaigns fall into two seasonal classes: summer and spring. Three of the

measurement campaigns occurred in the summer and only one in the spring. However, the

expressions of the water dynamics were sufficiently different to warrant analysis of the water
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dynamicsseparately.Thefocusof ouranalysisis primarily adescriptionof theexpressionof the
thermaleffluent andthepatternsof movementin responseto tidal variations.

Thedatawerecoregisteredto acommonimagebasemapformedby a SPOTImagesceneof
thearea.This wasgeocodedto a UTM coordinatesystemwith a 10meterpixel spacing.The
May 28, 1997andAugust19,1997datawerecalibratedto at sensorradianceusingthe
instrumentparameters.FortheMay 28datacollect, thedatawerefurtherprocessedto correct
for atmosphericattenuationandupwellingradianceby thedataprovidersusingtheELAS Trade
atmosphericmodeldrivenby actualatmosphericprofilesof temperatureandhumidity acquired
on thedayof theoverflights. Usingthecalibratedradiancevalues,thekinetictemperatureof the
waterwasderivedby invertingtheblackbodyequation.Thecalculatedtemperatureswere
validatedagainstin situ temperaturesat 20cm below thesurfacefor upto 30different locations
on MountHopeBay. TheAugust 30 and September 11 data collects were calibrated to

temperature using an empirical line method. We had a minimum of two temperature observations

for each remotely sensed observation and regressed the remotely sensed radiance against the in

situ temperature.

Summer Observations

All three summer measurement suites show the same distribution patterns of the thermal

effluent in response to the tidal variation. Figure 11 corresponds to August 30, 1996, Figure 12

to August 19, 1997, and Figure 13 to September 11, 1998. On the maximum flood tide (9:44 am

August 30, 1996 and 12:48 pm September 11, 1998) there are strong currents moving water up

the Taunton River from Mt. Hope Bay. This confines the thermal effluent to a highly localized

region near the effluent discharge point and wrapping around the shore to the east. Depending

on the time of the observations and the specific tide range this may extend out into the main

channel and reach across to the eastern shore of the Taunton River. The effluent plume has a

smooth edge to the south and the orientation relative to the currents indicated this confinement
and concentration of the thermal effluent was largely a function of the effect of the rising tide.

With the falling, tide the region of concentrated effluent expands relatively rapidly (11:12 am

August 30, 1996; 14:11 to 15:34 September 11, 1998; 10:58 am August 19, 1997). The

movement of the water at this stage is driven primarily by the flux of tidal water out of Taunton

River. The expansion of this region of water with elevated temperatures occurs through

approximately 180 ° of arc, down the bay as well as to the west across the relatively shallow shelf

than comprises the majority of Mt. Hope Bay. The leading edge of the warm water pool is

relatively smooth, suggesting that this water is more buoyant than the surrounding water and that

it is over-riding. The trailing edge of the warm water pool is typically ill defined and grades

irregularly into the ambient waters of the Taunton River.

By the midpoint of the falling tide (15:34 to 16:57 September 11, 1998; 12:45 pm August 30,

1996) the pool of warm water has expanded more and now consists of two distinct parts. There

is the region of warm water that was pooled during high tide that has expanded across the bay

and is 1-2°C warmer than the ambient background temperature. Connected to this is a warmer

region of water that is relatively narrow and linear that connects back to the discharge point. In

the August 1996 data, the warm pool has moved very rapidly down the bay, while in the other

two data sets the pool is still largely within the upper regions of Mount Hope Bay. The linear

region of warm water is 2-3°C warmer than the ambient background and has been deflected

towards the western side of the bay by the tidal currents spreading across the shallow shelf of

Mount Hope Bay. At low tide (2:11 to 3:28 pm, August 30 1996; 16:57-18:20 September 11,
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1998)thewarm pool hasbeendissipatedandhaspoorlydefinedbordersbut isstill visible asa
distinctentity. Importantly,thisdiffuseregionof warm watercoversmuchof MountHopeBay
andis approximately0.5°Cabovetheambienttemperature.Theregionof stronglywarmed
waternearthedischargepoint is nowdeflectedtowardsthecenterandeasternregionsof thebay.
At this point theplumeexhibitsasmoothleadingedgeits easternsideandadiffuseandirregular
edgeon its westernside.

On therising tide (6:00,7:42,9:24, 11:26am,September11,1998)weobservethemain
elementof theplumeis dominatedby thedirectdischargefrom thepowerplant. Theplumeis
narrowandwell confined. It isobservedto bedeflectedtowardstheeast,into themain tidal
channelof theTauntonRiver. Thewarmpool that wascreatedduringtheprevioustidal cycle
andthedistributedacrossMountHopeBayon thefalling tidecanstill beobservedasadiffuse
regionof waterthat is 0.25-0.5°Cabovetheambienttemperaturesof MountHopeBay (e.g.9:24
amonSeptember11,1998).

In two of thesummerobservations(August19,1997andSeptember11,1998)distinct
thermalfrontscanbeobservedbetweenmultiple timeobservations.Thespecificshapesof the
fronts arepreservedbetweentimeobservationsandpermit thevelocity of thesurfacecurrentsto
beestimated.Usingtheco-registeredandgeolocatedremotelysenseddata,weestimatedtwo
surfacevelocitiesfor theAugust19,1997observationsof 35 and45m/sec.For theSeptember
11observationsweestimatedmaximumvelocitiesof 26,23,and34m/secfor afront observedto
movecoherentlybetweenthe 12:48,14:11,15:34,and 16:57 observations.While thesearein
generalagreementwith the 10-25cm/secvelocitiesexpected(SpaudingandWhite, 1990),they
areall at thehighendof thescalewhile theAugust19observationsareconsiderablyhigher.
Thethermisterdataalsoallowsthetiming of thermalfrontsto beidentifiedandlinked to water
transport.Trackingthesamefrontsasseenin thethermalimageswith thethermistersindicates
transportspeedsof between20and25cm/sec.A dyestudyconductedto assessthetraveltime
from theFall River WastewaterTreatmentPlant,locatedon theeasternsideof Mt. HopeBay
(NETSU, 1989),providedsomeevidenceof fast(=50cm/s)flows in thenearsurfacewaters
(lessthan 1m deep). Theconsistencyof theremoteobservationsdemonstratingfastcurrentsin
theupperlayersof theestuarywith theobservationsfrom thedyestudysuggestthatsurface
currentsmaybe fasterthanpreviouslythought.

Themostimportantaspectsof thedistributionof thermaleffluentoverthecourseof a tidal
cycle is thattheeffluent is distributedthroughoutMountHopeBayby theendof acomplete
cycle. Thepool of warmwatercollectednearthedischargepointon theflood tide is observedto
spreaddownandacrossthebayon theebbtideandcanalmostbetracedto theoutlet to themain
body of NarragansettBayat theMountHopeBaybridge. Currentson theflood andebbtides
causetheplumeto oscillatebackandforth acrosstheupperreachesof Mount HopeBay. The

net effect is that effluent from the previous tidal cycle can still be recognized at the beginning of

the next tidal cycle. Thus a residual heating of the entire Mount Hope Bay is implied, consistent

with the satellite observations that 36 km 2 of Mount Hope Bay shows an anomalous temperature

of 0.8°C above the ambient.

To summarized these main observations:

At the height of the flood tide, the thermal effluent from the power plant is

concentrated in a small region immediately to the south and east of the effluent

discharge point.
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On theebbtide, thepoolof warmerwatermovessouthwardin thebaywith thetidal
currents,andexpandsin size.

At themid-pointof theebbtide, the leadingedgeof thewarmerwaterhasbeen
transportedto apoint approximatelyparallel to SparIslandor 3 km from the
dischargepoint. Herethethermalfront is on theorderof 1-2°C. Velocitiesof thus
nearsurfacelayerof 20-35cm/secareimplied.

At themid-pointof theebbtide, thepool of warmerwateris effectivelydetached
from theplumeattheeffluentdischargepoint. Thisplumehasnow beendeflectedto
thewest.

By theendof theebbtide, the leadingedgeof thewarm waterpoolhasreachedthe
Mt HopeBay Bridge,andtheplumehasbegunto bedeflectedbackto theeast.

At thebeginningof atidal cycle,waterswarmedby thedistributionof effluent from
thepreviouscycleareevident. This indicatesthateffluentis efficiently redistributed
overthecourseof atidal cycleandthata netheatingof MountHopeBay results.

Spring Observations

The distribution of thermal effluent due to tidal dynamics in the spring is considerably

different than the summer (Figure 14). While there was only one measurement campaign on

May 28, 1997, we have noted that the satellite observations in the winter and spring are notable

in the apparent lack of thermal effects from the Brayton Point station. The explanation for this is

evident from the May 28 overflight.

The weather conditions on the day of this acquisition were highly variable. The sky was

essentially cloudless the entire day. During the morning, the winds were light and variable out of

the northwest. By midmoming, the winds had dropped and it was dead calm. Then, around

12:00 pm, a strong southwest wind began to move up the bay from southwest to northeast. By

2:00 pm this had reached the location of the Brayton Point station. These weather conditions

have a significant effect on our observations.

The first two observations are largely unaffected by the weather due to the early morning

time and the light and variable winds. Here we see regions of relatively warm water in the

shallow embayments of the Lee, Kickamuit and Cole rivers. A thermal front characterized by

cooler water can be observed moving out of the Taunton River and across Mount Hope Bay

towards the southwest. This is particularly evident in the 8:24 am data where the warmer water

from the Cole River embayment are truncated by the overriding cooler water from the Taunton

River. The actual plume associated with the thermal effluent from the power plant is virtually

undetectable against this broad backdrop. While the temperatures near the outfall are among the

warmest in the scene, the plume itself is very small and confined. This characteristic is

maintained throughout the observations until the late aftemoon.

The 10:13 am observation marks the period of extremely calm winds. Here we can see linear

features across Mount Hope Bay which are in fact the wakes of boats which have disturbed the

near surface thermal structure. With such calm conditions, a strong thermal gradient is

established in the near surface waters which under ideal conditions may exceed 3-4°C across a

vertical distance of less than 20 cm (Yokoyama et al., 1995). This is indeed what occurred at the

time of the 10:13 am overpass. Detailed comparisons of the remotely measured skin temperature
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andthein situ temperatureat 20cm showedadifferenceof 2°C. Thusthesedataarenot
particularlyusefulfor identifyingthermalfrontsandtheirmovementsovertime. A compound
situationis observedin the 12:06pm scene.Thedisorganizedpatternsof temperaturein Mount
HopeBay reflect thechangingconditionsfrom deadcalm to adevelopingsouthwestwind. At
theextremesouthwestcornerof thescene,thewindshavepickedupmixing thestronglyheated
surfacewaterwith thecoolerwaterbelowthesurface.By the2:09pm scene,thewindshave
mostlymixed thesurfacewaters,thoughaboatwakecanbeobservedamongthewarm waters
on thewesternboundaryof Mount HopeBay. By 3:20pm,thestrongthermalgradientshave
beenremovedandareasonablemeasurmentof thebulk surfacetemperatureis possible.Thus
thelast four scenesprovidethebestview of themovementsof waterduringthis spring
observation,with thecaveatthattherewasa verystrongsouthwestwind blowingthroughoutthe
afternoon.

Theprincipalcharacteristicsthatdefinethethermaleffluentatthis time arethat it is small,
confined,andrapidlymixed into theambientwatersof MountHopeBay. Theplume
temperaturesarecomparableto warmwatersin theshallowembaymentsof theColeandLee
rivers. Theconfinementof theplumeis particularlyinteresting,asthereisvirtually nomixing
zoneor gradationin temperaturefrom theplumeto thesurroundingwaters. Fielddatacollected
of thetemperatureandsalinity of thewaterseemto offer anexplanation.Theeffluent is higher
in salinity thanthereceivingwaters.This is becausethecooling watersaretakenfrom the
bottomof theestuary(20ft depth)andatthis timeof yeartheestuaryis stratifieddueto thehigh
flux of freshwaterfrom theTauntonRiver. Thetemperaturesarealsoquitelow (averageof
15°C). At thesetemperatures,salinitystronglycontrolsthedensityof water. Thusdespitethe
warmertemperatures,theeffluent is denserthanthesurfacewaterandsinksbeneaththesurface.
It is notknownhow deeplythewatersinksandwhetherit impingesuponthebottom. However,
examinationof thethermisterdatasetsaswell ashydrodynamicmodelingsuggeststhat the
plumesinksto a level betweenthesurfaceandthebottomanddoesnot significantlyimpinge
uponthebottom.

Thewind conditionsduringthiscampaignsignificantlyaffectedtheobservations.This
includedtheanomalousheatingof thenear-surfaceduring thecalmmorningperioddescribed
above,aswell asstrongsouthwestwindsthatoccurredduringtheafternoon.Thesewinds
effectivelypushedthesurfacewaterupMountHopeBay andlimited anymovementof the
surfacewater. This observationis supportedby measurementsmadeof currentdrogues.These
weredepositedatthethermalfront of theeffluentatthetimeof hightide. Overthecourseof the
afternoon,thepositionsof thesedrogueswastrackedandmappedwith aGPS. Despitethe
falling tide, thesedroguesmaintainedapositionverycloseto their droppoints,andsomeeven
movedup thebay into theColeRiver embayment.

Anotherimportantenvironmentaleffectobservedduring thiscampaignwastheheatingof
theestuarywatersby solarradiation.Overthecourseof theday, thesurfacetemperatures
measuredboth remotelyandby thethermistersplacedat 20,50,and 100cm depthshowedan
increasein temperatureof on theorderof 3°C (Figure15). While therewasstratification
developedduring thecalmperiodbetween9:00amand12:00pm, thevolumeof waterheated(at
leasttheupper1m) indicatedthethermalinputfrom solarradiationwassubstantial.In fact in
all theremotelyacquiredmeasurements,theshallowembaymentswereconsistentlyaswarmor
warmerthanthe waterimmediatelyadjacentto thedischargepoint for thethermaleffluent. At
thetimethesedatawereacquired(lateMay) thesunis verystrongandhigh in theskyyet the
waterhasnot yetwarmedto anequilibriumpointwith thethermalinput from thesolarradiation.
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Thusit appearthatsolarradiationhasamuchgreaterimpactthantheeffluent from thepower
planton thediurnalandsecularchangein watertemperatureatthis timeof theyear.

To summarizethemainobservationsfrom thespringmeasurements:

At slack low tide (6:47am)plumeis veryshortin length,narrow,andapparentlyhas
little effecton thesurfacetemperatures:Thispatternismaintainedoverthecourseof
theflooding tide

During thefalling tide, thesurfaceexpressionof theplumeis moreextensiveand
exhibits thesamegenerallypatternsasobservedin thesummerscenes,andsatellite
data:

Deflectionto thewestduringthemaxebbflow
Deflectionbackto theeasttowardstheendof ebbflow

Howeverextentis lessthatsummerobservations

Windswerecalm in themorning,pickedup from southwestin earlyafternoonand
becamestrong: Typical watertemperaturesincreasedfrom =13°Cto --16°Cdueto
solarheating. Insitu andremotelysenseddataagree.

Surfacetow dataindicatesthattheplumeis muchdenser(4-5oTunits)thansurface

Bestexplanation:theplumewatersinksbelowthesurfaceduringtheflooding tide,
lesssoduring theebbingtide,dueto stratifiedwatercolumnin theupperreachesof
Mt. HopeBay

Overall,thethermaleffluentappearsto havea minimal impacton thetemperaturesof
Mount HopeBayin thewinter/springmonths.This is supportedby satelliteimaging
wheretheplumeis rarelyvisibleduringthis timeof year.

Hydrodynamic Modeling:

Numerical Simulation of Mt. Hope Bay

Applied Science Associates (ASA) conducted hydrodynamic/thermal simulations of Mt.

Hope Bay (MHB) to study the BPPS thermal effluent plume and to investigate the uses of

remotely sensed and in-situ data for monitoring and modeling coastal waters using the WQMAP

(Water Quality Mapping and Analysis Program) system developed by ASA. The application of

numerical models and the collection of remotely sensed and in-situ data in the coastal

environment has dramatically increased over the past few decades. The current state of data

model coupling in the coastal environment is to calibrate the model to local conditions through

both qualitative and quantitative comparisons between data observations and model predictions.

This study provided a unique opportunity to develop and investigate coastal hydrodynamic data

assimilation techniques. The application of data assimilation techniques has the potential to

improve model accuracy and provide guidance on the efficiency on the monitoring effort in

terms of instrument placement and sampling frequency. The synoptic collection of remotely
sensed and in-situ field measurements will allow for not only individual but combined and

comparative data set skill assessment.
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WQMAP Modeling System

WQMAP is an integrated system for modeling the circulation and water quality of estuarine

and coastal waters in a geographic information system (GIS) framework. The embedded GIS

architecture allows WQMAP to be globally re-locatable and allows the user to input, store,

manipulate, analyze, and display geographically referenced information. Figure 16 presents an

example view of MHB within the WQMAP interface. The system also allows the user to

generate boundary conforming grids to represent the computational domain, to perform

simulations with a suite of circulation and water quality models and to display the model

predictions in the form of time series plots, vector and contour plots, and color animations.

The WQMAP hydrodynamic model, (BFHYDRO) is a state-of-the-art, general curvilinear

coordinate, boundary-fitted hydrodynamic model (Muin and Spaulding, 1997; Huang and

Spaulding, 1995b; Swanson et al., 1989). The model is used to generate tidal elevations,

velocities, and salinity and temperature distributions. The boundary-fitting technique matches

the model coordinates with the shoreline boundaries of the water body accurately representing

the study area. This system also allows the user to adjust the model grid resolution as desired.

Development of the boundary-fitted model approach has proceeded over the last 15 years in a

joint effort involving the University of Rhode Island and Applied Science Associates, Inc.

(Spaulding, 1984; Swanson et al., 1989; Muin, 1993; and, Huang and Spaulding, 1995a). The

model may be applied in either two or three dimensions depending on the nature of the problem

and the complexity of the study.

The boundary-fitted method uses a set of coupled quasi-linear elliptic transformation

equations to map an arbitrary horizontal multi-connected region from physical space to a

rectangular mesh structure in the transformed horizontal plane (Spaulding, 1984). The

three-dimensional conservation of mass and momentum equations, with approximations suitable

for lakes, rivers, and estuaries (Swanson, 1986; Muin, 1993) that form the basis of the model, are

then solved in this transformed space. In addition, an algebraic transformation is used in the

vertical to map the free surface and bottom onto coordinate surfaces. The resulting equations are

solved using an efficient semi-implicit finite difference algorithm for the exterior mode (two-

dimensional vertically averaged) and by an explicit finite difference leveled algorithm for the

vertical structure of the interior mode (three-dimensional) (Swanson, 1986).

The basic equations are written in spherical coordinates to allow for accurate representation

of large model areas. The conservation equations in three dimensions, for water mass,

momentum, energy (temperature) and constituent mass (salinity) form the basis of the model. It

is assumed that the flow is incompressible, that the fluid is in hydrostatic balance, the horizontal

friction is not significant, and the Boussinesq approximation applies.

The boundary conditions are as follows:

• At land, the normal component of velocity is zero.

• There is no salt or temperature transfer through land boundaries.

• At open boundaries, the free surface elevation must be specified and salinity

and temperature are specified on inflow. On outflow, salinity and temperature
are advected out of the model domain.

• A bottom stress or a no-slip condition can be applied at the bottom.

• There is no salt or temperature transfer through the bottom boundary.
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A wind stressisappliedatthesurface.

No saltpassesthroughthewatersurface.

An energybalanceboundarycondition is appliedat the water surface.The
termsincludedare:
> shortwavesolarradiation
> longwaveatmosphericradiation
> longwaveradiationemittedfrom thewatersurface
> convection(sensible)heattransferbetweenwaterandair
> evaporation(latent)heattransferbetweenwaterandair

Thesetof governingequationswith dependentandindependentvariablestransformedfrom
sphericalto curvilinearcoordinates,in concertwith theboundaryconditions,is solvedby asemi-
implicit, split-modefinite differenceprocedure(Swanson,1986).Theequationsof motionare
vertically integratedand,throughsimplealgebraicmanipulation,arerecastin termsof a single
Helmholtzequationin surfaceelevation.Thisequationis solvedusingasparsematrix solution
techniqueto predictthespatialdistributionof surfaceelevationfor eachgrid.

The vertically averagedvelocity is thendeterminedexplicitly usingthemomentumequation.
This stepconstitutestheexternalor verticallyaveragedmode. Deviationsof thevelocity field
from this vertically averagedvaluearethencalculated,usinga tri-diagonalmatrix technique.
The deviationsareaddedto theverticallyaveragedvaluesto obtaintheverticalprofile of
velocity ateachgrid cell, therebygeneratingthecompletecurrentpatterns.Thisconstitutesthe
internalmode. Themethodologyallowstimestepsbasedontheadvective,ratherthanthe
gravity, wavespeedasin conventionalexplicit finite differencemethodsand,therefore,resultsin
acomputationallyefficient solutionprocedure(Swanson,1986;Swansonet al., 1989;Muin,
1993).

The salinity andtemperaturetransportequationsaresolvedby asimpleexplicit techniquein
thehorizontal. Theverticaldiffusion termis solvedby athreetimelevel, implicit schemeto
easethetime steprestrictiondueto thesmallverticallengthscale.Theadvectiontermsare
solvedusingeitheranupwind-differencingschemewhich introducesminor numerical(artificial)
diffusivities andis first orderaccurateor thesecondorderaccurateQUICKESTformulation.
Horizontalgradientsin temperature,(aswell asin salinity,densityandpressure)areevaluated
alonglinesof constantdepthto reducetheartificial numericaldispersionin thevertical
associatedwith thesigmatransformsystem.

Application of Hydro- Thermal Modeling to Mt. Hope Bay

In order to properly represent the circulation and thermal dynamics within Mt. Hope Bay it

was necessary to calibrate and verify the model. Calibration is an important step in the process

of applying a model to a specific problem, particularly those models that contain many degrees

of freedom. In general the calibration process is an organized procedure to select model

coefficients to best match experimental data. The verification process is a confirmation that the

chosen model coefficients are applicable to one or more independent data sets. This process

required seasonal thermal and physical monitoring to map the BPPS thermal effluent plume and

the circulation characteristics of Mt. Hope Bay in three dimensions. In order to accomplish this

task four monitoring studies were conducted during the periods May-June 1997, August-

September 1997, September 1998 and February-March 1999. The thermal mapping studies
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consistedof thermistorstringsdistributedradially aroundtheBPPSsoutfall (Figure 10)and
selectedsitesin theLee,ColeandTauntonRivers. Thisdistributionprovidedhighresolutionin
theareasurroundingtheoutfall anddecreasedin resolutiontowardthemouthof Mt. HopeBay.
Eachstudyusedapproximately30buoy-mountedthermistorstringswith four to six thermistors
perstring,locatedatdepthsof 0.25,0.5, 1,2,4, and6m,recordingtemperatureatfive minute
intervals. Themodelwascalibratedto theAugust-September1997datasetandverifiedusing
theremainingdatasets.Tables7 andTable8presentasummaryof temperaturecalibration
statisticscomputedatthreelocationswithin MT. HopeBay(BordenFlats,BraytonPoint,and
GardnersNeck).Thecomputationalgrid (Figure17)consistedof 11layersin theverticaland
hadahorizontalresolutionof 200-300min mostof thebayandhigh resolutionof 50-100min
thevicinity of thepowerplant.

Assimilation of In.Situ Data

The data assimilation study was conducted for the May-June 1997 field survey, which

provided the longest and most complete data set. A baseline simulation in which no data was
assimilated was run in order to obtain baseline statistical performance parameters. A statistical

comparison between the model predicted temperature and thermistor measurements resulted in a
maximum relative mean error of 9%, a maximum error coefficient of variation of 5%, minimum

and maximum correlation coefficients of 0.39 and 0.79, respectively, and an average root mean

square error (RMS) of 1.4°C. Figure 18 shows the RMS error between the baseline simulation
and thermistor data at the surface, areas where no bars are present indicate that the thermistor

data was incomplete relative to the length of the simulation. The RMS error is greatest in the
region directly surrounding the outfall (thermistor strings 8, 9, 10, 11 and 12) and decreases as
approach the mouth of the bay. Figure 19a-b presents a plan view of contoured thermistor data
and model predicted temperature at the surface. The reasons for this error distribution becomes
clear by examining the time series of the model predicted temperature and thermistor data at the
surface near the outfall (Figure 20) and near the mouth of the bay (Figure 21). The motion of the

thermal plume is governed by the semi-diurnal tide and capturing the proper phasing and extent
of the plume in the near field surrounding the powerplant significantly impacts the results.
However, the temperature data collected from the thermal mapping program should prove useful
in adjusting the model to capture the near-field dynamics and improving the predictions in the
far-field.

In order to distribute the discrete temperature observations over the computational domain a

spatial interpolation scheme was required. The technique chosen for this study is based upon the

method of successive correction as presented by Moore, et. al. (1987). Using this scheme, the

model forecast is combined with the temperature observations within a region of influence

determined by a correlation length scale. The new temperature at any grid cell is that predicted

by the model plus a weighted mean of observational errors within the correlation region. The

data assimilation scheme is then expressed as
N
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where the weighting coefficient Ctk is defined as
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if Ixi-Xkl< ax and lyi-ykl < ay otherwise the value is zero, where ax and ay are the correlation length
....... AN.

scales in the longitudinal and latitudinal directions, respectively, T i is the analyzed temperature
f . . . o.

within a grid cell, T_ is the model predicted temperature within a grid cell, Tk _s the observed

temperature at the thermistor locations, and T_ is the model predicted temperature at a grid cell

coincident with the thermistor observations. The term Ctp is the weight assigned to the model

predictions and was assigned the value of one. This corresponds to the new temperature, when

the grid cell corresponds to the thermistor location and no other thermistors are within the

correlation radius, being the average of the observation and model prediction.

The correlation length scale was kept constant for this study versus applying the above

equation a number of times with successively smaller correlation length scales as in previous

applications of this technique in the analysis of meteorological data for numerical weather

forecasting (Cressman, 1959; Barnes, 1964; Lorenc, 1986). The correlation length scale was

determined by developing a zero phase correlation matrix for all of the thermistor data at each

depth and plotting it versus the corresponding distance matrix. Most of the results with a
correlation coefficient above 0.8 were clustered within a distance of 0.5 NM (0.93 km) (Figure

22). This distance was chosen as the correlation length scale in both the longitudinal and

latitudinal direction.

In order to determine the effectiveness of the scheme, two types of tests were developed.

The first directly addresses the question of improving the model predictions, in a hindcasting

and/or nowcasting sense, and studying the efficiency of the monitoring program. This was

accomplished by varying the spatial distribution of thermistor strings while continuously

assimilating the data and included cases where all the thermistor strings were used, only the even

numbered strings, only the odd numbered strings, only strings at the open boundary and outfall

(11 and 29), and five strategically chosen strings (6,11, 13, 23, and 29). Refer to Figure 10 for

thermistor string locations. The second tested the scheme's predictive capability by assimilating

the data from all the thermistor strings and from only the outfall and open boundary for one day

then ceasing the assimilation.

Figure 23 shows the RMS error between the model predictions and thermistor data at the

surface, for the baseline simulation and the case where all 30 thermistor strings were

continuously assimilated. As in the baseline simulation, the error is greatest in the area

surrounding the outfall. However, the maximum error was reduced to 0.68°C compared to

2.73°C for the baseline simulation. The effect of assimilating all the thermistor data reduced the

mean RMS error by 81% from 1.71 °C to 0.32°C. A time series plot of the temperature in the

region of the outfall at the surface (Figure 24) demonstrates the ability of the data assimilation

scheme to improve model predictions in capturing the appropriate plume dynamics.

The results for the cases where only data from the even and odd numbered thermistor strings
were assimilated was similar to those for the case where all of the thermistor data was used

(Figure 25). The reduction in RMS error relative to the baseline simulation was 69% and 71%
for the even and odd numbered thermistor string cases, respectively. This is an important step in

evaluating the efficiency of the monitoring program, since the result of using 15 thermistors is

almost equivalent to using all 30, the long-term cost of such a program could be dramatically
reduced.

The next step was to test model predictions by assimilating data from only two

representative thermistor strings located near the outfall and open boundary. The improvement

was primarily seen in the region directly in front of the outfall, while those on the periphery saw
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little improvement(Figure26). Theresultingreductionin themeanRMS errorat thesurfacefor
thiscasewas35%relativeto thebaselineassimilation.

We alsoinvestigatedtheimpactof assimilatingthedatafrom five strategicallylocated
thermistorstrings(6, 11,13,and29). Theresultwasa fairly uniform RMSerrordistribution
throughoutthebay (Figure27),adesirableresult,with ameanRMSerrorof 0.84°Catthe
surface.So,eventhoughreducingthenumberof thermistorstringsby a factorof six, a51%
reductionin themeanRMSerror relativeto thebaselinesimulationwasstill achieved.

This seriesof testswasdesignedto examinetheforecastingcapabilityof thedata
assimilationscheme.Sinceno timedependenttermwasincludedin thedataassimilation
schemenorany feedbackincludedto modify themodelcoefficients,thepredictivecapability
wasexpectedto be limited. Figure28showsthemeanRMSerrorasafunctionof time for four
cases:1) thecontinuousassimilationof all thethermistordata;2) the intermittentassimilationof
all thethermistordata;3) only two thermistorstrings,locatedneartheoutfall andtheopen
boundary,for oneday;and4) thebaselinesimulation. ThemeanRMSerrorof thecontinuous
assimilationof all thedataandthebaselinesimulationprovidelowerandupperboundsof the
predictivecapabilitytests,respectively.Forcaseswheredatawasassimilatedfor only oneday,
therewasatwo-stageresponse.Thefirst wasaninitial rapid increaseof theerroroccurringon
theorderof 12hours,which is alsothedominanttidal periodfor Mt. HopeBay. Thesecondwas
alonger-termdecaytowardsthe baselinesimulationon theorderof days.This canbeattributed
to thedataassimilationschemeeffectivelyraisingthebulk temperatureof thebayandis clearly
afunction of thenumberof thermistordatasetsassimilated.

Integration of Remotely Sensed Data

Processing of Remotely Sensed Data

The remotely sensed data calibrated to surface temperature were supplied to Applied Science

Associates by Brown University in the form of GEOTIFF images. These images, which for

practical purposes can be considered continuous data, must be sub-sampled to the computational

hydrodynamic grid. The process was accomplished through the development of an Overflight

Visualization and Analysis Extension for the ArcView Geographic Information System (GIS).

The analysis extension allows the user to display a GeoTiff image (e.g. Figures 11-14) in order to

visually assess the quality and spatial extent of the data, sub-sample an image to the

hydrodynamic grid, and develop a transfer function between image values and water

temperature. This application development focused on the May 28, 1997 data acquisition

(Figure 14) and used primarily the time periods from 2:09 pm, 3:20 pm, 4:25 pm, 5:46 pm, and

7:02 pm. This was to use data that were not affected by the low wind speeds and excess surface

heating observed in the data acquisitions from earlier in the day.

When an remotely sensed image is accepted, an overlay of the computational hydrodynamic

grid is applied (Figure 29) and the image is sub-sampled to fill the computational cells with a

single unique DN value (Figure 30). The sub-sampling is accomplished by determining the

average DN value of the remotely sensed image pixels that fall within the bounds of a

computational cell.
Once a set of remotely sensed images are accepted, a transfer function is required to connect

the remotely sensed DN values to the water surface temperature. This function is created using

the in-situ thermistor data (Figure 10). Values of surface thermistor measured temperature at the

time of each chosen overflight is plotted versus the average DN value within a 5-pixel radius
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surroundingthethermistor.A leastsquaresregressionanalysisis appliedto thedatato createthe
transferfunction. Thetransferfunctionis thenappliedto sub-sampledremotelysensedimages
resultingin datasetsreadyfor modelassimilation.

Assimilation of Remotely Sensed Data

The remotely sensed data chosen for assimilation was a series of five images taken over an

ebbing tide on May 28, 1997 (Figure 14). Figure 31 shows the time of each image to the actual

tide. The first remotely sensed image was taken just shortly after the tide begins to ebb (1409

EDT) with successive images at approximately one- to two-hour intervals (1520, 1625, 1746)

with the last image being captured shortly after the tide begins to flood.

The sub-sampled remotely sensed images were assimilated into the model surface layer using

a direct insertion technique. Direct insertion is the simplest method of data assimilation in which

the model data is simply replaced by the measured data. This was deemed appropriate due to the

spatial density of the remotely sensed data. Techniques do exist to propagate remotely sensed

temperature data into the lower layers of a numerical simulation (Bennett, 1992). However,

these techniques were developed for ocean modeling in which the stratification of temperature is

reasonably well defined. Estuarine simulations such as this application present unique

challenges in that thermal stratification of the water column is highly dependent upon
environmental conditions such as river flow, solar radiation and weather patterns. This particular

simulation is further complicated by the presence of a powerplant, which discharges its thermal

effluent into Mt. Hope Bay.

A series of assimilation experiments were conducted in order to determine the temporal

impact of various combinations of images. A baseline simulation was conducted in which no

data was assimilated in order to determine baseline performance parameters. The performance

parameter used is the mean temperature difference between the sub-sampled remotely sensed

image and the numerical simulation at the time of each overflight. Therefore, a decrease in the

performance parameter marks improved model performance. The temporal impact of

assimilating the remotely sensed data can then be tracked by observing how quickly this measure

returns to its baseline value. Table 9 presents a matrix of the assimilation experiments an "X"

refers to data assimilated, while "--" refers to no data assimilated.

Remotely Sensed Data Assimilation Results

The results of the remotely sensed data assimilation experiments are presented in Table 10.

The baseline simulation, in which no remotely sensed data were assimilated, has performance

parameters ranging from 0.18 at 1520 EDT to 0.79 at 1902 EDT. Simulation May97ovtl, in

which remotely sensed data were assimilated only at 1409 EDT, show dramatic performance

improvement relative to the baseline simulation at 1520 EDT from 0.18 to 0.06. However, the

effect of assimilating the remotely sensed data can no longer be seen by 1625 EDT where the

performance parameter is 0.51 relative to a value of 0.59 for the baseline simulation. The

performance parameters for simulation May97ovt2, in which remotely sensed data were

assimilated at 1409 EDT and 1520 EDT, show no significant improvement over the baseline

simulation. The performance parameters for simulation May97ovt3, in which remotely sensed
data were assimilated at 1409 EDT and 1625 EDT, show an improvement at 1520 EDT from

0.18 to 0.06 and at 1746 EDT from 0.47 to 0.20 while at 1902 EDT the change is from 0.79 to

0.65. The performance parameters of simulation May97ovt4, in which the remotely sensed data

was assimilated at 1409 EDT and 1746 EDT, again show marked improvement at 1520 EDT
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from 0.18 to 0.06. Howevertheimprovementsseenat 1625EDT and 1902EDT showless
improvementfrom 0.59to 0.51and0.79to 0.64,respectively.SimulationMay97ovt5,in which
remotelysenseddatawasassimilatedat 1409EDT, 1520EDT and1625EDT,showeda
significantdecreasein theperformanceparameterat 1746EDT from 0.47to 0.20,while the
decreaseat 1902EDT wasonly 0.79to 0.66. SimulationMay97ovt6assimilatedall of the
remotelysenseddataexceptat 1902EDT which showeda reductionin theperformance
parameterfrom 0.79to 0.61.

Theresultsof theremotelysenseddataassimilationexperimentsshowthatsimulationsare
significantly improved for approximatelyonehourafterassimilationtakesat whichtime the
simulationsharplybeginsto returnto thestateof thebaselinesimulation.A clearexampleof
thisbeingsimulationMay97ovtl, whereafterassimilationtakesplacetheperformance
parameterdecreasesby 67%(from 0.18to 0.06)whileshortly thereaftertheperformance
parameterhasdecreasedby only 14%(from 0.59to 0.51). Also, thetimeof thetidealsoseems
to play an importantrole in theperformanceof thedataassimilation.For example,simulation
May97ovt4assimilatesdataat 1746EDT andtheperformanceparameterat 1902EDT hasonly
decreasedby 19%while for simulationMay97ovtl, wheredatais assimilatedat 1409EDT, the
decreasein theperformanceparameterat 1520EDT is 67%.

Modeling Results Summary

This study investigated assimilating in-situ thermistor measurements and remotely sensed

thermal images into a three-dimensional baroclinic circulation model of Mr. Hope Bay, located

in the northwestern portion of Narragansett Bay. The in-situ thermistor measurements were

collected, during May-June 1997, using 30 buoy-mounted thermistor strings with four to six

thermistors per string, located at depths of 0.25, 0.5, 1, 2, 4 and 6 m, recording temperature at

five minute intervals. The remotely sensed thermal data consisted of five GEOTIFF images,

prepared by Brown University, collected over an ebbing tide on May 28, 1997 at 1409 EDT,

1520 EDT, 1625 EDT, 1746 EDT and 1902 EDT.
The in-situ thermistor data was assimilated into the hydrodynamic model using the method of

successive correction. This technique combines the model forecast with temperature

observations within an area of influence determined by the correlation length scale of the data.

The new temperature at any grid cell is then defined by that predicted by the model plus a

weighted mean of observational errors within the correlation region.

Two types of tests were developed to determine the impact of assimilating the thermistor data

on model performance and to study the efficiency of the monitoring program. The first set of

tests were conducted by varying the spatial distribution of the thermistor strings while

continuously assimilating data and included cases where all the thermistor strings were used,

only the even numbered strings, only the odd numbered strings, only the strings at the open

boundary and the outfall (11 and 29), and five strategically chosen strings (6,11,13,23 and 29).

For these test the data assimilation scheme proved successful in improving the model predictions

by reducing the RMS error by as much as 80% in a hindcast/nowcast mode. This result is useful

in situations when an environmental monitoring-modeling program is required for regulatory

concerns or a better understanding of the environment. The data assimilation scheme also

proved useful in studying the efficiency of the monitoring program. By reducing the number of

thermistor strings from 30 to 5 a 51% reduction in the mean RMS error relative to the baseline

simulation was achieved. Using this technique has the potential to dramatically reduce the long-

term cost of future programs of this type and still provide the error reduction advantages of data
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assimilation.The secondsetof tests evaluated the assimilation schemes predictive capability by

assimilating the data from all the thermistor strings and from only the open boundary and outfall

for one day then ceasing the assimilation. This resulted in a two-stage response. The first was

an initial rapid increase of the RMS error on the order of 12 hours. The second is a longer term

decay of the RMS error towards that of the case of no data assimilation on the order of days.

The remotely sensed thermal data were assimilated into the hydrodynamic model using a

direct insertion technique. Direct insertion is the simplest method of data assimilation in which

the model data is simply replaced by the measured data. The use of this technique is justified

due to the remotely sensed data being spatially continuous relative to the model resolution.

A series of numerical experiments were conducted to determine the temporal impact on the

model performance by assimilating various combinations of remotely sensed images. The

performance parameter for these tests was chosen to be the mean temperature difference between

the remotely sensed data and the numerical simulation at the time of each overflight. The

temporal impact of assimilating the remotely sensed data was then tracked by observing how

quickly the performance parameter returns to a baseline value. The baseline value was

determined by conducting a numerical simulation in which no data was assimilated. These tests

showed that the assimilation of remotely sensed data provides limited model improvement over

time. The simulations are improved for approximately one hour after assimilation takes place

after which time the performance parameter quickly returns to that of the baseline simulation.

Suggested Future Activities
Three issues need to be addressed in order to efficiently assimilate remotely sensed data into

coastal and estuarine models. The first is higher temporal resolution. The numerical experiment

presented above show the time required between remotely sensed images can be no longer than

one hour if increased model performance is expected. This can possibly be accomplished

through the use of a geostationary satellite with the capability to capture images with a resolution

between 100 and 1000 m. The second is rapid transfer of remotely sensed images to the

modeling system. At the present time a significant number of steps are involved: georeferencing

of the image, transformation of the image to an accepted file type, visual acceptance of the image

quality and geographic region, calibration of the remotely sensed DN values to temperature data

and finally discretization of the remotely sensed image to the hydrodynamic model

computational grid. It is recommended that a focus be put on developing an automated system to

accomplish these task through the use of artificial intelligence and further developing the science

required to determine the ocean surface temperature from remotely acquired image DN values
under all environmental conditions. The third issue involves the development of nontraditional

data assimilation techniques. Since in the near future it is unlikely that geostaionary satellite will

be dedicated to collecting environmental data continuously for a single estuary and there is a

certain amount of uncertainty involved in the calibration of the remotely sensed data to actual

surface temperatures the data contained in the remotely sensed images could be used in a pattern

adjust mode. This would involve capturing features in the remotely sensed image such as the

thermal plume from the Brayton Point Power station evident in Figure 14 (or Figures 11-13) and

adjusting the hydrodynamic model to conform to this pattern without actually ingesting any

temperature data.

Evaluation of Hyperspectral Data for Estuarine Water
Characterization
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Visible-nearinfraredreflectancespectraof coastal and estuarine waters are a complex

convolution of the optical properties of water, phytoplankton, gelbstoff, dissolved organic

matter, and suspended sediment. Our long term goals are to develop quantitative methods for

extraction of the physical abundances of these contributing constituents to the observed

reflectance spectra. The work consists of observations with airborne sensors such as AVIRIS

and insitu measurements using water samples, towed salinity, temperature, and fluorescence

sensors, and field spectra obtained with portable spectrometers. In this paper, we report on

results of calibration and reflectance modeling of AVIRIS data obtained on August l9, 1997.

The data discussed here were obtained at 10:58 and 11:22 EDT on a flight path from the north to

the south along the eastern and western borders of the bay (Figure 32). The solar zenith angle
was 55.5 ° and the solar azimuth was 141 ° .

AVIRIS Data Calibration

The goal of calibration was to provide the best estimate of reflectance for all the AVIRIS

data. Radiometrically corrected data were provided by the AV1RIS Data Facility. Data were

acquired as 12-bit and converted to units of radiance in units of microwatts per square centimeter

per nanometer per steradian, or uW / (cm^2 *nm * sr), using inflight and ground calibration
files. AVIRIS radiometric calibration factors are calculated by measuring the response of

AVIRIS to an integrating sphere (a known target illuminated by a known light source). This

calibration is reported to be accurate to within 7%, absolute, over time while intra-flight accuracy

is within 2%.

Accurate calibration of radiance to reflectance over water targets is challenging, since up to

90% of the measured radiance can be contributed by sources other than water. The AV1RIS

radiance data over Narragansett Bay exhibited two such sources that varied spatially across the

scene; one was a phase angle dependent variation in the path radiance (Figure 33) and the other a

fresnel reflection off water surfaces optimally oriented with respect to the solar incidence angle

and the viewing angle. Both these sources are additive to the total radiance and the spatially

dependent properties need to be removed prior to the reflectance calibration. The spectral

properties of these sources were characterized empirically using the fact that large regions of the

scene were occupied by water with relatively homogeneous spectral properties. Thus any

variations in radiance would be due to the phase angle dependent path radiance and fresnel

reflections. Radiance spectra from regions that exhibited minimal effects from these sources

were subtracted from radiance spectra from regions exhibiting maximum effect to derive the

spectral signatures of phase-angle dependent path radiance and fresnel reflection off the water.

These signatures were then used to derive magnitude coefficients on a pixel by pixel basis for the

entire scene. The magnitude coefficients thus determine the amount of these sources to remove

from each pixel. A representative result of this approach is shown in Figure 34.

A number of approaches were examined for reducing the AVIRIS calibrated radiance data to

reflectance, including atmospheric modeling, empirical line calibration, and an empirical

radiance calibration. Atmospheric modeling was performed using the ATREM model.

However, due to a lack of adequate characterization of the atmosphere, the resulting spectral

shapes were unsatisfactory, particularly at shorter wavelengths. Though typical land cover units

exhibited realistic spectral shapes (e.g. vegetation, soils), the spectra for the estuary were unlike

any field spectra that we had obtained to date. An empirical line calibration was attempted.

However, this resulted in systematic features in the water spectra unrelated to the spectral

properties of water. In essence, the gain and offset corrections were weighted towards the noise
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statistics of the low albedo calibration target. Projection to the even lower albedo properties of

water resulted in the unacceptable spectral features.
Fortuitously, several small low altitude cumulous clouds were present in the AVIRIS flight

line. These cast shadows over both land and water. Radiance spectra were extracted from

shadowed and unshadowed regions of approximately similar terrain cover and analyzed.

Regardless of terrain cover, all the shadowed spectra exhibited a consistent spectral shape
between 0.4-0.8 lam, and ratios of the various shadowed terrains to shadowed water produced a
relatively flat ratio spectrum. Furthermore, ratios of the shadowed regions to unshadowed
regions produced relative spectra that exhibited a 1/_,4 dependence. Shadowed regions are thus

dominated by the global path radiance in the scenes and we propose that shadowed water can
provide a first order estimate of path radiance.

Cumulous clouds scatter light very efficiently in the 0.4-0.8 lam region without any

significant absorptions. They can therefore provide a first order estimate of solar radiance. To

provide a first order estimate of reflectance we therefore subtract the spectrum of shadowed

water, with a small reduction to account for reflected sky irradiance (basically attenuate the

spectrum by a factor of 0.95) from every pixel in the scene, and divide by the spectrum of a

homogeneous cloud, which also has had the estimate of path radiance removed. Carder et al.

(1992) presented an approach based on the same concept but with a more thorough development
of the radiance contributions for all sources. This was used to constrain a radiative transfer

model for the calculation of reflectance and they showed the cloud-shadow approach has merit in

the calibration of hyperspectral data in aquatic environments.

Assessment of Calibration

The simple approach to calibration provided remarkably clean spectra of the estuary that are

highly consistent with reflectance spectra measured insitu. This is illustrated in Figure 35. The

AVIRIS spectra are 3x3 pixel averages selected from regions representative of the typical

estuarine waters. The field spectra were acquired with ASD portable spectrometers using a 20%

reflective Spectralon target as a standard and corrected for the absolute reflectance of the

standard. We see that the AVIRIS spectra reproduce the main important characteristics of the

field spectra of the estuary: strong chlorophyll absorption between 0.4 and 0.55 lam, strong drop

in reflectance after 0.58 pm due to increased water absorption, the presence of a small

chlorophyll absorption near 0.67 pm, and chlorophyll fluorescence between 0.67 and 0.71 lam.

These spectra are also comparable to estuarine spectra collected by other researchers (e.g.

Roesler and Perry, 1995).

Inverse Model and Analysis

The high quality of the AVIRIS hyperspectral data shown here provide the opportunity to

perform inverse modeling of reflectance to obtain constituent properties remotely. There have

been a number of analytical algorithms developed for this purpose (e.g. Carder et al., 1991; Lee

et al., 1994; Rocsler and Perry, 1995; Hoge and Lyon, 1996). For this analysis we employ the

approach of Roesler and Perry (1995), discussed briefly below.

Remote sensing reflectance (ratio of radiance measured in a particular solid angle to the

downward irradiance) of coastal and estuarine waters is primarily governed by the optical

properties of water, phytoplankton, organic matter (tripton, gelbstoff), and suspended sediment.

The reflectance is defined by the ratio of the backscattering properties of these optical

components to the absorbing properties. Roesler and Perry (1995) simplified the basic radiative

transfer theory to arrive at the fundamental relationship:
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where _ is wavelength, R is the reflectance, G accounts for the angular dependence of the

upward light field, bj and ai are the backscattering and absorption coefficients for the jth and ith

components in the water, and Mj, Mi are the magnitudes of the contribution of those components

to the measured reflectance. To perform inverse modeling of reflectance to obtain the relative

contributions of the optically active components, this equation needs to be solved for the

magnitude parameters. Furthermore, some knowledge of the optical properties of these

components is required.

The absorption and backscattering properties of pure water are relatively well known and

most researchers use the values published by Smith and Baker (1981). The magnitude of the

water contributions of backscatter and absorption are fixed to be 1.0. The optical properties of

phytoplankton, dissolved organic matter, and suspended sediment vary with location, season, and
over the coarse of tides. Nevertheless, the backscattering and absorption properties of organic

matter vary within a relatively narrow range over the visible to near-infrared wavelength range

and can be reasonably approximately by simple functions of wavelength. For this application we

ignore suspended sediment. This is a reasonable approximation for some regions of Narragansett

Bay which is fed by mature rivers with virtually no bedload or suspended sediment. However, in

regions of strong tidal currents, sediment may be re-suspended from the bottom.

Phytoplankton absorption is known to vary with pigment concentration, packing, and

composition (Sathyendranath et al., 1987; Bricaud et al., 1988). In addition, solar-stimulated

chlorophyll fluorescence contributes to the measured reflectance, but varies with phytoplankton

production. One approach is to use known phytoplankton absorption coefficients to invert the

optical model. However, this limits general application and requires a library of local

phytoplankton absorption. In addition, phytoplankton species vary seasonally and spatially in

estuaries, complicating the building of such libraries. The model of Roesler and Perry (1995)

employs novel techniques to simultaneously account for fluorescence and variable phytoplankton

absorption through a three-step model inversion.

Solutions to equation (1) are obtained by simultaneous inversion over the number of

wavelengths to determine the values of M for the absorption and backscattering basis vectors.

The basis vectors used are shown in Figure 36. Because this is a nonlinear equation, we employ

the Levenberg-Marquardt method (Press et al., 1986), setting the values for water equal to 1.

The first set of iterations to a solution provide a first-order estimate of the reflectance, using a

prescribed value for the phytoplankton absorption spectrum. We use only the wavelengths up to

660 nm to avoid contributions from chlorophyll fluorescence affecting the solutions. In the

second step, contributions from chlorophyll a fluorescence are determined as the difference

between the measured and modeled reflectance over the wavelength region 660-730 nm. The

solutions provide values of the concentration of optical constituents and the fluorescence

activity. Example solutions are shown in Figure 37 for two different water types.

Roesler and Perry (1995) demonstrated that this method allowed them to consistently invert

reflectance spectra to the relative magnitudes of the various optical components, as well as an

estimate of the specific phytoplankton absorption coefficient spectrum for aquatic environments
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rangingfrom openoceanto estuarine.Wehavesuccessfullyappliedthis modelto AVIRIS data
calibratedusingthemethodsdescribedin thispaper.Exampleresultsfor theconcentrationof
phytoplanktonandtheactivity of phytoplankton(fluorescence)areshownin Figure38. While
thereis ageneralcorrespondencebetweenhighchlorophyllandhighfluorescence,alsonotethat
thereareregionswherethereishighfluorescencebutmoderatechlorophyll andvice versa.High
fluorescencegenerallyindicatesveryactivephotosynthesisandthusmaybeagoodindicatorof
ecosystemhealth. Additional resultsof modelapplicationsto AVIRIS dataoverthe
NarragansettBay will bepresentedatthemeeting.

Summary for Hyperspectral Analysis

The very high fidelity of AVIRIS data afford the opportunity to apply deterministic models

to remote acquired data over relatively large regions. AVIRIS data acquired over Narragansett

Bay, RI in August, 1997 were calibrated to reflectance, taking into account spatially variable

contributions from path radiance and fresnel reflectance. A simple cloud-shadow approach was

used to derive estimates of global path radiance and downward irradiance. This provided an

estimate of reflectance that was highly consistent with reflectance spectra acquired with a field

spectrometer. The complications of deterministic models in Case II waters has long been

recognized, due to the high concentrations of chlorophyll and organic matter, suspended

sediment, and highly variable phytoplankton species and optical properties. The analytical

mixing model of Roesler and Perry (1995) offers the promise of simultaneous determination of

the concentrations of optically active components as well as the absorption spectrum of the most

dynamically variable of these components, chlorophyll. Application of this model to the

calibrated AVIRIS data is very promising, offering not only the concentrations of key optically

active species, but also the activity of phytoplankton through the fluorescence parameter. Our

future plans are to validate the modeling through field research and to apply this model to

additional AVIRIS scenes over this estuary.

Commercial Product Integration

Introduction

The potential application of the thermal mapping and modeling research performed for this

study continues to be monitoring thermal plumes, particularly from power generation plants.

These facilities discharge large quantities of heated effluent and provide a strong thermal signal

above ambient conditions. The thermal signature is easily acquired by one or more thermal

bands and can be used to estimate the size of the zone of elevated temperatures. The problem

with either satellite or aircraft based systems, however, is the temporal sampling frequency. This

frequency is too low to provide a sufficient level of monitoring for the extent of a thermal plume.

In coastal systems where tidal forces dominate, a sampling frequency of hours is necessary as

opposed to days or weeks with satellite return periods.

This under sampling can be ameliorated by interpolating conditions between observations.

Since the process (tidal) time scale is much shorter than the acquisition time scale it is necessary

that the interpolation account for the process time frequency. One such approach is to use

numerical hydrothermal models that simulate the distribution of temperature. Such a model

deterministically solves the underlying equations governing fluid flow and the distribution of

heat. This methodology can then interpolate between observed temperature distributions from
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satelliteobservationsto provideatimehistoryof temperatureatareasonableresolution. Data
assimilationof observationsintomodelshasbeenshownin thisstudyto beanaccurate
techniqueto minimizedifferencesbetweenmodelpredictionsandsatellite(or aircraft)
observations.

Thesecondproblemthatpreventswidespreaduseof remotelysensedobservationsis the
level of accuracypossiblewithoutgroundtruth informationto calibratetheobservations.The
obvioussolutionis theuseof in situ temperatureobservations.In facttheuseof in situ
observationsis alsocritical in thesuccessfulcalibrationof numericalhydrothermalmodels.
Thusa well-designedin situobservationprogramprovidescritical informationto both the
remotelysenseddataandthemodelpredictions.

Thethird problemis thatthethermalsignalacquiredby satelliteis ameasureof thewater
surfacetemperatureandthusdoesnotnecessarilyprovidesubsurfacetemperatureinformation.
Theuseof in situdataandathree-dimensionalhydrothermalmodelin this studyhasbeen
successfullyshownto provideaccuratethree-dimensionalestimates.

It is with this threeprongedapproachof high spatialbut low temporalresolutionsatellite
data,low spatialbuthightemporalresolutionof in situdata,alongwith themid to highspatial
andtemporalresolutionof hydrothermalmodelpredictionsthatprovidea solutionto the
monitoringof thermalplumes.

Market Needs for Thermal Related Overflight Information

The primary need for information on the extent of thermal plumes is related to the generator

of such plumes, usually an electrical generating facility with once through cooling. The facility

used for this study generates 1600 MW of electricity and discharges 925 mgd of heated effluent

with a temperature rise of 10 to 15 °F. These types of facilities require permits to withdraw water

discharge the heated effluent to adjacent water bodies. Historically the permits were written with

restrictions on maximum flowrate, temperature rise and, often, total heat rejected over a specified

time period. Additional requirements might define a mixing zone, the edge of which must not

exceed a given temperature rise. An additional or alternative requirement might be for the

permitting agencies to require monitoring of the thermal distribution by the permittee to assure

that the plume stays in compliance with specified mixing zones.

Likewise the operators of the facility could use the thermal mapping and modeling system to

evaluate and predict the amount of electricity they could generate by optimizing generation to

predictions of the plume. For instance during neap tides the plume may not move far from the

plant offering the potential for increased generation without exceeding the limits of their

permitted mixing zone. Conversely during spring tides the plant operator may have to cut back

to ensure compliance. For facilities located on river systems, the optimization would be

controlled not by tides but by predictions of air temperature and solar radiation affecting the

receiving water body. For facilities located on lakes, an additional factor may be the wind-

induced circulation that will affect the plume extent.

Other potential users, besides permitting agencies and facilities with thermal discharges, of

thermal mapping and modeling systems include the following:
• Recreational users of water bodies and / or weather forecasters that would supply such

information in addition to their meteorological forecasts. As atmospheric forecasts are

important so would be an aquatic forecast.
• Commercial users of water bodies that want to know the thermal structure. Fishermen

want to optimize their harvest potential (some species are attracted or repelled by
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differentwatertemperatures).Theaquacultureindustryis concernedaboutthevariability
of temperaturesto timetheir harvest,to determinewhethertheir cropsmaybeadversely
affectedby extremes,or to sitenewfacilities.
Environmentalandeducationalgroupsthatwantto monitorawaterbodyto educatethe
publicon thetemperaturevariabilitythatoccursandperhapsseekchanges(if the
variability is relatedto anthropogeniccauses).
Environmentalmanagersthathavespecialrequirementsconcerningthetemporaland
spatialtemperatureregimeof a waterbody. Restorationeffortsoftenrequirethat
temperaturesbeappropriatefor the intendedrestoration,just aswaterqualityor salinity
is.

Specific Uses by the Commercial Partner (ASA)

Applied Science Associates (ASA) has been involved in the development of analysis

techniques and computer models to simulate physical, chemical and biological processes in

aquatic environments since its inception in 1979. With the simultaneous advent of low cost

computing platforms (personal computers) and improved techniques (boundary fitted grids, etc.)

to model environmental processes, ASA has been successful in building a market for both

products and services related to use of its modeling tools. ASA presently focuses on three major

areas: hydrodynamic and water quality modeling (including thermal), oil spill modeling, and

biological impacts modeling.

Remotely sensed thermal data offers another tool to evaluate the effects of temperature in

aquatic environments. ASA has performed a number of studies that involved the estimation of

thermal plume extent. Specifically ASA has been retained to predict the resulting thermal plume

under different loading scenarios. This has most often involved either the re-permitting of

existing facilities or the seeking of permits for expanded facilities. The first step in these

analyses is to determine present conditions so that a predictive hydrothermal model can be

calibrated. A field program is performed using a series of thermistors measuring temperature at

selected locations and depths for a period of time. This data lacks the synoptic view that

remotely sensed data can provide. Such remotely sensed data, taken during the deployment

period of the thermistors, provides an additional and important means of model calibration. A

more complete characterization of present thermal conditions is possible thus allowing a better

understanding of the physical processes controlling the distribution of heat in the water body.

For larger projects that require a more accurate estimate of the thermal distribution under

proposed new loading scenarios, the level of analysis requires that additional model validation be

undertaken. This approach uses an independent data set preferably acquired under different

environmental conditions than existed for the calibration data set. A set of remotely sensed data,

preferably sampling the important process frequencies (usually tidal in coastal environments)

would provide a more complete synoptic characterization.
As noted in the earlier sections the use of observations, whether in situ or remote, assimilated

into predictive models is well tested. Various techniques are available and some have been used

in this study. These techniques can be used in a semi automatic mode (i.e., some can be

implemented automatically without expert human intervention, while others cannot). That being

the case, a two-pronged approach for commercialization is possible. The first is the development

and marketing of a set of tools that will ingest the remotely sensed data, quality assure and

process it, and assimilate it into a predictive model. It is expected that such a software system

will not be ready until some years in the future. The other approach is to market the processing
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serviceandprovideendproductnowcastsor forecasts.This approachallowsfor aphased
developmentof toolsandappearspreferableuntil thesoftwarebecomesmoremature.

Theclear strengthof usingremotelysenseddatato estimatetheextentof thermalplumesis
its ability to provideasynopticviewovera largesurfacearea.This allowstheanalystto better
understandthephysicalprocessesaffectingtheplumeby showingin detail thespatialthermal
patterns.Undercertainenvironmentalconditions,theresidualplumefrom earliertimescanalso
bediscerned,giving someindicationof thetemporalchanges.

Theclearweaknessesof usingremotelysenseddatato estimatetheextentof thermalplumes
areits inability to provideinformationof theverticalstructureandtemporalvariation. The
sensorsmeasurethebulk surfacetemperature,whichvariesin thicknessdependingon themixing
energyin thesurfacelayer. No informationcanbededucedaboutsubsurfacetemperature
distributions. It is only with in situdataanda hydrothermalmodelthatthefull threedimensional
structureof thethermalplumecanbedetermined.

Theinability of presentsensorplatformsto remainstationaryovertheareaof interestand
providetemporalvariationconsistentwith theenvironmentallyimportanttimescalesis alsoa
limiting factor. For instancethisstudyhasshownthattheforecastof thethermalplumelocation
beginsto degradeafteronly anhourin atidal environment.Multiple overflightswith aircraft
basedsensorswould solvethis problembut it requiresthattheaircraftspendenoughtimeon site
to provideinformationonplumelocationthroughoutthetidecycle. Sincespacecraftorbits
allowa returnto thesamesiteon theorderof a weekor more,suchrepetitionis notusefulat
tidal time scales.

Thepresentstudyof theuseof remotely-acquiredthermaldataasadatasourcefor thermal
plumepredictionhasprovedvaluablefor ASA. Thisdata,whencombinedwith in situ data,
providesasynopticthree-dimensionalview of theplume,andis usefulboth in understandingthe
physicalprocessesthataffecttheplumeaswell asassimilatingthedatainto aprediction
hydrothermalmodel. Theability to usethis informationhasallowedASA to becomemore
competitivein providingunderstandingand,ultimately,solutionsto theproblemof prediction
thermalplumeextent. We expectto proposethis technologyin similarprojectsasit adds
anotherperspectiveon theproblem. For largerprojects,particularly,thepotentialcostsof this
approacharewithin therangeof resourcesusuallyexpended.
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STATE OF RHODE ISLAND AND PROVIDENCE PLANTATIONS

Department of Environmental Management
OFFICE OF WATER RESOURCES

235 Promenade Street

Providence, Rhode Island 02908-5767

(401) 222-3961

(401) 521-4230 (FAX)

(401) 831-5508 (TDD)

September 21, 2000

To Whom It May Concern

I am pleased to provide a brief discussion of the State's response to the results of the NASA-

Brown-ASA-RI collaborative study using modern remote sensing for environmental issues

related to Narragansett Bay.

Through the efforts of Dr. John Mustard and ASA, RIDEM gained a much clearer understanding

of the extent of temperature-linked impacts to Mount Hope Bay waters in RI from a large power

plant at Brayton Point in Somerset, MA.

The work completed under this cooperative project was invaluable to the state of Rhode Island,

and in particular to the R/Department of Environmental Management in recent discussions with

USEPA, MA, and the power company concerning permit renewal issues and the impact of the

facility on R/waters.

Results of the infra-red remote sensing analyses of upper Narragansett Bay and Mount Hope Bay

helped guide the state in recommendations for permit renewal requirements, including objective

ground-truth monitoring of remote sensing results and modeling studies.

The more recent hyperspectral work will likely play a role in the state's efforts to understand

impacts of excess nutrients to Narragansett Bay. From the remote sensing analyses, it is clear

that the urbanized areas of the Bay show geographically distinct signals of high primary

productivity. Such areas are significant organic loads, and cause significant decreases in

dissolved oxygen levels during summer temperatures. This work will complement RIDEM's

ongoing efforts to develop a nutrient model and load reduction plan.

RIDEM sees great benefits in these technological tools, and expects to incorporate more such

analyses into complex regulatory environmental impact analyses and management issues.

Sincerely,

Angelo Liberti
Chief

Surface Water Protection
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Table 1: LandsatSceneAcquisitionDates

Date Tidal Stal_e
1992/01/01 72%Ebb

1987/02/20 60%Flood

1984/05/02 23%Ebb

1989/07/03 40%Ebb

1985/08/09 44%Flood

1993/08/15 82%Ebb

1995/09/06 82%Ebb

1984/09/07 70%Ebb

1986/09/13 17% Flood

1987/09/16 33%Flood

1991/09/27 98% Flood

1985/10/28 44%Ebb

1986/10/31 67%Ebb
1984/11/26 96%Flood

Tables
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Table2. PhysicalCharacteristicsof Regionswithin NarragansettBay (ChinmanandNixon, 1985).

Segment PRR UNB MHB GRB UWP LWP UEP MEP LEP SR
Area(km2) 21.28 43.29 35.2 11.64 77.92 17.94 23.81 34.34 25.34 50.97

Meandepth(m) 5.21 5.57 5.73 2.11 6.09 8.93 7.33 13.96 18.72 6.5
MeanLow Water 110.9 241.3 201.7 24.6 474.5 160.2 174.6 479.4 474.3 331.5
volume(m3x106)

Mean High Water 137.5 294.1 239.4 38.8 564.9 179.4 202.9 518.2 501.5 386.1

volume

Tidal prism 26.6 52.8 37.7 14.2 90.4 19.2 28.3 38.8 27.2 54.6

Tidal flushing (# 4.17 4.57 5.35 1.73 5.25 8.34 6.17 12.36 17.44 6.07

cycles)

Tidal flushing 2.17 2.38 2.79 0.90 2.73 4.35 3.21 6.44 9.08 3.16

(days)

Annual average 43.22 46.86 30.56 4.01
Fresh Water Flux

(m3/s)

Fresh Water 29.7 59.6 76.4 71.0

Flushing (days)
Surface 0.192 0.179 0.175 0.473 0.164 0.112 0.136 0.072 0.053 0.154

Area/Volume

PRR Providence River; UNB, Upper Narragansett Bay; MHB, Mount Hope Bay, GRB,

Greenwich Bay; UWP, Upper West Passage; LWP, Lower West Passage; UEP, Upper East

Passage; MEP, Middle East Passage; LEP, Lower East Passage; SR, Sakonnet River:

MLW, Mean Low Water; MHW, Mean High Water; FW, Fresh Water

Table 3. Correlations of relative seasonal temperature signals among Narragansett Bay regions

GRB MHB PRR UNB USR UWP MWP LWP UEP MEP LEP LSR

GRB 1 0.86 0.88 0.78 0.26 0.10 -0.55 -0.92 -0.96 -0.99 -0.94 -0.71

MHB 1 0.80 0.48 -0.02 -0.18 -0.47 -0.73 -0.85 -0.83 -0.75 -0.61

PRR 1 0.75 0.02 -0.09 -0.68 -0.81 -0.89 -0.90 -0.81 -0.51

UNB 1 0.40 0.38 -0.81 -0.89 -0.73 -0.84 -0.83 -0.67

USR 1 0.91 -0.19 -0.51 -0.14 -0.32 -0.53 -0.55

UWP 1 -0.18 -0.40 0.00 -0.19 -0.41 -0.56

MWP 1 0.71 0.47 0.62 0.60 0.42

LWP 1 0.85 0.96 0.98 0.83

UEP 1 0.95 0.88 0.63

MEP 1 0.96 0.74

LEP 1 0.85

LSR 1
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Table4. Areacoveredby specificclassesfrom theUnsupervisedClassification
Lakes Greenwic Upper Mount Lower

h Bay Estuary HopeBay Estuary
36,227 10,127 18,290Numberof 4,625 6,635

Pixels
Area 16.6 23.8
(km2)

Oceanic

115,520

130.4 36.5 65.8 415.9

Table 5: Measurement Campaigns to Resolve Tidal Properties

Date Sensor NeAT (°C)

Times (Eastern

Daylight Time)

August30,1996

May 28, 1997

August19,1997

Septemberll, 1998

Geophysical Environmental

Research (GER) 37-channel

scanner, 1 thermal channel

Locheed ATLAS 15-

channel scanner with 6

thermal channels

NASA MODIS Airborne

Simulator

Geophysical Environmental
Research 37-channel

scanner, 1 thermal channel

0.2 (reported)

0.2°(reported)

0.2 °(reported)

0.2 ° (reported)

9:44 am

11:12 am

12:45 pm

2:11 pm

3:30 pm

6:47 am

8:24 am

10:13 am

12:06 pm

2:09 pm

3:20 pm

4:25 pm

5:46 pm

7:02 pm
10:58 am

11:24 am

6:00 am

7:42 am

9:24 am

11:26 am

12:48 pm

2:11 pm

3:34 pm

4:57 pm

6:20 pm

Table 6.

Date

Tides on the Days of the Overflights (Eastern Daylight Time)

High Low High Low
Time M Time M Time M Time M

High
Time M

8/30/1996 2:58 -0.14 09:31 1.22 15:26 -0.11 21:55

5/28/1997 00:56 0.98 06:32 -0.03 13:34 0.92 18:56 0.05

8/19/1997 02:22 -0.16 08:59 1.19 14:41 -0.15 21:23

9/11/1998 00:05 1.01 05:40 -0.03 12:36 1.14 18:32 0.03

1.16

1.23
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Table7. Statisticsof temperatureobservations and model predictions for model calibrated to

August-September 1997 data set.

Location Observations Model Predictions

Mea Standard Coefficie Mea Standard Coefficie

n Deviatio nt of n Deviatio nt of

(°C) n (°C) Variation (°C) n (°C) Variation

(%) (%)
Borden Flats- 23.9 0.86 4 23.2 0.82 4

Surface 6 5

Borden Flats - 23.0 0.75 3 23.2 0.60 3

Bottom 5 7

Brayton Point 24.5 0.89 4 25.8 1.95 8

- Surface 4 7

Brayton Point 23.5 0.79 3 23.9 0.90 4
- Bottom 6 9

Gardners 23.9 0.74 3 25.5 1.10 4

Neck - 7 0

Surface

Gardners 23.3 0.72 3 25.5 1.10 4

Neck - 2 0

Bottom

Table 8. Statistical comparison of temperature observations and model predictions for model

calibrated to August-September 1997 data set.

Location Relative Root Mean Correlatio Error

Mean Error Square Error n Coefficient of

(%) (°C) Coefficien Variation (%)
t

Borden Flats - 3 0.90 0.79 4

Surface

Borden Flats - 1 0.56 0.73 2

Bottom

Brayton Point 5 2.08 0.58 8
- Surface

Brayton Point 2 0.75 0.74 3

- Bottom

Gardners 6 1.73 0.66 7

Neck -

Surface

Gardners 9 2.42 0.39 10

Neck -

Bottom
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Table9. RemotelysensedDataAssimilationNumericalExperimentMatrix
Time of Overflight onMay 28, 1997

Simulation 1409EDT 1520EDT 1625EDT 1746EDT 1902 EDT

Baseline ........

May97ovtl X ......

May97ovt2 X X ....

May97ovt3 X -- X --

May97ovt4 X .... X

May97ovt5 X X X --

May97ovt6 X X X X

Table 10. Remotely sensed Data Assimilation Performance Parameters.

Time of Overflight on May 28, 1997

Simulation 1409 EDT 1520 EDT 1625 EDT 1746 EDT 1902 EDT

Baseline 0.63 0.18 0.59 0.47 0.79

May97ovt 1 0 0.06 0.51 0.41 0.75

May97ovt2 0 0 0.53 0.42 0.76

May97ovt3 0 0.06 0 0.20 0.65

May97ovt4 0 0.06 0.51 0 0.64

May97ovt5 0 0 0 0.20 0.66

May97ovt6 0 0 0 0 0.61
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Figures

(Note: Captions for Figures 1-9 are on this page, captions for the other figures are with the

figures)

Figure 1

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Location of the study area. Narragansett Bay is largely within the state of Rhode

Island, although Mount Hope Bay, and the Brayton Point Power Station are within

the state of Massachusetts.

Distribution of the 14 Landsat TM scenes used in this analysis as a function of

year (horizontal axis) and month (vertical axis)

Satellite derived surface temperatures compared to in situ water temperatures.

The solid line represents the 1:1 relationship.

Seasonal composite of satellite derived temperatures, covering the period 1984-

1996 and a 20-year record of temperatures from one station in Mount Hope Bay.

The satellite temperatures track well within the range of the insitu records.

Areas from which seasonal temperature signatures were derived for the Regional

Classification analysis. Three letter codes are explained in Table 3.

Seasonal temperature signals for the twelve study areas used in the Regional

Classification, separated into the three main groups defined in Table 3. All

temperatures are the difference in temperature from the mean of all twelve

regions. Negative values are colder than the mean and positive are greater than

the mean.

Results of the Unsupervised Classification. Each of the 6 major classes represents

areas with common seasonal temperature signatures. Note that the Mount Hope

Bay class is unique spatially, largely confined to Mount Hope Bay, with a minor

grouping in the upper Providence River.

Magnitude of the Mount Hope Bay temperature anomaly from both the Regional

and Unsupervised classifications. These are the anomalies between the Mount

Hope Bay class and the class containing Upper Narragansett Bay.

Relationship between the surface to volume ratio for each region and the

integrated temperature across the scenes used in the regional classification. All

the regions follow a monotonic relationship except for Mount Hope Bay.
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Figure 10: Thermistor string locations within Mt. Hope Bay.
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MODIS Thermal Infrared Temperatures, August 19, 1997

10:58 AM

Thermal Front 1

Thermal Front 2

Transport Vector

11:24 AM
26°C
24oc
22oc

Figure 12. Two MODIS Airborne Simulator thermal infrared data sets of Mt. Hope Bay acquired

26 minutes apart. Thermal fronts are outlined showing the movement of water bodies over this

time period.



Temperatures of Mt Hope Bay,

Acquired September 11, 1998 by the
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Temperature °C
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Figure 13
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1 2 Degrees Centigrade 21

Figure 14. Temperature of Mt. Hope Bay acquired by the ATLAS sensor on

May 28, 1997
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Figure 16: Example WQMAP output.



Figure 17: Computational grid for Mt. Hope Bay application.
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Figure 18: RMS error between baseline simulation and thermistor data at the surface.

Figure 19: Plan view of surface temperature a) contoured thennistor data b)model predicted temperature
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Figure 20: Model predicted temperature and thermistor data at the surface near the outfall.
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Figure 21 Model predicted temperature and thermistor data at the surlhce near the mouth of the bay+
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Figure 22: Con'elation matrix clustering within a distance of 0,5NM (0.93kin)
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Figure 23: RMS error at the surface for continuous assimilation of all 30 thermistor strings.
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Figure 24: Time series of the temperature in the region of the outfall at the surface for continuous

30 thermistor strings.
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Figure 25: RMS error at the surface for the assimilation of only even and odd numbered thermistor strings.
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Figure 26: RMS error at the surface for continuous assimilation of thermistor strings in the vicinity of the open

boundary and outfall.
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Figure 27: RMS error at the surface for the assimilation of 5 strategically located thermistor strings•
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Figure 28: Mean RMS error at the surface as a function of time for predictive capabilib' tests, baseline simulation
and the continuous assimilation of all thermistor data.



Figure29: Overlayof ComputationalGridonanremotelysensedthermaldata
for3:20pm,May28,1997.



Figure30: Sub-sampledremotelysensedthermaldatashownin Figure 29.
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Figure 32. Location of Narragansett Bay and the AVIRIS Flight Line.
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Figure 33. Phase Angle Dependence of Path Radiance.



Figure 34. Example of Removal of Pixel Dependent Path Radiance and Fresnel Reflections for the
580 nm Band.
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Figure 35. Comparison Between AVIRIS Apparent Reflectance
Spectra and Field Spectra Acquired with an ASD FieldSpec FR.
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Figure 37. Example solutions of the fit of the model equation to two AVIRIS spectra. The plot on the left shows a
low phytoplankton, low fluorescence solution, while the plot on the right shows a high phytoplankton,
high fluorescence solution.
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Figure 38. Concentration of phytoplankton

represented as chlorophyll contrasted against the
activity of the same represented as fluorescence.
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