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PROBLEM DEFINITION

Program SRAIR has been developed to calculate the flow field about an

isolated airfoil. Both flow fields in which the airfoil is steady and

oscillating slnusoidally in pitch are considered. The code has been

successfully demonstrated for a number of airfoil calculations (e.g.

Refs. 1-6). Details of the analysis, numerical method, boundary

conditions, etc. are given in Ref. 6

METHOD OF SOLUTION

Mean Flow Equations

The procedure solves the compressible, time-dependent Navier-Stokes

equation in conjunction with a mixing length type turbulence model. The

form of the equations expressed in the more common coordinate systems can

be found in standard fluid dynamic texts. The present approach transforms

the Cartesian coordinates (x,y) to a new set of general coordinates (_,n)

where

= _(x,y,t)

_7= -r/(x, y, t) (1)

T=t

The equations can then be expressed as

aw _w _F aG aw _F aG
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A final item related to the choice of equations is the choice of

dependent variables. In the present approach the density and velocity

components are used as dependent variables. The energy equation is

replaced by an assumption of constant total temperature thus leading to a

relation between pressure, density and velocity.

u 2 + w2
p = pR(T o ) (3)

2Cp

where R is the gas constant, T° is total temperature and Cp is

specific heat.

It should be noted that the energy equation can be solved with the

momenta and continuity equations at the cost of adding an additional

governing equation which increases computer run time. Calculations of

this type in transonic cascades which include comparison with heat transfer

data have been made by Weinberg, Yang, Shamroth and McDonald (Ref. 7)

using a cascade version of the present code. For steady airfoil flow

fields this assumption is reasonable. For unsteady flow, it represents an

approximation as can be noted from examination of the unsteady total

temperature equation. However, as discussed in Ref. (4), for the cases

considered here the assumption of constant total temperature should be

valid.

The Turbulence ModeJ

Since the present effort is concerned with high Reynolds number

turbulent flows, it is necessary to specify a turbulence model. The

present code utilizes a mixing length model. The mixing length model

assumes the existence of a mixing length, %, and then relates an eddy

viscosity, _T, to the mixing length by

(')"i Ouj ,,2



For flow regions upstream of the leading edge where the flow is

attached, mixing length is determined by the usual boundary layer

formulation

,_ = KyD ,_ <_. ,_max (5)

where _ is the von-Karman constant, D is a sublayer damping factor and

%max is taken 0.09 6 where 6 is the boundary layer thickness. The

damping factor, D, has for the most part been utilized as the van Driest

damping factor

-y+/27'
O = (1-e ) (6)

where y+ is the dimensionless coordinate normal to the wall, YUt/v.

When the mixing length formulation is used in a boundary layer

environment, 6 is usually taken as the location where u/u e = 0.99.

However, this definition assumes the existence of an outer portion of the

flow where ue is independent of distance from the wall and assumes that

the location where ue becomes independent of distance from the wall

marks the end of the viscous region. In an airfoil Navier-Stokes

calculation no such clear flow division occurs as u approaches the

upstream velocity, u_, as distance from the wall increases. Therefore,

the boundary layer thickness, 6, is set by first determining Umax, the

maximum velocity at each given streamwise station, and then setting 6 by

= 2.0y (U/Uma x = k I) (7)

i.e., 6 is taken as twice the distance from the wall to the location where

U/Umax = kI where kI is set to 0.90. If the flow is separated, then a

minimum mixing length is set by

'_mln = O.IhD (8)

where h is the local height of the separated region. In the wake the

mixing length is made proportional to the wake thickness, _, and a linear
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growth of 6 with distance is assumed based upon classical free jet

boundary growth (e.g. Ref. (8)). With this assumption

= (Sps+ Bss)+ 0.2 (X - XTE) (9)

where 6ps and 6SS are the pressure and suction surface trailing edge

boundary layer thicknesses and XTE is the trailing edge location. The

mixing length, %, is taken as 0.26. The viscosity is blended between

regions obtained using the wall formulation for % and the wake formulation

for £. Having obtained the turbulent viscosity, _T, the turbulent

stress, -Pui'u j' is given by

- 1- - B_ (lO)
pui'uj /'S"T_'_j + Ox i 3 _x k

Although the mixing length model does not include a transition model,

transition can be simulated by specifying a location upstream of which the

flow is laminar. This corresponds to forced transition. Even if no

forced transition is assumed, the flow in the leading edge region will be

laminar as the boundary layer thickness becomes very small in this region.

Numerical Procedure

The numerical procedure used to solve the governing equations is a

consistently split linearized block implicit (LBI) scheme originally

developed by Briley and McDonald (Ref. 9). A conceptually similar scheme

has been developed for two-dimensional MHD problems by Lindemuth and

Killeen (Ref. I0). The procedure is discussed in detail in Refs. 9

and II. The method can be briefly outlined as follows: the governing

equations are replaced by an implicit time difference approximation,

optionally a backward difference or Crank-Nicolson scheme. Terms

involving nonlinearities at the implicit time level are linearized by
w

Taylor expansion in time about the solution at the known time level, and

spatial difference approximations are introduced. The result is a system



of multidimensional coupled (but linear) difference equations for the

dependent variables at the unknown or implicit time level. To solve these

difference equations, the Douglas-Gunn (Ref. 12) procedure for generating

alternating direction implicit (ADI) schemes as perturbations of

fundamental implicit difference schemes is introduced in its natural

extension to systems of partial differential equations. This technique

leads to systems of coupled linear difference equations having narrow

block-banded matrix structures which can be solved efficiently by standard

block-ellmlnation methods.

The method centers around the use of a formal linearization technique

adapted for the integration of initial-value problems. The llnearization

technique, which requires an implicit solution procedure, permits the

solution of coupled nonlinear equations in one space dimension (to the

requisite degree of accuracy) by a one-step nonlterative scheme. Since no

iteration is required to compute the solution for a single time step, and

since only moderate effort is required for solution of the implicit

difference equations, the method is computatlonally efficient; this

efficiency is retained for multidimensional problems by using what might

be termed block ADI techniques. The method is also economical in terms of

computer storage, and its present form requiring only two time levels of

storage for each dependent variable. Furthermore, the block ADI technique

reduces multidimensional problems to sequences of calculations which are

one-dlmenslonal in the sense that easily solved narrow block-banded

matrices associated with one-dimenslonal rows of grid points are

produced. A more detailed discussion of the solution procedure is

discussed by Briley, Buggeln and McDonald (Ref. 13) and is given in the

Appendix.

Boundary Conditions

An important component of the airfoil analysis concerns specification

of boundary conditions. The present analysis considers 'C' grid

coordinate systems and requires boundary conditions to be set along the

lines, _ = _min, _ = _max, n = Bmln and n = Bmax. With the

coordinate system sketched in Fig. I, _ = _min (line AA') and _ = _max

(line DD') are downstream boundaries. In the early work done under this



effort derivatives were set to zero at this boundary and function

conditions specified on the remainder of the outer boundary. On the

airfoil surface no-slip conditions are used in conjunction with an

inviscid momentum equation (which for no motion and no heat transfer

reduced to zero density gradient) as boundary conditions. More recently

the boundary conditions were modified based upon a suggestion by Briley

and McDonald (Ref. 14). Following this suggestion, static pressure is

specified along with velocity derivatives along the downstream boundaries

(lines AA' and DD' of Fig. I) and along the aft portion of the outer

boundary (line segments AB and CD). Total pressure, angle of incidence

and the density derivative are specified along the inflow portion of the

outer boundary segment BC. This represents the default set of boundary

conditions and is the set recommended. Finally, calculations have been

made in which tunnel wall boundary conditions are simulated by specifying

the flow direction and a full slip condition along AB and CD.

Artificial Dissipation

One major problem to be overcome in calculating high Reynolds number

flows using the Navier-Stokes equations is the appearance of spatial

oscillations associated with the so-called central difference problem.

When spatial derivatives are represented by central differences, high

Reynolds number flows can exhibit a saw tooth type oscillation unless some

mechanism is added to the equations to suppress their appearance. This

dissipation mechanism can be added implicitly to the equations via the

spatial difference molecule (e.g. one-sided differencing) or explicitly

through addition of a specific term. The present author favors this

latter approach for two reasons. First, if a specific artificial

dissipation term is added to the equations, it is clear precisely what

approximation is being made. Secondly, if a specific term is added to

suppress oscillations, the amount of artificial dissipation added to the

equations can be easily controlled in magnitude and location so as to add

the minimum amount necessary to suppress spatial oscillations.

The present code adds a term of the form _(Vart_/_z)/_z to the

governing equation where _ = p, u, v for the continuity, x-momentum and
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y-momentum equations respectively and _art is determined by

UzAZ I
< (11)

zt + (Vart) crz z

In the above equation AZ is the distance between grld points in a given

coordinate direction, UZ is the velocity in thls direction, _Z is the

artificial dissipation parameter for thls direction and _ is the kinematic

viscosity. The equation determines _art wlth _art taken as the

smallest non-negatlve value which wlll satisfy the expression. It should

be noted that in two space dimensions each equation contains two

artificial disspation terms, one in each coordinate direction. For

example, the streamwlse momentum equation expressed in Cartesian

coordinates would contain the artificial dissipation terms

8 8y 8 8y

x Ox Oz 8z

The parameter _z is set vla input. Thls approach has been used in a

variety of calculations, e.g. Refs. (4-6, 15-17).

USER'S INSTRUCTION

Flow of the Program

The program is divided into three major parts which are the input,

execution and output sections. These sections are called from PROGRAM DAL

as shown in Fig. 2. PROGRAM DAL sets input vla a series of DATA

STATEMENTS and then calls READA. READA and its associated subroutines set

the remaining input data and, if necesary, construct an initial flow

field. Control is then returned to DAL which calls EXEC. EXEC and its

associated subroutines solve the equations vla a tlme marching procedure.

In addition, some program output is written by routines called from EXEC.

Finally, after a specified number of tlme steps have been calculated

program restart is written vla the call to RESTRT and a final flow field

Is printed vla a call to PRNTF. These operations are now discussed in

more detail.



Flow of the Pro_ram-lnput Routines

The program input routines are called through SUBROUTINE READA which

is called from PROGRAM DAL. The flow through this section of the code is

sketched in Fig. 3. READA first sets default values for most program

input variables and the calls RDINPI which is an ENTRY POINT in SUBROUTINE

READB. RDINPI first reads NAMELIST READI which indicates if the run is an

initial run or a restart. If the case being run is being restarted from

the results of a previous case, RDINPI also reads this same input from a

restart binary file. RDINPI then reads namelist input from the input

file. In the case of a restart run this card input is only required to

change input from that which exists on the restart binary file. Control

is then returned to READA and integer variables set at this time include

information for disk I/0, information for the number of equations to be

solved, the equation coupling procedure and print flags. In addition,

various dimensionless groupings which are repeatedly required in the

analysis are calculated. The program then calls BVIV which performs the

flow field initialization. SUBROUTINE BVIV first calculates integer

variables which set the limits of the computational grid and then

calculates the required first and second derivative difference weights.

If the case being run is a restart case, control returns to READA at this

point. If not, BVIV calls FLWFLD which is used to construct an initial

flow field.

When constructing an initial flow field, the code passes through

SUBROUTINE FLWFLD and SUBROUTINE SPREAD. SUBROUTINE SPREAD constructs a

uniform velocity initial flow field with gradual change to no-slip, no

through flow conditions at the airfoil surface. After construction of the

initial flow field control returns to READA. If the case being considered

is a restart case, the initial flow field calculation performed in SPREAD

is not required and FLWFLD and SPREAD are not called. Instead RDINP2, an

entry point in READB, is called to set the initial flow field. The final

operations performed in READA are the writing of NAMELIST data on the

OUTPUT file via a call to WRLIST (an ENTRY POINT in SUBROUTINE RDLIST).

After writing the required information control is returned to DAL.

In addition to the initialization processes described above certain

checks are made in READA to insure consistent input. Most of these checks

are satisfied due to default setting of input parameters, however, the



computational grid is currently limited to 6000 grid points and if an

attempt is made to use more grid points the run will abort. Other limits

which must be observed require the number of grid points in the

pseudo-azimuthal (x or _) direction to be less than or equal to 150 and

the maximum number of grid points in the pseudo-radial (z or n) direction

to be less than or equal to 40. The maximum grid run with this specific

version of the code has been 141 × 39 and it is recommended that these

limits be observed.

Flow of the Program-Execution Routines

After reading input and initializing the flow field (or reading

restart data in case of a restart), PROGRAM DAL calls SUBROUTINE EXEC.

Subroutine EXEC and ADIC are the main calling programs for the execution

portion of the code during which the equations are marched in time via an

ADI procedure. A flow diagram of EXEC is presented in Fig. 4. SUBROUTINE

EXEC first calls EXTBV which insures that the dependent variables on the

boundaries are consistent with the specified boundary conditions. Then,

if requested (if IDUMPI=I), the flow field at the initiation of the run is

printed. Following this optional print, the program enters the DO I000

loop which marches the solution in time. TIMGEO is called to calculate

metric coefficients in cases where they are not steady: for example, an

oscillating airfoil calculation; for cases where they remain constant with

time, the geometry is not recalculated. Each pass through the loop

advances the solution one time step. SUBROUTINE ADIC is in this loop and

it is within ADIC that the equations are solved. After solving the

equations, the time step increment is reset and results for the time step

are written on the OUTPUT file. When the specified number of time steps

have been calculated, control is passed back to DAL.

The main controlling routine in the actual equation solving process

is SUBROUTINE ADIC; flow through this program is sketched in Fig. 5.

SUBROUTINE ADIC consists of two major DO LOOPS. DO 700 sweeps across the

flow field and solves successive LZ constant lines (i.e., _-implicit lines

such as PQR of Fig. I) by calling ADICX. This represents the first sweep

of the ADI procedure. Within ADICX a check is made to determine if

LZ=LZI; i.e., if the _-implicit line is the first line off the inner



surface. When ADICX is called with LZ=LZI, the equations are solved along

two _-implicit lines in this one call; the lines solved are the branch cut

line emanating from the airfoil trailing edge and the first

pseudo-azimuthal line away from the airfoil. If LZ_LZI then only a single

t-implicit line is solved within the given subroutine call.

If the equations are being solved along the branch cut line, storage

is rearranged before proceeding; the equations then are solved. The

matrix representing the linearized equations is generated within ADICPI as

shown in Fig. 6. SUBROUTINE ADICPI first clears the matrix arrays and

then calls AMATRX, DOPI and DOP3. The latter two calls transfer control

to ENTRY points within SUBROUTINE DOP. AMATRX loads the matrix arrays

with the linearized representation of the time-dependent term; DOPI and

DOP3 load the arrays with the linearized representations of the spatial

terms. Upon completing DO LOOP 300 the matrix representing the linearized

equations for all interior points along the specific t-implicit line which

is under consideration is generated. The program then calls GENBC which

in turn calls BC to generate the boundary condition representation. The

equations are solved in MG3X3 which inverts a block tri-diagonal matrix

and the solution is stored for future use. These operations complete the

first sweep.

The program then returns control to ADIC which calls SUBROUTINE

ADICZI; this latter routine sweeps through the grid solving R-implicit

lines one at a time such as ST or FC of Fig. 1 and thus performs the

second ADI sweep. This second sweep sketched in Fig. 7 is analogous to

this first sweep with one exception. In the second sweep, the calculation

is carried through the branch cut in the portion of the flow field aft of

the airfoil (LX_IDBL) such as line ST and the calculation in this region

requires storage rearrangement to place the geometry and dependent

variables in proper core locations for solution. The previous description

of the analysis has termed the coordinates x and y and the Cartesian

velocity components u and v. This is in agreement with previous

descriptions of the analysis. However, the code is written in terms of x,

z and u, w and, therefore, the description of the code will be consistent

with this latter nomenclature.
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Finally ADIC calls EXTBV which updates the dependent variable array,

calculates pressure and temperature, calculates the maximum change of

dependent variable over the time step and calculates the turbulent

viscosity.

Flow of the Program-Output Routines

The final portion of the SRAIR code to be considered is the program

output. This consists of three parts: (i) flowfleld data written at each

time step, (ll) flowfleld data written at the completion of the run and

(ill) restart data. The flowfleld data written at each time step is

obtained via CALL PRNTS where PRNTS is an ENTRY point in SUBROUTINE

PRNTA. The dependent variable arrays written at the end of each run are

obtained via CALL PRNTF which is also an ENTRY point of PRNTA. Finally,

restart data is obtained via CALL RESTRT. The output data is described in

detail subsequently.

Descriptionof Active Routines

PROGRAM DAL

PROGRAMDAL is the main program of the SRAIR code. PROGRAMDAL sets

variablesvia data statementsand then calls READA which sets the input

and if necessary, calls the routinesrequiredto constructan initialflow

field. The program then calls EXEC which marches the equationsa required

number of time steps, calls RESTRTwhich writes restartdata on tape and

calls PRNTF which prints the final flow field output.

SUBROUTINE ADIC

SUBROUTINE ADIC is the controlling subroutine for the two sweep ADI

procedure. The subroutine calls ADICX which is the controlling subroutine

for the first ADI sweep, calls ADICZI which is the controlling subroutine

for the second AD! sweep and calls EXTBV which performs a variety of

operations that include the updating of the dependent variables at the new

time step. A pass through ADIC represents a complete time step operation.
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SUBROUTINE ADICPI

SUBROUTINE ADICPI loads the matrix array representing the linearized

equations and boundary conditions for a set of coupled equations and calls

MG3X3 to invert the matrix. A pass through ADICPI represents the solution

along a single _-implicit direction line where _ is the first sweep

direction.

SUBROUTINE ADICP2

SUBROUTINE ADICP2 is analogous to ADICPI except a pass through ADICP2

represents the solution of a n-implicit line where n is the second sweep

direction.

SUBROUTINE ADICX

SUBROUTINE ADICX is the controlling subroutine for the first

direction ADI sweep. It is called from ADI¢ and contains a DO LOOP which

ranges over all _-implicit lines. Special logic is present for the

coordinate system branch cut emanating from the airfoil trailing edge.

SUBROUTINE ADICZI

SUBROUTINE ADICZI is the controlling subroutine for the second

direction ADI sweep. It is analogous to ADICX with special logic being

required for the n-implicit lines which pass through the coordinate system

branch cut.

SUBROUTINE ADIUNI

SUBROUTINE ADIUNI is analogous to ADICPI but is for a single

equation.

SUBROUTINE ADIUN2

SUBROUTINE ADIUN2 is analogous to ADICP2 but is for a single

equation.

SUBROUTINE AMATRX

SUBROUTINE AMATRX is a calling routine for ATIME. It is called from

ADICPI, ADICP2, ADIUNI, ADIUN2.
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SUBROUTINE ARTVISI

SUBROUTINE ARTVISI calculates artificial viscosity and loads

contribution of artificial dissipation terms to linearized difference

equations.

SUBROUTINE ATIME

SUBROUTINE ATIME loads contribution of time dependent terms to

linearized difference equations. It is called from AMATRX.

SUBROUTINE BC

SUBROUTINE BC is called by GENBC and sets the coefficients

representing the linearized boundary condition equations. The type of

boundary condition to be set depends upon the value of JEQBC (see

Description of Input). The choice of boundary conditions includes

function, first derivative and second derivative boundary conditions for

p, u, and w as well as static pressure and its first derivative and total

pressure and its first derivative.

SUBROUTINE BCPM

SUBROUTINE BCPM is used in conjunction with BC in setting static and

total pressure boundary conditions. It is called from BC.

SUBROUTINE BVIV

SUBROUTINE BVIV is called from READA to set the limits of the

computational domain and the values of the finite difference molecules.

It also calls FLWFLD which sets the initial flow field.

SUBROUTINE CONVCTI

SUBROUTINE CONVCTI which is called from GENEQI loads contribution of

convective terms to linearized difference equations.

SUBROUTINE COORD

SUBROUTINE COORD is a passive routine which calls INTGEO.
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SUBROUTINE CORNER

SUBROUTINE CORNER is called from BVIV and sets up grid point limits

for the computational mesh.

SUBROUTINE DELU

SUBROUTINE DELU calculates dilitation terms used in the momentum

equations.

SUBROUTINE DIFFI

SUBROUTINE DIFFI which is called from GENEQI loads contribution of

diffusive terms to linearized difference equations.

SUBROUTINE DIV

SUBROUTINE DIV calculates velocity divergence.

SUBROUTINE DOP

SUBROUTINE DOP is called from ADICX and ADICZI. It has two ENTRY

POINTS; these are DOPI and DOP3. The linearized representation of the

G-derivatives and source terms are calculatd in DOPI and that of the

n-derivatives are calculatd in DOP3.

SUBROUTINE EOS

SUBROUTINE EOS is a general equation of state subroutine which

calculates pressure and/or temperature.

SUBROUTINE EOSDP

SUBROUTINE EOSDP linearizes the pressure gradient terms in the

momentum equations and loads their contribution to the linearized

difference equation.

SUBROUTINE EOSUPI

SUBROUTINE EOSUPI updates pressure and temperature. It is called

from TEMPN.

14



SUBROUTINE EXEC

SUBROUTINE EXEC is the main control routine of the execution (or

time-marching) portion of the program. EXEC is called from DAL and

contains a DO LOOP which marches through a specified number of time

steps. Within this loop the program calls ADIC. ADIC marches the

solution through a single time step. The program then calls PRNTS which

prints the maximum change in dependent variables over the time step.

Finally, the program sets the magnitude of the next time increment and if

an abort flag has been set (KILL#0), the program prints the flow field and

terminates.

SUBROUTINE EXTBV

SUBROUTINE EXTBV is called from ADIC after the two sweeps required

for an ADI solution have been completed. The routine updates boundary

values on the first sweep boundary points to make the boundary values

consistent with the second sweep solution. This operation is performed in

SETBV. The subroutine then updates the dependent variable array,

calculates the pressure and temperature field and, if necessary, calls

VISCOS to calculate turbulent viscosity.

SUBROUTINE FLWFLD

SUBROUTINE FLWFLD calls SPREAD to set up the initial flowfield.

SUBROUTINE GASP

SUBROUTINE GASP sets molecular viscosity

SUBROUTINE GAUSS

SUBROUTINE GAUSS solves the matrix equation Ax=B for x.

SUBROUTINE GENBC

SUBROUTINE GENBC is called from ADICX and ADICZI to set the boundary

condition equations for a set of coupled equations. The subroutine calls

BC to determine the boundary equation coefficients and then loads the

coefficients in the coefficient matrix array.

15



SUBROUTINE GENEQI

SUBROUTINE GENEQI calls ARTVISl, CONVCTI, DIFFI, etc. to form the

algebraic difference equations required for matrix inversion.

SUBROUTINE GENUBC

SUBROUTINE GENUBC sets boundary conditions for a single equation.

SUBROUTINE MG3X3

SUBROUTINE MG3X3 inverts a block tri-diagonal matrix.

SUBROUTINE INTGEO

SUBROUTINE INTGEO is the geometry initialization subroutine which is

called at the beginning of a run to set geometry data in conjunction with

TIMGEO.

SUBROUTINE MGAUSF

SUBROUTINE MGAUSF inverts a block tridiagonal matrix. The maximum

block size allowable is 4 x 4.

SUBROUTINE MGERR

SUBROUTINE MGERR calculates error check for MGAUSF.

SUBROUTINE NORMD

SUBROUTINE NORMD is an input normalization routine.

SUBROUTINE PRGEO

SUBROUTINE PRGEO prints out the geometric data.

SUBROUTINE PRINT1

SUBROUTINE PRINT1 is called from RESULT and prints a specified

dependent variable array.

SUBROUTINE PRNTA

SUBROUTINE PRNTA has several ENTRY points; these are PRNTA, PRNTB,

PRNTF and PRNTS. The first three are used to print the dependent variable

arrays by calling RESULT. The last ENTRY point prints the change in

variables across a time step.
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SUBROUTINE QUICK

SUBROUTINE QUICK is a matrix invertor used in conjunction with

MGAUSF, MG3X3 and SETBV.

SUBROUTINE RDLIST

SUBROUTINE RDLIST reads NAMELIST input and writes this input on an

output file. In addition RDLIST is used to write restart files.

SUBROUTINE READA

SUBROUTINE READA is the main controlling routine for the input

portion of the program; it is called from DAL. READA first sets default

values for a variety of input variables and then calls RDINPI, an ENTRY

point in READB. During this call the NAMELIST input are read in RDLIST.

Following the reading of NAMELIST input, various flags indicating the

number of equations to be solved, how equations are to be coupled, etc.

are set and dimensionless groupings and reference quantities are

calculated. The subroutine then calls BVIV which has been described

previously. Finally, if the case being run is a restart of a previous

case, READA then calls RDINP2, a second ENTRY point in READB which reads

the required restart data arrays.

SUBROUTINE READB

SUBROUTINE READB has two ENTRY points. ENTRY point RDINPI reads

NAMELIST input from cards and/or a binary restart file. ENTRY point

RDINP2 reads other required restart data from a restart file.

SUBROUTIN RESTRT

SUBROUTINE RESTRT writes the restart files.

SUBROUTINE RESULT

SUBROUTINE RESULT is called from PRNTA and calls PRINT1. It is part

of the sequence used to write the dependent variable arrays.
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SUBROUTINE SETBV

SUBROUTINE SETBV is used to set boundary conditions on the boundary

points of the _-direction implicit lines after the second ADI sweep has

been made. Use of this subroutine updates these boundary points so that

they are comparable with second sweep results for interior points.

SUBROUTINE SETBVI

SUBROUTINE SETBVI is called to insure that the initial flow field is

consistent with the specified boundary conditions. Consistency is

obtained by changing the values of the dependent variables on the

computational grid boundary lines if necessary.

SUBROUTINE SOURCE

SUBROUTINE SOURCE loads contributions of source type terms to

linearized difference equations.

SUBROUTINE SPREAD

SUBROUTINE SPREAD is part of the flow initialization procedure. If a

case is not a restart case, it is called from FLWFLD and calculates

velocity components at each grid point. It then calculates density and

turbulence energy.

SUBROUTINE SSTST

SUBROUTINE SSTST sweeps through the flow field and calculates the

maximum change in u, w and p (the two velocity components and density)

across each time step.

SUBROUTINE VISCOS

SUBROUTINE VISCOS is called from EXTBV and is used to calcuate

turbulent viscosity.

18



SUBROUTINE TEMPN

SUBROUTINE TEMPN is a calling routine which calls EOSUPI to calculate

temperature and/or pressure.

SUBROUTINE TIMGEO

SUBROUTINE TIMGEO reads coordinate data on a line by line basis and

creates required metric coefficients and Jacobian.

SUBROUTINE WRPLOTB

SUBROUTINE WRPLOTB writes plot files.
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LIST OF MAJOR VARIABLES

FORTRAN COMMON

SYMBOL BLOCK DESCRIPTION

AC(I _J,K) BLKI DEPENDENT VARIABLE ARRAY

ACG(J,J) BLKI GEOMETRY DATA ARRAY

AN(I,J) BLKM ARRAY STORING TIME TERM LINEARIZED COEFFICIENTS

APR(I,J) PRNT PRINT OUTOUT ARRAY

AVISC(I,J) MISC2 ARTIFICIAL DISSIPATION PARAMETER

C(I_J,K) BLKM COUPLED MATRIX ARRAY STORGAGE

CLENG CREF REFERENCE LENGTH

CMACH MISC2 REFERENCE MACH NUMBER

D VARNO INDEX FOR DIVERGENCE

D1 (I _J,K) BLKM ARRAY STORING FIRST SWEEP LINEARIZED
COEFFICIENTS

D2(I,J,K) BLKM ARRAY STORING SECOND SWEEP LINEARIZED
COEFFICIENTS

D3(I,J,K) BLKM ARRAY STORING THIRD SWEEP LINEARIZED
COEFFICIENTS

DENSR CREF REFERENCE DENSITY

DFW(I _J_K) ADI7 DIFFERENCE WEIGHT ARRAY

DIM1 NOND INVERSE REYNOLDS NUMBER

DIM2 NOND REFERENCE PRESSURE/REFERENCE DYNAMIC HEAD

DIM3 NOND REFERENCE PRESSURE/(REFERENCE DENSITY *

REFERENCE ENTHALPY)

DIM4 NOND I.O/(REY * er)

DIM12 NOND 2.0 * DIM1
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FORTRAN COMMON

SYMBOL BLOCK DESCRIPTION

DS VARNO INDEX FOR DISSIPATION

DT MISC2 TIME STEP

DTCON MISC2 INVERSE STEP

DTMAX MISC2 MAXIMUM ALLOWABLE TIME STEP

DTMIN MISC2 MINIMUM ALLOWABLE TIME STEP

E(I,J,K) BLKM COUPLED MATRIX ARRAY STORAGE

GRID(l) GTRAN GRID DISTRIBUTION PARAMETER

H VARNO INDEX FOR ENTHALPY

II MGAUS LOWER LIMIT FOR MATRIX INVERSION

IADI ADII ADI SWEEP NUMBER

IBC ADII BOUNDARY CONDITION BOUNDARY PARAMETER

IDT MISC2 TIME STEP INDEX

IDTADJ MISC2 TIME STEP CONTROL PARAMTER

IDUMPI OUTA PARAMETER CONTROLLING INITIAL STATION PRINT

IEQ ADII EQUATION NUMBER

IGPRT(1) GEOI GEOMETRY PRINT CONTROL

IL MGAUS UPPER LIMIT FOR MATRIX INVERSION

IPRINT MISC2 PRINT INTERVAL PARAMETER

IREST MISC2 RESTART READ CONTROL PARAMETER

IVARPR(1) MISC2 PRINT PARAMETER

JADI ADII ADI SWEEP PARAMETER

JEQBC(I,J,K) ADII BOUNDARY CONDITION TYPE PARAMETER
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FORTRAN COMMON

SYMBOL BLOCK DESCRIPT ION

JX ADI2 DIRECTION-I GRID POINT INDEX

KZ ADI2 DIRECTION-3 GRID POINT INDEX

LX ADI2 DIRECTION-I GRID POINT INDEX

LXI ADI3 FIRST DIRECTION-I INTERIOR POINT

LX2. ADI3 LAST DIRECTION-I INTERIOR POINT

LY ADI2 DIRECTION-2 GRID POINT INDEX

LYI ADI3 FIRST DIRECTION-2 INTERIOR POINT

LY2 ADI3 LAST DIRECTION-2 INTERIOR POINT

LZ ADI2 DIRECTION-3 GRID POINT INDEX

LZI ADI3 FIRST DIRECTION-3 INTERIOR POINT

LZ2 ADI3 LAST DIRECTION-3 INTERIOR POINT

MEQS ADII NUMBER OF EQUATIONS TO BE SOLVED

NT MISC2 NUMBER OF TIME STEPS TO BE RUN

NUMDX MISC2 NUMBER OF INTERIOR DIRECTION-I POINTS

NUMDY MISC2 NUMBER OF INTERIOR DIRECTION-2 POINTS

NUMDZ MISC2 NUMBER OF INTERIOR DIRECTION-3 POINTS

NXI ADI4 FIRST GRID POINT - DIRECTION-I

NX2 ADI4 LAST GRID POINT - DIRECTION-I

NYI ADI4 FIRST GRID POINT - DIRECTION-2

NY2 ADI4 LAST GRID POINT - DIRECTION-2

NZI ADI4 FIRST GRID POINT - DIRECTION-3

NZ2 ADI4 LAST GRID POINT - DIRECTION-3
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FORTRAN COMMON

SYMBOL BLOCK DESCRIPTION

P VARNO INDEX FOR PRESSURE

PCNTI MISC2 TIME STEP CONTROL PARAMETER

PCNT2 MISC2 TIME STEP CONTROL PARAMETER

PREF CREF REFERENCE PRESSURE

PRNDL CREF PRANDTL NUMBER

PTOT BCCON TOTAL PRESSURE

R VARNO INDEX FOR DENSITY

REY CREF REYNOLDS NUMBER

SN(1) BLKM ARRAY STORING SOURCE TERM LINEARIZED
COEFFICIENT

SSTEST MISC2 MAXIMUM CHANGE IN VARIABLE ACROSS TIME STEP

T VARNO INDEX FOR TEMPERATURE

TAUW TURB WALL SHEAR

TREF CREF REFERENCE TEMPERATURE

TTIME MISC2 CUMULATIVE TIME

TTOT BCCON TOTAL TEMPERATURE

U VARNO INDEX FOR DIRECTION-I VELOCITY

USTAR TURB DIMENSIONLESS VELOCITY

V VARNO INDEX FOR DIRECTION-2 VELOCITY

VISCL TURB LAMINAR REFERENCE VISCOSITY

VISCR CREF REFERENCE VISCOSITY

VS VARNO INDEX FOR VISCOSITY

W VARNO INDEX FOR DIRECTION-3 VELOCITY
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FORTRAN COMMON

SYMBOL BLOCK DESCRIPTION

WREF CREF REFERENCE VELOCITY

XGMAX(1) GRID1 MAXIMUM COORDINATE VALUE

XGMIN(1) GRIDI MINIMUM COORDINATE VALUE
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Logical File Units

The SRAIR computer code utilizes several logical file units during

the execution of the run. In general, the file units are referenced via

FORTRAN names allowing easy change of logical file unit numbers. The

" files used are:

FORTRAN Name Default Unit Number Description

KTAPE 1 Plot File

MINP 5 Input File

MPRT 6 Output File

INTAPE 9 Restart Input File

IOTAPE I0 Restart Output File

INTAPI 19 Restart Input File

IOTAPI 20 Restart Output File

21 Geometry Input File

2 Scratch File

File MINP is an input file used for namelist input The card namelist

input must be copied to TAPE5 via JCL instructions prior to execution.

TAPE21 contains the required coordinate locations for each grid point. If

computer code CRDSRA is used to generate the coordinates, CRDSRA writes
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the coordinates on TAPE9 and as discussed in the CRDSRA User's Guide, this

file must be permanently stored to be used as input for SRAIR. Generation

of coordinates by other techniques are discussed in the next subsection.

File KTAPE is used for plot information output. Plot information is

written for seven items on a line by line basis. The items written are

x-coordinate, z-coordinate, u-velocity, w-velocity, density, pressure

coefficient and viscosity. Each item is written as formatted output via

FORMAT (14, IX, IOE12.5)

where the first variable is the LZ line number and the next ten are the

items in question. It should be noted that LZ lines are lines such as PQR

of Fig. I. The first line is A'ED' which includes the branch cut, the

airfoil surface and the branch cut. The last line is AFD. If each line

contains NZ2 grid points then NZ2/IO records per line are required where

NZ2/10 is rounded up to the next integer. The variables u, w, 0, and

are normalized by reference values; whereas the values for p are written

as P/Pref - 1.0.

Output is written on file MPRT. If restart information is sought, it

is written on IOTAPE and IOTAPI. IOTAPE contains namelist items; IOTAPI

contains the dependent variable arrays. Restart information required for

starting in a restart mode is obtained from INTAPE and INTAPI where INTAPE

corresponds to the previously written IOTAPE and INTAPI corresponds to the

previously written IOTAPI.

Coordinate Input - TAFE21

As discussed above coordinate input is required and can be obtained

from computer code CRDSRA. However, if other coordinate generation

procedures are available, they can be used in conjunction with SRAIR. The

coordinate data is read into the program in SUBROUTINE TIMGEO prior to the

DO 238 loop. The coordinates are read for each z-line via

READ(21) (XLOCA(MX), ZLOCA(MX), MX=I,NX2)
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where XLOCA and ZLOCA and the X and Z locations of grid points. NZ2 reads

must be made since the number of LZ lines is NZ2. The airfoil chord is

unity in length with the leading edge point at X = 0.0, Z = 0.0 and the

trailing edge at X = 1.0, Z = 0.0. The coordinate system is a 'C' type

grid as shown in Fig. I. The first LZ line is line A'ED' and the last LZ

line is AFD. In regard to the coordinate system itself, it is important

that metric coefficients and Jacobians vary smoothly from grid point to

grid point and the coordinate lines and metric data must be continuous

across the trailing edge grid branch cut.

Initial Start/Restart - Steady Calculations

Since it is often desirable to make a complete calculation in a

series of runs, the code can be run either as an initial start

(IREST=0 input) or a restart from a previous solution (IREST=I). When run

as an initial start all input occurs via NAMELIST on cards. The input is

discussed in detail in a subsequent section of this guide.

In regard to run strategy, it is suggested that for calculations in

which the airfoil is steady the initial and minimum time steps, DT and

DTMIN, be set to 1.0 the maximum time step DTMAX be set to I0.0 and ITCALC

be set to 5. The artificial dissipation parameter, o, which is termed

AVISC should be set to 0.I and turbulent flow assumed over the entire

airfoil. After running for approximately sixty time steps obtain a

restart and run an additional 40 time steps with 0.05 < AVISC< .025 and

with a set transition location. Previous experience indicates this will

lead to converged solutions.

In regard to calculations for an oscillating airfoil between amin

and _max, experience has shown that this calculation should be initiated

by obtaining a converged steady solution at = = _nin" The oscillating

solution should be started from this converged solution with a restart.

Oscillating airfoil solutions should not be started from an initial

'cold start' run. In starting the solution since the incidence is

given by

As

= _o + 2"- {I - cos[w(t-to )]}
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the variable, t-to should be set to zero at the initiation of the

unsteady run. This is obtained by setting TTIME=0.0. In running

oscillating airfoil calculations, physical transients must be resolved

which requires marching in physical time; i.e., matrix preconditioning for

rapid convergence to steady state cannot be used. This requires setting

ITCALC=0. The minimum time step DTMIN should be set to 0.01 and the

maximum time step, DTMAX, to 0.I0. The initial time step, DT, should be

set to DTMIN.

In performing a restart NAMELIST READI is first read from cards to

determine if the run is a restart. The remaining data is then read from

the restart file, INTAPI. This contains values of the parameters at the

end of the restart run. Only if these values are inappropriate need they

be overwritten by the card NAMELIST input.

Convergence and Run Times

When a steady flow is sought via a time marching technique, the

question arises as towhen convergence is obtained. In considering this

question, several factors must be taken into account. First of all, not

all flows reach a steady state. For example, airfoils at high incidence

which shed vortices or airfoil flows in which a shock wave is present may

never become truly steady. In the former case, vortices are shed in some

quasi-periodic manner and the unsteadiness has a large time scale. In the

latter case, the shock position may move leading to an unsteadiness with a

small time scale. Obviously, in these cases no steady flow solution is

guaranteed. Secondly, the numerical technique used may hinder complete

convergence. For example, in the present approach the turbulent viscosity

is lagged by one step in time and this interaction between the viscosity

evaluation and the mean flow calculation may hinder or even prevent

complete convergence.

In general several items are monitored to determine convergence.

First of all the calculated surface pressure distribution, the location of

any separation points and the velocity field in the vicinity of the

airfoil. In addition, the output variable SSTEST is monitored; this

represents the maximum change in any dependent variable over a time. It

should be noted that for this to be meaningful, the time step must be
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significant. SSTEST can be made arbitrarily small by decreasing the time

step. The most important criterion is the maximum residual. The residual

of each equation is obtained by setting the time-derivative term to zero_

and the placing all remaining terms on the right-hand side of the

equation. The sum of all terms on the right-hand side of the equation

defines the residual. Obviously, when the residual is zero the equations

satisfy a steady state solution. Both the maximum residual throughout

the domain for each equation and the average residual within the domain

for each equation were monitored. These usually could be decreased by

between two and four orders of magnitude during the run when steady

solutions were sought.

However, even the presence of residuals requires interpretation. As

prevously discussed, these could be indicative of flow unsteadiness.

Also, relatively large residuals occur at the airfoil cusp trailing edge.

In general, calculations for which steady solutions are sought are

initiated from a very simple initial flow field. The initial flow field

has constant pressure throughout and a velocity field identical to that at

upstream infinity with a simple boundary layer correction. For steady

flows converged solutions can be obtained within 70 time steps. The

procedure suggested in the previous section may require i00 time steps.

In regard to run time, the current code is a general research type

code which was created with flexibility in mind. Obviously, the price of

flexibility is increased computer run time. In the present code the run

time for a 141 x 39 grid is approximately 15 cpu secs per time step on a

CYBER 203. The code used is not fully optimized for scalar operation and

has no vectorization.

Further Comments on Run Protocol

The run protocol described above should allow calculations to be made

for both steady and oscillating airfoils provided a proper grid is used.

The grid must have adequate resolution. In general, the first point from

the airfoil should be of the order of i0-S chords from the surface and

the streamwise spacing in the vicinity of the leading edge stagnation

point should be 10-3 chords. It is recommended the CRDSRA be used to

generate the grid. If computational problems occur for airfoils at modest
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incidence two approaches may be fruitful. The dissipation factor, o, termed

AVISC, can be raised to 0.5 in starting the solution. However, it should

eventually be lowered to at least a value of 0.10. The time step can be

reduced to a value of 0.01. These changes may help in obtaining a solution.

However, if an airfoil calculation at modest incidence does appear to be having

difficulty the most probable cause of the problem would be the grid and this

should be scrutinized for adequate resolution, smooth metric data and minimum

angle between coordinate lines. This latter value in general should be limited

to 45 °.

For high incidence airfoils in which major separation is expected, the

above run protocol should hold. However, if difficulty occurs an alternate

strategy would be to start the calculation at modest incidence and gradually

change the incidence through several runs. A second alternative strategy would

converge the solution at modest incidence and then perform a time-dependent

calculation for an oscillating airfoil through one-half of a period such that

for 0 < _(t-to) <

le2 - al)

= =I + 2 [I - cos [m(t-t )]]O

and for _ < m(t-t o)

_= _2
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IMPLEMENTATION INSTRUCTIONS

Control Stream

The airfoil code has been developed on the NASA Langley

Research Center computer and the current version is operational on the

CYBER 205 VSOS2.1 operating system. A sample control stream for an

initial start for this system follows:

ACCOUNTING CARD 1

ACCOUNTING CARD 2

ACCOUNTING CARD 3

GET(OLDPL=SRAIR)

UPDATE(P, C, L=AI234)

TOVPS(INPUT, C6UD=COMPILE, UN=******, PW=******, AC=******)

7/8/9

*C DAL.MGS3X3

7/8/9

ACCOUNTING CARD 4

ACCOUNTING CARD 5

ATTACH,COMPILE.

ATTACH(GE0012E)

COPY(GE0012E,TAPE21)

RETURN(GE0012E)

REQUEST(TAPEI0/600,RT=W)

REQUEST(TAPE20/200,RT=W)

REQUEST(TAPE2/500,RT=W)

REQUEST(TAPE5/RT=W)

COPY(INPUT,TAPE5)

COPY(TAPE5,0UTPUT)

FORTRAN (L=OUTPUT/1000_I=COMPILE,B=BINARY/250,OPT=BL)

LOAD (BINARY_L=OUTPUT_CN=GO,IOO0,GRLPALL= )

GO.

SWITCH (TAPEIO,RESTI0)

SWITCH (TAPE20,REST20)

TONOS(Z,UUUD=RESTI0,REST20,JCS="******","******","******")

7/8/9

DATA

6/7/8/9
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The first three cards are accounting cards. The next instruction

gets OLDPL and this is followed by update and transfer of files to the

CYBER 205. The card *C DAL.MGS3X3 writes the required decks on the

COMPILE file. After control is transferred to the CYBER 205 two

accounting cards appear. A previously created geometry file, GE0012E, is

attached, copied to TAPE21 and then returned. Restart files TAPEI0 and

TAPE20, are requested; and scratch file, TAPE2, and input file, TAPES, are

requested. The card input is copied to TAPE5 and then to OUTPUT. The

program is loaded and executed. After program execution of the input

parameter, IREPUN-I, TAPEI0 and TAPE20 contain restart information which

can be saved for a subsequent run.

In the case of a restart run the run stream is as follows:

ACCOUNTING CARD 1

ACCOUNTING CARD 2

ACCOUNTING CARD 3

GET(OLDPL=SRAIR)

UPDATE(P,C,L=AI234)

ATTACH(TAPE9=RESTI0)

ATTACH(TAPEI9=REST20)

TOVPS(INPUT, C6UD=COMPILE, UUUD=TAPE9, TAPE19, UN=******,
pw=******, AC=******)

71819

*C DAL.MGS3X3

7/8/9

ACCOUNTING CARD 4

ACCOUNTING CARD 5

ATTACH(TAPE9)

ATTACH(TAPEI9)

SWITCH(TAPE9,RT=W)

SWITCH(TAPEI9,RT=W)

ATTACH(GE0012E)

In this run stream files REST10 and REST20, which are previously created

restart files, are ATTACHed and then passed to the CYBER 205. After

control is passed to the CYBER 205, they must be ATTACHed again and the

SWITCH command used to set the file type. Otherwise the run streams are

identical.
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Input

The required input consists of a geometry file, TAPE21, restart

files, TAPE9 and TAPE19, and card input data. The geometry and restart

file input has been discussed previously and will not be discussed

further. The present section considers the card input. Some card input

data refers to arrays in which the indices may be IEQ, referring to

equation, and IDIR, referring to coordinate direction. For purposes of

this discussion

IEQ = i x-momentum equation

3 z-momentum equation

4 continuity equation

IDIR = 1 _-direction

3 n-direction

LX,LZ Grid points numbering for LX starts from point A'

and proceeds to E and to D' with LX at A' being 1

and LX and D' being NX2. Grid point numbering for

LZ starts at A' (or H) as 1 and proceeds to

A (or I) where LZ = NZ2

NAMELIST READ 1

IREST = 0 Initial run

i Restart run

IREPUN = 0 Nothing written on TAPE10 and TAPE20

1 Restart information written on TAPE10 and TAPE20

Note: In general set IREPUN=I even if a restart file is not desired.

Certain output information and plot files require the restart

mechanism to be called. If no restart is desired, simply do not

save the restart files.
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NAMELIST READ2

ALPINF Upstream incidence

IDBL Last LX location prior to branch cut.

This is the grid point number of the last point on

the branch cut as one proceeds from A'

(see Fig. I) where LX = i to the airfoil trailing

edge.

14LE Last LX location prior to frontal cap of outer

loop. In general, the outer loop consists of two

parallel straight lines joined by a frontal cap.

14LE is the last point on the straight line as one

proceeds from A (LX = I) to F.

NUMDX Number of interior _-points; i.e., two less than

the total number of _-points.

NUMDZ Number of interior n-points; i.e. two less than

the total number of n-points.

Note: ALPINF represents the negative of the incidence angle. For a

horizontal NACA 0012 airfoil immersed in a flow of 6° with positive u & w

components, _ = -.105.

NAMELIST READ3

CLENG Reference length taken as airfoil chord.

DENSR Reference density taken as free stream density.

TREF Reference static temperature taken as free stream

static temperature.
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NAMELISTREAD3

WREF Reference velocity taken as free stream velocity.

VISCR Reference viscosity taken as free stream

viscosity.

AVISC(IDIR,IEQ) Numerical dissipation factor. Recommend values

for initial calcualtion AVlSC = 15"0.1; for

calculations near convergence try

AVlSC = 15"0.025.

NXBL(1),I=I,4 Turbulence model keys. Set

NXBL(1) = NX2/2 - I0

NXBL(2) = NX2/2 + I0

NXBL(3) = IDBL + 1

NXBL(4) = NX2 - IDBL

NXBL(1) and NXBL(2) should bracket the front

stagnatlon point location. NXBL(3) and NXBL(4)

should note the airfoil trailing edge.

NZDL Turbulence model key. Set equal to NZ2-5. This

limits the search for edge of boundary layer.

ALPAF Incidence used for force calculations. Set equal

to ALPINF. •

XLTRI Dimensionless location of suction side transition

location. Default = -I.0.

XLTR2 Dimensionlesslocationof pressure side transition

location. Default= -I.0.

XLDTR Dimensionlesslength of transitionregion.
Default= -1.0.
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Note: In regard to reference quantity CLENG, DENSR, TREF, WREF and

VISCR, these are in general taken as km units. However, any consistent

set which gives the desired Reynolds number and Mach number may be used.

The Reynolds number, REY, and the Mach number, CMACH, are printed in

NAMELIST READ3. if these are not as required, any of the above quantities

may be modified to obtain the required Mach and Reynolds numbers. In

regard to transition locations, if these are less than the location of the

airfoil leading edge turbulence is assumed over all the airfoil. The

leading edge is located at x/c = -0.25 to put the quarter chord location

at x/c = 0.0.

NAMELIST READ4

DT Initial time step.

DTMIN Minimum time step.

DTMAX Maximum time step.

IDUMPI 1 - Print initial flow field.

2 - Do not print initial flow field.

IVARPR Print Flag

IVARPR(1) - u velocity

IVARPR(3) - w velocity

IVARPR(4) - density

IVARPR(25) - pressure

IVARPR(27) - viscosity

Set to 1 - print final array

Set to 0 - no print

Default - all set to 1
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NAMELIST READ4

ITCALC 0 - March in physicaltime.

5 - Invoke time scaling.

NT Number of time steps.

IPRINT Print flag - set equal to NT.

PCNTI Increase time step if maximum change in flow field

on previous time step is less than PCNTI. Default

PCNTI = .04.

PCNT2 Decrease time step if maximumchange in flow field

on previoustime step is greater than PCNT2.

DefaultPCNT2 = .06.

Note: For cases in which steady solutions are sought set ITCALC = 5,

DT = 1.0, DTMIN = 1.0, DTMAX = I0.0.

For cases in which transients are to be followed set ITCALC = 0,

DT = .01, DTMIN = 0.01, DTMAX = .I.

In general, use ITCALC = 5 option from cold start and only use

ITCALC = 0 after steady solution has nearly converged. Also

depending upon the case low Mach number, tlme-accurate solutions

may be difficult to obtain for M < 0. I0.

DALPH

TZR Parameters for oscillating airfoil

QOMEG

ITDGEO
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Note: The time-dependent motion is given by

= + 8= [I - COS_ (t-to)]
_0 --_

where

ALFI = -eo , represents minimum incidence

DALDH = -A=

QOMEG =

TZR = to

As shown in Fig. 8, the oscillating airfoil motion is obtained by setting

IDTGEO = I.

NAMELIST BCSET

This NAMELIST allows resetting the default boundary conditions by

specifying the array JEQBC( , , ). This array contains three

indicators. IBC refers to the boundary where IBC=1,2,3,4.

IBC = 1 Boundary A'A

2 Boundary D'D

3 Boundary A'ED'

4 Boundary AFD
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IV refers to the variable

IV = 1 u-velocity

2 w-velocity

3 Density

LN refers to the point number, the value of LX or LZ, on the boundary.

JEQBC ffiI Function condition

2 First derivative condition

3 Second derivative condition

7 Static pressure

(For density boundary condition only)

14 Total pressure

(For u-velocity boundary condition only)

-2 Flow angle (For w-velocity boundary

condition only).

It is recommended that the default conditions be used.
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Output

The first item of output denotes whether the run is an initial or

restart run. This is followed by dimensionless groupings DIMI-DIMI0,

DIM12, DIM14 and by dimensionless total temperature, enthalpy and

pressure. This is followed by a listing of the difference operators.

The next items are the namelists. This is followed by the boundary

condition output which consists of thirteen columns. The first column is

the grid point number. The next twelve are broken into four (4) groups of

three columns each of which correspond to a boundary. The boundaries are

lines A'A, D'D, A'ED' and AFD, respectively. Within each group of three,

the first column represents the boundary condition for the x-momentum

equation, the second column represents the boundary condition for the

z-momentum equation, and the third column for the continuity equation.

This represents the initial data.

The initial data is followed by print out on a time step by time step

basis at each time step. If the flow is one in which the airfoil is

oscillating ALPDEG is printed. This represents the negative change in

incidence from the initial value in radians. If the airfoil is steady,

this is not printed. In either case, the arrays for dimensionless

pressure P/Pref along the line LZ = I, and the boundary layer

distribution are printed. This is followed by three lines which gives the

time step number, the time step increment, DT, and SSTEST. SSTEST

represents the maximum change in any variable over the preceding time

step. The location at which this occurs follows SSTEST on the same line

with LX and LZ being grid point numbers. The next line gives the maximum

change for variable (I) , variable (3) and variable (4) during the last

step; these are u, w, and p, respectively.

This is followed by force coefficients FRCZ and FRCX here FRCZ and

FRCX are interpreted as pressure force coefficients in the Z and X

directions. This is followed by CMOM the moment about the quarter chord.

The final item gives the average residual in the field, RESAVG, and the

maximum residual, RESMAX, as well as its location. This is followed by

average and maximum residual on an equation by equation basis.
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After all time steps are completed, plot files are written and this

noted and surface static pressure coefficients are given. This is

followed by array output for u, w, p, p and _T as requested via IVARPR.

In reading these arrays, LZ = 1 refers to line A'ED' of Fig. I, and

LZ = NZ2 refers to line AFD. LX = 1 refers to line A'A and LX = 2 refers

to line D'D. The variables u, w, p and _T are normalized by reference

quantities. The variable p is given by a pressure coefficient.
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ENVIRONMENTAL CHARACTERISTICS

The program was developed on the CYBER 170 and CYBER 203. The

current version is operational on the CYBER 205, and CYBER 203. A typical

grid of 140 x 39 points requires 15 CPU seconds per time step.
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APPENDIX- SOLUTION PROCEDURE [13]

Background

The solution procedure employs a conslstently-spllt linearlzed block

implicit (LBI) algorithm which has been discussed in detail in [9, II].

_ There are two important elements of this method:

(I) the use of a nonlteratlve formal time llnearlzatlon to

produce a fully-coupled linear multidimensional scheme which is

written in "block implicit" form; and

(2) solution of this llnearlzed coupled scheme using a consistent

"splitting" (ADI scheme) patterned after the Douglas-Gunn [12]

treatment of scalar ADI schemes.

The method is thus referred to as a split llnearlzed block implicit (LBI)

scheme. The methodhas several attributes:

(I) the nonlteratlve llnearizatlon is efficient;

(2) the fully-coupled llnearlzed algorithm eliminates instabilities

and/or extremely slow convergence rates often attributed to methods which

employ ad hoc decoupllng and llnearlzatlon assumptions to identify

nonlinear coefficients which are then treated by lag and update

techniques;

(3) the splitting or ADI technique produces an efficient algorithm

which is stable for large time steps and also provides a means for

convergence acceleration for further efficiency in computing steady

solutions;

(4) intermediate steps of the splitting are consistent with

the governing equations, and this means that the "physical" boundary

conditions can be used for the intermediate solutions. Other splittlngs

which are inconsistent can have several difficulties in satisfying

physical boundary conditions [Ii].

(5) the convergence rate and overall efficiency of the algorithm are

much less sensitive to mesh refinement and redistribution than algorithms

based on explicit schemes or which employ ad hoc decoupllng and

llnearlzatlon assumptions. This is important for accuracy and for

computing turbulent flows with viscous sublayer resolution; and
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(6) the method is general and is specifically designed for the

complex systems of equations which govern multiscale viscous flow in

complicated geometries. This same algorithm was later considered by Beam

and Warming [18], but the ADI splitting was derived by approximate

factorization instead of the Douglas-Gunn procedure. They refer to the

algorithm as a "delta form" approximate factorization scheme. This scheme

replaced an earlier non-delta form scheme [19], which has inconsistent

intermediate steps.

Spatial Differencing and Artificial Dissipation

The spatial differencing procedures used are a straightforward

adaption of those used in [9] and elsewhere. Three-point central

difference formulas are used for spatial derivatives, including the

first-derivative convection and pressure gradient terms. This has an

advantage over one-sided formulas in flow calculations subject to

"two point" boundary conditions (virtually all viscous or subsonic flows),

in that all boundary conditions enter the algorithm implicitly. In

practical flow calculations, artificial dissipation is usually needed and

is added to control high-frequency numerical oscillations which otherwise

occur with the central-difference formula.

In the present investigation, artificial (anisotropic) dissipation

terms of the form

d. _2uk
i (I)

J hj 2 _xj 2

are added to the right-hand side of each (k-th) component of the momentum

equation, where for each coordinate direction xj, the artificial

diffusivity dj is positive and is chosen as the larger of zero and the

local quantity De (o ReAx-l)/Re. Here, the local cell Reynolds number

ReAx j for the j-th direction is defined by

ReAx j = Re 10ujl Axj/_ e (2)

This treatment lowers the formal accuracy to 0 (Ax), but the functional

form is such that accuracy in representing physical shear stresses in thin

shear layers with small normal velocity is not seriously degraded. This
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latter property follows from the anisotropic form of the dissipation and

the combination of both small normal velocity and small grid spacing in

thin shear layers.

Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations to be solved consists of three/four

equations: continuity and two/three components of momentum equation in

three/four dependent variables: p, u, v, w. Using notation similar to

that in [9], at a single grid point this system of equations can be

written in the following form:

_H(_)/_t = D(_) + S(_) (3)

where _ is the column-vector of dependent variables, H and S are

column-vector algebraic functions of _, and D is a column vector whose

elements are the spatial differential operators which generate all spatial

derivatives appearing in the governing equation associated with that

element.

The solution procedure is based on the following two-level implicit

time-difference approximations of (3):

(Hn+l- Hn)/At = B(D n+l+ Sn+l) (l-B) (Dn + Sn) (4)

where, for example, Hn+l denotes H(_ n+l) and At = tn+l - tn. The

parameter B (0.5 _ B _ i) permits a variable time-centering of the scheme,

with a truncation error of order [At2, (6 - 1/2) At].

A local time linearization (Taylor expansion about _n) of requisite

formal accuracy is introduced, and this serves to define a linear

differential operator L (cf. [9]) such that

Dn+l = Dn + Ln(_n+l_ _n) + 0(At 2) (5)

Similarly,

Hn+l = Hn+ (_H/_)n (_n+l _ _n) + 0 (At2) (6)

sn+l = sn+ (_S/_)n (_n+l _ _n) + 0 (At 2) (7)

Eqs. (5-7) are inserted into Eq. (4) to obtain the following system which

is linear in _n+lm

(A - BAt Ln) (_n+l _ _n) = At (Dn + Sn) (8)
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and which is termed a linearized block implilcit (LBI) scheme. Here, A

denotes a matrix defined by

A _ (_H/_) n - BAt (_S/_) n (9)

Eq. (8) has 0 (At) accuracy unless H _ _, in which case the accuracy is

the same as Eq. (4).

Special Treatment of Diffusive Terms

The time differencing of diffusive terms is modified to accomodate

cross-derivative terms and also turbulent viscosity and artificial

dissipation coefficients which depend on the solution variables. Although

formal linearization of the convection and pressure gradient terms and the

• resulting implicit coupling of variables is critical to the stability and

rapid convergence of the algorithm, this does not appear to be important

for the turbulent viscosity and artificial dissipation coefficients.

Since the relationship between _e and dj and the mean flow variables

is not conveniently linearized, these diffusive coefficients are evaluated

explicitly at tn during each time step. Notationally, this is

equivalent to neglecting terms proportional to _ _e/_ or _dj/_ in

Ln, which are formally present in the Taylor expansion (5), but

retaining all terms proportional to _e or dj in both Ln and Dn.

It has been found through extensive experience that this has little

if any effect on the performance of the algorithm. This treatment also

has the added benefit that the turbulence model equations can be decoupled

from the system of mean flow equations by an appropriate matrix

partitioning [ii] and solved separately in each step of the ADI solution

procedure. This reduces the block size of the block tridiagonal systems

which must be solved in each step and thus reduces the computational

labor.

In addition, the viscous terms in the present formulation include a

number of spatial cross-derivative terms. Although it is possible to

treat cross-derivative terms implicitly within the ADI treatment which

follows, it is not at all convenient to do so; and consequently, all

cross-derivative terms are evaluated explicitly at tn. For a scalar

model equation representing combined convection and diffusion, it has been

shown by Beam and Warming [20] that the explicit treatment of

cross-derivative terms does not degrade the unconditional stability of the

present algorithm. To preserve notational simplicity, it is understood

that all cross-derivative terms appearing in Ln are neglected but are
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retained in Dn. It is important to note that neglecting terms in Ln

has no effect on steady solutions of Eq. (8), since _n+l _ _n _ 0,

and thus Eq. (8) reduces to the steady form of the equations:

Dn + Sn = 0. Aside from stability considerations, the only effect

of neglecting terms in Ln is to introduce an 0 (At) truncation

error.

Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (8) is split

using ADI techniques. To obtain the split scheme, the multidimensional

operator L is rewritten as the sum of three "one-dimensional"

sub-operators Li (i = i, 2, 3) each of which contains all terms having

derivatives with respect to the i-th coordinate. The split form of

Eq. (8) can be derived either as in [9, 11] by following the procedure

described by Douglas and Gunn [12] in their generalization and unification

of scalar ADI schemes, or using approximate factorlzation. For the

present system of equations, the split algorithm is given by

(A - 8AtL_) (# _ _n) = At (Dn + Sn) (10a)

** _n *(A - BAtL_) (_ - ) = A (_ - _n) (10b)

(_n+l(A - 8AtL_) - = A (_ _ _n) (10c)

where _* and _** are consistent intermediate solutions. If spatial

derivatives appearing in Li and D are replaced by three-point difference

formulas, as indicated previously, then each step in Eqs. (10a-c) can be

solved by a block-trldiagonal elimination.

Combining Eqs. (10a-c) gives (II)

(A - BAtL_) A-I (A - BAtL_) A-I (A - BAtL_) (_n+l _ sn) = At (Dn +
Sn)

which approximates the unsplit scheme (8) to 0 (At2). Since the

intermediate steps are also consistent approximations for Eq. (8),

physical boundary conditions can be used for _* and _** [9, II].

Finally, since the Li are homogeneous operators, it follows from

Eqs. (lOa-c) that steady solutions have the property that

• _n+l = _* = _** = _n and satisfy Dn + sn = 0 (12)

The steady solution thus depends only on the spatial difference

approximations used for (12), and does not depend on the solution

algorithm itself.
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Fig. 2 - Overall Program Flow, PROGRAM DAL
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