
SALT: The Simulator for the Analysis of LWP Timing

Paul L. Springer
California Institute of Technology

Jet Propulsion Laboratory

Arun Rodrigues
University of Notre Dame

Jay B. Brockman
University of Notre Dame

ABSTRACT
With the emergence of new processor architectures that are
highly multi-threaded, and support features such as full/empty
memory semantics and split-phase memory transactions, the
need for a processor simulator to handle these features be-
comes apparent. This paper describes such a simulator,
called SALT.

Keywords
PIM, multithreaded, parallel

1. INTRODUCTION
In the design of future high performance computers, one of
the main obstacles to overcome is the processor to memory
bottleneck. One approach that is receiving increasing atten-
tion is to use memory that has computing capability built
into it. This kind of architecture is referred to as processing-
in-memory, or PIM, and has been used in a number of recent
projects[10], [12], [7], [16], [9], [15], [19]. SALT simulates
most of the features found in the PIM Lite chip[18], as well
as extended memory semantics to support tagged memory
using full/empty bits, an extension to a feature used by the
Cray MTA[2]. Unique aspects of this architecture[11] are
highlighted below.

1) Hardware Parallelism: The target hardware simulated by
SALT consists of multiple PIM chips, each of which contains
a small number of Lightweight Processors (LWPs) together
with memory. See figure 1.

2) Lightweight Multithreading: At one end of the spectrum
of multithreading lies Unix style pthreads, which have large
amounts of state and high overheads in thread synchro-
nization, forking and scheduling activities. By contrast,
lightweight threads can be forked in just a few cycles, sched-
uled in a single cycle, and their states can be encapsulated
by a single register set.

3) Frames: Each thread in the target architecture has an
associated dedicated register set that carries its state. This
register set is called a frame, and is physically part of the
memory on the PIM chip. In our simulation each frame
consists of 32 64-bit registers.

4) Distributed Shared Memory: Memory is distributed evenly
among the PIM chips being simulated. Within a chip, LWPs

share on-chip memory in the sense that each one has the
same view of and access to the local memory as well as the
remote memory.

5) Parcels: Communication between PIM chips is done us-
ing specialized packets called parcels (parallel communica-
tion elements). Parcels support remote reads and writes, as
well as spawning and atomic memory operations to remote
memory.

6) Locality Awareness: Whether or not memory is local to
a chip is something that is visible all the way up to the ap-
plication level, allowing an application at run time to make
decisions about data distribution and load balancing. The
architecture causes threads to be spawned to an LWP for
which a specified memory location is local.

7) Tagged Memory: In the target architecture, each double
word of memory includes an extra bit, called an extension
bit. The state of the extension bit affects how the memory is
handled by the processor when reads or writes are targeted
to that memory location. A set of extended memory seman-
tics determines what the outcome of the requested operation
will be.

8) Split Phase Memory Transactions: All memory accesses
are done by means of transactions that are split into two
phases: a request phase and a response phase. For a read
request, the value is returned as a response. The response
to a write request is an acknowledgment that is returned
to a designated acknowledgment register. This is similar to
the functionality built in to the Split-C compiler[5]. This
feature combined with multithreading allow for good paral-
lel performance without the complexities of instruction-level
parallelism.

With the unique hardware capabilities necessary to simulate,
as well as the need for flexibility in the front-end instruction
input stream, we decided to develop our own simulator. To
enable the user to run in either a functional mode or a cycle-
accurate mode, SALT was built on top of a low overhead
discrete event simulation engine, Enkidu. This engine is
detailed in section 3.6. The memory controller is described
in section 4.4, and the design of the front-end in section 3.4.
Section 3.5 covers the back-end performance model.

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
ChipDRAM

Chip
DRAM

Chip
DRAM

Chip
DRAM

ChipDRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
ChipDRAM

Chip
DRAM

Chip
DRAM

Chip
DRAM

Chip

Optional
Off-Chip
Memory

On-Chip
Memory

Array
On-Chip
Memory

Array
On-Chip
Memory

Array
On-Chip
Memory

Array

Light
Weight

Processor
(LWP)

Light
Weight

Processor
(LWP)

Light
Weight

Processor
(LWP)

Light
Weight

Processor
(LWP)

PIM Chip

To/from other
PIM chips

Figure 1: Generic PIM Architecture

As of the writing of this paper, the functional version of
SALT has been completed, but not the cycle-accurate ver-
sion. This paper will focus primarily on the former, though
some mention will be made of the latter. The MTA-style
front-end currently has the most functionality programmed
into it, which is why the examples included here refer to it.

2. RELATED WORK
Execution based simulation has long been used to assist in
computer architecture design. In this section we mention a
few of those efforts that have some relationship to SALT.

SPIM is a widely used program constructed to simulate the
MIPS processor[13]. It proved to be a valuable teaching tool
for this project, and some of its parsing code was incorpo-
rated into SALT. Simplescalar is another software package
often used as a basis for simulating various kinds of pro-
cessors[1]. Simplescalar is particular efficient in decoding
instructions to be executed by the processor, and we took
the same approach of using a large table of macros, one for
each instruction, that Simplescalar uses.

The RSIM simulator is able to simulate multiple proces-
sors running in parallel. It’s focus is on processors that use
instruction-level parallelism[8]. The Proteus simulator also
models a shared memory multiprocessor computer, and in-
cludes the interprocessor network in its model[3]. Proteus
provides support for certain primitives such as thread barri-
ers.

The PIM Lite simulator[4] was written as part of the PIM
Lite design effort. It covers many of the same architec-
tural features that SALT does, including lightweight mu-
tithreading, frames, and hardware parallelism, but not ex-
tended memory semantics or split phase memory transac-
tions, and it did not have support for timed operations nec-
essary for structural simulation. The PIM Lite simulator
mapped its simulated threads onto Unix pthreads. The per-
formance results of using pthreads helped us decide to model
the lightweight threads directly in SALT.

The Zebra simulator at Cray was built to simulate the MTA

computer, as part of the design process. Zebra simulates
multiple processors with multiple threads running on each
processor, as well as full/empty bit memory semantics[17].

3. SIMULATOR DESIGN
3.1 Challenges
The hardware being simulated motivated the addition of fea-
tures into SALT that are not found in most other processor
simulators. The parallelism of the hardware requires SALT
to handle not just one processor, but many interacting with
each other. Multiple threads have to be supported on each of
the parallel LWPs, together with a means for synchronizing
and scheduling those threads. Multiple registers sets, one for
each thread, have to be allocated appropriately out of mem-
ory, associated with the thread, and deallocated when the
thread completes. The simulator must handle parcel com-
munication between PIM chips, and must be aware of what
memory is assigned to what chip. Probably the most com-
plex part of SALT is the handling of the extended memory
semantics, with extra tag bits for each memory location, and
splitting up a memory transaction into response and reply
phases that may be widely separated in time.

An additional challenge for the design of SALT came out of
our motivation to support the system architects in making
design tradeoffs. As the design changed, SALT needed to
change as quickly and easily as possible. This necessitated
encapsulating and decoupling major parts of the simulator,
so that one part could be changed without the change rip-
pling through to other parts of SALT.

3.2 Architecture
The overall architecture of SALT is shown in figure 2. The
operational parameters of the simulation are specified in a
configuration file. The particular front-end feeder to be used
for input is selected by a configuration parameter. The back-
end components of the performance model are invoked by the
program stream coming through the selected front-end, and
the Enkidu engine (not shown) handles communications and
models time between the components. The simulator can be
run in a multi-processor mode, with the number of proces-
sors specified in the configuration file. In this mode, SALT
can assign multiple LWPs to a chip, and can also simulate
a system with multiple chips, with memory partitioned be-
tween chips. In this configuration, the memory assigned to a
PIM chip is shared among the LWPs on that chip. SALT is
written to handle the interactions among all these elements.

3.3 Configuration Input
At the outset of a simulation run, the configuration file is
read by SALT, and configuration parameters are set up.
This approach was taken to maintain a high degree of flexi-
bility in running SALT, so that a large parameter space can
be explored (in real time or in batch mode) without recom-
piling SALT. The parameters can be roughly grouped into
the four areas of interest they control: front-end control,
target topology, simulation behavior, and statistical output.
The front-end control parameters specify which feeder SALT
will use for program stream processing, as well as the file

Binary Trace SynthSource

Simulation Framework

LWP

DRAM

Active
queue

Front Ends

Com
ponents

Input
Parameters Statistics

Application
Output

Figure 2: SALT Architecture

name containing the program stream. The target topol-
ogy parameters control characteristics of the target topology
such as the number of LWPs per PIM chip, total number of
chips, and memory size and distribution. Other parameters
control whether the simulation will run in functional mode
or timing-accurate mode, and how much debugging and sta-
tistical output will be produced.

3.4 Front End Feeders
In order to cleanly separate the performance model of the
simulation from the instruction execution, SALT is struc-
tured so that feeder modules read the program stream file,
and communicate to the performance model through a de-
fined interface. This approach is similar to that taken by the
ASIM simulation framework[6]. Feeder modules have been
written for MIPS-like assembly source, MTA-like assembly
and ELF binary. The simulator design is flexible enough to
work with a trace file type of feeder as well.

The strategy of using feeders as part of the architecture
worked very well for us. After the binary feeder was devel-
oped we realized that the new processor architecture being
simulated would require additions to the MIPS instruction
set we originally supported. The encoding of the new in-
struction set would not be worked out for some time, so that
support of assembly source allowed the simulation to proceed
without having to wait. Later on in the project the decision
was made to switch from a MIPS flavored instruction set
to an MTA style one. A new MTA feeder was written, and
very few modifications were required to the rest of SALT to
support this new feeder. Of course any new instruction set
that depends of different architectural characteristics, for ex-
ample, a different number of registers, or a different register
size, will require changes made to the back-end performance
model.

3.5 Back End Performance Model
A simplified version of the interactions between the front-
end and back-end portions of SALT is illustrated by figure
3. Thread objects (in the front-end) and processor objects
(in the back-end) each have public interfaces. Encapsulating

each object makes it easy to move a thread from one pro-
cessor to another in the course of the simulation, or to have
one processor run multiple threads. Examining some of the
steps involved in executing a load instruction will serve as a
simplified illustration of how the different pieces interact.

A processor first selects a thread to activate. The acti-
vated thread’s FetchInstruction() routine is then called by
the processor, followed by the IssueInstruction() and then
CommitInstruction() thread routines. The latter routine in
turn may call upon the processor’s ReadMem() routine to
get the contents of a memory location. The processor sends
a request to the memory’s Read() routine, which in turn
takes care of storing the memory contents into a register.

Front End
Feeder

Back End
Performance Model

Processor
ActivateThread()
ReadMem()
WriteMem()
IsLocal()
Spawn()
...

Binary Thread

FetchInstruction()
IssueInstruction()
CommitInstruction()
GetRegister()
SetRegister()
...

MIPS Thread

FetchInstruction()
IssueInstruction()
CommitInstruction()
GetRegister()
SetRegister()
...

MIPS Thread

FetchInstruction()
IssueInstruction()
CommitInstruction()
GetRegister()
SetRegister()
...

MIPS Thread

FetchInstruction()
IssueInstruction()
CommitInstruction()
GetRegister()
SetRegister()
...

Memory

Read()
Write()
...

Figure 3: SALT Internal Interfaces

3.6 Enkidu Simulation Engine
The underlying framework for the SALT simulator is Enkidu,
a component-based hybrid simulation engine. In Enkidu,
components represent the various physical components of
the system. In the original version of Enkidu, every compo-
nent is evaluated every clock cycle, allowing the component
to advance its internal state. The components interact by
passing event notifiers to each other through a discrete event
framework. As modified for SALT, Enkidu skips over time
steps for which no events are waiting, which provides the
efficiency of a discrete event model.

Modern processors can be represented as a series of buffers
which store instructions and data, separated by logic which
acts upon those instructions. Data flows from buffer to
buffer according to a strict centralized clock. For proces-
sor architectural simulation, it is possible to say that all
events take place in synchronization with this clock. The
processors simulated by SALT can have dozens of threads
in various stages of execution during each processor clock
cycle. As a result, more than one transition event can occur
each cycle.

Enkidu defines a component class, which is meant to be a
base class for application objects that need any functionality
that is to be provided by the simulation engine. Any such
application object can be scheduled for running by Enkidu,

and will be able to call Enkidu routines for sending and
receiving messages.

4. FUNCTIONALITY
4.1 Instruction Interpretation
The front-end currently being used, the MTA-style assembly
source front-end, uses a large macro table to implement the
body of the switch statement used in executing the different
instructions. One case statement exists for each instruction,
and these are contained in a single file, similar to the way the
SimpleScalar processor modeling software handles this. This
approach benefits both the performance of the simulation as
well as the flexibility and cleanness of the code, though at
the cost of making debugging of this part of the code more
difficult. The macro table is referenced in both the issue
cycle and commit cycle, and by means of secondary macros
invoked by the primary macros, the primary macros have a
different functionality in the two cycles.

Each entry in the macro table consists of a number of fields,
of which only certain ones are used in a given cycle. For
example, before an instruction can be initiated, the regis-
ters it uses must be in a certain state with regards to their
full/empty bits. The macro used to check the required state
for each register is inserted into one of five possible condition
fields available in the table entry for that instruction.

4.2 Syscall Support
Experience with the MIPS-style front-end motivated us to
include the SYSCALL (system call) interface into the MTA-
style front-end as well. To support that functionality, a
SYSCALL instruction is defined in the instruction macro
table. The contents of register 2 determine which system
call is invoked. A single argument (if required) is passed
in register 4, and any return value is put into register 2.
With no system or library code for the simulator to execute,
it has built-in support for a limited number of SYSCALLs.
These include routines to print a string or to print a num-
ber in various formats, and to generate a random number.
The SYSCALL routines have proved very useful in lieu of
library support code for printf and related functions, to help
in application debugging. Application I/O support is not
yet built in but is high on the priority list of future enhance-
ments.

4.3 Threads and Frames
Lightweight threads are supported by the target processor
directly in hardware. Because of the need for high perfor-
mance handling of these threads as well as direct control over
the scheduling and priority algorithms for them, they could
not be mapped into a POSIX thread library, and instead
support for them was built directly into the simulator.

Each thread has its own set of registers, in a block called a
frame, and each frame is mapped to a location in memory.
SALT handles the allocation of memory (from a frame pool)
for frame usage, and also assigns frames to new threads, and
frees frames when threads are deleted. Eventually most of
this functionality is expected to be supported by the hard-
ware.

Each thread is a C++ class, and a unique thread class ex-
ists for each front-end. All of these front-end thread classes
inherit from a thread base class. The base class contains sup-
port for such common functions as frame assignment, and
register access. The derived class for each front-end contains
the support for fetching an instruction, forking a new thread,
and thread object initialization.

A single thread is initially created by SALT once a program
is loaded into memory. That thread begins execution at the
assigned start location. Other threads can be created either
explicitly by means of fork or spawn instructions, or implic-
itly by certain events such as access of memory locations that
are in certain states. One type of implicitly generated thread
is the handler thread, used to supply added functionality to
the hardware.

A processor object is responsible for selecting which of the
threads assigned to it should execute. Upon selecting the
thread, it gives control to the thread, allowing it to execute a
single instruction. Once the instruction is executed, control
is relinquished back to the processor, which then chooses the
next thread for execution.

4.4 Memory Controller
A primary concern of the processor architects was to hide
memory latency. This desire helped motivate the split-phase
memory design that resulted. In this design, threads read-
ing from or writing to memory do not have to wait for the
memory operation to complete, unless it is necessary to do
so. This allows thread execution and memory latency to
proceed in parallel.

The architecture is designed so that all memory operations
send back an acknowledgment signal when the operation has
completed. In the case of a load operation, the data from the
memory acts as the acknowledgment signal. For a store oper-
ation, a special acknowledgment signal is sent to the register
designated by the instruction to receive that signal. The re-
questing thread does not know or care whether the memory
operation has completed, until the acknowledgment register
is accessed by an instruction. At this point, if the acknowl-
edgment has not been received, the thread is removed from
the queue of active threads, and blocked until the memory
operation completes, at which time it is returned to the ac-
tive queue. To maintain consistency with this paradigm, all
memory operations are between registers and memory; there
are no memory to memory operations.

These requirements mandate a smart memory controller, one
that is capable of receiving requests, sending results and ac-
knowledgments back to thread registers, and moving threads
on and off the active queue. The memory controller must
also be capable of understanding the concept of local and
remote memory. If the memory address of the request is
mapped to memory that is local to this chip’s memory con-
troller, it executes the request; otherwise the request is for-
warded to an external controller. Similarly, the memory
controller must also be able to respond to requests from
threads running on remote chips that were forwarded by

that thread’s remote memory controller.

The split phase memory transactions greatly simplify the
interface between threads and memory. The asynchronous
interface between the two is clean–threads only block (and
block immediately) when the response register is accessed
by a thread instruction. The extent to which a thread can
continue to execute following a memory operation depends
only on whether the response has arrived by the time the
register is accessed.

In functional mode if an instruction needs to access memory,
the instruction execution code calls the memory controller
routines directly, as needed, to handle load, store, fork, or
AMO instructions. In this case, for purposes of speed, the
simulation engine is bypassed. Once invoked, the appropri-
ate memory controller routine checks to see if the targeted
memory location is local to the chip the thread is operating
on. If not, the controller creates a message with the contents
of this memory request, and passes the message to Enkidu
for delivery to the appropriate memory controller. Enkidu
will deliver the message and invoke the receiving controller
at the appropriate time.

After determining that the memory location targeted by the
request is local, the responding memory controller routine
checks the state of the memory target to determine how it
should respond. Some requests may place a precondition
on the memory state, and this must be taken into account
as well. If the state of the memory is appropriate for the
request, the request is fulfilled. If the request was in re-
sponse to a load instruction, the memory value is returned
to the appropriate register of the requesting thread. If a
store instruction was executed, memory is modified and an
acknowledgment is returned to the designated acknowledge
register. If an AMO operation was executed, memory is
modifed and a value returned to a register. In the case of a
request for a fork, a new thread is created, register contents
are copied into it, the new thread is put onto the active
thread queue, and an acknowledgment is sent back to the
designated register of the requesting thread.

Read, write, or AMO operations will not themselves block
threads. In response to these types of requests, the memory
controller will return a value or acknowledgment back to the
designated register of the requesting thread, or an indicator
to that register (using the full/empty bit of the register) that
the operation can’t be completed immediately. In the cycle
accurate mode this can happen if there is a cache miss and
the memory can not be accessed in a single cycle. In either
the cycle accurate or functional mode the operation may not
complete if, for example, a load instruction was executed
against an empty memory locaion. In any case, before a
thread executes the next or any subsequent instruction, the
registers needed by the new instruction are checked, and
at that time if the register state indicates an uncompleted
operation is pending, the thread is then removed from the
active queue.

This prompts the question of how the thread is tracked once

it is no longer in the active thread queue, and how it is re-
activated. In the cycle accurate case, where a cache miss
has occurred, the original memory request is forwarded to
the appropriate module at the proper time. The request
packet contains all necessary information, including informa-
tion about which thread made the request. The responding
module then generates a response packet which will put the
requested value or acknowledge indicator into the requesting
register, and restore the thread to the active queue. Both
the architecture and the simulator make use of the contents
of the request parcel to find the appropriate thread.

A thread can also be removed from the active thread queue
if a memory location is not in the state that is expected by
an instruction making a memory request. In the simplest
case of this, when a single load instruction needs to wait
until the target memory location has a value stored into it,
a pointer to the thread is stored in the memory location by
the hardware architecture. For the sake of efficiency, the
simulator stores threads in an STL map container, which
associates the thread object with the address of its frame,
for easy retrieval when needed.

The more difficult case occurs when several threads are all
waiting for a memory location to change state. As only
one thread address can be stored in a memory location, this
case can not be handled in an obvious way. This difficulty
is resolved by forking a new thread which begins execution
of special purpose handler code.

4.5 Cycle Accurate Memory Access
When SALT is operating in functional mode, the code is
structured so that each PIM chip has a single memory con-
troller to handle the memory requests coming from the LWP
processors on that chip, and there is no simulation of cache.
In contrast, cycle accurate mode allows for a much more
complex memory structure, with multiple cache banks as-
signed to a PIM chip, a memory controller assigned to each
cache bank, and off-chip DRAM memory. To facilitate this,
two interface classes were created, a memoryIF class to han-
dle memory reads and writes, and a controllerIF class to
handle controller memory requests. The cache and mem-
ory classes inherit from the memoryIF class, and the mem-
ory controller class inherits from the controllerIF class. The
other class derived from the controllerIF class is a pimRouter
class. As derivative classes of the controllerIF class, both
controller and pimRouter objects can handle requests from
the processors, and then use the memoryIF class to imple-
ment reads and writes to memory.

SALT dynamically assigns a controllerIF-derived object to
each PIM chip, to handle memory requests for that chip. In
functional mode that assignment is simply a memory con-
troller class, that in turn communicates to a memory object
that has been assigned to that controller (figure 4). In cycle-
accurate mode, a pimRouter object is assigned to the chip,
and multiple controllers (one for each bank of cache) are
allocated to the pimRouter. When the processor issues a
memory request, the request is forwarded by the pimRouter
to the appropriate memory controller, which in turn issues

ControllerIF

request_read()
request_write().

.

.

MemoryIF

read_memory_bytes()
write_memory_bytes().

.

.

PIM Chip Controller Memory

Figure 4: Memory Model: Functional Mode

a read or write to its assigned cache bank, using the mem-
ory interface. The cache bank communicates to DRAM as
necessary, again using the memory interface (figure 5).

PIM Chip

ControllerIF

request_read()
request_write().

.

.

PIMRouter

MemoryIF

read_memory_bytes()
write_memory_bytes().

.

.

Cache

ControllerIF

request_read()
request_write().

.

.

Controller

MemoryIF

read_memory_bytes()
write_memory_bytes().

.

.

DRAM
Controller

Controller

Figure 5: Memory Model: Cycle-Accurate Mode

The controllerIF-derived classes inherit from Enkidu’s com-
ponent class, and so are able to send and receive messages,
and can be scheduled by the simulation engine. Because of
the split-phase memory transactions, the interface is by its
nature asynchronous, and the processor making the mem-
ory request must handle an asynchronous response whether
running in functional or cycle-accurate mode. In the cur-
rent version of SALT, calls between a controller and mem-
ory, by contrast, are handled as simple subroutine calls with
a return value, consistent with the functional model. As de-
velopment proceeds on SALT, the memoryIF-derived classes
will be modified to be event driven.

4.6 Memory Partitioning
In the current version of the software, there is no implemen-
tation of virtual memory. All memory references are treated
as physical addresses. The first 256MB of simulated mem-
ory space is divided evenly among the number of PIM chips
requested for the simulation (see figure 6). Memory above
256MB is treated as a special shared data segment, that is
considered local read-only memory by every chip. It is used
to store data constants that come in through the program
stream, and can be initialized by the front-end code.

The lowest 12K of local memory on a chip is currently unas-
signed. The next 8K is reserved for frame usage. All unused
frame slots are tied together by means of a linked list. When
a new thread is created, a frame is allocated from the free
list, and when a thread is retired, its frame is returned to
the head of the free list. The remainder of the local memory
on the chip can be used by the application.

Figure 1: Memory map for 4 LPCs

Frames

Local Memory

0x00003000

0x03FFFFFF
F

0x00000000

0x00005000
Frames

Local Memory

0x04003000

0x07FFFFFF
F

0x04000000

0x04005000
Frames

Local Memory

0x08003000

0x0BFFFFFF
F

0x08000000

0x08005000
Frames

Local Memory

0x0C003000

0x0FFFFFFF
F

0x0C000000

0x0C005000

Figure 6: Memory Partitioning for Four PIM Chips

4.7 Simulator Output
SALT provides output at three levels. The first level is for
application output, using the syscall mechanism, and is de-
scribed elsewhere in this document. The next level of out-
put is an instruction trace, useful for debugging the applica-
tion. One line is output for each instruction executed. That
line includes fields detailing the processor cycle number, the
thread ID, program counter, source line number, and source
line.

SALT also maintains statistical information internally, as
directed by the configuration file parameters, and outputs
that information into a file at the end of the run. Currently
only a small number of statistics are output–those include
one line for each clock cycle, detailing the PIM chip ID, the
clock cycle count, and the number of active threads and total
threads for that cycle.

5. USEFULNESS
SALT has been used and found to be useful for two different
efforts so far. Because SALT uses as input an assembly
instruction stream, it was decided to build a compiler for it.
As the compiler was being developed, the simulator proved
its worth in helping to debug the compiler.

SALT has also been put to use in fulfillment of its main
purpose, namely to understand and analyze the operation
and performance of the hardware architecture. A study has
already been completed that uses statistical output from
SALT to examine different thread synchronization strate-
gies, and how execution time scales with the number of
threads in use[14]. Another effort is currently in progress
that will use SALT to understand how well a neural net-
work performs on this architecture in comparison to more
traditional computer systems.

6. FUTURE WORK
In the near term we have plans to enhance development of
the cycle-accurate part of SALT. As part of that, we intend
to implement a full-fledged data cache module that includes
an internal PIM chip bus for the cache banks on the chip.
There are also plans to implement a frame cache, for which
there are already some hooks in the current baseline.

Thread scheduling is currently very primitive, consisting of
round-robin execution of threads. There has been some dis-
cussion of changing this, and perhaps allowing threads to

execute with differing priorities.

Currently SALT decides what area of memory to use for
frames, and sets up a linked list of free frames which can be
allocated by threads. The ultimate intention is to add nec-
essary instructions to allow the operating system to handle
this task. Once that is accomplished, and a runtime module
written to do this initialization, SALT will no longer need
to initialize the frame memory.

Debugging is still fairly limited, with trace output and appli-
cation output as the only available tools. We will probably
want to add other capabilities, such as single-stepping, reg-
ister and memory examination, active thread queue listing,
and possibly breakpointing. These will combine to make it
much easier to use this simulation tool.1

7. REFERENCES
[1] Todd M. Austin, Eric Larson, and Dan Ernst.

Simplescalar: An infrastructure for computer system
modeling. IEEE Computer, 35(2):59–67, 2002.

[2] Shahid H. Bokhari and Jon R. Sauer. Sequence
alignment on the cray MTA-2. In 17th International
Parallel and Distributed Processing Symposium
(IPDPS-2003), pages 152–152, Los Alamitos, CA,
April 22–26 2003. IEEE Computer Society.

[3] Eric A. Brewer, Chrysanthos Dellarocas, Adrian
Colbrook, and William E. Weihl. PROTEUS: A
high-performance parallel-architecture simulator. In
SIGMETRICS, pages 247–248, 1992.

[4] J. B. Brockman. PIM lite architecture and assembly
language manual. Technical report, University of
Notre Dame CSE Dept., July 2003.

[5] David E. Culler, Andrea Dusseau, Seth Copen
Goldstein, Arvind Krishnamurthy, Steven Lumetta,
Thorsten von Eicken, and Katherine Yelick. Parallel
programming in Split-C. In IEEE, editor, Proceedings,
Supercomputing ’93: Portland, Oregon, November
15–19, 1993, pages 262–273, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA, 1993. IEEE
Computer Society Press.

[6] Joel S. Emer, Pritpal Ahuja, Eric Borch, Artur
Klauser, Chi-Keung Luk, Srilatha Manne,
Shubhendu S. Mukherjee, Harish Patil, Steven
Wallace, Nathan L. Binkert, Roger Espasa, and Toni
Juan. Asim: A performance model framework. IEEE
Computer, 35(2):68–76, 2002.

[7] Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz,
Jacqueline Chame, Jeff Draper, Jeff LaCoss, John
Granacki, Apoorv Srivastava, William Athas, Jay

1This research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.
The funding for this research was provided for by the De-
fense Advanced Research Projects Agency under task order
number NM0715612, under the NASA prime contract num-
ber NAS7-03001.

Brockman, Vincent Freeh, Joonseok Park, and
Jaewook Shin. Mapping irregular applications to
DIVA, A PIM-based data-intensive architecture. In
Supercomputing (SC’99), Portland, Oregon, November
1999. ACM Press and IEEE Computer Society Press.

[8] Christopher J. Hughes, Vijay S. Pai, Parthasarthy
Ranghanathan, and Sarita V. Adve. Rsim: Simulating
shared-memory multiprocessors with ILP processors.
IEEE Computer, 35(2):40–49, February 2002.

[9] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge,
V. Lam, P. Pattnaik, and J. Torrellas. FlexRAM:
Toward an advanced intelligent memory system. In
International Conference on Computer Design (ICCD
’99), pages 192–201, Washington - Brussels - Tokyo,
October 1999. IEEE.

[10] P. M. Kogge. EXECUBE - A new architecture for
scalable MPPs. In Dharma P. Agrawal, editor,
Proceedings of the 23rd International Conference on
Parallel Processing. Volume 1: Architecture, pages
77–84, Boca Raton, FL, USA, August 1994. CRC
Press.

[11] Peter M. Kogge. Computer architectures with
increased concurrency capabilities. Technical report,
University of Notre Dame CSE Dept., November 2005.

[12] Christoforos E. Kozyrakis, Stylianos Perissakis, David
Patterson, Thomas Anderson, Krste Asanović, Neal
Cardwell, Richard Fromm, Jason Golbus, Benjamin
Gribstad, Kimberly Keeton, Randi Thomas, Noah
Treuhaft, and Katherine Yelick. Scalable processors in
the billion-transistor era: IRAM. IEEE Computer,
30(9):75–78, September 1997.

[13] James R. Larus. SPIM S20: A MIPS R2000
SIMULATOR. Technical Report CS-TR-90-966,
Computer Sciences Department, University of
Wisconsin, Madison, WI, May 1990.

[14] Sheng Li and Shannon Kuntz. Efficiency evaluation on
ems handler in high contention situation. Technical
report, University of Notre Dame CSE Dept., March
2006.

[15] Kenneth Mai, Timothy Paaske, Nuwan Jayasena, Ron
Ho, William J. Dally, and Mark Horowitz. Smart
memories: A modular reconfigurable architecture. In
27th Annual International Symposium on Computer
Architecture (27th ISCA-2000), Vancouver, British
Columbia, Canada, June 2000. ACM SIGARCH /
IEEE.

[16] M. Oskin, F. Chong, and T. Sherwood. Active pages:
A computation model for intelligent memory. In
Proceedings of the 25th Annual International
Symposium on Computer Architecture (ISCA-98),
volume 26,3 of ACM Computer Architecture News,
pages 192–203, New York, June 27–July 1 1998. ACM
Press.

[17] Allan Porterfield. Private correspondence, 2006.

[18] Shyamkumar Thoziyoor, Jay B. Brockman, and Daniel
Rinzler. PIM lite: A multithreaded
processor-in-memory prototype. In Great Lakes
Symposium on VLSI, Chicago, IL, April 17, 2005.
ACM/IEEE.

[19] Shyamkumar Thoziyoor, Shannon K. Kuntz, Jay B.
Brockman, and Peter M. Kogge. Cost/performance
analysis of a multithreaded pim architecture.
Technical report, University of Notre Dame CSE
Dept., March 2006.

