
The U.S. Geological Survey Modular
Ground-Water Model—PCGN:
A Preconditioned Conjugate Gradient Solver
with Improved Nonlinear Control

0 1 2 3 4 5 6 7 8 9 10
Anisotropy multiplier

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Ite
ra

tio
ns

 to
 c

on
ve

rg
en

ce

fill=0, !=0.0
fill=1, !=0.0
fill=0, !=0.99
fill=1, !=0.99

Open-File Report 2008–1331

U.S. Department of the Interior
U.S. Geological Survey

Cover. Convergence properties of incomplete Cholesky preconditioners.

The U.S. Geological Survey Modular
Ground-Water Model—PCGN:
A Preconditioned Conjugate Gradient Solver
with Improved Nonlinear Control

By Richard L. Naff and Edward R. Banta

Open-File Report 2008–1331

U.S. Department of the Interior
U.S. Geological Survey

U.S. Department of the Interior
DIRK KEMPTHORNE, Secretary

U.S. Geological Survey
Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2008

For more information about the USGS and its products:

Telephone: 1-888-ASK-USGS

World Wide Web: http://www.usgs.gov/

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not

imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright

owners to reproduce any copyrighted materials contained within this report.

Suggested citation:
Naff, R.L., and Banta, E.R., 2008, The U.S. Geological Survey modular ground-water model—PCGN: A pre­
conditioned conjugate gradient solver with improved nonlinear control: U.S. Geological Survey Open-File
Report 2008–1331, 35 p.

Typeset on November 12, 2008

Preface

This report describes the preconditioned conjugate gradient with improved nonlinear control (PCGN)
package to solve the linear and nonlinear equations associated with the U.S. Geological Survey (USGS)
MODFLOW-2000 (MF2K) computer program. The linear solver in the PCGN package is based on a method
known in the literature as Preconditioned Conjugate Gradient; preconditioning is based in the modified in­
complete Cholesky scheme. The implementation herein is coupled with Picard iteration so as to efficiently
solve the nonlinear equations associated with many ground-water flow problems. The nonlinear solution is
controlled principally by two parameters: the convergence parameter for the linear solver and the damping
factor which limits the updating of the nonlinear head solution in the Picard iteration. The usual procedure
with Picard iteration to solve a nonlinear problem is to hold these parameters constant. The PCGN package
provides the user with several mechanisms by which these parameters are allowed to vary through the course
of a simulation. The mechanism by which these changes are instituted is generally performance based; if the
Picard iteration is not progressing satisfactorily toward a solution for the nonlinear equations, then the param­
eters are modified. Many of these procedures are ad hoc in nature and may not withstand the test of usage,
eventually requiring revision in some future version of this package. The modified incomplete Cholesky pre­
conditioning, as realized herein, allows for two levels of fill and uses a relaxation parameter to institute the
modification to the pivots of the incomplete Cholesky decomposition. Because algorithms for a level 1 fill are
infrequently encountered in the literature, a derivation of the modified incomplete Cholesky preconditioning,
as instituted in this package, is detailed in this document.

iii

iv

Contents
Abstract . 1

Introduction . 1

Description of Picard Iteration Scheme . 3

Limiting the Inner Iteration . 4

Adjusting the Damping Parameter . 5

Input Instructions for the PCGN Solver . 8

General Solver Parameters: Line 1 . 8

Parameters Related to PCG Solver: Line 2 . 9

Parameters Related to Damping: Line 3 . 10

Parameters Related to Convergence of Inner Iteration: Line 4 . 11

Output Diagnostics for the Picard Iteration . 13

Application of PCGN to a Nonlinear Problem . 15

Description of Program Modules . 17

Preconditioned Conjugate Gradient Method . 17

PCG with Adaptive Convergence . 18

PCG with Standard Inner Convergence . 19

Incomplete Cholesky Preconditioning . 20

Pointwise Cholesky Decomposition . 21

Incomplete Cholesky Decomposition with 0 Fill . 22

Incomplete Cholesky Decomposition with 1 Fill . 26

Test Results for Modified Incomplete Cholesky Preconditioning . 32

References Cited . 34

Figures

1. Sample spreadsheet display of output diagnositics in CSV format format . 14

2. Generalized depiction of matrix entries for regularly numbered domain . 20

3. Depiction of pattern matrices for regularly numbered domain . 23

4. Convergence properties of anisotropic, random CCFD matrix . 33

Tables

1. Sample results from Denver Basin simulation . 15

Algorithms

1. Adaptive damping . 6

v

2. Conjugate gradient method, version 1 . 18

3. Conjugate gradient method, version 2 . 19

4. Forward elimination, full matrix . 22

5. Back substitution, full matrix . 22

6. Pivots for MIC(0, ω): leading . 25

7. Pivots for MIC(0, ω): trailing . 25

8. Forward elimination, MIC(0, ω) . 26

9. Back substitution, MIC(0, ω) . 26

10. Pivots and indirect factors for MIC(1, ω): leading . 30

11. Pivots and indirect factors for MIC(1, ω): trailing . 31

12. Forward elimination, MIC(1, ω) . 31

13. Back substitution, MIC(1, ω) . 32

Conversion Factors

Multiply By To obtain
foot (ft) 0.3048 meter (m)

vi

Blank page

The U.S. Geological Survey Modular Ground-Water
Model—PCGN: A Preconditioned Conjugate Gradient
Solver with Improved Nonlinear Control

By Richard L. Naff and Edward R. Banta

Abstract

The preconditioned conjugate gradient with improved nonlinear control (PCGN) package provides addi­
tional means by which the solution of nonlinear ground-water flow problems can be controlled as compared to
existing solver packages for MODFLOW. Picard iteration is used to solve nonlinear ground-water flow equa­
tions by iteratively solving a linear approximation of the nonlinear equations. The linear solution is provided
by means of the preconditioned conjugate gradient algorithm where preconditioning is provided by the modi­
fied incomplete Cholesky algorithm. The incomplete Cholesky scheme incorporates two levels of fill, 0 and 1,
in which the pivots can be modified so that the row sums of the preconditioning matrix and the original matrix
are approximately equal. A relaxation factor is used to implement the modified pivots, which determines the
degree of modification allowed. The effects of fill level and degree of pivot modification are briefly explored
by means of a synthetic, heterogeneous finite-difference matrix; results are reported in the final section of this
report. The preconditioned conjugate gradient method is coupled with Picard iteration so as to efficiently solve
the nonlinear equations associated with many ground-water flow problems. The description of this coupling of
the linear solver with Picard iteration is a primary concern of this document.

Introduction

The preconditioned conjugate gradient solver with improved nonlinear control (PCGN) is a new solver
package for the MODFLOW ground-water flow model (Harbaugh and others, 2000). The principal objec­
tive of the PCGN package is to provide the modeler with more options when faced with a poorly converging
nonlinear problem. In MODFLOW, nonlinear problems are solved by iteratively solving a linearized approx­
imation of the problem. Because MODFLOW uses a cell-centered finite-difference (CCFD) approximation
of the ground-water flow equations, the linear approximation consists of a system of equations represented
by a sparse, regular matrix. The linear equation solver in the PCGN package is based in the preconditioned
conjugate gradient (PCG) algorithm; preconditioning is provided by means of the the incomplete Cholesky
algorithm with two fill-level options: 0 and 1. A complete Cholesky decomposition would produce factors
that would almost completely fill the upper or lower triangle of the CCFD matrix; as a consequence, complete
decompositions are seldom used for large problems. For a fill level of 0, the incomplete Cholesky algorithm
decomposition does not allow for factors outside the existing nonzero entries in the CCFD matrix; this fill level

2 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

is generally accepted as the traditional incomplete Cholesky preconditioning (van der Vorst, 2003). The fill
level 1 is associated with the next higher-order factorization; additional Cholesky factors are formed and stored
for this fill level. An incomplete Cholesky algorithm incorporating this fill level should provide the user with
a smoother PCG solution for a given level of convergence. This additional capacity comes at the expense of
approximately doubling the computer memory requirements of the PCG solver.

The iterative procedure used in MODFLOW for solving nonlinear problems is commonly referred to as
Picard iteration; a review of this technique, as it applies to ground-water flow modeling, is to be found in Mehl
(2006). Within the PCGN package, the principal controls on the Picard iteration are the convergence parameter
for obtaining a head-change solution from the PCG solver and the damping factor for updating the nonlinear
solution. The accuracy of the updated head change is determined by the convergence parameter, while the
damping factor dictates the proportion of the updated head change to be added to the nonlinear solution. The
PCGN package gives the modeler some additional tools to manipulate these parameters within the context of
the Picard iteration. In particular, both the damping factor and convergence parameter can be made adaptive
in that their values are made to depend on the progress of the nonlinear iteration. In addition, when adaptive
damping is elected, it is also feasible to limit the maximum head change applied in any given Picard iteration.
Limiting the maximum head is useful when modeling dewatering scenarios as the linear approximation can
produce very large and abrupt head changes. Finally, options also exist to institute smaller values for the
damping factor and convergence parameter initially in each new stress period, but relax those values with
favorable progress in the nonlinear iteration.

There are two other PCG solver packages currently (2008) available to MODFLOW users: PCG2 (Hill,
1990) and GMG (Wilson and Naff, 2004). The principal difference between the solvers in these packages is
in the use of preconditioners: PCG2 offers the user a choice of an incomplete Cholesky preconditioning with
0 fill or polynomial preconditioning, and GMG offers a choice of incomplete Cholesky preconditioning with
0 fill or geometric multigrid preconditioning. As noted previously, the PCGN package offers a choice of an
incomplete Cholesky preconditioning with either 0 or 1 fill. All three solver packages use Picard iteration to
solve nonlinear problems; in most cases, all three function reasonably well in this task. However, for those
cases where convergence is not easily obtained, PCGN offers an additional suite of tools that may be useful in
obtaining convergence for a recalcitrant nonlinear problem. In particular, PCGN has been found to be useful
in solving nonlinear problems simulating aquifer dewatering; with this type of nonlinearity, achieving conver­
gence often can be problematic. The linear solver in the PCGN package does tend to be faster than PCG2, as
the incomplete Cholesky preconditioner is built around one dimensional loops that can be unrolled easily, thus
promoting better use of a computer processor’s cache. In this version of PCGN, certain oft-used loops have
been manually unrolled in an effort to diminish the impact of compiler differences on code execution time.
The GMG package, with geometric multigrid preconditioning, is likely to be faster than PCGN in solving a
linear problem. By providing a smooth approximation to the solution, geometric multigrid preconditioning is
simply superior to incomplete Cholesky. However, for solving nonlinear problems, the superiority of GMG
over PCGN is less evident, in part because of the nature of the Picard iteration instituted in PCGN. The ap­
proximate solves of the linear approximation for the nonlinear problem can be relatively swift in PCGN, thus
giving it an advantage over the GMG package.

In the process of forming the incomplete Cholesky factorization, it is sometimes possible to produce zero
pivots; zero pivots are indicative of a singular matrix. Should this happen in PCGN, the solver is immediately
halted and a warning message is issued. In a nonlinear simulation, the production of a zero pivot is usually
associated with a domain that has separated into two or more partitions. This separation is usually precipitated
by a dewatering simulation in which active cells are transformed into inactive cells. Because self-partitioning
of the domain is fairly common in dewatering simulations, a means of testing the integrity of the domain

3

has been devised. Should a zero pivot be encountered, the PCGN package analyzes the domain for multiple
partitions; should they exist, the approximate grid locations of the smaller partition or partitions are reported
back to the MODFLOW listing file (either the List or Global files) before execution is terminated. This feature
is automatically enabled by the solver and will not be discussed further; the remainder of this document is
devoted to describing features of the Picard iteration and aspects of the PCG solver.

A description of the Picard iteration contained in the PCGN package is detailed in the next section of
this report. The subsequent section, Input Instructions for the PCGN Solver, contains a descriptive list of
the input parameters that control the PCGN package, while the following section, Application of PCGN to
a Nonlinear Problem, is an example of an application of PCGN to a nonlinear problem where simulation
of dewatering is a major concern. This example application is followed by the Output Diagnostics for the
Picard Iteration section, containing a descriptive list of useful diagnostics that are, upon request, output by the
PCGN package. The subsequent sections constitute a lengthy description of the PCG method and incomplete
Cholesky preconditioning as applied in the PCGN package; these sections are not particularly useful to the end
user but are included as documentation of the code.

Description of Picard Iteration Scheme

Whenever a parameter within the flow model is dependent on the hydraulic head, then the model and the
resulting simulation is considered to be nonlinear. For example, if the transmission of water is dependent on
the saturated thickness and the saturated thickness is dependent on the hydraulic head, then the resulting simu­
lation is nonlinear. The PCGN package effects the solution of nonlinear ground-water flow problems by Picard
iteration (Wilson and Naff, 2004; Mehl, 2006). Picard iteration solves a nonlinear flow problem very simply by
alternately solving the linear matrix equations and then updating the head-dependent model parameters with
the new approximation of the hydraulic heads. The linear matrix equations can be represented as Ax = b, where
A is a coefficient matrix, x is the vector of unknowns, and b is the right-hand-side (RHS) vector. The unknown
vector x can represent either the hydraulic heads or the changes in hydraulic head. This linear matrix equation
results from the CCFD formulation, which is the basis of the numerical approximation in MODFLOW. Non­
linear parameters can be found in either the CCFD coefficient matrix A or the RHS vector b or both. Iteration
between solving the linear equations and updating head-dependent model parameters continues until the head
solution produces a set of model parameters that require no further updating, at which point the head solution
stabilizes. In the PCGN package, the linear solve of the matrix equations is carried out by means of the precon­
ditioned conjugate gradient (PCG) method using modified incomplete Cholesky (MIC) preconditioning; these
concepts are explained in the Preconditioned Conjugate Gradient Method and Incomplete Cholesky Precondi­
tioning sections. As the PCG method is an iterative solution technique, it is frequently considered that iteration
associated with the PCG method is the “inner” iteration, while the Picard iteration is the “outer” iteration. An
objective of the PCGN package is, for a nonlinear problem, to solve the linear problem only to the accuracy
necessary to advance the Picard iteration. That is, as any given exact solution of the linear equations is only
an approximation of the solution of the nonlinear problem, then updating the Picard iteration with a very ac­
curate solution to the linear equations is not particularly beneficial. Rather, if the PCG solver can be made to
solve the linear equations to a sufficient accuracy so as to advance the Picard iteration, then it is expected that
efficiencies will be gained without sacrificing an accurate and stable nonlinear solution. In the PCGN pack­
age, the Picard iteration is tied to the linear PCG solver by two variables: the convergence parameter for the
PCG solver, which dictates the accuracy of the solution for the linear equations, and the damping factor, which
determines how much of the latest hydraulic head update should be applied to the new solution.

In addition to efficiency of the Picard iteration, one must also be concerned with the accuracy of the non­

4 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

linear solution. This is particularly true when attempting to solve the steady-state flow equations under de­
watering conditions. Under these conditions, solutions to the nonlinear problem may exhibit variable dewa­
tering solely as a function of the parameter selection for the Picard iteration. When this occurs, the modeler
frequently attempts to minimize the degree of dewatering, as measured by the number of dry cells, with the
assumption that this Picard solution is the most accurate representation of the steady-state water-table con­
figuration. The degree of dewatering has been observed to be dependent on the accuracy of the solution to
the linear equations and the amount of damping applied. In a given Picard iteration, a more accurate solution
to the linear equations assures that the head changes are accurately approximated, while the damping factor
assures that large head changes, even accurately calculated, are modulated when used to update the hydraulic
heads. A desirable solution is frequently a compromise between efficiency of the Picard iteration and minimiz­
ing the total number of dry cells.

Variables and parameters described in the following two subsection are more fully described in the Input
Instructions for the PCGN Solver section of this report; they are introduced here in the context of a general
overview of Picard iteration as employed by the PCGN package.

Limiting the Inner Iteration

A “standard” convergence scheme is built into the PCGN package; the standard scheme is accessed by
setting the PCGN variable ACNVG = 0. Under this scheme, the PCG linear equation solver is required to iter­
ate until an order of magnitude improvement is obtained. In general, a weighted residual norm is used as a
measure of the error for the linear solution. Allow r = b − Ax̃i to be a vector of residuals, where x̃ is an approx­

T M−1imation of the true solution x; the weighted residual norm is defined as ν = r r, where M represents the
preconditioning matrix. (Here and elsewhere the symbol T used as a superscript represents the matrix trans­
pose operator.) On entry, this norm is denoted as ν0, and at some later PCG iteration i, it is denoted as νi. With
the exception of the initial Picard iteration for the first time step of the initial stress period, the PCGN package
allows the PCG solver to iterate until νi/ν0 < ε , at which point program execution leaves the linear solver.
The parameter ε is referred to as the relative convergence criterion; except for the initial Picard iteration for
the first time step of a new stress period, the relative convergence parameter ε is set to εs, the standard relative
convergence criterion, the value for which is set internally: εs = 0.1. Certain instances are taken as exceptions
to this convergence rule in the standard scheme. Firstly, the initial PCG iteration of the first Picard iteration
in the first stress period generally provides a very rough estimate of the residuals r; the initial guess for the
hydraulic head is commonly taken to be a constant over the domain. Thus, for the case where MODFLOW
parameters KSTP = 1, KITER = 1, and KPER = 1, the absolute convergence criterion νi < 10 is employed as a
stopping criterion for the inner iteration rather than the relative convergence criterion; the choice of this value
is somewhat arbitrary, other than it appears to have performed successfully in a large number of test cases. Sec­
ondly, in the event of a stress-period change (MODFLOW parameters KSTP = 1, KITER = 1 and KPER > 1), then
the relative convergence parameter is reset for the first Picard iteration: ε = ε2. Because stress-period changes s

are points where new stresses can be introduced, large head changes are to be expected. Thus, the initial PCG
solution for a new stress period should reflect a possible new direction in the nonlinear solution. Increasing the
accuracy of the linear solution should ensure that any new direction in the Picard iteration is captured.

The standard convergence scheme can be modified in two ways; these modifications are available when
the PCGN variable ACNVG = 2. Firstly, the relative convergence can be modified to require a tighter relative
convergence in all cases; setting the PCGN variable MCNVG > 1 causes the relative convergence ε to be modified
as ε = εs

p, where p = MCNVG. Provided PCGN variable RATE_C ≤ 0, the relative convergence parameter ε is
maintained constant throughout the Picard iteration; otherwise it is variable as described later in this section.
This modification generally causes the total number of PCG iterations to increase. However, by other mea­

�

�

5

sures, it may produce a superior Picard iteration solution to the nonlinear problem. The second modification
is available by setting the PCGN variable RATE_C > 0. The value for the relative convergence parameter ob­
tained when MCNVG > 1 is now treated as an initial value: ε0 = εs

p, p = MCNVG. This initial value is depreciated
away with each Picard iteration j such that ε j = ε j−1+ RATE_C ε j−1, where 0 < RATE_C < 1. This reverse
depreciation of the relative convergence parameter continues so long as the Picard solution improves; when
ε j becomes large such that ε j ≥ εs, then the relative convergence parameter is set equal to εs. The improve-

Tment in the Picard iteration is measured by the norm n j = r j r j, where r j is a vector of residuals obtained using
updated hydraulic heads from the previous Picard iteration. If n j < n j−1, then the reverse depreciation of ε is
allowed. For stress periods subsequent to the initial stress period, the starting relative convergence parameter
ε0 is increased slightly by allowing ε0 = εs

(p+1)/2 (p = MCNVG). The logic behind this scheme is that it allows the
modeler to place greater emphasis on obtaining a relatively good solution to the linear equations early in the
stress period when changes in the linear solution from iteration to iteration are likely to be the most extreme.
When solving the steady-state flow equations under dewatering conditions, using this procedure can produce
solutions comparable to those obtained with a constant ε = εs

p at less computation expense.
In addition to the standard convergence scheme and its modifications, PCGN supports an adaptive con­

vergence scheme for adjusting the relative convergence parameter ε; this scheme is based on a measure of
the nonlinearity of a problem and is described in detail in the PCG with Adaptive Convergence subsection.
When the problem departs significantly from linear behavior, the relative convergence ε is decreased, thus
producing more accurate solutions to the linear matrix equations by which the hydraulic heads are updated.
The assumption here is that a more accurate solve to the linear equations, when the problem becomes more
nonlinear, is necessary to keep the Picard iteration on track. This option is available when PCGN variable
ACNVG = 1. When this option is activated, the PCGN variable CNVG_LB is used to place a lower bound on
the adaptive convergence parameter so as to prevent excessive number of inner iterations; typical values are
0 < CNVG_LB < εs. Also, when through adaptive convergence ε > εs, then ε is set to εs. For the initial stress
period, the adaptive convergence scheme also requires that the first solution of the linear equations be subject
to the standard absolute convergence criterion: νi < 10.

Adjusting the Damping Parameter

In the PCGN package, Picard iteration takes the form h j = h j−1 + θΔ j, where h j is a vector of hydraulic
heads for Picard iteration j, Δ j is the head-change vector and θ is the damping parameter. The damping pa­
rameter θ is usually taken constant, but the PCGN package incorporates two variants where θ can vary with
Picard iteration. These variants are made available when PCGN variable ADAMP > 0; otherwise θ is constant.
When ADAMP = 1, a somewhat complex algorithm is used to adjust θ as a function of the previous convergence
history of the Picard iteration; this scheme is presented in algorithm 1. The output from this algorithm is θ j,
the damping parameter to be used with the jth Picard update of the hydraulic heads. Similar to the adaptive
damping scheme suggested by Mehl and Hill (2001), this algorithm uses the previous convergence history to
adjust the current damping parameter, but the mechanism by which the adjustment is effected is different. In
adddition, the value given θ j is the geometric mean of φ , the surrogate for θ j that receives the adjustment, and
θ j−1, the previous damping factor: θ j = φθ j−1. Using this geometric mean for value of θ j inhibits abrupt
changes in the damping factor from one Picard iteration to the next. With regard to algorithm 1, the norm n j

is defined as n j = rT
j r j Δ

T
j Δ j, where r j is the vector of residuals on entry to the Picard iteration and Δ j is

the vector of head changes returned from the PCG solver. The norm Hj is a maximum norm of the hydraulic
head changes Δ j. Variables θu, θl , Hlim, and ψ are supplied by the user: θu represents the maximum allowable
damping parameter, θl is the minimum allowable damping parameter, and Hlim is the maximum allowable

�

�

�

6 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

head change (discussed in the next paragraph). The parameter ψ is the minimum value for which the ratio
ρn = n j/n j−1 can dictate an increase in φ (the surrogate for θ j) under favorable Picard progress.

given: θu, θl, ψ, n j, Hj, Hlim then
cnt = 0
for every Picard iteration j do

if not reentrant then

return

end if
ρn = n j/n j−1; ρh = Hj/Hj−1

if ρn < 1 and ρh < 1 then

λ = log10 ρn/ log10 ψ

if λ < 1 then

φ = θ j−1 + λ (θu − θ j−1)
else

φ = θu

end if
cnt = 0

end if

if ρn > 1 then

φ = θ j−1/ρn

end if

if ρh > 1 then

φ = θ j−1/ρh

end if
θ j = φ θ j−1

if |Hj| > Hlim and θ j > Hlim/|Hj| then
θ j = Hlim/|Hj|

end if
if θ j < θl then

θ j := θl

cnt = cnt + 1

if cnt > 10 then

3
θ 2θ j := l θu

end if
end if

end for

Algorithm 1. Adaptive damping.

Other measures for the norm n j are possible, but limited experimentation has shown that this particular
choice functions reasonably well. As the algorithm depends upon information from the previous Picard iter­
ation (n j−1, Hj−1, and θ j−1), a starting value, θ0, for the damping parameter is needed. For the initial stress √
period, the starting value for the damping parameter is taken to be θ0 = θu θl . For subsequent stress periods,

3
θ 2the starting value is weighted somewhat toward θu: θ0 = θl . If, through the progress of the Picard itera­u

tion, ψ ≥ ρn, then φ is simply set to θu. The equivalent PCGN variables are DAMP = θu, DAMP_LB = θl , and
RATE_D = ψ . Smaller values of RATE_D provide for a slower recovery rate, thus preventing θ from increasing

7

too rapidly. Values of RATE_D in the range 0.01 to 0.1 have provided an adequate recovery rate in test prob­
lems, but other values are possible. It should be noted that the purpose of this scheme is to obtain convergence
of a nonlinear problem that might not otherwise converge; the scheme is heavily weighted to backing down
the damping parameter when adversity in the Picard iteration is encountered. As a result, this scheme usually
requires more total iterations to achieve convergence than the other damping modes available with the PCGN
variable ADAMP. For any given problem, adaptive damping can improve the accuracy of the Picard solution, but
perversely can also have the reverse effect.

Also included in the adaptive damping algorithm is the capability to directly control the effect of the
maximum head change, Hj, on the updated head vector, h j; the usage here is essentially identical to that of
Banta (2006). By specifing a positive, non-zero value for Hlim, the head-change limit variable, then Hj is
constrained such that its contribution to h j will not exceed Hlim. This action is accomplished by altering the
damping parameter θ j; if θ j is greater than the ratio Hlim/Hj, then θ j is reset to this ratio. Overriding the
damping parameter causes all head changes Δ j to be so damped, including the element of Δ j that corresponds
to Hj; thus, the effective maximum allowable head change becomes Hlim. So long as the Hj is less than Hlim,
the damping parameter produced by the adaptive damping algorithm is unaffected by the head-change limit.
It should be noted that a damping factor produced by limiting the maximum head change supersedes any
damping factor produced by the adaptive damping algorithm. Activating the Hlim parameter can be beneficial
to the convergence of the Picard iteration, particularly in simulations where large, isolated changes in head
occur. However, selecting an appropriate value for Hlim is largely a trial and error process; initially, the user
may need to run the simulation with this option turned off (Hlim = 0) and examine the output diagnostics for
the Picard iteration. As noted in the Output Diagnostics for the Picard Iteration section of this report, these
diagnostics contain a listing of the maximum head change for every Picard iteration. The equivalent PCGN
variable for Hlim is CHGLIMIT.

The other damping variant available is obtained when PCGN variable ADAMP = 2. In this mode, the damping
variable θ is increased from some minimum value θ0 to some maximum θu, so long as the Picard iteration is
progressing satisfactorily. The model for the increase is θ j = θ j−1+ RATE_D θ j−1, where RATE_D is a PCGN
variable that determines the rate of increase and j is the Picard iteration number. Should θ j > θu, then θ j is
set equal to θu. The ratios ρn = n j/n j−1 and ρh = Hj/Hj−1 are used to measure the progress of the Picard
iteration; if ρn < 1 and ρh < 1, then progress is considered to be satisfactory. The upper limit θu for the damping
parameter is set with the PCGN variable DAMP. For the first stress period, the starting damping factor θ0 is set
to the PCGN variable DAMP_LB; for subsequent stress periods, an intermediate value is used where θ0 is set
to the geometric mean of DAMP and DAMP_LB. The assumption here is that more damping is required early in
a stress period and that, as the simulation progresses, damping can be relaxed to some upper limit DAMP = θu.
Values of RATE_D in the range 0.1 to 0.01 provided an adequate increase in θ in test problems, but other values
are possible.

From the previous discussion, it is apparent an implicit assumption has been made that the first stress
period will likely be the most difficult as far as convergence of a nonlinear problem is concerned. This assump­
tion is frequently correct, particularly when the first stress period consists of a steady-state approximation of
predevelopment stresses in the aquifer and dewatering is involved in the simulation. If a static pressure head is
assumed as the starting head for the nonlinear iteration, convergence of the predevelopment simulation under
dewatering conditions often proves difficult. On the other hand, a large increase in applied stresses in some
later stress period also may result in convergence difficulties; again these difficulties usually arise when simu­
lating dewatering conditions. Thus, it is not inconceivable that, in the selection of Picard iteration parameter,
the modeler will be more concerned with resolving a convergence problem caused by stresses introduced in a
later simulation period.

8 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

Input Instructions for the PCGN Solver

The PCGN solver package is invoked by inserting the file type “PCGN” in the MODFLOW Name file
(Harbaugh and others, 2000). This entry in the Name file also is used to associate the file type “PCGN” with
the name of a file from which the input values for the PCGN solver package are read; these input values are
described in this section. Either fixed or free format is available for reading all values on the input list. The
PCGN data file should contain the following data items in the order given:

1. ITER_MO, ITER_MI, CLOSE_R, CLOSE_H
2. RELAX, IFILL, UNIT_PC, UNIT_TS
3. ADAMP, DAMP, DAMP_LB, RATE_D, CHGLIMIT
4. ACNVG, CNVG_LB, MCNVG, RATE_C, IPUNIT

Optional comments may be added to the input data file by preceding the comment with the symbol # in the
first column; these comments may appear anywhere in the data file. If fixed format is selected, then the corre­
sponding format types, for the preceding variables, are as follows:

1. 2I10,2F10.0
2. F10.0,3I10
3. I10,4F10.0
4. I10,F10.0,I10,F10.0,I10

The variables on the line 1 above generally manage the inner and outer iterations and overall convergence of
the problem. The line 2 variables generally pertain to the PCG solver. The line 3 variables generally manage
the damping applied when updating a nonlinear problem, and the line 4 variables manage the convergence of
the PCG solver.

General Solver Parameters: Line 1

A description of the line 1 variables, which manage the inner and outer iterations and overall convergence
of the problem, follows:

ITER_MO, integer variable: ITER_MO is the maximum number of Picard (outer) iterations allowed. For non­
linear problems, this variable must be set to some number greater than one, depending on the problem
size and degree of nonlinearity. If ITER_MO is set to 1, then the PCGN solver assumes that the problem
is linear and the input requirements are greatly truncated.

ITER_MI, integer variable: ITER_MI is the maximum number of PCG (inner) iterations allowed. Generally,
this variable is set to some number greater than one, depending on the matrix size, degree of conver­
gence called for, and the nature of the problem. For a nonlinear problem, ITER_MI should be set large
enough that the PCG iteration converges freely with the relative convergence parameter ε described in
the Parameters Related to Convergence of Inner Iteration: Line 4 subsection.

CLOSE_R, real variable: CLOSE_R is the residual-based stopping criterion for iteration. This parameter is used
differently, depending on whether it is applied to a linear or nonlinear problem:

ITER_MO = 1: For a linear problem, the variant of the conjugate gradient method outlined in algorithm
2 is employed, but uses the absolute convergence criterion in place of the relative convergence
criterion. CLOSE_R is used as the value in the absolute convergence criterion for quitting the PCG

9

iterative solver. CLOSE_R is compared to the square root of the weighted residual norm ν . This
T M−1norm is defined as ν = r r, where M represents the preconditioning matrix with the PCG √

algorithm and r is a vector of residuals. In particular, if ν is less than CLOSE_R, then the linear
PCG iterative solve is said to have converged, causing the PCG iteration to cease and control of the
program to pass out of the PCG solver.

ITER_MO > 1: For a nonlinear problem, CLOSE_R is used as a criterion for quitting the Picard (outer)
iteration. CLOSE_R is compared to the square root of the inner product of the residuals (the residual
norm), [rT r] 2

1
, as calculated on entry to the PCG solver at the beginning of every Picard iteration.

If this norm is less than CLOSE_R, then the Picard iteration is considered to have converged.

CLOSE_H, real variable: CLOSE_H is used as an alternate stopping criterion for the Picard iteration needed to
solve a nonlinear problem. The maximum value of the head change is obtained for each Picard iteration,
after completion of the inner, PCG iteration. If this maximum head change is less than CLOSE_H, then
the Picard iteration is considered tentatively to have converged. However, as nonlinear problems can
demonstrate oscillation in the head solution, the Picard iteration is not declared to have converged unless
the maximum head change is less than CLOSE_H for three Picard iterations. If these Picard iterations
are sequential, then a good solution is assumed to have been obtained. If the Picard iterations are not
sequential, then a warning is issued advising that the convergence is conditional and the user is urged to
examine the mass balance of the solution.

As convergence of the Picard iteration may be acheived by meeting either the CLOSE_R or the CLOSE_H crite­
rion, care must be taken in their selection. One should, in any case, check the mass balance of the solution for
the problem in question to verify that a reasonable result has been obtained. Maximum head-change values at
convergence are generally two to four order of magnitude smaller than the residual norm [rT r] 2

1
.

Parameters Related to PCG Solver: Line 2

A description of the line 2 variables, pertaining to the PCG solver, follows:

RELAX, real variable: RELAX is the so-called relaxation parameter for the modified incomplete Cholesky
(MIC) preconditioner (see algorithms 7 and 11); under MIC preconditioning, row sum agreement
between the original matrix and the preconditioning matrix is created by pivot modification. When
RELAX = 0, then the MIC corresponds to the ordinary incomplete Cholesky preconditioner, the effect
of the modifications to the incomplete Cholesky having been nullified. When RELAX = 1, then these
modifications are in full force. Generally speaking, it is of advantage to use the modifications to the
incomplete Cholesky algorithm; a value of RELAX such that 0.9 < RELAX < 1 is generally advised for
most problems. Values RELAX = 1 are not advised, particularly when IFILL = 0, as poor performance
of the PCG solver may result (van der Vorst, 2003). However, experience has shown that a value close to
1, such as RELAX = 0.99, usually provides good performance.

IFILL, integer variable: IFILL is the fill level of the MIC preconditioner. Preconditioners with fill levels of
0 and 1 are available (IFILL = 0 and IFILL = 1, respectively). Generally, the higher the fill level, the
more preconditioning imparted by a MIC preconditioner. However, the actual preconditioning provided
is also influenced by the modification to the incomplete Cholesky algorithm (see RELAX above). For
most well-behaved CCFD matrices, a MIC preconditioner with fill level 0 will slightly outperform a
MIC preconditioner with fill level 1, provided RELAX ≈ 1. For problems where the matrix equation is
not well behaved or for a nonlinear problem where convergence is not easily achieved, a fill level of 1

10 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

may provide the additional preconditioning necessary to obtain convergence. One should be aware that
the PCGN solver computer memory requirements of the level 1 MIC preconditioner are about double
those of the level 0 preconditioner.

UNIT_PC, integer variable: UNIT_PC is the unit number of an optional output file where progress for the inner
PCG iteration can be written. Progress diagnostics consist of the weighted residual norm νi for every
iteration i of the PCG solver; this information is ouput for every time step and every Picard iteration in
the simulation. If this option is used (UNIT_PC > 0), the integer value of the unit, along with the file name
and type “DATA,” should be given in the MODFLOW Name file (Harbaugh and others, 2000). In many
instances, asking for this information will cause very large data files to be produced; it is not expected
that this option will be used by most modelers.

UNIT_TS, integer variable: UNIT_TS is the unit number of an optional output file where the actual time in the
PCG solver is accumulated. The object here is to capture actual PCG solver time rather than total run
time. If this option is used (UNIT_TS > 0), the integer value of the unit, along with the file name and
type “DATA,” should be given in the MODFLOW Name file. It is not expected that this option will be
used by most modelers.

If ITER_MO = 1, then no further data are read (or needed) by the PCGN package to solve a linear problem. If
the problem is nonlinear (ITER_MO > 1), then the remaining two lines (3 and 4) of data are read and processed.

Parameters Related to Damping: Line 3

A description of the line 3 variables, controlling the damping of the nonlinear problem, follows:

ADAMP, integer variable: ADAMP defines the mode of damping applied to the linear solution. In general, damp­
ing determines how much of the head changes vector Δ j shall be applied to the hydraulic head vector h j

in Picard iteration j: h j = h j−1 + θ Δ j, where θ is the damping parameter. The available damping modes
are:

ADAMP = 0: Ordinary damping is employed and a constant value of damping parameter θ = DAMP will be
used throughout the Picard iteration. This option requires a valid value for DAMP.

ADAMP = 1: Adaptive damping is employed; see algorithm 1. Adaptive damping changes the damping pa­
rameter θ in response to the difficulty the nonlinear solver encounters in solving a given problem.
Essentially, the nonlinear solver looks to increase θ should the convergence of the Picard iteration
proceed satisfactorily, but otherwise causes θ to decrease. Adaptive damping can be useful for
problems that do not converge readily, but otherwise should be avoided as it generally requires
more total iterations. This option requires valid values for variables DAMP, DAMP_LB, RATE_D, and
CHGLIMIT. Adaptive damping also admits the possibility of directly limiting the the maximum
head change applicable to update the hydraulic heads; see CHGLIMIT below. If this option is not
desired, then CHGLIMIT should be set to zero.

ADAMP = 2: Enhanced damping algorithm in which the value of θ is increased (but never decreased)
provided the Picard iteration is proceeding satisfactorily. This enhanced damping allows θ to in­
crease from a minimum value to a maximum value DAMP by a rate equal to RATE_D. The minimum
value in the first stress period is DAMP_LB; for subsequent stress periods it is the geometric mean of
DAMP and DAMP_LB. This option requires valid values for DAMP, DAMP_LB, and RATE_D.

11

DAMP, real variable: The varible DAMP restricts the damping parameter θ ; generally, 0 < DAMP < 1. Its function
for the various modes of ADAMP are:

ADAMP = 0: The damping parameter θ takes on the value DAMP and is maintained constant throughout
the simulation.

ADAMP > 0: The value of DAMP will be treated as the upper limit for θ in the enhanced damping or
adaptive damping algorithms.

DAMP_LB, real variable: DAMP_LB represents a bound placed on θ ; generally, 0 < DAMP_LB < DAMP. For the
various modes of ADAMP > 0, DAMP_LB serves the following purposes:

ADAMP = 1: In the adaptive damping algorithm, DAMP_LB represents the lower limit to which θ , under
adverse adaptive damping conditions, will be allowed to fall.

ADAMP = 2: In the enhanced damping algorithm, DAMP_LB is the starting value (or a component of
the starting value) for the damping parameter θ used in the initial Picard iteration of every stress
period.

RATE_D, real variable: This variable is a rate parameter; generally, 0 < RATE_D < 1. For the various modes of
ADAMP > 0, RATE_D serves the following purposes:

ADAMP = 1: RATE_D sets the recovery rate for the damping factor θ in response to the progress in the Pi­
card iteration; it also forms a limit on the response function to progress in the Picard iteration. See
algorithm 1 for usage when ADAMP = 1; in this algorithm, RATE_D = ψ . Typical values for RATE_D,
under this scenario, are 0.01 < RATE_D < 0.1. Under adaptive damping, if the user finds that the
damping factor θ increases too rapidly, then reducing RATE_D will slow the rate of increase.

ADAMP = 2: Provided the Picard iteration is progressing satisfactorily, RATE_D adjusts the damping factor
θ upward such that θ j = θ j−1+ RATE_D θ j−1, where j is the Picard iteration number. Typical values
for RATE_D, under this scenario, are 0.01 < RATE_D < 0.1, although larger or smaller values may be
used.

CHGLIMIT, real variable: This variable limits the maximum head change applicable to the updated hy­
draulic heads in a Picard iteration. Provided that the current damping factor is greater than the ratio
of CHGLIMIT to the maximum head change and that this ratio is less than one, then the damping fac­
tor is reset to the value of the ratio. This option is available only in association with adaptive damping:
ACNVG = 1. If CHGLIMIT = 0.0, then adaptive damping proceeds without this feature.

Parameters Related to Convergence of Inner Iteration: Line 4

The PCGN variables that control the convergence of the inner iteration are read in the order given on line
4; a description of these variables follows:

ACNVG, integer variable: ACNVG defines the mode of convergence applied to the PCG solver. In general, the
relative stopping criterion for PCG iteration is νi < εν0, where ν0 is the weighted residual norm on entry
to the PCG solver, ε is the relative convergence parameter, and νi is the same norm at PCG iteration i.
The available convergence modes are:

ACNVG = 0: The standard convergence scheme is employed using the variant of the conjugate gradient
method outlined in algorithm 3. The standard relative convergence is denoted by εs and usually

12 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

takes the value 0.1; this value is assigned to the relative convergence ε . No additional variables are
used.

ACNVG = 1: Adaptive convergence is employed using the variant of the conjugate gradient method
outlined in algorithm 2. The adaptive convergence scheme adjusts the relative convergence ε of
the PCG iteration based on a measure of the nonlinearity of the problem. Under this scheme, ε is
allowed to vary such that CNVG_LB < ε < εs, where the exact value of ε is dependent on the measure
of nonlinearity. This option requires a valid value for variable CNVG_LB.

ACNVG = 2: Enhanced convergence is employed using variant of the conjugate gradient method outlined
in algorithm 3. If the variable enhancement option is employed (RATE_C > 0), then εs is taken as
the upper limit for ε; see Limiting the Inner Iteration subsection for details. This option requires
valid values for variables MCNVG and RATE_C.

CNVG_LB, real variable: Variable CNVG_LB is used only in convergence mode ACNVG = 1. CNVG_LB is the
minimum value that the relative convergence ε is allowed to take under the self-adjusting convergence
option. The objective here is to prevent ε from becoming so small that the PCG solver takes an exces­
sive number of iterations. Valid range for variable: 0 < CNVG_LB < εs; a value of CNVG_LB = 0.001
usually produces reasonable results.

MCNVG, integer variable: Variable MCNVG is used only in convergence mode ACNVG = 2. MCNVG increases the
relative PCG convergence criteria by a power equal to MCNVG; that is, letting p = MCNVG, then the relative
convergence criterion ε is enhanced such that ε = εs

p, where 0 < p ≤ 6. If MCNVG is set to a value greater
than 6, then PCGN resets MCNVG = 6 and issues a warning message. If RATE_C = 0, then this enhanced
relative convergence criterion is applied uniformly throughout the simulation; the relative convergence,
in this case, is not adjusted for stress changes in the simulation. MCNVG must be set to a value greater
than zero when ACNVG = 2; otherwise a data error is declared and ACNVG is reset to zero.

RATE_C, real variable: Variable RATE_C is used only in convergence mode ACNVG = 2; this option results
in variable enhancement of ε . If 0 < RATE_C < 1, then enhanced relative convergence is allowed to
decrease by increasing ε as follows: ε j = ε j−1+ RATE_C ε j−1, where j is the Picard iteration number;
this change in ε occurs so long as the Picard iteration is progressing satisfactorily. If RATE_C ≤ 0, then
the value of ε set by MCNVG remains unchanged through the Picard iteration. It should be emphasized
that RATE_C must have a value greater than 0 for the variable enhancement to be effected; otherwise ε
remains constant. The assumption here is that a better solution of the linear equations is needed initially
to improve the nonlinear Picard solution, but that this need abates with additional Picard iterations.
Typical values for RATE_C are 0.01 < RATE_C < 0.1, although larger or smaller values may be used.

IPUNIT, integer variable: Variable IPUNIT enables progress reporting for the Picard iteration. If IPUNIT ≥ 0,
then a record of progress made by the Picard iteration for each time step is printed in the MODFLOW
Listing file (Harbaugh and others, 2000). This record consists of the total number of dry cells at the
end of each time step as well as the total number of PCG iterations necessary to obtain convergence. In
addition, if IPUNIT > 0, then extensive diagnostics for each Picard iteration is also written in comma-
separated format to a file whose unit number corresponds to IPUNIT; the name for this file, along with
its unit number and type “DATA,” should be entered in the MODFLOW Name file. Diagnostics output
by this last option are given in the Output Diagnostics for the Picard Iteration section of this report.
If IPUNIT < 0 then printing of all progress concerning the Picard iteration is suppressed, as well as
information on the nature of the convergence of the Picard iteration.

13

Generally speaking, if little is known of the characteristics of the nonlinear problem, one is advised to start
the modeling process with ACNVG = 0, ADAMP = 0 and DAMP = 0.5; if damping at this level does not produce
convergence of the nonlinear problem, then damping should be reduced, in the extreme to the DAMP = 0.01
level. If convergence is still not achieved, and the Picard iteration progress report (IPUNIT > 0) indicates that
residuals are not being reduced, then the modeler should use enhanced convergence (ACNVG = 2, MCNVG > 1)
with no variation allowed (RATE_C ≤ 0). If difficulties persist, then the modeler may wish to attempt adaptive
damping (ADAMP = 1) with small starting and limiting parameters: DAMP_LB = 0.001 and DAMP = 0.1. Memory
usage permitting, convergence of the Picard iteration might also be aided if fill level IFILL = 1 can be used.
If any of these modes produce a Picard solution with a reasonable mass balance, then the modeler will likely
wish to refine these modes so as to increase the efficiency and accuracy of the Picard iteration.

Results thus far of testing the PCGN package on various nonlinear problems have not indicated that any
particular set of Picard parameters have preference. Some nonlinear problems simply will not converge with­
out use of adaptive damping, although simultaneous use of the standard convergent scheme is frequently ade­
quate. Convergence of dewatering problems is frequently enhanced if a bound for the maximum head change,
CHGLIMIT, can also be instituted. On the other hand, several nonlinear problems showed a strong preference to
increasing the accuracy of the linear solution by allowing ACNVG > 0. Here, the ACNVG = 1 option was generally
found to be less useful than the ACNVG = 2 option when used in conjunction with RATE_C set to a small positive
value. That is, using an option that initially tightens the relative convergence criterion ε , but slowly relaxes it
so that standard convergence is gradually reestablished, is more likely to enhance performance of the solver. In
dewatering simulations, the ACNVG = 2 option frequently diminishes the number of cells that go dry. That is,
having a slightly more rigorous solution to the linear approximation early in the Picard iteration may decrease
the number of cells that go dry.

With regard to the Picard parameters (ITER_MO > 1), the PCGN package does limited checking to ascer­
tain that the input data are consistent and correct. If an inconsistent or out of range entry is encountered, the
package usually resets ADAMP and (or) ACNVG to 0, issues a warning, and allows the computation to continue.
The user must examine the MODFLOW Listing file to detect such warnings; if such warnings are found, the
PCGN data input file should be examined for errors.

Output Diagnostics for the Picard Iteration

The IPUNIT option in the PCGN input file allows selection of output diagnostics showing the progress (or
lack thereof) of the Picard iteration. These diagnostics can be helpful to the modeler in a number of ways and
thus the option is highly advisable. The diagnostics are written in a comma separated value (CSV) format and
thus can be displayed with any standard spreadsheet program. The column values for these diagnostics are as
follows:

Iteration: Picard iteration number.

ib0_count: The number of cells that have become dewatered since the beginning of the time step. This
diagnostic reflects changes in the MODFLOW integer array IBOUND, which tracks active and inactive
cells.

ratio_l: Measure of nonlinearity of problem. If the problem is linear or nearly so, then ratio_l ≈ 1;
otherwise ratio_l < 1. This measure only appears in the output if ACNVG = 1; see algorithm 2 for further
explanation.

Damp: Value of damping parameter applied in Picard iteration Iteration.

14 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control
√

L2hr: A measure of the current error in the solution. L2hr is defined as rT r ΔT Δ, where r is the vector of
residuals on entry to the Picard iteration and Δ is the vector of raw head changes returned from the PCG
solver.

Hprev: Hydraulic head from the previous Picard iteration at the location of the current maximum head
change.

Hcurr: Hydraulic head from the current Picard iteration at the location of the current maximum head change.

Max_chg: Maximum head change from the current Picard iteration.

Layer: Layer location of maximum head change.

Row: Row location of maximum head change.

Column: Column location of maximum head change.

Figure 1. Sample spreadsheet display of output diagnositics in comma separate value format; see text for explanation.

An example of a spreadsheet presentation of these output diagnostics is presented in figure 1. Diagnostics
presented in these figures represent the first 25 Picard iterations for the first stress period in which a prede­
velopment steady state is being simulated. Picard parameters selected for this problem include both adap­
tive damping (ADAMP = 1) and adaptive convergence (ACNVG = 1). Generally, both L2hr and Max_chg be­
come smaller as the Picard iteration tends toward convergence. However, at iteration 9 a sudden jump in the
head change, Max_chg, and concurrent increase in error norm, L2hr, causes the damping factor to be reset to
DAMP_LB = 0.1, the lower limit to which damping can fall under adverse conditions. This jump occurred in
layer 4, row 68, column 154 of the computational mesh. At this point, a total of 654 cells have gone dry. Note
that Hcurr = damp × Max_chg + Hprev for each picard iteration.

15

The total number of dry cells at the end of each time step is reported in the listing file for every simulation.
This count is equivalent to appropriately summing of the maximum value of ib0_count reported for every
time step in the CSV file. The maximum number of dry cells for a simulation is a good indicator of the unique­
ness of the solution for the nonlinear problem. If the maximum number of dry cell changes substantially with
changes in Picard parameters (increased or decreased damping and PCG convergence parameters), then the
modeler is faced with the result that, although the nonlinear iteration may have converged in every case, the
nonlinear solution is not unique. Usually, the modeler will select Picard parameters that tend to minimize the
maximum number of dry cells that occur in any given nonlinear simulation.

Application of PCGN to a Nonlinear Problem

Results from ongoing work on flow modeling in the Denver Basin are presented as an example of an ap­
plication of the PCGN package (S.S. Paschke and E.R. Banta, written commun., 2008); because the study is
ongoing, discussion of the model itself is necessarily limited. A discussion of the hydrogeologic units found
in the Denver Basin can be found in Robson (1987). The model comprises 12 layers, 5 of which are confining
layers. Each layer is discretized with 124 rows and 84 columns, for a total of 124,992 cells. The simulation
includes approximations of hydraulic connections with rivers and approximations of evapotranspiration. The
model is run over 16 stress periods, with the first being a steady-state approximation of the early predevelop­
ment stresses. The starting hydraulic head field for the predevelopment steady-state simulation was set equal
to the land-surface elevation. A fair number of cells become dry in the course of this modeling; the majority of
the dewatering occurs in the first stress period as the heads adjust to the assumed predevelopment stresses. The
relation of convergence of the Picard iteration, total dry cells, and execution time to Picard parameter values,
for this nonlinear simulation, is the main objective of this discussion.

Table 1. Sample results from Denver Basin simulation.

[DC: domain integrity compromised; NC: simulation did not converge; NA: not applicable; Trial 9: run with CNVG LB =
0.01; Trial 10: run with MCNVG = 2 and RATE C = 0.01]

Picard parameters IFILL = 0 IFILL = 1
Trial

no.

ADAMP DAMP DAMP LB RATE D CHGLIMIT,

ft

ACNVG Total no.

dry cells

Run time,

min

Total no.

dry cells

Run time,

min

1 0 0.1 0 DC NA DC NA

2 0 0.05 0 1103 21.86 NC NA

3 0 0.01 0 774 104.2 821 99.1
4 2 0.1 0.001 0.01 0 NC NA NC NA

5 1 0.5 0.001 0.01 0.0 0 1145 9.41 1145 8.41
6 1 0.5 0.001 0.01 100.0 0 1064 10.72 1147 10.17
7 1 0.5 0.001 0.01 10.0 0 931 13.55 946 12.97
8 1 0.5 0.001 0.01 1.0 0 730 35.81 775 32.87
9 1 0.5 0.001 0.01 1.0 1 783 47.89 812 32.17
10 1 0.5 0.001 0.01 1.0 2 737 36.34 773 32.76

A series of runs were made by varying Picard parameters while holding most PCG solver parameters
and iteration parameters constant. Parameters held constant had the following values: ITER_MO = 20000,

16 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

ITER_MI = 80, CLOSE_R = 100.0, CLOSE_H = 0.0001 and RELAX = 0.99. The solver parameter IFILL can
affect the nonlinear solution; both fill levels (0 and 1) were tested. The very small value used for CLOSE_H,
relative to CLOSE_R, was found to be necessary to ensure a small mass-balance error; the relatively large value
of CLOSE_R did not contribute significantly to the mass-balance error. The Picard parameters used during each
run, along with the number of cells that went dry and the run time of completed simulations, are given in table
1; the standard convergence scheme (ACNVG = 0) was used in all trials except trials 9 and 10. The three initial
trials in this table show efforts to force convergence with small, constant values for the damping parameter.
In the first trial (DAMP = 0.1), the domain integrity was compromised when a small section became separated
from the main body of the domain. This self-partitioning affected both IFILL = 0 and IFILL = 1 runs; both
were terminated by the presence of a zero pivot. In trial 2 (DAMP = 0.05), the IFILL = 0 run did converge while
the IFILL = 1 run did not. For IFILL = 0, the run time was rather attractive (22 min), but a large number
of cells went dry. In trial 3 (DAMP = 0.01), both IFILL runs converged; IFILL = 0 produced fewer dry cells.
However, the run time, at approximately 100 minutes, was excessive in both cases. Trial 4 was an attempt to
remedy this excessive run time by using enhanced damping (ADAMP = 2) such that, for the early part of each
stress period, a small damping parameter would be used but the parameter would increase until 10 percent
of each head change would be applied to the solution. This effort failed to converge for either IFILL = 0 or
IFILL = 1. Apparently, simply allowing the damping parameter to increase with Picard iterations still allowed
excessive head change to be applied to the updated hydraulic head. In trial 5, adaptive damping (ADAMP = 1)
was used with a relatively conservative lower bound (DAMP_LB = 0.001) but without a head-change limit
(CHGLIMIT = 0.0). This trial was successful in that the Picard iteration did converge for both IFILL values;
indeed, the run time was reduced to approximately 9 minutes. However, now the number of cells going dry
became excessively large for both IFILL cases. To remedy this situation, a series of maximum head-change
limits (CHGLIMIT) were used, starting with a value of 100.0 ft but eventually reducing to 1.0 ft (trials 6, 7, and
8). Trial 6 used CHGLIMIT = 100.0 ft; little change from trial 5 was found, although 81 fewer cells went dry for
IFILL = 0. Change limits of 10.0 ft and 1.0 ft were more successful, causing substantially fewer cells to go dry
but at the expense of a longer run times. From the perspective of fewest cells going dry, trial 8 with IFILL =
0 was the most successful run overall with 730 dry cells. The run time, at approximately 36 minutes, was
also the longest of the CHGLIMIT trials. At this point, the modeler could investigate a compromise between
the total number of dry cells and the run time performance of the simulation by varying the maximum head-
change values between 1.0 ft and 10.0 ft. Here, it is assumed that the modeler was satisfied with the result
when CHGLIMIT = 1.0 ft. In trials 9 and 10, the effect of changing the convergence criterion for the linear
solver was explored. Adaptive convergence (ACNVG = 1) was applied in trial 9; adaptive convergence caused a
small but substantial increase in the number of dry cells and, in the case of IFILL = 0, a substantial increase in
the run time. The use of enhanced convergence, trial 10, did not offer a significant advantage over the results
of trial 8 and, in the case of IFILL = 0, resulted in a small increase in the number of dry cells. It should be
noted that, in all trials, IFILL = 1 produced shorter run times relative to IFILL = 0; however, in most cases the
difference was on the order of 10 percent or less.

These results, representing the solution of a highly nonlinear problem, are likely to be typical for this class
of problem. It should be pointed out that not all nonlinear problems are this sensitive to the choice of damping
parameters; in other cases, forcing a better solution to the linear equations by selecting ACNVG > 0 can be the
critical parameter.

17

Description of Program Modules

The PCGN package is written in standard Fortran 90. MODFLOW, with the PCGN source code included,
has been compiled and run successfully with the Lahey/Fujitsu compiler, the Intel Fortran compiler, and the
gfortran compiler. There are five main modules in the PCGN solver; these are:

PCGN: This module is the interface between the PCG solver and MODFLOW. The module contains subrou­
tines to take the raw coefficients from MODFLOW and form the linear matrix equation and also to read
in solver-control parameters as given in the Input Instructions for the PCGN Solver section. Most of the
subroutines necessary to the nonlinear Picard iteration are contained in this module. Subroutines here
are called from MAIN in MODFLOW and call subroutines in module PCG_MAIN

PCG_MAIN: This module acts as the front end to the PCG solver. Here, requests from subroutines in PCGN are
interpreted and turned into requests for variations in the form of the linear solver. Subroutines here are
called from PCGN and call subroutines in modules PCG_SOLVE and MiUDU.

PCG_SOLVE: This module contains the conjugate gradient loop necessary to the PCG algorithm (see the Pre­
conditioned Conjugate Gradient Method section). This module is called from subroutines in PCG_MAIN
and calls subroutines in modules MAT_VEC_MULT and MiUDU.

MAT_VEC_MULT: This module contains the vector matrix multiply algorithm necessary to the PCG algorithm.
This module is called exclusively by subroutines in module PCG_SOLVE.

MiUDU: This module contains subroutines for the MIC preconditoners. These include the MIC fill level 0 and
MIC fill level 1 factorizations, as well as subroutines for the forward elimination and back substitutions
for these factorizations. Algorithms for these incomplete factorizations and inversions are given in
the Incomplete Cholesky Preconditioner section of this report. The factorization subroutines in this
module are called from subroutines in module PCG_MAIN, and the approximate inversions are called
from PCG_SOLVE.

Preconditioned Conjugate Gradient Method

The PCG method is well illuminated in Golub and Van Loan (1983) and Axelsson (1996) and will not
be described in detail in this document. The principal objective of this section is to describe two variants of
the PCG method for use with Picard iteration, as implemented in PCGN, for solving nonlinear problems:
adaptive convergence and standard inner convergence. In all cases, M represents the preconditioning matrix;
two preconditioning matrices are used in the PCGN solver and can be applied to the two variants of the PCG
method: a modified incomplete Cholesky with no fill, algorithms 8 and 9, and a modified incomplete Cholesky
with one fill level, algorithms 12 and 13. The details of these preconditioners are presented in the Incomplete
Cholesky Preconditioner section. Preconditioning in these algorithms is represented as the act of solving the
system of equations Myi = ri. The quantity r0, on entry, is equivalent to the residual vector r0 = b − Ax0, where
x0 is the initial guess for a solution vector of the matrix equation Ax = b. With regard to Picard iteration to
solve a nonlinear problem, x0 is the solution to the linear equations obtained in the previous Picard iteration.
In both variants of the algorithm, two stopping procedures for the PCG iteration are available. In the first
stopping procedure, the PCG iteration is stopped when the value of a weighted norm of the updated residuals
ri falls below the value of εa, the absolute convergence criterion. The weighted norm of residuals νi, where

Tνi = ri M−1ri, is used as it occurs naturally within the PCG algorithm; the absolute stopping criterion requires

18 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

that
√

νi < εa. In the second stopping procedure, a relative criterion is used. The value of the weighted norm
on entry to the PCG solver, ν0, is calculated and compared with later values of νi; if νi < εν0, where 0 < ε < 1,
then the PCG iteration is stopped. This relative procedure is used primarily in conjunction with the Picard
iteration scheme for solving nonlinear problems, as it is desirable to produce a reasonably good solution for
each Picard iteration but not necessarily a perfect solution. Thus the second stopping criterion only demands
that the solution be improved until the ratio νi/ν0 becomes less than ε . A discussion of the Picard iteration
scheme, in conjunction with relative convergence, is presented in the Limiting the Inner Iteration subsection of
this report. As we are mostly concerned with the nonlinear problem, it will be assumed that this latter stopping
criterion is in force in the following discussion of PCG algorithms.

ε = εu

y0 = M−1r0

ν0 = r0 · y0

if reentrant and εu < ν f /ν0 then
if ν f /ν0 > εl then

ε = ν f /ν0

else
ε = εl

end if
end if
ξ0 = ρ0

ρ0 = Aξ0

µ0 = ν0/(ξ0
T ρ0)

for i = 1, · · · ,m + 1 do
xi = xi−1 + µi−1ξi−1

ri = ri−1 − µi−1 ρi−1

yi = M−1ri

νi = ri · yi

if νi < εν0 or i = m then

ν f = νi

exit loop

end if

ξi = ρi + νi ξi−1/νi−1

ρi = Aξi

µi = νi/(ξ T ρi)
i
end for

Algorithm 2. Conjugate gradient method, version 1.

PCG with Adaptive Convergence

Algorithm 2 contains pseudocode for the first PCG variant; in this variant, the relative convergence cri­
terion ε is adjusted internally according to the nonlinearity of the problem. Nonlinearity is determined by
comparing the entry value ν0 of the weighted norm with the final value, ν f , obtained in the previous Picard it­
eration. This ratio, ν f /ν0, has a value of 1 if the problem is linear; for extremely nonlinear problems, the ratio
can become much less than 1. Algorithm 2 allows ε to vary between two bounds, εl , a lower bound, and εu,
an upper bound, depending on the value of the ratio ν f /ν0. On entry to algorithm 2, the relative convergence

19

criterion ε is initially set to εu and then, if warranted, adjusted. If the problem is sufficiently nonlinear in that
this ratio is less than εu, then the ratio ν f /ν0 is used for the value of the relative convergence criterion ε . If,
through the Picard iteration, ν f /ν0 < εl , then ε is set to value of εl . The purpose of the lower bound, εl , is to
prevent the PCG solver from taking an excessive number of iterations should ν f /ν0 become extremely small.
PCGN uses εs, the standard relative convergence criterion, for the value of εu. The lower bound εl is set with
the input variable CNVG_LB; a commonly used value for εl is 0.001. For details on the CNVG_LB parameter see
the Input Instructions for the PCGN Solver section of this report. This procedure has the effect of improving
the quality of the PCG solution whenever this indicator demonstrates nonlinear behavior. The assumption
here is that as this indicator deviates farther from 1, a more accurate solution of the linear matrix equations
will enhance the Picard iteration. Algorithm 2 also is used to solve linear problems, in which case the relative
convergence criterion is replaced with an absolute convergence criterion.

= M−1y0 r0

ν0 = r0 · y0

ξ0 = ρ0

ρ0 = Aξ0

µ0 = ν0/(ξ0
T ρ0)

for i = 1, · · · ,m do
xi = xi−1 + µi−1ξi−1

if i > 1 and νi−1 < εν0 then
exit loop

end if
ri = ri−1 − µi−1 ρi−1

yi = M−1ri

νi = ri · yi

ξi = ρi + νi ξi−1/νi−1

ρi = Aξi

µi = νi/(ξi
T ρi)

end for

Algorithm 3. Conjugate gradient method, version 2.

PCG with Standard Inner Convergence

The second variant of the PCG method assumes that a value for the relative convergence ε is determined
prior to entering the conjugate gradient loop; pseudocode for this variant is given in algorithm 3. As there is
no attempt to determine a value for ε internally, the exit point for the method is moved to a point just after the
latest update of the solution, xi. By placing the stopping criterion at this point, the weighted norm of residuals
ν associated with the updated xi is not calculated, but the expense of an additional approximate inversion,
yi = M−1ri, is avoided. Thus, this second variant always produces the most recent update of xi, but the value of
νi at convergence reflects the weighted norm of the residuals from the previous PCG iteration. With the design
of the Picard iteration scheme herein, the exact stopping point of PCG solution is not particularly critical to the
Picard iteration; see the Description of Picard Iteration Scheme section of this report for details of the Picard
method. This procedure produces a slightly better PCG solution than indicated by the relative convergence at a
small additional computational expense.

20 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

Incomplete Cholesky Preconditioning

A derivation of incomplete Cholesky preconditioning for the cell-centered finite-difference (CCFD) coeffi­
cient matrix is presented in this section; algorithms presented are based in preconditioners used in the PCGN
solver. Concepts introduced include the basics of the pointwise Cholesky decomposition and incomplete
Cholesky decomposition with 0 and 1 fill levels. A relaxation factor also is discussed whereby the pivots of
the incomplete Cholesky decomposition are modified to improve the performance of the incomplete Cholesky
preconditioners. 



. . .
•

.
• •

.

. . . • • •

. . . • ai−β,i

• . . . • • •
. • . . . ai−α,i

. . .

• • . . . • • •
. • ai−1,i

.

ai,i−β ai,i−α ai,i−1 ai,i ai,i+1 ai,i+α ai,i+β
. ai+1,i •

• • • . . . • •
. . . ai+α,i

. . . •

• • • . . . •

ai+β,i
. • . . .

• • • . . .
.

• •
.

•
. . .





Figure 2. Generalized seven-point stencil cell-centered finite-difference matrix showing banding; large black dots denote
locations of other potential non-zero entries.

The development for the incomplete Cholesky preconditioning presented herein makes extensive use
of the sparsity of the banded matrix common to CCFD methods. Banding results when a regular sequential
numbering scheme is used to determine the ordering of the CCFD coefficients. The seven-point stencil (SPS)

� �

21

associated with a three-dimensional application of the CCFD method produces a symmetric matrix with seven
bands: a diagonal band and three off-diagonal bands above and below the diagonal band. Matrices resulting
from CCFD methods applied in lesser dimensions contain fewer bands; the five-point stencil (FPS) associated
with two dimensions produces five bands. The banding arrangement of the FPS matrix is equivalent to the SPS
matrix in which the outer bounds have been eliminated. The fill within bands, however, is different; with the
exception of trivial equations, the outer bands, whether originating in FPS or SPS matrices, will be completely
filled. This discussion will center on the SPS paradigm, with the assumption that lesser dimensional results
will follow by logical reduction of these algorithms. For a cell near the center of a three-dimensional mesh,
the matrix arrangement of the CCFD coefficients can be represented as shown in figure 2. In reference to
this figure, if a three-dimensional grid is laid out such that its cell dimensions are nx,ny,nz with numbering
proceeding along the nx dimension first and the nz dimension last, then allowing α = nx and β = nxny, the bands
can be denoted as (i, i − β), (i, i − α), (i, i − 1), (i, i), (i, i + 1), (i, i + α), and (i, i + β). As the CCFD matrix is
symmetric, only the main diagonal and upper three bands, (i, i + 1), (i, i + α) and (i, i + β), must be stored. The
total number of unknowns n associated with this matrix is n = nxnynz. In the next section, the complete Cholesky
decomposition is presented as a prelude to the incomplete Cholesky development.

Pointwise Cholesky Decomposition

The incomplete Cholesky preconditioner is based in the pointwise Cholesky decomposition procedure
for a full, symmetric matrix A. In general, the Cholesky decomposition results from the knowledge that any
symmetric, positive-definite n × n matrix A = {ai j} can be represented as a product of triangular matrices. In
the following derivation, a UT DU variant of the Cholesky decomposition is used, avoiding the need for square
roots. In this presentation, the symbol U represents an n × n upper triangular matrix such that

ui j ≥ 0, j > i

ui j = 1, i = j

ui j = 0, j < i (1)

and D = diag [d1, · · · ,dn], where di > 0; then (for example, Golub and Van Loan, 1983, p. 85)

UT DU = A. (2)

As there exists a one-to-one correspondence between the entries of UT DU and A, the following pointwise
factorization can easily be developed:

i−1
di = aii −∑
d� u2

�i (3)

�=1

and

i−1 �
ui j = ai j −∑
d� u� i u� j di, i < j, (4)

�=1

where D = {di} and U = {ui j}. Clearly, the sequence of work must be i = 1, · · · ,n so that all factors urs, where
r < i and s > r, have already been determined prior to the formation of the factors in row i.

Given a symmetric matrix equation Ax = b, where b is the known vector and x is to be determined, then x
can be identified by using this factorization with the application of forward elimination and back substitution

� �

22 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

(Golub and Van Loan, 1983; Saad, 2003). First allowing L = UT D, then the forward step becomes the solu­
tion of Ly = b; as L is lower triangular, this is relatively easy. The backward step consists of the solution of
Ux = y; this also is relatively easy because U is upper triangular. While the above procedure provides for good
visualization, a more practical procedure provides for the vector b to be continuously replaced by the solu­
tion. Forward elimination and back substitution pseudocodes, using continuous replacement, are presented in
algorithms 4 and 5.

b1 := b1/d1

for i = 2, · · · ,n do
for j = 1, · · · , i − 1 do

bi := [bi − d ju jib j]/di

end for
end for

Algorithm 4. Forward elimination, full matrix.

bn := bn

for i = n − 1, · · · ,1 do
for j = i + 1, · · · ,n do

bi := bi − ui jb j

end for
end for

Algorithm 5. Back substitution, full matrix.

Unfortunately, the amount of work involved is proportional to n3 (Golub and Van Loan, 1983), which makes
the method computationally expensive; in addition this direct factorization method is subject to round-off
error. Incomplete versions of these factorizations, however, lead to efficient preconditioners for the conjugate
gradient method.

Incomplete Cholesky Decomposition with 0 Fill

The presentation here for the incomplete Cholesky preconditioning follows that given in Saad (2003) for
the LDU decomposition of asymmetric matrices. Incomplete Cholesky preconditioning with 0 fill (IC(0)) is
fairly standard for discretizations based on a regular grid; this fill level requires that only factors corresponding
to non-zero entries ai j in the matrix A be preserved. Thus, entries in the triangular matrix of the IC(0) incom­
plete decomposition will correspond to the entries in the upper triangle of A itself. The existence of a pattern
S0 that records these locations may be imagined; this pattern can be denoted as:

S0 = � . (5)(i, j) | 1 ≤ i < j ≤ n and ai j = 0

The resulting IC(0) triangular matrix will be denoted as Ũ and the associated diagonal matrix as D̃. Elements
of Ũ and D̃ are defined as follows:

i−1
2d̃i = aii − ∑ d̃� ũ� i (6)

�=1

� �

23

j=

i

i+!!1i i+"!! i+"!1

Figure 3. Pattern matrices for a seven-point stencil cell-centered finite-difference matrix derived from a 4 × 4 × 4 domain.
Black squares: pattern matrix for Ũ for fill level 0. Turquoise squares: augmentation to Ũ pattern matrix to form Û pattern matrix
for fill level 1. Red squares: diag[ũ11, · · · , ũnn] = I or diag[û11, · · · , ûnn] = I.

and ⎧ �

ũi j =
⎨ ⎩

[ai j − ∑i−1
�=1 d̃� ũ� i ũ� j] d̃i

0,

(i, j) ∈ S0

(i, j) /∈ S0.
(7)

The elements of the diagonal matrix D̃ are affected insofar as the incomplete factors ũi j are present or not
present. In the event that A is the result of a regularly numbered SPS CCFD discretization, the banded struc­
ture (fig. 2) will be reflected in S0. This banding allows the above equations to be written more simply as
follows:

2 2 2d̃i = aii − d̃i−1 ũi−1,i + d̃i−α ũi−α,i + d̃i−β ũi−β ,i (8)

� �

� � � � � � �� � � �� � � �� � � ��

24 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

and

ũi j = ai j/d̃i, j = i + 1, i + α, i + β . (9)

In the event that the indices i − 1, i − α , or i − β in equation 8 are non-positive, the corresponding factors and
pivots do not contribute to d̃i. Similarly, when the indices i + 1, i + α , or i + β in equation 9 are greater than n,
the corresponding factors ũi j are not formed. In this manner, an approximate decomposition ŨT D̃Ũ is formed,
where Ũ = {ũi j}, and D̃ = {d̃i} result from the IC(0) procedure. A sample pattern matrix for Ũ , corresponding
to pattern S0, is given in figure 3; this pattern matrix represents a SPS CCFD matrix derived from a 4 × 4 × 4
domain.

The IC(0) factorization is frequently modified to include in the pivot di the next higher-order terms
dropped from the incomplete factorization (Axelsson, 1996; van der Vorst, 2003). This modification has the
effect of decreasing the condition number of the preconditioned system of equations (Barrett and others, 1994),
thus decreasing the iterations required for convergence of the PCG algorithm. Following Hill (1990), the next
higher-order contributions ūik are denoted as follows: ⎧ ⎨

∑
i−1 d̃� ˜ (i,k) ∈/ S0�=1 u� iũ�k, ūik = (10)⎩ (i,k) ∈ S0.0,

When applied to SPS banded matrices, the product pairs forming ūik are ũi−1,i ũi−1,i+α−1,

ũi−1,i ũi−1,i+β −1, and ũi−α,i ũi−α,i+β −α . Contributions from ŨT also must be included in this modification;

for column i these contributions are:
 ⎧ ⎨

∑
i−1 d̃� ˜ u� i, ∈ S0�=1 u�k ˜ (k, i) /

ūki = (11)⎩ 0, (k, i) ∈ S0.

When applied to SPS banded matrices, the product pairs forming ūki are ũi−α,i−α+1 ũi−α,i,

ũi−β ,i−β +1 ũi−β ,i, and ũi−β ,i−β +α ũi−β ,i. Replacing d̃i of equation 8 with its modified form, then the pivots

for the IC(0) decomposition can be written as follows:

i−1 n

d̃i := d̃i − ω ∑ ūki + ∑ ūik , (12)
k=1 k=i+1

where ω is termed a relaxation factor; this parameter allows the user to decide on the degree of permitted
modification (0 ≤ ω ≤ 1). Taking note that S0 reflects a banded matrix, the new pivot produced by incorporating
these terms has the following form:

2d̃i = aii − d̃i−1 ũi−1,i + ω d̃i−1 ũi−1,i ũi−1,i+α−1 + d̃i−1 ũi−1,i ũi−1,i+β −1
2+ d̃i−α ũi−α,i + ω d̃i−α ũi−α,i ũi−α,i−α+1 + d̃i−α ũi−α,i ũi−α,i+β −α
2+ d̃i−β ũi−β ,i + ω d̃i−β ũi−β ,i ũi−β ,i−β +1 + d̃i−β ũi−β ,i ũi−β ,i−β +α

= aii − d̃i−1 ũi−1,i ũi−1,i + ω ũi−1,i+α−1 + ũi−1,i+β −1

− d̃i−α ũi−α,i ũi−α,i + ω ũi−α,i−α+1 + ũi−α,i+β −α

− d̃i−β ũi−β ,i ũi−β ,i + ω ũi−β ,i−β +1 + ũi−β ,i−β +α . (13)

As in equation 8, terms containing factors with non-positive indices do not contribute to the pivot d̃i. Also,

� � ��

� � �� � � ��

� � �� � � �� � � ��

� � ��

� � ��

25

when the indices i + 1, i + α , or i + β in equation 13 are greater than n, then terms containing factors with these
indices do not contribute. When this modification is incorporated into the incomplete Cholesky decomposition
with zero fill, the factorization is termed the modified incomplete Cholesky with 0 fill and denoted MIC(0,ω).

One of the great advantages of the MIC(0,ω) preconditioner for an SPS banded matrix is that it requires
very little additional storage beyond that required to hold the original matrix. Because of the simplicity of the
factors ũi j (see eq. 9), it is apparent that they can be characterized immediately within the elimination and
substitution steps, eliminating the need to define actual factors. The pivots d̃i, also depending on the factors
ũi j, also are modified to depend on entries ai j of matrix A. Pseudocode for evaluating the pivots is given in
two parts: a leading algorithm 6 which must precede the trailing algorithm 7. In general, both algorithms are
applied sequentially when evaluating pivots d̃i. The trailing algorithm 7 generally ensures that the algorithm
does not access indirect factors ai j outside of the n × n profile of the matrix.

d̃1 = a11

for i = 2, · · · ,α do
d̃i = aii − ai−1,i ai−1,i + ω ai−1,i+α−1 + ai−1,i+β −1 /d̃i−1

end for
for i = α + 1, · · · ,β do

d̃i = aii − ai−1,i ai−1,i + ω ai−1,i+α−1 + ai−1,i+β −1 /d̃i−1

− ai−α,i ai−α,i + ω ai−α,i−α+1 + ai−α,i+β −α /d̃i−α

end for
for i = β + 1, · · · ,n − β do

d̃i = aii − ai−1,i ai−1,i + ω ai−1,i+α−1 + ai−1,i+β −1 /d̃i−1

− ai−α,i ai−α,i + ω ai−α,i−α+1 + ai−α,i+β −α /d̃i−α

− ai−β ,i ai−β ,i + ω ai−β ,i−β +1 + ai−β ,i−β +α /d̃i−β

end for

Algorithm 6. Pivots for MIC(0, ω): leading.

for i = n − β + 1, · · · ,n − α do
d̃i = aii − ai−1,i {ai−1,i + ω ai−1,i+α−1}/d̃i−1

− ai−α,i {ai−α,i + ω ai−α,i−α+1}/d̃i−α

− ai−β ,i ai−β ,i + ω ai−β ,i−β +1 + ai−β ,i−β +α /d̃i−β

end for
for i = n − α + 1, · · · ,n do

d̃i = aii − a2
i−1,i/d̃i−1

− ai−α,i {ai−α,i + ω ai−α,i−α+1}/d̃i−α

− ai−β ,i ai−β ,i + ω ai−β ,i−β +1 + ai−β ,i−β +α /d̃i−β

end for

Algorithm 7. Pivots for MIC(0, ω): trailing.

MIC(0,ω) preconditioning is effected by solving the equation ˜ Ux = b; pseudocode for the forward UT D̃ ˜
elimination and back substitution, to solve this system using indirect factors, is presented in algorithms 8 and 9.

� � ��

26 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

b1 := b1/d̃1

for i = 2, · · · ,α do
bi := {bi − ai−1,ibi−1}/d̃i

end for
for i = α + 1, · · · ,β do

bi := {bi − [ai−1,ibi−1 + ai−α,ibi−α]}/d̃i

end for
for i = β + 1, · · · ,n do

bi := bi − ai−1,ibi−1 + ai−α,ibi−α + ai−β ,ibi−β /d̃i

end for

Algorithm 8. Forward elimination, MIC(0,ω).

bn := bn

for i = n − 1, · · · ,n − α + 1 do
bi := bi − [ai,i+1bi+1 + ai,i+α bi+α]/d̃i

end for
for i = n − α, · · · ,n − β + 1 do

bi := bi − [ai,i+1bi+1 + ai,i+α bi+α]/d̃i

end for
for i = n − β ,� · · · ,1 do �

bi := bi − ai,i+1bi+1 + ai,i+α bi+α + ai,i+β bi+β /d̃i

end for

Algorithm 9. Back substitution, MIC(0, ω).

Banded matrices are frequently stored in banded storage schemes; the following is a brief description
of the scheme used in the PCGN solver. Allowing vectors D, X, Y, and Z to represent the diagonal, the first
off diagonal, the second off diagonal, and the third off diagonal, respectively, of an SPS banded matrix, then
band (i, i) corresponds to vector D, (i, i + 1) to X, (i, i + α) to Y, and (i, i + β) to Z. Typically, these vectors
would all have the same dimension, n, and the initial entry in each vector would correspond to the entry in
row i = 1 of matrix A. Note that vector D cannot be replaced by the diagonal matrix D̃ holding the MIC(0,ω)
pivots d̃i, as D is needed elsewhere in the PCG algorithm. Thus, pivots D̃ must be stored in a separate vector;
however, this is practically the only additional storage required in the MIC(0,ω) scheme. Use of a banded
storage scheme to store the non-zero elements of A also simplifies the pseudocode for the factorization of the
pivots in that the trailing algorithm 7 can be dispensed with. This follows because the entries in vectors X,
Y, and Z corresponding to locations where index j of ai j would exceed the n × n profile of A are simply set
to zero. Thus, by replacing the end index, n − β , of the last for with n, in algorithm 6, the leading algorithm
can be used to perform the complete factorization as the function of the trailing algorithm 7 is then performed
implicitly.

Incomplete Cholesky Decomposition with 1 Fill

The incomplete Cholesky algorithm with 1 fill level (IC(1)) requires a criterion for picking the next level
of infill. Here, it is helpful to consider the IC(0) factors given in equation 7. If the CCFD problem were ho­
mogeneous and isotropic, then all these factors would be more or less uniform and less than one. Under these
conditions, the next largest contributions will be proportional to two-term products of ũi j; this is apparent from

� � ��

�

� ��

� ��

� ��

27

the form of equation 4. Given this definition of the next-larger contributors, the IC(1) pattern S1 is defined as
follows:

S1 = ai j � � .(i, j) | 1 ≤ i < j ≤ n and = 0 or a� ia� j = 0 for arbitrary �, 1 ≤ � < i (14)

Given S1, then identical to equations 6 and 7 the entries in the IC(1) decomposition, ÛT D̂Û , can be defined as
follows:

i−1

2
d̂i = aii − ∑ d̂� û� i (15)

�=1

⎧ �� ⎨ ai j − ∑i
�
−
=

1
1 d̂� û� i û� j d̂i, (i, j) ∈ S1

ûi j = (16)⎩ 0, (i, j) ∈/ S1.

For an SPS banded matrix, the products forming the additional entries have been identified previously in the
discussion of the MIC(0,ω) pivots: (ũi−1,iũi−1,i+α−1), (ũi−1,iũi−1,i+β −1), and (ũi−α,iũi−α,i+β −α). These results
indicate that the additional IC(1) factors will occupy three diagonal bands: (i, i + α − 1), (i, i + β − 1), and
(i, i+ β − α). The banded augmentation of IC(1) factors to the upper triangular matrix Ũ for the 4 ×4 × 4 CCFD
matrix is shown in figure 3. With reference to equation 16, it is seen that these factors ûi j are derived from the
weighted inner product of two partial column vectors of Û ; for columns i and j, where j > i and (i, j) ∈ S1,
these vectors consist of the column entries ûpi, p > i and ûq j, q > i. In figure 3, the left-most column vector
is indicated with a dotted line, while column vectors corresponding to argumentation bands contained in Û
are depicted with dashed lines. For example, the argumentation factor ûi,i+α−1 consists of the weighted inner
product of column vectors corresponding to the dotted and left-most dashed lines; this factor can be written as
follows:

ûi,i+α−1 = − d̂i−1 ûi−1,i ûi−1,i+α−1 + d̂i−β +α ûi−β +α,i ûi−β +α,i+α−1 d̂i. (17)

Similarly, the other argumentation factors may be written

ûi,i+β −α = − d̂i−α+1 ûi−α+1,i ûi−α+1,i+β −α + d̂i−α ûi−α,i ûi−α,i+β −α d̂i (18)

and

ûi,i+β −1 = −d̂i−1 ûi−1,i ûi−1,i+β −1 /d̂i. (19)

Note that, unlike the IC(0) factors, the derivation of these factors requires the inclusion of higher-order terms:
ûi−β +α,i ûi−β +α,i+α−1 and ûi−α+1,i ûi−α+1,i+β −α . The factors ûi,i+1 and ûi,i+α , corresponding to IC(0) factors
ũi,i+1 and ũi,i+α , are similarly augmented: � � ���

ûi,i+1 = ai,i+1 − d̂i−α+1 ûi−α+1,i ûi−α+1,i+1 + di−β +1 ûi−β +1,i ûi−β +1,i+1 d̂i. (20)

ûi,i+α = ai,i+α − d̂i−β +α ûi−β +α,i ûi−β +α,i+α d̂i. (21)

� �

� �

28 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

The IC(1) factor ûi,i+β remains identical in form to ũi,i+β :

ûi,i+β = ai,i+β /d̂i. (22)

Note that factors ûi,i+1 and ûi,i+α , because of their augmented nature of equations 20 and 21 compared to equa­
tion 9, suggest that fill may occur in cases where the CCFD matrix entries ai,i+1 and ai,i+α are zero. However,
the structure of the CCFD matrices, originating from the ordered numbering of a regular grid, does not allow
for this fill to occur; thus, the structure of bands of the pattern matrix for Û in figure 3 remain identical. The
IC(1) pivots become

= aii − d̂i−1 ûd̂i
2 2 2
i−1,i + d̂i−α ûi−α,i + d̂i−β ûi−β ,i

2 2 2+ d̂i−α−1 ûi−α−1,i + d̂i−β +α ûi−β +α,i + d̂i−β −1 û (23)
.i−β −1,i

Again, terms containing factors with non-positive indices or indices with values greater than n do not con­
tribute.

With regard to an SPS banded matrix and the IC(1) factorization, the order of factors and terms contained
therein can be related to the bands themselves. Bands (i, i + 1), (i, i + α), and (i, i + β) contain one first-order
term, equivalent to ũi j; factors ûi j contained in these bands are designated as O1. Bands (i, i + α − 1), (i, i +
β − α), and (i, i + β − 1) contain at least second-order terms, equivalent to two-term products of ũi j; factors ûi j

contained in these bands are designated as O2. In addition, there exist terms in Û that are products of O1 and
O2 factors; these factors are designated as O3. Products such as ûi−α+1,i ûi−α+1,i+1, ûi−β +1,i ûi−β +1,i+1, and
ûi−β +α,i ûi−β +α,i+α are examples of such terms. Finally, terms also exist that are products of O2 factors; these
factors are designated as O4. Products such as ûi−β +α,i ûi−β +α,i+α−1 and ûi−α+1,i ûi−α+1,i+β −α , mentioned
previously in association with equations 17 and 18, are examples of O4 terms.

Per the development in equation 12, the modified incomplete Cholesky with fill 1 (MIC(1,ω)) can be
written as follows:

i−1 n

d̂i := d̂i − ω ∑ ūki + ∑ ūik , (24)
k=1 k=i+1

where now ⎧⎨⎩

⎧⎨⎩

∑
i−1 d̂� ˆ�=1 u� iû�k, (i,k) ∈/ S1 ūik (25)
=

0, (i,k) ∈ S1

and

∑
i−1 d̂� ˆ�=1 u�kû� i, (k, i) ∈/ S1 ūki (26)
=

0, (k, i) ∈ S1.

When applied to SPS banded matrices, the product pairs forming ūik are

� � �

� � � � �

� � �� � � �� � � �� � � �� � � �� � �

29

ûi−1,i ûi−1,i+α−2, ûi−α+1,i ûi−α+1,i+β −α+1,

ûi−1,i ûi−1,i+β −α−1, ûi−α,i ûi−α,i+β −2α , and
ûi−1,i ûi−1,i+β −2, ûi−α,i ûi−α,i+β −α−1.

ûi−α+1,i ûi−α+1,i+β −2α+1,

Similarly, the product pairs forming ūki are

ûi−α+1,i−α+2 ûi−α+1,i, ûi−β +1,i−β +2 ûi−β +1,i,

ûi−β +α,i−β +α+1 ûi−β +α,i, ûi−β +1,i−β +α+1 ûi−β +1,i, and
ûi−β +α,i−β +2α ûi−β +α,i, ûi−β ,i−β +α−1 ûi−β ,i.

ûi−β +α,i−β +2α−1 ûi−β +α,i,

However, while most of these products would introduce terms of order O3, products ûi−α+1,i ûi−α+1,i+β −2α+1

and ûi−β +α,i−β +2α−1 ûi−β +α,i are of order O4. Experimentation shows that including these O4 terms in the piv­
ots d̂i of MIC(1,ω) causes a small degradation in the performance of the PCG solver; thus, these terms were
not included as part of the modification used in PCGN. In its final form, modified pivots take the form:

d̂i
� �2= aii − d̂i−1 ûi−1,i + ω d̂i−1 ûi−1,i ûi−1,i+α−2

+ d̂i−1 ûi−1,i ûi−1,i+β −α−1 + d̂i−1 ûi−1,i ûi−1,i+β −2
2u+ d̂i−α+1 ˆi−α+1,i + ω d̂i−α+1 ûi−α+1,i ûi−α+1,i+β −α+1

+ d̂i−α+1 ûi−α+1,i−α+2 ûi−α+1,i

2
+ d̂i−α ûi−α,i + ω

�
d̂i−α ûi−α,i ûi−α,i+β −2α + d̂i−α ûi−α,i ûi−α,i+β −α−1

�

2+ d̂i−β +α ûi−β +α,i + ω d̂i−β +α ûi−β +α,i−β +α+1 ûi−β +α,i

+ d̂i−β +α ûi−β +α,i−β +α+2α ûi−β +α,i
2+ d̂i−β +1 ûi−β +1,i + ω d̂i−β +1 ûi−β +1,i−β +2 ûi−β +1,i

+ d̂i−β +1 ûi−β +1,i−β +α+1 ûi−β +1,i

+ d̂i−β ûi
2
−β ,i + ω d̂i−β ûi−β ,i−β +α−1 ûi−β ,i . (27)

As in the case of equation 13, this equation can be rationalized as follows:

d̂i = aii − d̂i−1 ûi−1,i ûi−1,i + ω ûi−1,i+α−2 + ûi−1,i+β −α−1 + ûi−1,i+β −2

− d̂i−α+1 ûi−α+1,i ûi−α+1,i + ω ûi−α+1,i+β −α+1 + ûi−α+1,i−α+2

− d̂i−α ûi−α,i ûi−α,i + ω ûi−α,i+β −2α + ûi−α,i+β −α−1

− d̂i−β +α ûi−β +α,i ûi−β +α,i + ω ûi−β +α,i−β +α+1 + ûi−β +α,i−β +2α

− d̂i−β +1 ûi−β +1,i ûi−β +1,i + ω ûi−β +1,i−β +2 + ûi−β +1,i−β +α+1

− d̂i−β ûi−β ,i ûi−β ,i + ω ûi−β ,i−β +α−1 . (28)

As noted previously, terms containing factors with non-positive indices or indices with values greater than n
do not contribute. It should be noted that this form of the MIC(1,ω) pivots likely does not comply with the
row-sum requirement suggested in van der Vorst (2003) for a modified incomplete Cholesky decomposition.
While pivots (eq. 28) appear to function effectively, more research could possibly produce a form compliant
with the row-sum requirement and possibly produce a more effective modification.

� � ��

� � �� � � ��

� � �� � � �� � � �� � � �� � � �� � �

30 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

s1,2 = a1,2

s1,1+α = a1,1+α

s1,1+β ≡ a1,1+β

d̂1 = a11

for i = 2, · · · ,α do
si,i+1 = ai,i+1

si,i+α = ai,i+α

si,i+β ≡ ai,i+β

si,i+α−1 = −si−1,i si−1,i+α−1 /d̂i−1

si,i+β −1 = −si−1,i si−1,i+β −1 /d̂i−1

d̂i = aii − si−1,i si−1,i + ω si−1,i+α−2 + si−1,i+β −2 /d̂i−1

end for
for i = α + 1, · · · ,β do

si,i+1 = ai,i+1 − si−α+1,i si−α+1,i+1 /d̂i−α+1

si,i+α = ai,i+α

si,i+β ≡ ai,i+β

si,i+α−1 = −si−1,i si−1,i+α−1 /d̂i−1

si,i+β −α = −si−α+1,i si−α+1,i+β −α /d̂i−α+1 − si−α,i si−α,i+β −α /d̂i−α

=si,i+β −1 −si−�1,i si−1,i+β −1�/d̂i−1 ��
d̂i = aii − si−1,i si−1,i + ω si−1,i+α−2 + si−1,i+β −α−1 + si−1,i+β −2 /d̂i−1

− si−α+1,i si−α+1,i + ω si−α+1,i+β −α+1 + si−α+1,i−α+2 /d̂i−α+1

− si−α,i si−α,i + ω si−α,i+β −2α + si−α,i+β −α−1 /d̂i−α

end for
for i = β + 1, · · · ,n − β do

si,i+1 = ai,i+1 − si−α+1,i si−α+1,i+1 /d̂i−α+1 − si−β +1,i si−β +1,i+1 /d̂i−β +1

si,i+α = ai,i+α − si−β +α,i ŝi−β +α,i+α /d̂i−β +α

si,i+β ≡ ai,i+β

si,i+α−1 = −si−1,i si−1,i+α−1 /d̂i−1 − si−β +α,i si−β +α,i+α−1 /d̂i−β +α

si,i+β −α = −si−α+1,i si−α+1,i+β −α /d̂i−α+1 − si−α,i si−α,i+β −α /d̂i−α

si,i+β −1 = −si−1,i si−1,i+β −1 /d̂i−1

d̂i = aii − si−1,i si−1,i + ω si−1,i+α−2 + si−1,i+β −α−1 + si−1,i+β −2 /d̂i−1

− si−α+1,i si−α+1,i + ω si−α+1,i+β −α+1 + si−α+1,i−α+2 /d̂i−α+1

− si−α,i si−α,i + ω si−α,i+β −2α + si−α,i+β −α−1 /d̂i−α

− si−β +α,i si−β +α,i + ω si−β +α,i−β +α+1 + si−β +α,i−β +2α d̂i−β +α

− si−β +1,i si−β +1,i + ω si−β +1,i−β +2 + si−β +1,i−β +α+1 /d̂i−β +1

− si−β ,i si−β ,i + ω si−β ,i−β +α−1 /d̂i−β

end for

Algorithm 10. Pivots and indirect factors for MIC(1, ω): leading.

The storage requirements for the MIC(1,ω) preconditioner are substantially greater than those for the
MIC(0,ω) preconditioner, as not all the MIC(1,ω) factors can be subsumed into the storage scheme for the
CCFD matrix. However, factor ûi,i+β (eq. 22) has the same property as the MIC(0, ω) factors: ûi,i+β = ai,i+β /d̂i.
In order to garner some storage savings from this one off-diagonal band, equations 16 – 22 are expressed as
“indirect” factors si j = d̂iûi j. Pseudocode for formation of indirect factors si j and pivots d̂i j is presented in
algorithms 10 and 11. Again, the major development is contained in the leading algorithm, while the trailing
algorithm ensures the absence of indirect factors si j, i > n − β , j > n outside of the n × n profile of the matrix.

� � �� � � ��

� � �� � � �� � �

31

for i = n − β + 1, · · · ,n − α do
si,i+1 = ai,i+1 − si−α+1,i si−α+1,i+1 /d̂i−α+1 − si−β +1,i si−β +1,i+1 /d̂i−β +1

si,i+α = ai,i+α − si−β +α,i ŝi−β +α,i+α /d̂i−β +α

si,i+α−1 = −si−1,i si−1,i+α−1 /d̂i−1 − si−β +α,i si−β +α,i+α−1 /d̂i−β +α

d̂i = aii − si−1,i {si−1,i + ω si−1,i+α−2}/d̂i−1

2
− si−α+1,i {si−α+1,i + ω si−α+1,i−α+2}/d̂i−α+1 − si−α,i/d̂i−α

− si−β +α,i si−β +α,i + ω si−β +α,i−β +α+1 + si−β +α,i−β +2α d̂i−β +α

/d̂i−β +1− si−β +�1,i si−β +1,i + ω si−β +1,i�−β +2 + si−β +1,i−β +α+1

− si−β ,i si−β ,i + ω si−β ,i−β +α−1 /d̂i−β

end for
for i = n − α + 1, · · · ,n do

si,i+1 = ai,i+1 − si−α+1,i si−α+1,i+1 /d̂i−α+1 − si−β +1,i si−β +1,i+1 /d̂i−β +1

d̂i = 2 2aii − si−1,i/d̂i−1 − si−α,i/d̂i−α

− si−α+1,i {si−α+1,i + ω si−α+1,i−α+2}/d̂i−α+1

− si−β +α,i si−β +α,i + ω si−β +α,i−β +α+1 + si−β +α,i−β +2α d̂i−β +α

− si−β +1,i si−β +1,i + ω si−β +1,i−β +2 + si−β +1,i−β +α+1 /d̂i−β +1

− si−β ,i si−β ,i + ω si−β ,i−β +α−1 /d̂i−β

end for

Algorithm 11. Pivots and indirect factors for MIC(1,ω): trailing.

UT D̂ ˆ
elimination and back substitution, to solve this system using indirect factors, is presented in algorithms 12
and 13.

MIC(1,ω) preconditioning is effected by solving the equation ˆ Ux = b; pseudocode for the forward

b1 := b1/d̂1

for i = 2, · · · ,α do
bi := {bi − si−1,ibi−1}/d̂i

end for
for i = α + 1, · · · ,β do

bi := {bi − [si−1,ibi−1 + si−α+1,ibi−α+1 + si−α,ibi−α]}/d̂i

end for
for i = β + 1, · · · ,n do

bi := {bi − [si−1,ibi−1 + si−α+1,ibi−α+1 + si−α,ibi−α

+ si−β +α,ibi−β +α + si−β +1,ibi−β +1 + si−β ,ibi−β]}/d̂i

end for

Algorithm 12. Forward elimination, MIC(1, ω).

32 A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

bn := bn

for i = n − 1, · · · ,n − α + 1 do
bi := bi − si,i+1bi+1/d̂i

end for
for i = n − α, · · · ,n − β + 1 do

bi := bi − [si,i+1bi+1 + si,i+α−1bi+α−1 + bi,i+α bi+α]/d̂i

end for
for i = n − β , · · · ,1 do

bi := bi − [si,i+1bi+1 + si,i+α−1bi+α−1 + si,i+α bi+α

+ si,i+β −α bi+β −α + si,i+β −1bi+β −1 + si,i+β bi+β]/d̂i

end for

Algorithm 13. Back substitution, MIC(1, ω).

If the banded matrix is stored in the banded matrix storage scheme detailed previously, then vectors D, X,
Y, and Z, each of length n, would contain the matrix. These vectors are necessary to the PCG algorithm and
cannot be overwritten. New vectors are needed to hold the indirect factors si j created in the MIC(1,ω) factor­
ization; herein these are referred to as X0, Y0, Z0, X1, Y1, and Z1. The vectors X0, Y0, and Z0 will contain the
O1 factors, while X1, Y1, and Z1 will contain the O2 factors. In terms of matrix Û , diagonal (i, i + 1) corre­
sponds to X0, (i, i+α) to Y0, (i, i +β) to Z0, (i, i +α − 1) to X1, (i, i +β −α) to Y1, and (i, i +β −1) to Z1. Of
course, Z0 is actually set equivalent to Z as it is unchanged by the factorization. Moreover, the diagonal matrix
D̂ of pivots is stored separately from D and thus requires another vector of length n. As these new vectors are
all of length n, it is seen that the memory storage requirements of the PCG solver with the MIC(1,ω) factor­
ization is essentially twice that of the PCG solver with the MIC(0,ω) factorization. Again, with this banded
storage scheme, the pseudocode for the factorization is somewhat simplified in that only the leading algorithm
10, with the end index of the last for, n − β , replaced with n need be used for the complete factorization. Those
entries in vectors X0, Y0, X1, Y1, and Z1 that correspond to locations where j exceeds the n × n profile of A
are simply set to zero.

Test Results for Modified Incomplete Cholesky Preconditioning

To give the user an appreciation of the effect of the fill number and relaxation parameter ω on a linear
problem, a pseudo-CCFD coefficient matrix was generated that could be easily altered to produce varying
degrees of anisotropy. The solution of the resulting matrix equations occurred entirely outside MODFLOW;
the study was conceived as a way to directly investigate the PCG solver that resides within the PCGN pack­
age. Using hydraulic conductivities obtained from a [0,1] uniform random variable generator, CCFD-like
coefficients were constructed in a manner analogous to the algorithm used in MODFLOW. For the x direction,
these coefficients were multiplied by a2, where a is the anisotropy multiplier; for the y direction, they were
multiplied by a1; and for the z direction, they were multiplied by a0. A right hand side for the matrix equations
was generated by multiplying these matrices with a vector of random numbers; the vector of random numbers
constituted an exact solution for comparison purposes. The anisotropy multiplier was allowed to vary from
1 (isotropic) to 10 (very anisotropic); the resulting matrices were solved with PCG using a MIC fill level of
0 or 1 and ω = 0.0 or ω = 0.99. The generated matrices had size n =200,000; the number of iterations to
solve each case to a specified absolute convergence (0.01) and the time spent by the solver in iteration mode
was recorded. The iteration results are presented in figure 4. The number of iterations required for a specified
convergence can be looked upon as the degree of conditioning that the combination of fill level and ω imparts

33

0 1 2 3 4 5 6 7 8 9 10
Anisotropy multiplier

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Ite
ra

tio
ns

 to
 c

on
ve

rg
en

ce
fill=0, !=0.0
fill=1, !=0.0
fill=0, !=0.99
fill=1, !=0.99

Figure 4. Iterations required to obtain a specified convergence as a function of anistropy; see text for explanation of
anisotropy multiplier.

to each level of anisotropy. Clearly, a relaxation factor such that ω = 0.99, imparting almost full modification
to the incomplete Cholesky algorithm, is superior to ω = 0.0, where no modification is allowed. When the fill
level is 0, selecting ω = 1 results in a serious degradation in the performance of the PCG solver for these prob­
lems, particularly at higher values of the anisotropy multiplier; this value of ω should in general be avoided.
For ω = 0.99, the ratio of iterations for fill level 0 to fill level 1 varies from 1.2 (a = 2) to 1.38 (a = 10). Clearly,
a fill level 1 exhibits superior conditioning of the test matrix. However, for this particular problem, processor
and compiler combination, the PCG solver for a fill level 0 solved at a rate of 37 iterations/sec while the fill
level 1 solver rate was 29 iterations/sec; the ratio for the two rates (0 to 1) is 1.28. Thus, for an isotropic prob­
lem, a fill level 0 should produce a superior run time, while a fill level 1 run time should be superior for highly
anisotropic problems. Anisotropic problems are generally more poorly conditioned than isotropic problems; it
is not surprising that these problems should respond better to the additional conditioning provided by the fill
level 1 preconditioner.

References Cited

Axelsson, O., 1996, Iterative solution methods: Cambridge, U.K., Cambridge University Press, 654 p.

Banta, E., 2006, Modifications to MODFLOW boundary conditions and an adaptive-damping scheme for
Picard iterations for a highly nonlinear regional model, in Managing ground water systems—MODFLOW
and More 2006, Golden, Colo., May 21–24, 2006, Proceedings: Golden, Colo., Colorado School of Mines,
International Ground Water Modeling Center, p. 596–600.

Barrett, R., Berry M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and
van der Vorst, H., 1994, Templates for the solution of linear systems—Building blocks for iterative methods
2d ed.: Philadelphia, Society for Industrial and Applied Mathematics, 112 p.

Golub, G., and Van Loan, C., 1983, Matrix computations: Baltimore, John Hopkins University Press, 476 p.

Harbaugh, A., Banta, E., Hill, M., and McDonald, M., 2000, Modflow-2000, the U.S. Geological Survey
modular ground-water model—User guide to modularization concepts and the ground-water flow process:
U.S. Geological Survey Open-File Report 00–92, 121 p.

Hill, M., 1990, Preconditioned conjugate-gradient 2 (PCG2)—A computer program for solving ground-water
flow equations: U.S. Geological Survey Water-Resources Investigations Report 90–4048, 25 p.

Mehl, S., 2006, Use of Picard and Newton iteration in solving nonlinear ground water flow equations: Ground
Water, v. 44, no. 4, p. 583–594.

Mehl, S., and Hill, M., 2001, Modflow-2000, the U.S. Geological Survey modular ground-water model—User
guide to the Link-AMG (LMG) package for solving matrix equations using an algebraic multigrid solver:
U.S. Geological Survey Open-File Report 01–177, 33 p.

Robson, S., 1987, Bedrock aquifers in the Denver Basin, Colorado—A quantitative water-resources appraisal:
U.S. Geological Survey Professional Paper 1257, 73 p., 5 plates.

Saad, Y., 2003, Iterative methods for sparse linear systems: Philadelphia, Society for Industrial and Applied
Mathematics, 528 p.

van der Vorst, H., 2003, Iterative Krylov methods for large linear systems: Cambridge, U.K., Cambridge
University Press, 221 p.

Wilson, J. and Naff, R., 2004, Modflow-2000, the U.S. Geological Survey modular ground-water model—
GMG linear equation solver package documentation: U.S. Geological Survey Open-File Report 2004–1261,
47 p.

Publishing support provided by:
Denver Publishing Service Center

For more information concerning this publication, contact:
Chief, Branch of Regional Research, Central Region
Box 25046, Mail Stop 418
Denver, CO 80225
(303)236-5021

Or visit the USGS National Research Program Web site at:
http:/water.usgs.gov/nrp

N

aff and B
anta—

 The U
.S. G

eological Survey M
odular G

round-W
ater M

odel—
PCG

N
: A

 Preconditioned Conjugate G
radient Solver w

ith Im
proved N

onlinear Control—
 Open-File Report 2008–1331

	Abstract
	Introduction
	Description of Picard Iteration Scheme
	Limiting the Inner Iteration
	Adjusting the Damping Parameter

	Input Instructions for the PCGN Solver
	General Solver Parameters: Line 1
	Parameters Related to PCG Solver: Line 2
	Parameters Related to Damping: Line 3
	Parameters Related to Convergence of Inner Iteration: Line 4

	Output Diagnostics for the Picard Iteration
	Application of PCGN to a Nonlinear Problem
	Description of Program Modules
	Preconditioned Conjugate Gradient Method
	PCG with Adaptive Convergence
	PCG with Standard Inner Convergence

	Incomplete Cholesky Preconditioning
	Pointwise Cholesky Decomposition
	Incomplete Cholesky Decomposition with 0 Fill
	Incomplete Cholesky Decomposition with 1 Fill

	Test Results for Modified Incomplete Cholesky Preconditioning
	References Cited

