
STAR Scheduler

Gabriele Carcassi
STAR Collaboration

What is the STAR scheduler?

• Resource Broker
– receives job requests from the user and

decides how to assign them to the resources
available

• Wrapper on evolving technologies
– by and by that GRID middleware fit for STAR

needs is available is integrated in the
scheduler flexible architecture

Scheduler benefits

• Enables the Distributed Disk framework
– Data files are distributed on the local disk of

each node of the farm
– The job requiring a given files is dispatched

where the file can be found
• Interfacing with STAR file catalog

– User specify job input through a
metadata/catalog query (ex. Gold-Gold at 200
GeV, Fullfield, minbias, ...)

– File catalog implementation is modular

Scheduler benefits

• User interface: description and specification
– Well defined user interface and job model
– Abstract description allows us to embed in the

scheduler the logic on how to use resources
– Allows us to experiment and migrate to other tools

with minimal impact for the user (for job submission)
– Makes it clearer for other groups collaborating with us

to understand our needs

• Extensible architecture

Technologies used

• Scheduler is written in Java
• Job description language is an XML file
• Current implementation uses

– LSF for job submission
– STAR catalog as the file catalog

• Experimenting with Condor-g for GRID
submission

/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
...

sched1043250413862_1.list

/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
...

sched1043250413862_2.list

How does it work?

<?xml version="1.0" encoding="utf-8" ?>
<job maxFilesPerProcess="500">

<command>root4star -q -b
rootMacros/numberOfEventsList.C\(\"$FI
LELIST\"\)</command>

<stdout
URL="file:/star/u/carcassi/scheduler/out/$
JOBID.out" />

<input
URL="catalog:star.bnl.gov?production=P
02gd,filetype=daq_reco_mudst"
preferStorage="local" nFiles="all"/>

<output fromScratch="*.root"
toURL="file:/star/u/carcassi/scheduler/out
/" />
</job>

Job description
test.xml

/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
...

sched1043250413862_0.list

/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
...

Query/Wildcard
resolution

How does it work?

<?xml version="1.0" encoding="utf-8" ?>
<job maxFilesPerProcess="500">

<command>root4star -q -b
rootMacros/numberOfEventsList.C\(\"$FI
LELIST\"\)</command>

<stdout
URL="file:/star/u/carcassi/scheduler/out/$
JOBID.out" />

<input
URL="catalog:star.bnl.gov?production=P
02gd,filetype=daq_reco_mudst"
preferStorage="local" nFiles="all"/>

<output fromScratch="*.root"
toURL="file:/star/u/carcassi/scheduler/out
/" />
</job>

Job description
test.xml

Output files

Output files

Output files
#!/bin/csh

Script generated at Wed Jan 22 ...
bsub -q star_cas_dd -o /star/u/carca...

...

sched1043250413862_2.csh

sched1043250413862_0.csh
#!/bin/csh

Script generated at Wed Jan 22 ...
bsub -q star_cas_dd -o /star/u/carca...

...

#!/bin/csh

Script generated at Wed Jan 22 ...
bsub -q star_cas_dd -o /star/u/carca...

...

sched1043250413862_1.csh

Distributed disk
• Motives

– Scalability: NFS requires more work to scale
– Performance: reading/writing on local disk is faster
– Availability: every computer has local disk, not every computer

has distributed disk

• Current model
– Files are distributed by hand (Data carousel) according to user

needs
– File catalog is updated during distribution
– Scheduler queries the file catalog and divides the job according

to the distribution

• Future model
– Dynamic distribution

File catalog integration

• Enables distributed disk
– If not present, users would have to know

where the files are distributed on which
machines

• Allows users to specify their input
according to the metadata

• On small number of files requests, the
scheduler can choose which files are more
available

File catalog integration

• Implemented through an interface (pure
abstract class
– The query itself is an opaque string passed

directly to the file catalog
– Other tags tell the scheduler how to extract

the desired group
• single copy or all copies of the same files
• prefer files on NFS or local disk
• number of files requires

User Interface

• Job description
– an XML and it’s tag used to describe to the

scheduler which command is to be dispatched
and on which input files

• Job specification
– a set of simple rules that define how the user

job is supposed to behave

The Job description

• XML file with the description of our request

<?xml version="1.0" encoding="utf-8" ?>
<job maxFilesPerProcess="500">

<command>root4star -q -b
rootMacros/numberOfEventsList.C\(\"$FILELIST\"\)</command>

<stdout
URL="file:/star/u/carcassi/scheduler/out/$JOBID.out" />

<input URL="catalog:star.bnl.gov?
collision=dAu200,trgsetupname=minbias,filetype=MC_reco_MuDst"
preferStorage="local" nFiles="all"/>

<output fromScratch="*.root"
toURL="file:/star/u/carcassi/scheduler/out/" />
</job>

Job specification

• The scheduler prepares some
environment variables to communicate the
job its decision about job splitting
– $FILELIST, $INPUTFILECOUNT and

$INPUTFILExx contain information about the
input files assigned to the job

– $SCRATCH is a local directory available to
the job to put it’s output for later retrieval

Job specification

• The other main requirement is that the
output of the different processes won’t
clash one another
– One can use $JOBID to create filenames that

are unique for each process

STAR Scheduling architecture

UI
UJDL

Perl
interface

MySQL

Dispatcher

JobInitializer

Policy

LSF

File Catalog

Queue manager

Scheduler / Resource broker

File
catalog

interface
MonitoringGanglia

MDS

Abstract
component

Job Initializer

• Parses the xml job request
• Checks the request to see if it is valid

– Checks for elements outside specification (typically
errors)

– Checks for consistency (existence of input files on
disk, ...)

– Checks for requirements (require the output file, ...)

• Creates the Java objects representing the
request (JobRequest)

Job Initializer

• Current implementation
– Strict parser: any keyword outside the

specification stops the process
– Checks for the existence of the stdin file and

the stdout directory
– Forces the stdout to prevent side effects (such

as LSF would accidentally send the output by
mail)

Policy

• The core of resource brokering:
– From one request, creates a series of

processes to fulfill that request
– Processes are created according to farm

administrator’s decisions
– The policy may query the file catalog, the

queues or other middleware to make an
optimal decision (ex. MDS, Ganglia, ...)

Policy

• We anticipate a lot of the work in finding
an optimal policy

• Policy is easily changeable, to allow the
administrator to change the behavior of
the system

Policy

• Current policy
– Resolves the queries and the wildcards to

form a single file list
– Divide the list into several sub-lists, according

to where the input files are located and the
maximum number of files set per process

– Creates one process for every file list.

Dispatcher

• From the abstract process description,
creates everything that is needed to
dispatch the jobs
– Talks to the underlying queue system
– Takes care of creating the script that will be

executed: csh based (widely supported)
– Creates environment variables and the file list

Dispatcher

• Current implementation:
– creates file list and script in the directory

where the job was submitted from
– creates environment variables containing the

job id, the list of files and all the files in the list,
assigns a scratch directory.

– creates a command line for LSF
– submits job to LSF

Conclusion
• The tool is available and working

– In production since September 2002 and slowly acquiring
acceptance (difficult to get people to try, but once they try it they
like it)

• Allows the use of local disks
• Architecture is open to allow changes

– Different policies
– Catalog implementation (MAGDA, RLS, GDMP, ... ?)
– Dispatcher implementation (Condor, Condor-g – Globus, ...)

• We are preparing an implementation that uses Condor-g
and allows us to dispatch jobs to the GRID

