
Lustre Filesystem Monitoring on Franklin

DRAFT

Andrew Uselton

April 21, 2008

Abstract

This document proposes a means of monitoring Lustre filesystem activ-
ity on the Cray XT at NERSC known as “Franklin”. Subjects presented
include the acquisition, transport, archiving, and presentation of a variety
of file system measurements and statistics. Some of what is presented is
speculative and will be cast as experiments to determine the feasability of
an approach along with alternatives to that approach. Early efforts will
focus on the test and development companion cluster named “Silence”.

1 Introduction

This first brief note is meant to cover the early stages of our Lustre monitoring
effort. Feel free to skip to Section 6 for an overview of next steps. Please let me
know of errors and omissions in this document.

1.1 The Network Layout of Franklin

Figure 1 is an abstract representation of the various pieces of Franklin that
will participate in filesystem monitoring. On the far left are the compute nodes
(CNs), which will run the filesystem benchmark tests used to analyze I/O per-
formance. Other than acting as a source of I/O activity the CNs will not partici-
pate in monitoring. Communicating with the CNs via a high speed interconnect
(the torus) are the following systems:

boot The boot node provides a system-wide root file system for all the other
nodes in the cluster. This file space is served from a fibre channel (FC)
attached DDN RAID system.

sdb The sdb node maintains system state (the service database) for the cluster
and will not participate in file system monitoring activities. Alone among
the cluster nodes the boot and sdb nodes have (FC-attached) disks.

login The login nodes are the one user-accessible point of contact on the cluster.
There are eight login nodes, and each has a high-speed link to the external

1



Figure 1: The layout of the various pieces of Franklin

network. Section 2.1 below details the specific data items we plan to
monitor on the login nodes. Appendix A.1 lists, in detail, the many data
items that could be monitored on the login nodes.

MDS The Lustre MDS is the metadata server for the file systems. Franklin
has two Lustre-based files systems: /home and /scratch. The MDT metat-
data service for each file system is distinct, but both reside on the MDS
node. Section 2.2 details the specific data items we plan to monitor on
the MDS. Appendix A.2 lists, in detail, the many data items that could
be monitored.

OSS The Lustre OSSs are the object storage servers for the Lustre filesystem.
Franklin has 24 OSSs, with 20 OSSs dedicated to the /scratch filesystem
and 4 OSSs dedicated to the /home file system. Each OSS hosts one or
more OSTs, which are the (software) service provided by the server. Each
OST mediates the connection to one logical disk (a LUN) provided by the
DDNs. Section 2.3 details the specific data items we plan to monitor on
the OSSs and OSTs. Appendix ?? lists, in detail, the many data items
that could be monitored.

The boot node has a connection to the system maintenance workstation smw,
which runs the CRMS system responsible for starting, stopping, and monitoring
the cluster. No other hosts are on this “point-to-point” network. “Almanac” is
the name of a system that acts as a data server for monitoring data. “Liberty”

2



is the name of a node that has a connection to the external network. The
smw, Liberty, and Almanac are on a shared network that has no other hosts.
Almanac and the smw are also on a separate, isolated network that connects to
the control ports of the DDNs.

The MDS and each of the OSSs has one or more high-speed links to a
fibrechannel (FC) network composed of two high capacity switch frames. The
servers connect via this FC network to a set of DDN RAID controllers. Each of
the 20 OSSs supporting the /scratch file system connects to the network via two
4Gb/s FC (FC4) links, and the five DDNs supporting /scratch each have eight
FC4 links. There are also various links from the MDS and links supporting the
/home file systems.

There is a test/development cluster named “Silence” that has a configuration
resembling the foregoing except with fewer login nodes, CNs, and OSSs. All of
the infrastructure proposed in this document will be evaluated on Silence before
being deployed on Franklin.

2 Data Acquisition

There is a wealth of information that can be monitored on the cluster. It is not
practical to gather detailed operational data from the CNs, nor do we plan to do
so on the service nodes (boot, sdb), since they do not participate directly in the
Lustre filesystem. The login nodes, the OSSs, and the MDS all merit attention to
their dynamic behavior. The appendix details the specific information available
on the various nodes that could be collected. What follows is a quick overview
of the values we plan to monitor initially. Section 2.5 concludes with a specific
proposal for how to actually acquire the data.

2.1 Login Nodes

The login nodes mount both Lustre file systems, /scratch and /home. The
responsiveness of these nodes to user interactions is one of the two main ways
that users perceive whether the filesystem is fast or slow. Our initial data
acquisition plan does not include login node monitoring. That will come later.

2.2 MDS

As with the login nodes, a slow MDS can be directly perceived by the user.
Acquiring relevent information about the load on the MDS and the performance
of its various subsystems can help identify if the MDS itself is unable to keep up
with the load, if there is a tuning problem, or if some subsystem is misbehaving.
Our initial monitoring efforts will focus on values that show the rate of metadata
operations and their latency:

1. From /proc/fs/lustre/mdt/MDT/mds/stats

snapshot_time 1208806073.460654 secs.usecs

3



req_waittime 387895 samples [usec] 1 3647 2528191 2007317551
req_qdepth 387895 samples [reqs] 0 60 16560 499738
req_active 387895 samples [reqs] 1 32 406122 929856
...
mds_reint 18350 samples [usec] 21 34335 1726917 1945854633
mds_readpage 0 samples [usec]
mds_statfs 83 samples [usec] 6 63 1181 42677
mds_sync 42 samples [usec] 14 5233 43371 141673119

The above data needs some interpretation which will be deffered until Section 5
on data presentation has been more fully developed.

2.3 OSS

Poor performance, tuning issues, or excessive load on the OSSs tends to be more
visible to at-scale I/O operations from large MPP jobs engaging in bulk I/O.
Some monitoring is relevant to the server as a whole and some relevant to each
individaul OST service. Early efforts at monitoring will focus on the bulk I/O
rate seen by each OST:

1. OST stats - For each directory dir in /proc/fs/lustre/obdfilter/,

2. /proc/fs/lustre/obdfilter/dir/stats

snapshot_time 1208806427.826684 secs.usecs
read_bytes 37483 samples [bytes] 0 1048576 38618047029
write_bytes 92565 samples [bytes] 4 1048576 41013702098
...

The first value in the line of data is the amount read or written since boot time.
The other values need not concern us intiially.

2.4 DDNs

The Cacti monitoring infrastructure in place on Almanac already collects some
DDN statistics. This monitoring proposal does not seek to duplicate or extend
that work. In production the DDN-based data will be a valuable resource to
compare with the server-side data and the CN-side data.

2.5 Acquiring the Data

The Cerebro data collection daemon cerebrod runs continuously on each of the
nodes. It can be extended to collect data of any sort if the appropriate module
is installed. There already exist modules to collect the foregoing data. The
Lustre related values can be gathered by including the lmt module for Cerebro.
There is some question whether it would be appropriate or desireable to install
many shared libraries on the server nodes (which is what Cerebro would do by
default). Cerebro can be compiled with statically linked libraries, and doing so
is currently under investigation.

4



3 Data Transport

Once the data has been collected it needs to be transported off the server nodes
where it can be gathered and used. In early testing (on the Silence test cluster)
we plan to transport the data to a login node for further processing. In pro-
duction, the eventual target will be a dedicated monitoring server that has a
database and other configuration details in support of system wide monitoring.
Almanac in Figure 1 is one candidate. One challenge will be that the servers
(MDS and OSSs) do not route directly to any systems off the cluster. Further-
more, Almanac does not route directly to the login nodes. It may be necessary
to tunnel connections through the login nodes and the Liberty gateway node.
Alternatively, a daemon running on one or more login nodes and on Liberty
could relay the data to Almanac.

The Cerebro monitoring infrastructure includes data communication, and
the cerebrod daemon can act in the roles of data collector, data relay, and data
destination. Thus it is compatible with either tunneling or forwarding the data
through the intervening hosts.

4 Data Archiving

All of the data collected should be gathered in a database. The volume of data
gathered amounts to a few KB per sample period. If that data is sampled
once per minute the load on the database would be a few MB a day. For
intensive dedicated I/O performance testing it may be valuable to sample at
higher frequency, which would increase the load on the database.

The Lustre Monitoring Tool infrastructure (of which the lmt Cerebro mod-
ules are a part) includes a MySQL database schema for Lustre data. The lmt
Cerebro modules include methods for sending the data to that database.

The Cacti monitoring infrastructure also maintains an round robin database
for detailed, recently observed data and for sumaries of older data. That in-
frastructure is able to acquire data directly from a local database, so the two
integrate easily.

5 Data Presentation

There are many uses for the acquired data and many ways to display it. The
following notes detail a few ways the data can and should be used.

The Lustre Monitoring Tool infrasturcture includes a near-real-time GUI
display that runs on a user’s remote workstation and is populated directly from
the MySQL database. In order to access the data there may need to be some
relay or tunneling functionality at the Liberty gateway node, or the MySQL
database may need to reside somewhere other than on the Almanac server.

There is also a command line tool for gathering near-real-time data from the
database.

5



The Cacti monitoring infrastructure includes a rich web-based data presen-
tation infrastructure. Current detailed information and historical summaries
can be made available to any web browser.

When an I/O test produces interesting or anomalous results data queries
can be used to gather specific information in support of after-the-fact analysis.

6 Conclusion and Recommendations

There are many exploratory steps required before it is reasonable to establish a
full proposal for the production configuration of Luste monitoring. Listed here
are some of the early activities that will lead to a detailed plan of action:

• Figure out if Cerebro will compile for and run on a Silence OSS. Figure
out where the executable will reside and, if shared libraries can be used,
where they will reside. Figure out where the congfiguration file will reside.

• Set up a toy instance of the Cerebro/LMT target MySQL database on a
Silence login node. Establish communication between the cerebrod on the
OSS and that on the login node.

• Configure Cerebro for some minimal, sensible monitoring task and verify
the infrastructure works.

• Extend the monitored data to include all OSS/OST data values, and
gather all login node values while we’re at it.

• Configure the LMT data presentation tools, and begin early monitoring
of the data is a proof of concept and a sanity check.

• Extend monitoring to all OSSs and the MDS on Silence.

• Evaluate alternatives for final siting of the MySQL database and for the
data forwarding needed.

• Initiate extensive file system testing on Silence, and develop an under-
standing of the utility, managability, and robustness of the system.

• Evaluate the effectiveness of the pilot project and develop a proposal for
a production instance of the infrastructure.

A Detailed Reference for Data Sources

In many of the files mentioned below there will be information in the following
format:

text val1 samples [bytes] val2 val3 val4

The text gives the name of the data item. val1 is the value of data item. the
remaining values on the line are less important.

6



A.1 Login Nodes

Here is a list of the many things available for monitoring on the login nodes:

1. /proc/loadavg

2. /proc/vmstat

3. Interface statistics

4. For each file system fs:

(a) /proc/fs/lustre/llite/fs/stats:

snapshot_time 1208709631.618797 secs.usecs
dirty_pages_hits 85898 samples [regs]
dirty_pages_misses 856416 samples [regs]
writeback_from_writepage 0 samples [pages]
writeback_from_pressure 0 samples [pages]
writeback_ok_pages 0 samples [pages]
writeback_failed_pages 0 samples [pages]
read_bytes 193974 samples [bytes] 5 4194304 16299934239
write_bytes 172997 samples [bytes] 9 1241144 3505736517
brw_read 0 samples [pages]
brw_write 0 samples [pages]
ioctl 83 samples [regs]
open 4605 samples [regs]
close 4602 samples [regs]
mmap 0 samples [regs]
seek 36 samples [regs]
fsync 1 samples [regs]
setattr 35 samples [regs]
punch 0 samples [regs]
getattr 38164 samples [regs]
statfs 21 samples [regs]
alloc_inode 6958 samples [regs]
setxattr 4 samples [regs]
getxattr 51791 samples [regs]
direct_read 0 samples [pages]
direct_write 0 samples [pages]

5. For each OST ost:

(a) /proc/fs/lustre/osc/ost/rpc stats:

snapshot_time: 1208710937.457208 (secs.usecs)
read RPCs in flight: 0
write RPCs in flight: 0
pending write pages: 0
pending read pages: 0

7



read write
pages per rpc rpcs % cum % | rpcs % cum %
1: 0 0 0 | 0 0 0
2: 0 0 0 | 0 0 0
4: 0 0 0 | 0 0 0
8: 0 0 0 | 0 0 0
16: 0 0 0 | 0 0 0
32: 16 35 35 | 10 25 25
64: 10 22 57 | 10 25 51
128: 0 0 57 | 2 5 56
256: 19 42 100 | 17 43 100

read write
rpcs in flight rpcs % cum % | rpcs % cum %
0: 45 100 100 | 39 100 100

read write
offset rpcs % cum % | rpcs % cum %
0: 45 100 100 | 35 89 89
1: 0 0 100 | 0 0 89
2: 0 0 100 | 0 0 89
4: 0 0 100 | 0 0 89
8: 0 0 100 | 0 0 89
16: 0 0 100 | 0 0 89
32: 0 0 100 | 1 2 92
64: 0 0 100 | 1 2 94
128: 0 0 100 | 2 5 100

(b) /proc/fs/lustre/osc/ost/stats:

snapshot_time 1208711062.600563 secs.usecs
req_waittime 0 samples [usec]
req_qdepth 0 samples [reqs]
req_active 0 samples [reqs]
reqbuf_avail 0 samples [bufs]
ost_reply 0 samples [usec]
ost_getattr 0 samples [usec]
ost_setattr 0 samples [usec]
ost_read 45 samples [usec] 0 0 0 0
ost_write 39 samples [usec] 0 0 0 0
ost_create 0 samples [usec]
ost_destroy 7 samples [usec] 0 0 0 0
ost_get_info 0 samples [usec]
ost_connect 1 samples [usec] 0 0 0 0
ost_disconnect 0 samples [usec]
ost_punch 1 samples [usec] 0 0 0 0

8



ost_open 0 samples [usec]
ost_close 0 samples [usec]
ost_statfs 32 samples [usec] 0 0 0 0
ost_san_read 0 samples [usec]
ost_san_write 0 samples [usec]
ost_sync 0 samples [usec]
ost_set_info 0 samples [usec]
ost_quotacheck 0 samples [usec]
ost_quotactl 0 samples [usec]
mds_getattr 0 samples [usec]
mds_getattr_lock 0 samples [usec]
mds_close 0 samples [usec]
mds_reint 0 samples [usec]
mds_readpage 0 samples [usec]
mds_connect 0 samples [usec]
mds_disconnect 0 samples [usec]
mds_getstatus 0 samples [usec]
mds_statfs 0 samples [usec]
mds_pin 0 samples [usec]
mds_unpin 0 samples [usec]
mds_sync 0 samples [usec]
mds_done_writing 0 samples [usec]
mds_set_info 0 samples [usec]
mds_quotacheck 0 samples [usec]
mds_quotactl 0 samples [usec]
mds_getxattr 0 samples [usec]
mds_setxattr 0 samples [usec]
ldlm_enqueue 399 samples [usec] 0 0 0 0
ldlm_convert 0 samples [usec]
ldlm_cancel 43 samples [usec] 0 0 0 0
ldlm_bl_callback 0 samples [usec]
ldlm_cp_callback 0 samples [usec]
ldlm_gl_callback 0 samples [usec]
obd_ping 73 samples [usec] 0 0 0 0
llog_origin_handle_cancel 0 samples [usec]
ost_reply 0 samples [usec]

6. For each MDS mds:

(a) /proc/fs/lustre/mdc/mds/blocksize:

(b) /proc/fs/lustre/mdc/mds/connect flags:

(c) /proc/fs/lustre/mdc/mds/filesfree:

(d) /proc/fs/lustre/mdc/mds/filestotal:

(e) /proc/fs/lustre/mdc/mds/kbytesavail:

(f) /proc/fs/lustre/mdc/mds/kbytesfree:

9



(g) /proc/fs/lustre/mdc/mds/kbytestotal:

(h) /proc/fs/lustre/mdc/mds/mds conn uuid:

(i) /proc/fs/lustre/mdc/mds/mds server uuid:

(j) /proc/fs/lustre/mdc/mds/ping:

(k) /proc/fs/lustre/mdc/mds/uuid:

A.2 MDS

Information avaialable on the MDS includes:

1. /proc/loadavg

2. /proc/vmstat

3. Interface stats

4. For each directory dir in /proc/fs/lustre/mds,

(a) /proc/fs/lustre/mds/dir/filesfree

(b) /proc/fs/lustre/mds/dir/filestotal

(c) /proc/fs/lustre/mds/dir/kbytesavail

(d) /proc/fs/lustre/mds/dir/kbytesfree

(e) /proc/fs/lustre/mds/dir/kbytestotal

5. /proc/fs/lustre/mdt/MDT/mds/stats

snapshot_time 1208806073.460654 secs.usecs
req_waittime 387895 samples [usec] 1 3647 2528191 2007317551
req_qdepth 387895 samples [reqs] 0 60 16560 499738
req_active 387895 samples [reqs] 1 32 406122 929856
reqbuf_avail 432099 samples [bufs] 112 128 55281938 7072758762
ost_reply 0 samples [usec]
ost_getattr 0 samples [usec]
ost_setattr 0 samples [usec]
ost_read 0 samples [usec]
ost_write 0 samples [usec]
ost_create 0 samples [usec]
ost_destroy 0 samples [usec]
ost_get_info 0 samples [usec]
ost_connect 0 samples [usec]
ost_disconnect 0 samples [usec]
ost_punch 0 samples [usec]
ost_open 0 samples [usec]
ost_close 0 samples [usec]
ost_statfs 0 samples [usec]

10



ost_san_read 0 samples [usec]
ost_san_write 0 samples [usec]
ost_sync 0 samples [usec]
ost_set_info 0 samples [usec]
ost_quotacheck 0 samples [usec]
ost_quotactl 0 samples [usec]
mds_getattr 79 samples [usec] 10 23 963 12217
mds_getattr_lock 0 samples [usec]
mds_close 0 samples [usec]
mds_reint 18350 samples [usec] 21 34335 1726917 1945854633
mds_readpage 0 samples [usec]
mds_connect 156 samples [usec] 14 3933 10561 19878001
mds_disconnect 78 samples [usec] 4626 32412 899381 14064312635
mds_getstatus 78 samples [usec] 5 12 554 4184
mds_statfs 83 samples [usec] 6 63 1181 42677
mds_pin 0 samples [usec]
mds_unpin 0 samples [usec]
mds_sync 42 samples [usec] 14 5233 43371 141673119
mds_done_writing 0 samples [usec]
mds_set_info 0 samples [usec]
mds_quotacheck 0 samples [usec]
mds_quotactl 0 samples [usec]
mds_getxattr 366 samples [usec] 11 54 5867 101227
mds_setxattr 0 samples [usec]
ldlm_enqueue 115458 samples [usec] 16 22919873 226321884 2273577007368244
ldlm_convert 0 samples [usec]
ldlm_cancel 0 samples [usec]
ldlm_bl_callback 0 samples [usec]
ldlm_cp_callback 0 samples [usec]
ldlm_gl_callback 0 samples [usec]
obd_ping 252971 samples [usec] 5 67 2694192 30277682
llog_origin_handle_cancel 0 samples [usec]
ost_reply 0 samples [usec]

A.3 OSS

Here are the OSS/OST values available for monitroing:

1. /proc/loadavg

2. /proc/vmstat

3. Interface stats

4. OST stats - For each directory dir in /proc/fs/lustre/obdfilter,

5. RPC stats

11



(a) /proc/fs/lustre/obdfilter/dir/brw stats

snapshot_time: 1208806267.315413 (secs.usecs)

read write
pages per brw brws % cum % | rpcs % cum %
1: 642 1 1 | 5534 5 5
2: 112 0 1 | 58 0 6
4: 61 0 2 | 917 0 7
8: 42 0 2 | 962 1 8
16: 32 0 2 | 1973 2 10
32: 76 0 2 | 4167 4 14
64: 36 0 2 | 46586 50 65
128: 15 0 2 | 2104 2 67
256: 36810 97 100 | 30264 32 100

read write
discont pages rpcs % cum % | rpcs % cum %
0: 37826 100 100 | 92560 99 99
1: 0 0 100 | 5 0 100

read write
discont blocks rpcs % cum % | rpcs % cum %
0: 33342 88 88 | 87834 94 94
1: 4478 11 99 | 4730 5 99
2: 5 0 99 | 1 0 100
3: 1 0 100 | 0 0 100

read write
dio frags rpcs % cum % | rpcs % cum %
0: 416 1 1 | 0 0 0
1: 32926 87 88 | 87834 94 94
2: 4478 11 99 | 4730 5 99
3: 5 0 99 | 1 0 100
4: 1 0 100 | 0 0 100

read write
disk ios in flight ios % cum % | rpcs % cum %
0: 0 0 0 | 0 0 0
1: 1221 2 2 | 92406 94 94
2: 2305 5 8 | 4784 4 99
3: 3031 7 15 | 38 0 99
4: 3828 9 24 | 29 0 99
5: 4475 10 35 | 13 0 99
6: 4527 10 46 | 11 0 99
7: 5693 13 59 | 8 0 99

12



8: 6878 16 76 | 6 0 99
9: 9853 23 99 | 2 0 100
10: 88 0 99 | 0 0 100
11: 2 0 100 | 0 0 100

read write
io time (1/250s) rpcs % cum % | rpcs % cum %
1: 777 2 2 | 61758 66 66
2: 20 0 2 | 8204 8 75
4: 1977 5 7 | 21780 23 99
8: 4235 11 18 | 781 0 99
16: 15570 41 59 | 29 0 99
32: 14776 39 98 | 6 0 99
64: 449 1 99 | 0 0 99
128: 8 0 99 | 0 0 99
256: 0 0 99 | 0 0 99
512: 3 0 99 | 0 0 99
1024: 3 0 99 | 7 0 100
2048: 0 0 99 | 0 0 100
4096: 8 0 100 | 0 0 100

read write
disk I/O size count % cum % | count % cum %
4K: 2488 5 5 | 7977 8 8
8K: 656 1 7 | 705 0 8
16K: 514 1 8 | 1394 1 10
32K: 363 0 9 | 1306 1 11
64K: 321 0 10 | 2288 2 14
128K: 335 0 11 | 4468 4 18
256K: 219 0 11 | 46648 47 66
512K: 196 0 12 | 2250 2 68
1M: 36809 87 100 | 30261 31 100

(b) /proc/fs/lustre/obdfilter/dir/filesfree

(c) /proc/fs/lustre/obdfilter/dir/filestotal

(d) /proc/fs/lustre/obdfilter/dir/kbytesfree

(e) /proc/fs/lustre/obdfilter/dir/kbytestotal

(f) /proc/fs/lustre/obdfilter/dir/kbytestotal

(g) /proc/fs/lustre/obdfilter/dir/stats

snapshot_time 1208806427.826684 secs.usecs
read_bytes 37483 samples [bytes] 0 1048576 38618047029
write_bytes 92565 samples [bytes] 4 1048576 41013702098
iocontrol 1 samples [reqs]
get_info 0 samples [reqs]

13



set_info_async 1 samples [reqs]
attach 0 samples [reqs]
detach 0 samples [reqs]
setup 0 samples [reqs]
precleanup 0 samples [reqs]
cleanup 0 samples [reqs]
process_config 0 samples [reqs]
postrecov 0 samples [reqs]
add_conn 0 samples [reqs]
del_conn 0 samples [reqs]
connect 79 samples [reqs]
reconnect 0 samples [reqs]
disconnect 75 samples [reqs]
statfs 5 samples [reqs]
statfs_async 0 samples [reqs]
packmd 0 samples [reqs]
unpackmd 0 samples [reqs]
checkmd 0 samples [reqs]
preallocate 0 samples [reqs]
precreate 0 samples [reqs]
create 546 samples [reqs]
destroy 16803 samples [reqs]
setattr 1003 samples [reqs]
setattr_async 0 samples [reqs]
getattr 0 samples [reqs]
getattr_async 0 samples [reqs]
brw 0 samples [reqs]
brw_async 0 samples [reqs]
prep_async_page 0 samples [reqs]
queue_async_io 0 samples [reqs]
queue_group_io 0 samples [reqs]
trigger_group_io 0 samples [reqs]
set_async_flags 0 samples [reqs]
teardown_async_page 0 samples [reqs]
merge_lvb 0 samples [reqs]
adjust_kms 0 samples [reqs]
punch 1809 samples [reqs]
sync 0 samples [reqs]
migrate 0 samples [reqs]
copy 0 samples [reqs]
iterate 0 samples [reqs]
preprw 130048 samples [reqs]
commitrw 130048 samples [reqs]
enqueue 0 samples [reqs]
match 0 samples [reqs]
change_cbdata 0 samples [reqs]

14



cancel 0 samples [reqs]
cancel_unused 0 samples [reqs]
join_lru 0 samples [reqs]
san_preprw 0 samples [reqs]
init_export 0 samples [reqs]
destroy_export 0 samples [reqs]
llog_init 0 samples [reqs]
llog_finish 0 samples [reqs]
pin 0 samples [reqs]
unpin 0 samples [reqs]
import_event 0 samples [reqs]
notify 0 samples [reqs]
health_check 0 samples [reqs]
quotacheck 0 samples [reqs]
quotactl 3 samples [reqs]
ping 256937 samples [reqs]

15


