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1. Introduction

In this report, the results of some recent analysis of the 15-meter hoop-column

space antenna are presented. A model and some test data of the antenna are reported

in reference 1 and 2. Although a detailed description of the antenna can be found in

the above references, a brief description of the antenna is given for completeness of

this paper. Figure 1 shows the 15-meter diameter Hoop-Column antenna. The primary

structural elements of the antenna are the telescoping column and the hoop. The hoop

is connected to the column by cables that emanate from the upper and lower regions of

the column. The mesh surface is shaped by a network of cables that emanate from the

lower section of the column. The shape adjustment refers to the adjustment of the mesh

surface by means of a subset of control cables attached directly to the surface.

The work reported in this manuscript consists of three parts. First, the original

finite-element model of the antenna given by the EAL code has been converted to a

COSMIC/NASTRAN finite-element model. The purpose for the above conversion was to

enhance portability of the model, particularly for use by engineers in industry. This con-

version required some remodeling of a few components in the antenna. The NASTRAN

model and the original EAL model are compared using predicted responses.

Secondly, the least-squares differential procedure for shape adjustment as outlined

in reference 1 has been modified by using singular value decomposition to avoid in-

troducing unnecessary instabilities into the problem. In addition, whereas reference 1

neglected lateral motion in these calculations, it has been included here because of the

high accuracy requirement of the antenna. Furthermore, the set of cable length changes

which serves as the tuning parameters of the least-squares procedure is expanded to

include parameters of the perfect parabola of the four quadrants of the antenna surface.

The final part of the study involves a sensitivity analysis of the RMS error of a

nominal antenna shape. An estimate of the error bound due to the uncertainty in the



cable lengths have been obtained. This analysis provides some quantitative measure of

the needed accuracy of the cable adjustments in the laboratory.

2. NASTRAN model

An initial NASTRAN model of the antenna was obtained by converting the existing

EAL model via the PATRAN program. After updating the pretension values in some of the

control cables, the NASTRAN model was placed into an iteration loop to obtain the global

stiffness matrix of the antenna assembly. The need for an iterative procedure arises from

the fact that the hoop-column antenna is kinematically unstable without the differential

stiffness provided by the hoop cables and control cables. Thus, the global stiffness matrix

which contains a nominal component (from rigid format 1) and a differential component

(from rigid format 4) cannot be determined directly by using a single NASTRAN rigid

format.

After computing the nominal component, the iteration procedure can be summarized

as follows:

(a) With the initial pretension values of the cables and the mesh elements, and with

almost all degrees of freedom constrained, NASTRAN rigid format 4 (static analysis

with differential stiffness) is executed to yield the initial estimate of the differential

stiffness matrix.

(b) The estimate of the differential stiffness matrix is then added (via NASTRAN Alter

commands) to the nominal stiffness matrix to obtain an approximation to the global

stiffness.

(c) The approximate global stiffness along the true grid point constraints is used in

another rigid format 4 execution, to obtain a better estimate of the differential stiffness

matrix.

(d) Step (b) and (c) are repeated until desired accuracy is achieved.

(e) The combination of the stiffness matrix and the most recently updated differential

stiffness matrix referred to as the global stiffness matrix is used in the NASTRAN

static analysis (rigid format 1) to generate the influence coefficients that are utilized

in the least-squares adjustment procedure.

The DMAP Alters utilized in the NASTRAN runs of steps (a)-(e) are summarized in

Appendix A.
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3. SVD Solution to Least-Squares Problem

The singular value decomposition (SVD) solution to the least-squares problem is

well established and an excellent discussion can be found in reference 3. What follows

next is a summary of the essential equations used in this study.

The error vector for an overdetermined set of equations is defined by

e -Ax -b (1)

The (m x n) matrix A and the (rn x 1) measurement vector e is assumed to be given.

For the antenna shape adjustment problem considered here, m -- 88$ and n = 96. A

quadratic weighted sum of the error is defined by

J = eTTV2e (2)

where W represents a positive semi-definite set of measurement weights. The weights

used in this study are taken to be represented by an identity matrix. Besides the trivial

but standard identity matrix weighting, a set of measurement weights based on the

electromagnetic energy distribution on the surface is given in reference 1.

The SVD solution to the least-squares problem of minimizing J with respect to x is

given by

x LS = V_-I U,TTVb (3)

where

WA=[U,, U"-n][_] VvO (4)

It should be mentioned that the above form of the least squares solution is the most

numerically reliable. 3

4. Inclusion of the (X,Y) Sensitivity

The original least-squares formulation of the antenna 1 is based on the RMS error

given by

Ri'lSl =- ]]zt ( o't OzM )- : + lo (5)

where z x is the given "ideal" z coordinate of the parabola corresponding to the measured

x and y coordinates, x M and y._t. Note that x M, yM and z z are vectors of dimension



888 x [ while Au represents the 96 x ] vector of cable adjustments. The subscript "o"

denotes the values at the nominal point. In Eq.(5), I1" !12denotes vector 2-norm. Figure

2 illustrates the problem with the cost function given by RMSI. The cable adjustment,

Au, affects not only the z coordinate but the a: and y as well. Since the objective of

the adjustment is to approach the perfect parabola as close as possible, ignoring the

x and y deflections may produce small error with respect to unadjusted z coordinates

but large errors with respect to the corrected z corresponding to the corrected x and y

coordinates.

Thus the modified RMS error to reflect the x and # dependence of z z is

O-' Oz' . ( )
;" A M M Z21 _z M

m.xs= -Ilzor + _ o,a= + --$_-ylevy - + -5-_-.IoA. I1= (6)

The predicted changes in x and y coordinates of the target points are given by

OX,'_I

AxM ._ &__71oAIL
(7)

Oy M

Or _rwhere the z and t; sensitivity matrices, --5-g-_Io and _,, ,o, are available from the NAS-

TRANmodel

5. Simultaneous Adjustment of Cable and Parabola

Previously, the desired parabola is assumed known and the cable adjustments were

made to -minimize the RMS fit error :with respect to the given parabola. Consequently,

the design freedom in the variables parameterizing a parabola have not been utilized

although a desired or an optimum parabola is not known a priori to the adjustments;

recall that a least squares solution depends on the choice of the desired parabola. In

this section, the least-squares differential correction algorithm is extended to include, in

addition to cable length adjustments, the focal lengths, ,f, and the vertex offsets, V, and

_, of each quadrant.

We begin by defining the fit error,

C "_--ZI(xAI,_jAI,p) -- Z3'I(Yt) (8)

where the parameter vector p is defined by

p - (A, v,_. _.._,A, _.2. _._2.f_, v,_, v_, A, _";,,v,,.,)r (9)



By linear expansions of ,r and zM in Eq.(8) about the nominal point, M A.tand~ Xo _Yo Po,

Ozl AX M Ozl hi OZI

o-gjo + o--71oAy +-g-f
(10)

z M ~ M OZ M
= Oo + +...

where Ax 'w and Ag M are given in Eq.(7). By substituting the linear expansions of

Eqs.(10) into Eq.(8), the linearized error vector takes the form

= /,,p (11)

where the gradient matrix is given by

[ as' o,." o-_d..o_.,__ o, M o._'] (12)G -_ - _ o. Oy _ Ou %" au op

In the above equations, the terms, as' and as'a_--Trr ay-Vrrcan easily be obtained from the parabolic

equations for the j-th target in the k-th quadrant

] , :Z

zj = _ [(:rj - iQk) 2 + (yj- 'I.'.,,_,.)] (13)

The terms oP, _ and '_", a,, , ,_,, , _ are of course obtained from the NASTRAN model. The

least-squares solutions can be computed by SVD as mentionted earlier. The resulting

equations represent a simultaneous update for both cable lengths and several param-

eters of the perfect parabola. For improved results, a few iterations can be carried out

provided the gradients can be updated.

The Table below shows the predicted surface RMS errors for several cases. Case 1

represents the initial unadjusted surface conditions. The initial errors from both EAL and

NASTRAN finite-element models were almost identical. Case 2 is the reference case

obtained from reference 1 after the adjustment, which uses an EAL model. Case 3 uses

the same least-squares adjustment as case 2 but with an equivalent NASTRAN model

obtained in this study. Clearly, the EAL and NASTRAN models produces very similar

results. The least-squares extension to include x and y sensitivities as given by R._I,.,q2

in Eq.(6) are shown in case 4. Only .5 mils improvement is indicated. The results of a

simultaneous adjustment of the cables and a set of parabola parameters are shown in

case 5. It can be seen that 6.3 mils of improvement is obtained over case 3 after the

second iteration. The table below shows average cable length changes corresponding



to the various sets of adjustments. Note that the average cable length change given in

the table is the deviation from case 2 cable lengths in mils. It can be observed that the

simultaneous tuning gives an improvement which is not insignificant and corresponds to

cable length changes which are implementable.

TABLE: Predicted Surface RMS Error

Case RMS Error (mils) Average Length Change (mils)

1. Initial

2, Belvin (EAL)

3. Belvin (NASTRAN)

4. With (x,y) Sensitivity

5. Simultaneous Tuning

158.7

82.0 0

82.8 3

82.3 2

76.7 (1 ._t iter) 12

76.5 (2 ''_ iter) 12

Figure 3 shows the effect of initial RMS error distribution on the parabola parameter

changes. It is interesting to observe that quadrants 3 and 4 having larger initial RMS

errors result in larger parameter changes.

6. Error Bounds Due to Uncertainty in Cable Adjustments ............

Among various concepts and idealizations, "exact" adjustments of the cables cOnsti-

tute wishful thinking and is painfully evident in the laboratory. In this section, an attempt

is made to address the unce_ainties _in_the cabie_adjustrnent and iis infiuence_0n the

surface RMS error. By matrix manipulations, upper bounds of the surface RMS error

are obtained as a function of the nominal sensitivity and the magnitude of the cable

adjustment error or uncertainty.

First, lei the 2'norm of the cable adjustment error vector be bounded by _, i.e., =

ItA,,II - (A"'rA.) 'I_ <_ e (14)

By writing the linear perturbations in = as

A:-'- SA,; where S'_-- [ _: (15)



the surface RMSa: error in z can be written as

RMSa= = ,n "- \ _ ,) (16)

The sensitivity matrix, S, is of dimension (m x n). The RMS is bounded by the Rayleigh's

quotient, namely,

max AuTSTsz_&u = A.,a.[STS] = O'_[S] (17)
Ila-lh=l

Clearly then,

max R._ISA_ = -----_a[S] (18)
II±ult2--+ x/m

Therefore, the R3IS,a_ corresponding to any Au satisfying

Ila.lt2 _<+ (19)

can be bounded by #2 where
E

I'2 = _[S] (20)

A more convenient bound for the RMS error than the 2-vector norm or the Euclidean

norm is the oo-norm defined by

Ila,,lloo- max(lLx.,I; i= 1,...,n) (21)

From the matrix identity

V;TII_X,,II _ _> IlzX.II 2 (22)

it follows that if A_+ satisfies

v4TIIA,,II+ _< V;7_ (23)

then, A. must also satisfy

IIn,,ll_< v_+ (24)

In summary, for all ,,__kusatisfying

ll_,ll_o_<, (25)

the corresponding RMS_= is bounded by #o_ where

t_ = Vf_e_[S] (26)
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For the given antenna structure,

= 15.4

m = 888 (number of targets)

n = 96 (number of cables)

Based on the above numerical values, two conditions bounding R.¥ISa. error can be

written as follows:

CONDITION 1: For all [lAulj2 _< _ : RMSa: <_ 0.52e

CONDITION 2: For all Ila.ll o _< _ : RMSa: <_ 5.0Go

Note that the above bounds are dependent on the choice of the norm of the un-

certainty in the cables. In general, it is anticipated that the 2-norm should give a tighter

bound, as compared to the oc-bound, due to its measure in an average sense. As an

example in using the above conditions, if the average error (in the 2-norm sense) in the

cable adjustment is given as 2 mils, then, the RMS/,, error must be less than 1.04 mils.

On the other hand, if each cable uncertainty is known only to be bounded by 2 mils,

then, the RAI,K,,= error can be guaranteed to be less than 10.12 mils.

7. Concluding Remarks and Recomendations

Further improvements in addition to the numerical results given in this study appears

inevitable if additional antenna structural data is available. In particular, the gradients are

not updated after each least-squares correction due to computational costs; the gradients

are computed by a finite-difference procedure using the approximately 10,000 degrees

of freedom finite-element model from NASTRAN. Hence the gradients are assumed

fixed during the least-squares differential correction iterations. It is necessary to include

NASTRAN model in the least-squares loop.

Perhaps a more apparent problem in the general solution strategy is the lack of

correlation of the RMS shape error from the measurements and its predicted values.

Specifically, the RMS error from the finite-element model is only approximately 7 mils

whereas the measured RMS values ranged approximately from 70 to 150 mils. The

large difference in the RMS values seem to indicate that the mixture of sensitivity matrix

obtained from the NASTRAN model and the measured coordinates of the target points
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of the real structure is severely limiting. Note that the sensitivity matrix at the target

points are genenrated from the finite-element model which requires the coordinates of

the target points. Clearly an accuracy problem will result if the measured and predicted

coordinates do not correlate, as evidenced by the differing RMS error. As noted by

earlier studies, the above modeling problem originates because the finite-element model

does not contain any information on fabrication errors.

The RMS error basically is a function of the accuracy of the target point coordinates

and the analytical model of the system. Imperfection of assemblying, material stiffness,

joints, etc, will significantly introduce the modeling error which can be measured through

laboratory testing. Thus, to further improve the RMS error, laboratory tests are required

to measure the real sensitivity matrix in order to further improve the RMS error prediction

capability. However, experience has shown that testing is usually a time consuming and

costly task which requires considerable expertise in different disciplines. Furthermore,

exact estimation of the real sensitivity matrix is not feasible.

The following are recomended to further enhance the shape adjustments: (1) Human

errors in assembling and imperfections in manufacturing should be minimized through the

establishment of stricter guidelines, (2) the adherence of the test articles to manufacturer

specifications and the validity of the analytical model should be verified via laboratory

measurements, (3) the errors in modeling and the sensitivity matrix should be statistically

quantified to obtain more realistic estimates of the RMS error bounds. It is believed that

these recommendations, while painful (if one were to actually carry them out), will further

improve the antenna shape.

Acknowledgements

The authors would like to thank Keith Belvin, Harold Edighoffer and Dr. Jerry Hous-

her of the Spacecraft Dynamics Branch, NASA Langley Research Center, for their valu-

able discussion and suggestions.



Reference

Belvin, W.K., Edighoffer, H.H., and Herstrom, C.L., "Quasi-Static Shape Adjustment

of a 15 Meter Diameter Space Antenna," AIAA Paper No. 87-0869-CP, presented

at the 28-th Structures, Structural Dynamics and Materials Conference, Monterey,
CA, April 6-8, 1987.

2 "Develpoment of the 15 meter Diameter Hoop Column Antenna," NASA CR 4038,

Harris Corporation, Melbourne, Florida, 1986.

:_ Golub, G.H. and VanLoan C.F., Matrix Computations, The John Hopkins University
Press, Baltimore, MD, 1983, Chapter 6.

10



Appendix A

(a) Executive Deck data and Dmap Alters used to generate and save the intial differen-
tial stiffness matrix:

ID ANTENNA, STATIC

SOL 4,0
TIME 30

APP DISPLACEMENT

ALTER 87 $

OUTPUT1 KDGG,,,,//-I/6

EXIT $

ENDALTER

CEND

(b) Executive Deck data and Dmap Alters used in the iterations of step-(b) to generate
the updated differential stiffness matrices:

ID ANTENNA, STATIC

SOL 1,0

TIME 300

APP DISPLACEMENT

ALTER 37 $

INPUTTI /KGGG,,,,

ADD KGGG,KGGX/KKKI

EQUIV KKKI,KGGX $

ALTER 87 $

OUTPUT1 KDGG,,,,//-I/7

EXIT $

ENDALTER

CEND

/c, N,-I/6 $
$

(c) Executive Deck data and Dmap Alters used to generate the global stiffness matrix
and obtain the displacement solution:

ID ANTENNA, STATIC

SOL 1,0

TIME 300

APP DISPLACEMENT

ALTER 49 $

INPUTTI /KDGG,,,,

ADD KDGG, KGGX/KKKI

EQUIV KKKI,KGGX $

ENDALTER

CEND

/C, N,-I/7 $

$
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FIGURE 1" Finite element model of Hoop-Column antenna
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FIGURE 2: Effect of (=,y) sensitivity on RMS error
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