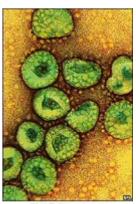
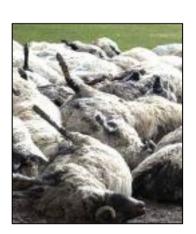


Overview of Laboratory Risks

Laboratory Biosecurity and Biosafety
for BSL3 Laboratories
India
Jan 2007

www.biosecurity.sandia.gov




The Infectious Disease Threat

- Recent outbreaks of emerging infectious disease awakened the international community to threats to public and agricultural health
- Most threat mitigation strategies have focused on outbreak management
- Measures must also be developed to prevent outbreaks of highly infectious disease
- Laboratory biosafety and biosecurity are two such methodologies that can help prevent infectious disease outbreaks
 - Biosafety
 - Protect laboratory personnel and the environment from accidental exposure to or release of potentially hazardous agents
 - Biosecurity
 - Protect biological agents against theft by those who intend to cause <u>deliberate</u> exposure through malicious use

Today, the infectious disease threat is a global problem that requires global solutions

SARS virus

Strengthening Biological Risk Management

Vision for Integrated BioRisk Management:

- Increased focus on "awareness" to change current culture
- Clarify terminology
- Development of targeted "training strategies"
- Securing "commitment" from key stakeholders, including government officials, who must be on board
- Continue increasing "capacity" based on Regional/Country needs and establish accountability through development of Country "report cards"

Severe Acute Respiratory Syndrome (SARS)

- In 2003, SARS infected over 8,000 people and killed almost 800
- The disease ravaged economies in the Pacific Rim and Canada and struck fear across the globe

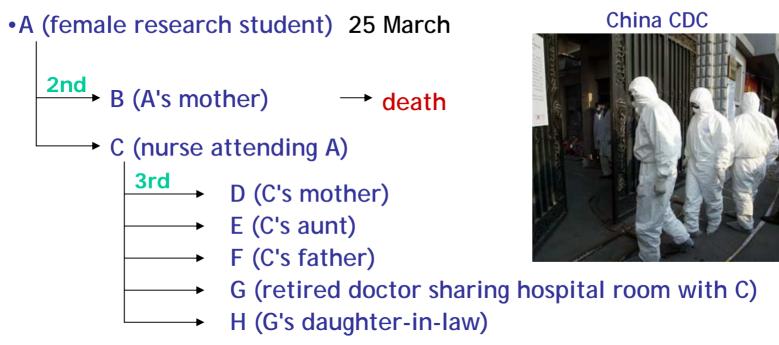
- Laboratory acquired SARS outbreaks occurred in Singapore, Taiwan, and mainland China
 - Singapore—September 2003
 - Taiwan (China)—December 2003
 - Beijing and Anhui (China)—March 2004

Laboratory-Acquired Case of SARS

Singapore – September 2003

- A graduate student acquired SARS in a BSL-3 laboratory in the Environmental Health Institute
- Inappropriate laboratory procedures and a cross-contamination of West Nile virus samples with SARS-CoV in the laboratory led to the infection
 - No secondary transmission

Taiwan (China), December 2003


- Scientist was working on SARS-CoV in a BSL-4 facility at the Institute of Preventative Medicine, National Defence Center (IPM-NDMC)
- Disinfected spillage of material in the transportation chamber with 70% ethanol and manual cleaning
- SARS-CoV was collected from the handle of an alcohol spray bottle from the transportation chamber and the switch panel of the cabinet
 - No secondary transmission

China, March-April 2004

- Beijing and Anhui Province linked to the National Institute of Virology, China CDC
- The source of the outbreak was incomplete inactivation of SARS-CoV by cold inactivation
- Involved two verified chains of SARS-CoV transmission
 - Three generations, resulting in 9 cases
 - Three additional cases documented by seroconversion

Laboratory-Acquired SARS Outbreak in China, March-April 2004

• I (male laboratory researcher) 17 April

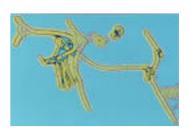
SARS IgG (+)

J (female laboratory worker in BSL-3 laboratory)

K (female laboratory worker developed pneumonia)

L (male laboratory worker, A's supervisor)

Common Problems

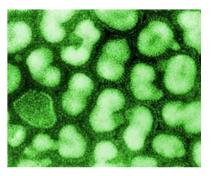

- Bad practice in laboratory management
- Poor supervision of less experienced professionals
- A lack of accountability for occupational health and safety
- A lack of biosafety policy
- A lack of biosafety procedures and staff training in biosafety practice
- A lack of internal and external quality assurance

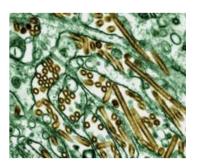
Laboratory-Acquired Cases of Ebola and Tularemia

Ebola

- 1994 Outbreak in Cote d'Ivoire
- Swiss zoologist performs autopsy on wild chimpanzee
- Accidental infection occurs;
 zoologist contracts Ebola

Tularemia


- In 2004, three laboratory workers at Boston University contracted tularemia
- Concern that lax illness reporting practices could lead to outbreaks of infectious disease among the local community



Highly Pathogenic Avian Influenza

- Millions of poultry culled in response to outbreaks in South East Asia
- Over 60 human deaths since late 2003, elevated mortality
- Push to construct clinical and diagnostic laboratories for H5N1 throughout Southeast Asia
 - Imperative to establish sound biosafety and biosecurity practices to prevent accidental or intentional release of the virus
- Experts fear that if human-to-human transmission becomes more efficient, a pandemic looms
- Recently, sequencing data of the influenza virus strain that caused the 1918 pandemic revealed that the virus was very similar to H5N1 and had originated in birds (Taubenberger 2005)
 - Unlike the strains associated with the 1958 and 1967 pandemics

Avian influenza virus

Laboratory Accidents

- 27% splashes and spills
- 25% needlesticks
- 16% cuts from sharp objects
- 14% animal bite/scratches
- 13% mouth pipetting
- 6% other, unknown

From: Pike, R.M. 1976. Laboratory-associated infections: Summary and analysis of 3,921 cases. Hlth Lab Sci 13:105-114.

Laboratory-Acquired Infections

TABLE 1 Comparison of 10 most common overt laboratory-associated infections over time

1930–1978 ^a			1979–1999		
Agent or disease ^b	Cases	Deaths	Agent or disease	Cases	Deaths
Brucellosis	426	5	M. tuberculosis	223	0
Q fever	280	1	Q fever	176	0
Hepatitis	268	3	Hantavirus	169	1
Typhoid fever	258	20	Arboviruses	164	- 3
Tularemia	225	2	Hepatitis B virus	84	1
Tuberculosis	194	4	Brucella sp.	81	4 ^c
Dermatomycosis	162	0	Salmonella sp.	66	2^d
Venezuelan equine encephalitis	146	1	Shigella sp.	56	0
Psittacosis	116	10	Hepatitis non-A, non-B	28	0
Coccidioidomycosis	93	2	Cryptosporidium sp.	27	0
Total	2,168	48	Total	1,074	11

^aAdapted from Pike, 1978.

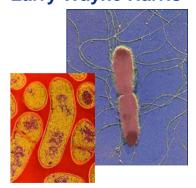
From: Fleming, D.O. and D.L. Hunt. *Biological Safety: Principles and Practices*. ASM Press, 2000

^bNot included are 113 cases of hemorrhagic fever contracted from wild rodents in one laboratory in Russia in 1962 (Kulagin, 1962).

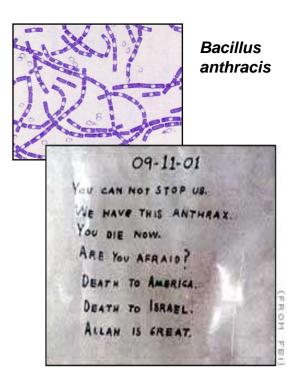
^{&#}x27;Aborted fetuses.

⁴One death associated with a secondary exposure case.

Examples of Illicit Acquisition


- Rajneeshees acquired Salmonella typhimurium from a medical supply company (1984)
- Larry Wayne Harris, a white-supremacist, ordered 3 vials of Yersinia pestis from the ATTC (1995)
- J.A. Krantz stole Ascaris suum eggs and used against roommates (1970)
- Laboratory technician Diane Thompson removed Shigella dysenteriae Type 2 from hospital's collection and infected co-workers (1995)
- Weathermen group attempted to get an employee at Ft. Detrick to obtain pathogens (1970)
- Dr. Suzuki stole Salmonella typhi cultures from the Japanese National Institute of Health (1964)

Bhagwan Shree Raineesh


Larry Wayne Harris

Anthrax

- In 2005 natural outbreaks have occurred in the North America, South America, Asia, and Europe
 - Thousands of cattle, sheep, horses, llamas and wild bison have been affected
 - High zoonotic potential
- In 2001 Bacillus anthracis spores were maliciously released through the United States postal system in 2001
 - Resulting in 5 deaths and 22 additional illnesses
 - The attack has increased U.S. awareness of the biological weapons and bioterrorist threat
 - Suspicion that the material was obtained from a bioscience laboratory
 - As result, the U.S. has imposed new rules that are designed to improve the security and agent accountability of legitimate bioscience research laboratories

Conclusions

- Infectious diseases pose significant threats to public and agricultural health
- Research on harmful biological agents is crucial to mitigate the threat
 - However, release and theft of biological agents <u>must</u> be avoided
 - Imperative to protect public and agricultural health, and safeguard laboratory workers
- Managing risks in the laboratory is dependent on both biosafety and biosecurity
 - Helps reduce the threat of infectious disease
 - Established international guidance on laboratory biosafety and evolving international expectations for laboratory biosecurity