
2SANDIAREPORT
SAND96-2672 ● UC-405
Unlimited Release
Printed April 1997

Massively Parallel I/O: Building an
Infrastructure for Parallel Computing

David E. Womble, David S. Greenberg

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. %X 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 port R.OyalRd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

SAND96-2672
Unlimited Release

Printed April 1997

Distribution

Category UC-405

Massively Parallel 1/0:
Building an Infrastructure for Parallel Computing’

David E. Womble

Applied and Numerical Mathematics Department

Sandia National Laboratories

Albuquerque, NM 87185

David S. Greenberg

Algorithms and Discrete Mathematics Department

Applied and Numerical Mathematics Department

Sandia National Laboratories

Albuquerque, NM 87185

Abstract

The solution of Grand Challenge Problems will require computations that are too large to

fit in the memories of even the largest machines. Inevitably, new designs of 1/0 systems will

be necessary to support them. This report describes our work in investigating 1/0 subsystems

for massively parallel computers. Specifically, we investigated out-of-core algorithms for

common scientific calculations present several theoretical results. We also describe several

approaches to parallel 1/0, including partitioned secondary storage and choreographed 1/0,

and the implications of each to massively parallel computing.

1This work was supported by the United States Department of Energy under Contract DE-AC04-
94AL85000 and was performed at Sandia National Laboratories under the Laboratory Research and De-
velopment Program

1

1. Introduction

The solution of Grand Challenge Problems will require computations that are too large to fit

in the memories of even the largest machines available today. The speed of individual proce-

sors is growing too fast to be matched economically with increased memory size. Successful

high performance programs will have to be designed to run in the presence of a memory

hierarchy. Great efforts have already been made to optimize computations for the fastest

end of the hierarchy, i.e., high speed registers and caches. The result has been the creation

of optimized codes such as those in the BLAS [7]. At least as large an effort must be made

to address the slow end of the hierarchy.

Traditionally the maintenance of the slow end of the memory hierarchy has been lumped

under the cat egory of 1/O and left to the control of the operating system (OS). The result has

been general purpose memory management routines that work fairly well in multitasking,

workstation environments, but which are not appropriate in the massively parallel (MP)

computing environment.

In this report, we will argue that more explicit management of disk 1/0 is necessary

for high performance, although we expect that much of the management will eventually be

pacliagecl in libraries with system support. As an example, we will consider the LU factor-

ization algorithm for solving dense linear systems. We will present a theoretical framework

for explicitly managing 1/0 in the LU factorization algorithm and an implementation and

results on the nCUBE 2 MP computer. We will then compare these results with OS managed

1/0.

We will present two different approaches to explicitly managed disk 1/0. The first is

partitioned secondary storage (PSS), in which each node in an MP computer maintains an

independent melmory hierarchy, including disli. The second is choreographed 1/0 (CIO), in

which clata is striped across disks in a. parallel file system and groups of processors issue

synchronized calls to the file system.

The purpose of this report is to describe our experiences in producing high performance

codes that act on data sets that are too large to fit in core memory. Some of the lessons

learned are algorithmic, i.e., ways to structure the code to reduce the 1/0 bottleneck. Others

are systems related, i.e., features of the OS that can make producing high performance codes

easier.

Throughout the paper, LU factorization is used as an example. It is a common kernel

in many scientific applications, such as boundary element methods and electromagnetic

scattering. The 1/0 required by LU factorization is structured and it should be possible for

an 1/0 subsytern to achieve most of its practical peak bandwidth. It is thus a good first

test of 1/0 algorithms and hardware, although it is not representative of all 1/0 required by

scientific applications.

In Section 2. we describe the characteristics of 1/0 in scientific computing. In Section

3. we describe partitioned secondary storage. In Section 4, we describe the L{J factorization

algorithm and give theoretical upper and lower bounds on 1/0 requirecl by the algorithm.

t~:e also describe a practical implementation using the concept of PSS on the nCUBE 2 and

give performance results. In Section 5, we describe choreographed 1/0, and in Section 6,

we clmcribe an experimental file system for the Intel Paragon that implements CIO. We

2

summarize the report in Section 7.

2. Characteristics of 1/0

The 1/0 requirements of scientific applications logically divide into several classes: initial in-

put of data, access to static data/databases, output of results, and maintenance of temporary

memory.

The initial transfer of data into the machine can be via a high-speed network connection

such as a HiPPI or ATM connection, by a directly connected disk, or from another computer.

It. is a one-time operation. Usually, hardware speed is the limiting factor. If the inital loading ~

of data is done improperly, it can add significant overhead to a computation, but it is rarely

in insurmountable bottleneck.

However, a mismatch between the format in which the data arrives and the format in

which the program desires the data can be both a major programming inconvenience and

can cause major inefficiencies in later stages if not corrected. The ability to convert data

from one format to another is one of the major uses of the choreographed 1/0 approach

described in Section 5. Of course it would be preferable if no conversion were necessary.

However, the composing of individual programs or subroutines to create an application will,

inevitably, require conversions since different tasks have different natural formats.

Another important issue for the inputting of data is efficiently spreading out data which

will be accessed by many nodes. For example, having each node in a large parallel machine

read the same data. from the same file is much more expensive than having one node read

the file and then broadcast the data to all the other nodes.

‘The question of how to share data which will be used by many nodes does not just occur

during input. Many applications access large tables which contain properties of objects in

the application (such as material properties or velocities within a section of siemic terrain).

It may not be clear how- to distributed this information at the beginning of a program or the

best clistribution may change over time. Furthermore, for different numbers of processors

the preferred layout may differ. For example it may be desirable to have one complete copy

of the table per some number of processors rather than one copy over all processors or one

copy in each processor.

The output of results is similar in nature to the input of data. A conversion of format

may be necessarj but each item is written just once. Typically, an acceptable method of

streaming the output can be found. In the case of repeated output of intermediate results

(e.g., graphical data in a physical simulation) the output requirements are static.

The hanclling of temporary values is much more problematic. Temporary values must

be both written and read. The order in which they are accessed can change over time.

In addition, the critical path of the computation will rely on data being present in fast

memory. If the management of temporary memory is not efficient, it can slow the whole

computation to a crawl. Demand-paging virtual memory is currently the most popular

met hod of maintaining temporary storage (and is provided by many MP vendors). While

virt. ual memory simplifies the programming, no virtual memory system can perform as well

as a cocle written by a programmer who understands the algorithm being implemented. In

fact, tlw overhead of a. virt ual memory system often defeats the advantage of using a parallel

3

supercomputer, i.e., computational speed.

In the next sections we describe two paradigms for allowing the programmer (or library

routine) more explicit control over the management of temporary external storage. These

paradigms are designed to yield as natural a programming model as possible while at the

same time allowing for highly efficient implementations.

3. Partitioned secondary storage

If our goal is to have high performance on large number of processors, we cannot pay the

overhead for general purpose 1/0 service. Instead, we must understand the characteristics of

our problems and tailor the 1/0 system to our problems. One approach to this is partitioned

secondary storage (PSS).

For the large scientific codes written at Sandia, it has become apparent that the overhead

of sharecl memory emulation is often large. A message passing paradigm is preferred because

of its higher performance. The key aspect of this paradigm is that the programmer explicitly

arranges for data which is used locally to be stored in local memory. PSS maintains the view

of local storage: each processor has its own logical disk. The data on a processor’s disk will

be treated similarly to the data in its local memory, and the processor will have sole control

of this data. Any sharing with other processors will be through explicit message passing.

PSS allows the application to control data locality. The programmer always knows where

the data is ancl can therefore reliably plan the overlap of computation, message passing, and

1/0. This control of the data meshes well with the message passing paradigm. If, as is

often the case, the program has been parallelized by creating processes that work mostly on

local data, we clo not want the 1/0 system to destroy the locality in the search for general

parallelism. Using PSS, the program can still be divided up so that the compute work is

evenly balanced among the processors and so that the data can be reused as often as possible.

This data reuse/locality is critical for good performance. PSS removes the impact of limits

on local memory size by allowing the computation to be decomposed so that each process

can be designed as if it had access to a large memory without destroying locality.

\Ve remark here that the programming required to make effective use of PSS is more

complicated than that required for shared memory emulation or for a virtual memory system.

However, because PSS strictly adheres to the distributed memory paradigm, we expect that

anyone programming a distributed memory machine using explicit message passing will be

able to use PSS easily and effectively.

We also remark that the requirement that each processor has its own logical disk does

not necessitate that each processor has its own physical disk. The use of virtual disks may

not match the performance of separate physical disks. However, good performance should

still be a.chievecl because the demancls on the operating system are minimal: it need only

interleave standard file system requests to the virtual device.

There are several alternatives to the PSS paradigm, each with its own advantages and

areas of applicability. One alternative is the shared parallel file system (PFS), which is in

colnmon use. This is typically a higher level approach than PSS and consequently recluires

more booklieeping on the part of the OS. One advantage is that the format of the data on the

disks is transparent to the programmer, so the programmer need not spend time tuning it.

4

A second advantage is that data maybe shared amongprocessors through the file system.

The clisadvantages of this paradigm area reduction in performance due to overhead, the

inability of the file systemto optimize data placement based on future access patterns of the

code, and access conficts if data isto be shared through the file system.

Another alterna.tive ischoreographed I/O. This issimilartothe PFS with the addition

that the file system provides synchronizing routines that allow the processors to control the

placement of data on the disks during a write operation and the distribution of data during

a read. An experimental file system incorporating choreographed 1/0 will be describe later

in this report.

4. LU factorization

The solution of clense linear systems of equations is a critical kernel in many scientific appli-

cations, including boundary elements methods for partial differential equations and electro-

magnetic scattering. As such, it provides a good test case for out–of–core paradigms. Here

we develop an LU factorization routine based on the PSS paradigm.

LIJ factorization is one of the most effective algorithms for the solution of dense linear

sytems. In LLJ factorization, a matrix A is decomposed into the product of a lower triangular

matrix L and an upper triangular matrix U. (If pivoting is required, L is logically lower

triangular.) The basic LU factorization algorithm [L,U]= LU(A) from [5] is given below.

The matrices A.L and U are divided into submatrices denoted by subscripts (e.g., A1,I
de

(1

lotes the upper left submatrix of A).

[Ll,l,UI,I]= LU (Al,l)

U1,2= L;,;AI,z

L1,2= O
U2J = o
L2,1 = A2,1Ul;;

[L2,2, U2,2] = LU (Az,z – L2,1UI,2) .

Once the matrix is factored, the associated linear system can be solved with a forward

substitution ancl a backward substitution using the matrices L and U respectively.

4.1. 1/0 complexity of LU factorization

Theoretical results on the 1/0 complexity of an algorithm can provide a guide in developing

out-of-core algorithms; although, as we will demonstrate later, “good” out–of–core algo-

rithms C1Onot necessarily achieve optimal 1/0 complexity. Here we derive upper and lower

bouI~ds on 1/0 for optimal LU factorization algorithms.

There has been quite a. bit of work on the 1/0 complexity of several algorithms, including

permutation, sorting, FFT’s and matrix–matrix mllltiplication[s, 2, 6, 8]. ~~-e can derive an

upper bound for L(J factorization (with or without pivoting) using the same techniques used

to clerive au upper bound for matrix–matrix multiplication in [8]. Specifically, we will develop

(or qllote) bounds for the following:

5

~AfA[(72) the 1/0 complexity of multiplying two n x n matrices,

TTs(?}) the 1/0 complexity of computing L-lA(or equivalently the

1/0 complexity of computing AU-l),

l’~[r(n) the 1/0 complexity of computing LU(A).

where A is an 72 x n matrix, L is an n x n lower triangular matrix and U is an n x n

upper triangular matrix. All mat rices are assume to be in either row–major or column–maj or

orcler. The 1/0 complexities above will be bounded in terms of the following variables.

n size of the lmatrix to be factored,

ill size of memory,

B totaJ size of one 1/0 request (across all processors).

LEMMA 4.1 (VITTER. SHRIVER). T,w~(n) < C* for some constant C.

Proof See [S] •l

LEMMA 4.2. TTS(IZ)< C ~, for some constant C.

Proof Without loss of generality, we may assume that the triangular system under con-

sideration is lower triangular. We divide the matrices L and A into four submatrices denoted

by subscripts and write

(L::A1,I L:;A1,2——
–L;,jL2,1L;,jAl,l+ L;;A2J)–GL2>1GA1!2 + -@42,2 “

The above calculations show that

TT,$(?’~) < 6T~s(n/2) + 2TJ11,11n/2+ ~1~

3

< 6TTS(n/2) + ~Cz~
8 B~

+Clg,

where C’l and [-’2 are constants, and C1n2/B is a bound on the time to permute the subma-

trices into ro~v-[llajor or column-major order [s]. We recursively subdivide the problem until

mat rices fit iut o memory, that is, we subdivide the problem k times, w-here k = log2 (n 2/Al).

This yields ‘Tz-.s(n) < C *. ❑

LEMMA 4.3. TUT(TL)< C ~, for some constant C.

Proof Ll:e see from Eq. (1) that

w]lere (-71is a constant., and C1n.2/B is a bound on the time to permute the submatrices into

HOW-major or column-major order. As in the proof of Lemma 2, we recursively subdivide

tile l)rol)lenl u]ltil it fits in memory and the result follows. tl

Lenuna (4.3) gi~es us an upper bound on the 1/0 complexity of LIJ factorization. YVe

contin[le by cle~-eloJ)ing a. lower bound.

LKMMA 4..4. {Hong. Iiung] ~hfj~f(rl) > C ~. for some constant ~.

6

Proof See [6].

LEMMA 4.5. T~u(n) > C ~, for some constant C.

Proof We let A and 13 be n x n matrices and assume that A.Z3is nonsingular. We also

let L.4, LB, and LABbe the lower triangular factors of A,B and Al?respectively, U~,UB
and ~f.4B be the lower and upper triangular factors of A,B and AB, and 1 be the n x n

identity matrix. We now suppose that there exists some algorithm with 1/0 complexity less

than C n3/Bm for some constant C, use this algorithm to compute

from which we extract LABand UA~.We further use this algorithm to compute

from which we extract L~&.Finally,we use this algorithm to compute

Because Al?= LAB [lAB, we have computed AB with less than c ~ 1/0 operations- This

contra.clicts Lemma 4.4 giving us the result. ❑

We summarize Lemmas 4.3 and 4.5 in the following theorem.

THEOREM 4.6. LU jactoridion has 1/0 complexity@ (’).

Pivoting is a critical capability of any robust LU factorization code. While this presents

a. practical difficulty for the programmer, it does not affect the bounds presented above.

SPecificallY, most algorithms implement column (row) partial pivoting, in which each COIUmn

(row) must, be searched for a pivot entry once during the factorization. Searching column i,

j= l,.. . . ?2 recluires the n – i + 1 entries below the diagonal. This requires at most 0(n2)

1/0 operations for the search anti another 0(7t2) operations if rows must be exchanged. It

is clear that the bounds in Lemmas 3 and 5 are not affected.

4.2. Practical out–of–core LU factorization

The 1/0 complexity given in Theorem 4.6 is achieved by a recursive algorithm. However,

this algorithm cali be difficult to implement, and it is complicated to include pivoting, which

is necessary for numerical stability. The more practical algorithm presented in this section

cloes not achieve the optimal 1/0 complexity. However, because in our experience even the

non-optimal amount of 1/0 can be almost completely overlapped with computations for

prol)lel~is of interest, it is not necessary to use an optimal 1/0 algorithm.

Ll:e begin by clivicling the matrix A into b column blocks of size n x k where nk matrix

elelneut,s fit in the size Al matrix. We denote these blocks as A~, z = 1 . . . b. W:e denote the

corresponding components of L and U by Liand Ui.LU factorization can now be written

as follows

Lihas approximately 7?k – (i – l/2)kz entries and must be read b – z times. Summing

this for i = 1.. . b, we see that O(nA/M) entries must be read. Thus the 1/0 complexity
7

Begin (out-of-core LU factorization)

Fori=l,. ... n

Read Ai
If i >1, then

Forj=l,..., n

Read Lj

Update Ai with Lj
End for

End if

Factor Aito produce L; and U;

Write Li and Ui
End for

End

FIG. 1. Parallel L U factorization for processor q.

of this algorithm is O(n4 /&fB). This differs from the t heretical upper bound by a factor

of n/~, which may be significant. However, the effect of additional 1/0 is mitigated in

practice by overlapping the 1/0 with computation. In particular, we note that the read of

LJ+l can be accomplished while Lj is being usecl in computations. This reduces the “visible”

1/0to o(n~/B).

This algorithm has been implemented using the PSS constructs described in Section 3. ‘

The test machine for this implementation was the nCUBE 2 at Sandia National Laborato-

ries. This Imachine has 1,024 nodes, each with a processor capable of 2.1 double precision

hfflops/second (achievable using the BLAS library) and 4 MBytes of memory per node. The

disli system consists of 16 one GByte disks, each with its own SCSI controller. The oper-

ating system used for these runs was the SUNMOS operating system developed at Sandia

National Laboratories. Ideally, we would present experiments that make use of the entire

capacity of the machine. IJnfortunately, factoring a matrix of this size requires several hours

of compute time. Instead, we present two meclium–size runs to demonstrate the ability to

overlap 1/O wit h comput at ion and several small–size runs to highlight the dependency of

the performance on the available memory and the number of processors used.

#of col–blocli size memory total 1/0 total time total 1/0 time

Col. blocks (Gbytes/proc) used (Gbytes) (see) (see)

14 /cyJ 94% 4.99 ~>226 S5
~y .46 49% S.61 10,773 s?

TABLE 1

Scaling of 10,000 x 10,000 matrices

Table 1 shows the results of running our LU factorization algorithm for a 10, 000x 10,000

clolll>le- l>recisioll matrix (S bytes per entry) on 64 processors varying the amount of memory

s

available to the algorithm. In the first run, each block of columns could be made large

enough to cover the matrix with 14 blocks, while in the second run, only half of the memory

was used, doubling the number of blocks necessary. The increase in the number of blocks
almost doubled the amount of 1/0 done ancl significantly increased the total run time. The

last column records the amount of time spent doing 1/0 that could not be overlapped with

computation, which we note is almost constant as predicted above.

The increase in total time in Table 1 is almost entirely due to increased interprocessor

communication. The amount of communication required is 0(n2t@7), where b is the number

of column blocks and p is the number of processors. Thus, the memory size is important

because is defines the grain size for the computation, but not because it affects the amount

of visible 1/0.

number of I column block

P column blocks size (bytes jproc)

16 4 534,800

16

32

I 32

32

64

64

64

8 zd~,doo”
2 52.5,312

4 262,656

8 131,328
2 262,656

4 131,328

8 65,664
TABL1

memory

used

5,5%

26%

55%

28%

14%

28%

14%

770
2

total

1/0 (bytes)

71,417,856

131,866,624

33,619,968

71,467,008

131,923,968

33,619,968

71,532,544
132,136,960

total

time (see)

231

254

117

126

141

67

77

99 ~

,Scaling of 2048 x 2048 matrices

Table 2 shows the dependence of the total run time and total 1/0 on both the number

of processors and the memory used for a 2, 04S x 2, 048 matrix. The non-overlapped 1/0

time is not shown because the small size of the matrix allowed effective caching of data by

the clisli software in some cases. (Again, the small size was chosen to allow us to do a larger

number of runs.) The results again show that the total 1/0 is inversely proportional to the

amount of memory available to the program. The increase in total time, however, is the

resl.dt of increased interprocessor communication. The data in Table 2 does show that the

total 1/0 is almost independent of the number of processors. Thus, the algorithm scales well

to large numbers of processors.

5. Choreographed 1/0

In Sections 3 and 4 we showed how a simple 1/0 paracligm, Partitioned Seconclary Storage,

COUIcl lx= llsecl to yield a. high performance implement at ion of the LU factorization kernel. In

this paradigm, the 1/0 is kept entirely local to each process – any aspects of 1/0 which are

not local must be implemented through the message passing rubric. In this section we will

examine a complementary pa.ragidrn, Choreographed 1/0. The idea of choreographed 1/0 is

t,ha,t all the processes work together to perform an operation on secondary storage.

The paradigmatic example of this sort of operation is file reordering. In the file reordering

opera.t ion the processes cooperate to logically read the entire file in one format and write

9

it in another. For many reordering, such as row major to column major or reblocking an

array, it has been proven that multiple passes through the file are necessary in order to avoid

highly inefficient small sized reads or writes [4, 1, 8, 9]. It thus becomes desirable to utilize an

algorithm which is specially tailored to make optimal use of 1/0 operations [2, 3, 9]. These

algorithms attempt to bring in large chunks of files at once, rearrange these chunks and then

output them again in large chunks. Typically the algorithms assume that there are D disks,

each with a natural block size 13 (the physical size of a block which can be read from a

disk in one 1/0 operation). Thus if the system has a total memory size of ill then & 1/0

operations can be used to fill the memory. Some reordering of the read blocks followed by

some writes are then necessary before any more data can be read. In the referenced paper

it is assumed that the memory is monolithic and the cost of reordering data within memory

is cliscounted. On a parallel machine the memory is likely to be distributed and one must

be aware of the internal memory reordering costs. The issuing of the 1/0 requests must also

be carefully managed. If the algorithm requires ~ 1/0 operations (each of which accesses

all D disks) then the resulting data must be partitioned across the P memories of the P

processors.

Choreographed 1/0 is exactly the process of managing such 1/0 requests. It allows the

processes as a group to recluest data be read from many disks and distributed among the

processes. Interproc.ess communication routines can then be used to reorder the data within

the processes followed by a choreographed write. In the next section we describe a prototype

file system, the Whiptail File System, which was implemented at Sandia in order to test out

choreographed 1/0.

6. The Whiptail File System

In order to study choreographed 1/0 we implemented a new file system on Sandia’s Intel

Paragon computer and the SUNMOS operating system. The goal was to produce a system

which was small and quick lilie the whipt ail lizard of New Mexico, hence the name whipt ail

file system.

6.1. The low-level system

For various technical reasons we could not build the features we desired directly on Intel’s

PFS parallel file system. On the otherhand, the PFS system promised to deliver much higher

performance than the standard unix file system UFS. Thus we built our own low-level file
sl,stenl insicle of files opened through PJ?S on each individual disk. Our low level file system

ma.i nt aius an inode-style directory of WFS files on each disk. Parallel files are thus striped

across the disks by having entries in the clirectories of all appropriate disks.

In order to access the low-level file system users of WFS start by running the command

wfsnewfs -1 disklist -t blocks -m nurndislis,

where didilist is a list of the PFS file names on each disk, blocks is the number of blocks to

use ou each clisli, and nurnclisks is the number of disks to stripe across.

Commands for listing wfs files (wfsls), copying files (wfscp), and deleting files (wfsrm)

are provided but the low-level system was designed to be the minimum required in order

to support our research into the higher level primitives which are useful for choreographing

10

1/0.
In the next, section we will assume that a user has access to a low-level file system with

the mechanism described above.

6.2. The high-level system

Within a parallel program a user can access the WFS via the following set of commands.

Each program is expected to initialize its use of WFS by calling start.wfs and to clean

up by calling shutdown_wfs.

Between calls to start and shutdown the system, a user can open, close, rename, and

delete files via the routines open.pfile, close_pfile, rename_pfile, and delete-pfile. As with

standard Unix a file is opened by giving a filename and a file type. The type can be r, w, or

rw clepending on whether the file is to be read-only, write-only, or read-write, respectively.

In addition, WFS recpires that a maximum file size in blocks be given. This last requirement

COUIC1be removed if the low-level system has more flexibility than the rudimentary system

described above (and implemented at Sandia). The open command returns a file descriptor

which can be usecl in read, write, and close commands. The rename and delete functions

used file names.

An open WFS file can be accessed in two distinct methods: block access, stripeload

access.

Direct block access. The block access routines, read-block, write-block, and iread.block,

provide a means of directly accessing each block of a file. They are most likely to be useful

to a program which is laying out the data in a specific manner across disks. Each command

is given a. file descriptor, a pointer to the block of data to be read or written, a disk number,

a.ncl a. block offset. Thus any given block on any given disk can be directly adclressed. The

ireacl version is non-blocking. AI] iwrite version was not implemented because the current

system would necessarily treat it exactly like a blocking version.

Stripeloads. The stripeloacl routines, readindependentstripeloads, writeindepenclentstripeloads,

reacl_consecutivestripeloa.cls, and write.consecutive_stripeloads, allow the coordinated effort

to reacl or write data from azz the disks in a coordinated manner. Each striped access spec-

ifies an eclual number of blocks to be retrieved from each disk (ancl a per disk offset block

from which to start). The data in these blocks is then distributed to buffers specified for

each processor. The current implementations logically concatenates the data for each disk

in canonical order and distributes this data across a logical concatenation of the processor

b~lffers (again in canonical order.) The “consecutive” functions remove the need to specify

block offsets by having the file system maintain a file pointer for reads and writes which

is a utonla.tically aclj ustecl after each operation. Seek routines are supplied to adjust these

pointers if desired.

\VFS also supplies a variety of helper ancl maintenance routines. Further details of

rout i l~e syntax ancl semantics can be found in the Appendix.

11

6.3. Using Choreographed I/O

As has alreacly been mentioned the purpose of CIO is to facilitate 1/0 which involves the

coordinated processing of large data files. Examples of such coordinated processing are

sort ing, reformatting files, matrix reblocking, and matrix arithmetic. The read and write

routines described above are specially tailored to work with 1/0 optimal algorithms for these

problems [2, 9, 10]. A typical 1/0 optimal algorithm is expressed in passes over the data.

In each pass all the blocks of a file are read into memory in memory kxzd.s, i.e. as many

blocks as will fit in memory at a time while leaving room for control and buffering. Each

memory load is permuted (in the case of sorting or reformatting) or acted on (in the case of

matrix arithmetic) and then written back to disk. The algorithms are carefully crafted so

that memory loads can be read and written by accesses equal numbers of blocks from each

disk. The striped routines of WFS allow exactly these accesses.

Shriver and Wisniewski implemented several of these routines on top of WFS and found

that the algorithlns were in fact easily expressed (see chapter 4 of [10]. Wisniewski further

explored the issue of dealing with the internal structure of memory within an IMP machine.

The literature on 1/0 optimal algorithms had typically assumed a flat, global memory and

thus ignored the issue of rearranging data or computing with data between reads and writes.

In chapter 5 of [10] several alternatives are discussed for mitigating the effects of internal

memory structure. On possibility is to simply note that in the worst case every processor

will need to send data to every other processor. This communication pattern, often called

all-to-all communication, is well study and library routines exist for it. However, all-to-all

communication is notoriously expensive in terms of network bandwidth require. In order

to reduce the communication one can try several approaches: redirecting data to permuted

locations during the 1/0 read (called tagging), clustering of blocks within subsets of the

processors. ancl factoring the permutation.

In the tagging approach each block read from disk is partitioned into pieces bound for

specific processors and sent directly to their destination. System support features such as

porfah in the Puma, operating system would allow data to flow directly into the proper user

acldress. Other systems might require copying data. Coordination to keep from flooding

system buffers can also be problematic. A final concern is that tagging can create many

small messages so the interconnection network and system software must be able to handle

slnall messages efficiently.

In the cluster approach the algorithm is modified to cause all data read within a cluster

of processors to be written by some processor in the same cluster. In other words the data

need only be permutecl within processor clusters. Variations of the BMMC permutation

techniques are used to ensure clustering for reordering problems.

The factoring approach applies the 1/0 optimal, multipass techniques to the internal

memory as well as to the clisks. Instead of having to permute all of internal memory the

factoring reduces the communication to simple, efficient primitives applied over multiple

passes.

1+’iuther work remains to be done to cleterrnine what is the best practical approach to

internal

and t Ile

memory mapping. However, we expect

approaches above will lead to efficient

12

that a mixture of system software primitives

algorithms on MP systems such as those at

Sa.nclia.

7’. Summary

In this report, we have discussed several options for parallel 1/0 focusing on scientific appli-

cations. Pa.rtit ioned secondary storage (PSS) is one of the options. In PSS, each processor

has its own disk (or section of a disk) and does not have direct access to any other processors’

clisks. This means that programs cannot share data indirectly through the disk system, and

the programmer must control the placement and communication of data. This adheres to the

distributed memory, message passing paradigm, which is known to be an effective paradigm

on massively parallel computers.

Another option presented for parallel 1/0 was choreographed 1/0 (CIO). This is a

methods for coordinating (choreographing) large data transfers from parallel disks to parallel

memories. The data is striped across disks and groups of processors issue synchronized calls.

This is especially useful in supporting 1/0 intensive kernels such as out–of–core sorting,

permuting, FFT’s ancl matrix multiplication.

We also discussed out–of–core LU factorization, which is an important kernel in scientific

applications. We presented a theoretical analysis of the 1/0 requirements and a practical

implementation. In the process, we showed that a good implementation is not necessarily

an optimal (in terms of 1/0 complexity) implementation. In this case, the simpler, but non–

optimal, implementation allowed the necessary 1/0 to be overlapped with the computations.

It:e note here, however, that this observation is machine dependent and is limited to matrices

wberr the complltat.ion clominates, and for today’s machines, this inclucles matrices of several

hunclrecl thousanc{ in each climension.

Fiually, we discussed the Whiptail file system, an experimental file system designecl to

test the practical implementation of CIO. This implementation is currently limited by the

hardware capabilities of the parallel machine; however, initial testing has been done. This

testing has shown that the potential for high-performance 1/0 exists, but that algorithms

that use it Inust still be clesigned with distributed memory in mind (if it is to be implemented

on a distributed memory- machine).

Acknowledgenlents. We would like to thank Stephen Wheat, Rolf R.iesen, Mack Stallcup

allcl the rest of the PIJMA Operating System development team for their technical support

dl~ring the implementation of the out–of–core LIJ factorization. We would also like to thank

Licldy Shrivcr, Len W’isniewski, Bruce Calder and Ryan Moore for their work on the Whiptail

File System.

REFERENCES

(1] A. Aggarw-al zmd J. S. Vitter. The inputioutput Complexity of sorting and related problenls- Commu-
7tiMio7/.s of the ACM, 31(9):1116–1127, September 1988.

[2] T. H. Cormen. L’irtual Mcrn.ory for Data-Parallel Computing. PhD thesis, IvIIT, 1993.
[3] T. H. Cormen, T. Sundquist, and L. F. Wisniewski. Asymptotically tight, bounds for performing

BMNIC pemmta.tions on parallel disk systems. Technical Report PCS-TR94-223, Dept. of Computer
Science, Dartmouth College, .JUIY 1994. Preliminary version also appeared in Proceedings of the
Fifth Symposium on Parallel Algorithms and Architectures.

13

[4] R. A. Floyd. Permuting information in idialized two-level storage. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 105–109. Plenum, 1972.

[5] C+.H. CJolub and C. F. Van Loan. Matrzr Computations. Johns Hopkins University Press, 2nd edition,
1989.

[6] J .-\V. Hong and H. T. Kung. 1/0 complexity: The red-blue pebble game. In Proceedings of the
Symposium on the Theory of Computing, pages 326-332, 1981.

[7] C. L. Lawson, R. .1. Hanson, D. R. Iiincaid, and F. T. Krogh. Basic linear algebra subprograms for
for%ran usage. TOMS, 5(3):308-323, 1979.

[8] .J. S. Vitter and E. A. M. Shriver. Optimal disk 1/0 with parallel block transfer. In Proceedings of the
2~n,d ATtnual A~Jf SY77zposilLm on ‘Theory of computing (,$’TOC ‘90), pages 159-169, May 1990.

[9] .J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory II: Hierarchical multilevel memories.
Algorith.mica, 12(2/3):148-169, August and September 1994.

[10] L. F. Wisniewski. Ejjicient design and implementation of permutation algorithms on the memory
hierarchy. PhD thesis, Dartmouth University, 1996.

Appendix.

A. Using WFS in Application Programs

The Whiptail File system is easy for the programmer to use. In this appendix we describe

all that is necessary to create a WFS program using WFS routines, execute the application

code, as well as some hints for debugging the program.

14

Creating a Whiptail File System

Before any program uses WFS routines, the programmer must create and initialize a

new WFS. At the system prompt, the programmer enters the wf snewfs command. The

wfsnewfs command requires that the programmer specify several parameters. The -1 op-

tion takes a specified file system name of a Unix file that contains the names of the PFS

or UFS files that will serve as the raw disk storage file on each of the disks. The -t and

-m options allow the programmer to specify the number of blocks per disk to allocate for

the new WFS and the number of disks on which the file system stripes the files. Other

optional parameters permit the specification of the number of inodes, files, inode blocks,

and directory blocks. Please note that all of these parameters can be specified at file sys-

tem creation time, but cannot be changed after system initialization. For example, we can

create a new WFS which uses 1024 blocks on each of 5 disks with the command

% wfsnewfs -1 disklist -t 1024 -m 5

where diskl i st is a file that contains the names of the 5 PFS or UFS files used to store

the file system information and data.

Once a file system has been created, the programmer has the ability to list the files in the

file system using the wf sls command. The wf sls command requires that the programmer

specify a single parameter, the name of the file that serves as storage for the first disk in

the file system. If you prefer to remember only the file system name, the command

% wfsls ‘head -1 disklist’

also performs the saline function.

There are commands that allow the application to copy and delete files from the system

prompt. To copy a I.Jnix file to WFS, the programmer uses the wf scp commancl. The

wf scp commancl requires that the programmer provide the name of the (Jnix file to be

copied, the name of the new WFS file, and the file system name. Cku-rentlyl wfscp is not

implemented, but the programmer can use Unix cp. To clelete a file at the system prompt,

the programmer uses the wfsrm command. The wf srm commancl takes two parameters:

the name of the file to be removed and the file system name.

The matgen utility generates data of different types of recorcls. The standard

utility is to generate matrices of data, but it can also be usecl to generate files.

15

use of the

The usage is

X matgen -f ZFS-file -r rows -c cols -n num-type -t matrix-type

where num-typeis 1 for integers or 2for doubles and rnatrix-typecan have the following

values:

1 =fillthe matrix with I’S

2 =fillthematrixwith O’s

3 = fill the matrix with random numbers

4 = fill the matrix with consecutive numbers, starting with O.

Programming

When writing a program that uses WFS routines, the programmer must include the file

wfs. h. ‘This allows for use of the WFS routines. (These routines are presented later in this

appendix.)

The function start -wfs () must be called before any of the file system routines are.

The function shut down-wfs () should be called before the program terminates.

The Paragon supports the mynode () and numnodes () routines to return the caller’s

logical order among the processors and the number of processors that were allocated

for the application. Since WFS must be run in heterogeneous mode, the substitution

of my_group-off set () for mynodeo and my-group-sizeo for numnodes () is needed.

Compile the program code for the Paragon and link it with the diskserver cocle.

Executing

To I*ILI1a program, the processors need to be dividecl into two grollps:

nodes and disk-server nodes. The number of application-compute

application-compute

nodes are left up to

tl~e programmer; the number of disk-server nodes should be the number of disks that

tl~e file s}-stem was created with. Dividing the nodes into two groups is achieved with

a bet erogenous load operation. For example, with an executable of a. out that takes :3

parameters. we can execute with the command

X yod -F data4202500 . compute80. disk5

16

where data4202500. compute80. disk5 is the following Unix file

17X5

yod -SZ 16x5:0,0 a.out matA2050 matB2050 4202500

yod -SZ 5xI:0,16 diskserver -f disklist

It is important that the disk servers are the last submesh in the heterogeneous load.

The MACHINE WIDTHenvironme ntvariab lemust besettothenumber of groups of

16 processors the specific Paragon has. At Sandia National Labs, this is 4 for zia and 112

for acoma.

Debugging

The following might help in debugging:

●

●

If the program seems like it is in an infinite loop, control-C will halt the processing

and return control to operating system. This will close open files.

If the program was supposed to create files during its run, the wf sls command line

utility can be used to list the files in the specified file system. The command line

utility wf sdump will print the contents of a parallel file.

WFS Routines

File Systenl-Level Routines

W?S has routines which work on the file system:

v.aid start.ufs (void) ;
int shutdown=fs (void) ;

The routine start -wfs () allows a program to access files stored on WFS. It is a collective

call. 1t starts the file system. The routine shut down_wfs () closes the files currently open

and exits. It returns ERROR and NOXRROR.

17

Basic File Routines

VW’S provides the following basic routines which allow

as a unit in the file system:

programmers

int
int
int
int

open-pfile (char *filename, char *type, int file= izetin.blocks);
close-pfile (int fd) ;
rename~f ile (char *neWfiilename, char *old~ilensme) ;
deleteqfile (char *filename) ;

The routine open-pf ile () returns the file descriptor of the file or

to manipulate a file

the value - I. The

parameter type specifies the way that the file will be used: r for reading, w for writing,

and rw for reading and writing. The parameter file.s ize-in_blocks specifies the amount

of space to pre-allocate to the file. If the file is being opened for for read only, the values

specified shoulcl be NOTAPPLICABLE. This is a collective call.

The routine close-pf ile () returns NO-ERRORor an error from wf s-errors. h if the file

referenced to by the file descriptor fd could not be closed correctly. This is a collective call.

The routine rename-pf ile () returns ERR_NONEif there was no error when renaming the

file. If there were errors (e.g., the new.filename alreacly exists), an error code is returned

(e.g., ERR_EXISTS). The routine delete-pf ile () returns an error code identifying whether

or not an error was encountered when clelet ing filename.

Block Access

WFS provides the following routines for a processor to directly read or write any one

particular block of a file:

int read_block (int fd, void *bufferqointer, int diskmum, int block_offset) ;
int Write_block (int fd , Void *buffer~ointer, int disknum, int blOCIc_OffS~t);
int iread_block (int fd, volatile int *re~dfila8, ~~r,ig~~di~t *~rro=, VOidxb~ff~r~~i~ter,

int diskmum, int block_offset) ;

The read_block() and writ e_blocko routines wait until the read or write of the re-

c}umtecl block completes before returning. The programmer specifies the desired block

by the dislcnum and block.offset parameters for the file specified by the file clescriptor

(f d). The buff er-poi.nt er identifies the local memory location for the read or written

cla.ta.. ‘II me routiues ret um ERROR if there was an error during execution or O if there is no

error.

1s

The iread.block () routine does not wait for the reading of the block to complete.

An iread.blocko call passes a pointer to a read_flag variable which gets incremented

when the reading of the block has completed. Blocks are read in the order that they are

requestecl. Thus, the programmer can poll the readfilag variable to determine if the

reading of a particular block has completed. If an error occurs during the execution of the

iread-block () routine, a specified error variable will contain the appropriate error code.

Independent Access

WFS provides independent-access routines which allow each processor to simultaneously ac-

cess a portion of one or more stripeloads of data. WFS supports the following independent-

access routines:

int read~ndependentstripeloads (int fd, int num~tripeloads, int *block~ffset=rray,
void *buffer~ointer, int buffer=ize) ;

int writ e~ndependent=tripeloads (int fd, int numstripeloads, int *block~ff set-array,
void *buffer~ointer, int buffer=ize) ;

The programmer must specify the file descriptor (f d), the number of blocks to be read per

disk (num-stripeloads), a block offset for each disk to be accessed (block-offset-array),

a buffer space in the local memory of the calIing processor for the read or written records

(buffer-pointer), and the size of the buffer space (buff ersize). The buffersize must

be a suflciently-large integral number of blocks.

The independent-access routines are collective-access routines; that is, all the processors

must call this routine to collectively access a quantity of data. The responsibility for

receiving or providing the quantity of data read or written, respectively, is distributed

over all the processors. Thus, each processor specifies the same num-stripeloads and

block-of f set _array parameters to collectively access the same dat a.. The buf f er-po int er

allcl buffer= ize parameters, however, may differ on each processor (e.g., the number of

processors cloes not equally clivide the number of records requested.)

Consecutive Access

WFS provides consecutive-access routines which

access a portion O(one or more stripeloacls of data.

19

allow each processor to simultaneously

WFS supports the following consecutive-

access routines:

int read-consecutive=tripel oads (int fd, int num~tripes , Void*bUff~=q~i~ter , i~t b~ff~=~l=~);
int urite.consecut ivestripeloads (i~t fd, int num-stripes, void *buffer~ointer, int buffer= ize) ;

The programmer needs to specify the file descriptor (f d), the number of stripes requested

(num-stripes), the buffer space in the local memory for the read or written records

(buffer-pointer), and the size of the buffer (buff er=ize). The consecutive-access rou-

tines are also collective-access routines.

WFS uses two separate consecutive file-access pointers, one for reading and one for

writing. Upon opening a file, WF’S initializes the consecutive file-access pointers to point

to the first stripe. After the user performs a consecutive read or write on the file, WFS

increments the appropriate consecutive file-access pointer. The WFS interface includes the

following routines to reset the consecutive file-access pointers:

wfsseek_read (int fd, int stripe~umber) ;

Rfs-seek-write (int fd, int stripemumber) ;

The programmer must specify a stripenumber to designate the new location in the file (f d)

for the consecutive file-access pointer. The routines return ERRflONE if no error was found;

otherwise, they return ERR_NOFENT, meaning that the file is not found in the directory.

File and Configuration Information Routines

WTS supports the following file and configuration information rout ines:

int num-of..disks(int fd) ;
int generatexniquefiilensme (char *filename) ;
int sizeof3ilein_blo cks (int fd) ;
int gsizeof~ilein_bl ocks (int fd) ;
int sizeof310ck (int fd) ;
int start ingdisk (int fd) ;

The routine num-of -disks () returns the number of disks that the file referenced by the file

descriptor fd is stripecl across. It is an individual call.

The routine generate-uniquefi ilename () will generate a filename in filename that

does not lnatch any filenames in the current file systenl. The file name generated will be

of lcngt h FILENAME-LENGTH. This is a collective call: all nodes will have the same file name

generated. This rolltille returns ERROR if there is an error or ERR_NONEotherwise.

The routines sizeof -file.in.blocks () and gsizeof file-in-blocks () wiIl return

the number of blocks pre-allocated to the file. The routine sizeof fine-in-blocks () is

an individual call; the routine gsizeof tiile-in-blocks () is a collective call. The routines

ret urn ERROR if there was an error.

The routine si,zeof -block () returns the size of the block, in bytes, that file is written

to the disk system using.

The routine start ing_disk () returns the disk number which represents the first disk

that the file is written to.

Error and Synchronize Routines

WFS provides routines to print WFS errors and synchronize the application-compute nodes:

void =fs.perror (char *msg) ;

void subsync (void) ;

int wfssync (void) ;

int gwfs-sync (void);

The routine wf s.perror () prints the string msg followed by the last WFS error to occur

ancl its error string. It is an individual call.

The routine sub sync () allows the application-code nodes to be synchronized together.

The routines wf s.sync () and gwf s-sync () force the writing of a file to disk. The

routine wf s-sync () is an individual call; the routine gwf s-sync () is a collective call.

B The Intel Paragon

A programmer neecls some knowledge of the Paragon to write code using the WFS routines.

See [Int9J3] for a.clclitional information.

Data is read from disk in chunks of data that is 65.536 bytes = 64 KB long; we call this

a. block.

The Paragon has three types of nodes: service nodes, compute nodes, and 1/0 nodes.

TI~e ser~ice nocles run OSF and yod; the compute nodes run SUNMOS; the 1/0 nodes run

OSF’ancl fyod.

Tile Paragon consists of a set of nodes interconnected by a mesh. Some of these nodes

may- Iw colmected to a R.AID disk controller. Thus, the I\O 710des become dedicated to

performing any requests for access to data residing on the RAIDs. The programmer can

make these 1/0 requests from any of the compute nodes which runs the application.

Nodes are allocated to an application; different programs can be loaded into sub-meshes

of the allocated nodes. The nodes can be divided into sub-meshes of nodes (i.e., groups of

nodes that will be running the same process) by an heterogeneous load operation.

Communication between nodes happens by sends and receives. A node posts a receive

if it is expecting a message from another node. SUNMOS has buffer space, called com-

munication space (or comm space), in which the nodes stores messages that have not had

receives postecl yet.

