
NASA TECHNICAL NOTE

NASA TN D-5973 C. 1

EFFECT OF STRAIN-GAGE ATTACHMENT BY SPOTWELDING AND BONDING ON FATIGUE BEHAVIOR OF Ti-6A1-4V, RENÉ 41, AND INCONEL X

by L. A. Imig Langley Research Center Hampton, Va. 23365

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . OCTOBER 1970

|___

		TECH LIBRARY KAFB, NM		
1. Report No. NASA TN D-5973	2. Government Accession No.	3. 0132714		
4. Title and Subtitle		5. Report Date		
EFFECT OF STRAIN-GAGE		October 1970 6. Performing Organization Code		
Ti-6Al-4V, RENÉ 41, AND IN		b. Tertorning Organization Code		
7. Author(s)		8. Performing Organization Report No.		
L. A. Imig	L. A. Imig			
9. Performing Organization Name and Address		10. Work Unit No.		
NASA Langley Research Cent	er	126-14-15-02		
Hampton, Va. 23365		11. Contract or Grant No.		
manipion, va. 20000		12. Tune of Penert and Period Covered		
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered		
National Aeronautics and Spa	ce Administration	Technical Note		
Washington, D.C. 20546		14. Sponsoring Agency Code		
15. Supplementary Notes				
-	igation was conducted to evalua	ate the effects of spotwelding		
suitable for use in high-speed of spotwelding were evaluated room temperature for all thr results for the titanium alloy strain gages attached by spot affected similarly but to a les local microstructural change	d airplanes: a titanium alloy a d by means of constant-amplitu ee alloys and at 1500 ⁰ F (1090 indicated much lower fatigue welding than for plain specime sser extent. The losses of fat	fatigue behavior of three alloys and two superalloys. The effects ade fatigue tests conducted at K) for the superalloys. Test strengths for specimens having ns. The superalloys were igue strength were attributed to ast, specimens with strain gages		
suitable for use in high-speed of spotwelding were evaluated room temperature for all thr results for the titanium alloy strain gages attached by spot affected similarly but to a les local microstructural change	d airplanes: a titanium alloy a d by means of constant-amplitu ee alloys and at 1500° F (1090 r indicated much lower fatigue a welding than for plain specime sser extent. The losses of fat: is due to spotwelding. In contr had fatigue strength equal to the 18. Distribution S	fatigue behavior of three alloys and two superalloys. The effects ade fatigue tests conducted at K) for the superalloys. Test strengths for specimens having ns. The superalloys were igue strength were attributed to ast, specimens with strain gages hat of smooth specimens.		
 suitable for use in high-speed of spotwelding were evaluated room temperature for all thr results for the titanium alloy strain gages attached by spot affected similarly but to a les local microstructural change attached by adhesive bonding 17. Key Words (Suggested by Author(s)) Fatigue (materials) Elevated temperature Titanium alloy Heat-resistant alloys Strain gages 	d airplanes: a titanium alloy a d by means of constant-amplitu ee alloys and at 1500° F (1090 r indicated much lower fatigue a welding than for plain specime sser extent. The losses of fat: is due to spotwelding. In contr had fatigue strength equal to the 18. Distribution S	fatigue behavior of three alloys and two superalloys. The effects ade fatigue tests conducted at K) for the superalloys. Test strengths for specimens having ns. The superalloys were igue strength were attributed to ast, specimens with strain gages hat of smooth specimens.		

Springfield, Virginia 22151

|__

EFFECT OF STRAIN-GAGE ATTACHMENT BY SPOTWELDING AND BONDING ON FATIGUE BEHAVIOR OF Ti-6A1-4V, RENÉ 41, AND INCONEL X

By L. A. Imig Langley Research Center

SUMMARY

An experimental investigation was conducted to evaluate the effects of spotwelding and bonding, as used for instrumentation attachment, on the fatigue behavior of three alloys suitable for use in high-speed airplanes: a titanium alloy and two superalloys. The effects of spotwelding were evaluated by means of constant-amplitude fatigue tests conducted at room temperature for all three alloys and at 1500° F (1090 K) for the superalloys. Test results for the titanium alloy indicated much lower fatigue strengths for specimens having strain gages attached by spotwelding than for plain specimens. The superalloys were affected similarly but to a lesser extent. The losses of fatigue strength were attributed to local microstructural changes due to spotwelding. In contrast, specimens with strain gages attached by adhesive bonding had fatigue strength equal to that of smooth specimens.

INTRODUCTION

Strain gages are efficient instruments for use in load-measuring programs for airplanes. Some existing resistance strain gages and other types under development are attached by spotwelding. The tests of reference 1 showed that such spotwelds are potentially detrimental to the fatigue life of the structure because electrical arcing produces microstructural defects at which fatigue cracks can initiate. Therefore, a limited experimental investigation was conducted to evaluate the effects of spotwelding and bonding, as used for instrumentation attachment, on the fatigue behavior of three alloys suitable for use in high-speed airplanes: a titanium alloy and two superalloys. The effects of spotwelding were evaluated by means of constant-amplitude fatigue tests of specimens with and without strain gages. All three alloys were tested at room temperature (about 70° F (294 K)); the superalloys were also tested at 1500^o F (1090 K).

The physical quantities used in this paper are given both in U.S. Customary Units and in the International System of Units (SI). Factors relating these two systems of units are given in reference 2 and those units pertinent to the present investigation are presented in appendix A.

MATERIALS

Alloys

The fatigue behavior of three alloys potentially useful in high-speed airplanes was studied in the present investigation. The alloy Ti-6Al-4V was considered representative of structural materials for supersonic airplanes. Two superalloys, René 41 and Inconel X, were considered representative of materials for use in hypersonic airplanes. The titanium alloy was in the duplex-annealed condition, the René 41 was solution treated, and the Inconel X was annealed. All three materials were in sheet form. The chemical compositions, tensile properties, and thicknesses of the sheet materials are given in table I. Tensile and fatigue specimens were machined from the alloys to the configurations shown in figure 1. Other details of specimen preparation are given in appendix B.

Strain Gages

For the titanium-alloy specimens, two kinds of commercially available resistance strain gages were used: a weldable gage with a metal back and a bonded gage. The resistance element for the weldable gage was embedded in compacted magnesium oxide powder and insulated from a small metal tube that was attached to the gage backing. The metal backs were made from three alloys: a titanium alloy, a gold alloy, and a stainless steel. For the more conventional bonded gage, two synthetic backing materials were used: a fiber glass and a resin. For the superalloys, weldable strain gages were simulated by metal foils spotwelded to the specimen. The foil alloy was the same as the specimen alloy in both cases. The strain gages, foils, and welding parameters are described more fully in appendix B.

PROCEDURES

Fatigue tests were conducted with constant-amplitude axial stresses in the ratio of minimum stress to maximum stress of 0.05 (R = 0.05). The stresses were based on the initial minimum cross-sectional area of each specimen, excluding the areas of strain gages and foils. As indicated in table II, Ti-6Al-4V specimens with and without strain gages were tested at room temperature (taken as 70° F (294 K)) and superalloy specimens with and without simulated strain gages were tested at room temperature and at 1500° F (1090 K). Descriptions of testing machines and elevated-temperature equipment are provided in appendix B.

Two of the titanium specimens with weldable strain gages were annealed after spotwelding to evaluate potentially beneficial effects of stress-relief treatments at elevated temperatures on structural material. One specimen was heated to 1350° F (1000 K) for

2

4 hours and the other was heated to 1500° F (1090 K) for 6 hours; the annealing treatments were carried out at 10^{-5} torr (1.33 mN/m²) and the specimens were furnace cooled.

As an aid to understanding the effects of spotwelding, some of the specimens were examined metallographically. A photomicrograph was made from a failed specimen of each material and from one of the titanium specimens that had been stress relieved.

Information about the fatigue resistances of the strain gages was obtained from a sideline investigation. The gages were connected into a full-bridge circuit, the output of which was recorded continuously. Separation of the gage element or lead wire caused a loss of signal to the recorder and thereby indicated gage failure. In some tests of Ti-6Al-4V specimens with bonded gages the adhesive failed. The number of cycles required for failure of the bond or the gage circuit was taken as the gage life.

RESULTS AND DISCUSSION

Tests

Tensile properties of the sheet materials used in this investigation are indicated in table I. Fatigue data are listed in tables III, IV, and V and are plotted in figures 2, 3, and 4 for Ti-6Al-4V, René 41, and Inconel X, respectively. Each symbol in the figures represents the fatigue life of an individual specimen. All curves in the figures were faired through the data.

Ti-6Al-4V specimens.- The fatigue limit for plain Ti-6Al-4V specimens was not precisely determined, but a short extrapolation of the curve (see fig. 2) indicates the fatigue strength at 10^7 cycles to be above 110 ksi (760 MN/m²). That fatigue strength is much higher than would have been anticipated from the data in reference 3. Thus, the fatigue strength of the present material appears to be unusually high.

Strain gages attached by bonding had no apparent effect on the fatigue strength. However, in one test, specimen failure due to a surface flaw occurred in only 115 000 cycles at 70 ksi (480 MN/m^2). Optical examination of the specimen indicated that the flaw probably resulted from an electrical arc generated by an electrical discharge instrument used to number the specimens. Thus, as reported in reference 1, arcing between electrical equipment and titanium structures can be very detrimental to fatigue strength.

At 10⁷ cycles the fatigue strength of Ti-6Al-4V specimens with weldable gages was less than one-eighth of that for plain specimens, as shown in figure 2. That effect is much larger than would be expected for stress concentrations resulting from manufacture of typical airplane structures. Thus, especially for titanium-alloy structures, the detrimental effect of spotwelding should be carefully considered when the use of weldable strain gages is contemplated.

In most tests of Ti-6Al-4V specimens with weldable gages, fatigue cracks initiated from the end weld in each row of spotwelds at one end of the gage. The two cracks thus formed subsequently joined into a single crack which propagated until the specimen failed. (As indicated in table III, four of the specimens failed as a result of cracks that initiated at spotwelds interior to the end spotwelds.)

Two specimens were subjected to stress-relief annealing to determine whether such treatments could alleviate the severe effects of spotwelding. Both specimens were tested at a maximum stress of 80 ksi (550 MN/m2). As shown in figure 2, the fatigue lives for the two stress-relieved specimens were longer than those for specimens tested as welded. Thus, heat treatment after welding might be a way to minimize the detrimental effect of spotwelding on fatigue life. However, before stress-relief annealing would be practical, an efficient method of heat treating a small region of a structure and the reaction of the strain gage to the heat treatment would have to be determined. Such determinations were beyond the scope of the present effort.

Continuity measurements on the gages indicated that the bonded gages remained electrically continuous throughout 10^7 cycles for specimen stresses up to 60 ksi (410 MN/m²). (See table III for the gage lives.) At the highest stress level, the gages with resin backs became unbonded and the measuring elements of the gages with fiber glass backs failed in relatively few cycles. For both the bonded and spotwelded gages, large shifts in gage output occurred prior to electrical failure of the gage, especially at the higher stress levels. The fatigue characteristics of the strain gages, which were of secondary interest, were studied only incidentally in the present investigation; however, these results suggest that the fatigue characteristics should be determined before selecting strain gages for a particular application.

<u>René 41 specimens.</u>- As shown in figure 3, the fatigue lives of plain specimens tested at room temperature and at 1500° F (1090 K) were about the same. At 10^{7} cycles specimens with simulated weldable gages tested at the two temperatures had the same fatigue strength. For stresses higher than that fatigue strength, the tests at elevated temperature resulted in much shorter fatigue lives than the tests at room temperature. At both temperatures, the fatigue strengths at 10^{7} cycles for specimens with simulated weldable gages were about two-thirds of the value for plain specimens. That effect is more nearly equal to that expected from stress concentrations in fabricated structures than the large effect observed for the titanium alloy.

In René 41 specimens tested at both room and elevated temperature, fatigue cracks leading to specimen failure initiated at spotwelds at one end of the simulated gages. Many of the spotwelds failed in tests at 1500° F (1090 K); thus, strain gages would have become inactive under such circumstances.

L

During the course of the investigation, some of the René 41 specimens were observed to generate heat during room-temperature tests at 30 cps (30 Hz). By means of thermocouples, the temperatures of specimens were observed to vary systematically with stress level between 55 and 85 ksi (380 and 590 MN/m²). The highest temperature recorded was 120° F (320 K) in a test at a maximum stress of 85 ksi (590 MN/m²). No heating was recorded at stress levels of 55 ksi (380 MN/m²) and lower. The generation of heat in specimens undergoing fatigue tests is a generally recognized phenomenon and is discussed in reference 4.

Inconel X specimens.- As shown in figure 4, the room-temperature fatigue strength at 10^7 cycles of Inconel X specimens with simulated weldable gages was about two-thirds that of the plain specimens. However, at 1500° F (1090 K) the fatigue strengths of the Inconel X specimens with and without the simulated gages were the same and were somewhat lower than the room-temperature strengths. These effects are of about the same magnitude as usually expected from fabrication effects in structures.

Inconel X specimens also generated measurable heat in room-temperature tests. Specimen temperatures were approximately the same as those observed for the René 41 specimens. Fatigue cracks leading to specimen failure initiated at end spotwelds as they had for the René 41 specimens, and all but three Inconel X specimens exhibited weld failures to varying degrees.

Metallographic Examination

The photomicrographs in figure 5 show partial cross sections through spotwelds for all the specimen materials. These photomicrographs of the entire heat-affected zone show that the effects of spotwelding were restricted to very small regions in all three alloys. As shown in figures 5(a) and 5(b), spotwelding produced nuggets 0.01 inch (0.25 mm) in diameter in the superalloys. Distinct nuggets were not formed in the titanium-alloy specimens, but as shown in figures 5(c) and 5(d), spotwelding produced microstructural changes within a heat-affected zone about 0.02 to 0.025 inch (0.50 to 0.60 mm) in diameter. As shown in figure 5(e), the microstructure of the titanium alloy after stress relieving indicates that annealing has occurred in the heat-affected zone, although the effects of spotwelding were not removed entirely. Even though the fatigue strength of the stress-relieved specimen was higher than that of the as-welded specimen, its strength was much less than that of the specimens without gages. Thus, stress relieving, if sufficient to alleviate the effects of spotwelding, would require optimization to achieve the maximum benefit. The microstructural changes produced by the spotwelding were undoubtedly responsible for the losses of fatigue strength.

CONCLUSIONS

Fatigue tests were conducted to investigate the effect of strain-gage attachment by spotwelding and bonding on the fatigue behavior of a titanium alloy and two superalloys. The following results of the investigation suggest that weldable strain gages should be used with caution on highly loaded structures of these alloys:

1. Strain gages attached to Ti-6Al-4V specimens by spotwelding reduced the fatigue strength at 10^7 cycles to less than one-eighth of the value for plain specimens.

2. Simulated strain gages attached to René 41 specimens by spotwelding reduced the fatigue strength at 10^7 cycles to approximately two-thirds of the value for plain specimens in tests at room temperature and at 1500° F (1090 K).

3. Simulated strain gages attached to Inconel X specimens by spotwelding reduced the fatigue strength at 10^7 cycles to approximately two-thirds of the value for plain specimens in tests at room temperature. At 1500° F (1090 K), the fatigue strengths of the Inconel X specimens with and without the simulated gages were about the same and were somewhat lower than the fatigue strengths at room temperature.

4. Changes in microstructure associated with spotwelding were undoubtedly responsible for the losses of fatigue strength.

5. A surface flaw in a titanium-alloy specimen, probably the result of an electrical arc, caused a fatigue failure at a stress less than two-thirds of the apparent fatigue limit.

Langley Research Center,

National Aeronautics and Space Administration, Hampton, Va., July 9, 1970.

APPENDIX A

CONVERSION OF U.S. CUSTOMARY UNITS TO THE INTERNATIONAL SYSTEM OF UNITS

The International System of Units (SI) was adopted by the Eleventh General Conference of Weights and Measures in Paris, October 1960. Conversion factors for the units used herein are taken from reference 2 and are presented in the following table:

Physical quantity	U.S. Customary Unit	Conversion factor (*)	SI Unit (**)		
Energy	W-s	1.0	joule (J)		
Force	lbf	4.448	newton (N)		
Frequency	cps	1.0	hertz (Hz)		
Length	in.	0.0254	meter (m)		
Pressure	torr	133.22	newton/meter ² (N/m ²)		
Stress	ksi = 1000 lbf/in ²	$6.895 imes 10^6$	newton/meter ² (N/m ²)		
Temperature	oF	$\frac{5}{9}(^{O}F + 459.67)$	kelvin (K)		

*Multiply value given in U.S. Customary Unit by conversion factor to obtain equivalent value in SI Unit or apply conversion formula.

** Prefixes to indicate multiples of SI Units are as follows:

Prefix	Multiple
milli (m)	10-3
centi (c)	10-2
kilo (k)	10 ³
mega (M)	10 ⁶

APPENDIX B

EQUIPMENT AND TEST PROCEDURES

Specimen Preparation

The specimens were made by clamping stacks of at least six specimen blanks to the headstock of a lathe for machining. After machining, the edges of each specimen were deburred by sanding lightly in the longitudinal direction with No. 600 emery paper.

Some specimens were alined with and some were oriented at 90° to the sheet rolling direction. No effect of specimen orientation was apparent from the test data.

Strain Gages

The dimensions of the metal backings of the weldable gages were approximately 0.2 by 1.1 inches (5 by 28 mm). The backing thicknesses were approximately 0.0025 inch (0.064 mm) for the stainless steel and gold alloy and about 0.003 inch (0.076 mm) for the titanium alloy. A tubular housing for the resistance element was attached to the backing by a continuous weld. The tubing was approximately semicircular in cross section with a "diameter" of about 0.04 inch (1 mm). The bonded gages with resin backs were about 0.56 by 1.02 inches (14 by 26 mm) and the bonded gages with fiber-glass backs were about 0.26 by 0.56 inch (6.6 by 14 mm).

Before the gages were attached, all specimen surfaces were sanded lightly in the longitudinal direction with silicon carbide paper that had been dipped in methyl ethyl ketone (MEK). Metal foils and strain gages were also cleaned with MEK before they were spotwelded to the specimens. Spotwelding was done with a portable commercial resistance spotwelder. An electrode force of 5 lbf (22 N) and an energy setting of 12 W-s (12 J) were used to weld the gages with stainless steel and titanium alloy backings to the titanium specimens. Gages with gold-alloy backs were welded to the specimens with 5 lbf (22 N) and 30 W-s (30 J). The gages were welded to the specimens by a row of about 30 spotwelds per inch (about 12 spotwelds per cm) along each side of the resistance-element housing. (See fig. 1.)

Simulated gages (metal foils) were welded to the superalloys with an electrode force of 5 lbf (22 N) and an energy setting of 10 W-s (10 J). The René 41 foils measured 0.25 by 0.8 by 0.003 inch (6.4 by 20 by 0.076 mm) and the Inconel X foils measured 0.25 by 0.75 by 0.005 inch (6.4 by 19 by 0.127 mm). The foils were attached by two rows of spot-welds, each containing about 20 to 25 welds per inch (8 to 10 welds per cm).

The gages with resin or fiber-glass backs were attached with a commercial epoxy adhesive. The curing treatment for this adhesive was 1 hour at 300° F (420 K).

APPENDIX B - Concluded

Test Equipment

Tensile tests.- Standard tensile tests were conducted in a 120 000-pound-capacity (534-kN) universal hydraulic testing machine at the Langley Research Center. Stressstrain curves were obtained autographically by means of an x-y plotter. The electronic signal from a load cell in series with the specimen actuated the recorder drive for the stress axis. The strain axis was actuated by the output of an extensometer that incorporated a linear variable differential transformer. The extensometer was attached to the specimen in the reduced section and had a gage length of 1.00 inch (25.4 mm). The elongation in 2.00 inches (50.8 mm) was determined by measuring the distance, after fracture, between grid lines placed on each specimen prior to the test.

<u>Fatigue tests.</u> Two types of testing machines were used to conduct the fatigue tests. Specimens with an expected life of more than 10 000 stress cycles were tested in subresonant machines that operated at a frequency of 30 cps (30 Hz) and are described in reference 5. Specimens with an expected life of less than 10 000 stress cycles were tested in a hydraulically actuated testing machine that operated at about 15 cps (15 Hz) and are described in reference 6.

Fatigue tests at 1500° F (1090 K) were conducted in subresonant machines equipped with the heating device represented in figure 6. Specimens were heated from one side with radiation from quartz-envelope lamps using commercial water-cooled, parabolic reflectors. The specimen and the reflector assembly were enclosed in an insulated housing. The temperature in the heater was sensed by a thermocouple on a metal strip of the same material as the test specimen positioned in the plane of the specimen near the test section. The signal provided by the thermocouple was used as the input for a commercial temperature controller. This method of heating provided a temperature distribution on the specimen within 10° F (5.5 K) of the desired temperature over the middle 3 inches (8 cm) of the specimen, as determined by a temperature survey on a specimen blank with an array of thermocouples attached.

REFERENCES

- Phillips, Edward P.: Effect of Outdoor Exposure at Elevated Temperature on the Fatigue Life of Ti-8Al-1Mo-1V Titanium Alloy and AM 350 Stainless Steel Sheet. NASA TN D-5362, 1969.
- 2. Comm. on Metric Pract.: ASTM Metric Practice Guide. NBS Handbook 102, U.S. Dep. Com., Mar. 10, 1967.
- Illg, Walter; and Castle, Claude B.: Fatigue of Four Stainless Steels and Three Titanium Alloys Before and After Exposure to 550^o F (561^o K) up to 8800 Hours. NASA TN D-2899, 1965.
- 4. Committee E-9 on Fatigue: Manual on Fatigue Testing. Spec. Tech. Publ. No. 91, Amer. Soc. Testing Mater., 1949.
- Grover, H. J.; Hyler, W. S.; Kuhn, Paul; Landers, Charles B.; and Howell, F. M.: Axial-Load Fatigue Properties of 24S-T and 75S-T Aluminum Alloy as Determined in Several Laboratories. NACA Rep. 1190, 1954. (Supersedes NACA TN 2928.)
- 6. Imig, L. A.: Effect of Initial Loads and of Moderately Elevated Temperature on the Room-Temperature Fatigue Life of Ti-8Al-1Mo-1V Titanium-Alloy Sheet. NASA TN D-4061, 1967.
- 7. Anon.: Alloy Sheet and Strip, Corrosion and Heat Resistant: Nickel Base –
 19Cr 11Co 10Mo 3Ti 1.5Al, Vacuum Melted Solution Heat Treated.
 AMS 5545, Soc. Automot. Eng., Jan. 15, 1961.
- 8. Anon.: Alloy Sheet, Strip, and Plate, Corrosion and Heat Resistant: Nickel Base 15.5Cr 2.5Ti 1(Cb + Ta) 0.7Al 7Fe. AMS 5542G, Soc. Automot. Eng., Sept. 1, 1949 (Rev. Jan. 15, 1962.)

T

TABLE I.- CHEMICAL COMPOSITIONS AND TENSILE PROPERTIES OF SHEET MATERIALS

		Percentage of constituent by weight -																
Alloy	Al	Nb and Ta	Co	Cr	Cu	Fe	Mn	Мо	v	В	С	S	Si	н	N	0	Ni_	Ti
Ti-6Al-4V	5.8					0.12			4.1		0.023			0.011	0.009	0.10		Bal.
René 41	1.40		11.11	18.41		.58	Nil	9.68		0.0035	.04	0.006	0.10				Bal.	3.10
Inconel X	.66	0.94		15.14	0.03	6.52	0.27				.02	.007	.25		·		a73.68	2.46

(a) Chemical compositions determined by manufacturers

^aIncludes a small amount of cobalt.

(b) Tensile properties at room temperature (based on one test of each alloy)

Alloy	Condition	Thick	Thickness		ensile timate rength	stren	e yield gth at ent offset	=/,	
			mm	ksi	MN/m^2	ksi	MN/m^2	percent	
Ti-6Al-4V	Duplex annealed ^a	0.063	1.60	148	1020	139	958	15	
René 41	Solution treated ^b	.070	1.78	142	980	81	558	50	
Inconel X	Annealed ^C	.062	1.57	109	752	49	338	55	

^aAnnealed by heating to 1750° F (1230 K) for 10 minutes, air cooling, heating to 1250° F (950 K) for 4 hours, and air cooling.

^bSolution heat treated according to Aerospace Material Specification 5545 (ref. 7). ^cAnnealed according to Aerospace Material Specification 5542G (ref. 8).

Ξ

TABLE II.- CONDITIONS FOR FATIGUE TESTS

A 11 or 1	Test temperature							
Alloy	°F	К						
Ti-6Al-4V	70	294						
René 41	70 and 1500	294 and 1090						
Inconel X	70 and 1500	294 and 1090						

(a) Plain specimens

(b) Specimens with strain gages^a

A11	Gage backing	Method of	Test temperature			
Alloy	material	attaching gage	٥F	К		
	Fiber glass	Adhesive				
	Resin	bonding				
Ti-6Al-4V	Titanium alloy		70	294		
	Stainless steel					
	Gold alloy	Resistance				
René 41	René 41 (simulated gages)	spotwelding	70 and 1500	294 and 1090		
Inconel X	Inconel X (simulated gages)		70 and 1500	294 and 1090		

^aDimensions of strain gages and simulated gages are given in appendix B.

	I	-			-	
Gage backing	Method of	Maximu	im stress	Fatigue life of specimen,	Fatigue life of strain gage,	
material	material attaching gage		MN/m ²	cycles	cycles (a)	
		130	900	^b 6 040	80	
		130	900	^b 6 060	60	
Titanium		110	760	10 000	3 000	
alloy		50	340	76 000	^c 76 000	
		24	170	1 029 000	90 000	
		d80	550	35 000	Not available	
		^e 130	900	^b 7 370	6 690	
		e130	900	^b 8 040	5 380	
Stainless	Resistance	90	620	20 000	^c 20 000	
steel	spotwelding	30	210	445 000	c445 000	
		20	140	1 330 000	Not available	
		^f 80	550	52 000	Not available	
		e130	900	b5 950	Lead wires failed	
		130	900	^b 6 960	^c 6 960	
Gold alloy		70	480	26 000	^c 26 000	
Goia anoj		^e 24	170	216 000	^c 216 000	
		16	110	3 158 000	Not available	
		12	80	>10 000 000	^c 10 000 000	
		130	900	22 000	3 000	
Fiber		130	900	111 000	15 000	
glass		70	480	>10 000 000	3 400 000	
		60	410	>10 000 000	^c 10 000 000	
	Adhesive	130	900	427 000	g2 000	
	bonding	100	690	119 000	g1 000	
Resin		100	690	>20 000	20 000	
		h70	480	115 000	Not available	
		50	340	>10 000 000	^c 10 000 000	
		40	280	>10 000 000	^c 10 000 000	
		130	900	30 000		
		130	900	86 000		
No	gages	125	860	1 723 000		
		120	830	5 239 000		
		116	800	3 908 000		

TABLE III.- FATIGUE DATA FOR TI-6Al-4V SPECIMENS TESTED AT ROOM TEMPERATURE [R = 0.05]

 ${}^{a}\mathrm{Complete}$ electrical failure unless otherwise noted.

^bTested in hydraulically actuated testing machine.

^cGage was electrically continuous after specimen failed or at end of test.

 $d_{\mbox{Annealed}}$ at 1500° F (1090 K) for 6 hours after spotwelding.

^eFailure initiated at a spotweld interior to the end spotwelds. Failure of all other

specimens with spotwelded gages initiated at an end spotweld.

^fAnnealed at 1350^o F (1000 K) for 4 hours after spotwelding. ^gBond failed.

^hSpecimen failure initiated at surface flaw near minimum section.

TABLE IV.- FATIGUE DATA FOR RENÉ 41 SPECIMENS TESTED AT ROOM TEMPERATURE AND AT 1500° F (1090 K)

[R = 0.05]

(a) Plain specimens

(b) Specimens with simulated gages

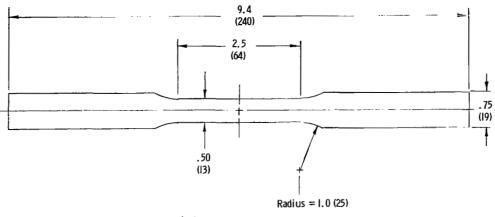
Maxin	num stress	Fatigue life		Maxir	num stress	Fatigue life	
ksi	MN/m^2	of specimen, cycles		ksi	MN/m ²	of specimen, cycles	
T	Tests at room temperature			Tests at room temperature			
68	470	>7 906 000		40	280	7 231 000	
70	480	3 963 000		45	310	2 183 000	
75	520	460 000		50	340	1 197 000	
75	520	3 358 000		55	380	1 264 000	
85	590	297 000		60	410	716 000	
95	650	77 000		70	480	307 000	
105	720	82 940		80	550	120 000	
115	790	$^{a}42~700$		90	620	a ₇₁ 930	
125	860	^a 31 200		Те	ests at 1500 ⁰ I	F (1090 K)	
Te	ests at 1500 ⁰ H	Г (1090 К)		30	210	>10 000 000	
60	410	>10 000 000		35	240	>10 000 000	
63	430	9 361 000		38	260	>10 000 000	
66	460	6 226 000		40	280	>10 000 000	
70	480	5 405 000		50	340	39 000	
75	520	2 727 000		60	410	22 000	
80	550	1 691 000		70	480	18 000	
90	620	587 000	\$	80	550	15 000	

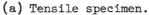
^aTested in hydraulically actuated testing machine.

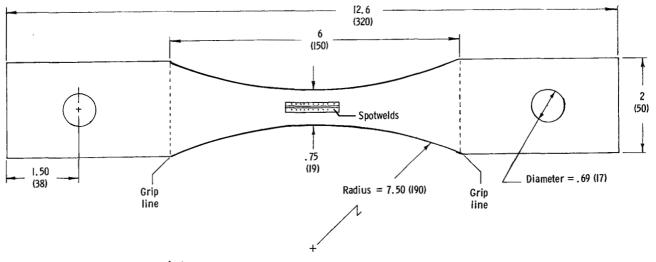
ς.

TABLE V.- FATIGUE DATA FOR INCONEL X SPECIMENS TESTED AT ROOM TEMPERATURE AND AT 1500⁰ F (1090 K)

[R = 0.05]


(a) Plain specimens


(b) Specimens with simulated gages


Maxim	num stress	Fatigue life	Maxin	num stress	Fatigue life			
ksi	MN/m ²	of specimen, cycles	ksi	MN/m ²	of specimen, cycles			
Те	Tests at room temperature			Tests at room temperature				
55	380	>10 000 000	34	230	>10 000 000			
58	400	5 084 000	36	250	7 389 000			
60	410	969 000	40	280	2 274 000			
65	450	446 000	50	340	1 008 000			
70	480	^a 145 980	60	410	235 000			
80	550	^a 88 700	60	410	396 000			
90	620	a ₆₃ 950	70	480	^a 267 080			
Τe	ests at 1500 ⁰	F (1090 K)	70	480	^a 232 110			
24	170	· · · · ·	80	550	^a 148 920			
24 28	170	>10 000 000 4 746 000	Те	sts at 1500 ⁰	F (1090 K)			
32	220	2 786 000	23	160	>10 000 000			
36	250	1 468 000	26	180	6 676 000			
40	280	831 000	30	210	4 709 000			
50	340	107 000	40	280	692 000			
60	410	19 000	50	340	130 000			
			60	410	17 000			

.

 a Tested in hydraulically actuated testing machine.

(b) Fatigue specimen with weldable strain gage.

Figure 1.- Tensile and fatigue specimen configurations. Dimensions are in inches (mm).

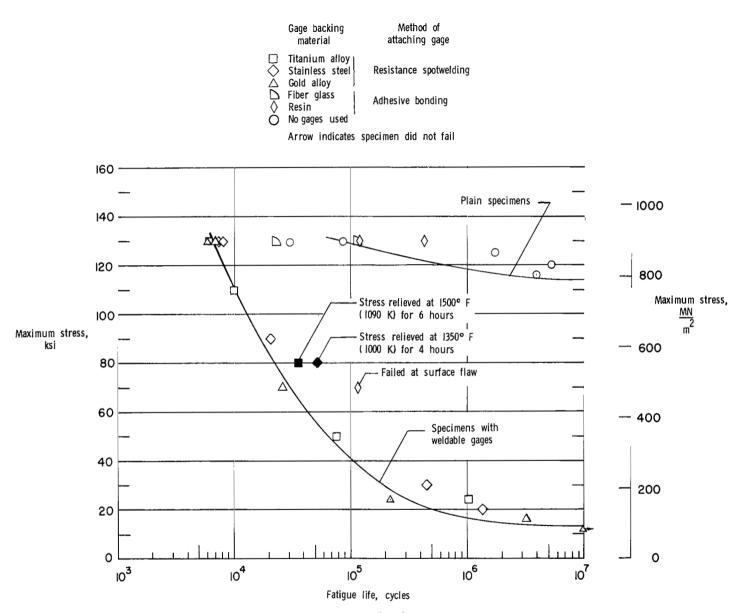


Figure 2.- Constant-amplitude fatigue data for Ti-6Al-4V specimens at room temperature. R = 0.05.

-

:

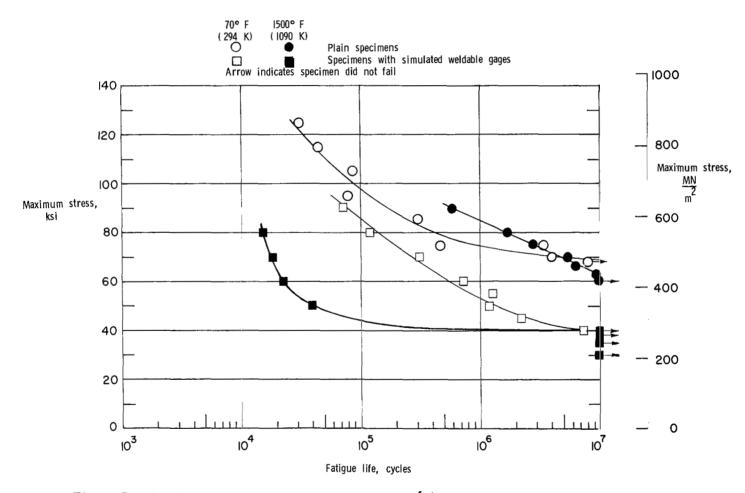


Figure 3.- Constant-amplitude fatigue data for René 41 specimens at room temperature and at 1500° F (1090 K). R = 0.05.

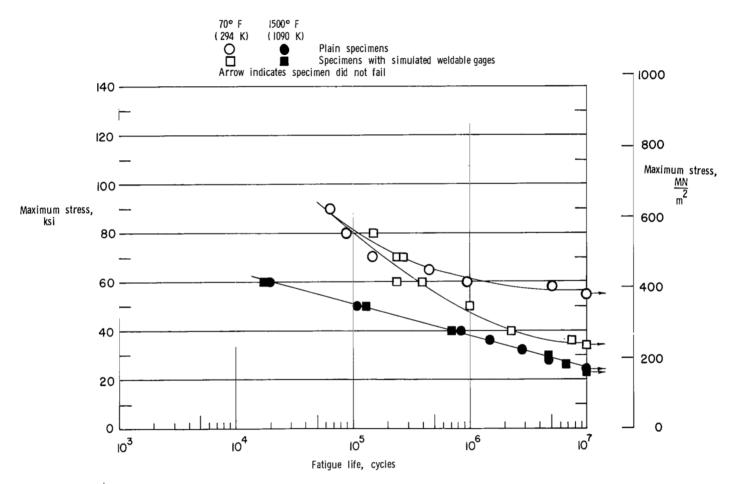
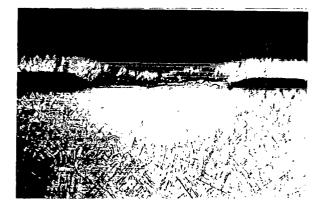
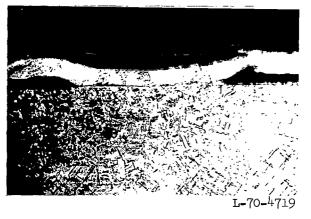


Figure 4.- Constant-amplitude fatigue data for Inconel X specimens at room temperature and at 1500° F (1090 K). R = 0.05.


(a) René 41.


(b) Inconel X.

(c) Ti-6Al-4V as welded, with gold-alloy gage backing.

(d) Ti-6Al-4V as welded, with titaniumalloy gage backing.

(e) Ti-6Al-4V stress-relieved at 1500^oF
 (1090 K) for 6 hours, with titanium alloy gage backing.

Figure 5.- Photomicrographs of partial cross sections through spotwelds (x 87).

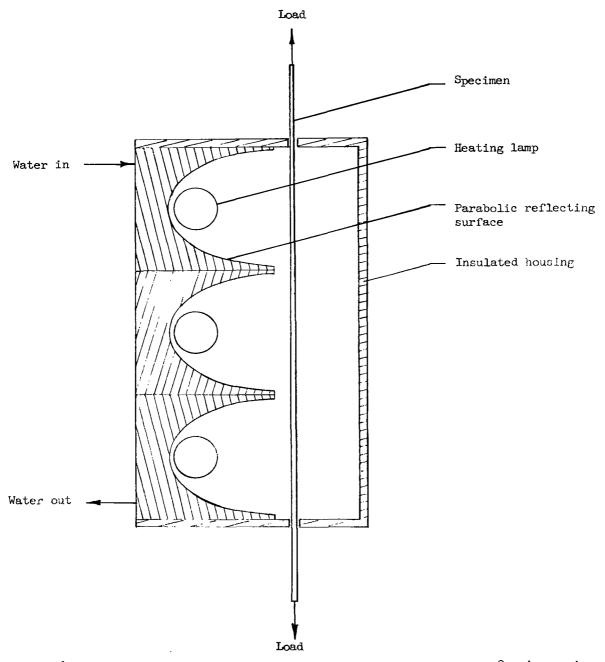


Figure 6.- Schematic cross section of heater for fatigue tests at 1500° F (1090 K).

OFFICIAL BUSINESS

5

FIRST CLASS MAIL

POSTAGE AND FEES PAID NATIONAL AERONAUTICS A SPACE ADMINISTRATION

01U 001 40 51 3DS 70254 00903 AIR FORCE WEAPONS LABORATORY /WLOL/ KIRTLAND AFB, NEW MEXICO 87117

ATT E. LOU BOWMAN, CHIEF, TECH. LIBRARY

POSTMASTER: If Undeliverable (Section 15 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination `of information concerning its activities and the results thereof."

--- NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546