
COMPONENT ARCHITECTURE
THE SOFTWARE ARCHITECTURE FOR MISSION REQUIREMENTS

Thomas Huang

Space Science Data Systems Section
Jet Propulsion Laboratory, NASA

Pasadena, CA 91 109, USA
Thomas.Huang @jpl.nasa.gov

ABSTRACT
Software reuse is a common strategy in developing
complex systems and has proven successful in reducing
labor and maintenance costs. However, simply reusing
modules will not produce a system that is adaptable to a
variety of mission requirements. Because of this, projects
often involve development of similar software systems
from scratch in order to satisfy requirements. The end
result is a system that can only operate in a specific
environment and be used only in a specific way, with
consequentially higher costs for maintenance and user
training.

Component architecture consists of a framework that
defines the standard interactions between components and
standard interfaces for useful components to attach to the
framework and interact with other components. Modern
object-oriented programming languages are very good in
their support for static interfaces, but need additional
work in the area of dynamic interfaces. Reflection, which
is available in some 00 languages, should be considered
in developing model component systems to enable
dynamic discovery of service components at runtime.
This enables software systems to be assembled at
deployment time and provide users the ability to
customize the software system with respect to their
operating environment.

Our File Exchange Interface (FEI) is af ile transaction
service that offers portable, high performance, database-
driven file management and transfer service. Unlike the
common File Transfer Protocol (FTP), FEI provides file
integrity verification on the fly, user authentication and
authorization support, and database transaction
management. FEI played a major role in file archiving
and delivery service in flight missions such as Galileo,
Mars Pathfinder, Deep Space 1 , Cassini, and Space
Infrared Telescope Facility. The new FEI version 5 , code

named Komodo, is a component-based service to enable
pluggable support for various mission security
requirements, database repositories, communication
protocols, concurrency model, and file systems.

This paper presents the challenges in developing a
dynamic service such as FEI to support various mission
requirements while still being able to reduce cost on
maintenance without sacrificing reliability and
performance.

Keywords: Component, Component Configurator,
Software Product Lines, Design Patterns, Reflection,
Framework, Database.

1. INTRODUCTION

Despite dramatic increases in network and desktop
computer performance, it remains difficult to design,
implement, and reuse communication software for
complex distributed systems. As the world’s eyes and
ears to the unknown frontier, the Multimission Image
Processing System (MIPS) at JPL is expected to be able
to accurately process all live science data gathered by
spacecraft and distribute the processed data products to
the science communities with respect to stringent quality-
of-service (QoS) requirements. The image-processing
framework, shown in Figure 1, consists of intelligent
business components that perform acquisition and
processing of telemetry data, cataloging of data products
and onboard instrument states, visual verification and
monitoring, science data processing, and distribution to
subscribing science communities. While the framework
defined the system’s core services, each mission has its
own set of requirements. These requirements may specify
the method of telemetry data acquisition, visualization
interface (if any), where and when data product
distribution occurs, and most importantly of all the QoS

mailto:jpl.nasa.gov

requirements. To satisfy these mission-specific
requirements, software engineers customize each service
component within the framework while maintaining
interoperability with the reset of the services. The image-
processing framework is really a Software Product Line
(SPL) [I41 where mission data is being processing with
software systems that are built from the core business
components with added mission-specific characteristics.
SPL, a concept first formalized by the Software
Engineering Institute (SEI), defines a set of software-
intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular
market segment or mission and that are developed from a
common set of core assets in a prescribed way [141.

A

Figure 1. Image processing framework.

While each business component is critical to the quality
of the end data products, the most visible components to
the science community are the data product distribution
and registration services. They serve as the live data
communication channel for the science communities.
Both services must be scalable, reliable, and adaptable to
various mission requirements. The services must be
scalable to the volume of data they manage and the
number of users they serves. They must be reliable to
preserve the integrity of the data they manage and
distribute. And finally and most importantly of all, they
must be adaptable to their operating environment and the
mission-scientists' needs. Component architecture is the
key to satisfy performance and the QoS requirements.

2. MOTIVATION

File Exchange Interface (FEI) is a data product
distribution and registration service that is designed as a
service component to MIPS. The service organizes data
products through user defined file types and offers secure,
high-performance file transaction and distribution
capabilities that conventional file distribution services
lack. As a core communication component in the image-
processing framework, there are inherent and
development-induced complexities in the design of FEI.
The inherent complexities stem from various QoS mission
requirements and fundamental challenges of developing
any networked transaction services that include detection
and recovery of network and host failures, minimizing the
impact of communication latency, and determining the
optimal transaction processing model to minimize lock
contingencies. The development-induced complexities
stem from the limitations of tools and techniques used in
developing scalable transaction-oriented data streaming
services.

2.1 PREVIOUS VERSIONS

Former implementations of FEI had adopted the
conventional object-oriented paradigm for promoting
abstraction, encapsulation, inheritance, and reuse. The
idea of building a program by the composition of
modules, or objects [8] really simplified the design and
development process. One of the limitations of the
conventional 00 development paradigm is the
requirement of having static interfaces for each object so
that they can communicate by invoking each other's
methods [18]. Another limitation in the conventional 00
development paradigm is that it encouraged extensibility
through inheritance. Software maintenance was done by
stuffing an existing factory method [6] with additional
conditions in order to instantiate an ewly implemented
subclass of an existing abstract base class. The resulting
software application is like a Swiss Army Knife that has a
set of generalized objects for each set of specialized
conditions. The long-term effect of such an approach is
gradual degradation in software performance because of
the added conditional branches and complex inheritance
hierarchies. The increase in its complexity also always
translates into costly maintenances.

3. OVERVIEW OF KOMODO

Frameworks are an object-oriented reuse technique [161.
They are built from reusable components with design
patterns as the micro-architectural elements. Some of the
well known distributed component frameworks including

Common Object Request Broker Architecture (CORBA)
and Distributed Component Object Model (DCOM) [4]
offered flexible solutions to large-scale clientkerver
systems. Komodo, also known as FEIS, has adopted the
idea of reusable interface designs and components to offer
an approach that is different from the conventional 00
development paradigm and is much more flexible in
handling various mission requirements without a
performance tradeoff. The goal is to design and develop a
component-base framework that dependents on a set of
virtual components [I] to enable pluggable configuration
for mission specific business requirements. These virtual
components are to be specified and loaded into the
Komodo core during deployment time to enable deploy-
time assembling of mission specific service.

The virtual components identified by the framework are
considered to be mission-specific service components.
Since they are virtual components, the concrete
implementation of each of these components will be
loaded, configured, and bound to the Komodo core.
Dynamic service configuration and deployment offers
maximum administration flexibility without taking a huge
toll in service performance. It depends on the component
loading strategy chosen for the service instance; the
performance tradeoff may take place during service
startup or when the specific component service is first
utilized. The remainder of this section discusses key
components and interface requirements for Komodo.

/

Figure 2. Example Komodo deployment diagram.

Komodo is the latest incarnation of FEI. It has
incorporated some fundamental ideas from SPL by
combining core service components into its framework.
These core service components, illustrated in Figure 2,
include file service configurator, file transaction manager,
session manager, protocol pipeline [121, session manager,
subscription manager, and monitor service. The
deployment diagram also identified a few virtual
components [11, depicted with a circle followed by a solid
line attached to a physical component. A virtual
component consists of an abstract interface that is
required by the core framework. The actual
implementation of the component is to be determined
during deployment time. In the illustration, the circle
denotes the abstract interface that the Komodo core
requires and the physical components are components that
are identified during deployment time. The new design
also recognizes the importance of having a standardized
component management solution [111, which enables
unified service management for all instances of the
service components. Each component in Komodo is a
managed component, because they each represent a
resource that is required by the service.

3.1 SERVICE CONFIGURATION AND
RECONFIGURATION

The ability to load, configure, bind, and unload
components is the key to any component based systems.
Komodo has adopted the virtual component design
pattern [I] as its method of handing various component
loading strategies and dynamic configuration and
reconfiguration of service components.

Figure 3 Virtual component.

The component loading strategy defines how and when
components get bound to the Komodo core. Komodo
uses the eager static [l] scheme to load core service
components. This scheme requires the concrete
components to be loaded immediately when the program
initializes. Komodo uses the eager dynamic [13 scheme to
load pluggable components where the concrete
components get loaded when their factory is instructed to
resolve the components at run-time. Both schemes can be
easily implemented with Java using its dynamic class
loader [171. Component configurator design pattern [5],
shown in Figure 4, should be used when implementing the
eager dynamic scheme.

3.3 FILE REGISTRY

1 '
File Type

Figure 4. Component confgurator design pattern.

File Type
Role

3.2 SECURITY STRATEGIES

Security includes authentication, authorization, and
accounting. This is different from network
communication security strategies. Secure Socket Layer
(SSL) [7] is the de facro standard for secure network
communications and Komodo uses SSL by default. We
are also considering support for other secure
communication schemes by using the strategy design
pattern [6, 131 as the abstract interface to various message
encryption algorithms. The authentication schemes could
include one-way encrypting of user password and private
keys such as Kerberos [2]. The authorization schemes
determine the user and file type role associations within
the Komodo service. These roles could include
operational user, principle investigator, administrator, etc.
Each user in Komodo is associated with one or more
roles, which determine their access and privileges to the
file types managed by Komodo, see Figure 5 . The
pluggable authorization interface allows for retrieval of
external user role information from an existing directory
service such as Lightweight Directory Access Protocol
(LDAP). The Accounting scheme keeps track of each
user operations to facilitate future auditing of data
modification history.

A file registry serves as a file lookup and registration
component for all the files and their types managed by
Komodo. Since this is a registration service component,
it must also support transactional updates to the registry.
This is the key component in Komodo that distinguishes it
from a simple FTP server. While it may sound a bit
extreme, it is what makes Komodo special. File
transactions such as adding a file to the server will require
locks to prevent other users from accessing that particular
file until the registration is complete. The registration
processing includes receiving the entire file from the
contributor, performing a file integrity checks, and
recording the file metadata to the registry.

The simplest type of file registry implementation could be
the use of a relational database system (RDBMS), since it
provides optimal query processing mechanisms and has a
standardized logical data organization structure. The
inherent complexity in using a RDBMS results from the
fact that all RDBMS do not provide the same functions
and capabilities. The Java Database Connectivity (JDBC)
API and Open Database Connectivity (ODBC) API have
offered a unified query interface API, but it does not
address other portability issues such as SQL statement
and return data set. It is a known fact that every RDBMS
has its own implementation of a subset of the SQL
specification [3]; therefore SQL is not portable among
RDBMS. Features that are RDBMS specific include the
mechanisms used in enforcement of referential integrity,
subqueries, views, stored procedures, SQLJ support,
result set cursor (implicit/explicit) and many more.

Another non-portability issue of RDBMS is their support
for standard SQL data types. Again, the SQL
specification has specified a list of standard data types but
each RDBMS vendor has its own favorite set of standard
types. This non-uniform support of standard SQL types
has an impact on how queries can be issued from the
application level and how the return data are mapped back
to application-level as abstract data values.

Figure 5 The Komodo authorization class relation

The security component only gets loaded at service
initialization time for obvious reasons. Its
implementation defines how users will be authenticated,
the source for user roles, and how accounting will be
handled.

There have been many publications in the area of
application-level query abstractions that range from
implementing a simple jump table to inventing a whole
new object language engine. All current solutions have
performance penalties. The Komodo framework made
the file registry component a virtual component and it is
up to the registry implementer to design and implement
the necessary operations to interact with the targeted file
registry with minimal overhead.

3.4 SUBSCRIPTION AND NOTIFICATION
STRATEGIES

File subscription service is a unique feature in FEI. It is a
mechanism to enable automatic delivery of data products,
see Figure 6. This feature plays a key role during mission
operations where remote scientists can have the latest
processed data products delivered and with optional
triggering of an additional processing chain at the remote
site. A subscription is best described using the observer
design pattern [6, 131, where events occurring within an
object (subject) cause dispatching of others (observers).
The similar model can be applied to general event
notification mechanisms. Significant event notification is
important in order to page, email, or to interact with other
enterprise services.

Y
I

Figure 6. A simple subscription sequence diagram.

Implementations of event dispatch mechanisms [IO] for
multi-threaded environments are faced with several
challenges.

General network communication failure: The
service is unable to dispatch an event to a subscriber
due to a communication failure or because the
subscriber is no longer connected. In this case, the
service should not continue to attempt to deliver any
more messages to the non-existent subscriber.

Non-responding subscriber: The subscriber is
connected but iti s not accepting the dispatched
message. This is usually caused by a resource
consumption problem at the subscriber host that is
prohibiting the subscriber from handling any
messages from the server. The schemes for handing
such situations can vary among implementations.

One option is to schedule for future re-dispatch of
events. The consequence of such an approach is that
the implementation must decide when to give up, that
is to remove the non-responding subscriber, while
resources are being consumed by the server’s
subscription cache. Another approach is to simply
disconnect any non-responding subscriber and
require the subscriber to re-subscribe when its local
resources are available. The consequence of such
approach is that it requires the subscribing client to
implement the reconnection strategy and also query
for any missed events.

Frequency of significant events: In the significant
event notification case, the method of event dispatch
is always asynchronous and a non-responding
subscriber will not receive any further significant
event notifications. One criterion that the
administrator should specify is the frequency of
dispatching of the same significant event from the
same source. For example, a storage threshold has
been reached and a significant event was dispatched
to notify the administrator. Successive file
registration will also trigger the same significant
event until the administrator creates more storage
space. The notification strategy should not
overwhelm the administrator on the same significant
event generated by the same source. The ability to
specify the frequency of dispatching of the same
event created from the same source allows the
administrator to specify how often helshe wishes to
be reminded.

General multi-threading issues: Given the multi-
threading environment, there are many opportunities
for deadlock, reduced concurrency, and priority
inversion due to recursive calls [lo] in the
subscription component while it is busy handling
dispatching requests.

There can be many variations in implementations of the
subscription strategy due to the varying mission needs and
the size of the data the service must handle. For example,
if a mission only generates many small data products and
all processing teams are operated in a high-speed LAN
with sufficient resource, then it can choose to have the
actual data products as part of the message being
delivered to minimize excessive disk 110. For missions
that have huge data products andlor operate under diverse
network configurations, the message being delivered
should only contain metadata for the new data product.

3.5 VO STRATEGY 4. CONCLUDING REMARKS

There have been many publications regarding optimizing
software I/O, since it is the number one performance
bottleneck in any large-scale clientkerver application.
The optimal I/O strategy can vary depending on the
operating system and the type of file system under which
the software must operate. The most portable kind of I/O
strategy is blocking I/O and it is the default for most
clientherver applications. However, it is inefficient. I/O
performance can be improved by varying the binary data
buffering strategy and minimizing synchronization.

3.6 MANAGEMENT INTERFACE

Service management is always important for any large-
scale client/server systems. The ability to perform health
monitoring and dynamic reconfiguration on service
resources is essential. Traditionally the management and
monitoring consists of ad hoc implementations that are
scattered around the software. A unified method in
developing management interfaces [113 will simplify
development of service management applications, as
shown in Figure 7.

Software maintenance and support are large investments
[I51 for any space missions. It is commonly held that
reuse can reduce the cost in software development and
increase the quality of the product being produced. While
module reuse can be beneficial to as ingle mission, an
architectural reuse can be beneficial to all missions. Our
experience from working on Komodo has produced an
alternative approach to the conventional 00 paradigms.
Component architecture offers a much more flexible
approach to the handling of diverse project or mission
requirements by promoting separation of concerns in
developing a software framework against well-defined
interface to virtual components. What makes such an
approach different from the conventional 00 architecture
is its ability to rely on factory objects to bind concrete
component implementations to well-defined interfaces at
runtime. Developers can benefit from such an approach
by stubbing out all non-essential components to reduce
the development complexities. Space missions can
benefit from software developed using components by
reusing a well-tested framework that enables them to
specify the concrete components that meet their QoS
requirements.

5. ACKNOWLEDGEMENTS

Thanks tom y MIPL Data Management System
development team for making Komodo a reality. Thanks
also to Larry F’reheim and Dr. H. Norton Riley for helpful
comments on the paper.

6. REFERENCES

Figure 7. Service management class diagram.

Monitoring is often done by having a Singleton [6, 131
object that provides accounting services. This requires all
critical operations to be reported by this object, which has
many performance implications, because multiple worker
threads are competing to report their states to the single
monitor object. Gathering of statistical data on an active
server should only introduce minimal overhead otherwise
the method of gathering affects the actual statistics. One
simpler approach is to apply the interceptor architectural
pattern [5] to transparently introduce statistic-gathering
modules without affecting the overall processing flow of
the active service.

[I] A. Corsaro, D. C. Schmidt, R. Klefstad, and C.
O’Ryan, “Virtual Component: A Design Pattern for
Memory-Constrained Embedded Applications,”
Proceedings of the qh Annual Conference on the
Pattern Languages of Programs, Sept. 2002.

[2] B. Tung, Kerberos: AN etwork Authentication
System. Addison Wesley, 1999. ISBN 0-20 1-37924-
4.

[3] C. J. Date, An Introduction to Database Systems,
Seventh Edition. Addison-Wesley, 2000. ISBN 0-

[4] D. C. Schmidt, “ACE: an Object-Oriented
Framework for Developing Distributed
Applications,” Proceedings of the 61h USENIX C++
Technical Conference, Apr. 1994.

[5] D. C. Schmidt, M. Stal, H. Rohner, and F.
Bushmann, Pattern-Oriented Software Architecture:
Patterns for Concurrency and Distributed Objects,

20 1 -3 8590-2.

Volume 2 . Wiley & Sons, 2000. ISBN 0-471-

[6] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Programming, Addison-Wesley, 1995.

[7] E. Rescorla, SSL and TLS: Designing and Building
Secure Systems, Addison Wesley, 2000. ISBN 0-

[8] F. P. Brooks, The Mythical Man-Month. Addison-
Wesley, 1995. ISBN 0-201-83595-9.

[9] G. Wang, L. Ungar, and D. Klawitter, “Component
Assembly for 00 Distributed Systems,” IEEE
Computer, vol. 32, no. 7, pp. 71-78, Jul. 1999.

[101 I. Pyarali, C. O’Ryan, and D. C. Schmidt, “A Pattern
Language for Efficient, Predictable, Scalable, and
Flexible Dispatching Mechanisms for Distributed
Object Computing Middleware,” Proceedings of the
IEEE/IFIP International Symposium on Object-
oriented Real-time Distributed Computing, Mar.
2000.

[I 11 J. S. Perry, Java Management Extensions, O’Riley
& Associates, Inc., 2002. ISBN 0-596-00245-9.

[12] M. E. Fayad, R. E. Johnson, Editors, Domain-
Specific Application Frameworks: Frameworks
Experience by Industry, John Wiley & Sons, 2000.

[13] M. Grand, Patterns in JavaTM, Volume I: A Catalog
of Reusable Design Patterns Illustrated with UML,
2“d Edition, John Wiley & Sons, 1998. ISBN 0-471-

[I41 P. Clements, and L. Northrop, Software Product
Lines: Practices and Patterns. Addison-Wesley,

[IS] R. B. Grady, Practical Software Metrics for Project
Management and Process Improvement. P. T. R.
Prentice-Hall, 1992. ISBN 0-13-720384-5.

[16] R. E. Johnson, “Frameworks = (Components +
Patterns),” Communications of ACM, vol. 40, no. 10,

[17] S. D. Halloway, Component Development for the
Java TM Platform, Pearson Education, Inc., 2002.

[181 T. J. Brown, I. Spence, P. Kilpatrick, and D. Cookes,
“Adaptable Components for Software Product Line
Engineering,” Proceedings of the Second
International Conference, SPLC2, pp. 154- 175,
Aug. 2002.

60695-2.

ISBN 0-20 1-63361-2.

20 1-61 598-3.

ISBN 0-471-33280-1.

22729-3.

2002. ISBN 0-201-70332-7.

pp. 39-42, Oct. 1997.

ISBN 0-201-75306-5.

