| - . -+
1_/”‘}3/(—{ T
~ ®p ST

w

N -
‘ CSC/TM-82/6033

THE SOFTWARE ENGINEERING LABORATORY

Prepared For
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Goddard Space Flight Center
Greenbelt, Maryland

CONTRACT NAS 5-24300
Task Assignment 936

FEBRUARY 1982

{NASA-CR-183441) THE SOFTWARE ENGINE@RING N8S-71121
LABORATORY Final Report (Computer Sciences

Corp.) 122 p

Unclas
0061 0224550

- COMPUTER SCIENCES CORPORATION

CsC/TM-82/6033

THE SOFTWARE ENGINEERING LABORATORY

Prepared for

GODDARD SPACE FLIGHT CENTER

By

COMPUTER SCIENCES CORPORATION

Under

Contract NAS 5-24300
Task Assignment 936

Prepared by:

&“40 ﬂ ' @Uua Z / lc Zg 2

D. N. Card Date

F. E. McGarry (GSFC)

Reviewed by:

/U_Jrﬂ,: A]\4,1/ 20/ S
W. J. Decker “Ddte

A9

Approved Dby:

,J w 4//0 /S’J.

S. Eslinger(Date
Section Manager

Soratd ﬁ/j}z/ EEIER

G. Page Date
Department Manager

/ £«(Bﬁw.w—-—:}’ 2%!0//32.

“s. E. Cneuvront Date
Operation Manager

PREFACE

This document is the final version of the document that was
originally prepared as a preliminary draft (CSC/TM-81/6104).
It incorporates the results of an extensive review by GSFC

and CSC personnel. This document is also being issued as a

volume in the Software Engineering Laboratory Series
(SEL-81-104) .

iii

PACE_ /. [INTENTIONALLY BLAMR

ABSTRACT

This document describes the history, organization, opera-
tion, and research results of the Software Engineering Lab-
oratory (SEL). The SEL is a joint effort of the Godaard
Space Flignt Center (GSFC), Computer Sciences Corporation
(CsC), ana the University of Maryland to study and improve
the software development process. The document discusses
specific data collection and analysis activities and general

considerations of motivation and approach.

PAG:WLLMENHQMM BLANS

TABLE OF CONTENTS

Section 1 - Introduction. . . +v & ¢ o« ¢ o o ¢ o o« o « « 1-1
1.1 The SEL APProach . . .« ¢« &« o &« o « o o« o = o o« « o+ 1-4
1-2 Areas Of Concern . . " - Y 1-6
1.3 Objectives of the SEL. . . « ¢« ¢« ¢« ¢« ¢ ¢« & o« &« +» o+ 1-8
1.4 Flight Dynamics Environment. . « « « « « « « « .« . 1-=9
1.4.1 Flight Dynamics Organization. 1-9
1.4.2 Hardware ReSOULCES. « « o+ o « o« s o o o o« 1-13
1.4.3 Software Characteristics. « « + ¢« « « + « 1-14
Section 2 ~ SEL OperationNS. « « « « « o o o o o o o o« « 2-1
2.1 SEL organization Y - . - e . . 2-1
2.2 Data COlleCtiOD. Y . . . Y ° 2-4

2.2.1 Software Engineering Forms. 2=5
2.2.2 Computer Accounting Information 2-7
2.2.3 Personal Interviews . . « « o « « o o o« o 2-7
2.2.4 Automated Data Collection Tools 2-8
2.2.5 Summary Management Information. 2-9
2-3 Data Validation. . . « - . . Y . . - . 2-10
2.4 Data Base Organization « ¢« « ¢« ¢ « « ¢« « « 2-11
2.5 Data AnaIYSiS. - - . . . - . - . - 2‘13
Section 3 - Survey of SEL Research. « « « . « 3-1
3.1 Profile Analysis e e e s e e e o s o e o o s e+ e« o 3=2
3.1.1 The Development Process . . + « « o« o+ « » 3-3
3.1.2 The Development Environment 3-8
3.1.3 The Development Product . « . « « « « . . 3-8
301.4 prOfile Comparisons 3-11
3.2 Methodology Evaluation . . . &« « ¢ ¢« ¢« ¢ o « o« « o 3-12
3.3 MOdElS - - . 3-16
3.3.1 Resource Utilization Models 3-16
3' 3.2 The SEL Meta‘MO(iel. - - . . 3—19
3-303 Reliability MOdelS. 3-24
3.4 Tool Evaluation. . « « « o o o o « o o « o o o o & 3=25
3.5 Measures and MetricCsS . « « =« « o o o o o o o o o o 3=27
3.5.1 Static MEasuUres . « « « o o o o o « s+ o o 3=29
3.5.2 Derived MeasSureS. « + « o o + s o o o o« o 3=-29
3.5.3 Subjective Measures . . . « . . .+ . . « o 3-30

vii

oact_ Y/ | INTENTIONALLY RLAM

TABLE OF

CONTENTS (Cont'd)

Section 4 -~ Summary . . .

4.1 Status of SEL. . . .
4.2 Conclusions. . « « =
4.3 Recommendations. . .

Appendix A - SEL Data Tabulations

Appendix B - SEL Project Summaries

Glossary

References

Bibliography

viii

=3
[}
[

ook D
|
uy W -

LIST OF ILLUSTRATIONS

Figure
1-1 Software Development Model . . . « « . « .+ &
1-2 Software Development Team Organization . . .
1-3 Development Team Interactions With

SEL Personnel. . « « o « ¢ o« o o o o o o o
2-1 SEL Organization e s+ s e s o e o s
3-1 Manpower Utilization by Phase/Act1v1ty . . e
3-2 Types of Computer Runs Made During

Development. . « « o o o o o o o s » o o o
3-3 Types of Code Changes. . . . e e s e o o
3-4 Measures of the Reliability of the Computing

Environment. « .« ¢ ¢ ¢ « ¢ ¢ 2 ¢ ¢ o o o =
3-5 Characteristics of FORTRAN Modules

Developed. . +« « ¢ o o o o o o o o o o o
3-6 Rayleigh Curve . . . « ¢ ¢« o ¢ o & o o o & =
3-7 Estimated Resource Expenditures Curves . . .
3-8 Effort Versus Developed Lines of Code. . . .
3-9 Hypothetical Data Distributions.

LIST OF TABLES

Table
1-1 Flight Dynamics Development Team . . « « « &
1-2 Flight Dynamics Computers. . . .« « « « + o &
1-3 The Development Cycle. . « o o« o« o « o ¢ o« &
2-1 SEL Personnel. o« « o« o o o o o o o s o o o o
2-2 SEL Data Collection FOLMS. « ¢ o o o« « o o o
2-3 SEL Data Base File TYPES « « ¢ « o o o« o o =
3-1 Sources of Profile Data. . ¢ « « o« o « o o« =
3-2 Comparison of Effort by Development

ACELIVIEY o o ¢ o o o o o o o o o o o s o
3-3 SEL Methodology Evaluation: Some Early

ConclusionS. « « « o o o o o o o o o+ e o
3-4 Relationship Between Productivity and

Various FactorsS. « « o o o o o o o » o » =
A-1 Origins of FORTRAN Modules . . . « « . « .« &
A-2 FORTRAN Module Statistics. . « « o o o « o &
A-3 Distribution of Results of Computer Runs by

Purpose of Run s e e s e
A-4 Distribution of Effort To Change by Type

of Change. . . . e e e e e e e e s
A-5 Distribution of Effort To Correct by Type

OFf ELLOL +v o« o o o o s o o o o o o o o o o

ix

LIST OF TABLES (Cont'd)

Table
A-6 Distribution of Type of Development Effort by

PhASE. o o o« o o o o s o s o s o o s o o « o« A=7
A-7 Project Summary Statistics A-8
A-8 Life Cycle Phase Dates - « A-9
A-9 Comparison of Walston-Felix Data Wlth SEL

DAta@ o o o o o o o o s o s o o s s o o« o o« « A-10

SECTION 1 - INTRODUCTION

The Software Engineering Laboratory (SEL) was established in
1977 by Goddard Space Flight Center (GSFC) to investigate
the effectiveness of software engineering techniques as ap-
plied to the development of ground support flight dynamics
systems. The goals of the investigation are (1) to under-
stand the software development process in a particular en-
vironment, (2) to measure the effects of various development
techniques, models, and tools on this development process,
and (3) to identify and apply improved methodologies in the
GSFC environment. SEL research should provide the knowledge
to enable GSFC to produce better quality, less costly soft-
ware.

To accomplisn these goals, the SEL studies software for sat-
ellite mission support during its development life cycle.
This software is developed by the Systems Development Sec-
tion at NASA/GSFC, which is responsinle for generating
flight dynamics support software for GSFC-supported mis-
sions. The software includes attitude determination, atti-
tude control, maneuver planning, orbit adjustment, and
general mission analysis support systems.

The SEL continually monitors and studies all Systems Devel-
opment Section software, which includes software developed
both by GSFC employees and by contractor personnel.l This
data covers software development projects that started as
early as 1976 and as late as 1981l; and the SEL anticipates
that data will continue to be collected and studied in the
future. Approximately 40 projects, which range in size from
1500 lines of source code to over 110,000 lines, have been

involved to date.

lThe primary On/Off-Site contractor supvorting the flignt

dynamics area has been Computer Sciences Corporation (CSC).

1-1

All the projects being studied supported the flight dynamics
area of GSFC's Mission Support Computing and Analysis Divi-
sion. Much of the data is collected from a series of forms
used by all projects. Data is also collected through com-
puter accounting monitoring, personal interviews, automated
tools, and summary management reviews (see Sections 2.2.1
through 2.2.5).

While investigating projects totaling more than 1 million
lines of code, SEL personnel gained insight into the soft-
ware development process and began to discern trends in the
relative effects of various techniques applied to the soft-
ware projects. This document

o Describes the motivation and background of the SEL
) Relates the concepts and activities of the SEL

® Summarizes the results of SEL research

) Reports the status, conclusions, and recommenda-

tions of tne SEL

Tnhis document is not a general survey of software engineer-
ing literature. Rather, it is a survey of SEL research that
only outlines the relationship of that work to the activi-

ties of other members of the software engineering community.

The document does not describe in detail all of the results
thus far produced by the SEL. Other documents provide addi-
tional information about SEL activities. A previous SEL
description was generated in 1977 (Reference 1), and numer-
Ous papers explain SEL research experiences with methodolo-
gies, models, and measures. A complete list of related
documentation is given in the bibliography. These documents
span the 5 years during which the laboratory has been in
operation and provide useful reference material apout thne
studies carried out by the SEL.

This document consists of the following sections:

Section l--A general overview of the SEL. Includes
the motivation for the creation of the SEL, the
areas of concern for the software developers at
GSFC, and a description of the relevant environment.

Section 2--A description of tne overall operations
of the SEL. Includes descriptions of the func-~
tional organization of the SEL, the data collection
and validation process, the SEL data management
approach, and the types of data analyses that are
being performed with the existing data base and
software.

Section 3--A discussion c¢f the experimental re-
sults. Includes the SEL's general findings to
date. Organized into five topics: profiles,

methodologies, models, tools, and measures.

Section 4--A summary of the status of the SEL's
activities. 1Includes conclusions and recommenda-

tions.

éppeﬁdix A--Detailed tapbulations of SEL resource,

change/error, component, and computer utilization
data.

Appendix B--Summaries of software development pro-
jects studied by the SEL. Includes resources,
software, and environmental characteristics. Ex-
perimental objectives are also identified.

In addition to these six main sections, the document also

contains a glossary of acronyms and abbreviations used in

the document, references, and a bibliography.

1.1 THE SEL APPROACH

Extensive efforts have been made during recent years to de-
vise improved software development techniques. This work
generated numerous tools (e.g., precompilers and programmer
workbenches) , cost and reliability models, and methodologies
(e.g., structured programming and top-down design); all were
supposed to improve the development process. Early evalua-
tions of tne effectiveness of these techniques were incom-
plete and/or inconclusive. This may have been due, in part,
to an unrealistic assumption that the software development
process could be isolated from the environment in which it
Occurs. However, no element of the development process can

be understood outside the context of related factors.

For example, productivity in some environments may be con-
strainea by staffing patterns. Thus, the possible benefi-
cial effect of a productivity-enhancing methodology may
remain unrealized and unrecognized because of an inappro-
priate allocation of manpower.

The SEL approach to software engineering research is holis-
tic. Figure 1-1 shows the SEL high-level software develop-
ment model. its four components are a problem statement, an
environment, a process or activity, and a product (soft-
ware) . The development process is subdivided into seven
sequential phases of activity. This model is elaborated
upon elsewhere (Reference 2. A goal of the SEL, then, is
to refine the definitions of the model elements and to de-

fine their relationships.

The first step toward this goal is to understand the soft-

ware development process currently in operation and its en-
vironment. Important attributes of tne software problem and
products must also be investigated. Such an understanding
provides a baseline from which the effects of attempted
improvements can be measured and allows the identification

1-4

18/L128

12poW 3uawdoraaag aaem3jos

*1-1 2anbtg

1531 1531 NOIS30 NDIS30 SISATVNY
FIONVNILNIVW | 5onyid3oov | W3LSAS 3000 031v130 |AMVNINNZUd| SINIWIHIND3Y
SISvHd 5530084
N 7
N N y 7
N 7
N /
N 7
N s
A
N /
N
N 7
7
N e
/ J
V4
10Na0Yd $S300Hd W3180Ud
1004 324NOS3Y
QNV LNIWNOHIANI

wn

of strengths and weaknesses so that efforts can be focused
on the areas of greatest need.

Beyond understanding the current process and environment,
the SEL is interested in improving that process and environ-
ment. The SEL recognizes a four-step procedure leading to
more effective software development. The steps are to

° Become aware of the development techniques avail-
able
® Evaluate tne available technigques to determine

those most effective

® Engineer (customize) tnose "best" techniques to
perform optimally in the user's environment

° Apply the customized techniques

This procedure can become the basis of a regular system of
self-evaluation and improvement, whereby as new techniques
become available, they are tested and incorporated in the

software development process.

The SEL maintains contact with other software engineering
research efforts through its sponsorship of annual workshops
and its association with the Department of Computer Science
at tne University of Maryland. New ideas and techniques are
constantly being introduced for consideration.

1.2 AREAS OF CONCERN

The current store of knowledge about software development
that can be called scientific is still relatively limited.
However, a multitude of software development technologies
have been established on this small foundation. For the
SEL's purposes, technologies are classified into three major

areas of concern: methodologies, models, and tools.

Methodologies are systematic applications of prescribed

principles to the development process. These principles may
pertain to requirements, design, code, test, or management.
Examples include structured analysis, top-down design, in-
formation hiding, structured programming, formal test plans,
and configuration management.

Models attempt to explain and/or predict some aspect of the
behavior of the development process. They are usually form-
ulated as matnematical equations (or sets thereof) that re-
late two or more quantitative factors. Models are frequently
useful to management. A resource utilization model may pro-
vide an estimate of the cost of a project; a reliability
model may indicate when sufficient testing has been done.

Tools are software aids utilized during the development
process to facilitate the work of development team members.
Some examples are requirements language processors, precom-
pilers, code auditors, and test generators. These are often
packaged into a programmer workbench system (see Sec-

tion 3.4).

The maximum benefit may be derived by applying several of
these techniques to a software development project. The
rational application of these modern programming and manage-
ment practices has become known as "software engineering."”
It is a scientific approach to software development that
attempts to incorporate the structure and discipline that
underlie more traditional engineering activities. The ex-
pected result of such an approach is the production of
high-quality software with fewer errors at a lower cost.
However, a pferequisite to the application of software engi-
neering techniques is the determination of the effectiveness
of the available technologies within the target environment.

Section 3 contains detailed evaluations of the methodolo-
gies, models, and tools in the software engineer's reper-
toire as they have been employed in the GSFC environment.
The next subsection discusses the specific objectives of the
SEL.

1.3 OBJECTIVES OF THE SEL

The overall objective of the SEL is to understand the soft-
ware development process and the ways in which it can be
altered to improve the quality and to reduce the cost of the
product. However, the SEL has defined some intermediate
objectives within the previously defined areas of concern
that will help meet that general goal. These objectives
fall into two classes: experimentation and communication.

Experimentation involves evaluating existing software devel-
opment technologies (previously defined in Section 1.2) and

developing new technologies. Specific objectives of the SEL

are to
) Conduct controlled experiments
° Evaluate software development methodologies
° Evaluate software development tools
o Analyze cost estimation models
o Analyze software reliability models
° Develop a set of software quality metrics

The results of experimentation must be incorporated in the
software development process to improve it. This process
requires communication between researchers and developers.
Specific communications objectives of the SEL are to

° Devise software development standards
° Develop software management guidelines
° Provide real-time feedback to development teams

being monitored

) Maintain contact with the software engineering re-
search community

Clearly, the objectives of the SEL reflect its multistep
approach to software engineering, as described in the pre-
vious sections. Section 1.4 describes the environment in
which the SEL works to achieve those objectives.

1.4 FLIGHT DYNAMICS ENVIRONMENT

The development environment must be clearly understood to
evaluate any software development approach effectively.

This subsection describes the development environment of the
projects studied by the SEL. The discussion is divided into
three sections: the development organization, nardware re-
sources, and characteristics of the software developed.

1.4.1 FLIGHT DYNAMICS ORGANIZATION

The data used in the analyses described in this document was
collected from software development projects within the
flight dynamics area of NASA/GSFC, under the supervision of
the Systems Development Section. Most of the software de-
velopment effort was provided by an independent contractor,
although at times GSFC personnel participated in develop-
ment. This subsection outlines the organization of a devel-
opment team composed of GSFC and contractor personnel.

The members of a team supporting a typical software develop-
ment project and their duties are identified in Table 1-1.

This team includes managers, programmers, and librarians.

Figure 1-2 illustrates the organization of a development
team. The interactions of the members of a development team
with the SEL are shown in Figure 1-3. The organization of

the SEL is explained in Section 2.1.

78/¢4128

“13NNOSHId HIHLO Y04 SV HOLIVHINOD IWVS IHL ANYVYSSIDIN LON,

3002 3I24NOS WvUOHOUd SHILNI
'SIYVHEI JVVYMLI0S SNIVLINIVIN S-1 ol —zo.pu<mhzcu NvidvHan
IYvML40S SINIWND0J
OGNV 'S1S34 "SINIWITdWI ‘SNOISIa 01-1 001 24589 ¥34013A30 J4S9
3YYMIL3I0S SINIWNI0a
OGNV "S1531 "SINIWITJINI 'SNDISIA -z 00t HOLIVHINOD H34013A30 HOLIVHINOD
INIWJO13A3AQ NI SALVdIJILUYd
‘SHIJO13AIA HOLIVHINOD SISIAHAINS (488 4 ool HOLIVHINOD H3av3al 123roud
NOILYLINSNOD TvIINHIIL SICIAOHI
‘S3JUNOSIY LI3r0dd SIOVANVIN 91-8 001-0C HOLIVUINOD HIODVYNVYW 103rond
SHIJ0IAIA I4S9 SISIAHIJINS INLVINISIULIY
:103roYdd Q31IVHLNOD SHOLINOW -t 00L-G1 0459 IVIINHIAL INVLSISSY
E] ELEEVE] (%)
NOLLONNI 10 SHY3A LNIWIATOANI NOILVZINYOHO TINNOSHId

weaj, jusudoiaaag sorweudd IYbITIA " [-1 31qeL

1-10

18/4128

uotjeztuebip wes] juswdo|[oasg aiemljos

‘92 01 0} WOHS SIONVY UIDVNVIN HOLIVHINDD HIUNI TINNOSUIJ 40 HITWNN "HIDVNYIW HOLOVHINOD INOHOS L "' 'C'Z - N ‘IL0N

*Z-1 @anbtg

YI401IA3I0 oee Yid0'13A30 H34013A30 PO Y34013A30 H34013A3I0 oo Y31013A30 H34013AI0
HOLIVHINGD HOLIVHINGD HO1JVHINOD HOLIVYHINOD HOADVUINDGD HOLJIVHINOD YO1IVYHINOGD
Higva y3iavi ¥igviy
N 133royd oo T 103r0oud 1 £23roud
HOLIVHINGD YOLIVHINOD HOLIVHINOD

HIDVYNYW
12310Hd
HO10VHINOGD

NVYIHYHO!)
HOLDVHINOGD

NVIHVHIIT
HOLIVHINOD

¥3i4013A30

L

1

3459

Y340 13A30
2459

|

HOSIAHIINS N%I1-N L03rOMd €82S5103roud 1 1230044
1404dNS HOodJ Hiv eve HO4 HlV HO4 H1Y

HO1IVHLINOD 2480 3459 2489
HIDVNYW Qv
1404dNS NOILD3S

HO1IVHINOD 2489

v

GSFC CONTRACTOR
sf&HSN NG A PROJECT
N, P MANAGER
\.] /
v ~. - v
~. S
\ e
CONTRACTOR
rA | — ————- PROJECT
SEL LEADER
PERSONNEL
l‘ B
Pl “e
i I" “\ l
t" I s
"‘ l \“Q
GSFC |-~ | “~JCONTRACTOR
DEVELOPERS, 1 DEVELOPERS
|
CONTRACTOR
LIBRARIANS
)
=~
T ~
«
LEGEND:
— <e=.— FREQUENT
— — = — OCCASIONAL
~e==ee=- AS NEEDED
Figure 1-3. Development Team Interactions With

SEL Personnel

1.4.2 HARDWARE RESOURCES

The development hardware has remained fairly constant from
project to project during the past 5 years of SEL activity.
These computers are listed in Table 1-2. The primary devel-
opment and operations equipment is a group of IBM S/360 com-
puters. The machine that supports most development activity
is the S/360-95. However, development projects also use the
S/360~75, primarily for graphics system testing. In addi-
tion to the IBM S/360s, a DEC PDP-11/70 and a DEC VAX-11/780
are occasionally used to develop utilities and support sys-
tems for the flight dynamics area.

Table 1-2. Flight Dynamics Computers

Computer Operation Memory (Bytes)
IBM S/360-95 Batch 5000K
IBM S/360~75 Batch 3000K
DEC VAX-11/780 Interactive 1000K?
DEC PDP-11/70 Interactive 756K

4Virtual memory space of 4 gigabytes.

Both the S/360-95 and =75 are primarily batch loaded. How-
ever, the S$/360-75 is card deck oriented, whereas the
S/360-9S5 receives a large part of its work via timesharing
option (TSO) submittal. The primary language used by the
local software community is FORTRAN or a locally developed
structured variant of FORTRAN called SFORT. Usage of As-
sembly Language Code (ALC) and other languages is limited to

special applications.

Various devices are available for user storage of software

libraries. Mountable disk and magnetic tape can be used to

store source code, load modules, and data in general. On-
line disk space for general users is very limited.

Although the s/360-95 has 5 million bytes of main memory,
special requirements and daily operational support activi-
ties reduce the memory available to the general user to
about 2 million bytes. This machine has nearly 1000 regis-

tered users contending for service.

Because machines are shared among the analysis, software
development, and operations areas, software development
schedules are affected when simulations, launches, and ma-
neuvers occur. During these times, the operations and
analysis areas often require all available resources.

For all system testing and diagnostic testing involving
graphics capabilities, the developer must schedule time on
one of the computers in order to gain access to one of the
graphic devices (such as an IBM 2250). Although cathode ray
tubes (CRTs) are available continuously for editing or job
suomittal, only a few true graphic devices (i.e., those hav-
ing vector generation capabilities) are available for system

development.
1.4.3 SOFTWARE CHARACTERISTICS

The general category of flight dynamics software includes
applications to support attitude determination, attitude
control, maneuver planning, orbit adjustment, and general
mission analysis. Most of these programs are scientific and
mathematical in nature. The attitude systems, in partic-
ular, are a large and homogeneous group of software that has
been studied extensively. The attitude determination and
control systems are designed similarly for each mission
using a standard executive support package, the Graphic
Executive Support System (GESS), as the controlling system.

Typically, attitude systems read sensor measurements from a
telemetry stream and determine the attitude of the space-
craft from this data. Depending on the types of data avail-
able and the accuracies required, the size of these systems
may range from 30,000 lines of code to about 120,000 lines
of code. All these systems are designed to run in batch
and/or interactive graphic mode. Some existing software can
be reused for each new system, since there are always some
similarities to past systems, especially in the high-1level
design. The percentage of reused code ranges from 10 per-
cent to an upper limit of nearly 70 percent.

All applications developed in the flight dynamics area of
GSFC have development time constraints corresponding to
launch dates. Most of the software discussed in this docu-
ment must be completed (implying completion of acceptance
testing) 60 days before the scheduled launch. If the soft-
ware 1s not completed, required capabilities must be deleted
or redefined, and an alternate version of the intended sys-
tem must pe defined to ensure that the mission can be sup-
ported in some limited fashion.

The developmeﬁt process normally begins approximately 16 to
24 months before a scheduled launch in order to be completed
two months in advance of launch. This development period is
divided into phases as shown in Table 1-3.

Table 1-3. The Development Cycle

Development Phase Time (Months)
Design 4-8
Requirements Analysis 1-3
Preliminary Design 1-2
Detailed Design 2-3
Code and Unit Test 6-8
Testing 4-6
System Testing 2-3
Acceptance Testing 2-3

SECTION 2 - SEL OPERATIONS

The SEL is involved in many aspects of software engineering
research. However, the ultimate goal of the SEL is the ac-
tual application of improved techniques to the software de-
velopment process. The prerequisites for achieving this
goal (as described in Section 1.2) are the evaluation of
available software development techniques and the customiza-
tion of them to fit the GSFC environment. Evaluation and
customization are analytical activities requiring the col-
lection, validation, and management of data. On the other
hand, application is promoted by management and training.
The following subsections describe the SEL organization and
its relationship to software development management, as well

as the data collection and analysis activities of the SEL.

2.1 SEL ORGANIZATION

This subsection describes the general organization of the
SEL and its relationship to software development manage-
ment. Participants in the SEL include the following types
of personnel:

Managers

Programmers

Data base administrator
Data technicians

Researchers

The organizational structure of the SEL is illustrated in
Figure 2-1. The activities corresponding to the roles de-
fined in that figure are described in Table 2-1. The inter-
action of the SEL with members of software development teams

is shown in Figure 1-3.

(4
N
-
d
~
(-3
"~

uotjeztuebio T4S

*1-¢ 9@aubtg

SiN3anis
FLVNAVHOUIANN
GNV 31VNavyd

SHOLVOILSIANI

dNOYHO
1H40ddNS 138
3489

dNOYY
ONISS3IJ0Ud
v.iva 13s
HOLIVHINOD

dNOYo

140ddns 13S
HOLDVULINOD

dNOY9
JINVNILNIVWN
3Sve viva 13S
HOLIVHLINOD

HOLVYNIGYOO0D 138
ONVIAHVYIN 40 'N

HO1VNIQHOO0D 13S
3459

HOLVHISINIWAY
3Sve viva 13as
3489

HOLVYNIGHOOD 13S
HO1JVHLINOD

HO1934HIQ 13S
3459

o™

/4128

“1INNOSHId U310 HOS SY HOLIVHINOD IWVS JHL ANYVSSIIIN LON

1

SONIONI4 S1HO0d3Y ANV YivQ 73S SIZATVNY ‘A 40 "AINN SHIHIHUVISIY HNILVHIJ00D
S1SATVYNY
04 LHOJdNS TVIILSILYALS ANV ‘NOILVINIWNIO0A ‘ONINWYHOOUd
S30IN0Yd ‘SNOLLONNA 3DNVHNSSY ALITVND V.Lva SWHO4HId HO1OVULNOD dNOYY LHOddNS TVILLATVYNY
JHYML40S NOLLYAITYA ONY ONILYOd3Y dNOHY
a3z1vid3ds Sd0T1IAIA ‘IHYML40S 1H0ddNS 3SvE V.IVA SNIVINIVIN HOLOVULNOD FONVNILNIVIN 3SVE Vivd
SWHOJ Viva ONY SAY0I3Y Y3dvd S3114 ONY 'SIHOI4
-OHIIN 'SDOT ‘SNOILONNI ONLLIOI ONV AYLINT ViVQ SWHO4H3d (HO1IOVHINOD dNOYY ONISSIT0Ud Viva
3Sv8 Vivad 13S JHL 40 NOILVZINYOHO 3HL ONILIIS4V SALINLIY
SI1LVNIQYOO0D “1INNOSHIJ ONISSID0Yd V1VvA SISIAHIINS 2459 HOLVULSINIWGY 3SVE ViV
ANVIAHVIN 40 ALISHIAINN IHL LY SHOLVDILSIANI
ANV SIN3ANLS 40 SILIAILIV G3LVIIY-1IS IHL SILVNIGHOOD "GN 40 "AINN YOL1VNIQUOOD NN
13S
FHL HLIM Q31VID0SSY 1INNOSHId 2489 40 S1HO443 3HL S123HIQ 2459 HOLVNIQYOO0D 3459
SHIJ0T1IAIQ IYVMLA0S
HLIM 3JVIHILNI JHL STIOVNVIN 'SINOHD LYOddNS TYIILATYNY
ANV 3ONVNIUNIVIN 3Sv8 VivQ JHL 30 S1HO443 3HL S103HId HOLIVHINOD HOLVNIGHOOD YOLIVHINOD
JHO443 HOHVISIY ONIHIINIDONI JHVM
-140S FHILNZ JHL HO4 SILIHOIUd S13S ANV NOILIIYIQ SININYILIA 3459 HO103H1a 138
NOLLONNS NOILVZINYOHO TINNOSHId

12uuosIad TAS °*T-¢ 919el

The SEL director and contractor coordinator are also in-
volved in the management of the software development pro-
jects under study, frequently as the Assistant Technical
Representative (ATR) and project manager, respectively (see
Section 1.4.1). Combining the management of development
projects and research activities into the joint roles of the
SEL director and contractor coordinator facilitates the work
of the SEL. Political and organizational conflicts between
the two activities are avoided. Moreover, projects can be
Closely monitored to ensure that the appropriate experi-
mental design is followed. Finally, techniques that have
been proved effective can then be directly implemented with-
out additional administrative complications.

2.2 DATA COLLECTION

The basis of software development research is the collection
of experimental data. Data collection is a coordinated ef-
fort of applications programmers, associated management per-
sonnel, and library personnel. The responsibilities of each
group are defined at the beginning of a project to ensure
accurate, complete, and timely collection of information.
Collected data is recorded on the SEL data base and in the
SEL Central Library. The automated data base organization
is discussed in Section 2.4. The central library contains
the following items:

° All original software engineering forms

° Microfiche copies of forms

. Computer accounting sheets

° Copies of coded and validated forms

° Master resource summary, including plots and tables

produced from forms and computer accounting sheets

° Weekly SEL data base activity summaries

2~-4

) Documentation for all projects (including func-
tional specifications and design documents)

° All paper records of data base transactions

Data collected by the SEL comes from five major sources:
software engineering forms, computer accounting, personal
interviews, automated tools, and management summaries. A
general discussion of data collection procedures may be
found in Guide to Data Collection (Reference 2). Each of

the sources cited and the manner in which that data is col-
lected are outlined in one of the following subsections.

2.2.1 SOFTWARE ENGINEERING FORMS

The primary medium for collecting pertinent information on
software development is a series of data collection forms
that are filled out by development team members. Forms are
submitted by the developers, who provide detailed informa-
tion; the managers, who provide summary information; and SEL
personnel, who obtain accounting and source-code activity
information. The SEL data collection forms were designed to
allow the collection of data with the minimum impact on de-
velopers.

Seven basic types of form have evolved for use with the

SEL. These forms are listed and described in Table 2-2,
More detailed information about the forms, including facsim-
iles, can be obtained from the SEL Data Base Organization

and User's Guide (Reference 3).

All forms are reviewed for completeness and consistency by
each project leader before the forms are submitted to the
SEL. Once the forms are determined to be complete and ac-
curate, they are sent to the SEL data processing group. The
forms are then logged in the library and prepared for entry
into the SEL data base. Forms processing is examined in

Form

SEL Data Collection Forms

Description of Content

General Project
Summary

Change Report

Resource Summary
Component Status

Component Summary

Run Analysis

Malntenance Report

Computer resources used, starting and
ending dates of each phase, cost
information, size of product,
methodologies and tools used in each
phase of development, personnel
involved, standards used,
documentation produced, problems
anticipated, and guality assurance
information

Change description, components
changed, effort to change, type of
change or error, and activities used
to validate changes, to detect errors,
and to find their cause

Number of hours of worktime per week
per staff member spent on a particular
project, computer usage, and other
charges

Time spent during the week in a
certain activity of component
development (e.g., design, testing, or
documentation)

Interfaces, programming language, com-
plexity, resources required for each
phase of development, relation to
other components, and code
specifications

Computer used, purpose of the run,
type of run, run results, and comments

Subset of change report with some
maintenance-specific questions

detail in the SEL Data Base Maintenance System (DBAM) User's

Guide and System Description (Reference 4). DBAM 1s the

interactive data entry system.

Computer accounting statistics for projects using the

IBM S/360-95 and IBM S/360-75 computers are automatically
collected for each job by the S/360 operating systems at
execution time. Central processing unit (CPU) time, input/
output (I/0) time, job type, and job termination status
(error code) are recorded. This data is made available to
the SEL on a computer tape and/or és a printed biweekly ac-
counting summary. Data on the computer tapes is condensed
into totals for 4-hour blocks and saved on the data base.
Accounting sheets are sent to the librarians by the Data
Base Administrator (DBA). This information can be used to
cross-check the data reported in the resource summary, com-
ponent summary, and computer program run analysis report
forms.

2.2.3 PERSONAL INTERVIEWS

Interviews are used to validate the accuracy of the data
collected on the forms and to supplement that information in
areas of uncertainty and probable error. Basically, two
different types of interviews are conducted: spot-check

interviews and management in-depth interviews.

Spot-check interviews are conducted by an analyst with the
project personnel who f£ill out the forms. A check is made
to determine that they have given correct and complete in-
formation as interpreted by an independent observer. Agree-
ment is looked for in such areas as the cause of an error or
the point in the development process at which the error was
caused or detected. If necessary, the form is modified; the

corrected form is then processed like any other form.

2-7

In-depth interviews are held to gather information on man-
agement decisions (e.g., why a particular personnel organi-
zation was chosen). These interviews cover the kinds of
points that often require discussion rather than a simple

answer on a form.
2.2.4 AUTOMATED DATA COLLECTION TOOLS

Two types of automated tools are used by the SEL for data
collection: a FORTRAN source code analyzer and a library
monitor.” The data from these sources is one of the most
Objective and reliable data types available to the SEL.

The FORTRAN Static Source Code Analyzer Program (SAP) is a
single-pass FORTRAN interpreter (wiEh no execution pnase)
that produces statistics on occurrences of statements and
structures within a FORTRAN source program. The program
accepts, as input, syntactically correct FORTRAN source code
written for the DEC PDP-11/70 FORTRAN IV PLUS compiler or
the IBM S/360 FORTRAN IV Level H compiler. Component-level
and summary statistics are calculated. The statistics in-
clude "Halstead Measures" (counts of the number of operators
and operands, Reference 5) and "McCabe's Measure” (a count
of the number of decisions in a component, Reference 6), as
well as traditional measures such as the number of execut-
able statements. Source code from the IBM S/360 is copied
to tape by the librarians at the completion of a project;
then the tape is processed on the DEC PDP-11/70 with SAP.
SAP produces an output file that is processed by a special
program to check for duplicate names and to incorporate all
pertinent information in the SEL data base.

The PANVALET Program Management and Security System is used
to establish, maintain, and control a central library of
source programs and card image data files (data sets). Di-
rectory reports can be generated that show the status, num-
ber of statements, version number, date of last access, and
several other statistics for each data set. When generated
on a regular basis, these reports show the growth history of
source programs in the PANVALET library. A library analysis
report is also available that contains the averages, per-
centages, and totals of the number of statements, blocks,
and data sets in the PANVALET library. These statistics can
be broken down by data set name prefixes or as other subsets
of the library.

PANVALET output is examined every 2 weeks. The growth and
change history of the code is recorded and entered into the
SEL data base.

2.2.5 SUMMARY MANAGEMENT INFORMATION

Two types of summary management information are collected.
First, subjective evaluation data is generated during a re-
view of a project by key SEL and development members famil-
iar with the project. The quality of the delivered product
and its development history are considered. Second, summary
statistics are also collected; these include lines of code,
resources used, and number of components. Together, this
data fully describes the developed product, process, and
environment at the project level.

Before the start of development, an experimental design (see
Section 2.5) and development techniques are chosen. During
development, an effort is made to ensure that these tech-
niques and methodologies are used. SEL and development man-
agement decide upon the techniques to be used; the project
manager and leader enforce the use of these techniques.

Formal and/or informal training may be required to famil-
iarize project members with the technigues selected.

The subjective evaluation made at the conclusion of the pro-
ject includes an estimate of the extent to which these tar-
get techniques were utilized during development. This
evaluation is based on observations made by the evaluators

during development.

The summary management information thus obtained is intended
to be an independent evaluation of the quality of the pro-
duct and the effectiveness of the techniques employed. This
data is sent to the librarians for inclusion in the data
base.

2.3 DATA VALIDATION

Data validation is the process by which information from all
identified sources is checked by various means for correct-
ness, completeness, consistency, and relevance. Depending
on the source and type of information that is provided, dif-
ferent levels and types of validation can occur. In gen-
eral, the types of validation that may be used are as

follows:
) Spot checking
° Reviews (by project members, SEL coordinator, and
librarian)
° Validation by data base software
o Generation of summaries
) Cross-checking form data with other data
) Comparisons among projects
° Statistical evaluations

A general discussion of these technigques may be found in
Guide to Data Collection (Reference 2). However, some of

these classes of validation, as used by the SEL, deserve
elaboration here.

Data is reviewed at three levels: by the project members
generating the data, by the contractor coordinator, and by
the SEL director. Spot checks are also made by the li-
brarians.

Another type of validation is performed by the data base
software. It checks the information on the forms for com-
pleteness, consistency, and, in particular, for valid compo-
nent and project names as well as other mandatory information
items, The SEL Data Base Maintenance System (DBAM) User's

Guide and System Description (Reference 4) describes these

checks in detail.

In addition, cross-checks are made between groups of forms
by taking advantage of the redundancy designed into the
forms. This process ensures the quality and validity of the
data for an entire project.

2.4 DATA BASE ORGANIZATION

The SEL data base is organized as a set of disk-resident
files grouped by record format. Each is created as an in-
dexed file and consists of a set of fixed-length records.
The files are located on a disk device that is peripheral to
the DEC PDP-11/70 computer of the Systems Technology Labora-
tory (STL) at‘GSFC.

A file type is a set of files with the same record defini-
tion (format) and index structure. File types may be
grouped into three classes: (1) project summary file types
that consist of a single file containing information about
all projects in the data base; (2) project detail file types
that consist of several files, one per project for which

2-11

data has been collected; and (3) a directory file. Each
form has a corresponding file type; for example, Run Anal-
ysis Form data from project 1 is stored in the Project 1 Run
Analysis Form File. File types also exist for data from
other sources. The Encoding Dictionary, a separate class of
file, is a directory containing definitions of coded fields
used in other files. A complete description of the data
base is included in the SEL Data Base Organization and
User's Guide (Reference 3). Table 2-3 outlines the file

types.

An indexed organization was chosen to speed access by allow-
ing the user to select records randomly for processing. The
record selected is identified by key, which is a portion of
the record defined as such when the file is created. A file
may have several keys, allowing the user to select records
in several ways. Additionally, a particular key defines an
ordering of the records within a file. The data entry and
reporting software that have been developed for the data

base use these indexed features.

Table 2-3. SEL Data Base File Types

Record Length

Class File Type {Bytes)
Directory Encoding Dictionary 60
Summary Phase Dates 112

File Name and Status 52
Subjective Evaluations 109
Estimated Statistics 95
Detail Component Information 67
Component Summary Form 250
Change Report Form 101
Comment 104
Attitude Maintenance 77
Resource Summary Form 115
Run Analysis Form 53
Component Status Reportc 79
Cumulative History 23
Accounting Information 67

2-12

2.5 DATA ANALYSIS

The primary objective of the SEL is to improve the software
development process by identifying the effects of method-
ological and environmental factors on that process. The
specific analyses that have been attempted are discussed in
Section 3. This subsection illustrates the analytical tech-
niques and resources employed by the SEL in that research.
Specifically, experimental design and analytical software

are considered.

Three types of experiments have been performed: screening,
semicontrolled, and controlled. The data collected from all
of these experiments, with the exception of some controlled
experiments performed by the University of Maryland, has
been assembled in the SEL data base.

Screening experiments provide detailed information about how
software is currently developed in the environment under
study. Projects of all sizes and types have been moni-
tored. 1In the experiments performed, the only impact on the
tasks was the necessity of providing data via the data col-
lection forms developed by the SEL. No attempt was made to
impose new or different methodologies on these tasks.

Semicontrolled experiments provide information on the ef-

fects of various software development techniques. Specific
methodologies were designated for application to each soft-
ware development project, and an effort was made to ensure
that these methodologies were followed by training the per-
sonnel and reviewing their efforts. It was anticipated that
by comparing similar projects (i.e., similar in size, com-
plexity, environment, and type of software) trends might be
isolated that would characterize the effects of the various
tools and techniques applied.

Controlled experiments are the most rigorous type of experi-
ment. These may be implemented in either of two ways. Two
carefully matched development teams may be assigned the same
task but required to use different methodologies. Alterna-
tively, two or more teams (not matched by experience or en-
vironment) may be assigned two consecutive tasks, with some
additional methodology applied to the second task. These
experimental designs of matched samples and repeated meas-
ures are very powerful, but they are also very costly to
implement. Thus, they are not often employed.

One of the greatest concerns in designing experiments is the
added impact or effect that the monitoring process itself
may have on the performance of project members. This phe-
nomenon, sometimes called the Hawthorne effect, must cer-
tainly be considered in any evaluation of experiment design.
One way of eliminating any possibility of biased information
is to make certain that the software development teams are
unaware that the project is being monitored. However, this
solution is impractical in the SEL environment, since the
design of the experiment requires active participation
(L.e., filling out forms and training) by all members of the
project. Considering the large number of projects studied,
the duration of projects (typically 15 months), and the pro-
fessionalism of development personnel, the SEL principals
have concluded that the Hawthorne effect is minimal or non-
existent.

The SEL has several software tools available for analyzing
the data collected from these various types of experiments.
They include data profile and graphical display programs,
These displays and tabulations are employed to monitor the
progress of ongoing projects. This information is also pro-

vided to project members to apprise them of project status.

In addition, more sophisticated analyses are possible with
the approximately 40 statistical procedures of the Biomed-
ical Programs, P-Series (BMDP, Reference 7) available on the
STL PDP-11/70. These include multivariate analyses and
hypothesis tests. Section 3 reviews some of the specific
research and analysis efforts undertaken by the SEL.

15

N
)

SECTION 3 - SURVEY OF SEL RESEARCH

The preceding sections of this document describe the back-
ground of the SEL organization and its operations. This
section outlines some of the specific results of SEL inves-
tigations of software development technology.

The data provided by the SEL has formed the basis of numer-
ous software engineering studies. The specific software
development tasks from which data was collected for the SEL
data base are summarized in Appendix B. All data collected
by the SEL is assembled in a computer data base to facili-
tate its access by researchers and managers. This data base
is described in Sections 2.2 through 2.4.

The studies discussed in the following subsections touch
every aspect of the software development process. Five
classes of analyses are described

Profile analysis--Section 3.1
Methodology evaluation--Section 3.2
Models--Section 3.3

Tool .evaluation-~-Section 3.4

Measures and metrics--Section 3.5

Two very strong effects were identified early in the SEL
investigations and have been confirmed in the literature
(Reference 8). That is, variation in programmer abilities
appears to be the most powerful influence on the productiv-
ity and quality of software development. 1In addition, the
nature of the local computing and work environments seems to
be a significant determining force on the process. Any
valid experimental design must account for or eliminate
these effects.

Consequently, the SEL has emphasized the goal of understand-
ing the current software development process and environment
as a prerequisite to more advanced analyses. Section 3.1
explains the efforts toward that goal in greater detail.

3.1 PROFILE ANALYSIS

Profile data reports the history or result of a software
development effort; it is often presented in graphical or
tabular form. A profile characterizes a specific software
development project. The goal of such profiling is to de-
fine the software development process, environment, and
product as a baseline for later comparisons. These elements
are discussed as components of the SEL software development

model in Section 2.

Profile analysis attempts to answer basic guestions such as

° What rates of productivity were obtained?
° What kinds of and how many errors were discovered?
o What are the typical characteristics (e.g., size

and complexity) of a component?

] How is the development effort distributed over the
software life cycle?

Profile data is accumulated as part of the data collection
process outlined in Section 2. The role of profile analysis
in the SEL approach to software engineering research is pri-
marily descriptive and comparative. The flight dynamics
profile developed by the SEL and the comparisons of it with
profiles of other development organizations are presented in
Sections 3.1.1 through 3.1.4.

The SEL data discussed in this section is taken from seven
similar large projects that have been studied extensively.

Table 3-1 illustrates some important attributes of these

software development efforts. (Data for a larger group of
projects is described in Appendixes A and B.) Since the
problem component (see Figure 1-1) is similar for all seven
projects, it is not specifically considered here, although

it is referred to obliquely in the following sections.

Table 3-1. Sources of Profile Data

Size (Lines Person- Computer Software

Project of Code) Modules Months Runs Changes
1 89,513 604 98 7,379 2761

2 50,911 201 78 4,604 1255

3 111,868 510 115 11,976 3228

4 75,393 535 90 7,500 2107

5 85,369 519 98 7,527 2710

6 75,420 374 39 3,033 858

7 55,237 320 95 6,871 1649

3.1.1 THE DEVELOPMENT PROCESS

Efforts to profile the flight dynamics software development
process have focused on three areas: manpower utilization,
computer utilization, and change/error characterization.

Data collected from the various projects can be presented in
a manner that clearly illustrates the application of man-
power to a software development task. Figure 3-la shows the
distribution of staff-hours worked by development phase.
This chart is based on Resource Summary Form data submitted
by managers (see Section 2.2.1). This chronological distri-
bution of effort can be compared with the distribution of
effort by activity reported by programmers in Figure 3-1lb
for a typical flight dynamics project. An additional cate-
gory, "other," is present in the latter chart. This cate-
gory includes such activities as system documentation,

8/0128

K31at3ovy/9seyd Aq uotrjezritan

q
ALIALLDV A8 SHNOH

%0T
ONIQ0d

%SE
NOIS3a

%V
Y3H10

asmodurey

*T—-¢ oanbrg

e
3SVHd A8 SHNOH

%6V
9NIG0J

% 6T
ONILS3L

progress reports, and meetings that can not be defined as
related to design, coding, or testing.

The difference in the two distributions of effort can be
explained by the overlap of activities among chronological
phases. For example, detailed design activity continues
into the coding phase while testing normally commences dur-
ing coding. Thus, the amount of effort assigned to the cod-
ing phase is greater than the amount of actual coding effort
expended. This effect will be especially pronounced in
software development operations that follow a top-down im-
plementation technique or other methodology that advocates
development by parts.

Figure 3-2 shows the types of computer runs made. The major
roles of the computer in the development process are high-
lighted in this chart. These data are obtained from the Run
Analysis Form. More data on computer usage is presented in
Appendix A.

Change and error data track two important elements of the
software development process: reliability and efficiency.
Significant insight into the development process can be
gained by examining profiles of the instances of change
and/or error. Such data is especially valuable in detecting
weaknesses in testing, programmer training, and development

practices.

Figure 3-3 shows the distribution of the types of changes
that occurred. Nonerror corrections are widely dispersed
among several categories. A large number of code changes
assoclated with requirements changes may indicate require-
ments instability. That appears to be only a small problem
in the GSFC environment. More data on changes and errors is

presented in Appendix A.

SYSTEM

TESTS
COMPILE/ 18.8%
ASSEMBLE/LINK
28.9%

UNIT TESTS
4.2%

0.42%

/]

OTHER
0.38%

MAINTENANCE/UTILITY
46.8%

Figure 3-2. Types of Runs Made During Development

3-6

BENCHMARK TESTS
0.42%

t~—___OIAGNOSTIC TESTS

8217/82

AlD
USER

ADD
DIAGNOSTICS
4%

IMPROVE
CLARITY
10%

ERROR
CORRECTION
46%

REQUIREMENTS
CHANGE
1%

PLANNED
ENHANCEMENTS
19%

8217/81

Figure 3-3. Types of Code Changes

3.1.2 THE DEVELOPMENT ENVIRONMENT

The environment is frequently a constraint rather than a
controllable factor in the development process. Studying
the other components of the software development model
usually identifies these environmental contraints. The GSFC
software development environment is described in detail in

Section 1l.3.

The principal physical element of the development environ-
ment is the computer system. Figure 3-4 shows the avail-
ability and reliability of the two principal flight dynamics
development computers for a typical interval of time. The
low reliability of the S/360-95 system compared with more
modern equipment must be considered when evaluating the ef-
fectiveness of development techniques. One related finding
of the SEL is that this hardware unreliability makes batch
development more productive than interactive development.
Interactive programmers are unable to work when the system
is unavailable and are affected more (e.g., loss of data

sets) by sudden system failure than batch developers are.
3.1.3 THE DEVELOPMENT PRODUCT

Most SEL data is collected on the project or component (sub-
routine) level. A measure of the total sizes of the seven
projects from which the data studied here was obtained is
shown in Table 3-1. A measure of the sizes of the FORTRAN
subroutines in those projects is illustrated in Figure 3-5a.
The distribution of McCabe's complexity measure is also dis-
played (Figure 3-5b). Note that 70 percent of the subrou-
tines have complexities less. than or equal to 10, the
maximum recommended by McCabe (Reference 6). The McCabe

measure is discussed in more detail in Section 3.5.

The distributions of these measures as represented by the
histograms in Figure 3-5 are clearly not normal (see Sec-
tion 3.5). Thus, the application of statistical tests and

3-8

19/4129

juswuoxrtaug burindwo) 8yl jo AFTITIqeRI[9Y JO SdINSLOW “p-€ danbr

ol

q
1961 Hv3A 1vISId 40 HENOW
6 8 ¢ 9 9 ¢ ¢

z

ol

oz

ot

or

INOILYH3dO 30 SHNOH) S3HNTIVd NIZMLIE IWIL NV3IW

4}

s6:09t/s
(1sL-09e/s O

He L EDEN
e

1861 HY3IA TVISI4 4O HINON
1t ot 6 8 ¢ 9 & ¥ € T 1t

| S S Sues Bt et R S S umnn S mmmas WL

SQ0IH3d 3V18VTIVAY
Q3TNA3IHIS ONIHNG ALITIBYTIVAY ©3LNdWOD 30 3DVLINIIHI

- oot

+HE

padoianag SO INPOW NWILYOJA JO sotTistaajzoeaey)

q

1 + SNOISIDIO0 40 HITWNN
-1 ¥4

0z-91

o019

t8/L128

—— |

4 4

1]}

o1

Q
]
3OV.LINIOH3d

[~}
-

0s

09

113

‘Gg-f oanbrg

SANIWILVILS I18VINDIIXI

+10C 00E-1SZ 0ST-10Z 0OZ-1S1 05i-101 001-1S

1 o

€

(11}

ot

or

0S

(112

3-10

JOVINIOU3Id

regression procedaures based on the assumption of normality
cannot be expected to give good results with these meas-
ures. Nonparametric statistics for some FORTRAN subroutine
measures based on a larger group of data are presented in
Table A-2 of Appendix A. '

Product profiles such as tnese are useful in determining the
nature of the software developed and in identifying stra-
tegies for improvement. For example, a tendency to code
lengthy or complex subroutines might be corrected by stress-
ing strength and coupling, data abstraction, and structured

techniques during programmer training.
3.1.4 PROFILE COMPARISONS

Comparing experimental results derived from different soft-
ware development environments is difficult unless the rela-
tionships (similarities and differences) among the software
development processes are well understood. When they are,

valid extrapolations of experience from one organization to

another can be made.

Table 3-2 shows the distribution of effort by activity for
three software development organizations. The marked dif-
ference in resource utilization patterns suggests caution in
making any inferences from one environment to another. The
reason for these differences is discussed in Section 3.1.1.

The data for this table is drawn from References 9 and 10.

Another brief comparison of several other measures for two
of these organizations is presented in Table A-9 of Appen-
dix A. A detailea comparison of SEL and Rome Air Develop-
ment Center data in terms of size, effort, productivity, and
error rate was made by Turner and Caron (Reference 1ll}.
Although that study showed consistency between the data
bases, some significant differences were also noted.

Table 3-2, Comparison of Effort by Development Activity

Development Phase Percentage of Effort
1 NASA/GSFC SEL
TRW IBM (Component Status)
Code 20 33 20
Design 40 39 35
Checkout and Test 490 22 42
Other - 6 4

lRescaled to sum to 100 percent.

3.2 METHODOLOGY EVALUATION

A software development methodology is the regular applica-

tion of a set of specified techniques to part or all of the

software development process. The methodolog

ies and tech-

niques studied by the SEL can be classified into five

groups. The groups and some examples of each are listed

below:

Design Tecnniques

- Top-down structured design
- Tree charts

- Data flow diagrams

- HIPO charts

- Process design languages

Design Evaluation Technigues

- Strength and coupling analysis
- Connection matrices
- Program correctness proofs

Structured Implementation Technigues

- Top-down structured programming
- Structured languages

3-12

- Code reading
- Walkthroughs

) Management Techniques

- Chief programmer teams
- Design reviews

- Librarian functions

- Independent test teams

° Documentation Teciniques

- Automated documentation systems
- Structured code

The SEL's approach to evaluating methodologies nas been to
collect cost and gquality data from similar projects that
employed different development methodologies (semicontrolled
experiments) . The relative effects of the methodologies on
the product can then be observed and the useful techniques
identified. Controlled experiments (as described in Sec-
tion 2.5) would be the ideal means of collecting data for
these analyses. However, the cost of duplicating any large
development effort precludes that strategy.

The inability to make complete comparisons of the projects
studied has delayed the derivation of definitive conclusions
from the data. However, some effects are apparent. A sum-
mary of the early results of methodology evaluations is pre- .
sented in Table 3-3. A superficial examination of this
table suggests the reasonable conclusion that most tech-
niques that do not significantly increase the programmer's
and/or designer's workload but that provide a higher level
of organization to his/her activities have a positive impact
on the development process.

Table 3-3.

Conclusions

Results of Evaluations

SEL Metholodogy Evaluation: Some Early

Cost Effective

Formal Test Plan

Process Design
Language (PDL)

Code Reading
Formal Training

Librarian

Configuration Man-
agement

Design Formalisms

Formal Design Re-
views

Structured Code
(Precompilers)

Iterative Refinement

Cost Unclear

Not Cost Effective

Code
Walkthroughs

Top-Down Design

Top-Down Code

Chief Programmer
Team

Code Auditors

Structured Anal-
ysis
Regquirements
Languages

Automated PDL

Unit Development
Folders -

Resource Estima-
tion Models

Simulated Con-
structs

Axiomatic Design

Code Analyzers

Large Problem
Statement Lan-
guages
Independent Veri-

fication and Inte-
gration

Reliability Models

Automated Flow-
charters

More rigorous technigues have been applied to the analysis

of some subsets of the SEL data o

n methodologies. Table 3-4

shows the results of a study of the effects of methodology

on productivity (Reference 12).
the SEL's earlier conclusions.

Essentially, it confirms

Table 3-4. Relationship Between Productivity and

Various Factors

Factors Correlation
PDL 0.26
Formal Design Review 0.62%*
Design Formalism 0.38
Design Decision Notes 0.62%*
Design Walkthrough 0.28
Code Walkthrough 0.19
Code Reading 0.58**
Top-Down Design -0.19
Structured Code 0.02
Librarian Use 0.52%*
Chief Programmer Team Q0.p2%*
Formai Test Plans 0.51~*
Heavy Management Involvement -0.09
Formal Training 0.58*~*
Top-Down Code 0.29

*SIG.<0.05
**31G.<0.01

In addition, two commercially available axiomatic design

methodologies were investigated b
monstration project. The product

included graphic representations

posed process and detailed component descriptions.

clusion of the SEL was that the a

3-15

y applying them to a de-

s of the design process

of the functionally decom-
The con-
dditional effort required

by these methodologies was not justified by any improvement
in design (References 13 and 14).

3.3 MODELS

Models have two important applications in the context of
software engineering: explanation and estimation. The
models considered by the SEL are mathematical abstractions
of the software development process relating two or more
fundamental characteristics. The characteristics of widest
general interest and on which SEL efforts have been focused

are resource utilization and software reliability.

A model isolates specific determining properties of the
software development process. For example, the level of
programmer experience might be included in a model relating
staff-hours of effort to lines of developed code. This
would reflect the analyst's understanding and explanation of
the important factors in that relationship. The model thus
developed can then be used to estimate the value of one fac-
tor f£rom the known or assumed values of the other factors.

The development of valid models as explanatory and estimat-
ing tools is highly desirable. SEL efforts in the investi-
gation of resource utilization and reliability models are
described in Sections 3.3.1 through 3.3.3.

3.3.1 RESOURCE UTILIZATION MODELS

Resource utilization models relate measures of manpower
and/or computer time to other aspects of the software devel-
opment process. Many such models have been proposed. Ref-
erence 15 describes the SEL investigations of some of them;
these include the Doty, Walston-Felix, Tecolote, GRC, SLIM,
and PRICE S models. Only those that have been most influen-
tial on the SEL are discussed in detail in this document.

The resource utilization modeling problem has two parts:
defining the total resources required and identifying the
optimum distribution of those resources over the development
cycle. Both parts of the modeling problsm have been studied
by the SEL.

The Putnam model of staffing (Reference 1l6) was among the
earliest considered by the SEL. Putnam studied the distri-
bution of manpower expenditures over time for several
hundred medium to large software development projects of
different classes. These projects exhibited similar devel-
opment staffing patterns--a rise in manpower followed by a
slower tailing off of effort. Putnam associated this curve
with an optimum staffing level devendent on the rate at
which work could be done at any phase of development (see
Figure 3-6). The shape of the distribution of effort de-
rived by Putnam is that of a Rayleigh curve.

The form of the equation describing the curve is as follows:

2,2
2, . oti/2t]

Y = K/td t
where Y = the manpower at any time t
K = the area under the curve and corresponds to the

total life cycle effort in man-years
t = the development time
tg = time of peak manpower

This equation can be used to estimate the appropriate staff-
ing level at any time and the total development time re-
quired. However, the accuracy of estimates is affected by
variations in the development process and bv the difficulty
of exactly maintaining the optimum staffing level.

The correspondence between the Putnam model and the SEL data
was not especially good (Reference 17). Several other

3-17

MANPOWER LEVEL CUMULATIVE EFFORT

(STAFF-YEARS/YEAR) (STAFF-YEARS)
A A
[P
- - 0.4K -+
I” \\‘
/ - ‘\

4 ,l’ ““\:\s

N TME > ¢, TIME "
d d

NOTE: THE CURVES DEFINED BY THIS FIGURE WERE ORIGINALLY APPLIED BY
LORD RAYLEIGH TO DESCRIBE OTHER SCIENTIFIC PHENOMENA.

Figure 3-6. Rayleigh Curve

8217/82

curves were also fit to SEL data. A trapezoid and a parab-
ola fit approximately as well as the Rayleigh curve. This
may be explained in part by considering the effect of a
fixed deadline for delivery. A project that is not begun
early enough or that experiences unexpected difficulties
will demonstrate a second peak of activity near the dead-
line. This phenomenon can be observed in Figure 3-7 where
actual data is compared with two estimates of resource ex-
penditures. The irreqularity of the plotted data may be
attributable to the relatively small size of the project
being studied. The staffing level for such projects may be
a step function rather than continuous.

The SEL also examined several models of the relationship
between size of the developed system and the total effort
required for development (Reference 18). Specifically, the
Walston-Felix model (Reference 9) and the Boehm model
(Reference 19) were evaluated. SEL experience with those
analytic techniques contributed to the construction of

the SEL "Meta-model." The next subsection discusses the
derivation and formulation of that model.

3.3.2 THE SEL META-MODEL

The derivation of the SEL Meta-model is described in detail
in Reference 20. However, it will also be outlined here.

Both the Walston-Felix and Boehm models propose a relation-
ship among effort, lines of code, and an index of local con-
ditions. The Walston-Felix index includes 29 factors; the
Boehm index is a multiplicative combination of 16 factors.
Although the SEL data seemed consistent with these models, a

closer fit was desired.

The general equation was modified by devising a new measure
of system size and by refining the selection of factors in-
cluded in the index. The lines-of-code factor was replaced

by the factor of new lines plus 20 percent of reused lines.

3-19

seAIn) saanjtpuadxy 90aNOSIY pojewtisy - daubr

viva ivniov o
{a3xX14 31VQ NOtLITINOD} 8L HLIM JAHND ONILYWILSI 0
Q3axX14 (SIDHNOSIH WNWIXVYW) A HLIM IAEND ONILYWILSS v

] ONILSIL :aN3931
" 30NV14300V
3 INIWJOTIAIQ 40 NIIM
. oL 09 09 or ot 174 o1 o
|] | 1 | I |
O, SY¥33M 09 v
=8|
N P
SNIIM Oy =€) v
Vr, © |, o
v/ v
o ﬂxwd Dn_n_ v o
o v o 3¥33IWSHNOH OFF = QA
v
o ° B o v °
o o0 ﬂ@ Od »3awsunoti 0S¢ = QA Vv O ooz
o uﬁQ B @Q g 000 z
0 v o o c
% Y o B0’ 2
o O ﬁ o ° V o %
00 o J%0 © m
o v o 3
- oot
o 0 o% U oo (- n
00 AﬁﬁMU F
OO0 a
© 5 0 %8‘0@ o®lo Ko
o 0o o0y U
o© o
M o ~ oov
O o
b .H_uc%

3-20

This measure is referred to as "developed"” lines of code.

It compensates for the bloating of size statistics that oc-
curs when a substantial amount of previously developed code
is reused. The correlation of this measure (developed
lines) with effort is demonstrated in Figure 3-8, The rela-
tionship (base equation) established between effort and size
is as follows:

E = .73 *pnLi'10 4+ 3.5

where E
DL

effort (staff-months)
developed lines {(thousands)

An attribute index refines the estimate of effort provided
by this base equation by accounting for the variation due to
such factors as problem complexity, programmer experience,
and development techniques. The selection of significant
attributes (factors) was accomplished by employing factor
analysis as a data screening and reduction tool. Nearly

100 attributes were examined and 21 were selected for in-
clusion. They are grouped into three classes as follows:

o Total Methodology

- Tree charts

- Top-down design

- Design formalisms

- Formal documentation

- Code reading

- Chief programmer teams

- Formal test plans

- Unit development folders
- Formal training

™ Cumulative Complexity

- Customer interface complexity
- Customer-initiated program design changes

3-21

EFFORT (MAN-MONTHS)

10° -

102
o

10,-_‘

100 L L] l'“_rilll
109 10’

THOUSANDS OF LINES

LOG-LOG PLOT SHOWING ONE STANDARD ERROR CONFIDENCE BAND.

NOTE: STANDARD ERRCR = 1.456
CORRELATION = 0.958

Figure 3-8. Effort Versus Developed Lines of Code

LS T LR 4 Illll

3-22

8217/82

- Application process complexity

- Program flow complexity

- Internal communication complexity
- External communication complexity
- Data base complexity

° Cumulative Experience
- Programmer qualifications
- Programmer experience with machine
- Programmer experience with language
- Programmer experience with application

- Team previously worked together on same type
problem

Each attribute for each project was rated on a scale from
0 to 5. Then, a sum was calculated for each of the three
classes of attributes indicated in the list. These sums are
the indices used to adjust the initial estimate of effort
based on delivered lines of code. The final equation used

includes the two major indices. That equation is as follows:

Ef = Ei * (-0.036 * M + 0.009 * C + 0.86)

where Ep = final estimate of effort
E; = initial estimate of effort
M = sum of methodology ratings (index)
C = sum of complexity ratings (index)

The resulting adjusted estimator is the best predictor of
the effort required for development of those estimators
examined thus far by the SEL.

3.3.3 RELIABILITY MODELS

Software reliability can be defined as the length of time
that a program will operate without a software failure.
Ideally, developers would like to produce error-free soft-
ware that operates indefinitely without failure. The cost
of ensuring absolute freedom from error, however, is so
great that most software developers accept less than that.
Thus, they speak of developing software with the longest
possible mean time to failure (MTTF).

Numerous models have been proposed that relate MTTF to the
number of errors in a software system (Reference 21). An
effective model of this relationship would have several
uses. It could provide estimates of the number of errors
present at the beginning and end of testing, as well as
estimates of the time until the next software failure.

The only reliability model that has been carefully examined
by the SEL is that of Musa (Reference 22). The mathematical
representation of this model is a sequence of Poisson func-
tions of the form

£kt
T, o= o ©
t = FRN
(o]

where t = elapsed (CPU) testing time
Tt = MTTF at t
N, = initial number of errors present
f = average execution rate
k = proportionality constant

Unfortunately, the SEL evaluation (Reference 23) of the Musa
model had several weaknesses. Assumptions were made in the
model that could not be experimentally validated; and data

was not collected in a form convenient for these analyses.

3-24

As a result, the projects studied did not correspond very
well to the Musa model.

3.4 TOOL EVALUATION

The SEL has attempted to evaluate the effectiveness of sev-
eral software development tools in the GSFC environment.

The evaluation process is similar to that used for methodol-
ogies. A tool is applied and its effect on software devel-
opment is observed. The types of tools that have been
examined by the SEL include requirements languages, design
languages, programming languages (and preprocessors), code
analyzers, and management tools. The most important tool
evaluation efforts of the SEL are outlined below.

° URL/URA Requirements Language--This is an extensive
and powerful requirements language that was acquired by
GSFC. However, the complexity and overhead associated with
its operation make it unsuitable for application in this
environment.

® MEDL-R Requirements Language--MEDL-R is a small
requirements language processor (Reference 24). Although it
is still under review, the preliminary indications are fav-
orable. However, it is also expensive (in systems and
clerical costs) to use.

o Process Design Language (PDL) Processor (Caine,
Farber, and Gordon)~-This tool appears to promote a benefi-
cial formalization of the detailed design process and to aid
in the identification of design errors (Reference 25).

) Automated Flowcharters--Several automated flow-
charters have been examined by the SEL. These are mar-
ginally useful in documentation but do not have any
significantly favorable impact on other software development
activities.

° Source Analyzer Program (SAP)--The SAP extracts
measures of size, complexity, and function from software on
a module-by-module basis. This tool has proved more useful
for analysis than for development monitoring.

° Configuration Analysis Tool (CAT) --The CAT is an
automated configuration management recordkeeping system.
Its effectiveness is still under review by the SEL.

° Structured FORTRAN Preprocessor (SFORT)--This tool,
developed in-house, is a structured FORTRAN preprocessor
that extends the standard FORTRAN language to enable a user
to write structured, top-down, label-free, FORTRAN-like
code. The impact of this tool on software development was
found to be very favorable. It is now routinely applied to

applications projects.

The next step after identifying useful software development

tools is to combine them into a comprehensive development ‘

system. The term "programmer workbench" is used to describe
such a collection of tools implemented on an interactive
computer system. The programmer workbench is an attempt to
maximize the effectiveness of interactive programming by
providing powerful, easily used software support for design,
coding, testing, and documentation. Thus, the range of
functions normally supported spans all phases of software

development.

The programmer workbench includes many capabilities that may
not be required for the operational (target) computer system
for which the developed software is intended. As a result,
the workbench is often implemented on a separate development
system. This kind of implementation has several advantages
in the GSFC environment. First, the workload of the S/360s
is reduced, allowing a faster response to other activities.

3-26

Second, the progress of the development tasks becomes inde-
pendent of the irregular availability and reliability of the
S/360s (as indicated in Section 3.1.2).

The SEL is developing a programmer workbench for the

DEC PDP-~11/70. That effort is still at an early stage.
Thus, this concept has not yet been tested. The SEL has,
however, defined the general requirements of a GSFC Pro-
grammer Workbench (Reference 26).

3.5 MEASURES AND METRICS

The role of software measures and metrics is to define, ex-
plain, and predict important software qualities and quanti-
ties. The study of software measures and metrics overlaps
the analyses described in the previous secticns. For ex-
ample, no consistent evaluation of the effectiveness of
software development methodologies and tools is possible
without having previously defined a standard of measure-
ment. The profiling process is one of accumulating measures
of the activities and conditions associated with software
development. Successful modeling also depends on identify-
ing meaningful and reliable metrics. Consequently, research
on software measures and metrics has in the past, been
driven by the need for measurement by those analyses. Re-
cently, however, the attention of the software engineering
research community has focused on testing the validity of
commonly accepted metrics and on developing new, more power-
ful metrics.

Through the careful examination of graphs and histograms
such as those in Figure 3-9, the SEL has discovered that the
distributions of many software measures do not conform to
the normal model. A numerical test of normality can also be
made to detect this condition. The most commonly used sta-
tistical techniques are based on an assumption of normality
that does not seem to be justifiable in these cases. Thus,

3-27

NORMAL
>
Q
2
w
=2
[}
w
T
e
DATA INTERVAL
NON-NORMAL
>
Q
=
u
2
(o]
w
[+
"

8217/82

DATA INTERVAL

Figure 3-9. Hypothetical Data Distributions

future analyses will be planned with more consideration for
the nature of the data involved.

The various software development measures with which the SEL
has concerned itself may be grouped into three classes:
static, derived, and subjective. Static measures are simple
counts of significant features of the developed product and
events in the development process. Derived measures are
computed or are derived by analysis of source code or docu-
mentation. Subjective measures are qualitative determina-
tions of attributes. These classes are explained in the
following subsections.

3.5.1 STATIC MEASURES

Static measures include those collected as profile data.
This is the most commonly employed class of software meas-
ures. Lines of code, number of errors, and staff-hours
worked are examples of static measures., They describe the
software development process in simple numerical terms.
Unfortunately, static measures do not provide any estimate

of the quality of software.

This type of metric is frequently standardized to facilitate
comparisons. 4Thus, lines of code per day, number of errors
per thousand lines of code, and staff-hours per component
are used. SEL experience suggests that the standard form,
"per thousand lines of code,"” is most useful for most static
({profile) measures. Some of these measures are discuésea in
Section 3.1 under the heading of "Profile Analysis." A num-
ber of such measures are tabulated in Appendix A.

3.5.2 DERIVED MEASURES

Some software attributes of interest to the researcher can-
not be quantified as easily as those just described. These
gqualities require the derivation of more sophisticated meas-
ures. Effort and complexity are examples of such attributes.

3-29

The SEL has studied the software science metrics of Halstead
(Reference 5) and the cyclomatic complexity metric of McCabe
(Reference 6) . Attempts were made to validate the utility
of these metrics and to compare them with standard (static)

size measures.

Halstead's "length" and McCabe's "complexity" measures
showed good agreement with the number of executable state-
ments and related measures (Reference 27). However, some of
the other Halstead measures, such as "language level," did
not show the type of behavior predicted (Reference 28)., A
very high correlation of these derived measures with static
measures (such as lines of code) is a negative result be-
cause it indicates that the simple measures provide just as
much information as the more sophisticated measures. Sta-
tistics for these measures derived from the SEL data base

are shown in Appendix A,

3.5.3 SUBJECTIVE MEASURES

Comparison of the results of applying different software
development methodologies and/or tools must include an eval-
uation of the relative "quality" of the developed products.
As previously suggested, such quality attributes cannot
usually be measured objectively. They depend on the re-
guirements of the specific system being developed. Thus,
they must be estimated subjectively by persons familiar both
with the requirements and with the implementations of the
systems under study. However, some quality characteristics

may be measured indirectly.

Attempts have been made to provide standard procedures for
estimating quality measures. McCall (Reference 29) has
identified important quality attributes and schemes for pro-
ducing numerical values for them. These metrics are cur-
rently being studied as a possible method of defining
software acceptability for the U.S. Air Force. The SEL has

3-30

also assembled a group of subjective measures (see Sec-
tion 2.2.5) that it is attempting to validate. The results
of this evaluation effort are, as yet, incomplete.

3

31

SECTION 4 - SUMMARY

Preceding sections of this document attempt to answer sev-
eral historical questions about the SEL: what is the SEL,
how does it operate, and what has it done? Tnis section
recapitulates and explains some important points made
earlier and suggests the future direction of SEL activities.

The discussion is in three parts. The status of the SEL
relative to its objectives is reviewed in Section 4.1.
Next, the general conclusions derived by the SEL from this
research are outlined in Section 4.2. Finally, Section 4.3
presents some recommendations, based on the SEL experience,

for conducting similar studies.

4.1 STATUS OF SEL

The objectives of the SEL are identified in Section 1.3.

The SEL has met with varying degrees of success in achieving
these objectives. Some have been satisfied, others were
determined to be impossible (or nearly so), and more are
still being worked toward.

The objectives that follow have been achieved, although work
in these areas has not stopped. All of this effort has con-
tributed toward a clearer understanding of the software de-
velopment process.

° A number of software development methodologies have
been evaluated. However, this activity has pro-
ceeded much more slowly than originally planned due
to the myriad details and interrelationships that

must be considered.

L A wide range of software development tools was
evaluated. New tools will pbe tested as they become
available.

° Many of the available cost estimation models were
analyzed. A model was developed for use in the SEL
environment (see the Meta-model, Section 3.3.2).

° A recommended approach to software development was
arrived at and formalized in a document (Refer-
ence 30). This set of standards is expected to
grow and change as knowledge about the software
development process increases.

o Contact with the software engineering community has
been maintained through the sponsorship of annual

workshops.

Two of the SEL's original objectives appear to be impossible
to achieve. These are as follows:

] The application of controlled experiments has
proved to be too expensive and difficult to manage.

L) Data processing constraints have prevented true
real-time feedback to development teams. However,
it may still be possible to make some information
available on a timely basis during the development
effort.

The course of future SEL research will be guided by its past
experience. Many areas of research explored by the SEL did
not produce conclusive results. Some analyses were ad-
versely affected by a lack of reliable data. Others used
approaches that were ultimately discovered to be inappro-
priate or ineffective. Some very promising studies have yet
to be completed. The objectives toward wnich progress 1is,
as yet, incomplete include the following:

] The analysis of software reliability models is a
much more complex problem than originally envi-
sioned. The available models do not agree very
well with the collected data.

° The development of a set of software quality met-
rics is still in an early stage of activity.

] Although a number of important parameters have been
identified, the development of software management

guidelines also remains in its first stages.

The conclusions derived from the SEL's efforts to satisfy
these objectives, as described in Section 3, are presented
in the next subsection.

4.2 CONCLUSIONS

Several points stand out among the results of the research
documented in Section 3. These conclusions are as follows:

e The software development process can be improved

tnrough the application of selected methodologies.

This general conclusion was derived from observations made
during the past several years. Productivity rates have
steadily increased through the years with the application of
more refined methodologies. Even with the additional over-
head of data collection and special training, a steady im-

provement in the development process is evident.

The amount of improvement attributable to any given method-
ology is very difficult to quantify, but the history of the
SEL indicates that almost any of the disciplined methodolo-
gies available will favorably affect the process by about 5
to 10 percent over the absence of any such approach. A
methodology that is particularly well suited to a specific
environment could enhance productivity by as much as 20 per-
cent. Optimizing the organizational structure of the people
supporting the project can produce an additional improvement
of 10 percent.

. The application of software development tools nas

not fully matured.

Although numerous software tools are now available and the
use of tools is ever more popular, they are still not being
applied effectively. Too many tools are adopted that are
not cost effective given the software development environ-
ment. More emphasis must be placed on making tools user-
friendly, rather than making users tool-friendly.

The SEL has found the supply of tools that do the "easily
managed" tasks, such as flowcharting, code auditing, and
language preprocessing, to be more than adequate. Addi-
tional effort should be expended on building and studying
tools that facilitate difficult tasks, such as requirements
analysis, project management, structured analysis, and de-

sign verification.

. Software cost models are useful but inadequate by

themselves.

The SEL nas reviewed and tested numerous software cost esti-
mation models during the past several years but has obtained
only mixed results. No cost model can replace "smart" engi-
neers and historical cost data. However, cost models can
supplement the cost estimation process when used properly.
The larger, more sophisticated models (PRICE-S and SLIM)
provide useful management planning statistics but must be

delicately tuned and retuned.

The greatest danger in the application of current software
cost models is that of placing an unjustifiably high degree

of confidence in the results of models alone.

° Software reliability models are not useful in their

present state of development.

The SEL has not yet extensively evaluated software reliabil-
ity models; those that have been examined do not seem to be
useful to software developers. The results of these models
are difficult to interpret and apply in practice. However,

4-4

the potential applications of reliability models to software
development are significant.

° The greatest need is for the rational application

of the available technologies, not for the creation of new

technologies.

During the past several years, the SEL has learned that
there are no shortages of well-defined methodologies and
tools. The deficiency of current practice is in the utili-
zation of the available software technology. Software im-
plementers have been slow to evaluate and adapt these

approaches to their particular environments.

Software technologies should not be accepted without criti-
cally examining their effects and without understanding the
environment in which they operate. However, the evidence is
conclusive that the software development process can be sub-
stantially improved through the application of appropriate
technology.

4.3 RECOMMENDATIONS

The SEL's experience in software engineering research is a
basis on which recommendations can be made for conducting
similar studies. Because these suggestions are related to
the specific goals pursued by the SEL, they may not be of
great value to someone of different interests. However, the

lessons are of a general enough nature to be important.

° Understand the current software development proc-
ess. Evaluating potential improvements is impossible with-
out first establishing a paseline for comparison. Moreover,
a careful analysis of current practices may indicate those
areas having the most potential for improvement. For ex-
ample, an organization that expends most of its effort in
testing and little effort in coding could maximize its re-
turn on effort by concentrating on improving testing tech-

niques.

4-5

° Gather high-level data first. Management summaries
and subjective evaluations on a project basis are the
easiest to collect and analyze. Furthermore, they will in-
troduce relevant questions that can be answered only at a
more detailed level of analysis, in a realistic context.
Thus, the researcher is in the position of identifying data
to be collected to solve a specific problem, rather than of
identifying a problem to solve with the data he/she has
already collected.

° Control the effects of variations in the devel-
opers' skills. One of the most powerful effects on software
development is the ability of the developers involved. This
quantity must be measured if its effect is to be considered
or controlled.

° Maintain close cooperation between research and
development personnel. Collecting reliable data requires
the active participation of the development groups being

monitored. This may best be ensured by maintaining links at

the management level.

° Two classes of productivity gains seem to be pos-
sible in software development. Immediate gains of 20 to
30 percent can be made by selecting and optimizing develop-
ment methodologies, tools, and management practices. More
extensive long term improvements of 200 to 500 percent would
require the radical alteration of the development process
and environment in such ways as employing very high-level
languages, automating design activities, training pro-
grammers in specific software technologies, and increasing
the reusability of code. This magnitude of improvement is
the final goal of software engineering research.

4-6

APPENDIX A - SEL DATA TABULATIONS

The tables in this appendix display some data items from the
SEL data base. Specifically, the data used to prepare these
tables was drawn from 17 of the projects described in Appen-
dix B. Graphs and tables presented elsewhere in this docu-
ment were prepared from subsets of this data. This appendix
includes nine tables. The first two (Tables A-1 and A-2)
describe FORTRAN modules. Table A-3 shows computer runs.
Changes and errors are displayed in Tables A-4 and A-5.
Table A-6 shows total development effort. Summary statis-
tics for each project are presented in Table A-7. Life
cycle phase dates for these projects are reported in

Table A-8. A comparison of Walston-Felix data (Reference 9)
with SEL data is presented in Table A-9.

Tables A-3 through A-6 are organized similarly. Three major
headings appear in each table. The first heading contains a
list of data classes. The middle heading labels a break-
down, by percentages, of each class with respect to another
classification criterion. The third heading labels a column
showing the percentage of the data that each class re-

presents.

Table A-1. Origins of FORTRAN Modules

PERCENTAGE
ORIGIN OF TOTAL
NEWLY DEVELOPED 57.2
EXTENSIVE CHANGES 7.4
SLIGHT CHANGES 136]
~
REUSED UNCHANGED 213 =
-]

NOTE: TOTAL NUMBER OF FORTRAN MODULES = 2877.

Table A-2.

FORTRAN Module Statistics

INTERQUARTILE | HIGHEST
MEASURE ORIGIN MEDIAN S ANGE! VALLE

NUMBER OF ALL MODULES 38 30.5

EXECUTABLE NEW MQDULES 41 30.0 1874

STATEMENTS EXT CHANGES 61 55.5 801
SLT CHANGES 7 27.0 409
OLD MODULES 26 26.5 819

NUMBER OF ALL MODULES 156 89.0

LINES OF CODE2 NEW MODULES 172 89.5 2003

(INCLUDING EXT CHANGES 218 134.3 1242

COMMENTS) SLT CHANGES 145 75.5 777
OLD MODULES a2 69.3 1071

HALSTEAD ALL MODULES 210 201.5

LENGTH NEW MODULES 215 2010 3638
EXT CHANGES 345 359.3 2786
SLT CHANGES 21 183.0 3213
OLD MODULES 146 181.3 4910

NUMBER OF ALL MODULES) 8.0

DECISIONS NEW MODULES 10 9.5 205

{McCABE ~1) EXT CHANGES 14 16.0 151
SLT CHANGES 9 8.5 147
OLD MODULES 5 9.0 161

NUMBER OF ALL MODULES 0 15

FUNCTION NEW MODULES 0 1.5 89

REFERENCES EXT CHANGES 1 25 54
SLT CHANGES 0 15 a2
OLD MODULES 1 2.0 a1

NUMBER OF ALL MODULES 3 45

EXTERNAL NEW MQDULES 4 5.0 137

CALLS EXT CHANGES 7 6.0 75
SLT CHANGES 2 35 102
OLD MODULES 1 2.0 61

NUMBER OF ALL MODULES 1 2.0

1/0 STATEMENTS3 NEW MODULES 2 25 910
EXT CHANGES 3 25 470
SLT CHANGES 1 2.0 230
OLD MODULES 0 5.0 301

'ALUE IS % OF RANGE BETWEEN THE FIRST AND THIRD QUARTILES.

2CON'I'ENTS OF “INCLUDE"” STATEMENTS ARE INCLUDED.

3USE OF 1/0 PACKAGES IS NOT INCLUDED.

NOTES: TOTAL NUMBER OF FORTRAN MODULES = 2877.
EXT = EXTENSIVE

SLT = SULIGHT

A=3

8217/81

L
(3]
-
~
~
L
[

'9Z9'CZ = SNNU JO HIAGWNN TVL101 'SIDVINIIUIG IYV SINTVA ILON

Ivi0L 40
IDVANIOHIA
0001 a 90 09 80 Tt 60 91 6t ot 92 99 LINS3Y
R a1 00 ve 00 90 A [FAT vy 'y StL Ha110
60 Y] Vb e 1 €t N1 Vi (%4 59 e tov | SOILSONYVIU
z8 Lo 00 vo A o ot ot 29 e e SZ9 | NNF/INIWOD
009 €0 10 90 vo Tt 90 b1 85 e 1z 68L ALTILN
£t v 51 o0t 90 gl 60 z 60t S'b s Les NHVYINHON3A
S8l Sb 0z 08l Tt %4 80 X4 vel Ty S€ 5ov 1531 WILSAS
vie 6" a1 e 6t v s¢ 0z 16 6 ve 8'0p 1531 1INN
NOIL31dW0D | 3ovssaw Houu3 wouul | youu3 HoHY3 HOHYI vouu3 | wowua | wouuz § Nnu
W10l 40 0L NNY vasn | NoiLnoax3 | i | 3114w00 | auvmidos | ayvmouvi | dni3s 1or | Liwans | aooo NNY 40
ELYZUERLED 3504tiNnd
3504HNd NNY 40 LINS3Y
uny Jo osodang Aa suny asjndwo) JO sI[NSSdY JO UOTINQTAISTA “€-V IdTqeld

Table A-4.

Distribution of Effort To Change by Type of

Change
EFFORT TO CHANGE CHANGE TYPE
TYPE OF CHANGE LESS THAN 1 HOUR 1DAYTO | MORE THAN PERCENTAGE
1 HOUR TO 1 DAY 3 DAYS 3 DAYS
ERROR CORRECTION 527 5.8 6.6 4.9 52.2
PLANNED ENHANCEMENT 253 3.8 16.5 21.4 15.4
REQUIREMENTS CHANGE 3.2 u.2 19.6 12.0 9.9
IMPROVE CLARITY 56.4 31.9 7.8 3.9 1.8
IMPROVE USER SERVICE 467 a1.1 10.3 1.9 3.1
IMPROVE UTILITY £6.2 3.5 5.8 15 4.0
OPTIMIZATION 60.0 ns 7.5 0.0 2.3
ENVIRONMENT CHANGE 03 66.7 0.0 0.0 0.4
OTHER 275 47.5 17.5 75 12
EFFORT TO CHANGE 46.9 8.7 9.8 7.7 100.0
PERCENTAGE OF TOTAL

NOTE: VALUES ARE PERCENTAGES; TOTAL NUMBER OF CHANGES = 3470.

A-5

8217/81

t8/L128

‘ZI8L = SHOYY3I 40 YITWNN TVLOL ‘SIDVINIIHIJ UV SINTVA 310N

V101 40 39VINIIYId

0'00L Ly 59 0'9E 625 1234HO0D O1 140443
6l Al L's 002 629 ¥3HLO
0’8l g1 L gl zeL V231D
9°€ 5’1 g1 £z 99 3SN I9VNONY
90 ool 00 009 00t 3DV4HILNI INJWNOHIANI
1'0g Le Ly £6¢ v'Eg 1NINOJWOD INO 40 N9ISId
'St 08 o £6b gIe SININOJWOI 31411 INW 40 NOISIa
9L 9'9 00z zee £'SE SNDILVDIHI123dS TYNOILLONNA
€€ 908 &l 89z 86z SINIWIHINDIY

wiordo | WSVESN | oiWar | AfondT | nvith sen

J9VINIDUI4 HOUU3 40 IdAL

3dAL YOHH3

1233440D Ol 140443

aoxag jo adAy Aq

109110) OJ, 31033d JO uoTINQIIAZSTd

"G-¥ 91qel

A-6

Table A-6. Distribution of Type of Development Effort

by Phase
— CEIELOMENT FHAS frrom oy
pesion | cope | SYIIEM | ACCERTANCE OF TOTAL

MANAGER 2.5 457 125 15.3 20.1
PROGRAMMER/ANALYST 20.8 a9 15.8 15.5 68.4
OTHER SERVICES 15.3 a5 13.9 27.4 1.5
PHASE PERCENTAGE 21.3 47,0 14.9 16.9 100.0
OF TOTAL

8217/81

YDETERMINED BY CALENDAR TIME OF OCCURRENCE.
NOTE: VALUES ARE PERCENTAGES; TOTAL NUMBER OF PROJECTS = 17.

vz

SHIOH SITAH IS UNY UTIVHYIN SN 1,
QHOIARI AVIAIYMTINY,

NOSEY ISNYME 230..
RS INDOUS W INIWID 1A,

L] tmt ont *iz [31744 L2 41 "t [144 oyt 'y o, [&]] [1 [L] o« <
L] [1111 60t [J1r4] 199 SIRN (L {} {14 [¥ M2y nHeer [+ X7 (14 €n"e L >] e "
[] {184 Tue oNEY L ¥4 t &+ R4} e [<-4 uyin : oot L7k,] L. N11) {3 "t (1] e (14
° L ¥] [X4 T8 [XL 4 oTen 9t 1114 't mn 09819 (43}] " o oo e n
or (4] ors L1} o 0Ly [41} "o e wy oo woese o = "t 2y [14
] T seot [] (1] sz L1 x/) wort o9 (71}) ”"nc sy fire] 14 4 ome o or
L] (11} Tt 21099 (] -4 i "4 (14 we'e we e's o [] » .] L[4 [

) son [X+ 1 ‘g.- ooce ol L /%] we L X] [N7 L 3 (1, (1.} ue L]
[L . 4 [] [] [1-: 4 oon oonz'e ste s e 'es oy [L) [] - n
[] [] one S04 ruee w 114 i he 00’ L] oac o "% L]

o " [¥4 *"’e o0 LY . X} o0¢ ur L ;) wet [4] ®ut's ” ” " 0t 9
0901 ‘e F414 "c " oso0'L » L 24 9L o o'y [L] [] 4 "w o L[]
10 b3 | o o [2:x] L] - tor ©0l =o' us'e) " " ”° 0
[] (%] " oc o o 90C e 3,] w9 a8t "'y o ot " ” o
[[] st ot "en'e o™ s - [] [/{ 2] N [] [] o [{1] "
ool L) 981 oK ou [1.) L 24 1744 089 [3] 98y o' [} [1] /3 t L]
[] ool oo 0909 L1 1] e [3 e mr 1ne'e Eea X we'a o L[] ” " .
o L 11} [¥: 4 09 9084 reBL't o L34} L ¢4 et 08 (L [.1 4 & " o "]
L] * #05C ¢ 9t [X.2] STWEL [x4 q°N ”e'n L 4] "o ”r'n » nt "o " [
L] st L) 4] TR Tt s8N [14 [4 L ¥4 one’e Yoo'9 Wwe'y o] (/14 0]

- - - - - ~ - - - - .] o "

- - - - - - - [14 e o

[] L 1.1} [¥-/4 (11} Nt 90180 «os 9320 " w©ue'y we'w e L 1) us woe o L4

- - - - "ot - [] e <

- - - - (=2 13 [,] L] ot

=mm$.u S | STt | s | eivve | wrvrcenue | MONEINEOT | TR0Y | wivmios | onmeen | S | Wion | Smeen | T | Swioer | MNier | vwows
sot3stiels Axeuwng josfloxg *(-V arqel

A-8

Table A-8.

Life Cycle Phase Dates

SYSTEM ACCEPTANCE ACCEPTANCE
NUMBER | START | sTART | JEST JesT TEST

1 10/04/80 10/31/81 -2 -3 _a

2 06/30/81 09/01/81 -3 - -a

3 02/13/77 06/04/77 12/03/77 02/04/78 03/18/78

4 05/01/80 12/13/80 10/03/81 —a -a

5 02/03/81 05/02/81 09/05/81 -3 -3

6 10/01/79 05/10/80 02/28/81 03/28/81 06/13/81

7 10/01/79 05/10/80 12/12/80 02/21/81 05/02/81

8 02/01/80 06/15/80 11/15/80 02/15/81 05/15/81

9 12/01/79 05/17/80 01/17/81 02/14/81 04/11/81
10 01/01/81 09/12/80 10/10/80 02/02/81 06/01/81
n 10/01/79 04/12/80 08/30/80 09/27/80 10/25/80
12 07/01/80 03/12/80 01/01/81 01/26/81 02/13/81
13 09/01/78 10/01/78 01/01/79 03/01/79 05/30/79
18 02/03/79 06/21/78 08/18/79 09/01/79 10/13/79
15 02/03/79 05/26/79 08/04/79 09/01/79 10/13/79
16 04/01/76 07/03/76 09/24/77 03/01/78° -

17 02/03/81 03/28/81 08/01/81 09/11/81 09/30/81
18 03/01/75 07/05/75 01/01/77 05/28/77 07/30/77
19 05/01/78 02/03/78 05/19/79 07/14/79 08/18/79
20 10/01/76 02/26/77 07/23/77 08/20/77 09/17/77
21 08/15/77 12/03/77 03/11/78 04/08/78 - 05/06/78
2 06/01/78 10/14/78 03/31/79 06/02/79 08/11/79
px 06/01/76 10/09/76 05/21/77 07/23/77 09/24/77
2 04/01/77 07/30/77 01/14/78 02/18/78 04/15/78
25 05/01/78 10/14/78 03/31/79 06/02/79 10/13/79 §

3NOT AVAILABLE AT THIS TIME; DEVELOPMENT iN PROGRESS.

beND OF SYSTEM TEST; ACCEPTANCE TEST NOT PERFORMED.

Table A-9. Comparison of Walston-Felix Data With SEL Data

MEASURES MEvgl-:Na ME%%«Nb

TOTAL SOURCE LINES (THOUSANDS) 20 4ag¢
PERCENT OF LINES NOT DELIVERED 5 0
SOURCE LINES PER STAFF-MONTH 274 601¢
"DOCUMENTATION (PAGES) PER THOUSAND LINES 69 2
TOTAL EFFORT (STAFF-MONTHS) 67 %
AVERAGE STAFFING LEVEL 6 5
DURATION (MONTHS) 1 15
DISTRIBUTION OF EFFORT

MANAGER 224 19

PROGRAMMER 73d 68

OTHER 5d 13
ERRORS PER THOUSAND LINES 1.4 0.8

3DATA FROM TABLE 3 OF REFERENCE 9.

DDATA FROM 11 SIMILAR PROJECTS (SEE APPENDIX B).

SLINES ARE DEVELOPED LINES OF CODE.
9RESCALED TO SUM TO 100 PERCENT.

8217/82

APPENDIX B - SEL PROJECT SUMMARIES

The following pages describe the major projects studied by
the SEL, the types of data collected, and the experimental
objectives toward which the data applies.

Notes to the Data Summaries

1. Developed lines of code (program size) is computed
as total new lines of code plus 20 percent of re-
used lines of code. The use of this measure is
justified in Section 3.3.2.

2. The data types shown in the summaries correspond to
the data files identified below. These files are

described in Section 2.4.

a. Manpower Utilization--Component Status Report,
Resource Summary

b. Computer Utilization--Run Analysis, Computer
Accounting
c. Product Measures--Component Summary, Component

Information
d. Change/Error Characteristics--Change Report

e. Project Summary Statistics--Subjective Evalua-
tions, Estimated Statistics

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer

Language

RESOURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules

Delivered Lines of Code
Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 1

Scientific

High reliability requirement
Batch

Nongraphics

Real-time

8086
VAX-11/780, 8086
FORTRAN

63.5 staff-monthsa
29 monthsa

3.0°

15,0002

15,0002

Study software transportability
Methodology evaluation

Resource and cost estimation
Software measures and metrics
Reliability and error modeling

Manpower utilization

Product measures
Change/error characteristics
Project summary statistics

2Estimate based on incomplete data.

B-2

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules

Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 2

Scientific
Batch
Nongraphics
Real-time

VAX-11/780
VAX-11/780
FORTRAN

38.1 staff-monthsa
21 monthsa

3.0%

Sa

2.09

200
15,0002
11,0002

Profile small task
Methodology evaluation
Resource and cost estimation
Software measures and metrics

Manpower utilization
Computer utilization
Product measures

Project summary statistics

a : .
Estimate based on incomplete data.

B-3

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESOURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Eguivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 3

Scientific/data processing
Interactive

Graphics

Not real-time

S/360
S/360
FORTRAN

79.0 staff-months
13 months

7.7
11

5.3

201
50,911
46,458

Methodology evaluation
Resource and cost estimation
Software measures and metrics

Manpower utilization
Computer utilization
Product measures

Project summary statistics

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules

Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 4

Scientific

High reliability requirement
Batch

Nongraphics

Real-time

PDP-11/23
PDP-11/70, PDP-11/23
FORTRAN

75.0 staff-monthsa
23 monthsa

a

2.22

2402
20,0002
16,8002

Study software transportability
Methodology evaluation

Study effect of time/memory con-
straints

Resource and cost estimation
Software measures and metrics
Reliability and error modeling

Manpower utilization

Product measures
Change/error characteristics
Project summary statistics

a -
Estimate based on incomplete data.

SOFTWARE CHARACTERISTICS

ENVIRONMENT

Target Computer

Development Computer

Language

RESQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 5

Scientific

High reliability requirement
Batch

Nongraphics

Real-time

PDP-11/23
PDP-11/70, PDP-11/23
FORTRAN

19.0 staff-monthsa
13 monthsa

30002
25202

Study software transportability
Study effect of memory con-
straints

Methodology evaluation

Resource and cost estimation
Software measures and metrics
Reliability and error modeling

Manpower utilization

Product measures
Change/error characteristics
Project summary statistics

a . .
Estimate based on incomplete data.

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESOURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 6

Scientific/data processing
Interactive

Graphics

Not real-time

S/360
S/360
FORTRAN

128.8 staff-months
20.5 months

373
67,325
49,468

Study effect of independent ver-
ification and validation
Methodology evaluation

Use of configuration management
tool

Resource and cost estimation
Software measures and metrics

Manpower utilization
Computer utilization

Product measures
Change/error characteristics
Project summary statistics

PROJECT 7

SOFTWARE CHARACTERISTICS Scientific/data processing
Interactive

Graphics

Not real-time

ENVIRONMENT
Target Computer S/360
Development Computer S/360
Language FORTRAN
RESOURCES
Level of Effort 122.7 staff-months
Project Duration 19 months
Peak Staff Level
Full-Time Equivalent 9.7
Individual Members 17

Average Staff Level
Full-Time Egquivalent 5.1

PROGRAM SIZE

Modules 391

Delivered Lines of Code 66,266

Developed Lines of Code 48,968

EXPERIMENTAL OBJECTIVES Study effect of independent ver-

ification and validation
Methodology evaluation

Use of configuration management
tool

Use of requirements language
tool

Resource and cost estimation
Software measures and metrics

DATA COLLECTED Manpower utilization
Computer utilization
Project measures
Change/error characteristics
Project summary statistics

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer

Language

RESOURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE

Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 8

Scientific
Interactive
Graphics

Not real-time

S/360
S/360
FORTRAN

23.3 staff-months
15.5 months

263
20,648
18,529

Profile small task
Methodology evaluation
Resource and cost estimation
Software measures and metrics

Manpower utilization
Computer utilization
Product measures

Project summary statistics

i

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Eguivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 9

Scientific/data processing
Interactive

Graphics

Not real-time

S/360
S/360
FORTRAN

30.7 staff-months
16.5 months

3.0
10

1.7

134
17,271
12,112

Study effect of independent ver-
ification and validation
Methodology evaluation

Software measures and metrics
Reliability and error modeling

Manpower utilization
Computer utilization

Product measures
Change/error characteristics
Project summary statistics

10

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Eguivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 10

Scientific
Interactive
Graphics

Not real-time

S/360
VAX-11/780
FORTRAN

7.1 staff-months
S months

73
9004
5768

Study software transportability
Evaluate programmer workbench
environment

Use of requirements languade
tool

Methodology evaluation

Resource and cost estimation
Software measures and metrics

Manpower utilization
Product measures
Project summary statistics

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESOQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules

" Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

w
|

PROJECT 11

Scientific/data processing
Batch

Nongraphics

Not real-time

S/360
S/360
FORTRAN

32.7 staff-months
13 months

3.4

102
15,258
14,950

Methodology evaluation
Resource and cost estimation
Software measures and metrics
Reliability and error modeling

Manpower utilization
Computer utilization

Product measures
Change/error characteristics
Project summary statistics

12

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESOURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 12

Data processing
Interactive
Graphics

Not real-time

§/360
S/360
FORTRAN

2.1 staff-months
7.5 months

0.6

0.3

55
5336
4111

Profile small task
Methodology evaluation
Resource and cost estimation
Software measures and metrics

Manpower utilization
Computer utilization
Product measures

Project summary statistics

B-13

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer

Language

RESOURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules

Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 13

Scientific
Interactive
Graphics

Not real-time

S/360
PDP-11/70
FORTRAN

4.0 staff-months
9 months

18
2572

1817

Profile small task

Evaluate programmer workbench
environment

Study of software transport-
ability

Methodology evaluation
Resource and cost estimation
Software measures and metrics

Manpower utilization
Computer utilization
Product measures

Project summary statistics

14

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESOURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 14

Data processing
Interactive
Graphics

Not real-time

S/360
PDP-11/70, S/360
FORTRAN

6.3 staff-months
8.5 months

41
5639

5560

Profile small task

Evaluate programmer workbench
environment

Study software transportability
Methodology evaluation

Resource and cost estimation
Software measures and metrics

Manpower utilization
Computer utilization
Product measures

Project summary statistics

PROJECT 15

SOFTWARE CHARACTERISTICS Scientific
Interactive
Graphics

Not real-time

ENVIRONMENT
Target Computer S/360
Development Computer s/360
Language FORTRAN
RESOURCES
Level of Effort 17.6 staff-months
Project Duration 8.5 months
Peak Staff Level
Full-Time Equivalent 4.5
Individual Members 9

Average Staff Level
Full-Time Eguiwvalent 1.6

PROGRAM SIZE

Modules 74

Delivered Lines of Code 9126

Developed Lines of Code 6108

EXPERIMENTAL OBJECTIVES Evaluate formal training

Methodology evaluation
Resource and cost estimation
Software measures and metrics

DATA COLLECTED Manpower utilization
Computer utilization
Product measures

Project summary statistics

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 16

System executive
Graphics
Not real-time

PDP-11/70
PDP-11/70
MACRO-11, FORTRAN

27.7 staff-months
23 months

2.2

393
35,000°%

Study assembly language software
conversion

Resource and cost estimation
Software measures and metrics

Manpower utilization
Product measures
Project summary statistics

a . .
Estimate includes assembler statements and macros.

B-17

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESOURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 17

Scientific/data processing
Batch

Nongraphics

Not real-time

VAX-11/780
VAX-11/780
FORTRAN

23.5 staff-months
10 months

5.0
7

4-1

99

60,762

57,433

Methodology evaluation

Resource and cost estimation
Software measures and metrics

Manpower utilization
Product measures
Project summary statistics

!
[
(e}

»

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESOQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 18

Scientific
Batch
Nongraphics
Not real-time

S/360
S/360
FORTRAN

63.5 staff-months
29 months

6.6
7

3.3

551
71,800
62,087

Resource and cost estimation
Software measures and metrics
Reliability and error modeling

Manpower utilization
Computer utilization

Product measures
Change/error characteristics
Project summary statistics

PROJECT 19

SOFTWARE CHARACTERISTICS Scientific
Interactive
Graphics

Not real-time

ENVIRONMENT
Target Computer S/360
Development Computer S/360
Language FORTRAN
RESOURCES
Level of Effort 15.6 staff-months
Project Duration 15.5 months
Peak Staff Level
Full-Time Equivalent 2.2

Individual Members
Average Staff Level
Full-Time Equivalent 0.8

PROGRAM SIZE

Modules 55

Delivered Lines of Code 10,172

Developed Lines of Code 9,736

EXPERIMENTAL OBJECTIVES Evaluate formal training

Methodology evaluation
Resource and cost estimation
Software measures and metrics

DATA COLLECTED Manpower utilization
Computer utilization
Product measures

Project summary statistics

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules

Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

PROJECT 20

Scientific/data processing
Interactive

Graphics

Not real-time

S/360
S/360
FORTRAN

96.0 staff-months
11.5 months

11.6
12

6.0

283
55,237
46,211

Methodology evaluation

Resource and cost estimation
Software measures and metrics

Reliability and error modeling

Manpower utilization
Computer utilization
Change/error characteristics
Project summary statistics

DATA COLLECTED

SOFTWARE CHARACTERISTICS

PROJECT 21

ENVIRONMENT
Target Computer

Development Computer
Language

RESQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Eguivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

Scientific/data processing
Interactive

Graphics

Not real-time

S/360
S/360
FORTRAN

39.6 staff-months
9 months

374
75,420

31,144

Evaluate formal training
Study extensive reuse of code
Methodology evaluation
Resource and cost estimation
Software measures and metrics
Reliability and error modeling

Manpower utilization
Computer utilization

Product measures
Change/error characteristics
Project summary statistics

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESOQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Eguivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

PROJECT 22

Scientific/data processing
Interactive

Graphics

Not real-time

5/360
S/360
FORTRAN

98.4 staff-months
14.5 months

9.5
14

5.6

604
89,513
67,463

Methodology evaluation

Resource and cost estimation
Software measures and metrics
Reliability and error modeling

Manpower utilization
Computer utilization

Product measures
Change/error characteristics
Project summary statistics

DATA COLLECTED

PROJECT 23

SOFTWARE CHARACTERISTICS Scientific/data processing
Interactive

Graphics

Not real-time

ENVIRONMENT
Target Computer S/360
Development Computer s/360
Language FORTRAN
RESQURCES
Level of Effort 115.8 staff-months
Project Duration 16 months
Peak Staff Level
Full-Time Equivalent 8.9
Individual Members 12

Average Staff Level
Full-Time Equivalent 5.9

PROGRAM SIZE

Modules ' 510

Delivered Lines of Code 111,868

Developed Lines of Code 90,157

EXPERIMENTAL OBJECTIVES Methodology evaluation

Resource and cost estimation
Software measures and metrics
Reliability and error modeling

DATA COLLECTED Manpower utilization
Computer utilization
Product measures
Change/error characteristics
Project summary statistics

SOFTWARE CHARACTERISTICS

ENVIRONMENT
Target Computer

Development Computer
Language

RESQURCES

Level of Effort

Project Duration

Peak Staff Level
Full-Time Equivalent
Individual Members

Average Staff Level
Full-Time Equivalent

PROGRAM SIZE
Modules
Delivered Lines of Code

Developed Lines of Code

EXPERIMENTAL OBJECTIVES

DATA COLLECTED

PROJECT 24

Scientific/data processing
Interactive

Graphics

Not real-time

S/360
S/360
FORTRAN

90.8 staff-months
12.5 months

10.0
11

5.8

535
75,393
54,531

Methodology evaluation
Resource and cost estimation
Software measures and metrics

Manpower utilization
Computer utilization
Product measures

Project summary statistics

PROJECT 25

SOFTWARE CHARACTERISTICS Scientific/data processing
Interactive

Graphics

Not real-time

ENVIRONMENT
Target Computer S/360
Development Computer S/360
Language FORTRAN
RESQURCES
Level of Effort 98.7 staff-months
Project Duration 17.5 months
Peak Staff Level
Full-Time Equivalent 8.9
Individual Members 13
Average Staff Level
Full-Time Equivalent 4.8

PROGRAM SIZE

Modules 519

Delivered Lines of Code 85,369

Developed Lines of Code 78,580

EXPERIMENTAL OBJECTIVES Evaluate formal training
Use of requirements language
tool

Methodology evaluation
Resource and cost estimation
Software measures and metrics
Reliability and error modeling

DATA COLLECTED Manpower utilization
Computer utilization

Product measures
Change/error characteristics
Project summary statistics

ALC
ATR
BMDP
CAT
CsC
DBA
GESS
GSFC
HIPO
MPP
MTTF
PANVALET
PDL
SAP
SEL
SFORT
STL
TSO

GLOSSARY

Assembly Language Code

Assistant Technical Representative
Biomedical Programs, P Series

Configuration Analysis Tool

Computer Sciences Corporation

Data Base Administrator

Graphic Executive Support System

Goddard Space Flight Center

Hierarchical Input Processing Output

Modern Programming Practices

Mean Time to Failure

Computer Program Analysis and Security System
Program/Process Design Language

FORTRAN Static Source Code Analyzer Program
Software Engineering Laboratory

Structured FORTRAN Preprocessor

Systems Technology Laboratory

IBM Timesharing Option

10.

ll'

12,

REFERENCES

University of Maryland, TR-535, The Software
Engineering Laboratory, V. R. Basili, M. V. Zelkowitz,
F. E. McGarry, et al., May 1977

Computer Sciences Corporation, CSC/TM-81/6102, Guide to
Data Collection, V. E. Church, F. E. McGarry, and
D. N. Card, September 1981

--, CSC/sbh-81/6011UDl, Software Engineering Laboratory
(SEL) Data Base Organization and User's Guide,
D. C. Wyckoff, September 1981

--, CSC/sD-81/6079, Software Engineering Laboratory
(SEL) Data Base Maintenance System (DBAM) User's Guide
and System Description, D. N. Card, September 1981

M. Halstead, Elements of Software Science. New York:
Elsevier Publishing Co., 1977

T. J. McCabe, "A Complexity Measure," IEEE Transactions
on Software Engineering, December 1976, vol. 2, no. 4,
pp. 308-320

W. J. Dixon and M. B. Brown, BMDP Biomedical Computer
Programs. Los Angeles: University of California Press,
1979

B. A. Sheil, "The Psychological Study of Programming,”
Computing Surveys, March 1981, vol. 13, no. 1, pp.
101-120Q

C. E. Walston and C. P. Felix, "A Method of Programming
Measurement and Estimation,"™ IBM Systems Journal,
January 1977, vol. 16, no. 1

R. W. Wolverton, "The Cost of Developing Large Scale
Software," IEEE Transactions on Computers, June 1974,
pp. 615-636

C. Turner and G. Caron, "A Comparison of RADC and
NASA/SEL Software Development Data," Data and Analysis
Center for Software, Special Publication, May 1981

V. R. Basili, "Measuring the Effects of Specific
Software Methodologies Within the SEL," Proceedings
From the Fifth Annual Software Engineering Workshop,

November 1980

13.

l4.

15.

16.

17.

18.

19.

20.

21'

22.

23.

24.

K. Tasaki, "Evaluation of Draper NAVPAK Software
Design, " SEL Internal Report, May 1977

Higher Order Software, Inc., TR-9, A Demonstration of
AXES for NAVPAK, M. Hamilton and S. Zeldin, September
1977

National Aeronautics and Space Administration/Goddard
Space Flight Center, X-582-81-1, An Appraisal of
Selected Cost/Resource Estimation Models for Software
Systems, J. F. Cook, December 1980

L. H. Putman, "A General Empirical Solution to the
Macro Software Sizing and Estimating Problem," IEEE
Transactions on Software Engineering, July 1978, pp.

345-361

T. E. Mapp, "Applicability of the Rayleigh Curve to the
SEL Environment" (paper prepared for the University of
Maryland, May 1978)

G. O. Picasso, "Software Engineering Laboratory" (paper
prepared for the University of Maryland, June 1979)

B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative
Evaluation of Software Quality," Proceedings of the
Second International Conference on Software
Engineering, 1976

V. R. Basili and N. Bailey, "A Meta-Model of Software
Development Resource Expenditures," SEL Internal
Report, August 1980

A. B. Miller, "A Survey of Several Reliability Models"

(paper prepared for the University of Maryland,
December 1978)

J. D. Musa, "A Theory of Software Reliability and Its
Application," IEEE Transactions on Software
Engineering, September 1975, vol. 1, no. 3

A. B. Miller, "A Study of the Musa Reliability Model"
(Master's Thesis, University of Maryland, December 1980)

Computer Sciences Corporation, CSC/TM-78/6093,
Multi-Level Expression Design Language-Reguirement
Level (MEDL-R) System Evaluation, W. J. Decker and
C. E. Goorevich, September 1978

25.

26.

27.

28.

29.

30.

--, CsC/Tv-79/6263, Evaluation of the Caine, Farber,
and Gordon Program Design Language in the GSFC

Environment, C. E. Goorevich, September 1979

--, CSC/TM-81/6091, SEL Programmer Workbench Phase 1
Evaluation, W. J. Decker, March 1981

V. R. Basili and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering
Laboratory," SEL Internal Report, December 1980

G. Hislop, "Some Tests of Halstead Metrics," SEL
Internal Report, December 1978

Rome Air Development Center, RADC-TR-77-369, Factors in
Software Quality, J. A. McCall, P. K. Richards, and
G. F. Walters, November 1977

Computer Sciences Corporation, CSC/TM-81/6103, Standard
Approach to Software Development, V. E. Church,

September 1981

BIBLIOGRAPHY OF SEL LITERATURE

Anderson, L., "SEL Library Software User's Guide," Computer

igégnces-Technicolor Associates, Technical Memorandum, June

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software
Development for Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.

New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Basili, V. R., "The Software Engineering Laboratory: Objec-
tives," Proceedings of the Fifteenth Annual Conference on
Computer Personnel Research, August 1977

Basili, V. R., "Models and Metrics for Software Management
and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical
Memorandum, October 1980

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

Basili, V. R., and J. Beane, "Can the Parr Curve Help with
the Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

Basili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"”
Journal of Systems and Software, February 1981, vol. 2, no. 1

Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
1ty Metrics, March 1981

Basili, V. R., and T. Pnillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

Basili, V. R., and M. V. Zelkowitz, "Operational Aspects of
a Software Measurement Facility," Proceedings of the
Software Life Cycle Management Workshop, September 1977

Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

Basili, V. R., and M. V. Zelkowitz, "Measuring Software De-~
velopment Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"
Computer Sciences Corporation, Technical Memorandum, March
1980

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Mapp, T. E., "Applicability of the Rayleigh Curve to the SEL
Environment" (paper prepared for the University of Maryland,
December 1978)

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Perricone, B. T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop, August
1976

--, SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

--, SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

-~-, SEL-77-003, Structured FORTRAN Preprocessor (SFORT),
B. Chu, D. S. Wilson, and R. Beard, September 1977

--, SEL-77-004, GSFC NAVPAK Design Specifications Lanquages
Study, P. A. Scheffer and C. E. Velez, October 1977

--, SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

--, SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

--, SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

--, SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson, B. Chu, and G. Page,
September 1978

--, SEL-78-005, Proceedings From the Third Summer Software
Engineering Workshop, September 1978

--, SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A. Scheffer, November 1978

--, SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

--, SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

--, SEL-79-003, Common Software Module Repository (CSMR)
System Description and User's Guide, C. E. Goorevich,
S. R. Waligora, and A. L. Green, August 1979

--, SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Language (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and F. E. McGarry, September
1979

-~, SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

--, SEL-80-001, Configuration Analysis Tool (CAT) Functional
Requirements/Specifications, F. K. Banks, C. E. Goorevich,
and A. L. Green, February 1980

--, SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker,
C. E. Goorevich, and A. L. Green, May 1980

--, SEL-80-003, Multimission Modular Spacecraft Ground Sup-
port System (MSS/GSSS) State-of-the-Art Computer System/
Compatibility Study, T. Weldon, M. McClellan, P. Liebertz,
et al., May 1980

--, SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

--, SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

--, SEL-80-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

B-4

--, SEL-80-007, An Appraisal of Selected Cost/Resource Esti-
mation Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

--, SEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

--, SEL-81-002, Software Engineering Laboratory (SEL) Data
Base Organization and User's Guide, D. C. Wyckoff, G. Page,
F. E. McGarry, et al., September 1981

--, SEL-81-003, Software Engineering Laboratory (SEL) Data
Base Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D. C. Wyckoff, G. Page, et al.,
September 1981

--, SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

--, SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

--, SEL-81-006, Software Engineering Laboratory (SEL) Docu-
ment Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

--, SEL-81-007, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

--, SEL-81-008, Cost and Reliability Estimating Models
(CAREM) User's Guide, J. F. Cook and E. Edwards, February
1981

--, SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and
F. E. McGarry, March 1981

--, SEL-81-010, Performance and Evaluation of Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

~--, SEL-81-011, Evaluating Software Development by A&nalysis
of Change Data, D. M. Weiss, November 1981

--, SEL-81-012, Software Engineering Laboratory, G. O.
Picasso, December 1981

--, SEL-81-013, Proceedings From the Sixth Annual Software
Engineering Workshop, December 1981

-~, SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen-
dium, " Data and Analysis Center for Software, Special Publi-
cation, April 1981 '

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data," Data and Analysis Center for
Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on

the Interface of Statistics and Computer Science. New York:
Computer Societies Press, 1979

Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

