VALIDATION AND APPLICATION PROTOCOL FOR SOURCE APPORTIONMENT OF PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS) AMBIENT VOLATILE ORGANIC COMPOUUND (VOC) DATA

EPA Grant #GR826237-01-0

Final Report

Prepared for:

United States Environmental Protection Agency National Center for Environmental Research and Quality Assurance Washington, DC 20460

Prepared by:

Eric M. Fujita and David E. Campbell

Desert Research Institute Division of Atmospheric Sciences 2215 Raggio Parkway Reno, NV 89512

August 31, 2003

ACKNOWLEDGMENT AND DISLAIMERS

This research has been supported by a grant from the United States Environmental Protection Agency's Science to Achieve Results (STAR) program. Although the research described in this document has been funded wholly or in part by the United States Environmental Protection Agency's Science to Achieve Results (STAR) program through Grant #GR826237-01-0, it has not been subjected to any EPA review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.

We gratefully acknowledge a number of our colleague at the Desert Research Institute, Drs. John Watson, Judith Chow, Norm Robinson, and Barbara Zielinska, for their technical discussions and input.

TABLE OF CONTENTS

Page No.

List	of Ta	edgment and Disclaimersbles	v
List	of Fi	gures	V
1.0	INTF	RODUCTION	1-1
	1.1	Background	
	1.2	CMB Receptor Modeling	
		1.2.1 Fundamentals	
	1.3	CMB Software History and Recent Changes	
	1.4	Guide to Report	
2.0		SUREMENT OF VOLATILE ORGANIC COMPOUNDS IN AMBIENT	2_1
	2.1	Photochemical Assessment Monitoring Station (PAMS) Measurements of Ambi	
	2.1	Volatile Organic Compounds	
	2.2	Definition of Volatile Organic Compounds	
	2.2	Sampling and Analysis Methods	
	2.5	2.3.1 Collection and Analysis of Hydrocarbons and Nonmethane Organic	
		Compounds (NMOC)	2-5
		2.3.2 Carbonyl Compounds	
		2.3.3 C_8-C_{20} Hydrocarbons by Tenax Sampling and Analysis by GC/FID or	
		GC/MS	2-7
	2.4	Data Validation	
		2.4.1 Level 0 Validation	
		2.4.2 Level 1 Validation	
		2.4.3 Level 2 Validation	
		2.4.4 Level 3 Validation	2-9
		2.4.5 External Performance Audits and Comparison Studies	
3.0		SOURCE COMPOSITION PROFILES	
	3.1	Source Composition Profile Normalization and Uncertainties	
	3.2	Review and Preparation of Source Profile CMB Input File Using the Source Pro	
		Library	
	3.3	Source Composition Profile Categories	
		3.3.1 Vehicle Exhaust	
		3.3.2 Cold-Start Emissions	
		3.3.3 Gasoline Liquid and Vapor	
		3.3.4 Commercial Natural Gas and Liquefied Petroleum Gas	
		3.3.5 Surface Coatings	
		3.3.6 Organic Decay and Landfills	
		3.3.7 Meat Cooking and Residential Wood Combustion	
		3.3.8 Industrial Sources	3-14

	3.3.9	Coal-Fired Power Stations	
	3.3.1	0 Biogenic Emissions	
	3.3.1	1 Regional Background	
		2 Unidentified	
4.0 A	APPLICAT	FION OF CMB TO PAMS AMBIENT VOC DATA	
4	I.1 Prepa	aring CMB Input Files	
	4.1.1	r	
	4.1.2	Source, Species, and Sample Selection Input Files	
	4.1.3	Generating CMB-Ready Input Files Using Macros in	
		SoureProfileLibrary.xls	
	4.1.4	Ambient Data Input File	
	4.1.5	Source Profile Input File	
4	I.2 Outp	ut Files	
	4.2.1	Report Output File	
	4.2.2	Data Base Output File	
	4.2.3		
5.0 0	CMB APP	LICATION AND VALIDATION	
5	5.1 CME	B Model Applicability	
5		l Source Contribution Estimates	
5	5.3 Mode	el Outputs and Performance Measures	
5		ations from Model Assumptions	
5		ification and Correction of Model Input Errors	
5		istency and Stability of Source Contributions	
6.0 F	REFEREN	CES	6-1
Appe	ndix A. (Organic Analysis Parameter List	A-1
		List of Source Composition Profiles	

LIST OF TABLES

Table 2-1	Atmospheric Lifetimes of PAMS Target Species	2-11
Table 2-2	Relative Emissions of Ethene and Vehicle Exhaust from Dynamometer and Tunnel Measurements	2-12
Table 4-1	Recommended Fitting Species	4-10
Table 5-1	Example CMB8 Output	5-10

LIST OF FIGURES

<u>Page</u>

Figure 2-1	Scatterplot of ethylene versus acetylene for morning and afternoon samples at Azusa
Figure 5-1.	Average source contribution estimates of ambient hydrocarbons at Rider College, NJ during summer, 1995 by time of day. Source: Fujita and Lu, 1998 .5-12
Figure 5-2.	Average source contribution estimates of hydrocarbons at Rider College, NJ during summer, 1995 (EDT) by day of the week. Source: Fujita and Lu, 19985-12
Figure 5-3.	Wind directional dependence of source contributions by time of the day at Rider College, NJ during summer, 1995
Figure 5-4.	Scatterplots of Calculated Versus Measured Hydrocarbon Concentrations for samples collected at Azusa for the CARB Study
Figure 5-5.	Scatterplots of Calculated Versus Measured Hydrocarbon Concentrations for samples collected at Los Angeles – North Main for the CARB Study

1. INTRODUCTION

This document provides a protocol for applying the Chemical Mass Balance (CMB) receptor model to Photochemical Assessment Monitoring Station (PAMS) volatile organic compound (VOC) data and for evaluating and interpreting model outputs. The guidance includes a summary of the fundamentals of CMB, descriptions of the features of CMB Version 8 (Watson et al., 1997), and sample CMB Version 8 VOC source and ambient input data files, default source and fitting species selection files, and a current library of available source VOC composition profiles in CMB8-ready format. The applications and validation protocol provides recommended procedures for validating ambient VOC data, assigning uncertainties to ambient and source measurements, selecting and evaluating source composition profiles and fitting species, evaluating and validating model outputs, and analyzing and interpreting the CMB source contribution estimates and associated uncertainties. The CMB applications and validation protocol developed by Watson et al. (1998) was adapted here for application to PAMS and similar VOC data.

The actual profiles are available electronically in the file CMBProfilesLibrary.XLS. This library is a compilation of source profiles that have been used by the Desert Research Institute in prior VOC source apportionment studies. They include profiles that were newly developed for specific studies, the literature, and from the California Air Resources Boards Modeling Emissions Data System (MEDS). Studies for which profiles were newly developed include the 1993 Coast Oxidant Assessment for Southeast Texas (Fujita et al., 1995b), 1995 Boston and Los Angeles VOC Source Apportionment Study (Fujita et al. 1997a), 1995/96 Washington Ozone Transport Study (Fujita et al., 1997c), 1996 El Paso/Juarez Ozone Study (Fujita, 2001; Seila et al., 2001), and 1998 Central Texas On-Road Hydrocarbon Study (1999a), 1999 VOC Source Signatures in Houston, TX (Fujita et al., 1999b), apportionment of 1994-97 South Coast Air Basin PAMS VOC data (Fujita and Campbell, 2003b), and the 2000 Weekend Ozone Observations in the South Coast Air Basin (Fujita et al. 2002; Fujita et al., 2003a). The document and supporting files are intended to facilitate and encourage the application of the CMB receptor model to PAMS VOC data by State and Local air pollution agencies as an evaluation of emissions inventories.

This document, the CMBProfilesLibrary file and a self-extracting zipfile (SoCAB.exe) containing sample CMB input files with ambient and source VOC datasets for California's South Coast Air Basin are available at the Desert Research Institute web site at <u>http://www.dri.edu/People/ericf/</u>. Specific questions and comments regarding this document and sample datasets may be addressed to Dr. Eric Fujita at <u>ericf@dri.edu</u>. The CMB software is available at the TTN web site at <u>http://www.epa.gov/scram001/tt23.htm</u>. Questions regarding the CMB software should be directed to Dr. John Watson at DRI at johnw@dri.edu.

1.1 Background

The role of VOCs in the formation of tropospheric ozone has been well established (Seinfeld, 1986). The only significant chemical reaction producing ozone in the atmosphere is the reaction of atomic and molecular oxygen. While molecular oxygen (O_2) is abundant in the atmosphere, free oxygen (O) atoms are not. At high altitudes (above 20 km) free oxygen atoms are

produced by photodissociation of molecular oxygen by radiation in the deep ultraviolet. At lower altitudes, where only radiation with wavelengths greater than 280 nm is present, the only significant oxygen atom production is from photodissociation of nitrogen dioxide into nitrogen oxide and atomic oxygen. The nitrogen oxide reacts rapidly with ozone to regenerate nitrogen dioxide. In the lower atmosphere, these three reactions occur rapidly, establishing a steady-state equilibrium ozone concentration that depends on the ratio of nitrogen dioxide to nitrogen oxide. One ozone molecule is required to regenerate nitrogen dioxide from nitrogen oxide, so these reactions are insufficient by themselves to create excessive ozone levels. A reaction path that converts nitrogen oxide back to nitrogen dioxide without consuming a molecule of ozone is provided by the presence of reactive organic gases. The organic radicals produced in the oxidation of organic gases react with nitrogen oxide to form nitrogen dioxide, thereby shifting the equilibrium, which allows ozone to accumulate. Aside from meteorology and transport, emissions of nitrogen oxides and reactive organic gases (ROG) are the main factors that affect ozone levels in urban areas, and these are the primary focus of control programs that have been developed to attain federal and state air quality standards for ozone. Without anthropogenic nitrogen oxides emissions, the hourly concentration of ozone in the troposphere would not exceed background levels of 20 to 50 ppb. Even with the presence of nitrogen oxides, ozone would not reach the levels of the current ambient standard for ozone if it were not for the effects of ROG

Ambient air quality surveillance regulation in title 40 Part 58 of the Code of Federal Regulations require the states to establish Photochemical Assessment Monitoring Stations (PAMS) in affected nonattainment areas for enhanced monitoring of ozone and its precursors including oxides of nitrogen (NOx), speciated volatile organic compounds (VOCs), and meteorological parameters. States with areas classified as serious, severe, or extreme for ozone nonattainment were required to establish PAMS as part of their State Implementation Plans. The program was phased-in over a five-year schedule, which began in 1994, at a rate of at least one station per area per year. Design criteria for the PAMS network are based on selection of an array of site locations (a maximum of five depending upon population) relative to ozone precursor source areas and predominant wind directions associated with high ozone events. Intended applications for the PAMS data base include ozone and precursor trends, emission inventory reconciliation and evaluation, population exposure analyses, photochemical modeling support, and control strategy evaluation. In parallel with the implementation of PAMS, existing data analysis methods will need to be evaluated with respect to the data analysis objectives for the program.

This document reviews the applicability of the Chemical Mass Balance (CMB) receptor modeling and available source composition profiles for estimating source contribution to ambient VOCs using data from the PAMS networks. Watson et al. (2002) recently examined how the CMB receptor model has been applied to quantify ambient VOC source contributions to ambient concentrations of VOC for the North American Research Strategy for Tropospheric Ozone (NARSTO) critical review. This review explains how CMB source contribution estimates have been used to evaluate ROG emissions inventories used in ozone models and identifies several deficiencies and inconsistencies in source composition databases, source and receptor measurement strategies, and data reporting conventions.

1.2 CMB Receptor Modeling

The Chemical Mass Balance (CMB) receptor model uses the chemical and physical characteristics of gases and particles measured at source and receptor to both identify the presence of and to quantify source contributions of pollutants measured at the receptor. The CMB model consists of a least-squares solution to a set of linear equations that expresses each receptor concentration of a chemical species as a linear sum of products of source profile species and source contributions. The source profile species (the fractional amount of each species in the VOC emissions from a given source type) and the receptor concentrations, each with uncertainty estimates, serve as input data to the CMB model. The output consists of the contributions of each source type to both total and individual ambient VOC concentrations. The model calculates values for contributions from each source and the uncertainties of those values. Input data uncertainties are used both to weight the relative importance of the input data to the model solution and to estimate uncertainties of the source contributions.

1.2.1 Fundamentals

The CMB procedure requires: 1) identification of the contributing source types; 2) selection of chemical species to be included; 3) estimation of the fractions of each chemical species contained in each source type; 4) estimation of the uncertainties to both ambient concentrations and source compositions; and 5) solution of the chemical mass balance equations. The CMB model assumes that: 1) compositions of source emissions are constant over the period of ambient and source sampling; 2) chemical species do not react with each other, i.e., they add linearly; 3) all sources with a potential for significant contribution to the receptor have been identified and have had their emissions characterized; 4) the source compositions are linearly independent of each other; 5) the number of source categories is less than or equal to the number of chemical species; and 6) measurement uncertainties are random, uncorrelated, and normally distributed. These assumptions are fairly restrictive and will never be totally complied within actual practice. Fortunately, the CMB model can tolerate deviations from these assumptions, though these variations increase the stated uncertainties of the source contribution estimates.

Source contribution estimates (SCE) are the main output of the CMB model. The sum of these concentrations approximates the total mass concentrations. Negative SCE are not physically meaningful, but can occur when a source profile is collinear with another profile or when the source contribution is close to zero. Collinearity is usually identified in the similarity/uncertainty cluster display. When the SCE is less than its standard error, the source contribution is undetectable. Two or three times the standard error may be taken as the upper limit of the SCE in this case. Assuming that the errors are normally distributed, there is about a 66% probability that the true source contribution is within one standard error and about a 95% probability that the true concentration is within two standard errors of the SCE. The reduced chi square (χ^2), R², and percent mass are goodness of fit measures for the least-squares calculation. The χ^2 is the weighted sum of squares of the differences between calculated and measured fitting species concentrations divided by the effective variance and the degrees of freedom. The weighting is inversely proportional to the squares of the precision in the source profiles and ambient data for each species. Ideally, there would be no difference between calculated and measured species avery

good fit to the data, while values between 1 and 2 are acceptable. χ^2 values greater than 4 indicate that one or more of the fitting species concentrations are not well-explained by the source contribution estimates. R² is determined by the linear regression of the measured versus model-calculated values for the fitting species. R² ranges from 0 to 1. The closer the value is to 1.0, the better the SCEs explain the measured concentrations. When R² is less than 0.8, the SCEs do not explain the observations very well with the given source profiles. Percent mass is the percent ratio of the sum of model-calculated SCEs to the measured mass concentration. This ratio should equal 100%, though values ranging from 80 to 120% are acceptable.

1.3 CMB Software History and Recent Changes

The Chemical Mass Balance receptor model was first applied by Winchester and Nifong (1971), Hidy and Friedlander (1972), and Kneip et al. (1972). The original applications used unique chemical species associated with each source-type, Freidlander (1973) introduced the ordinary weighted least-squares solution to the CMB equations, and this had the advantage of relaxing the constraints of a unique species in each source-type and of providing estimates of uncertainties associated with the source contributions. The ordinary weighed least squares solution considered only the uncertainties of the receptor concentrations. The uncertainties of the source profiles, which are typically much higher than the uncertainties of the receptor concentrations, were neglected.

The first user-oriented software for the CMB model was programmed in 1978 at the Oregon Graduate Center in FORTRAN IV on a PRIME 300 minicomputer (Watson, 1979). CMB Version 7 (CMB7) was completely rewritten in a combination of C and FORTRAN languages to operate with microcomputers. This version of the software applied the effective variance solution developed and tested by Watson et al. (1984). This method gives greater influence in the solution to chemical species that are measured more precisely in both source and receptor samples, and calculates uncertainties for source contributions from both the source and receptor uncertainties. The software also incorporated collinearity measures (Henry, 1982, 1992) to assess the effects of source profile similarity on source contribution estimates and their standard errors.

CMB7 was not originally tailored for apportionment of VOCs, nor for processing thousands of samples in an automated mode. The CMB7 contains an "AUTOFIT" option that calculates source contribution estimates for selected samples with a given configuration of fitting sources and species without operator intervention. AUTOFIT in version 7.0 provides accurate results when applied to two particle size fractions, such as fine and coarse particle sizes from dichotomous sampler data. However, when CMB7 was applied to the Southern California Air Quality Study VOC data (Fujita et al, 1994), a bug in AUTOFIT was discovered that manifests itself as a mismatch between receptor site identifiers and computed source contributions when only one size fraction is used. Since VOC data does not use particle size options in CMB7, the fit returns with the correct site identifier but with the last previously computed source contributions. Subsequent fits advance both site identifier and contributions correctly but retain the mismatch. CMB7 was upgraded to Version 7.2 by DRI (Robinson, 1995) for the Texas Natural Resource Conservation Commission to apportion ambient hydrocarbon as part of the

Coastal Oxidant Assessment for Southeast Texas (COAST) Study (Fujita, et al., 1995b). The major modifications are summarized below:

- The bug in the AUTOFIT routine was corrected. Sample IDs correspond to the correct calculation.
- Species missing in either the receptor site data or a fitting source profile are eliminated from the fit, then added back for subsequent calculations.
- CMB7.2 outputs all results to a comma-delimited temporary file sumdir.dat. This file contains: 1) ambient data records; 2) fitting elements; 3) fitting sources; 4) source contributions; 5) source contribution uncertainties; 6) calculated elemental concentrations; and 7) calculated elemental concentration uncertainties. This file facilitates subsequent data analysis and plots.
- Additional options were added. They include: 1) AUTOFIT this selects all receptor sites and performs an autofit; 2) AUTOSOURCEFIT this eliminates fitting sources with negative source contributions, and/or sources belonging to similarity clusters with standard errors > source contribution; 3) WRITEALL print out all fits to CMBOUT.DT1; 4) WRITEOFF suppresses the print output in AUTOFIT; 5) PDATA will write the size TOTAL output if a prior fit has been made to the same receptor site with identical fitting elements and sources; and 6) EXIT exit program.

Although CMB7.2 made more options available, the improvements over CMB7 were required to meet the immediate needs of the COAST data analysis. The current version, CMB8, was developed at Desert Research Institute under EPA sponsorship (EPA Contract 5D1808NAEX). The new software operates under MS-Window (in both 16 and 32 bit versions), is more user friendly, and includes more data input and output options. The major modifications are summarized below:

- Options for using comma-separated value (CSV), xBASE (DBF), and Lotus spreadsheet (WKS) input files, in addition to CMB7 style blank delimited files.
- An option to change the default name of the report output file, which had the default name of CMBOUT.DT1 in CMB7. In CMB8 the default name is CMBOUTRP.TXT and both the suffix and prefix may be changed.
- An option to change the default name of the flat ASCII data file, which had the default name of CMBOUT.DT2 in CMB7. In CMB8 the default name is CMBOUTDB.TXT and the prefix may be changed from the default. Options for changing the type of this output file from the blank delimited CMB7 style have also been added to the options menu. If Comma Separate Values (CSV), xBASE (DBF), or Lotus 123 (WKS) options are chosen in the options menu, output files with suffixes CSV, DBF, or WKS are written in place of the default suffix TXT.
- An option to preselect ten default sets of fitting species. Default selections appear in a pop-up window where the ten default selections of fitting species are displayed and

selected by clicking on the appropriate radio button appearing across the top row. The default selections can be modified in an edit box where the selections are displayed.

- An option to preselect ten default sets of sources. Default selections appear in a pop-up window where the ten default selections of sources are displayed and selected by clicking on the appropriate radio button appearing across the top row. The default selections can be modified in an edit box where the selections are displayed.
- An option to eliminate sources automatically from the fit that have negative contributions, or inestimable sources that have uncertainties larger than their contribution. Sources are eliminated one at a time with fits performed after each elimination until no source fails the tests. Specifically, CMB8 first tests for negative contributions and eliminates the source with the largest negative contribution, if one exists. When no sources with negative contributions are left, CMB8 tests for inestimable sources with uncertainties larger than the source contribution. If any are found, CMB8 eliminates the source with the largest ratio of uncertainty to contribution.

The CMB8 software is interactive, allowing many sensitivity and assumptions-testing calculations to be performed rapidly. A user's manual (Watson et al., 1997) describes how to operate the CMB8 software, and a separate applications and validation protocol (Watson et al., 1998) describes how to apply CMB8 to specific situations and how to evaluate its outputs. Additional specific guidance is provided in this document in applying the applications and validation protocol for source apportionment of VOC using PAMS data.

1.4 Guide to Report

Section 1 introduces CMB and the scope of this document. Section 2 describes the sampling and analysis methods used to obtain the source and ambient VOC composition data. Section 3 reviews currently available source composition profiles and their applicability for apportionment of PAMS VOC data. Section 4 describes the input and output files for applying PAMS VOC data to CMB8. Finally, CMB application and validation protocol steps are reviewed in Section 5.

2. MEASUREMENT OF VOLATILE ORGANIC COMPOUNDS IN AMBIENT SAMPLES

This section describes current monitoring programs and analytical methods for measuring speciated volatile organic compounds in the ambient air. Quality assurance programs and data from laboratory comparisons are reviewed to determine variations among PAMS networks in the operational definition of total nonmethane hydrocarbon. Procedures are recommended for estimating analytical data uncertainties, preparing CMB input-ready databases from VOC downloaded from the Aerometric Information Retrieval System (AIRS), and performing data validation checks.

2.1 Photochemical Assessment Monitoring Station (PAMS) Measurements of Ambient Volatile Organic Compounds

Volatile organic compounds play a central role in the formation of ozone (O_3) because their oxidation produces hydroperoxy radicals (HO₂) and organic peroxy radicals (RO₂) which react with NO to form NO2 without destruction of ozone, thereby allowing ozone to accumulate. In addition to directly emitted VOCs, carbonyl compounds that are produced from hydrocarbon oxidation can be important reactive VOCs themselves, and thus important sources of peroxy radicals responsible for ozone production. Much of the difficulty in addressing the ozone problem is related to this complex photochemistry. The rate of O₃ production is a non-linear function of the mixture of VOC and NOx in the atmosphere. Depending upon the relative concentration of VOC and NOx and the specific mix of VOC present, the rate of O₃ formation can be most sensitive to changes in VOC alone or to changes in NOx alone or to simultaneous changes in both VOC and NOx. Understanding the response of ozone levels to specific changes in VOC or NOx emissions is the fundamental prerequisite to developing a cost-effective ozone abatement strategy.

In the 1970s and 1980s, the empirical kinetic model, EKMA, was commonly used to examine the nonlinear relationship between VOC, NOx and ozone, and to estimate the relative effects of alternative emission reduction scenarios on ambient ozone levels. The U.S. Environmental Protection Agency initiated a program in 1984 to provide total nonmethane organic compound (NMOC) data for use in EKMA. This NMOC program involved the weekday collection of samples during the 0600-0900 (local time) between June 1 and September 30. The samples were shipped to a central laboratory in Research Triangle Park, NC, for analysis. In 1991, at the request of some of the participating agencies, the program was expanded to include speciation of up to 78 individual hydrocarbon species. This expansion followed the development of air quality simulation models and their application in major air quality studies such as the 1987 Southern California Air Quality Study, 1990 San Joaquin Valley Air Quality Study, 1990 Southern Oxidants Study in Atlanta, 1991 Lake Michigan Study, 1993 Coastal Oxidant Assessment for Southeast Texas, and, more recently, the 1995/96 NARTSO-Northeast Ozone Study, 1995 Nashville/Middle Tennessee Ozone Study, 1996 Paso del Norte Ozone Study, 1996 Phoenix Ozone Study, 1995/96 Western Washington Ozone Precursor Transport Study, 1997 Southern California Ozone Study-NARSTO, 2000 Central California Ozone Study, and the Texas 2000 Study.

Under Title I, Section 182, of the 1990 Amendments to the Federal Clean Air Act, the EPA proposed a rule to implement a national network of enhanced ambient air monitoring stations (Federal Register, 1993). States with areas classified as serious, severe, or extreme for ozone nonattainment were required to establish Photochemical Assessment Monitoring Stations (PAMS) as part of their State Implementation Plan. Each station measures speciated hydrocarbons, ozone, oxides of nitrogen, and surface meteorological data. Carbonyl compounds are measured at PAMS sites located in the source regions. Additionally, each area must monitor upper air meteorology at one representative site. The PAMS sites were phased in over a five-year period beginning in 1993.

Design criteria for the PAMS network are based on selection of an array of site locations relative to ozone precursor source areas and predominant wind directions associated with high ozone events. Specific monitoring objectives are to characterize precursor emission sources within the area (Type 2), transport of ozone and its precursors into (Type 1) and out of the area (Type 3 and 4), and the photochemical processes related to ozone nonattainment, as well as developing an initial urban toxic pollutant database. A maximum of five PAMS sites are required in affected nonattainment areas, depending on the population of the Metropolitan Statistical Area/Consolidated Metropolitan Statistical Area (MSA/CMSA) or nonattainment area, whichever is larger. The intended applications for the PAMS database include ozone and precursor trends, emission inventory reconciliation and verification, population exposure analyses, photochemical modeling support, and control strategy evaluation.

EPA's "Technical Assistance Document for Sampling and Analysis of Ozone Precursors" (U.S. EPA, 1991) specifies modified Methods TO-14 (U.S. EPA, 1999a) and TO-11 (U.S. EPA, 1999b) for sampling and analysis of speciated hydrocarbons and carbonyl compounds, respectively. The minimum list of targeted hydrocarbons currently includes 55 species (Table 2-1). For carbonyl compounds, state and local agencies are currently required to report only formaldehyde, acetaldehyde and acetone. The EPA rule requires eight 3-hour hydrocarbon samples (midnight-3 am, 3-6 am, 6-9 am, 9-noon, noon-3 p.m., 3-6 p.m., 6-9 p.m., and 9-midnight local time) every day at Type 2 sites and every third day at all other PAMS sites. Sampling for carbonyl compounds is required at Type 2 sites only. In addition, one 24-hour sample is required every sixth day year-round at Type 2 sites and during the summer monitoring period at all other sites. Some states such as California have negotiated alternative sampling plans. In the California Alternative plan, four 3-hour samples (3-6 am, 6-9 am, 1-4 p.m., and 5-8 p.m., PDT) are collected every third day during the monitoring period at all PAMS sites for speciated hydrocarbons and at Type 2 sites only for carbonyl compounds. In addition to the regularly scheduled measurements, samples are collected on a forecast basis during up to five high-ozone episodes of at least two consecutive days. Episodic measurements consist of four samples per day (6-9 am, 9-noon, 1-4 p.m. and 5-8 p.m., PDT) for speciated hydrocarbons at all PAMS sites and for carbonyl compounds at Type 2 sites.

2.2 Definition of Volatile Organic Compounds

Accurate measurement of total VOC in ambient samples are important in receptor modeling because these values are used to set the denominator in calculating the fractional contributions of sources to the observed ambient VOC concentrations. Individual species that are

characteristic of specific source types, not necessarily the most abundant species, have the greatest influence on the apportionment. In order to determine these quantities accurately, they must be unambiguously and consistently identified for both ambient and source samples.

Several terms are used inconsistently but interchangeably to describe different fractions of atmospheric organic material. Common definitions and units must be used for ambient concentrations, source profiles, and emissions rates. The following terms are defined as they are used throughout this report, and these definitions are recommended for future CMB source apportionment projects:

- Volatile organic compounds (VOC): VOCs are normally defined as all organic compounds that may be present in the ambient air irrespective of their photochemical reactivity or ability of measurement methods to quantify their concentrations. NMHC plus heavy hydrocarbons plus carbonyls plus halocarbons, typically <C20. VOC has been imprecisely used to describe most of the other categories defined below.
- Hydrocarbons: Organic compounds that consist only of carbon and hydrogen atoms. Subclasses of hydrocarbons include alkanes, alkenes, alkynes, and aromatic hydrocarbons. Paraffins and olefins are synonymous with alkanes and alkenes, respectively. All of the 55 target PAMS compounds, shown in Table 2-1, are hydrocarbons. They typically comprise about 70 to 80 percent of total VOC in urban areas. This fraction is less in afternoon samples relative to morning samples and in downwind locations due to photochemical reactions that convert hydrocarbons to oxidized species such as carbonyl compounds and organic acids.
- Halocarbons: Carbon containing compounds with chlorine, fluorine, and bromine compounds attached, quantified from canisters by gas chromatography with electron capture detection (GC-ECD). Methylchloride, methylchloroform, methylbromide, and various refrigerants (Freon-12, Freon-22, SUVA) are most commonly measured. These compounds have long lifetimes and are not reactive enough to cause major changes in tropospheric ozone and secondary organic aerosol. Halocarbons have been implicated in the long-term depletion of stratospheric ozone.
- Nonmethane hydrocarbons (NMHC, also termed "light" hydrocarbons): C₂ through C₁₁ (light) hydrocarbons collected in stainless steel canisters and measured by gas chromatography with flame ionization detection (GC-FID) by EPA method TO-14A (U.S. EPA, 1999a). Known halocarbons and oxygenated compounds (e.g., aldehydes, ketones, ethers and alcohols) are excluded from NMHC.
- Heavy hydrocarbons: C_{12} through C_{20} hydrocarbons collected on Tenax adsorbing substrates and analyzed by thermal desorption and gas chromatography with detection by flame ionization or by mass spectrometry. These are sometimes termed "semi-volatile" compounds because the $>C_{15}$ compounds are often found in both gas and particulate phases. Most of the total hydrocarbon mass is measured in the gas phase. The method also measures C_8 through C_{11} hydrocarbons, which can be compared to collocated canister samples for quality assurance purposes. Hydrocarbons in the lowest molecular-

weight range may not be quantitative due to less than complete retention on the Tenax cartridge.

- Carbonyls: Aldehydes and ketones, the most common being formaldehyde, acetylaldehyde, and acetone. Carbonyls are operationally defined as C₁ through C₇ oxygenated compounds measured by collection on acidified 2,4-dinitrophenylhydrazine (DNPH)-impregnated C₁₈ or silica gel cartridges and analyzed by high performance liquid chromatography with UV detection (HPLC/UV) according to Method TO11A (U.S. EPA, 1999b). PAMS data normally include only formaldehyde, acetaldehyde, and acetone.
- Non-methane organic compounds (NMOC): Sum of quantifiable peaks by EPA method TO-14A, including unidentified species but excluding halocarbons, or by continuous instruments with flame ionization detection. Measured NMOC will be lower for laboratories employing water management. NMOC also refers to the sum of NMHC plus carbonyl compounds by TO-11.
- Reactive organic gases (ROG): Organic gases with potential to react (<30 day half-life) with the hydroxyl radical and other chemicals, resulting in ozone and secondary organic aerosol. The most reactive chemicals are not necessarily the largest contributors to undesirable end-products, however, as this depends on the magnitude of their emissions as well as on their reactivity. ROG is commonly used in connection with emission inventory data.
- Total organic gases (TOG): Organic gases with and without high hydroxyl reactivity. TOG typically includes ROG plus methane and halocarbons. TOG is commonly used in connection with emission inventory data.

Appendix A lists the volatile organic compounds that are quantified by the Desert Research Institute by measurement method.

2.3 Sampling and Analysis Methods

The experiences from laboratory comparisons that were conducted for COAST (Fujita et al., 1995a), NARSTO-Northeast (Fujita et al., 1997b), and SCOS97-NARSTO (Fujita et al., 1999c; Fujita et al., 2003c) demonstrate that measurements of ambient hydrocarbon speciation are not routine, and that the quality and completeness of measurements vary among different laboratories using essentially the same samplers and analytical instrumentation. Potential problems include: positive and negative artifacts due to sampler or sampling media; incomplete resolution or loss of C_2 - C_3 hydrocarbons due to introduction of excess moisture in the column or improper sample loading and injection; under-reporting of true concentrations due to selection of incorrect integration thresholds; loss of material in the analytical system due to poor chromatographic technique (particularly for very light and heavy hydrocarbons) or prolonged storage in canisters prior to analysis (especially olefins and polar organics); incorrect or incomplete peak identification due to limitations of peak identification software (particularly for olefins and > C_8 hydrocarbons); systematic bias due to calibration problems; and poor carbonyl

compound measurement precision due to variable blanks. These comparison studies show that the values reported for the 55 PAMS target species are generally consistent among the various PAMS analytical laboratories. However, there often exist considerable variations for total nonmethane hydrocarbons (NMHC) or nonmethane organic compounds (NMOC) due to differences in analytical and data processing procedures. Quantifications of NMHC and NMOC are (NMHC) are important values in receptor modeling because they are used to set the denominator in calculating the fractional contributions of sources to the observed ambient concentrations. This section summarizes the sampling and analysis methods that are commonly employed in PAMS to determine ambient VOCs.

2.3.1 Collection and Analysis of Hydrocarbons and Nonmethane Organic Compounds (NMOC)

Analytical methods that are used in the PAMS program for hydrocarbons can be divided into two groups - canister sampling followed by gas chromatographic analysis with flame ionization detection (Method TO-14) and automated gas chromatography. Laboratories that used the canister approach employed commercial gas chromatographic systems equipped with flame ionization detectors (GC-FID), a cryogenic concentration step, and computerized data acquisition systems. Automated, semi-continuous hydrocarbon speciation is performed using a commercial automated gas chromatograph (e.g., Perkin Elmer ATD 400 concentrator coupled to a Perkin Elmer 5700 or 8700 gas chromatograph). In this arrangement, ambient samples are collected each hour over a 40-minute period on a sorbent trap of Carbotrap C and Carbosieve S III. The desorbed sample first goes onto a narrow bore BP-1 methyl silicone column. Lighter compounds are allowed to migrate through the BP-1 column onto an aluminum oxide and sodium sulfate PLOT column for separation. The BP-1 column effluent is switched from the PLOT column to a restrictor and a second FID detector immediately before the elution of hexane. Both columns are then eluted into a separate FID to detect the compound of interest.

Procedures used for instrument calibration varies among PAMS networks. For calibration of the FID, propane is commonly used for C₂ to C₄ hydrocarbons and benzene or hexane is used for greater than C₄ hydrocarbons. The automated gas chromatographs are calibrated against the average response of several hydrocarbons for hydrocarbons eluting before hexane and against the average response of a different group of hydrocarbons for all other targeted hydrocarbons. The systematic differences resulting from variations in FID response among different calibration gases are typically less than 5 percent. Besides selection of the endpoint of the gas chromatographic run, the primary factors that can affect total measured concentrations include selection of threshold levels for peak integration and losses during cryogenic concentration/desorption and surface adsorption within the inlet system. Measurement calibration is normally verified by challenging the measurement/analysis system with a known standard sample that is traceable to a primary standard. Identification of individual compounds in an air sample is usually based on the comparison of linear retention indices (RI) with those RI values of authentic standard compounds, as well as with the RI values obtained by other laboratories performing the same type of analysis using the same chromatographic conditions. The gas chromatograph is connected to a data acquisition system. The software performs data acquisition, peak integration and identification, hardcopy output, post-run calculations, calibrations, peak re-integration, and user program interfacing. Typically, over 85% of total

detectable C_2 - C_{12} hydrocarbon mass is identified and quantified in urban samples. The detection limit for hydrocarbon VOC is approximately 0.1 ppbC for each compound. Methyl t-butyl ether and several other oxygenated organic compounds may be quantified from canister samples using individual response factor that are specific to each compounds.

2.3.2 Carbonyl Compounds

Carbonyl compounds are involved in photochemical reactions as products of the oxidation of hydrocarbons, precursors of ozone and other oxidants, and as sources of free radicals and organic aerosols. Formation of carbonyl compounds in the atmosphere proceeds through a series of free-radical reactions, which is usually initiated through reaction of hydroxyl radical with a hydrocarbon. The amount and composition of both hydrocarbons and carbonyls strongly influences the rate of NO_X oxidation and ozone formation in the atmosphere (Fung and Grosjean 1981). In addition to in situ photochemical generation, carbonyls are directly emitted from automotive and stationary sources as a result of incomplete combustion, industrial emissions from manufacturing and usage of these compounds, and from biogenic sources. The understanding and assessment of the role of carbonyl compounds in tropospheric chemistry require accurate and precise measurement of these compounds along with their parent and product compounds.

Measurement of carbonyl compounds in the ambient atmosphere poses challenging problems because of their trace concentrations and interferences arising from atmospheric copollutants. The standard method used in PAMS to measure carbonyl compounds involves derivatization of carbonyl compounds by 2,4-dinitrophenylhydrazine (DNPH) followed by liquid chromatography and U.V. detection according to EPA Compendium Method TO-11. The method recommends DNPH-impregnated silica Sep-Pak cartridges with an ozone scrubber upstream of the impregnated cartridge since silica cartridges were found to have significant negative ozone artifacts (Arnst and Tejada, 1989).

Collection of carbonyl compounds by the DNPH method is based on the acid-catalyzed derivatization of carbonyls by nucleophilic addition of the DNPH to a C=O bond, followed by 1,2-elimination of water to form 2,4-dinitrophenylhydrazone. The DNPH-hydrazones, formed during sampling, are non-volatile and remain on the sampling medium, which is usually either a reagent-impregnated cartridge or an impinger charged with the reagent solution. The yellow to deep-orange colored DNPH-hydrazones have UV absorption maxima in the 360-375 nm range and can be analyzed by the high performance liquid chromatography (HPLC) method coupled with UV detection. This method offers very high selectivity and sensitivity of analysis. The analytical method is well established, and questions regarding the accuracy of the DNPH method are mainly concerned with sampling. The major concerns are: 1) incomplete collection of carbonyls, 2) loss of carbonyl compounds by physical processes such as adsorption or chemical reaction with copollutants such as ozone, 3) generation of carbonyl compounds as sampling artifacts, and 4) variable blanks resulting from contamination of the reagent and sampling equipment. Several recent review articles treat the subject of carbonyl compound sampling and analysis in detail (Vairavamurthy et al, 1993; and Zielinska and Fujita, 1995, Apel et al., 1998).

A carbonyl sampling system consists of a diaphragm pump capable of maintaining air flow through the cartridges of 500-1500 ml/min, flowmeter, six-port solenoid manifold allowing unattended collection of up to six carbonyl samples, needle valves for flow rate regulation, and check valves to protect cartridges from outside air when air is not being sampled through a given cartridge. For automatic operation, the timer starts and stops the pump at the appropriate time. The timer also opens the six-port solenoid valve when the pump starts and closes it when the pump stops. A charcoal filter is attached to the pump outlet in order to remove traces of acetonitrile from DNPH cartridges.

Carbonyl compounds collected in the cartridges (as hydrazones) are eluted with HPLC grade acetonitrile and analyzed by HPLC with UV detection at 360 nm. A reverse phase HPLC column is used. Identifications are made based on matching the HPLC retention times with those of authentic standards. A three-level calibration curve (plus blank) is constructed for each quantified hydrazone. The C_1 - C_7 carbonyl compounds that can be quantified include formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, crotonaldehyde, methyl ethyl ketone, methacrolein, butyraldehyde, benzaldehyde, valeraldehyde, tolualdehyde, and hexanaldehyde.

2.3.3 C₈-C₂₀ Hydrocarbons by Tenax Sampling and Analysis by GC/FID or GC/MS

Volatile organic compounds exhibit a wide range of volatility and are hence distributed in the atmosphere between the gas and particle phases. Hydrocarbons with vapor pressures less than n-undecane are not currently quantified in the PAMS program. Zielinska and Fujita (1994) found that semi-volatile hydrocarbons accounted for 7 to 15 percent of the C_{10} to C_{18} hydrocarbons in Los Angeles and about 16 percent of the total ozone forming potential of NMHC. It has been shown that hydrocarbons in the range of C_{10} - C_{20} are important components of the total hydrocarbons emitted from heavy-duty diesel vehicles.

Volatile hydrocarbons in the range of C_8 - C_{20} , are usually collected using Tenax solid adsorbent. Prior to use, the Tenax solid adsorbent is cleaned by Soxhlet extraction with hexane/acetone mixture, packed into Pyrex glass tubes and thermally conditioned for four hours by heating at 300 °C under nitrogen purge. Approximately 10% of the precleaned Tenax cartridges are tested by GC/FID for purity prior to sampling. After sampling, the Tenax cartridges are capped tightly using clean Swagelok caps (brass) with graphite/vespel ferrules, and placed in metal containers with activated charcoal on the bottom. Tenax samples are usually analyzed by the thermal desorption-cryogenic preconcentration method, followed by quantification by high resolution gas chromatography with flame ionization detection (GC/FID) or mass spectrometric detection (GC/MSD) of individual hydrocarbons.

2.4 Data Validation

Data validation is a process of determining and denoting the quality of the data set. The validation process consists of evaluating the internal, spatial, temporal and physical consistency of data sets for invalid data or for outliers. During validation, physically unrealistic data are invalidated, biases and instrument drifts are noted, and gross errors are identified. The objective of the data validation process is to produce data of known quality. The following three levels of

validation are applied which will result in the assignment to each measurement of one of the following ratings: 1) valid; 2) valid but suspect; or 3) invalid.

2.4.1 Level 0 Validation

Level 0 data consist of a reasonably complete data set of unspecified quality that has been subjected to minimum processing in the field and/or in the laboratory by project staff. Level 0 data have not been audited or reviewed. The data contain all available measurement data and quality control checks (e.g., media lot certification results, daily instrument calibration checks) and flags indicating missing or invalid data due to instrument or sampler malfunctions and sampling errors. These errors include sampling times and duration that are outside specifications and sampling conditions outside acceptable specification (e.g., insufficient canister pressure and insufficient or excessive flow rates).

2.4.2 Level 1 Validation

Indicates a complete date set of specified quality that has been subjected to quality assurance and quality control checks and data management procedures. Level 1 data validation normally takes place in the field or in the laboratory and consists of: 1) flagging samples when significant deviations from measurement assumptions have occurred; 2) verifying computer files against data sheets; 3) eliminating values for measurements which are known to be invalid because of instrument malfunctions; 4) adjustment of measurement values for blanks, zero drifts, and quantifiable calibration or interferences biases; 5) determining measurement precision by replicate analyses and by collection of file blanks and collocated samples. Level 1 also includes internal consistency checks. Species within the same data set are examined for expected correlations and time series and spatial patterns are examined to detect outlier, extreme values, or time periods with too little or too much variation.

Comparisons of co-pollutants are important validation checks for determined the overall accuracy and validity of the measurements. Species emitted from the same source type should correlate in the absence of other significant sources of these species, and exhibit average ratios of species that reflect the nature of the source or their relative persistence in the atmosphere. For example, hydrocarbons such as ethylene and acetylene are produced from combustion of hydrocarbon fuels in internal combustion engines. Figure 2-1 shows scatterplots of acetylene versus ethylene during the morning and afternoon sampling period at Azusa, California during the summer of 1995 and 1996. These two species show excellent correlation during the morning. The corresponding ethylene/acetylene ratios are lower in the afternoon samples. Also note that the mixing ratios in the afternoon sample are about half of the morning levels due to increased mixing heights.

Table 2-2 shows the relative emissions of ethylene and acetylene in vehicle exhaust from dynamometer and tunnel measurements over the past three decades. With the introduction of emission controls, ethylene and acetylene have both decreased as a fraction of total NMHC. However, the decrease for acetylene has been greater because the catalyst removes it more efficiently. Well-maintained catalyst-equipped vehicles have ethylene/acetylene ratios of three or greater based upon FTP emission tests (Hoekman, 1992; Sigsby et al., 1987), while non-

catalyst vehicles have ethylene/acetylene ratios near one (Hoekman, 1992; Black, et al., 1980). Fuel-rich conditions (Siegl et al., 1992; McCabe et al., 1992) due to engine malfunction or "open-loop" operation during high acceleration and load can also produce lower ethylene/acetylene ratios relative to normal emitters under closed-loop operation. With the turnover of the vehicle fleet to newer emission control technologies, the fractions of total vehicle exhaust emissions that are contributed by vehicles with malfunctioning emission controls and fuel-rich driving conditions could increase. This is the most likely explanation for the changes in average ethylene/acetylene ratios in the SoCAB from 1.5 during the 1987 Southern California Air Quality Study (Fujita, et al., 1994) to1.8 and 0.9 for hydrocarbon samples collected in SoCAB during 1990 (Zielinska et al., 1992) and in 1995 (Fujita et al., 1997a), respectively.

2.4.3 Level 2 Validation

Level 2 validation indicates a complete, externally consistent data set of specified quality that consists of data that have undergone interpretative and diagnostic analysis by project staff or user community. Level 2 validations take place after the data from various measurements methods have been assembled in a master database. Level 2 applies consistency tests, based on known physical relationship among variables to the assemble data. These tests fall into three categories: detection of extreme values; consistency among co-pollutants and between redundant measurements buy alternative measurement methods.

Comparisons of redundant measurements by alternative methods are particularly useful in detecting systematic biases due to calibration errors. These comparisons include sums of species versus preconcentration direct injection with flame ionization detection (PDFID) or continuous NMHC analyzer (e.g. TEI 55), automated gas chromatograph versus GC-FID analysis of canister sample, and analysis of Tenax cartridges versus canister samples for the C_8 to C_{11} hydrocarbons.

Examination of spatial and temporal distributions of atmospheric constituents and relative abundances of certain chemical species is a useful prelude to receptor modeling. When coupled with a conceptual understanding of the emissions sources, meteorology, and chemical transformation mechanism, this receptor-oriented analysis provides qualitative, and even semiquantitative, evidence of relationships between source emission and receptor mixing ratios.

2.4.4 Level 3 Validation

Level 3 validations are part of the subsequent data interpretation process. Receptor modeling, factor and other statistical analysis, and photochemical air quality simulation models are several examples. Unusual values are identified during he data interpretation process as: 1) extreme values'; 2) values which would otherwise normally tract the values of the other variables in time series; sand 3) values for observables that would normally follow a qualitatively predictable spatial or temporal pattern.

2.5 External Performance Audits and Comparison Studies

Several laboratory intercomparisons have been conducted within the past decade for speciated volatile organic compounds. These include the International Hydrocarbon Intercomparison Experiment, organized by the National Center for Atmospheric Research (Apel et al., 1994) and comparison studies conducted as part of the quality assurance program for the Costal Oxidant Assessment for Southeast Texas (Fujita et al., 1995a), NARSTO-Northeast (Fujita et al., 1997b), and the 1997 Southern California Ozone Study-NARSTO (Fujita et al., 1999c; Fujita et al., 2003c). These comparison studies included PAMS VOC monitoring sites in the northeast, Texas, and Southern California. Agreements between most laboratories are generally within 10 percent for mixing ratios above 1 ppbC. Identification and quantification of the 55 PAMS target species are normally consistent among PAMS laboratories. However, there are greater variations for sums of NMHC and NMOC.

						9		Lifetime
No.	Mnemonics	Names	AIRS Code	Formula	MW 29.05	Group	<i>k</i> _{OH} at 298 K	hours
1	ethene	ethene	43203	C2H4	28.05	0	8.52	6.52
2	acetyl	acetylene	43206	C2H2	26.04	Y	0.90	61.73
3	ethane	ethane	43202	C2H6	30.07	Р	0.27	207.30
4	prope	Propene	43205	C3H6	42.08	0	26.30	2.11
5	n_prop	n-propane	43204	C3H8	44.10	Р	1.15	48.31
6	i_buta	isobutane	43214	C4H10	58.12	Р	2.34	23.74
7	lbut1e	1-butene	43280	C4H8	56.11	0	31.40	1.77
8	n_buta	n-butane	43212	C4H10	58.12	Р	2.54	21.87
9	t2bute	t-2-Butene	43216	C4H8	56.11	0	64.00	0.87
10	c2bute	c-2-butene	43217	C4H8	56.11	0	56.40	0.99
11	ipenta	isopentane	43221	C5H12	72.15	Р	3.90	14.25
12	pente1	1-pentene	43224	C5H10	70.13	0	31.40	1.77
13	n_pent	n-pentane	43220	C5H12	72.15	Р	3.94	14.10
14	i_pren	isoprene	43243	C5H8	68.11	0	101.00	0.55
15	t2pene	t-2-Pentene	43226	C5H10	70.13	0	67.00	0.83
16	c2pene	c-2-pentene	43227	C5H10	70.13	0	65.00	0.85
17	bu22dm	2,2-dimethylbutane	43244	C6H14	86.17	Р	2.32	23.95
18	cpenta	cyclopentane	43242	C5H10	70.13	Р	5.16	10.77
19	bu23dm	2,3-dimethylbutane	43284	C6H14	86.17	Р	6.20	8.96
20	pena2m	2-methylpentane	43285	C6H14	86.17	Р	5.60	9.92
21	pena3m	3-methylpentane	43230	C6H14	86.17	Р	5.70	9.75
22	p1e2me	2-methyl-1-pentene	43246	C6H12	84.16	0	31.40	1.77
23	n hex	n-hexane	43231	C6H14	86.17	P	5.61	9.90
23	mcypna	Methylcyclopentane	43262	C6H12	84.16	P	8.81	6.31
25	pen24m	2,4-dimethylpentane	43262	C7H16	100.20	P	5.10	10.89
26	benze	benzene	45201	C6H6	78.11	A	1.23	45.17
20 27	cyhexa	cyclohexane	43248	C6H12	84.16	P	7.49	7.42
28	hexa2m	2-methylhexane	43248	C7H16	98.19	P	6.79	8.18
28 29	pen23m	5	43203	C7H16	100.20	P	4.87	11.41
29 30		2,3-dimethylpentane						
	hexa3m	3-methylhexane	43249	C7H16	100.20	Р	7.16	7.80
31	pa224m	2,2,4-trimethylpentane	43250	C8H18	114.23	Р	3.68	15.10
32	n_hept	n-heptane	43232	C7H16	100.20	Р	7.15	7.77
33	mecyhx	methylcyclohexane	43261	C7H14	98.19	Р	10.40	5.34
34	pa234m	2,3,4-trimethylpentane	43252	C8H18	114.23	Р	7.00	7.94
35	tolue	toluene	43202	C7H8	92.14	А	5.96	9.32
36	hep2me	2-methylheptane	43260	C8H18	114.23	Р	8.18	6.80
37	hep3me	3-methylheptane	43253	C8H18	114.23	Р	8.56	6.49
38	n_oct	n-octane	43233	C8H18	114.22	Р	8.68	6.40
39	etbz	ethylbenzene	45203	C8H10	106.16	А	7.10	7.82
40	mp_xyl	mp-xylene	45109	C8H10	106.16	А	18.95	4.71
41	styr	styrene	45220	C8H8	104.14	А	58.00	0.96
42	o_xyl	o-xylene	45204	C8H10	106.17	А	13.70	4.06
43	n_non	n-nonane	43235	C9H20	128.26	Р	10.20	5.45
44	iprbz	isopropylbenzene	45210	C9H12	120.20	А	6.50	8.55
45	n_prbz	n-propylbenzene	45209	C9H12	120.20	А	6.00	9.26
46	m_etol	m-ethyltoluene	45212	C9H12	120.20	А	19.20	2.89
47	p_etol	p-ethyltoluene	45213	C9H12	120.20	А	12.10	4.59
48	bz135m	1,3,5-trimethylbenzene	45207	C9H12	120.20	А	57.50	0.97
49	o etol	o-ethyltoluene	45211	C9H12	120.20	А	12.30	4.52
50	bz124m	1,2,4-trimethylbenzene	45208	C9H12	120.20	A	32.50	1.71
51	n dec	n-decane	43238	C10H22	142.29	Р	11.60	4.79
52	bz123m	1,2,3-trimethylbenzene	45225	C9H12	120.20	A	32.70	1.70
53	detbz1	m-diethylbenzene	45218	C10H14	134.22	A	14.20	3.90
55 54	detbz2	p-diethylbenzene	45210	C10H14	134.22	A	14.20	3.90
55	n unde	n-undecane	43954	C11H24	156.30	P	13.20	4.20
	-	k at 298 K for the reaction of O			130.30	1	15.20	4.20

Table 2-1 **PAMS Target Compounds**

Note: Rate constants k at 298 K for the reaction of OH radicals with VOCs. Unit: 10^{12} x k cm³ molecule⁻¹ s⁻¹

Study	Model Years	No. of cars	Ethene	Ethyne ma/mi	NMHC a/mi	Ethene/ NMHC	Ethyne/ NMHC	Ethene/ Ethyne
<u>FTP Composite</u>	rears	or cars	mg/mi	mg/mi	g/mi	NMITC	NMITC	Ettiyne
Sigsby et al., 1987	1975	3	421.4	238.2	4.25	9.91%	5.60%	1.77
Black et al, 1980	1963	1	544.1	411.1	3.62	15.03%	11.36%	1.32
Sigsby et al., 1987	1977	4	258.0	221.1	3.06	8.44%	7.24%	1.17
Hoekman, 1992	1970-78	4	223.4	209.7	2.80	7.99%	7.50%	1.07
Sigsby et al., 1987	1978	5	301.0	80.5	2.74	10.99%	2.94%	3.74
Sigsby et al., 1987	1979	5	176.6	45.8	2.02	8.73%	2.26%	3.86
Sigsby et al., 1987	1976	4	217.3	44.7	1.93	11.25%	2.32%	4.86
Sigsby et al., 1987	1975-82	46	136.8	41.4	1.50	9.11%	2.76%	3.30
Sigsby et al., 1987	1980	7	131.3	26.8	1.16	11.33%	2.31%	4.90
Sigsby et al., 1987	1981	12	45.4	10.0	0.62	7.35%	1.62%	4.54
Stump et al., 1992a	1986-90	6	30.7	6.9	0.50	6.16%	1.39%	4.45
Hoekman, 1992	1976-82	5	47.6	15.4	0.45	10.58%	3.42%	3.10
Sigsby et al., 1987	1982	6	20.5	2.9	0.43	4.72%	0.66%	7.20
Gorse, 1992	1983-85	14	32.3	17.1	0.39	8.23%	4.36%	1.89
Stump et al., 1992b	1987-89	9	21.3	5.4	0.35	6.05%	1.53%	3.95
Stump et al., 1990	1985-87	11	21.7	9.2	0.34	6.34%	2.70%	2.35
Hoekman, 1992	1983-90	5	22.2	7.4	0.33	6.80%	2.26%	3.01
Hoekman, 1992	1986-89	5	19.5	2.8	0.30	6.47%	0.94%	6.87
Stump et al., 1989	1984-87	9	15.0	9.7	0.28	5.37%	3.49%	1.54
Gorse, 1992	1989	20	13.0	4.5	0.16	8.41%	2.89%	2.91
Tunnel Measurements	<u>Tunnel</u>	Year	<u>ppbC</u>	<u>ppbC</u>	<u>ppmC</u>			
Lonneman et al., 1986	Lincoln	1970	1375	1033	16.5	8.31%	6.24%	1.33
Lonneman et al., 1986	Lincoln	1982	409	161	4.2	9.67%	3.80%	2.54
Zielinska et al., 1992	Caldecott	1991	154	56	2.5	6.16%	2.24%	2.75

Table 2-2Relative Emissions of Ethene and Ethynein Vehicle Exhaust from Dynamometer and Tunnel Measurements

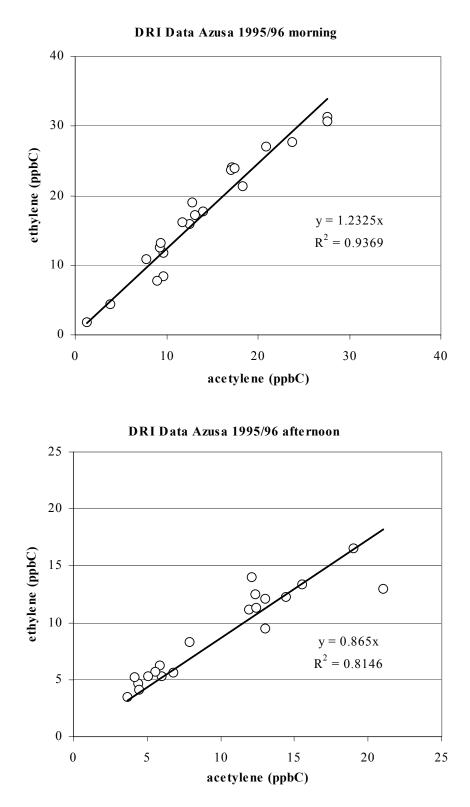


Figure 2-1. Scatterplot of ethylene versus acetylene for morning and afternoon samples at Azusa, California during the summers of 1995 and 1996.

3. SOURCE COMPOSITION PROFILES

This section describes the compilation, derivation, and evaluation of the source composition profiles suitable for apportioning ambient PAMS hydrocarbon data using CMB. The profiles are listed and described in Appendix B. The actual profiles are available electronically in the self-extracting compressed excel file CMBProfilesLibrary.exe. This library is a compilation of source profiles that have been used by the Desert Research Institute in prior VOC source apportionment studies. They include profiles that were obtained for specific studies, the literature, and from the California Air Resources Boards Modeling Emissions Data System (MEDS). Studies for which profiles were newly developed include the 1993 Coast Oxidant Assessment for Southeast Texas (Fujita et al., 1995b), 1995 Boston and Los Angeles VOC Source Apportionment Study (Fujita et al. 1997a), 1995/96 Washington Ozone Transport Study (Fujita et al., 1997c), 1996 El Paso/Juarez Ozone Study (Fujita, 2001; Seila et al., 2001), and 1998 Central Texas On-Road Hydrocarbon Study (1999a), 1999 VOC Source Signatures in Houston, TX (Fujita et al., 1999b), apportionment of 1994-97 South Coast Air Basin PAMS VOC data (Fujita and Campbell, 2003b), and the 2000 Weekend Ozone Observations in the South Coast Air Basin (Fujita et al. 2002; Fujita et al., 2003a). This CMBProfilesLibrary file is available through the EPA TTN web site at http://www.epa.gov/ttn/ and at the Desert Research Institute web site at http://www.dri.edu/People/ericf. The DRI Web site also provides general technical support and access to relevant papers and reference materials.

3.1 Source Composition Profile Normalization and Uncertainties

The profiles are expressed as volume percentages and are normalized to the sum of the 55 PAMS target hydrocarbons. The PAMS species typically account about 80 percent of the total ambient hydrocarbons in urban locations, and their sum is more reproducible among different laboratories than total NMHC or NMOC. Compounds other than the 55 Photochemical Assessment Monitoring Station (PAMS) target NMHCs that are individually identified are grouped into a category named "other". Compounds reported as "unknowns" are grouped into a category named "other". Compounds reported as "unknowns" are grouped into a category named "other". Compounds reported as "unknowns" are grouped into a category named "other". Compounds reported as "unknowns" are grouped into a category named "other". Compounds reported as "unknowns" are grouped into a category named "other". Compounds reported as "unknowns" are grouped into a category named "other". Compounds reported as "unknowns" are grouped into a category named "other". Compounds reported as "unknowns" are grouped into a category named "UNID". The profiles also include total NMHC (i.e., the sum of PAMS species + other + unid) normalized to sum of PAMS species. Although not measured in the PAMS program, methyl tert-butyl ether (MTBE) is included in the profiles because it is a major component in reformulated gasoline and in the exhaust of vehicles using RFG. By including MTBE in the profile, its ambient concentration can be predicted by CMB.

Each profile has values for all 55 PAMS species, additional species used for CMB modeling, several composite species, plus CO and NOx (105 species total). A list of the species with full names and other relevant information is included in Appendix A. Except for CO and NOx, which are tabulated as concentration in ppm or ppb, respectively, values are the weight fraction of each species normalized to the sum of the 55 PAMS species. Profiles where PAMS species accounted for <5% of total are not included. The source profile data reported in units of ppbC were converted to μ g/m³ prior to calculating the weight percentages using species-specific conversion factors. One-sigma uncertainties were derived from variations among multiple measurements for a particular source type or a analytical uncertainty estimated by SQRT(0.1*W^2+0.002^2), where W is the normalized weight fraction of a species, 0.1 is the nominal analytical precision, and 0.002 is the minimum uncertainty. Most profiles do not contain

concentrations for all of the species listed. Missing species are given the weight fraction 0.00001 with uncertainty equal to 0.002. Zero values in the original profiles are included as zero with uncertainty equal to 0.002.

3.2 Review and Preparation of Source Profile CMB Input File Using the Source Profile Library

A catalog of source profiles is contained in the Excel file, CMBProfilesLibrary.xls. The source composition data are contained in the worksheet 'profiles table', which is linked to several other worksheets that create the source composition input file and several optional input files (see Section 4 for details on the optional input files). A list of all species included with full names and other useful information are included in the worksheet 'CMB_species'. Type the 'INDEX#' for the profiles in one or more of the four green boxes at the top of the sheet to graphically compare up to four profiles (**only those cells that are shaded green should be edited**). Switch to worksheet 'charts' (CTRL+PageDown) to see column plots of the profiles. The upper plot contains the 55 PAMS species, the lower plot all other organic species. Note that the profiles are plotted on a log scale and the uncertainties are not indicated. A third plot below shows a detailed comparison of the typical major species for the first two profiles selected.

To assist with the selection of profiles, several sort fields have been included such as category (source type), location and year. The list of profiles can be filtered by selecting values from any or all of these fields using the pull down menus on each heading (click the arrow in small grey box). For example, one might select 'gasoline exhaust' in the Category column, 'greater than 1996' (using the custom option) in the Year column, and 'SCAB' in the Location column to view only those profiles applicable to on-road automobile emissions in the South Coast Air Basin. Filtering the list has no effect on the charts displayed. Sorts can also be performed on the table as long as all columns are sorted together. A few notes on using the pull-down filters: the current cell selection does not change when filters are set, so it may be necessary to scroll up or down to see the results of a filter. Also, filters are reset to (All) before starting a new selection. When a filter is on, the small arrow on the column heading turns blue. If a sort is performed while filters are on, only those data displayed will be sorted.

To create source composition profile input files for CMB8, select all profiles to be included in the source selection file by flagging them in the worksheet 'profiles table' with any character in the column labeled Select. You may view a filtered list of profiles by selecting filtering criteria from any of the pull-down menus at the top of each column. If you wish to clear out any previous selections, make sure all profile records are displayed by selecting 'all' in the pull-down autofilter menus for each column, then clear all values in that column. Once you have selected all profiles desired switch to worksheet 'defaultSources'. Here you can pre-select up to 10 combinations of source profiles to use in the CMB8 fitting process. Once you have saved the worksheet, close it and change the file extension to .sel so that CMB8 will recognize it. A default species selection file can also be generated by editing the green cells in sheet 'defaultSpecies' before creating the species selection file. A macro is provided to create the source profile input file along with the other optional CMB input files (see Section 4). To run the macro press CTRL-m.

3.3 Source Composition Profile Categories

The receptor modeling approach requires accurate and precise measurements of the chemical composition of emission sources and ambient receptor concentrations. Moreover, the source profiles must be representative of the study area during the period when the ambient data were collected. The emissions inventory is the starting point to identify potential contributors to ambient concentrations. Vehicle-related emissions (exhaust, liquid fuel and evaporated fuel) are ubiquitous in all urban areas and are always included. Architectural coatings (i.e., paints) and industrial solvents (i.e., cleaning and process solvents, as in printing) are also common, but highly variable spatially. Petrochemical production and oil refining are more specific to certain urban settings, such as the Texas coast, where these activities are numerous. Biogenic emissions are generally larger in the eastern U.S., where forests are lush in contrast to the arid west.

3.3.1 Vehicle Exhaust

Despite sharp reductions in VOC emission rates of new production vehicles in the U.S., on-road motor vehicles remain the largest source of VOC emissions in urban areas. This category consists of gasoline-powered and diesel-powered passenger cars, light-duty trucks (6,000 lbs. gross vehicle weight [GVW] or less), medium-duty trucks (6,001-8,500 lbs. GVW), heavy-duty trucks (over 8,500 lbs. GVW), urban buses, and motorcycles. VOC emissions from motor vehicles consist of tailpipe exhaust and evaporative (hot soaks, diurnals, running loss, and resting loss) emissions. Composites of dynamometer measurements of vehicles of varying age and mileage or on-road measurements (e.g., tunnels and roadways) are commonly used to represent fleet-averaged exhaust profiles. Profiles based on dynamometer tests should include a weighted sum of exhaust profiles for noncatalyst vehicles, high-emitting vehicles and catalystequipped vehicles with site-specific weighting factors to approximate the fleet-averaged exhaust composition. The fuels used in the dynamometer tests should resemble the fuels used in the study region at the time the ambient samples are collected. On-road measurements are usually preferred in CMB applications because they include a composite of the exhaust from many vehicles that more closely represents the local vehicle population than dynamometer tests of a small sample of vehicles. However, tunnel measurements also include varying amounts of diesel exhaust and running evaporative losses.

Cold start exhaust emissions occur from the time the engine starts, after being off for one or more hours for a catalyst-equipped vehicle and four or more hours for a non-catalyst-equipped vehicle, until the coolant achieves its nominal operating temperature. Cold start emissions are incremental emissions that are added to running exhaust emissions. Running exhaust includes emissions from the tailpipe or through the crankcase after the vehicle is warmed up and in a stabilized mode. Exhaust emission rates are determined from dynamometer tests using the Federal Test Procedures (FTP). The FTP tests are used for certification of new vehicles and to check compliance over a period of time. For cars and light-duty trucks the FTP driving schedule consists of three driving/sampling phases or "bags." Bag 1 is a 505-second 3.6-mile drive from cold start. Bag 2 is the following 867 seconds and 3.9 miles. Bag 3 follows after a 10-minute shutdown and is the same as Bag 1 except that it begins from a hot-start condition. Total driving time is 31.3 minutes, 11.1 miles, average speed of 21.3 mi/hr, peak speed of 56.7 mi/hr: 17.9%

of the engine running time is spent at idle. The exhaust measurements utilize dilution with air to a constant and known volumetric flow rate by means of a Constant Volume Sampler (CVS).

Vehicle Exhaust Profiles Derived from Dynamometer Tests

The gasoline-powered vehicle exhaust profile, Exh801, was derived from the Federal Test Procedure (FTP) tests of Sigsby et al. (1987) which involved 46 in-use passenger vehicles for 1975 to 1982 model years. Profile Exh801 was re-calculated by the ARB from the EPA's original measurements to provide a more complete chemical break-down. Propane/propene, benzene/cyclohexane, and toluene/2,3-dimethylhexane were not separately reported by Sigsby et al., so ratios of 3:1, 1:1 and 9:1 were assumed by the ARB for these pairs of species, respectively. However, motor vehicle exhaust profiles measured in the Caldecott Tunnel by Zielinska et al. (1992) and in FTP dynamometer tests by Stump et al. (1989, 1990), Hoekman (1992), Burns et al. (1991) and Chock and Winkler (1992) were inconsistent with the abundances in Exh801 when the foregoing ARB ratios are used. Propane/propene, benzene/cyclohexane, and toluene/2,3-dimethylhexane ratios of 3:22, 19:1 and 1:0 were consistent with those found by Zielinska and Fung (1992) were applied to obtain profile Exh801a (Fujita et al., 1994).

Exhaust profiles were similarly developed for the Auto-Oil Program. ACCS, ACST, and ACHS are averages for incremental cold start, stabilized and hot start emissions profiles for the "current" vehicle fleet (1989) using industry average gasoline (Fuel A, based on the 1988 Motor Vehicle Manufacturers Association [MVMA] summer nationwide fuel survey). AOCS, AOST, and AOHS are the corresponding profiles for the Auto/Oil "older" fleet (1983 to 1985) using Fuel A (Burns et al., 1991, Chock et al., 1992). ACCOMP and AOCOMP are the FTP composite profiles for current and older fleets, respectively. EXHCOMP2 is a composite of AOCOMP with two on-road vehicle exhaust profiles, TU_MCHLD and SOS. This composite profile was used by Fujita et al. (1995a) to apportion the hydrocarbon data for the 1993 Coastal Oxidant Assessment for Southeast Texas (COAST) Study.

The exhaust compositions were determined for 141 light-duty gasoline-powered vehicles during the 1995 Orange County High Emitter Study (Lawson et al. 1996). The vehicles were initially identified as high emitters by on-road remote sensing. The vehicles were tested given IM-240 tests prior to and after repair. The chemical composition of the exhaust was determined for both cases. Based upon these results, composite profiles were derived for varying fraction of high-emitters in the composite in 10 percent increments.

Vehicle Exhaust Profiles Derived from Measurements in Highway Tunnels

On-road vehicle exhaust profiles were derived from measurements by the Desert Research Institute (DRI) in the Caldecott Tunnel in the San Francisco Bay Area (Zielinska et al., 1992), Tuscarora Tunnel in Pennsylvania, and Fort McHenry Tunnel in Baltimore (Sagebiel et al., 1996) and by roadside measurement made by the U. S. Environmental Protection Agency during the Atlanta Study as part of the Southern Oxidant Study (SOSROAD, Conner et al., 1995). The Fort McHenry Tunnel is an underwater tunnel with upgrade and downgrade segments. Separate profiles were developed for each segment and a composite profile for the entire tunnel. A diesel exhaust profile was developed by DRI (Sagebiel et al., 1996) from the Ft.

McHenry Tunnel by extrapolating the regressions of species weight fraction as a function of the relative fractions of light-duty gasoline versus heavy-duty diesel traffic. Investigators from DRI also conducted a series of experiments in 1995 to quantify emission rates of carbon monoxide (CO), nitrogen oxides (NOx), and speciated nonmethane hydrocarbons (NMHC) from in-use vehicles at the Lincoln Tunnel in New York (August 16-18) and at the Callahan Tunnel in Boston, MA (September 18-19) (Gertler et al., 1997). Similar experiments were conducted during the same year at the Deck Park Tunnel in Phoenix, AZ (January 24-26 and again in July 25-27), and at the Van Nuys Tunnel (June 8-12) and Sepulveda Tunnel (October 3-4) in the Los Angeles area. The sampling protocol and characteristics of the vehicle traffic for each of the tunnel measurements are described by Gertler et al. (1997). The on-road vehicle exhaust profiles represent primarily hot stabilized exhaust emissions but also include evaporative emissions from running and resting losses.

Composite spark-ignition vehicle exhaust profiles were derived by Fujita et al. (1997a) from the DRI tunnel measurements by subtracting the contributions of diesel exhaust and running evaporative losses from each tunnel sample. First, the diesel exhaust was subtracted from the tunnel measurement by fitting a diesel exhaust profile to the tunnel samples using only decane and undecane as fitting species. These two species were used because they are enriched in diesel exhaust relative to gasoline exhaust and minimize the overestimation of the diesel contribution that would result if species common to both sources are used to determine the solution. The resulting diesel contributions to total nonmethane hydrocarbons (C_2 to C_{11}) range from 3 to 9 percent, which are consistent with the observed fractions of diesel traffic.

The method described above cannot be used to remove the contributions of evaporative emissions because there are no species that exist in gasoline that does not also exist in tailpipe emissions. Instead, varying contributions of evaporative emissions were subtracted from each tunnel sample in five- percent increments from 0 to 50 percent. CMB was applied to the ten alternative diesel and evaporative emissions-corrected samples for each tunnel run with diesel exhaust and evaporative emissions as source profile. The model performance parameters and comparisons of calculated and measured amounts of total NMHC, isobutane, n-butane, and isopentane were examined to determine the level of evaporative corrections that yield the best fit. The fit deteriorates rapidly beyond a certain level of assumed headspace vapor contribution of about 15 to 25 percent. The predicted vapor contributions do not increase above these levels of assumed vapor contribution. This is consistent with expectation since there is a limit to the fractional contribution of running losses to hydrocarbons mixing ratios in roadway tunnels. The profile library lists composites for the uncorrected tunnel measurements for the Callahan Tunnel (Tu Cal), Lincoln Tunnel (Tu Lin), Sepulveda Tunnel (Tu Sep), and Van Nuys Tunnel (Tu Van). Because the performance parameters for various levels of assumed headspace vapor contributions are similar up to the level at which the fit deteriorates, three sets of corrected profiles were derived for each tunnel run. One profile corresponding to no evaporative correction, or only diesel correction (Suffix of 0 attached to the uncorrected tunnel profile), and a second set of profiles that corresponds to the maximum level of evaporative correction before the fit begins to deteriorate (15-20%) (Suffix of 2). The third profile corresponds to an average between no correction and maximum correction (5-10%) (Suffix of 1). Similar profiles were also developed from measurements in the Mt. Baker, I-90 tunnel in Seattle, WA (Fujita et al. 1997c).

Vehicle Exhaust Profiles Derived from On-Road Measurements

On-road measurements were made in Houston during the 1993 COAST (Fujita et al., 1996) and in Juarez during the 1996 Paso del Norte (Fujita, 2001; Seila et al., 2001) Studies. Measurements involved sampling upwind and downwind of roadways or in heavily traveled intersections. The COAST samples included upwind/downwind hot soak and cold start samples collected at the Astrodome during and immediately after a ballgame, respectively, and up upwind/downwind samples along Westheimer Road, a secondary urban road in a residential area of Houston. Samples were also collected from the Baytown Tunnel, a roadway tunnel under the Houston Ship Channel. Samples were collected in Juarez near a heavily traveled intersection during rush hour and behind a propane bus in order to obtain approximate source composition profiles for species greater than four carbons show that the propane bus exhaust samples contain varying amounts of exhaust from other vehicles. The average ratios between the two profiles for these larger hydrocarbons were used to subtract the contributions of the Juarez traffic from the propane bus profile.

As part of the 1998 Central Texas On-Road Hydrocarbon Study (Fujita et al. 1999a), DRI collected on-road samples on freeways and surface streets and at a truck stop in the Austin Texas area. Samples of vehicle exhaust were intended to represent four combinations of traffic and vehicle fleet characteristics: 1) free-flowing freeway, 2) congested freeway, 3) major surface arterial, and 4) heavy-duty diesel truck exhaust. Each of the freeway samples were collected over one hour during a series of traverses along a 6-mile stretch of I-35 from the southern edge of the Austin city limits at Slaughter Lane to a half mile south of the Colorado River at Woodland Avenue. Samples corresponding to congested traffic (CTMVFL01 and CTMVFL02) were collected between 0630 and 0830, and free-flowing freeway samples (CTMVFH01, CTMVFH02, and CTMVFH03) were collected between 0830 and 1100. Four 1-hour composite samples were collected along four different surface street loops of 4 to 5 mile in south Austin (CTMVSR01), downtown Austin (CTMVSR02), Oakhills area (CTMVSR03) and Williamson Creek area (CTMVST04). The four surface street loops represent the range of traffic patterns and fleet age distributions in the metropolitan Austin area. All ambient samples and motor vehicle source samples included canisters for C₂ to C₁₁ hydrocarbons, Tenax cartridges for C₈ to C₁₈ hydrocarbons in order to enhance the resolution in apportionment of diesel versus gasoline exhaust, and DNPH cartridges for C_1 to C_{11} carbonyl compounds.

Two sets of composite profiles were constructed for on-road SI vehicle emissions. The contributions of diesel exhaust and regional background were removed from each of the individual samples prior to forming the composite profiles. The regional background was removed by subtracting the average VOC composition at San Marcos for the morning on-road samples and the average VOC composition at McKinney Falls State Park for the midday and afternoon on-road samples. The total VOC concentrations of the on-road samples were typically an order of magnitude greater than the background concentrations. Diesel exhaust was removed by determining by CMB the contribution of the diesel exhaust (using the Fort McHenry Tunnel profile) in the background-subtracted on-road samples using only C_{12} to C_{16} n-alkane as fitting species. The two sets of composition profiles correspond to a combination of congested freeway traffic and morning surface street traffic in downtown Austin, and a combination of free-flowing

freeway traffic and afternoon surface street traffic from three locations in south Austin. The former was used to fit morning ambient samples and the latter was used to fit afternoon and evening ambient samples.

Urban vehicle exhaust samples were also collected during summer 1999 in Houston, Texas (Fujita et al., 2001). Samples were collected over 50-minute sampling periods during series of traverses along a 4-mile stretch of the State Route 288 from Bellfort Street to Almeda Genoa Road (HOMV01 and HOMV02), surface streets in downtown Houston (HOMV03) and Westheimer Road from the 610 Freeway to Gessner (HOMV06), along the southwest section of the I-610 beltway (610, 59 E, and 45 S; HOMV04), and northwest section of the I-610 beltway (288 N, 59 W, 610 N, 10 E, 288 S, and 610 E; HOMV05) (Fujita et a., 2001). Background samples were collected a few miles south of the junction of SR 288 and the State Highway 8 beltway at the southwest corner of the Pearland Exit off SR 288. Background samples were collected once in the morning prior (0510 to 0610, CDT) to the commute period (HOMVB1) and once midday (1100-1200, CDT) (HOMVB2). The background sample HOMVB1 was subtracted from HOMV01 and HOMV02, the average of the two background samples were subtracted from HOMV03 and HOMV04, and HOMVB2 was subtracted from HOMV05, and HOMV06. Because the background samples contained unusually high concentrations due to a local source, toluene was corrected to average ratio of toluene to isopentane in liquid gasoline. This profile contains an undetermined, but presumably a representative mixture of both gasoline and diesel vehicle exhaust. Three 50-minute composite samples (HOMVD01, HOMVD02, and HOMVD03) were collected at an underpass beneath State Highway 146 at the intersection of N. Broadway and E. Barbour Cut Blvd near the Barbour Cut Terminal at the Barbour Cut Ship Channel. In addition to the three ambient samples with high contributions of diesel exhaust, two background samples were collected upwind of the terminal along the shores of Galveston Bay at the end of Ballester (Figure 2.1-4). Background samples were collected prior to (HOMVDB1) and after (HOMVDB2) after the three "diesel" samples. Heavy-duty diesel trucks accounted for about 75 percent of the traffic in the lane closest to the sampling van. The background sample HOMVDB1 was subtracted from HOMVD01 and HOMVDB2 was subtracted from HOMVD02, and HOMVD03.

The profiles for vehicle exhaust, liquid gasoline, and evaporated gasoline include many of the same species but exhibit notable differences. With only the light hydrocarbons measured, the heavy-duty diesel and light-duty gasoline exhaust profiles are similar, and are often collinear in CMB calculations. Ethene, acetylene, 1-butene, iso-butene, propane, propene, isopentane, npentane, 2,2 dimethylbutane, 2-methylpentane, n-hexane, benzene, 3-methyhexane, toluene, ethylbenzene, m- & p-xylene, m-ethyltoluene, and 1,2,4-trimethylbenzene, are the most abundant compounds in either or both of these emissions. Several of these are short-lived, as shown in Table 2-1, and are only used in CMB calculations where fresh emissions are expected, as during early morning. Major differences between these two exhaust profiles are evident for: 1) acetylene, iso-butene, isopentane, n-hexane, and 2-methylhexane, which are most abundant in gasoline exhaust; and 2) for propene, propane, 2,2 dimethylbutane, n-decane, and n-undecane which are more abundant in diesel exhaust. Previous studies showed that source attributions between tailpipe and evaporative emissions from receptor modeling can vary greatly depending on the particular profile chosen for tailpipe emissions (Harley et al., 1992, Fujita et al., 1994, Pierson et al., 1996). This is because tailpipe emissions are a mixture of hydrocarbons produced during combustion (e.g., acetylene, ethene, propene, and benzene) along with unburned gasoline resulting from incomplete combustion. The relative abundances of combustion by-products in the exhaust profile vary with emission control technology, level of vehicle maintenance and operating mode. In the CMB calculation, liquid gasoline represents the additional unburned gasoline (due to misfiring and other engine malfunctions) that is not included in the exhaust profile, plus evaporative emissions from gasoline spillage, hot soaks, and some portion of resting losses (leaks, permeation). The profile for gasoline headspace vapor is taken to represent fuel tank vapor losses (e.g., migration of fuel vapor from the canister).

3.3.2 Cold-Start Emissions

Samples were collected by DRI in the parking garage of the T. P. O'Neill Federal Building in downtown Boston on September 12-13, 1995 in order to obtain a composition profile for cold-start emissions (Fujita et al., 1997a). This garage is ideal in that there is very little traffic during the day and most vehicles leave the garage about the same time at the end of the workday. The ventilation exhaust fan, which normally runs in the afternoon from 2 to 5 p.m., reduces concentrations of VOCs in the garage to near street level prior to and during the time the vehicles leave. To ensure measurable differences between the cold-start and background samples, the ventilation period was rescheduled to run one hour earlier during our study (1 to 4 p.m.). One-hour canister samples were collected during the ventilation period ("background") and near the end of the workday at three locations within the garage on September 12 and again on September 13. The samplers were located between the garage exit and the ventilation fan about equal distance from each other at the end of a row of parking spaces nearest to the main exit aisle. On the first day of sampling, background and "cold start" samples (cold start plus background) were collected between 2:00-3:00 p.m. and 4:00-5:00 p.m., respectively. Twentynine vehicles entered or left the garage during the background-sampling period versus 56 vehicles that left during the cold-start sampling period. Two of the 56 vehicles were VW diesels. Background samples were collected on the second day between 1:15 and 2:15 p.m. and cold start samples were collected between 4:20 and 5:20 p.m. Twenty-eight vehicles entered or left during the background-sampling period and 53 vehicles (including one diesel vehicle) left during the The differences in mixing ratios between the cold start and cold-start sampling period. background samples were substantially higher during the second day. These measurements were used to derive a source composition profile for cold-start emissions.

3.3.3 Gasoline Liquid and Vapor

The reformulation of gasoline has significantly effected the composition of motor-vehicle related emissions in recent years. Both the federal government and the State of California have developed specifications for reformulated gasoline (RFG). The federal program is required for all severe and extreme ozone nonattainment areas, whereas the California program applies throughout the state. Both California and federal RFGs were introduced in two phases. California Phase 1 was introduced in 1992 and Phase 2 was introduction in 1996. Phases I of the federal program was introduced in 1995 and Phase II in 2000.

California Phase 1 gasoline had reduced RVP (Reid vapor pressure) in summertime and 2% oxygen (about 11% methyl-tert-butyl ether) in winter. Average specifications for federal

Phase I gasoline include RVP of 7.1 psi, 2.0% by weight oxygen content, and 1.0% by weight benzene content. These requirements were effective as of January 1, 1995 in nine major metropolitan areas of the United States with the worst ozone air pollution. The RFG program is federally implemented year-round in these areas as an emission reduction program to control ozone and air toxic emissions. Methyl tertiary butyl ether (MTBE) is the most common oxygenate used in reformulated gasoline. Tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE), and ethanol are found in a small percentage of reformulated fuels. The phase-out of MTBE in California, which was scheduled for December 31, 2002, has been postponed for one year.

The California Phase 2 RFG specifications apply to all gasoline sold in California beginning January 1, 1996, and include a maximum 80 ppmw sulfur content (average of 30 ppmw), a maximum 1.2% benzene content by volume (average of 0.8), a maximum 10.0% olefin content, a maximum 2.7% oxygen content by volume, a maximum T90 and T50 of 330 °F and 220 °F, respectively, maximum 30% aromatic hydrocarbon content by volume (average of 20%), and a maximum RVP of 7.0 psi. Investigations of the effects of RFG on automotive emissions have been conducted through the Auto/Oil Air Quality Improvement Research Program (AQIRP), by EPA, ARB, and individual oil companies. Results of the Auto/Oil AQIRP are illustrative of the general response of automotive emissions to changes in fuel parameters.

Compositional differences of vehicle exhaust from Transitional Low Emission Vehicles (TLEVs) operating on conventional industry-average gasoline (RF-A) versus California Phase 2 RFG were summarized by the ARB (1993). The summary includes data from testing programs conducted by the ARB, the Auto/Oil AQIRP, and Chevron Research & Technology Company. The motor vehicle test data were renormalized in terms of weight fractions, and the weight fractions for each species for all tests on an individual vehicle were averaged. The composite profiles for each vehicle were averaged to create composite profiles for each fuel. Separate composite profiles were calculated for each bag of the U.S. EPA 1975 Federal Test Procedure (FTP). For the composite FTP, the average weight fraction of n-alkanes decreased from 15.3% with RF-A to 8.5% with RFG, while the branched alkanes increased from 24.5% with RF-A to 35.8% with RFG. The relative abundances of cycloalkanes and alkynes remained unchanged, while olefins and oxygenates showed slight increases with RFG. Differences are higher for specific compounds (e.g., benzene and MTBE). These compounds or their ratios serve as useful tracers for RFG.

There are several sources of evaporative emissions. Hot soak evaporative emissions result from gasoline vaporization from elevated engine and temperatures after the engine is turned off at the end of a trip. They can be from the region of the carburetor in carbureted vehicles in addition to residual pressure and heat input into the fuel system. Diurnal evaporative emissions result from expansion of the air-fuel mixture in a partially filled fuel tank due to diurnal changes in ambient temperature. The currently prescribed test is a 72-hour SHED test of three 24-hour cycles with diurnal minima and maxima of 72 °F and 96 °F, respectively. Running and resting losses are the two sources of evaporative loss from vehicles traveling on the road. Running losses are releases of gasoline vapor from the fuel system during vehicle operation as a result of the heating of the fuel tank. Vapors are released when the rate of fuel vapor formation

exceeds the capacity of the vapor storage and purge systems. The composition of running losses tend to resemble headspace vapors if the canister is saturated, and butane-enriched vapors if the canister is not saturated. The canister similarly affects the composition of diurnal evaporative emissions. Resting loss evaporative emissions are due to migration of fuel vapors from the evaporative canister, from leaks, and from fuel permeation through joints, seals, and polymeric components of the fuel system. Most of these losses tend to appear more like whole liquid gasoline. Hot soaks also resemble liquid gasoline.

Liquid gasoline contains many compounds in common with gasoline-vehicle exhaust. It is depleted in products of combustion such as ethane, ethene, acetylene, propene, and to some extent, benzene. Evaporated gasoline is also depleted in these combustion compounds, as well as heavier hydrocarbons that volatilize more slowly from liquid fuels. Isobutane, n-butane, t-2 butene, and especially isopentane are enriched in evaporated gasoline. MTBE and it thermal decomposition product, isobutylene, stands out as a large constituent of gasoline exhaust emissions that clearly separates these from diesel in areas where it is used as an additive. These differences are sufficient for CMB separation of gasoline exhaust from liquid and evaporated gasoline, and often from diesel exhaust, in ambient air. The following gasoline samples have been analyzed and used in source apportionment studies.

Composite liquid and headspace vapor profiles consisting of averages of different brands and grades of gasoline were developed in conjunction with the Tuscarora, Fort McHenry, and SOS on-road exhaust experiments and for the Auto-Oil program. Profiles AODiurn, AOHSoak, and AORunLs are average diurnal, hot soak, and running loss emissions, respectively, for the Auto/Oil "older" fleet.

Twenty-one sets of bulk and headspace vapor chemical analyses were preformed by Environmental Analytical Services (EAS) as part of COAST for gasoline and diesel fuels sold in the Houston area comprising different grades and brands (Texaco, Chevron, Exxon, Diamond Shamrock, Shell and Conoco) of fuel.

Samples of various brands and grades of gasoline were collected during the Paso del Norte study and analyzed by Consolidated Sciences, Inc. Both unleaded regular "Magna Sin" and premium grades of gasoline were collected from two different service stations in Juarez. In El Paso, regular, mid, and premium grades of gasoline were collected from four brands of gasoline (Exxon, Chevron, Circle K, and Diamond Shamrock). Three alternative composite profiles were derived for Mexican gasoline based on a weighting of regular and premium grades of 50/50 (ME50R50P), 67/33 (ME67R33P), and 75/25 (ME75R25P). The composite for the gasoline sold in El Paso (US681220) is based on a study conducted by the American Petroleum Institute, which found that regular, mid-grade, and premium grades account for 68 12, and 20 percent of U.S. gasoline sales (API, 1996). Because headspace vapors were not analyzed in the study, the vapor profiles obtained by Mugica et al (1997) were used in the apportionment. These profiles are for leaded and unleaded gasoline from Mexico City.

Composite liquid and headspace vapor profiles consisting of an average of different brands and grades of gasoline were derived in conjunction with the 1995 on-road emissions and receptor modeling studies in the northeastern U. S. and the Los Angeles area (Fujita et al., 1997a). Ten gasoline samples were collected by DRI in the Boston area and were analyzed at

the University of California, Riverside College of Engineering Center for Environmental Research and Technology (CE-CERT) under a subcontract to DRI. DRI analyzed the headspace vapor composition for these samples. In addition, sixty liquid gasoline samples (collected from the Los Angeles area during summer of 1995) were analyzed by CE-CERT for a separate study sponsored by the South Coast Air Quality Management District. The headspace vapors for a subset of these gasoline samples were analyzed by DRI as part of a study sponsored by the California Air Resources Board of the effect of California Phase 2 reformulated gasoline (Zielinska et al., 1997). Leakage of some of the gasoline samples from Boston raised concerns about the integrity of the remaining gasoline samples, particularly in regard to the relative amounts of light hydrocarbons that tend to be more abundant in samples of gasoline headspace. The Los Angeles gasoline profiles were used for all of the tunnel profile corrections and in the previous source apportionment study by Fujita et al. (1997a). The survey of motor gasolines conducted by the National Institute of Petroleum and Energy Research (NIPER) for summer 1995 (Dickson and Sturm, 1996) show how RFGs sold in southern California differ from those sold in the Northeast. The average volume percents of saturates, olefins, total aromatics, and benzene in unleaded RFG in the Northeast are 55.1, 11.0, 23.1, and 0.67 respectively, versus 53.1, 8.6, 27.1, and 0.79, respectively, in southern California. The average RVP is 7.9 in the northeast and 7.2 in southern California. The average volume percent of MTBE is 9.8 and 10.7 percent in the northeast and southern California, respectively. The average RVP is the most significant difference between RFGs that were sold in 1995 in the northeastern U.S. versus southern California. These differences affect the amounts and composition of evaporative emissions.

Investigators from DRI analyzed fifteen samples consisting of five brands (ARCO, BP, Chevron, Texaco, and Unocal) and three grades (regular, midgrade, and premium) of gasolines sold the Seattle area as part of a hydrocarbon source apportionment study for western Washington (Fujita et al., 1997c). The liquid and headspace compositions were determined by gas chromatography at DRI. The five brands of gasoline represent ~ 92 to 95 percent of the total sales in western Washington (Fogelquist, 1997). A study conducted by the American Petroleum Institute found that premium, mid-grade, and regular grades account for 20, 12 and 68 percent of gasoline sales (API, 1996). The average volume percent of saturates, olefins, total aromatics, and benzene in unleaded gasoline sold in the Pacific Northwest in 1996 were 56.3, 10.6, 33.0, and 2.37 percent, respectively (Dickson and Sturm, 1997). The average vapor pressure at 100 °F was 7.9 psi, which is similar to the RFG sold in 1995 in the northeastern U.S. In contrast gasoline sold in southern California during the same period had an average vapor pressure of 7.0 psi (Dickson and Sturm, 1997).

Gasoline samples (CTGASLnn) consisting of three grades (regular, mid, and premium) for three brands (Diamond Shamrock, EXXON, and Texaco) were analyzed by DRI for the 1998 Central Texas On-Road Hydrocarbon Study (Fujita, et al. 1999a). In addition to profiles for individual samples, composites were derived for each grade of gasoline from a combination of the three brands. A study conducted by the American Petroleum Institute found that premium, mid-grade, and regular grades account for 20, 12 and 68 percent of gasoline sales (API, 1996). An overall composite liquid gasoline profile was constructed based on this relative weighting. The compositions of gasoline headspace vapors were predicted from the measured composition of liquid gasoline using the method described by Kirchstetter et al. (1999). This method is base

on the proportionality between the equilibrium headspace partial pressure for each compound identified in gasoline with it's mole fraction in liquid gasoline times the vapor pressure of the pure species. The individual vapor pressures are determined using the Wagner equation.

Gasoline samples (CTGASLnn) were also collected by DRI from the Houston area during summer 1999 (Fujita et. al., 2001). Samples included three grades (regular, mid, and premium) for three brands (Diamond Shamrock, Shell, and Texaco). The compositions of gasoline headspace vapors can be predicted from the measured composition of liquid gasoline using the method described by Kirchstetter et al. (1999).

3.3.4 Commercial Natural Gas and Liquefied Petroleum Gas

The commercial natural gas (CNG) profile is based on samples taken in the summer of 1972 at Los Angeles, CA and in the summer of 1973 at El Monte, CA (Marysohn and Crabtree, 1976; Mayrsohn et al., 1977). The geogenic natural gas (GNG) profile is based upon samples taken in the spring of 1972 in Newhall, CA and at a well head in Redondo Beach, CA in the fall of 1973. The composition of the samples of both types of natural gas did not vary despite the differences in time and location of sample collection (Fujita et al., 1994).

Two liquefied petroleum gas samples were collected from both El Paso (Super Energy Propane and Westex Conversion) and Juarez (Servigas and Commercial de Juarez) during the 1996 Paso del Norte Study, and analyzed by the EPA (Seila et al., 2001). EPA also analyzed one natural gas sample from Juarez.

Two commercial natural gas samples were collected during the 1998 Central Texas On-Road Hydrocarbon Study (Fujita, et al. 1999a) from residential gas lines into 3-liter stainless steel canisters. Sample CTCNG01 is from Lone Star Gas Company and CTCNG02 is from Southern Union Gas Company. A sample of liquefied petroleum gas was transfer to a portable propane tank (CTLPG01) and shipped to DRI for analysis.

3.3.5 Surface Coatings

Although solvents from paints and industrial uses are large components of all ROG inventories, their reported profiles are few (Guo et al., 1998; Kitto et al., 1997). Censullo et al., (1996) reported data for eleven categories of coating. Detailed species profiles were obtained for a total of 106 samples of water-based and solvent-based coating samples. Surface coating profiles for solvent-based industrial maintenance coatings, solvent-based medium gloss/high gloss, solvent-based primers and sealers, quick dry primers and enamels, and thinning solvent were applied in the apportionments. These are largely depleted in the species common to fuel use and production, with larger abundances of styrene, n-decane, and especially "other" compounds. The "other" VOCs are quantified and differ substantially among the different coatings tested. Most of these other compounds are oxygenated compounds that are measured in PAMS. California and other states requires special solvent profiles are likely to be very specific to a particular area.

Printing ink solvents from offset (Wadden et al., 1995a, 1995b) and rotogravure are commonly identified in emissions inventories. Most of these emissions are captured, condensed, and re-used by modern printing facilities, especially the toluene used for thin rotogravure inks. The solvent emission from inks shows enrichments for styrene, n-nonane, and 1,2,4-trimethylbenzene, similar to the other solvents. Again, there is a large "Other" fraction of identified compounds that allow the separation of solvent contributions to ambient VOCs.

A selection of 22 surface coating samples (CTCOATnn) including graphic inks and a variety of architectural and industrial coatings were obtained for analysis by DRI during the 1998 Central Texas On-Road Hydrocarbon Study (Fujita, et al. 1999a). The following table shows the relative abundance of paraffins, olefins, aromatic hydrocarbons, and oxygenated organic compounds for each sample.

The house paint emissions are dominated by oxygenated compounds (between 60 and 80%), while car paint emissions emitted approximately 40% oxygenates, 25% straight chain aliphatics and 25% aromatics. Major oxygenated organic compounds include benzoic acid, 2-(2-butoxyethoxy) ethanol, propylene glycol, butyl acetate, hexyl acetate, hexadecanoic acid, and 2-butoxyethyl acetate.

Mnemonics	ID	Description	paraffin	olefin	aromatic o	oxygentate
CTCOAT01	ink01	Toyo Ink Mgf Co Various Ink	21.34%	0.00%	7.00%	71.66%
CTCOAT02	ink02	Prisco A766 Powerklene UK	29.24%	0.00%	19.43%	51.34%
CTCOAT03	ink03	Prisco A216 Superklene 2P	38.62%	0.26%	28.36%	32.77%
CTCOAT04	pnt01	GlasUrit ** 55 Polyester Basecoat	27.83%	0.00%	21.88%	50.28%
CTCOAT06	pnt02	GlasUrit ** 923-94 HS Clear	25.23%	0.14%	34.37%	40.26%
CTCOAT08	pnt03	RM/Limco ** Supreme Enamel Basecoat	23.85%	0.00%	27.52%	48.63%
CTCOAT10	pnt04	RM/Limco ** LC1300 Urethane Clear	30.02%	0.00%	32.31%	37.67%
CTCOAT12	pnt05	RM/Diamont ** M6922 Polyester Basecoat	28.22%	0.00%	31.62%	40.16%
CTCOAT14	pnt06	RM/Diamont ** DC88 Diamond Clear	15.91%	0.00%	35.29%	48.80%
CTCOAT16	pnt07	Sherwin Williams B20 W201 Pro Mar 200 Exterior	6.88%	0.12%	8.20%	84.80%
CTCOAT17	pnt08	Sherwin Williams A82 W596 A-100 Exterior Latex	4.46%	0.00%	8.04%	87.50%
CTCOAT18	pnt09	Sherwin Williams A87 W41 Superpaint Interior Latex	8.17%	0.00%	11.58%	80.24%
CTCOAT19	pnt10	Behr 75 Interior Enamel Undercoat	15.34%	0.00%	10.40%	74.26%
CTCOAT20	pnt11	Behr 436 Exterior Waterbased Primer Sealer	6.39%	0.02%	5.92%	87.67%
CTCOAT21	pnt12	Behr 3050 Interior Semigloss Enamel	4.42%	0.00%	4.41%	91.17%
CTCOAT22	pnt13	Behr 4560 Exterior Flat	18.45%	0.00%	21.42%	60.12%

3.3.6 Organic Decay and Landfills

Landfills are sometimes identified as large TOG emitters owing to their prodigious production of methane (Brosseau and Heitz, 1994). A variety of reactive organic gases may accompany the methane, depending of the nature of the landfill wastes and disposal practices. Brosseau and Heitz (1994) summarize measurements from many landfills, finding acetone, alpha terpinene, benzene, butyl alcohol, dichlorobenzene, dichloromethane, ethylbenzene, ethyl mercaptan, limonene, furans, terpenes, toluene, vinyl acetate, vinyl chloride, and xylene to be among the most abundant components of ROG. Several of these compounds, such as vinyl chloride, are not common to widespread area sources and might be used to determine landfill source contributions by CMB. Kalman (1986) identifies several VOCs outgassed by plastics when they are heated. Acetone was consistently the most abundant ROG found in emissions from the surveyed landfills, probably resulting from the anaerobic decay of discarded organic

material. Similar reactions in dumpsters and trash cans, as well as in the natural environment, may account for a portion of the unexplained acetone observed by Fujita et al. (1995b) in Los Angeles and by Singh et al. (1994) at more remote locations. Shonnard and Bell (1993) document substantial quantities of benzene emanating from contaminated soil, a situation that will presumably improve as modern amelioration methods are applied to these dumpsites (Fox, 1996).

The decay samples were collected by DRI from trash bins at Carrow's Restaurant at I35 and Koenig (CTOD01) and from Shoney's Restaurant also off of I35 (CTOD02) during the 1998 Central Texas On-Road Hydrocarbon Study (Fujita, et al. 1999a). These samples contained high amounts of acetaldehyde, MEK, limonene, ethanol, and other oxygenated compound. Two-third of the samples consisted of unidentified compounds.

3.3.7 Meat Cooking and Residential Wood Combustion

Source composition profiles were derived for meat cooking and residential wood combustions using data obtained during the Northern Front Range Air Quality Study (NFRAQS) (Watson et al., 1998b; Fujita et al., 1998c). Although NFRAQS focus on fine particulate, the source sampling for the study included measurements of the associated VOCs. Test for wood combustion included ponderosa pine, pinion pine, Missouri oak, scrub oak, mixed hardwoods (cottonwood, birch, and aspen), and synthetic log burned in a fireplace and in a woodstove (McDonald et al., 2000). Meat cooking tests were conducted for hamburger cooked on both an underfired and automated charbroiler, chicken with skin and steak cooked on a griddle (McDonald et al., 2003).

3.3.8 Industrial Sources

Petrochemical production, especially the production of gasoline and other fuel oils (Sexton and Westberg, 1979, 1983; Fujita et al., 1995), can be a large contribution in areas such as Houston (Fujita et al., 1995). Ethane, propene, propane, n-pentane, t-2 hexene, benzene, n-heptane, toluene, and n-octane are abundant species. Most of these overlap with liquid and evaporated gasoline vapors. Of particular interest is the large fraction of unidentified NMHC in the canister chromatogram. This fraction includes real, but unreported, chemical compounds that are not in the other profiles. If properly quantified, these could probably assist the CMB resolution of refinery and other petrochemical sources.

A series of net upwind/downwind property-line samples were collected during the COAST Study at ten separate chemical and refining complexes in the Houston area (nine sets from the Exxon Baytown Cluster east of Houston in Baytown; six sets from the Celanese Hoechst Cluster southeast of Houston just south of the Bayport Ship Channel between Shoreacres and Seabrook; four set around the Amoco Industrial Cluster in Texas City; four sets around the Union Carbide facility in Texas City; two sets at the Dow Texas - Plant B facility in Freeport; one set at the Dow Texas - Oyster Creek facility in Freeport; four sets around the Solvay Polymers Industrial Cluster located east of Houston on the south side of the Houston ship channel; and three sets around the Shell

Industrial Cluster east of Houston between Pasadena and Deer Park on the north side of Highway 225. Additionally, four sets of samples were collected randomly in the Houston Ship Channel along Interstate 10 and Highway 225. Also four sample sets were taken simultaneously at each of two locations to estimate the spatial variability of ambient measurements in the Houston Ship Channel area. The two locations were along Post Oak Road (north/south) and Clinton Drive (east/west).

During the initial source profile development, it was realized that additional point source information was needed to supplement the COAST source measurement (Fujita et al., 1996). Two database files were provided by TNRCC, one file containing source identification information, source location, hourly and/or daily VOC emissions and VOC profile code for each hour (if available, or 24-hour composite profile) and a second file containing the VOC source composition data by profile code. From this information, speciation profiles and composite source profiles were derived by source type and facility-specific source profiles for fifteen facilities located nearest to the Clinton site. Source profiles were also derived for fugitive emissions from petroleum industry facilities, petroleum marketing and storage facilities.

Hydrocarbon samples were collected during the Paso del Norte Study between 8/6/96 and 8/17/96 at several source-specific locations described as Chevron Tank, Chevron Tank South, Chevron Tank FCC, Delmex (ITT), Delmex downwind, Zenco, and Paint Shop. The first three sites are intended to represent fugitive VOC emissions from refinery operations. Delmex and Zenco are located in the industrial area of Juarez, and the paint operation is an auto body shop.

Four ambient samples were collected in industrial areas located along the southeast and eastern edge of the Austin during the 1998 Central Texas On-Road Hydrocarbon Study (Fujita, et al. 1999). These samples primarily reflect a combination of regional background and local vehicular traffic. With the exception of sample CTIND02 which showed higher content of biogenic species from the lumberyard, none of the samples show much evidence of increased halocarbon emissions or and other non-mobile VOC emissions.

Ambient samples were collected within various locations within the industrial areas of the Houston Ship Channel during the 1999 VOC Source Signature Study in Houston, TX (Fujita et al., 2001). Three 50-minute integrated samples were collected in each of the following industrial areas: Deer Park, Pasadena, Galena Park, Baytown, and Bayport. The three samples at each of the five industrial areas were collected during morning, midday and afternoon periods. Two additional sample sets were collected in Texas City area.

3.3.9 Coal-Fired Power Stations

Garcia et al. (1992) found small quantities of VOC emitted by several French coal-fired power stations, with benzene, toluene, ethylbenzene, xylenes, tetrachloroethane, benzaldehyde, and phenol being the most abundant compounds. Abundances of these compounds were substantially enriched over their abundances in the fuel, indicating that these compounds did not combust as well as other fuel components or that they partially formed as part of the combustion process. Some data have also been reported for petroleum fires (Booher and Janke, 1997), food and beverage production (Passant et al., 1993); household products and indoor building

materials(Sack et al., 1992), ferry boats (Cooper et al., 1996), the application of hot asphault (Kitto et al., 1997), fish rendering (Ohira et al., 1976), and phytoplankton in the ocean (McKay et al., 1996).

3.3.10 Biogenic Emissions

Biogenic VOC emissions from trees and shrubs (Altshuuller, 1983; Benjamin et al., 1997; Hewitt and Street, 1992; Roberts et al., 1985; Tanner and Zielinska, 1994) are typically reported for isoprene and monoterpenes such as alpha-pinene and beta-pinene. These compounds are very reactive and are usually detected only in forested areas. Isodorov et al. (1985) found a wide variety of heavy hydrocarbons in air dominated by different types of plants and trees that might be more stable indicators of biogenic contributions to ambient VOCs. Because terpenes are not reliably measured in canister samples, isoprene is typically used as a sole marker (i.e., taken to constitute 100 percent of NMHC) in the biogenic emissions profile (BIOGENIC). Biogenic NMHC emissions are highly reactive in the atmosphere, and biogenic source contributions derived from CMB modeling will supply only a lower limit to the actual contributions from biogenic emissions.

3.3.11 Regional Background

Aged emissions can be a significant contributor to VOC composition in urban areas during stagnant period, recirculation (e.g., coastal on-shore and offshore flow), and long-range transport. As emissions undergo photochemical reactions, photochemically stable compounds such as ethane and propane become enriched relative to reactive species. In such cases, the excess ethane and propane are typically assigned to natural gas leaks, petroleum gas leaks or to refinery emissions. Regional background samples may be derived from upwind samples and applied to in CMB to account for these aged emissions.

For example, regional upwind, background VOC compositions were derived from two sets of ambient samples for the 1998 Central Texas On-Road Hydrocarbon Study (Fujita et al., 1999a). Five six-hour samples were collected at the existing Texas Natural Resource Conservation Commission (TNRCC) monitoring stations at San Marcos Airport beginning at midnight. Three ambient samples (CTBIO01, CTBIO02, and CTBIO04) were collected in McKinney Falls State Park at Campsite #48 in order to obtain upwind background samples containing biogenic emissions. A mix of post oak and some live oak surrounds the site. The biogenic species isoprene and α - and β - pinene were removed from the regional profile.

Individual biogenic emissions profiles were included in the CMB analysis for isoprene, α -pinene, and β -pinene. No attempt was made to construct a profile base on the relative emissions of these three species. They were included individually to account for their presence in the ambient samples. Biogenic NMHC emissions are highly reactive in the atmosphere and biogenic source contributions derived from CMB modeling will supply only a lower limit to the actual contributions from biogenic emissions.

3.3.12 Unidentified

Most source profiles used in this study contain a UNID component, which represents the fractional compositions of NMHC that were not assigned to individual, identified species in the gas chromatographic analysis. A single constituent source profile (UNID is taken to constitute 100 percent of NMHC) has been used in the past (Fujita et al., 1994) to account for the contributions from this component. The difference between the measured total NMHC and the sum of the source contributions in this report refer to the differences between the measured NMHC and the measured number of the predicted contributions from those identified source categories. Nearly all of the unexplained mass is related to UNID that is not assigned to the identified categories. The fraction of UNID is consistently higher in downwind and afternoon samples, which suggests that much of this residual UNID could be secondary organic species produced by photochemical reactions.

4. APPLICATION OF CMB TO PAMS AMBIENT VOC DATA

The user's manual for CMB8 (Watson et. al., 1997) explains the input and output file formats and describes how to operate the software. Each type of input file structure is illustrated with one of the test data sets packaged with CMB8. This section illustrates how to prepare the required input files for the application of CMB8 to VOCs using the macro provided in The Excel file, CMBProfileLibrary.xls.

4.1 **Preparing CMB Input Files**

Six data files are used for input to CMB8. However, only the ambient and source profile data files are required. Though optional, the remaining four files provide substantial user convenience by establishing commonly used defaults and sample subsets that would otherwise need to be initialized each time CMB8 is run.

CMB input and output files can have any eight-character file name with a three-character extension that indicates the file type. The file naming convention that has been adopted for CMB is **PPXXXXYY.SSS**, where:

- **PP:** Type of file. Common definitions are:
 - **IN**-File identifying other input data file names.
 - **SO**-Source profile selection file, identifying default fitting profiles and source profile descriptions.
 - **PO**-Species selection file, identifying default fitting species.
 - **DS**-Data selection file, identifying samples to be selected from the ambient data file for apportionment during a CMB session.
 - AD-Ambient data file, containing the measured ambient concentrations and their precisions.
 - **PR**-Source profile file, containing mass-fraction chemical abundances and their uncertainties.
 - **OU**-Output file, containing report or data base output.
- **XXXX:** Study identifier. This four-letter code allows separate studies to be distinguished from one another.
- YY: Session or report identifier. This two-letter code can be assigned to variations on input data files or to distinguish report and data base output files. For example, input data files might be divided up by season or by sampling site to be evaluated in separate CMB modeling sessions. YY might take on the values 'WI' for winter, 'SP' for spring, 'SU' for summer, and 'FA' for fall. Default output filenames can be designated in the options menu with 'RP' identifying the report file and 'DB' representing the data base file. Output files should be written into separate directories, as designated in the Options menu, when different input files are used for the same project.

- SSS: File format identifier. The following file extensions are recognized by CMB8:
 - IN8: Input filename ASCII text file. CMB8 lists files with this extension when the program is executed and when CMB8 input files are requested using the File menu.
 - SEL: Fitting profile, fitting species, and sample selection ASCII text files. CMB8 recognizes files with this extension has containing default selections that can be entered external to the program. This extension applies only to the SO, PO, and DS file types.
 - **CSV:** Ambient data or source profile comma separated value ASCII text file. Each field is separated by a comma. Comma-delimited ASCII data base output files are written with this extension.
 - DBF: X-base data base file generated by dBASE or FoxPro compatible data management software. Most commonly used spreadsheets offer this as an output option. DBASE or FoxPro output files are written with this extension.
 - **TXT**: Ambient data or source profile data blank-delimited ASCII text file. Blank-delimited ASCII data base output files are written with this extension.
 - **DAT**: Ambient or source profile data ASCII text file, blank delimited. File structure is identical to TXT extensions.
 - WKS: Lotus 1-2-3 version 1 spreadsheet format. Most commonly used spreadsheets offer this as an output option. This is the most useful output format for the data base output file when source contribution estimates will be analyzed using a spreadsheet.

CMB8 converts the CSV, DBF, and WKS input data files to blank-delimited (TXT) files that are actually used by the program. This file carries the TXT suffix and may be used in subsequent modeling sessions to minimize startup time.

4.1.1 Input Filename File

This fixed format file contains a list of the names of other CMB8 input data files. This filename, which is normally entered in response to the first few prompts when CMB8 is started, consists of five lines as shown below. These lines, in succession, contain the names of the files that are described in the following sub-sections. INPAMS.IN8 is an example of this file structure used in CMB8.

1 2 01234567890 SOPAMS.SEL POPAMS.SEL DSPAMS.SEL ADPAMS.DBF PRPAMS.DBF

File name entries should be left justified. For the CMB8 32 bit version, the only restriction on file names is that they are acceptable to the operating system. This means that

extended file names may be used. For the CMB8 16 bit version, each filename can be up to eight characters in length with up to a three-character suffix, and the fully qualified path plus file name should be less than 256 characters in length. The purpose of this file is to save the effort of keying in the input filename individually. If an INXXXXYY.IN8 filename is not entered at the appropriate prompt, CMB8 will request the names of individual data input filenames.

4.1.2 Source, Species, and Sample Selection Input Files

The source, species and sample selection files provide defaults that do not have to be entered from the program each time a CMB8 session is begun. These files limit the profiles, species, and ambient data records to those listed in the selection files, even though a larger number may be included in the ambient and source profile data files. This means that the data files need not be edited when only subsets of variables are desired for a specific CMB8 modeling session. The source and species selection files also allow default sets of fitting profiles and species to be designated, making it unnecessary to select these at the beginning of each CMB8 session. Variable definitions can also be documented in these files. Sampling site coordinates can be documented in the sample selection file.

Following is an example of the source profile selection file SOPAMS.SEL:

0	1	2 3	4
1234567	8901234567	890123456789012345678	390
CA1799	CPcomp_1	* *	Consumer Products
AUST18	CTOD	*	Organic Decay
AUST19	CTCNG	_ *	CNG Austin, TX
AUST20	CTLPG01	* *	LPG Austin, TX
MCH1	COOKING5	*	Meat cooking
PAM001	Biogenic	_ *	Biogenic
PAM012	COATcomp	* *	Composite surface coatings
PAM023	LA_liqGs	* *	Liquid gasoline
PAM040	LA_HSvap	* *	Gasoline head space vapor
PAM136	Tu_Sep1		Sepulveda Tunnel - diesel & min. vapor
PAM137	Tu_Sep2		Sepulveda Tunnel - diesel & max. vapor
PAM141	Tu_Van0		Van Nuys Tunnel - diesel
PAM142	Tu_Van1		Van Nuys Tunnel - diesel & min. vapor
PAM143	Tu_Van2		Van Nuys Tunnel - diesel & max. vapor
PAM134	Tu_Sep		Sepulveda Tunnel no correction
PAM138	Tu_TusHD		Tuscarora Tunnel HD Diesel
PAM140	Tu_Van		Van Nuys Tunnel no correction
TUN001	TuS95	* *	Sepulveda Tunnel no corr 1995
TUN002	TuS96		Sepulveda Tunnel no corr 1996
TUN005	TuMchHDc	* *	Fort McHenry Tunnel HD Diesel
InkPic	PicoInk1		Ink from print shop
UNID	UNID	*	Unidentified species
BkgAMc	BkgAMc	*	AM background in SoCAB
BkgPMc			

A source code with up to six characters is located in Columns 1 to 6 and an eightcharacter profile name is located in Columns 9 to 16. Asterisks in Column 19 designates the default fitting profiles when CMB8 is executed, and columns 21,23,25,27, 29, 31,33,35 and 37 can contain nine other default profile combinations that are selectable from the program. The maximum number of species is essentially unlimited. Text comments can be added to this file beginning at the 39th column to document the source profiles.

Following is an example of the species selection file POPAMS.SEL:

123456789012345678901234567890124567890 OTHERU - - Other identified species UNID VNICU - - Total nonmethane hydrocarbons NMHC NMHCU - - - Total nonmethane organic compounds ETHENNE ETHENNE * - - ethylene ACETYL ACETYL - - ethylene ACETYL JBTAN BTHANK * - - ethylene RCETYL JBTAN BTHANK * - - ethylene NENCA NENCA NENCA - - - ethylene NENTA NENTAN BUTAN - - - propene NENTA NENTA NENTA - - - h-butane 12BUTE IBUTAN - - - n-pentane 12BUTE IDENTAN - - - n-pentane 12BUTE IDENTAN - - - 1-pentane 12PENNE IPENTAN -		1	2 3 4	
OTHEROTHERU	1234567			
UNID UNIDU * - Unidentified species NMMC NMMCU - - - Total nonmethane hydrocarbons NMOC NMOCU - - - ethylene ACETYL - - - acetylene ETHENE ETHENEU * - - acetylene ETHENE ETHENEU * - - acetylene RACETYL ACETYL * - - acetylene TBUTA EUNTA BUTAN * - - acetylene LBUTA LBUTAU - - - houtane - LBUTA TZBUTE - - - n-bettane LBUTA JBUTA - - - n-pentane LPENTA JENTA - - - - VENT NENT NENT - - - ZPENE TZPENEU -				
NMHC NMACC	UNID	UNIDU		
NMOC NMOCU - - Total nonmethane organic compounds ETHENE ETHENEU - - actylene ETHENE ETHENEU - - actylene ETHENE ETHANE ETHANE The actylene PROPE FROPE - - ethane NERCP N.PROPU - - ethane NETA BUTA BUTA - - n-butane LBUT1 LBUT1UE - - - n-butane TZBUTE TZBUTE - - - n-pentane PENTA PENTAL - - - n-pentane PENTEL - - - - - T2PENT PENTVU - - - - U22DM U22DMU - - - - U22DMU - - - - - U22DMU U23DMU -	NMHC			S
THENE ETHANEU * - - ethylene ACETYL ACETYLU * - - acetylene PROFE PROFEU - - - propene N_PROP PROPEU - - - propene LBUTA LBUTAU - - - propane LBUTA LBUTAU - - - houtane LBUTA LBUTAU - - - n-butane 72BUTE T2BUTEU - - - n-pentane PENTA PENTAI - - - n-pentane IPENTA PENTAI - - - n-pentane IPENTA IPENTAU - - - isoprene T2PENE T2PENEU - - - ciso2-pentene C2PENTA CPENTAU - - - 2, 3-dimethylbutane CPENTA CPENTAU - - - 2, 3-dimethylbutane D22DM D22DMU -	NMOC	NMOCU		
ACETYL ACETYL ACETYL ACETYL ACETYL FHANE ETHANE FTHANE F - - ethane PROPE PROPEU - - - propene N_PROP N_PROPU - - - propene LBUTIL LBUTIL - - - 1-butene N_BUTA N_BUTA - - - - - 72BUTE T2BUTEU - - - - - - 72BUTE T2BUTEU - - - - - - - - 72BUTE T2BENTA -			* ethylene	<u> </u>
PROPE PROPEU - - - propene N_PROP N_PROPU - - - propane LBUTA LBUTAU - - - 1-butene N_BUTA N_BUTA - - - 1-butene N_BUTA N_BUTA - - - - 1-butene C2BUTE C2BUTE - - - - - - IPENTA IPENTAU - - - - - - - IPENTA IPENTAU -		ACETYLU	* acetylene	
PROPE PROPEU - - - propene N_PROP N_PROPU - - - propane LBUTA LBUTAU - - - 1-butene N_BUTA N_BUTA - - - 1-butene N_BUTA N_BUTA - - - - 1-butene C2BUTE C2BUTE - - - - - - IPENTA IPENTAU - - - - - - - IPENTA IPENTAU -		ETHANEII	* ethane	
N_PROP N_PROPU *				
I_BUTA I_BUTAU - - isobutane LBUTIE LBUTIEU - - - 1-butene N_BUTA N_BUTAU * - - - n-butane T2BUTE T2BUTEU - - - - n-pentane IPENTA IPENTAU - - - - n-pentane IPENTE IPENTEIU - - - - n-pentane IPENTEIU - - - - - n-pentane IPENTENTEIU - - - - - - - UPENTA IPENAMU - <				
LBUTIE LBUTIEU		N_PROPU		
N_BUTA N_BUTAU *			1 but one	
T2BUTE T2BUTE T2BUTE Table trans-2-butene C2BUTE C2BUTE C2BUTE C2BUTE C2BUTE Table PENTA IPENTAU - - - n-pentane PENTE PENTENIU - - - n-pentane I_PREN I_PRENU * - - n-pentane I_PREN I_PRENU * - - n-pentane C2PENE C2PENE - - - trans-2-pentene BU22DM BU22DMU - - - 2,2-dimethylbutane C2PENE C2PENEAU - - - 2,2-dimethylbutane BU22DM BU22DMU - - - 2,2-dimethylbutane PU22M BU22MMU - - - 2,3-dimethylbutane PU22M BU23MMU - - - 2,3-dimethylbutane PU22M PEN2AM PEN2AMU - - - 2,-methyllotane PEN2AM PEN2AMU - - - -		LDUIILU N DITAII	I-Dutelle	
C2BUTE C3BUTEU - - - cis-2-butene IPENTA IPENTAU - - - n-pentane PENTEI PENTEIU - - - n-pentane N_PENT N_PENTU - - - n-pentane TZPENE T_PENU - - - rams-2-pentene C2PENE C2PENEU - - - cis-2-pentene BU22DM BU22DMU - - - cyclopentane BU23DM BU23DMU - - - Cyclopentane BU23DM BU23DMU - - - 2,3-dimethylbutane PENA3M PENA3M - - - 2,3-dimethylbutane PENA3M PENA3MU - - - - PENA2M PENA2MU - - - - PENA3M PENA3MU - - - - PEN24M PEN24MU - - - - PEN24M PEN24UU -			hundre	
IPENTA1 IPENTAU - - n-pentane PENTE1 PENTU - - n-pentane I_PREN I_PRENU * - - n-pentane I_PREN I_PRENU * - - n-pentane T2PENE T2PENEU * - - isoprene C2PENE C2PENEU - - - 2,2-dimethylbutane BU23DM BU23DMU - - - 2,3-dimethylbutane PENA3M PENA3MU - - - - - PENA3M PENA3MU - - - - - - PENA3M PENA3MU - - - - - - - - - - - - - - -				
N_PENT N_PENTU - - n-pentane I_PRENU I_PRENU - - - isoprene T2PENE T2PENEU - - - tisoprene C2PENE C2PENEU - - - cis-2-pentene BU23DM BU23DMU - - - Cyclopentane BU23DM BU23DMU - - - 2,3-dimethylbutane PENA3M PENA2MU - - - 2,3-dimethylpentane PENA3M PENA3MU - - - 2.methylpentane PENA3M PENA3MU - - - - - PEN43M PENA2MU - - - - - PEN24M PEN24MU - - - - - - PEN24M PEN24MU - <		CZBUIEU	Cis-2-butene	
N_PENT N_PENTU - - n-pentane I_PRENU I_PRENU - - - isoprene T2PENE T2PENEU - - - tisoprene C2PENE C2PENEU - - - cis-2-pentene BU23DM BU23DMU - - - Cyclopentane BU23DM BU23DMU - - - 2,3-dimethylbutane PENA3M PENA2MU - - - 2,3-dimethylpentane PENA3M PENA3MU - - - 2.methylpentane PENA3M PENA3MU - - - - - PEN43M PENA2MU - - - - - PEN24M PEN24MU - - - - - - PEN24M PEN24MU - <		IPENTAU	n-pentane	
I_PREN I_PRENU * - - isoprene T2PENE T2PENEU - - - cis-2-pentene BU22DM BU22DMU - - - 2,2-dimethylbutane BU22DM BU22DMU - - - 2,2-dimethylbutane BU23DM BU23DMU - - - 2,3-dimethylbutane PENA2M PENA2MU - - - 2,-methylpentane PENA3M PENA2MU - - - 2-methylpentane PEN24M PEN24MU - - - 2,4 dimethylpentane PEN24M PEN24MU - - - 2,2,4 dimethylpentane PEN24M PEN24MU - - - 2,2,4-trimethylpentane PEN24M PEN24MU - - - - </td <td></td> <td>PENTEIU</td> <td> 1-pentene</td> <td></td>		PENTEIU	1-pentene	
T2PENE T2PENEU - - - trans-2-pentene C2PENE C2PENEU - - - cis-2-pentene BU22DM BU22DMU - - - 2,2-dimethylbutane CPENTA CPENTAU - - - 2,3-dimethylbutane BU22DM BU23DMU - - - 2,3-dimethylbutane PENA3M PENA3MU - - - 2,3-dimethylbutane PENA3M PENA3MU - - - 3-methylpentane PENA3M PENA3MU - - - - - PENA3M PENA3MU - - - - - PEN2MU - - - - - - - NHEX N_HEXU -		N_PENTU		
C2PENE C2PENEU - - - cis-2-pentene BU22DM BU22DMU - - - Cyclopentane BU23DM BU23DMU - - - Cyclopentane BU23DM BU23DMU - - - Cyclopentane BU23DM PENA2MU - - - 2.3-dimethylbutane PENA2M PENA2MU - - - 2-methylpentane PENA2M PEN2MU - - - 2-methylpentane PEN2MU - - - - - - N_HEX N_HEXU - - - - - N_HEX N_HEXU - - - - - - PEN24M PEN24MU -	_	I_PRENU	* isoprene	
CPENTA CPENTAU - - - - - - - - - - - - - - - - - - - 2,3-dimethylpentane PENA2M PENA2MU -		T2PENEU	trans-2-pentene	
CPENTA CPENTAU - - - - - - - - - - - - - - - - - - - 2,3-dimethylputane BU23DM PENA2MU -<	-	C2PENEU	cis-2-pentene	
BU23DM BU23DMU - - - 2,3-dimethylbutane PENA2M PENA2M - - - 2-methylpentane PENA3MU - - - 3-methylpentane PIE2ME PIE2MEU - - - 3-methylpentane NLEX N_HEXU - - - methylcyclopentane MCYPNA MCYPNAU - - - methylcyclopentane PEN24M PEN24MU - - - methylcyclopentane BENZE BENZEU * - - - dimethylpentane BENZE BENZEU * - - - 2,3-dimethylpentane BENZE BENZEU * - - - - 2-methylhexane PEN23M PEN23MU - - - - 2-methylhexane PEN24M PEN23MU - - - 2,3-dimethylpentane HEXA2M HEXA3MU - - - 2,3,4-trimethylpentane N_HEYT N_AP234MU	BU22DM	BU22DMU	2,2-dimethylbutane	
PENA2M PENA2MU - - - 2-methylpentane PENA3M PENA3MU - - - 3-methylpentane PIE2ME PIE2MEU - - - 2-methylpentane PIE2ME PIE2MEU - - - - - MCYPNA MCYPNAU - - - - - MCYPNA MCYPNAU - - - - - - MCYPNA MCYPNAU - <	CPENTA			
N_HEX N_HEXU - - - n-hexane MCYPNA MCYPNAU - - - methylcyclopentane PEN24M PEN24W PEN24W - - - benzene CYHEXA CYHEXAU - - - - cyclohexane HEXA2M HEXA2MU - - - - 2-methylhexane PEN23M PEN23MU - - - - 2-methylhexane PA224M PA224MU - - - - 2,3-dimethylpentane MEXA3M HEXA3M - - - - 2,2,4-trimethylpentane N_HEPT N_HEPTU - - - - - 1-heptane MECYHX MECYHXU - - - - - 1-heptane MECYHX MECYHXU - - - - - 1-heptane MECYHX - - - - - - 1-heptane MECYHX MECYHXU - <td< td=""><td>BU23DM</td><td>BU23DMU</td><td> 2,3-dimethylbutane</td><td></td></td<>	BU23DM	BU23DMU	2,3-dimethylbutane	
N_HEX N_HEXU - - - n-hexane MCYPNA MCYPNAU - - - methylcyclopentane PEN24M PEN24W PEN24W - - - benzene CYHEXA CYHEXAU - - - - cyclohexane HEXA2M HEXA2MU - - - - 2-methylhexane PEN23M PEN23MU - - - - 2-methylhexane PA224M PA224MU - - - - 2,3-dimethylpentane MEXA3M HEXA3M - - - - 2,2,4-trimethylpentane N_HEPT N_HEPTU - - - - - 1-heptane MECYHX MECYHXU - - - - - 1-heptane MECYHX MECYHXU - - - - - 1-heptane MECYHX - - - - - - 1-heptane MECYHX MECYHXU - <td< td=""><td>PENA2M</td><td>pena2mu</td><td> 2-methylpentane</td><td></td></td<>	PENA2M	pena2mu	2-methylpentane	
N_HEX N_HEXU - - - n-hexane MCYPNA MCYPNAU - - - methylcyclopentane PEN24M PEN24W PEN24W - - - benzene CYHEXA CYHEXAU - - - - cyclohexane HEXA2M HEXA2MU - - - - 2-methylhexane PEN23M PEN23MU - - - - 2-methylhexane PA224M PA224MU - - - - 2,3-dimethylpentane MEXA3M HEXA3M - - - - 2,2,4-trimethylpentane N_HEPT N_HEPTU - - - - - 1-heptane MECYHX MECYHXU - - - - - 1-heptane MECYHX MECYHXU - - - - - 1-heptane MECYHX - - - - - - 1-heptane MECYHX MECYHXU - <td< td=""><td>pena3m</td><td>pena3mu</td><td> 3-methylpentane</td><td></td></td<>	pena3m	pena3mu	3-methylpentane	
N_HEX N_HEXU - - - n-hexane MCYPNA MCYPNAU - - - methylcyclopentane PEN24M PEN24W PEN24W - - - benzene CYHEXA CYHEXAU - - - - cyclohexane HEXA2M HEXA2MU - - - - 2-methylhexane PEN23M PEN23MU - - - - 2-methylhexane PA224M PA224MU - - - - 2,3-dimethylpentane MEXA3M HEXA3M - - - - 2,2,4-trimethylpentane N_HEPT N_HEPTU - - - - - 1-heptane MECYHX MECYHXU - - - - - 1-heptane MECYHX MECYHXU - - - - - 1-heptane MECYHX - - - - - - 1-heptane MECYHX MECYHXU - <td< td=""><td>P1E2ME</td><td>P1E2MEU</td><td> 2-methyl 1-pentene</td><td></td></td<>	P1E2ME	P1E2MEU	2-methyl 1-pentene	
MCYPNA MCYPNAU - - - - methylcyclopentane PEN24M PEN24MU - - - 2,4 dimethylpentane BENZE BENZEU * - - benzene CYHEXA CYHEXAU - - - cyclohexane HEXA2M HEXA2MU - - - 2-methylhexane PEN23M PEN23MU - - - 2,3-dimethylpentane HEXA3M HEXA3MU - - - 2,2,4-trimethylpentane N_HEPT N_HEPTU - - - n-heptane MECYHXU - - - - n-heptane MECYHX MECYHXU - - - n-heptane MECYHX MECYHXU - - - toluene PA234M PA234MU - - - - N_LEPT N_HEPTU - - - - PA234M PA234MU - - - - N_LEQMEU		N_HEXU	n-hexane	
PEN24M PEN24MU - - - - 2,4 dimethylpentane BENZE BENZEU * - - - benzene CYHEXA CYHEXAU - - - - cyclohexane HEXA2M HEXA2MU - - - 2-methylhexane PEN23M PEN23MU - - - 2,3-dimethylpentane HEXA3M HEXA3MU - - - 2,2,4-trimethylpentane PA224M PA224MU - - - - 1.4 cylpentane N_HEPT N_HEPTU - - - - 1.4 cylpentane MECYHX MECYHXU - - - - methylpentane PA234M PA234MU - - - - toluene HEP2ME HEP2MEU - - - - toluene HEP3ME HEP3MEU - - - - toluene TBZ FTBZU - - - - toluene <tr< td=""><td>MCYPNA</td><td>MCYPNAU</td><td> methylcyclopentane</td><td></td></tr<>	MCYPNA	MCYPNAU	methylcyclopentane	
BENZE BENZEU * - - - benzene CYHEXA CYHEXAU - - - - cyclohexane HEXA2M HEXA2MU - - - 2-methylhexane PEN23M PEN23MU - - - 2,3-dimethylpentane HEXA3MU - - - - 3-methylhexane PA224M PA224MU - - - 2,2,4-trimethylpentane N_HEPT N_HEPTU - - - - n-heptane MECYHX MECYHXU - - - - 2,3,4-trimethylpentane TOLUE TOLUEU * - - - - 2-methylheptane HEP2ME HEP3MEU - - - - - 2-methylheptane MOCT N_OCTU - - - - - - MP_XYL MP_XYLU - - - - - - MP_XYL MP_XYLU - - - - <td>PEN24M</td> <td></td> <td></td> <td></td>	PEN24M			
CYHEXA CYHEXAU - <t< td=""><td>BENZE</td><td>BENZEU</td><td>* benzene</td><td></td></t<>	BENZE	BENZEU	* benzene	
HEXA2M HEXA2MU - - - 2-methylhexane PEN23M PEN23MU - - - 2,3-dimethylpentane HEXA3M HEXA3MU - - - 3-methylhexane PA224M PA224MU - - - 2,2,4-trimethylpentane N_HEPT N_HEPTU - - - n-heptane MECYHX MECYHXU - - - methylcyclohexane PA234M PA234MU - - - methylcyclohexane PA234M PA234MU - - - - cluene HEP2ME TOLUEU * - - - 2-methylheptane MECYHXU - - - - - - - TOLUE TOLUEU * - - - - - - HEP3ME HEP2MEU - - - - - - - - - - - - - - - - -	CYHEXA	CYHEXAU	cyclohexane	
PEN23M PEN23MU - - - - - 2,3-dimethylpentane HEXA3M HEXA3MU - - - - 3-methylhexane PA224M PA224MU - - - - 2,2,4-trimethylpentane N_HEPT N_HEPTU - - - - n-heptane MECYHX MECYHXU - - - - n-heptane MECYHX MECYHXU - - - - 2,3,4-trimethylpentane PA234M PA234MU - - - - 2,3,4-trimethylpentane TOLUE TOLUEU * - - - 2-methylheptane HEP2ME HEP3MEU - - - - 2-methylheptane N_OCT N_OCTU - - - - - n-octane ETBZ ETBZU - - - - - - - MP_XYL MP_XYLU * - - - - - - -<	HEXA2M	HEXA2MU	2-methylhexane	
HEXA3M HEXA3MU - - - 3-methylhexane PA224M PA224MU - - - 2,2,4-trimethylpentane N_HEPT N_HEPTU - - - n-heptane MECYHX MECYHXU - - - methylcyclohexane PA234M PA234MU - - - methylcyclohexane PA234M PA234MU - - - - TOLUE TOLUEU * - - - - HEP3ME HEP2MEU - - - - - - N_COT N_OCTU - - - - - - - - - - - - - - - -	PEN23M	PEN23MU	2,3-dimethylpentane	
N_HEPT N_HEPTU - - - - n-heptane MECYHX MECYHXU - - - - methylcyclohexane PA234M PA234MU - - - - 2,3,4-trimethylpentane TOLUE TOLUEU * - - - - 2,3,4-trimethylpentane HEP2ME TOLUEU * - - - - 2,3,4-trimethylpentane HEP2ME HEP2MEU - - - - 2-methylheptane HEP3ME HEP3MEU - - - - 3-methylheptane N_OCT N_OCTU - - - - n-octane ETBZ ETBZU - - - - modelyclone MP_XYL MP_XYLU * - - - modelyclone STYR STYRU - - - - o-xylene N_NON N_NONU - - - - n-nonane IPRBZ IPRBZU -	HEXA3M	hexa3mu	3-methylhexane	
N_HEPT N_HEPTU - - - - n-heptane MECYHX MECYHXU - - - - methylcyclohexane PA234M PA234MU - - - - 2,3,4-trimethylpentane TOLUE TOLUEU * - - - - 2,3,4-trimethylpentane HEP2ME TOLUEU * - - - - 2,3,4-trimethylpentane HEP2ME HEP2MEU - - - - 2-methylheptane HEP3ME HEP3MEU - - - - 3-methylheptane N_OCT N_OCTU - - - - n-octane ETBZ ETBZU - - - - m&p-xylene STYR STYRU - - - - - o-xylene N_NON N_NONU - - - - n-nonane isopropylbenzene IPRBZ IPRBZU - - - - - n-propylbenzene	PA224M	PA224MU	- $ 2,2,4$ -trimethylpentane	
MECYHX MECYHXU - - - - methylcyclohexane PA234M PA234MU - - - 2,3,4-trimethylpentane TOLUE TOLUEU * - - - toluene HEP2ME HEP2MEU - - - 2-methylheptane HEP3ME HEP3MEU - - - 3-methylheptane N_OCT N_OCTU - - - n-octane ETBZ ETBZU - - - m&p-xylene STYR STYRU - - - o-xylene N_NON N_NONU - - - o-xylene N_NON N_NONU - - - n-nonane IPRBZ IPRBZU - - - n-propylbenzene M_ETOL M_ETOLU - - - meta ethyltoluene P_ETOL P_ETOLU - - - para ethyltoluene J235M BZ135MU - - - 1,3,5-trimethylbenzene </td <td></td> <td>N HEPTU</td> <td> n-heptane</td> <td></td>		N HEPTU	n-heptane	
PA234M PA234MU - - - 2,3,4-trimethylpentane TOLUE TOLUEU * - - - toluene HEP2ME HEP2MEU - - - 2-methylheptane HEP3ME HEP3MEU - - - 2-methylheptane N_OCT N_OCTU - - - 3-methylheptane N_OCT N_OCTU - - - n-octane ETBZ ETBZU - - - m&p-xylene STYR STYRU - - - - o-xylene N_NON N_NONU - - - - n-nonane IPRBZ IPRBZU - - - - n-propylbenzene M_ETOL M_ETOLU - - - - meta ethyltoluene P_ETOL P_ETOLU - - - - meta ethyltoluene BZ135M BZ135MU - - - - meta ethyltoluene		MECYHXU		
TOLUETOLUEU*tolueneHEP2MEHEP2MEU2-methylheptaneHEP3MEHEP3MEU3-methylheptaneN_OCTN_OCTUn-octaneETBZETBZUm&p-xyleneSTYRSTYRUm&p-xyleneO_XYLO_XYLUo-xyleneN_NONN_NONUn-nonaneIPRBZIPRBZUn-nopylbenzeneM_ETOLM_ETOLUmeta ethyltolueneP_ETOLP_ETOLUmeta ethyltolueneBZ135MBZ135MU1,3,5-trimethylbenzene				
HEP2MEHEP2MEU2-methylheptaneHEP3MEHEP3MEU3-methylheptaneN_OCTN_OCTUn-octaneETBZETBZUmethylheptaneMP_XYLMP_XYLU*methylheptaneMP_XYLMP_XYLU*methylheptaneSTYRSTYRUmethylheptaneO_XYLO_XYLUmethylheptaneN_NONN_NONUmethylheptaneIPRBZIPRBZUmethylheptaneN_PRBZN_PRBZUmethylheptaneM_ETOLM_ETOLUmethylheptaneP_ETOLP_ETOLUmethylheptaneBZ135MBZ135MUmethylheptane				
HEP3ME HEP3MEU - - - 3-methylheptane N_OCT N_OCTU - - - n-octane ETBZ ETBZU - - - ethylbenzene MP_XYL MP_XYLU * - - m&p-xylene STYR STYRU - - - o-xylene O_XYL O_XYLU - - - o-xylene N_NON N_NONU - - - n-nonane IPRBZ IPRBZU - - - n-propylbenzene M_ETOL M_ETOLU - - - meta ethyltoluene P_ETOL P_ETOLU - - - para ethyltoluene BZ135M BZ135MU - - - 1,3,5-trimethylbenzene			0010010	
N_OCT N_OCTU - - - - n-octane ETBZ ETBZU - - - ethylbenzene MP_XYL MP_XYLU * - - - m&p-xylene STYR STYRU - - - - styrene O_XYL O_XYLU - - - - o-xylene N_NON N_NONU - - - - o-xylene N_NON N_NONU - - - - o-xylene N_PRBZ IPRBZU - - - n-nonane IPRBZ N_PRBZU - - - n-propylbenzene M_ETOL M_ETOLU - - - meta ethyltoluene P_ETOL P_ETOLU - - - para ethyltoluene BZ135M BZ135MU - - - 1,3,5-trimethylbenzene				
TBZTBZUethylbenzeneMP_XYLMP_XYLU*m&p-xyleneSTYRSTYRUstyreneO_XYLO_XYLUo-xyleneN_NONN_NONUn-nonaneIPRBZIPRBZUn-propylbenzeneN_PRBZN_PRBZUneta ethyltolueneP_ETOLP_ETOLUpara ethyltolueneBZ135MBZ135MU1,3,5-trimethylbenzene				
MP_XYLMP_XYLU*m&p-xyleneSTYRSTYRUstyreneO_XYLO_XYLUo-xyleneN_NONN_NONUn-nonaneIPRBZIPRBZUn-propylbenzeneN_PRBZN_PRBZUn-propylbenzeneM_ETOLM_ETOLUpara ethyltolueneP_ETOLP_ETOLU1,3,5-trimethylbenzene				
STYRSTYRUstyreneO_XYLO_XYLUo-xyleneN_NONN_NONUn-nonaneIPRBZIPRBZUisopropylbenzeneN_PRBZN_PRBZUn-propylbenzeneM_ETOLM_ETOLUmeta ethyltolueneP_ETOLP_ETOLUpara ethyltolueneBZ135MBZ135MU1,3,5-trimethylbenzene				
O_XYLO_XYLUo-xyleneN_NONN_NONUn-nonaneIPRBZIPRBZUisopropylbenzeneN_PRBZN_PRBZUn-propylbenzeneM_ETOLM_ETOLUmeta ethyltolueneP_ETOLP_ETOLUpara ethyltolueneBZ135MBZ135MU1,3,5-trimethylbenzene				
N_NONN_NONUn-nonaneIPRBZIPRBZUisopropylbenzeneN_PRBZN_PRBZUn-propylbenzeneM_ETOLM_ETOLUmeta ethyltolueneP_ETOLP_ETOLUpara ethyltolueneBZ135MBZ135MU1,3,5-trimethylbenzene				
IPRBZIPRBZUisopropylbenzeneN_PRBZN_PRBZUn-propylbenzeneM_ETOLM_ETOLUmeta ethyltolueneP_ETOLP_ETOLUpara ethyltolueneBZ135MBZ135MU1,3,5-trimethylbenzene				
N_PRBZN_PRBZUn-propylbenzeneM_ETOLM_ETOLUmeta ethyltolueneP_ETOLP_ETOLUpara ethyltolueneBZ135MBZ135MU1,3,5-trimethylbenzene				
M_ETOLM_ETOLUmeta ethyltolueneP_ETOLP_ETOLUpara ethyltolueneBZ135MBZ135MU1,3,5-trimethylbenzene				
P_ETOL P_ETOLU para ethyltoluene BZ135M BZ135MU 1,3,5-trimethylbenzene				
BZ135M BZ135MU 1,3,5-trimethylbenzene				
O_EIOL O_EIOLU O-EINYITOIUENE				
	O_F.I.OT	O_FLOPO	o-etnyitoiuene	

BZ124M	BZ124MU		1,3,4-trimethylbenzene
N_DEC	N_DECU	*	n-decane
BZ123M	BZ123MU		1,2,3-trimethybenzene
DETBZ1	DETBZ1U		meta-diethylbenzene
DETBZ2	DETBZ2U		para-diethylbenzene
N_UNDE	N_UNDEU	*	n-undecane

A species code with up to six characters is located in Columns 1 to 6 and an eightcharacter species name is located in Columns 9 to 16. Asterisks in Column 19 designates the default fitting species when CMB8 is executed, and columns 21,23,25,27, 29, 31,33,35 and 37 can contain nine other default species combinations that are selectable from the program. The maximum number of species is essentially unlimited. Text comments can be added to this file beginning at the 39th column to document the meaning and units of the chemical components. Nominal afternoon summertime residence times for a reactive environment (e.g., Los Angeles) are estimated in Table 4-1. These are lower limits, but they provide an indication of which components are likely to remain relatively stable between source and receptor, thereby qualifying as fitting species for CMB source apportionment. The table provides a recommended list of fitting species depending on the type of PAMS site and time of day.

For the ambient data records selection file, columns 1 through 12 are for the site ID, columns 14 through 21 are for the date, columns 23 and 24 for the sample duration, columns 26 and 27 for the sample start hour, and columns 29-33 for the particle size fraction, if appropriate. Intermediate columns should be blank. An asterisk in column 35 selects a record. In addition columns 37 through 46 and columns 48 through 57 may contain x and y coordinates, respectively, for use in the Spatial Pie plots (see below). These should be in floating point format, e.g., 123.456, and should increase in value from left to right and from bottom to top. UTM coordinates are suitable as well as fractional longitudes and latitudes, if the longitudes are expressed as negative numbers.

Following is an example of the species selection file DSPAMS.SEL:

1	2		3		4	5	6
1234567898012	2345678901	234567	89012	3456	7890123456	78901234	1567890
AZUSA	07/27/89	03 06	VOC	*	-117.92380	034.136	520
PICO	07/27/89	03 06	VOC	*	-118.06060	034.141	L00
BURBANK	07/27/89	03 06	VOC	*	-121.93110	037.323	300

The file structure through the first 5 fields is that of the ambient data input, with columns 1-12 for the site name, columns 13-20 for the sample date, columns 22-23 for the sample duration (in hours), columns 25 and 26 for the sample start time (hour beginning), columns 28-32 for the particle size fraction, column 34 for an asterisk to identify this sample as a section for apportionment, columns 37-45 for the x-coordinate (west-east) of the corresponding sampling sites, and columns 47-55 for the y-coordinate (south-north) of the corresponding site. Site coordinates should be selected so that they are of increasing magnitude from west to east and from south to north. The negative longitude coordinate in columns 37 through 46 above meets that criterion. Coordinates should be in fractional units. UTM coordinates can also be used when they are all from the same zone. These coordinates are used for the spatial plotting display. Site coordinates are optional, and their columns are ignored if they are left blank. Only the first

reference to a sampling site code requires coordinates to be supplied. These are assumed to be constant for all subsequent references to this site code.

4.1.3 Generating CMB-Ready Input Files Using Macros in SourceProfileLibrary.xls

The source profile, source selection and species selection files can be automatically generated by running a macro 'MakeCMBinputFiles'. To create input files for CMB8, go to worksheet 'profiles table' and select all profiles to be included in the source selection file by flagging them with any character in the column labeled Select. Once you have selected all profiles desired switch to worksheet 'defaultSources'. Here you can pre-select up to 10 combinations of source profiles to use in the CMB8 fitting process. A default species selection file can also be generated by editing the green cells in sheet 'defaultSpecies' before creating the species selection file. A set of CMB-ready input files can be generated by running the macro 'MakeCMBinputFiles'. The macro will close this workbook once the files are created, so you may wish to save before running it to preserve your selections. To run the macro press CTRL-m. Individual files can also be created as follows: save the sheet 'spec.sel' or 'source.sel' as a .prn file, then change the extension to .sel . Save the worksheet 'source.dbf' as a dBaseIV file. Click the YES button on the various dialog boxes that appear until the .dbf file is saved.

4.1.4 Ambient Data Input File

CMB8 requires data for source profiles and ambient measurements with one-sigma uncertainty as input data. VOC concentrations are usually reported in ppbC or $\mu g/m^3$ at local temperature and pressure. Either unit is acceptable for CMB analysis, but the source profile ratios must be consistent with the ambient measurements. Fortunately, the fractional abundances of most VOCs relative to NMHC vary by only a few percent when either pppC or $\mu g/m^3$ are used for the numerator and the denominator. Concentrations from all measurement methods must be in the same unit, however.

Ambient data files may be formatted as column-separated values in ASCII text (CSV), xBASE (DBF), blank-delimited ASCII text (TXT), or Lotus Worksheet (WKS). The CSV and DBF formats are preferred, as they are easier to prepare in spreadsheet (e.g. Microsoft Excel, Lotus 123) and data base (e.g. Microsoft Access, dBASE) software than the other formats. The WKS format creates large files and requires substantial translation time for CMB8 input and output, so it is the least desirable of these alternatives. The TXT format is most consistent with CMB7, so older CMB7 data files can be used for CMB8 input without modification. The appropriate file extension must be associated with each format, as CMB8 recognizes the file type by this extension.

The delimited forms of the file do not require fixed format spacing, only that a comma (or a blank character for TXT files) separate each field from prior and subsequent fields. The first line contains the field identifiers, and these must be identical to those named in the selection files. The limitations on each field are:

Field 1:	Site ID (up to 12 characters)
Field 2:	Sampling date (up to 8 characters)

Field 3:	Sample duration (up to 2 characters)
Field 4:	Sample start hour (up to 2 characters)
Field 5:	Particle size fraction (up to 5 characters)
Field 6:	Mass concentration (any number of characters in integer, floating point, or exponential format)
Field 7:	Precision of mass concentration (same format as Field 6)
Field 8+2n:	Concentrations of chemical species (same format as Field 6), where $n = 0, 1, 2$,
Field 9+2n:	 Dracing of graving concentrations (some formation Evold 6), where $n = 0, 1$
Field 9+2n.	Precisions of species concentrations (same format as Field 6), where $n = 0, 1, 2,$

CMB8 always assumes that Field 6 is the total mass concentration, and it does not use this as a fitting species. For CMB8 the total number of ambient data records can reach into the thousands, limited only by computer memory. This makes it especially useful for examining multi-species hourly data obtained from automated gas chromatographs. Any other designator can be placed in the size column for non-segregated samples, such as "PM25" or "VOC".

Missing values for chemical concentrations are designated by placing a -99 in the species concentration and precision fields. A species for which the value is missing cannot be used as a fitting species for that sample. Precisions that exceed zero must be assigned to all chemical concentrations used as fitting species. CMB8 will return an error message when it finds zero or negative precisions.

4.1.5 Source Profile Input File

Source profile data files may be formatted as column-separated values in ASCII text (CSV), xBASE (DBF), blank-delimited ASCII text (TXT), or Lotus Worksheets (WKS). The CSV and DBF formats are the most portable and easily prepared. The appropriate file extension must be associated with each format, as CMB8 recognizes the file type by this extension. The delimited forms of this file do not require fixed format spacing, only that a comma (or a blank character for TXT files) separate each field from prior and subsequent fields. The first line contains the field identifiers, and these must be identical to those named in the selection files. The limitations on each field are:

- Field 1: Profile number or source code (up to six characters)
- Field 2: Source mnemonic (up to eight characters)
- Field 3: Particle size fraction (up to five characters)
- Field 4+2n: Fraction of species in primary mass of source emissions (floating point or exponential format), where n = 0, 1, 2, ...
- Field 5+2n: Variability of fraction of species in primary mass of source emissions (same format as Field 4), where n = 0, 1, 2, ...

The first record of the profile file contains the species codes for each field. These identifiers can be up to six alphanumeric characters in length, and must correspond to the identifiers used in the ambient data file. Source profile abundances are expressed in fractions of total mass, not in percent. This file does not contain a mass concentration field, as does the ambient data file, because all species abundances have been divided by this mass. The total

number of records included depends on the number of species, number of sources, and size of the computer memory.

From one to four different size fraction identifiers may be used, but these must be the same as those used in the ambient data and sample selection files. Missing values for chemical species in source profile files can be replaced by a best estimate with a large uncertainty if they are to be used as fitting species, or with –99 if they will not be used. Default values of 0 for the fraction and 0.0001 to 0.01 for the precision are often chosen for species that are expected to be present in small abundances. This indicates that the species is present in source emissions at a concentration less than .01% to 1%. A smaller value may be appropriate for certain source-types and species. A precision value that exceeds zero <u>must</u> be entered for all fitting species. CMB8 will return an error message when it detects precisions that are less than or equal to zero.

4.2 **Output Files**

Report and data base output files are produced by CMB8.

4.2.1 Report Output File

The report output file presents the source contribution estimates, standard errors, model performance measures, and measured and calculated chemical concentrations for each sample. The report written to the output file is identical to that which appears in the Output window during an interactive modeling session. It is in ASCII text format and can be imported into word processing programs to document the source contributions calculated for each sample. All information needed to independently repeat the source apportionment is contained in this report. Examples of the report are shown in Section 6.

4.2.2 Data Base Output File

The data base output file records the contribution of each source-type to each chemical species in a single data record. Sample identifiers and model performance measures are also included in each record. This file may be written in blank-delimited (TXT), comma separated values (CSV), xBASE (DBF), or Lotus 123 (WKS) formats (See Sec. 3). The file structure is:

Eald 1.	Smaning Code
Field 1:	Species Code
Field 2:	Species Name
Field 3:	Fitting flag; a '*' indicates a fitting species, while a '_' indicates a floating species
Field 4:	Sampling site identifier
Field 5:	Sampling date
Field 6:	Sample start hour
Field 7:	Sample duration
Field 8:	Particle size fraction
Field 9:	Measured species concentration
Field 10:	Precision of measured species concentration
Field 11:	R square value

Field 12:	Chi square value
Field 13:	Percent of measured mass
Field 14+2n:	Source contribution estimate, $n = 0, 1, 2,$
Field 15+2n:	Standard error of source contribution estimate, $n = 0, 1, 2,$

Fields 1, 2, and 4 through 10 record the sample information. Fields 3 and 11 through 13 provide information about the CMB calculation. The remaining fields correspond to each source profile in the PRXXXYY file and contain the source contribution estimates and standard errors for these sources. A value of -99 is recorded when a profile was not used in the calculation.

The first record in this output file contains the field identifiers. All subsequent records contain data. Fields 14+2n and 15+2n are labeled with source codes and source contribution uncertainty columns are labeled with source names.

4.2.3 Reading Output Files

Report text files can be read directly into a word-processing program (e.g. Word or Wordperfect) where the detailed output for each sample can be usually be displayed on a single page with columns aligned using the Courier 8-point to 10-point font. A fixed-with font in which every character occupies the same space is needed for columns to be correctly aligned. Data base output files can be opened directly by database or spreadsheet programs that recognize the CSV, DBF, TXT, and WKS extensions. The contents of the CMB8 output window can also be selected and copied to the clipboard for pasting into other Windows programs. Graphs made with CMB8 can be copied to the Windows clipboard with the Clip button, then pasted into a text box or frame in a word processing program. Pace and Watson (1987) define several performance measures which are examined with each CMB. Each of the CMB results includes values for the performance measures that are used to evaluate the goodness of the solution, following the regulatory guidance of Pace and Watson (1987). The most useful performance measures are source contribution estimate (SCE), standard error (STDERR), t-statistic (TSTAT), R-square (R SQUARE) and chi-square (CHI SQUARE), percent of mass accounted for (PERCENT MASS), max. src. unc. and min. src. Proj, ratio of residual to its standard error (RATIO R/U) and ratio of calculated to measured species (RATIO C/M). These performance measures are explained in the Section 5.3.

Table 4-1

Recommended Fitting Species for PAMS Hydrocarbons

								CM	B Fitting Sp	pecies
Mnemonics	Names	Formula	AIRS Code	MW	Group	k _{он} at 298 К	Lifetime hours	Type 2 AM	Type 2 PM	Types 1,3, & 4
ethene	ethene	C2H4	43203	28.05	0	8.52	6.52	*		
acetyl	acetylene	C2H2	43206	26.04	Y	0.90	61.73	*	*	*
ethane	ethane	C2H6	43202	30.07	Р	0.27	207.30	*	*	*
prope	Propene	C3H6	43205	42.08	0	26.30	2.11			
n_prop	n-propane	C3H8	43204	44.10	Р	1.15	48.31	*	*	*
i_buta	isobutane	C4H10	43214	58.12	Р	2.34	23.74	*	*	*
lbut1e	1-butene	C4H8	43280	56.11	0	31.40	1.77			
n_buta	n-butane	C4H10	43212	58.12	Р	2.54	21.87	*	*	*
t2bute	t-2-Butene	C4H8	43216	56.11	0	64.00	0.87			
c2bute	c-2-butene	C4H8	43217	56.11	0	56.40	0.99			
ipenta	isopentane	C5H12	43221	72.15	Р	3.90	14.25	*	*	*
pente1	1-pentene	C5H10	43224	70.13	0	31.40	1.77			
n pent	n-pentane	C5H12	43220	72.15	Р	3.94	14.10	*	*	*
i pren	isoprene	C5H8	43243	68.11	0	101.00	0.55	+	+	+
t2pene	t-2-Pentene	C5H10	43226	70.13	0	67.00	0.83			
c2pene	c-2-pentene	C5H10	43227	70.13	0	65.00	0.85			
bu22dm	2,2-dimethylbutane	C6H14	43244	86.17	Р	2.32	23.95	*	*	*
cpenta	cyclopentane	C5H10	43242	70.13	Р	5.16	10.77	*	*	
bu23dm	2,3-dimethylbutane	C6H14	43284	86.17	Р	6.20	8.96	*		
pena2m	2-methylpentane	C6H14	43285	86.17	Р	5.60	9.92	*	*	
pena3m	3-methylpentane	C6H14	43230	86.17	Р	5.70	9.75	*	*	
p1e2me	2-methyl-1-pentene	C6H12	43246	84.16	0	31.40	1.77			
n hex	n-hexane	C6H14	43231	86.17	P	5.61	9.90	*	*	
mcypna	Methylcyclopentane	C6H12	43262	84.16	P	8.81	6.31	*		
pen24m	2,4-dimethylpentane	C7H16	43247	100.20	P	5.10	10.89	*	*	
benze	benzene	С6Н6	45201	78.11	A	1.23	45.17	*	*	*
cyhexa	cyclohexane	C6H12	43248	84.16	Р	7.49	7.42	*		
hexa2m	2-methylhexane	C7H16	43263	98.19	P	6.79	8.18	*		
pen23m	2,3-dimethylpentane	C7H16	43291	100.20	P	4.87	11.41	*	*	
hexa3m	3-methylhexane	C7H16	43249	100.20	P	7.16	7.80	*	*	
pa224m	2,2,4-trimethylpentane	C8H18	43250	114.23	P	3.68	15.10	*	*	*
n hept	n-heptane	C7H16	43232	100.20	P	7.15	7.77	*		
mecyhx	methylcyclohexane	C7H14	43261	98.19	P	10.40	5.34	*		
pa234m	2,3,4-trimethylpentane	C8H18	43252	114.23	P	7.00	7.94	*		
tolue	toluene	C7H8	43202	92.14	A	5.96	9.32	*	*	
hep2me	2-methylheptane	C8H18	43260	114.23	P	8.18	6.80	*	*	
hep2me	3-methylheptane	C8H18	43253	114.23	P	8.56	6.49	*		
n oct	n-octane	C8H18	43233	114.22	P	8.68	6.40	*		
etbz	ethylbenzene	C8H10	45203	106.16	A	7.10	7.82	*		
mp xyl	mp-xylene	C8H10	45109	106.16	A	18.95	4.71			
styr	styrene	C8H8	45220	100.10	A	58.00	0.96			
	o-xylene	C8H10	45220	104.14	A	13.70	4.06			
o_xyl	,	C9H20	43235	128.26	P	10.20	5.45	*		
n_non iprbz	n-nonane	C9H120 C9H12	45255	128.20	A	6.50	8.55	*		
	isopropylbenzene n-propylbenzene	C9H12 C9H12	45209			6.00	9.26	*		
n_prbz m_etol	1 15			120.20	A		9.26 2.89	·		
m_etol	m-ethyltoluene p-ethyltoluene	C9H12 C9H12	45212	120.20	A	19.20	2.89 4.59			
p_etol bz135m		C9H12 C9H12	45213 45207	120.20 120.20	A	12.10 57.50	4.59 0.97			
	1,3,5-trimethylbenzene				A					
o_etol	o-ethyltoluene	C9H12	45211	120.20	A	12.30	4.52			
bz124m	1,2,4-trimethylbenzene	C9H12	45208	120.20	A	32.50	1.71	*		
n_dec	n-decane	C10H22	43238	142.29	P	11.60	4.79	Ŧ		
bz123m	1,2,3-trimethylbenzene	C9H12	45225	120.20	A	32.70	1.70			
detbz1	m-diethylbenzene	C10H14	45218	134.22	A	14.20	3.90			
detbz2	p-diethylbenzene	C10H14	45219	134.22	A	14.20	3.90			
n_unde	n-undecane	C11H24	43954	156.30	Р	13.20	4.20	*		

 \overline{A} = aromatic, AL = Aldehyde, O = alkene (olefin), P = parafin, Y = alkyne, K = ketone, E = ether, X = haogenated, OH = alcohol

Note: Rate constants k at 298 K for the reaction of OH radicals with VOCs. Unit: 10^{12} x k cm³ molecule⁻¹ s⁻¹

+ Included because single species source. Will underestimate true contribution due to reactivity.

5. CMB APPLICATION AND VALIDATION

This section examines the procedures for evaluating the validity of the application of CMB to PAMS VOC data. These procedures are described in the applications and validation protocol for CMB8 (Watson et al., 1998). Although the protocol was originally developed for PM_{10} source assessment, it contains many general features that are applicable to the source apportionment of VOCs. The protocol consists of seven steps: 1) determination of model applicability; 2) initial source contribution estimates; 3) examination of model outputs and performance measures; 4) identification of deviations from model assumptions; 5) identification and correction of model input errors; 6) verification of the consistency and stability of source contribution estimates; and 7) evaluation of the results of the CMB analysis with respect to other source assessment methods.

5.1 CMB Model Applicability

The requirements for CMB model applicability are as follows: 1) a sufficient number of receptor samples is taken with an accepted method to evaluate temporal and spatial variations in hydrocarbon mixing ratios; 2) samples are analyzed for chemical species which are also present in source emissions; 3) potential source contributors have been identified and chemically characterized; and 4) the number of non-collinear source types is less than the number of measured species.

The sampling and analytical methods that are employed in the PAMS program for determining ambient levels of speciated hydrocarbons and carbonyl compounds are well established (see Section 2). Several laboratory comparisons have shown that the identification and quantification of the 55 target PAMS species are reasonably consistent among the PAMS analytical laboratories. These compounds typically comprise 70 to 80 percent of the total NMOC in urban areas. Eight 3-hour samples per day are collected daily at Type 2 sites and every third day at all other PAMS sites. Automated gas chromatographs are used in some PAMS programs, which provide hourly monitoring. The source types that potentially contribute to ambient VOC in urban areas are: 1) motor vehicle exhaust; 2) gasoline vapors; 3) diesel exhaust; 4) architectural and industrial coatings; 5) gas leaks (natural, geogenic and liquefied petroleum gas); and 6) biogenic emissions. Regionally specific profiles have been compiled in recent years for most of these sources. The number of suitable fitting species that can be used in the CMB analysis of PAMS VOC data exceeds the number of potential source types (up to 12 source types). Given these facts, the CMB receptor model is applicable to source apportionment of the assembled hydrocarbon data base.

Although the PAMS enhanced monitoring program has significantly expanded the database available for VOC receptor modeling, we note the following possible limitation in their applications to CMB.

• With the exception of some carbonyl compounds, the PAMS speciation is currently limited to hydrocarbons. Most of these hydrocarbons are associated with emission from mobile sources. Surface coatings may be apportioned based on the relative abundance of toluene, cycloalkanes, and higher molecular weight n-alkanes. Surface coatings also contain oxygenated organic compounds such as ethers and acetates that are not measured

by PAMS sampling and analytical methods. Other source that emits oxygenated organic compounds, such as biogenic emissions, meat cooking, wood combustion, may also be underrepresented in the apportionment.

- As with any directly emitted pollutant, the spatial representativeness of the ambient sample should be carefully examine. Mobile sources are ubiquitous in urban areas and will be detected in all urban ambient samples. Stationary and other area sources are spatially more dispersed than mobile sources and their source contributions would depend upon their proximity to the PAMS monitoring location. It is advisable in the design of ambient source apportionment studies to include short-term saturation monitoring near the PAMS site to characterize the spatial variations in the apportionments.
- Total NMOC is operational defined based on the selectivity and specificity of the analytical methods. These totals should be reconciled with a more comprehensive measurement of ambient VOCs.
- For PAMS VOC, the apportionment of diesel exhaust is based primarily on n-decane and n-undecane. However, these compounds are also emitted by gasoline vehicles and other sources such as surface coating. Inclusion of semi-volatile (C₁₁-C₁₈) hydrocarbons provides greater discrimination among these sources. These compounds require sampling on solid adsorbents, a methods that is not part of the current PAMS program.

5.2 Initial Source Contribution Estimates

Initial source contribution estimates should be derived from a subset of samples in order to select a default combination of source profiles and fitting species for the ambient data. These initial evaluations should include the following source types in different combinations: 1) motor vehicle exhaust; 2) liquid gasoline, 3) gasoline vapor; 4) surface coatings; 5) industrial sources, and 5) miscellaneous. Alternative source profiles should be used in the CMB analysis for each of the major source categories to determine the variations in the source contributions and model performance (see next section). The MPIN matrix identifies the fitting species that have the most influence on the source attribution. These model performance parameters provide a basis for selecting the mose appropriate profile among the alternatives.

Because the apportionment between vehicle exhaust, whole gasoline and gasoline vapor can vary substantially depending on the selection of profiles, it is important to consider what these profiles actually represent. Tailpipe emissions are a mixture of hydrocarbons produced during combustion along with unburned gasoline resulting from incomplete combustion. Siegl et al. (1992) showed that unburned fuel represents most (>50 percent) of the hydrocarbon emissions from a spark-ignited single-cylinder engine. In the CMB calculations, liquid gasoline represents the additional unburned gasoline (due to misfiring and other engine malfunctions) that is not included in the exhaust profile, plus evaporative emissions from gasoline spillage and hot soaks. The profile for gasoline headspace vapors reflects evaporative emissions due to refueling, diurnal emissions and running losses. Isopentane, n-butane, n-pentane, 2-methylpentane, 3methylpentane, toluene and m,p-xylene are typically the most abundant species in liquid gasoline. Because exhaust emissions and liquid gasoline contain many species in common, the attribution of source contributions among these two categories depends largely on the ratio of acetylene and light olefins to NMHC in the exhaust composition profile. Some of the "real-world" factors that affect this ratio include: 1) emissions due to non- catalyst vehicles versus catalyst-equipped vehicles; 2) contributions from high emitters; 3) different driving modes; and 4) vehicle speed and load. The profile for gasoline headspace vapors reflects evaporative emissions due to refueling, diurnal evaporation, and running losses. The major components for this source include isopentane, n-butane and n-pentane. Because running losses are already included in the on-road profile, the balance would be due to refueling and diurnal evaporative emissions.

The relative attribution between on-road gasoline emissions and liquid gasoline and gasoline vapor depends upon the nature of the vehicle fleet near the sampling site. A few highemitters near the site can result in greater attribution to gasoline, while the absence of highemitters can result in lower attribution to on-road gasoline tailpipe emissions. With respect to the relative importance of vehicle exhaust versus liquid gasoline, we have shown that the attribution of source contributions among the motor vehicle source categories is highly sensitive to the relative abundance of combustion by-products in the exhaust profile (Fujita et al., 1994). Exhaust profiles with higher acetylene and ethene (if used as fitting species) abundances yield lower source contributions for exhaust and higher source contributions for liquid gasoline. While the source attributions between exhaust and liquid gasoline may vary with different exhaust profiles, sensitivity runs showed that the sum of the two source contributions are less variable (Fujita et al., 1994).

In recent CMB studies (Fujita et al., 2003a) we have seen a decline in the contribution of whole gasoline. This may be due replacement of carburetors with fuel-injection engines, which produce substantially lower amounts of hotsoak emissions. In addition, evaporative emissions resembling headspace can be greater for fuel-injection engine when there is a malfunction of the canister/purge system because gasoline temperatures are higher in fuel injection engine due to recirculation of the fuel from the engine back to the tank. With the introduction of the catalytic converter, ethene and acetylene have both decreased as a fraction of total NMHC. However, the decrease for acetylene has been greater because the catalyst removes it more efficiently. Wellmaintained catalyst-equipped vehicles have ethene/acetylene ratios of three or greater based upon FTP emission tests (Hoekman, 1992; Sigsby et al., 1987), while non-catalyst vehicles have ethene/acetylene ratios near one (Hoekman, 1992; Black, et al., 1980). Fuel-rich conditions (Siegl et al., 1992; McCabe et al., 1992) due to engine malfunction or "open-loop" operation during high acceleration and load can also produce lower ethene/acetylene ratios relative to normal emitters under closed-loop operation. With the turnover of the vehicle fleet to newer emission control technologies, the fraction of total vehicle exhaust emissions that are contributed by vehicles with malfunctioning emission controls and fuel-rich driving conditions has likely increased. This is a possible explanation for the shift in average ambient ethene/acetylene ratios in the South Coast Air Basin from 1.5 in 1987 during the Southern California Air Quality Study (Fujita, et al., 1994) to 1.8 in 1990 (Zielinska et al., 1992) and 0.9 in 1995 (Fujita et al., 1997a).

5.3 Model Outputs and Performance Measures

Pace and Watson (1987) define several performance measures which are examined with each CMB. Table 5-1 shows examples of a typical CMB run and the performance measures associated with it. The output contains every specification for the configuration under which the model was applied. The upper part of the display shows the source profiles included in each model application. The lower part of the display shows the species that were measured at the receptor and the species which were included in the CMB calculation (indicated by a '*' under the column labeled 'I').

Each of the CMB results includes values for the performance measures that are used to evaluate the goodness of the solution, following the regulatory guidance of Pace and Watson (1987). The most useful performance measures are:

- <u>Source Contribution Estimate (SCE)</u>. This is the contribution of each source type to the pollutant being apportioned, which is usually the mass concentration. Each of the SCE should be greater than zero and none should exceed the total mass concentration.
- <u>Standard Error (STDERR)</u>. This is an indicator of the precision or certainty of each SCE. The STDERR is estimated by propagating the precisions of the receptor data and source profiles through the effective variance least-squares calculations. Its magnitude is a function of the uncertainties in the input data and the amount of collinearity (i.e., degree of similarity) among source profiles. It is desirable to have this value be much less than the source contribution estimate. When the SCE is less than the STDERR, the STDERR is interpreted as an upper limit of the source contribution.
- <u>t-Statistic (TSTAT)</u>. This is the ratio of the source contribution estimate to the standard error. A high value for TSTAT (>2.0), shows that the relative precision of the source contribution estimate is high and that the contribution is significant. A low TSTAT value (<2.0) means that a source contribution is not present at a level which exceeds two times the STDERR. Twice the STDERR is a reasonable estimate of the upper limit for a source contribution when TSTAT <2.0.
- <u>R-Square (R SQUARE) and Chi-Square (CHI SQUARE)</u>. The R SQUARE measures the variance in the receptor concentrations which is explained by the calculated species concentrations. The CHI SQUARE statistic is the weighted sum of the squares of differences between calculated and measured species concentrations divided by the effective variance and the degrees of freedom (DF). A low R SQUARE (<0.8) indicates

that the selected source profiles have not accounted for the variance in the selected receptor concentrations. A large CHI SQUARE (>4.0) means that one or more of the calculated species concentrations differs from the measured concentrations by several uncertainty intervals. The values for these statistics exceed their targets when: 1) contributing sources have been omitted from the CMB calculation; 2) one or more source profiles have been selected which do not represent the contributing source types; 3) precisions of receptor or source profile data are underestimated; and/or 4) source or receptor data are inaccurate.

- Percent of Mass Accounted For (PERCENT MASS). This is the ratio of the sum of the source contributions to the measured mass for particulate samples. The target value is 100%, with a reasonable range of 80% to 120%. Percent mass values which are outside of this range result when: 1) source profiles have been incorrectly specified; 2) contributing source types have been omitted from the calculation; 3) mass or chemical species measurements are inaccurate; and/or 4) mass measurements are less than 10 µg/m³ and within a few precision intervals of the measurements.
- <u>Max. Src. Unc. and Min. Src. Proj.</u> These are used in Ron Henry's eligible space treatment of collinearity (Henry, 1992). This treatment uses two parameters, maximum source uncertainty and minimum source projection on the eligible space. These are set to default values of 1.0 and 0.95, respectively, in CMB8. Briefly, the maximum source uncertainty determines the eligible space to be that spanned by the eigenvectors whose inverse singular values are less than or equal to the maximum source uncertainty. Estimable sources are defined to be those projections on the eligible space that is at least the minimum source projection. Inestimable sources are sources that are not estimable. To modify these values click in the edit boxes and edit with keyboard entry. With a maximum source uncertainty of 1.05, the sample input file testport.inp reproduces the example in the paper by Henry.
- <u>Ratio of Residual to Its Standard Error (RATIO R/U)</u>. This column contains the ratio of the signed difference between the calculated and measured concentration (the residual) divided by the uncertainty of that residual (square root of the sum of the squares of the uncertainty in the calculated and measured concentrations). The RATIO R/U specifies the number of uncertainty intervals by which the calculated and measured concentrations differ. When the absolute value of the RATIO R/U exceeds 2, the residual is significant. If it is positive, then one or more of the profiles is contributing too much to that species. If it is negative, then there is an insufficient contribution to that species and a source may be missing. The sum of the squared RATIO R/U for fitting species divided by the degrees of freedom yields the CHI-SQUARE. The highest RATIO R/U values for fitting species are the cause of high CHI SQUARE values.
- <u>Ratio of Calculated to Measured Species (RATIO C/M)</u>. The column entitled RATIO C/M shows the ratio of calculated to measured concentration and the standard error of that ratio for every chemical species with measured data. The ratios should be near 1.00 if the model has accurately explained the measured concentrations. Ratios which deviate from unity by more than two uncertainty intervals indicate that an incorrect set of profiles is being used to explain the measured concentrations. The RATIO C/M for most species is within the target range for each example.

The application of continuous speciated VOC data in source apportionment offers additional insights regarding the temporal variations in source contributions that are difficult to discern from a limited number of canister samples that are integrated over a period of 3 hours or more. The following graphical display show examples of CMB results obtained from hourly speciated hydrocarbon data.

- Average source contribution estimates of ambient hydrocarbons by hour of day (e.g., Figure 5-1)
- Diurnal plots of the average CMB source contribution estimates by site for each day of the week (e.g., Figure 5-2).
- CMB source contributions and residual hydrocarbon concentrations and graphical displays of residuals by wind direction and time of day (e.g., Figure 5-3).

Another useful graphical display that can also be applied to time-integrated canister samples show relationships between source contribution estimates (in particular the residual unexplained mass) and extent of reaction of the ambient air sample (estimated by a ratio of reactive to unreactive hydrocarbon species. Scatterplots of CMB-predicted versus measured concentrations for reactive species by site and time of day are also useful in examining the photochemical age of the ambient hydrocarbons.

5.4 Deviations from Model Assumptions

The basic assumptions of the CMB model (Watson, 1979) are: 1) compositions of source emissions are constant over the period of ambient and source sampling; 2) chemical species do not react with one another (i.e., they add linearly); 3) all sources which may significantly contribute to the receptor have been identified and their emissions characterized; 4) the number of source categories is less than or equal to the number of chemical species; 5) the source profiles are linearly independent (i.e., they are statistically different); and 6) measurement uncertainties are random, uncorrelated, and normally distributed. The degree to which these assumptions are met in practice depends to a large extent on the types and quality of chemical measurements made at the sources and receptor.

A prerequisite for using receptor models is that the relative proportions of chemical species change little between source and receptor. Most ambient VOCs are oxidized in the lowest 2 km of the troposphere with tropospheric lifetimes ranging from hours to several months. For the majority of organic compounds emitted into the troposphere from either biogenic or anthropogenic sources, reaction with the OH radical is the major chemical loss process (Atkinson, 1989). Some volatile organic compounds react significantly with O₃ and/or degrade by thermal decomposition or photolysis. However, removal by reaction with O₃, or due to photolysis, can be estimated to be much less than 1% of the OH removal rate for most VOCs. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds have been reviewed and evaluated by Atkinson (1989, 1990). Rate constants are also recommended for organic compounds for which experimental data do not exist. Table 2-1 lists the rate constants and lifetimes of some hydrocarbons due to reaction with OH radical. The reactions are assumed to be of second order with reactant half life and lifetime of $t_{1/2}$ = 0.693/k[OH] and $\tau = 1/k$ [OH], respectively. Actual overall lifetimes may be shorter owing to competing loss processes such as photolysis. Since OH concentrations vary with the intensity of solar radiation, lifetimes will vary by location, season and time of day (Finlayson-Pitts, 1986).

For the CMB calculations performed for PAMS hydrocarbon data, only species with sufficiently long lifetimes should be used as fitting species. The summer lifetime of toluene (~9 hours) serve as a general guideline for most samples. Exceptions would apply to morning samples in the source areas when most emissions are expected to be "fresh" and to upwind background and downwind afternoon "aged" samples. Table 4-1 provides suggestions for subsets of fitting species that may be considered for each type of sample.

Figures 5-4 and 5-5 present scatterplots of calculated (sum of CMB-derived contributions) and measured concentrations of benzene, isopentane, toluene, ethylene, m&p-xylene, and propene for samples from Azusa (downwind high ozone site) and Los Angeles - North Main (source site), respectively. The figures contain separate plots for the 0700-1000 and 1400-1700 PDT sampling periods. The scatterplots are arranged by species according to increasing reactivity from left to right and top to bottom. Benzene, isopentane and toluene are among the 27 hydrocarbons that were used as fitting species in the CMB modeling. Ethylene, m&p-xylene, propene, and other reactive hydrocarbons were not used in the fit and have no effect on the apportionment. Because the contributions for the reactive species are calculated based on apportionments of NMHC using nonreactive species, the predicted concentrations for reactive species exceed the measured values by margins that increase with increasing reactivity of the species. This effect is clearly evident in the figures. Azusa, which is the downwind site, shows larger differences between predicted and measured concentrations for reactive species in afternoon samples. The divergence in slopes for morning versus afternoon samples increases from ethylene to m&p-xylene to propene. Regardless of the species, the predicted and measured concentrations are generally in good agreement for the morning samples, indicating that ambient hydrocarbons are dominated by fresh emissions during this period at all three sites. Los Angeles - North Main appears to be dominated by fresh emission in the afternoon as well. This is not surprising since the site is located in the western portion of the air basin and traffic near the site is heavy throughout the day. These analyses show that by limiting the CMB fit to species with atmospheric lifetimes that exceed their residence times in the Basin, we have effectively minimized the effects of reactivity on the CMB results. These observations also indicate that additional reactive species can be used in the CMB fit for morning samples in the SoCAB and at locations near the coast where prevailing winds transport aged emissions from the area.

Isoprene is an exception to the general rule. It is included as a fitting species despite its high reactivity because it serves as a marker for biogenic emissions. The source contribution estimates underestimated the actual source contributions of biogenic emissions, i.e., they provide a lower limit to biogenic contributions. Reactive species are retained in the CMB modeling as "floating species", and provide useful diagnostic information. Because the concentrations for these species are calculated by the CMB model based on apportionments of NMHC using non-reactive species, the predicted concentrations for reactive species exceed the measured values by margins that increase with increasing reactivity of the species. Regardless of the species, the predicted and measured concentrations are generally in good agreement for morning samples indicating that ambient hydrocarbons are dominated by fresh emissions during this period.

We examined changes between morning and afternoon samples in the ratios of reactive hydrocarbons (isomers of xylene) to a relatively unreactive hydrocarbon (benzene) from a common source (i.e., vehicle exhaust) as an indicator of the net fractional loss of reactive hydrocarbon, such as isoprene, between the two sampling periods. These ratios are invariant to atmospheric dispersion and include continuous injections of fresh emissions into the air parcel during its transport to the sampling site. The average ratio of the afternoon to morning xylenes/benzene ratios reflect the net fractional loss of xylenes due to atmospheric reactions. This fractional loss can be adjusted to isoprene by applying the ratio of the OH radical reaction rate constants for xylenes (18.8 assuming ratios of meta, para, and ortho isomers concentrations of 2:1:1) and isoprene (101). However, isoprene is emitted during daylight hours only with maximum emission rates during mid-day. Estimates of daily biogenic emissions based upon daytime ambient measurements would overestimate their contribution relative to anthropogenic sources. The exclusion of other biogenic species and use of daytime ambient isoprene measurements tend to offset one another in estimating total biogenic emissions. Therefore, the ratio of the afternoon to morning xylenes/benzene ratios, adjusted for relative reactivity of isoprene provides an estimate of the reactivity adjusted source contributions of all biogenic emissions.

With respect to Assumption 3 involving the inclusion of all source types, it appears from the PERCENT MASS performance measures that all of the significant contributors have been included in most of the CMBs. For certain samples that have a large portion of "unidentified" species, the ambient NMHC were not fully accounted for by the sources included in the model. It is impossible for the CMB model to extract interpretation from this "unidentified" fraction until it is further resolved into specific compounds or compound groups by chemical analysis.

With respect to Assumption 4 concerning number of species and number of sources, 27 VOCs and up to 12 source profiles were used in each calculation. The number of chemical species always exceeded the number of source types.

With respect to Assumption 5 concerning collinearity, the initial source contribution estimates show the potential for collinearity among exhaust, liquid gasoline and gasoline vapor profiles. Uncertainty/Similarity Clusters (U/S CLUSTERS) defined by Watson et al. (1991) and based on the methods of Henry (1982; 1992) often appeared during the analyses which grouped together two or more of the profiles. The U/S CLUSTERS do not necessarily mean that profiles are collinear -- they really mean that the standard error assigned to a category representing the profiles in the clusters might be lower than the standard errors assigned to the individual source contribution estimates associated with each profile. Though the standard errors for these source types often approach 30% of the source contribution estimate, indicating collinearity uncertainty in addition to propagated analytical uncertainty, all three vehicle profiles were usually retained so that temporal and spatial variations in their contributions could be examined.

The effects of deviations from Assumption 6 on the randomness and normality of measurement errors remain to be studied. For this study, all of the CMB assumptions are met to the extent that the source contribution estimates can be considered valid.

5.5 Identification and Correction of Model Input Errors

Physically unreasonable concentrations for certain chemical species are usually evident from by large CHI-SQUARE values with a large R/U value for the related species. In these cases the

suspect species should be removed from the fit. An example is the coelution of 2,3-dimethylbutane with MTBE. In general, the CMB modeling was robust enough that, when performance measures were within acceptable ranges around target values, there was little effect of suspect concentrations on the source contribution estimates.

5.6 Consistency and Stability of Source Contributions

The source contribution estimates and the statistics and diagnostic information are reviewed to determine the validity of the initial model results. The analysis is repeated by eliminating source profiles that gave negative source contribution estimates or standard errors that exceed the source contribution estimates. A new feature of CMB8 is that the software can remove these insignificant sources automatically. The measured ambient NMHCs indicate that all major source types were included in the calculations, that ambient and source profile measurements are reasonably accurate, and that the source profiles are reasonably representative of actual emissions.

Table 5-1 Example CMB8 Output

SAMPLE	E DURATIO R SQUAR	N 1 E 0.97	S – SITE: NM START HOUR PERCENT MASS DF	06 105.7		09/13/95 SIZE:	G	CMB 8.0
SOUR		SCE(UG/M3)	STD ERR	TSTAT				
			1 - 1 1					
C02	MCNHD Fy V1	103.24 321 78	15.11	6.83 11 21				
c72	LA HS	128.38	28.71 26.30	4.88				
c91	CNG	14.21	4.59	3.10				
c92	GNG	41.02	4.59 11.95 4.77 1.44 8.32	3.43				
c93	LPG	13.95	4.77	2.92				
c95	AC_196	2.07	1.44	1.44				
c96	IC_783	26.43	8.32	3.18				
C99	Unid	64.69	18.06	3.58				
ELIGIE	577.3+-	DIM. = 0 FC	SIZE: G DR MAX. UNC. =	1.00				
.3496E	E+02		01 .6912E+01 .9					
PROJ.	SOURCE	PROJ. SOURCE	0 FOR MIN. PR PROJ. SOURC	E PROJ.	SOURCE		SOUR	CE
PROJ. 0.0000 0.0000	SOURCE 	PROJ. SOURCE 0.0000 c08 0.0000 c95	PROJ. SOURC 0.0000 c72 0.0000 c96	E PROJ. 0.0000 0.0000	SOURCE c91 c99	0.0000	c92	
PROJ. 0.0000 0.0000 ESTIMP COEFF.	SOURCE c02 c93 ABLE LINE SOURCE	PROJ. SOURCE 0.0000 c08 0.0000 c95 	PROJ. SOURC 0.0000 c72 0.0000 c96 IS OF INESTIMAB COEFF. SOURC	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF.	SOURCE c91 c99 S SOURCE	0.0000 	c92	STD ERR
PROJ. 0.0000 0.0000 ESTIMP COEFF.	SOURCE c02 c93 ABLE LINE SOURCE	PROJ. SOURCE 0.0000 c08 0.0000 c95 	PROJ. SOURC 0.0000 c72 0.0000 c96 SOF INESTIMAB COEFF. SOURC	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF.	SOURCE c91 c99 S SOURCE	0.0000 	c92	STD ERR
PROJ. 0.0000 0.0000 ESTIMA COEFF. SPECIE SAMPLE	SOURCE C02 C02 C93 ABLE LINE SOURCE CONCEN	PROJ. SOURCE 0.0000 c08 0.0000 c95 AR COMBINATION COEFF. SOURCE 	PROJ. SOURC 0.0000 c72 0.0000 c96 IS OF INESTIMAB COEFF. SOURC	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF. 	SOURCE c91 c99 S SOURCE 	0.0000 SCE 0.0000	с92 смв 8	STD ERR
PROJ. 0.0000 ESTIMA COEFF. SPECIE SAMPLE	SOURCE C02 C93 ABLE LINE SOURCE SOURCE CONCEN ES CONCEN E DURATIO R SQUAR CHI SQUAR	PROJ. SOURCE 0.0000 c08 0.0000 c95 	PROJ. SOURC 0.0000 c72 0.0000 c96 S OF INESTIMAB COEFF. SOURC TE: NM START HOUR PERCENT MASS DF	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF. DATE: 06 105.7 24	SOURCE c91 c99 SSOURCE	0.0000 E SCE 	с92 СМВ 8 G	STD ERR
PROJ. PROJ. 0.0000 0.0000 ESTIMP COEFF. SPECIE SAMPLE CO SPECIE	SOURCE CO2 CO2 CO3 ABLE LINE SOURCE CONCEN ES CONCEN E DURATIO R SQUAR CHI SQUAR ES	PROJ. SOURCE 0.0000 c08 0.0000 c95 	PROJ. SOURC 0.0000 c72 0.0000 c96 S OF INESTIMAB COEFF. SOURC TE: NM START HOUR PERCENT MASS DF	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF. DATE: 06 105.7 24 LC	SOURCE c91 c99 SOURCE 09/13/9	0.0000 E SCE SIZE: RATIO C/M	CMB 8 G	STD ERR
PROJ. PROJ. 0.0000 0.0000 ESTIMA COEFF. SPECIE SAMPLE CO SPECIE NMHC	SOURCE CO2 CO2 CO3 ABLE LINE SOURCE SOURCE CONCEN ES CONCEN ES CONCEN ES CONCEN CHI SQUAR CHI SQUAR CHI SQUAR	PROJ. SOURCE 0.0000 c08 0.0000 c95 AR COMBINATION COEFF. SOURCE TRATIONS - SI N 1 E 0.97 E 1.68 IMEAS T 677.30+-	PROJ. SOURC 0.0000 c72 0.0000 c96 S OF INESTIMAB COEFF. SOURC TE: NM START HOUR PERCENT MASS DF CFRCENT MASS DF	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF. DATE: 06 105.7 24 LC 5.78+-	SOURCE c91 c99 SOURCE 09/13/9 F 26.86	0.0000 SIZE: 05 05 05 05 05 05 05 05 05 05	с92 СМВ 8 G R 0.08	STD ERR
PROJ. PROJ. PROJ. 0.0000 ESTIMA COEFF. SPECIE SAMPLE CO SPECIE SAMPLE CO SPECIE NMHC ETHANE	SOURCE CO2 CO2 CO3 ABLE LINE SOURCE CONCEN ES CONCEN E DURATIO R SQUAR CHI SQUAR ES	PROJ. SOURCE 0.0000 c08 0.0000 c95 AR COMBINATION COEFF. SOURCE TRATIONS - SI N 1 E 0.97 E 1.68 IMEAS T 677.30+-	PROJ. SOURC 0.0000 c72 0.0000 c96 S OF INESTIMAB COEFF. SOURC COEFF. S	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF. DATE: 06 105.7 24 LC	SOURCE c91 c99 SOURCE 09/13/9 F 26.86 2.40	0.0000 E SCE 95 SIZE: RATIO C/M 1.06+-	CMB 8 G R 0.08 0.11	STD ERR
PROJ. PROJ. PROJ. 0.0000 ESTIMA COEFF. SPECIE SAMPLE CO SPECIE NMHC ETHANE ETHENE	SOURCE CO2 CO2 CO3 ABLE LINE SOURCE CONCEN ES CONCEN E DURATIO R SQUAR CHI SQUAR CHI SQUAR ES NMHCU E ETHANE	PROJ. SOURCE 0.0000 c08 0.0000 c95 AR COMBINATION COEFF. SOURCE TRATIONS - SI N 1 E 0.97 E 1.68 IMEAS T 677.30+- * 22.04+- 22.49+-	PROJ. SOURC 0.0000 c72 0.0000 c96 S OF INESTIMAB COEFF. SOURC TE: NM START HOUR PERCENT MASS DF CA 44.70 71 0.62 2 0.56 2	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF. DATE: 06 105.7 24 LC 5.78+- 2.18+-	SOURCE c91 c99 SOURCE 09/13/9 F 26.86	0.0000 E SCE SIZE: RATIO C/M 1.06+- 1.01+-	CMB 8 G R 0.08 0.11 0.14	STD ERR
PROJ. PROJ. PROJ. 0.0000 ESTIMA COEFF. SPECIE SAMPLE CO SPECIE NMHC ETHANE ETHENE ACETYI LBUTIE	SOURCE CO2 CO2 CO3 ABLE LINE SOURCE SOURCE CONCEN E DURATIO R SQUAR CHI SQUAR CHI SQUAR ES NMHCU E ETHANE E ETHENE ACETYL E LBUT1E	PROJ. SOURCE 0.0000 c08 0.0000 c95 	PROJ. SOURC 0.0000 c72 0.0000 c96 S OF INESTIMAB COEFF. SOURC TE: NM START HOUR PERCENT MASS DF CA 44.70 71 0.62 2 0.56 2 1.21 2 0.14	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF. DATE: 06 105.7 24 LC 5.78+- 2.18+- 6.40+- 1.76+- 4.17+-	SOURCE 	0.0000 SIZE: CATIO C/M 1.06+- 1.01+- 1.17+- 0.87+- 2.25+-	CMB 8 G R 0.08 0.11 0.14 0.10 0.45	STD ERR
PROJ. PROJ. PROJ. 0.0000 ESTIMA COEFF. SPECIE SAMPLE CO SPECIE SAMPLE CO SPECIE NMHC ETHANE ETHENE ACETYI LBUTE LIBUTE	SOURCE CO2 CO2 CO3 ABLE LINE SOURCE SOURCE CONCEN E DURATIO R SQUAR CHI SQUAR CHI SQUAR ES NMHCU E ETHANE E ETHENE ACETYL E LBUTIE E LIBUTE	PROJ. SOURCE 0.0000 c08 0.0000 c95 AR COMBINATION COEFF. SOURCE TRATIONS - SI N 1 E 0.97 E 1.68 IMEAS T 677.30+- * 22.04+- 22.49+- * 24.97+- 1.85+- 6.47+-	PROJ. SOURC 0.0000 c72 0.0000 c96 OF INESTIMAB COEFF. SOURC TE: NM START HOUR PERCENT MASS DF OF CA 44.70 71 0.62 2 0.56 2 1.21 2 0.14 0.26	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF. DATE: 06 105.7 24 LC 5.78+- 2.18+- 6.40+- 1.76+- 4.17+- 7.92+-	SOURCE 	0.0000 SIZE: CATIO C/M 1.06+- 1.01+- 1.17+- 0.87+- 2.25+- 1.22+-	CMB 8 G R 0.08 0.11 0.14 0.10 0.45 0.11	STD ERR .0 ATIO R/U 0.7 0.1 1.2 -1.2 3.0 2.0
PROJ. PROJ. PROJ. 0.0000 ESTIMA COEFF. SPECIE SAMPLE CO SPECIE NMHC ETHANE ETHANE ETHENE ACETYI LBUTE LIBUTE PROPE	SOURCE CO2 CO2 CO3 ABLE LINE SOURCE CONCEN E DURATIO R SQUAR CHI SQUAR CHI SQUAR ES NMHCU E ETHANE E ETHENE ACETYL E LBUT1E PROPEU	PROJ. SOURCE 0.0000 c08 0.0000 c95 AR COMBINATION COEFF. SOURCE TRATIONS - SI N 1 E 0.97 E 1.68 IMEAS T 677.30+- * 22.04+- 22.49+- * 24.97+- 1.85+- 6.47+- 9.38+-	PROJ. SOURC 0.0000 c72 0.0000 c96 OF INESTIMAB COEFF. SOURC TE: NM START HOUR PERCENT MASS DF COEFF. CA 44.70 71 0.62 2 0.56 2 1.21 2 0.14 0.26 0.36	E PROJ. 0.0000 0.0000 LE SOURCE E COEFF. DATE: 06 105.7 24 LC 5.78+- 2.18+- 6.40+- 1.76+- 4.17+- 7.92+- 8.57+-	SOURCE 	0.0000 SIZE: CATIO C/M 1.06+- 1.01+- 1.17+- 0.87+- 2.25+- 1.22+- 0.91+-	CMB 8 G CMB 8 G 0.08 0.11 0.14 0.10 0.45 0.11 0.15	STD ERR .0 ATIO R/U 0.7 0.1 1.2 -1.2 3.0 2.0 -0.6
PROJ. PROJ. PROJ. 0.0000 ESTIMP COEFF. SPECIE SAMPLE CO SPECIE SAMPLE CO SPECIE NMHC ETHANE ETHANE ETHENE ACETYI LBUTE LIBUTE PROPE N_PROF	SOURCE COLOR COLOR COLOR ABLE LINE SOURCE CONCEN	PROJ. SOURCE 0.0000 c08 0.0000 c95 AR COMBINATION COEFF. SOURCE TRATIONS - SI N 1 E 0.97 E 1.68 IMEAS T 677.30+- * 22.04+- 22.49+- * 24.97+- 1.85+- 6.47+- 9.38+- * 31.23+-	PROJ. SOURC 0.0000 c72 0.0000 c96 S OF INESTIMAB COEFF. SOURC TTE: NM START HOUR PERCENT MASS DF CA 44.70 71 0.62 2 0.56 2 1.21 2 0.14 0.26 0.36 1.03 3	E PROJ. 0.0000 0.0000 E SOURCE E COEFF. DATE: 06 105.7 24 LC 5.78+- 2.18+- 6.40+- 1.76+- 4.17+- 7.92+- 8.57+- 1.25+-	SOURCE c91 c99 SOURCE 09/13/9 09/13/9 26.86 2.40 3.15 2.29 0.76 0.67 1.41 3.33	C SCE C SCE C SCE C SIZE: RATIO C/M 1.06+- 1.01+- 1.17+- 0.87+- 2.25+- 1.22+- 0.91+- 1.00+-	CMB 8 G CMB 8 G 0.08 0.11 0.14 0.10 0.45 0.11 0.15 0.11	STD ERR
PROJ. PROJ. PROJ. 0.0000 ESTIMP COEFF. SPECIE SAMPLE SAMPLE CO SPECIE SAMPLE CO SPECIE NMHC ETHANE ETHANE ACETYI LBUTE LIBUTE PROPE N_PROE I_BUTA	SOURCE COLOR C	PROJ. SOURCE 0.0000 c08 0.0000 c95 AR COMBINATION COEFF. SOURCE TRATIONS - SI N 1 E 0.97 E 1.68 IMEAS T 677.30+- * 22.04+- * 24.97+- 1.85+- 6.47+- 9.38+- * 31.23+- * 9.22+-	PROJ. SOURC 0.0000 c72 0.0000 c96 S OF INESTIMAB COEFF. SOURC TE: NM START HOUR PERCENT MASS DF CA 44.70 71 0.62 2 0.56 2 1.21 2 0.14 0.26 0.36 1.03 3 0.37	E PROJ. 0.0000 0.0000 EE SOURCE E COEFF. DATE: 06 105.7 24 LC 5.78+- 2.18+- 6.40+- 1.76+- 4.17+- 7.92+- 8.57+- 1.25+- 6.76+-	SOURCE c91 c99 S SOURCE 09/13/9 09/13/9 F 26.86 2.40 3.15 2.29 0.76 0.67 1.41 3.33 1.30	C SCE C SCE C SCE C SIZE: C SIZE:	CMB 8 G CMB 8 G 0.08 0.11 0.14 0.10 0.45 0.11 0.15 0.11 0.14	STD ERR
PROJ. PROJ. PROJ. 0.0000 ESTIMP COEFF. SPECIE SAMPLE SAMPLE CO SPECIE SAMPLE CO SPECIE NMHC ETHANE ETHANE ETHANE ACETYI LBUTE LBUTE PROPE N_PROE LBUTA N_BUTA	SOURCE COLOR COLOR COLOR ABLE LINE SOURCE CONCEN	PROJ. SOURCE 0.0000 c08 0.0000 c95 AR COMBINATION COEFF. SOURCE TRATIONS - SI N 1 E 0.97 E 1.68 IMEAS T 677.30+- * 22.04+- * 24.97+- 1.85+- 6.47+- 9.38+- * 31.23+- * 9.22+-	PROJ. SOURC 0.0000 c72 0.0000 c96 S OF INESTIMAB COEFF. SOURC TE: NM START HOUR PERCENT MASS DF COEFF. 20 CA 44.70 71 0.62 2 0.56 2 1.21 2 0.14 0.26 0.36 1.03 3 0.37 0.65 1	E PROJ. 0.0000 0.0000 E SOURCE E COEFF. DATE: 06 105.7 24 LC 5.78+- 2.18+- 6.40+- 1.76+- 4.17+- 7.92+- 8.57+- 1.25+-	SOURCE c91 c99 SOURCE 09/13/9 09/13/9 26.86 2.40 3.15 2.29 0.76 0.67 1.41 3.33	C SCE C SCE C SCE C SIZE: C SIZE:	CMB 8 G R 0.08 0.11 0.14 0.10 0.45 0.11 0.15 0.11 0.14 0.20	STD ERR

IPENTA IPENTA *	40.44+-	1.32	47.36+-	7.49		
PENTE1 PENTE1	1.65+-	0.29	2.07+-	0.27	1.25+- 0.27	1.1
PENTE1 PENTE1 N_PENT N_PENT *	20.53+-	1.43	18.23+-	1.78	1.25+- 0.27 0.89+- 0.11	-1.0
I_PREN I_PREN *	1.02+-	0.31	1.01+-	0.30	0.99+- 0.42	0.0
T2PENE T2PENE	2.00+-	0.34	2.69+-	0.48		
T2PENE T2PENE C2PENE C2PENE	1.10+-	0.17	1.66+-	0.24	1 51+- 0 32	19
B2E2M B2E2MU	2.44+-	0.32	1.66+- 4.01+- 2.92+-	0.55	1.64+- 0.31	2.5
* MG2118 MG2118	1 48+-	0 18	2.92+-	0 93	1.97+- 0.68	1.5
B2E2M B2E2MU BU22DM BU22DM * CPENTE CPENTE	0 60+-	0.10	0.96+-			
DIEAME DIEAME	0.001	0.17	0.501	0.22		
P1E4ME P1E4ME CPENTA CPENTA *	0.55+-	0.17	0.53+- 1.91+-	0.20		-1.9
CPENIA CPENIA "	2.54+-	0.21	1.91+-	0.25	0.75 + - 0.12	-1.9
BU23DM BU23DM PENA2M PENA2M *	4.0/+-	0.21	3.42+-	0.68	0.73+- 0.15 0.97+- 0.09	-1.8
PENAZM PENAZM ^	17.98+-	0.95	17.46+-	1.22		
PENA3M PENA3M *	10.43+-	1.37	9.28+-	0.76	0.89+- 0.14	
P1E2ME P1E2ME N_HEX N_HEXU *	0.48+-	0.14	0.40+-	0.38		
N_HEX N_HEXU *	10.45+-	0.63	13.40+-	3.32	1.28+- 0.33	
T ² HEXE T ² HEXE C ² HEXE C ² HEXE	0.80+-	0.21	1.22+-	0.43	1.52+- 0.67 1.18+- 0.41	0.9
C2HEXE C2HEXE	0.36+-	0.06	0.42+-	0.13	1.18+- 0.41	0.5
MCYPNA MCYPNA * PEN24M PEN24M *	12.84+-	0.52	8.64+- 6.55+-	3.48	0.67+- 0.27	-1.2
PEN24M PEN24M *	4.05+-	0.22	6.55+-	2.12	1.62+- 0.53	1.2
BENZE BENZEU *	14.49+-	2.05	15.66+-	1.53	1.08+- 0.19	0.5
СҮНЕХА СҮНЕХА * НЕХА2М НЕХА2М *	4.08+-	0.37	4.00+-	0.40	0.98+- 0.13	-0.2
HEXA2M HEXA2M *	7.22+-	0.33	9.23+-	3.18	0.98+- 0.13 1.28+- 0.44	0.6
PEN23M PEN23M * HEXA3M HEXA3M * PA224M PA224M *	6.95+-	0.53	8.99+-	1.50	1.29 + - 0.24	1.3
HEXA3M HEXA3M *	8.48+-	0.63	9.75+-	1.37	1.15 + -0.18	0.8
PA224M PA224M *	11 30+-	0 39	12 78+-	2 39	1.13+- 0.22	0.6
N HEDT N HEDT *	6 12+-	0.29	5 41+-	0 49	0.88+-0.09	-1.2
N_HEPT N_HEPT * MECYHX MECYHX *	6 83+-	0.27	5.41+- 7.08+-	0.12	0.88+- 0.09 1.04+- 0.12	0.3
MECINA MECINA * MACCAG MACCAG	2 05+	0.57	1.00+-	1.22	1.36 + - 0.41	
PA234M PA234M * TOLUE TOLUEU *	44 21	1 50	4.10+-	5.42		
HERE HERE AND +	44.31+-	1.52	47.02+-	0.42		
HEP2ME HEP2ME *	3.23+-	0.32	3.8/+-	0.37	1.20 + - 0.16	
HEP3ME HEP3ME * N_OCT N_OCTU *	2.96+-	0.15	3.50+- 2.36+-	0.55	1.18+- 0.20	0.9
N_OC'I' N_OC'I'U *	2.77+-	0.25	2.36+-	0.31		-1.0
ETBZ ETBZU	7.63+-	0.34	7.70+- 31.75+-	1.94	1.01+- 0.26	
MP_XYL MP_XYL						
STYR STYRU		0.17	2.41+-	0.71		-1.1
O_XYL O_XYLU	10.58+-	0.37	12.81+- 1.55+-	2.25	1.21+- 0.22	1.0
N_NON N_NONU *	2.09+-	0.16	1.55+-	0.38		-1.3
IPRBZ IPRBZU N_PRBZ N_PRBZ	0.91+-	0.08	1.10+- 2.10+-	0.32	1.21+- 0.36	0.6
N_PRBZ N_PRBZ	2.05+-	0.15	2.10+-	0.66	1.03+- 0.33	0.1
M_ETOL M_ETOL	7.43+-	0.28	9.12+-	2.75	1.23+- 0.37	0.6
P_ETOL P_ETOL	3.77+-	0.22	3.57+-	0.77	0.95+- 0.21	-0.2
BZ135M BZ135M	4.49+-	0.23	5.13+-	1.06	1.14+- 0.24	0.6
O ETOL O ETOL	2.96+-	0.20	3.35+-	1.08	1.13+- 0.37	0.4
BZ124M BZ124M	12.37+-	0.74	18.68+-	7.70	1.51 + - 0.63	0.8
M_ETOL M_ETOL P_ETOL P_ETOL BZ135M BZ135M O_ETOL O_ETOL BZ124M BZ124M N_DEC N_DECU *	4.77+-	0.48	2.75+-	0.61	0.58 + - 0.14	-2.6
BZ123M BZ123M	4.84+-	0.48	3.49+-	1 05	0.72+- 0.23	-1.2
DETBZ1 DETBZ1	1.23+-	0.12	1.01+-	0.41	0.82+- 0.34	-0.5
DETBZ2 DETBZ2	0.00<	0.01	1.78<	1.37		1.3
N_UNDE N_UNDE *		0.29	5.01+-	1.03		2.0
OTHER OTHERU	84.94+-	8.49	53.62+-		0.63 + 0.11	-2.7
MTBE MTBEU *		3.12	33.40+-		1.07 + 0.17	0.4
		3.12 8.53	05 04U+-			
UNID UNIDU *				15.71		0.0

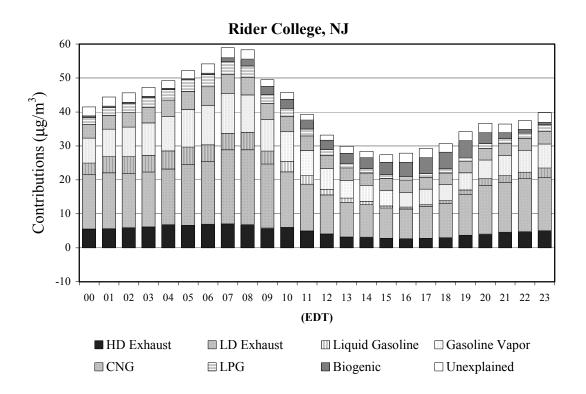


Figure 5-1. Average source contribution estimates of ambient hydrocarbons at Rider College, NJ during summer, 1995 by time of day. Source: Fujita and Lu, 1998.

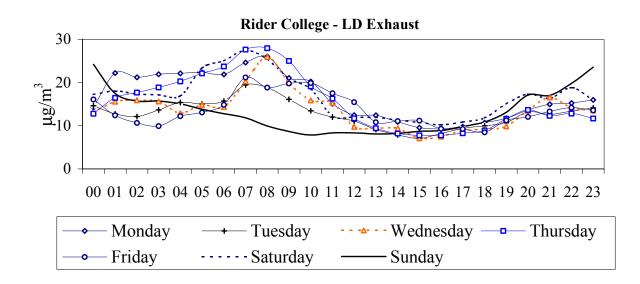


Figure 5-2. Average source contribution estimates of hydrocarbons at Rider College, NJ during summer, 1995 (EDT) by day of the week. Source: Fujita and Lu, 1998.

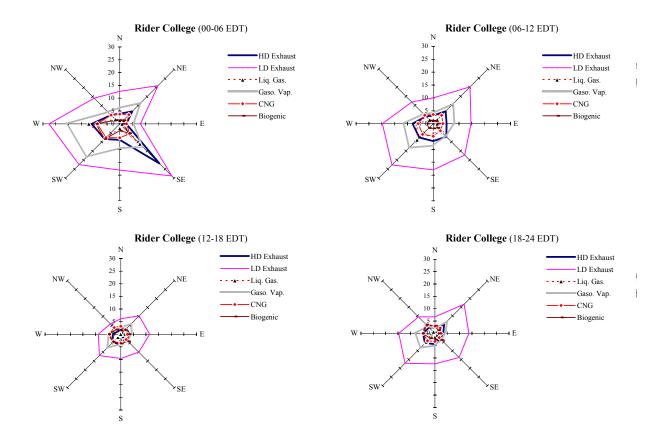


Figure 5-3. Wind directional dependence of source contributions by time of the day at Rider College, NJ during summer, 1995.

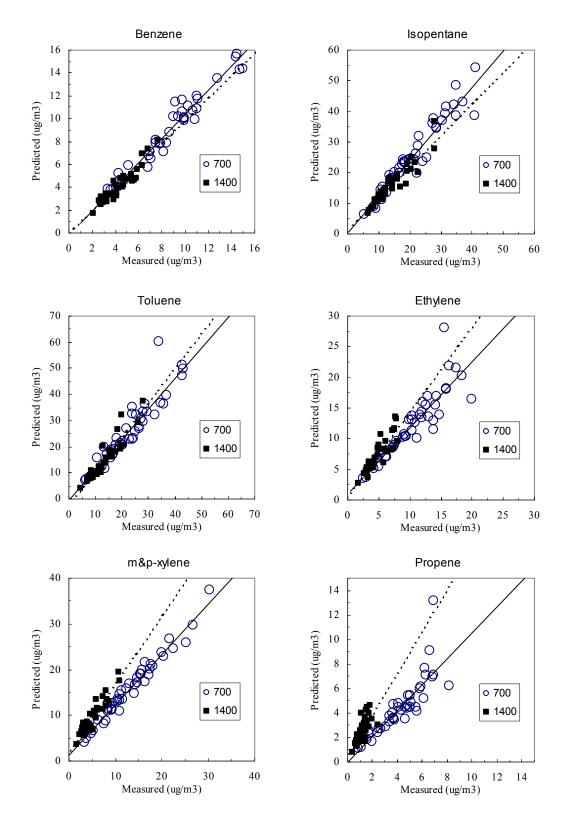


Figure 5-4. Scatterplots of Calculated Versus Measured Hydrocarbon Concentrations for samples collected at Azusa for the CARB Study.

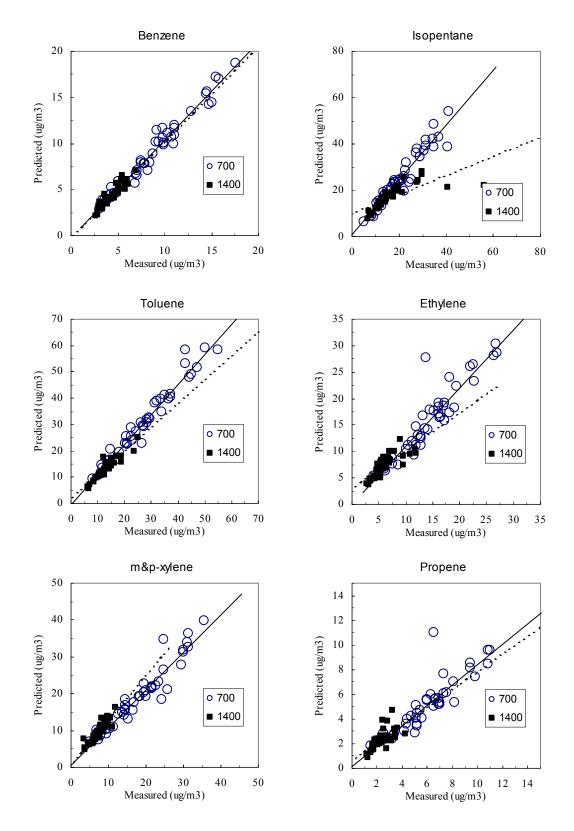


Figure 5-5. Scatterplots of Calculated Versus Measured Hydrocarbon Concentrations for samples collected at Los Angeles – North Main for the CARB Study.

6. **REFERENCES**

Altshuller, A.P. (1983) Natural volatile organic substances and their effect on air quality in the United States. *Atmos. Environ.* 17, 2131-2166.

American Petroleum Institute Reports, October 1996.

- Apel, E.C., J.G. Calvert, and F.C. Fehsenfeld (1994). The Nonmethane Hydrocarbon Intercomparison Experiment (NOMHICE): Tasks 1 and 2. J. Geophys. Res. 99:16651-16664.
- Apel, E., J. Calvert, D. Riemer, W. Pos, R. Zika, T. Kleindienst, W. Lonneman, K. Fung, E. Fujita, P. Shepson, and T. Starn (1998). Measurements Comparison of Oxygenated Volatile Organic Compounds at a Rural site During the 1995 SOS Nashville Intensive. J. *Geophys. Res.*, 98JD01753.
- Arnts, R.R., and S. Tejada (1989). "2,4-Dinitrophenylhydrazine-coated Silica Gel Cartridge Method for Determination of Formaldehyde in Air: Identification of an Ozone Interference." *Environ. Sci. Technol.*, 23, 1428.
- Atkinson, R. (1989). Kinetics and Mechanisms of Gas-Phase Reactions of the Hydroxyl Radical with Organic Compounds. *J. of Physical and Chemical Reference Data*, Monograph No. 1.
- Atkinson, R. (1990). Gas-Phase Tropospheric Chemistry of Organic Compounds: A Review. *Atmos. Environ.* **24A**(1):1-41.
- Benjamin, M.T., Sudol, M., Vorsatz, D., and Winer, A.M. (1997). A spatially and temporally resolved biogenic hydrocarbon emissions inventory for the California South Coast Air Basin. *Atmos. Environ.* 31, 3087-3100.
- Black, F.M., L.E. High, and J.M. Lang (1980). Composition of Automobile Evaporative and Tailpipe Hydrocarbon Emissions. *J. Air Pollut. Control Assoc.* **30**:1216-1221.
- Booher, L.E. and Janke, B. (1997) Air emissions from petroleum hydrocarbon fires during controlled burning. *Am. Indus. Hyg. Assoc. J.* 58, 359-365.
- Brosseau, J. and Heitz, M. (1994) Trace gas compound emissions from municipal landfill sanitary sites. *Atmos. Environ.* 28, 285-294.
- Burns, V.R., J.D. Benson, A.M. Hochhauser, W.J. Koehl, W.M. Kreucher, and R.M. Reuter (1991). SAE Technical Paper. Ser. No. 912320.
- California Air Resources Board (1993). Establishment of Corrections to Reactivity Adjustment Factors for Transitional Low-Emission Vehicles and Low-Emission Vehicles Operating on Phase 2 Reformulated Gasoline. CARB, Research Division, Sacramento, CA. March 1993.

- Censullo, A.C., D.R. Jones, and M.T. Wills (1996). Improvement of Speciation Profiles for Architectural and Industrial Maintenance Coating Operations. Final report prepared by California Polytecnic State University, San Luis Obispo, CA for the California Air Resources Board, June 30, 1996.
- Chock, D., and S. Winkler (1992). In *Transactions, PM*₁₀ Standards and Nontraditional *Particulate Source Control*, J.C. Chow and D. Ono, Eds. Air & Waste Management Assoc., Pittsburgh, PA, pp. 899-923.
- Conner, T.L., W.A. Lonneman, and R.L. Seila (1995). Transportation-Related Volatile Hydrocarbon Source Profiles Measured in Atlanta. J. Air & Waste Manage. Assoc. 45:383-394.
- Cooper, D.A., Peterson, K.R., and Simpson, D.W. (1996) Hydrocarbon, PAH and PCB emissions from ferries: a case study in the Skagerak-Kattegatt-Öresund region. *Atmos. Environ.* 30, 2463-2474.
- Dickson, C.L., G.P. Sturm, Jr. (1997). Motor Gasoline, Summer 1996, National Institute for Petroleum and Energy Research (NIPER) 198 PPS, 97/1.
- Finlayson-Pitts, B.J., and J.N. Pitts (1986). *Atmospheric Chemistry: Fundamentals and Experimental Techniques*. John Wiley & Sons, New York, NY.
- Fogelquist, D. (1997). Western States Petroleum Association. Personal communication.
- Friedlander, S.K. (1973a). Chemical Element Balances and Identification of Air Pollution Sources. *Environ. Sci. Technol.* 1:235-240.
- Friedlander, S.K. (1973b). Chemical element balances and identification of air pollution sources. *Environ.Sci.Technol.* 7:235-40.
- Friedlander, S.K. (1973c). Relating Particulate Pollution to Sources: Case of the Los Angeles Aerosol. *Proceedings of the Third International Clean Air Congress*.
- Fujita, E.M., J.G. Watson, J.C. Chow, and Z. Lu (1994). Validation of the Chemical Mass Balance Receptor Model Applied to Hydrocarbon Source Apportionment in the Southern California Air Quality Study. *Environ. Sci. Technol.* 28(9).
- Fujita, E.M., Z. Lu, J. Sagebiel, G. Harshfield, and B. Zielinska (1995a). Validation and Evaluation of the Coast Oxidant Assessment for Southeast Texas (COAST) Volatile Compound Data. Prepared for the Texas Natural Resource Conservation Commission. August 1995.
- Fujita, E.M., Z. Lu, J. Sagebiel, N.F. Robinson, and J. G. Watson (1995b). VOC Source Apportionment for the Coast Oxidant Assessment for Southeast Texas. Final report prepared for the Texas Natural Resource Conservation Commission, August 1995.

- Fujita, E.M., J.G. Watson, J.C. Chow and K.L. Magliano (1995c). Receptor Model and Emissions Inventory Source Apportionments of Nonmethane Organic Gases in California's San Joaquin Valley and San Francisco Bay Area. Atmos. Environ., 29(21), 3019-3035.
- Fujita, E.M., Z. Lu, L. Sheetz, G. Harshfield, and B. Zielinska (1997a). Determination of Mobile Source Emission Source Fraction Using Ambient Field Measurements. Final Report prepared for the Coordinating Research Council, Atlanta, GA, July 1997.
- Fujita, E., Z. Lu, G. Harshfield, and B. Zielinska (1997b). NARSTO-Northeast: Hydrocarbon and Carbonyl Measurement Audits for the 1995 Field Study. Final Report prepared for the Electric Power Research Institute, Palo Alto, CA, July 1997
- Fujita, E.M., Z. Lu, L. Sheetz, G. Harshfield, T. Hayes, and B. Zielinska (1997c). Hydrocarbon Source Apportionment in Western Washington. Report prepared for the State of Washington Department of Ecology, Lacy, WA, September, 1997.
- Fujita, E., and Z. Lu (1998a). Analysis of Data From the 1995 NARSTO-Northeast Study. Volume III: Chemical Mass Balance Receptor Modeling. Final report prepared for Coordinating Research Council, Atlanta, GA, April 1998.
- Fujita, E. (1998b). Emission Source Profiles Applicable to CMB Receptor Modeling of Texas PAMS VOC Data. TNRCC Contract No. 98 80078200. Final report prepared for the Texas Natural Resource Conservation Commission, Austin, TX, November 1998.
- Fujita, E., J.G. Watson, J.C. Chow, N. Robinson, L. Richards, and N. Kumar (1998c). Northern Front Range Air Quality Study. Volume C: Source Apportionment and Simulation Methods and Evaluation. Final report prepared for Colorado State University, Fort Collins, CO, June 30, 1998.
- Fujita, E.M., R.E. Keislar, J.L. Bowen, W. Goliff, F. Zhang, L.H. Sheetz, M.D. Keith, J.C. Sagebiel, and B. Zielinska (1999a). 1998 Central Texas On-Road Hydrocarbon Study. Final report prepared for the Texas Department of Transportation, Austin, TX under subcontract to PBS&J, Austin, TX, March, 1999.
- Fujita, E. (1999b). VOC Source Signatures in Houston, TX Phase 1: Sample Collection. Prepared for the Texas Natural Resource Conservation Commission (Contract No. 980069300) under subcontract to MCNC-North Carolina Supercomputing Center, Research Triangle Park, NC, August, 1999.
- Fujita, E.M., H. Moosmuller, M.C. Green, J.L. Bowen, Leon Dolislager, Ash Lashgari, Nehzat Motallebi, Randy Pasek, and Jim Pederson (1999c). SCOS97-NARSTO 1997 Southern California Ozone Study and Aerosol Study: Volume IV Summary of Quality Assurance. Prepared for the California Air Resource Board, Sacramento, CA December, 1999.
- Fujita E.M. (2001). Hydrocarbon Source Apportionment for the 1996 Paso del Norte Ozone Study. *Science of the Total Environment* 276, 171-184.

- Fujita, E., W. Goliff, J. Sagebiel, F. Zhang, L.H. Sheetz, M.D. Keith, and B. Zielinska (2001). VOC Source Signatures in Houston, TX. Prepared for the Texas Natural Resource Conservation Commission (Contract No. 980069300) under subcontract to MCNC-North Carolina Supercomputing Center, Research Triangle Park, NC, February, 2001.
- Fujita, E.M., D.E. Campbell, W. Stockwell, R. Keislar, B. Zielinska, J.C. Sagebiel, W. Goliff, M. Keith, and J.L. Bowen (2002). Weekend/Weekday Ozone Observations in the South Coast Air Basin Volume II: Analysis of Air Quality Data. Final report prepared by the Desert Research Institute, Reno, NV for the National Renewable Energy Laboratory, Golden, CO, and the Coordinating Research Council, April 2002.
- Fujita, E.M., D.E. Campbell, B. Zielinska, J.C. Sagebiel, J.L. Bowen, W. Goliff, W.R. Stockwell, and D.R. Lawson (2003a). Diurnal and Weekday Variations in Source Contributions of Ozone Precursors in California's South Coast Air Basin. J. Air & Waste Manage. Assoc. 53: 844-863.
- Fujita, E. and D. Campbell (2003b). PAMS Data Analysis for Southern California Volume VII: Source Apportionment of Volatile Organic Compounds. Final report prepared for the South Coast Air Quality Management District, Diamond Bar, CA, June 20, 2003
- Fujita, E.M., G. Harshfield, and L.H. Sheetz (2003c). Performance Audits and Laboratory Comparisons for SCOS97-NARSTO Measurements of Speciated Volatile Organic Compounds. *Atmos. Environ.* in press.
- Fung, K., and D. Grosjean (1981). "Determination of Nanogram Amounts of Carbonyls as 2,4-Dinitrophenylhydrazones by High Pressure Liquid Chromatography," Anal. Chem., 53: 168.
- Garcia, J.P., Beyne-Masclet, S., and Mouvier, G. (1992) Emissions of volatile organic compounds by coal-fired power stations. *Atmos. Environ.* 26A, 1589-1597.
- Gertler, A.W., J.C. Sagebiel, D.F. Wittorff, W.R. Pierson, W.A. Dipple, D. Freeman, and L. Sheetz (1997). Vehicle Emissions in Five Urban Tunnels. Final Report prepared for the Coordinating Research Council (CRC Project No. E-5), Atlanta, GA. March 1997.
- Guo, Z., Sparks, L.E., Tichenor, B.A., and Chang, J.C.S. (1998). Predicting the emissions of individual VOCs from petroleum-based indoor coatings. *Atmos. Environ.* 32, 231-238.
- Harley, R.A., M.P. Hannigan, and G.R. Cass (1992). Respectation of Organic Gas Emissions and the Detection of Excess Unburned Gasoline in the Atmosphere. *Environ. Sci. Technol.* 26:2395.
- Henry, R.C. (1982). Stability Analysis of Receptor Models that Use Least Squares Fitting. In *Receptor Models Applied to Contemporary Air Pollution Problems*, S.L. Dattner and P.K. Hopke, Eds. Air Pollution Control Association, Pittsburgh, PA, pp. 141-154.

- Henry, R.C. (1992). Dealing with Near Collinearity in Chemical Mass Balance Receptor Models. *Atmos. Environ.* **26A**(5):933-938.
- Hewitt, C.N. and Street, R.A. (1992) A qualitative assessment of the emission of non-methane hydrocarbon compounds from the biosphere to the atmosphere in the U.K.: Present knowledge and uncertainties. *Atmos. Environ.* 26A, 3069-3078.
- Hidy, G.M. and Friedlander, S.K. (1972). The nature of the Los Angeles aerosol. In Second International Clean Air Congress, Washington, DC.
- Hoekman, S.K. (1992). Speciated Measurements and Calculated Reactivities of Vehicle Exhaust Emissions from Conventional and Reformulated Gasolines. *Environ. Sci. Technol.*, 26:1206-1216.
- Isidorov, V.A., Zenkevich, I.G., and Ioffe, I.G. (1985) Volatile organic compounds in the atmosphere of forests. *Atmos. Environ.* 19, 1-8.
- Kalman, D. (1986) Survey analysis of volatile organics released from plastics under thermal stress. *Am. Indus. Hyg. Assoc. J.* 47, 70-70.
- Kirchstetter, T.W., B.C. Singer, R.A. Harley, G.R. Kendall, and J.M. Hesson (1999). Impact of California Reformulated Gasoline on Motor Vehicle Emissions: 2. Volatile Organic Compound Speciation and Reactivity. *Environ. Sci. Technol.*, 33:329-336.
- Kitto, A.M., Pirbazari, M., Badriyha, B.N., Ravindran, V., Tyner, R., and Synolakis, C.E. (1997). Emissions of volatile and semi-volatile organic compounds and particulate matter from hot asphalts. *Environmental Technology* 18, 121-138.
- Kneip, T.J., Kleinman, M.T., Eisenbud, M. (1973). Relative contribution of emission sources to the total airborne particulates in New York City. In *Third International Clean Air Congress*, Dusseldorf, FRG.
- Lawson, D.R., S. Diaz, E.M. Fujita, S.L. Wardenburg, R.E. Keislar, Z. Lu and D.E. Schorran (1996). Program for the Use of Remote Sensing Devices to Detect High-Emitting Vehicles. Final Report. Prepared for Technology Advancement Office, South Coast Air Quality Management District, Diamond Bar, CA, April 16, 1996.
- McKay, W.A., Turner, M.F., Jones, B.M.R., and Halliwell, C.M. (1996). Emissions of hydrocarbons from marine phytoplankton--Some results from controlled laboratory experiments. *Atmos. Environ.* 30, 2583-2594.
- Mayrsohn, H. and Crabtree, J.H. (1976). Source reconciliation of atmospheric hydrocarbons. *Atmos.Environ.*, 10:137-43.
- Mayrsohn, H., Crabtree, J.H., Kuramoto, M., Sothern, R.D., Mano, S.H. (1977). Source reconciliation of atmospheric hydrocarbons 1974. *Atmos.Environ.*, 11:189-92.

- McCabe, R.W., W.O. Siegl, W. Chun, and J. Perry Jr. (1992). Speciated Hydrocarbon Emissions from the Combustion of Single Component Fuels: II. Catalyst Effects. J. Air & Waste Manage. Assoc. 42(8):1071-1077.
- McDonald, J. D., B. Zielinska, E.M. Fujita, J.C. Sagebiel, J.C. Chow, and J.G. Watson (2000). Fine Particle and Gaseous Emission Rates from Residential Wood Combustion. *Environ. Sci. and Technol.*, 34: 2080-2091.
- McDonald, J. D., B. Zielinska, E.M. Fujita, J.C. Sagebiel, J.C. Chow, and J.G. Watson Jacob (2003). Emissions from Charbroiling and Grilling of Chicken and Beef. J. Air & Waste Manage. Assoc. 53: 185-194.
- Mugica V, Vega E, Arriaga JL, and Ruiz ME (1998). Determination of motor vehicle profiles for non-methane organic compounds in the Mexico City metropolitan area. J. Air & Waste Manage. Assoc. 48:1060-1068.
- Ohira, T., Ishuguro, M.T., and Koyama, O. (1976). Gas chromatographic analysis of offensive odors at plants handling fish entrails and bones. *Japan Soc. Air Pollut.* 2, 58-59.
- Pace, T.G., and J.G. Watson (1987). Protocol for Applying and Validating the CMB Model. EPA 450/4-87-010. U.S. Environmental Protection Agency, Research Triangle Park, NC.
- Passant, N.R., Richardson, S.J., Swannell, R.P.J., Gibson, N., Woodfield, M.J., van der Lugt, J.P., Wolsink, J.H., and Hesselink, P.G.M. (1993). Emissions of volatile organic compounds (VOCs) from the food and drink industries of the European community. *Atmos. Environ.* 27A, 2555-2566.
- Roberts, J.M., Hahn, C.J., Fehsenfeld, F.C., Warnock, J.M., Albritton, D.L., and Sievers, R.E. (1985). Monoterpene hydrocarbons in the nighttime troposphere. *Environ. Sci. Technol.* 19, 364-369.
- Robinson, N.F. (1995). Personal communication.
- Sack, T.M., Steele, D.H., Hammerstrom, K., and Remmers, J. (1992). A survey of household products for volatile organic compounds. *Atmos. Environ.* 26A, 1063-1070.
- Sagebiel, J.C., B. Zielinska, W.R. Pierson, and A.W. Gertler (1996). Real-world emissions and calculated reactivities of organic species from motor vehicles. *Atmos. Environ.*, **30**, 2287-2296.
- Seinfeld, J.H. (1986). Atmospheric Chemistry and Physics of Air Pollution. John Wiley & Sons, New York, NY.
- Sexton, K. and Westberg, H.H. (1979). Ambient air measurements of petroleum refinery emissions. *JAPCA* 29, 1149-1149.

- Shonnard, D.R. and Bell, R.L. (1993). Benzene emissions from a contaminated air-dry soil with fluctuations of soil temperature or relative humidity. *Environ. Sci. Technol.*, 27, 2909-2913.
- Seila, R.L., H. Main, J.L. Arriaga, V.G. Martinez, and A.B. Ramadan (2001). Atmospheric volatile organic compound measurements during 1996 Paso del Norte Ozone Study. *Science of the Total Environment* 276, 153-169.
- Siegl, W.O., R.W. McCabe, W. Chun, E.W. Kaiser, J. Perry, Y.I. Henig, F.H. Trinker, and R.W. Anderson (1992). Speciated Hydrocarbon Emissions from the Combustion of Single Component Fuels: I. Effect of Fuel Structure. J. Air Waste Manage. Assoc. 42:912-920.
- Singh, H.B., O'Hara, D., Herlth, D., Sachse, W., Blake, D.R., Bradshaw, J.D., Kanakidou, M., and Crutzen, P.J. (1994). Acetone in the atmosphere: Distribution, sources, and sinks. J. Geophys. Res., 99, 1805-1820.
- Sigsby, J.E., S. Tejada, W. Ray, J.M. Lang, and J.W. Duncan (1987). Volatile Organic Compound Emissions from 46 In-Use Passenger Cars. *Environ. Sci. Technol.*, 21:466-475.
- Stump, F., S. Tejada, W. Ray, D. Dropkin, F. Black, W. Crews, R. Snow, P. Siudak, C.O. Davis, L. Baker, and N. Perry (1989). The Influence of Ambient Temperature on Tailpipe Emission from 1984-1987 Model Year Light-Duty Gasoline Motor Vehicles - I. Atmos. Environ. 23:307-320.
- Stump, F., S. Tejada, W. Ray, D. Dropkin, F. Black, R. Snow, W. Crews, P. Sivdak, C.O. Davis, and P. Carter (1990). The Influence of Ambient Temperature on Tailpipe Emissions from 1985 to 1987 Model Year Light-Duty Gasoline Motor Vehicles - II. Atmos. Environ. 24A:2105-2112.
- Tanner, R.L. and Zielinska, B. (1994). Determination of the biogenic emission rates of species contributing to VOC in the San Joaquin Valley of California. *Atmos. Environ.* 28, 1113-1120.
- U.S. Environmental Protection Agency (1991). Technical Assistance Document for Sampling and Analysis of Ozone Precursors. EPA 600/8-91-215. U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC. October 1991.
- United States Environmental Protection Agency (1999a). Compendium Method TO14A: Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters With Subsequent Analysis by Gas Chromatography. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, EPA/625/R-96/010b, January 1999.
- United States Environmental Protection Agency (1999b). Compendium Method TO-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by

High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology]. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, EPA/625/R-96/010b, January 1999.

- Vairavamurthy, A., J.M. Roberts, and L. Newman, in: Sampling and Analysis of Airborne Pollutants, Winegar, E.D., and Keith, L.H. (eds) Boca Raton, FL: Lewis Publishers, 1993; Chapter 10, pp. 149-174.
- Wadden, R.A., Scheff, P.A., Franke, J.E., Conroy, L.M., and Keil, C.B. (1995). Determination of VOC emission rates and compositions for offset printing. *JAWMA* 45, 547-555.
- Watson, J.G. (1979). Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Particulate Matter. Ph.D. Dissertation, Oregon Graduate Center, Beaverton, OR. University Microfilms International, Ann Arbor, MI.
- Watson, J.G., J.A. Cooper, and J.J. Huntzicker (1984). The Effective Variance Weighting for Least Squares Calculations Applied to the Mass Balance Receptor Model. *Atmos. Environ.* 18(7):1347-1355.
- Watson, J.G. N.F. Robinson, C. Lewis, T. Coulter (1997). Chemical Mass Balance Receptor Model Version 8 (Cmb8) User's Manual, Desert Research Institute Document No. 1808.1D1, Reno, NV. December 1997.
- Watson, J.G., Robinson, N.F., Lewis, C.W., Coulter, C.T., Chow, J.C., Fujita, E.M., Conner, T.L., Pace, T.G. (1998a). CMB8 applications and validation protocol for PM_{2.5} and VOCs. Report No. 1808.2D1, Desert Research Institute, Reno, NV.
- Watson, J., E. Fujita, J.C. Chow, B. Zielinska, L. Richards, W. Neff, and D. Dietrich (1998b). Northern Front Range Air Quality Study. Final report prepared for Colorado State University, Fort Collins, CO, June 30, 1998.
- Watson, J., J.C. Chow, and E. Fujita (2001). Review of Volatile Organic Compound Source Apportionment by Chemical Mass Balance. *Atmos. Environ.* 35:1567-1584.
- Winchester, J.W. and Nifong, G.D. (1971). Water pollution in Lake Michigan by trace elements from aerosol fallout. *Water Air and Soil Pollution* 1:50-64.
- Zielinska, B., K.K. Fung, and L. Sheetz (1992). Composition and Concentrations of Semivolatile Hydrocarbons. Final Report prepared for the California Air Resources Board, Sacramento, CA, by the Desert Research Institute, Reno, NV, and AtmAA Inc., Chatsworth, CA.
- Zielinska, B. and E.M. Fujita (1994). The Composition and Concentration of Hydrocarbons in the Range of C₂ to C₁₈ in Downtown Los Angeles, CA. *Res. Chem. Intermed.*, 20, 321-334.
- Zielinska, B. and E.M. Fujita (1995). Organic Gas Sampling. In Environmental Sampling for Trace Analysis, B. Markert, ed. VCH, Weinheim, Germany, 7, 163-184.

VALIDATION AND APPLICATION PROTOCOL FOR SOURCE APPORTIONMENT OF PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS) AMBIENT VOLATILE ORGANIC COMPOUUND (VOC) DATA

Appendix A

Desert Research Institute Organic Analysis Parameter List

Appendix A
Desert Research Institute Organic Analysis Parameter List

	Mnemonic ^a		Sort Codes							Conversion				
Para #	for CMB	Compound Name	Method ^b	Data ^c	Sum ^d	PAMS ^e	CMB ^f	Formula	Units	to ug/m3 ^g	C_no	mw	Group ^h	
1	PAMS	sum of PAMS species		1			G							
2	OTHER	other identified to undecane		2			G							
3	UNID	unidentified to undecane		3		DOO	G							
4	TNMHC	total NMHC to undecane		4		P00	G	сu			1	12.05		
5	NMHC_p	TO14-FID identified NMHC		5				$C_1H_{1.85}$	ppbC	0.5.57	1	13.85		
5 7	UNID_p IDOXY	TO14-FID unidentified		6 7					ppbC	0.567	1	13.85		
8	CARB	sum of oxygenates sum of carbonyls		8			G							
9	HALO	sum of halocarbons		9			G							
10	TENAX	sum of tenax >undecane		10			G							
11	METHAN	methane	c1	a001				CH_4	ppmv		1	16.04	Р	
12	CO_PPM	carbon monoxide	c1	a002			G	CO	ppmv	1247.900	1	28.01		
13	CO2PPM	carbon dioxide	c1	a003				CO2	ppmv	1960.732	1	44.01		
14	pdfid	TNMHC by PDFID	c5	a004	х									
15	ETHANE	ethane	c2	a005		P03	G	C_2H_6	ppbC	0.670	2	30.07	Р	
16	ETHENE	ethene	c2	a006		P01	G	C_2H_4	ppbC	0.625	2	28.05	0	
17	ACETYL	acetylene	c2	a007		P02	G	C_2H_2	ppbC	0.580	2	26.04	Y	
18	LBUT1E	1-butene	c2	a008		P07	G	C_4H_8	ppbC	0.625	4	56.11	0	
19	LIBUTE	iso-butene	c2	a009			G	C_4H_8	ppbC	0.625	4	56.11	0	
20	c2cmpd	sum of C2 compounds	c3	a010	x		0	04118	ppbC	0.020	2	20111	0	
21	PROPE	propene	c3	a011		P04	G	C ₃ H ₆	ppbC	0.625	3	42.08	0	
22	N_PROP	propane	c3	a012		P05	G	C ₃ H ₈	ppbC	0.655	3	44.10	P	
22 23	f12	F12 (dichlorodifluoromethane)	c3	a012 a013		105	0	CF ₂ Cl ₂		5.387	1	120.91	r X	
					n				ppbC ppbC				X	
24	mecl	methylchloride	c3	a014	n	B0 -	~	CH ₃ Cl	ppbC	2.249	1	50.49		
25	I_BUTA	isobutane	c3	a015		P06	G	C_4H_{10}	ppbC	0.647	4	58.12	P	
26	f114	F114 (dichlorotetrafluoroeth)	c3	a016	n			$C_2F_4Cl_2$	ppbC	3.807	2	170.91	Х	
27	acetal	acetaldehyde	c3	a017	0			CH ₃ CHO	ppbC	0.981	2	44.05	AL	
28	beabyl	1-butene + isobutylene	c3	a018	х			C4H8	ppbC	0.625	4	56.11	0	
29	BUDI13	1,3-butadiene	c3	a019			G	C_4H_6	ppbC	0.602	4	54.09	0	
30	N_BUTA	n-butane	c3	a020		P08	G	C_4H_{10}	ppbC	0.647	4	58.12	Р	
31	metoh	methanol	c3	a021	0			CH_3OH	ppbC	2.461	0.58	32.04	OH	
32	T2BUTE	t-2-butene	c3	a022		P09	G	C_4H_8	ppbC	0.625	4	56.11	0	
33	BUTYN	1&2-butyne	c3	a023				C_4H_6	ppbC	0.602	4	54.09	Y	
34	C2BUTE	c-2-butene	c3	a024		P10	G	C_4H_8	ppbC	0.625	4	56.11	0	
35	f21		c3	a025	n			4 0	ppbC	5.387	1	120.91	Х	
36	B1E3ME	3-methyl-1-butene	c3	a026				C5H10	ppbC	0.625	5	70.13	0	
37	ETHOH	ethanol	c3	a027	0			C ₂ H ₅ OH	ppbC	1.739	1.18	46.07	OH	
38	can	acetonitrile	c3	a028	n			-23	ppbC		2	41.05		
39	propal	propionaldehyde	c3	a029	0			C ₂ H ₅ CHO	ppbC	0.863	3	58.08	AL	
40	IPENTA	isopentane	c3	a030	-	P11	G	C ₅ H ₁₂	ppbC	0.643	5	72.15	Р	
40	aceto	acetone	c3	a030	0	111	U	C ₃ H ₆ O	ppbC	0.863	3	58.08	K	
42					0	P12	C				5	70.13	0	
	PENTE1	1-pentene	c3	a032		P12	G	C ₅ H ₁₀	ppbC	0.625				
43	B1E2M	2-methyl-1-butene	c3	a033				C5H10	ppbC	0.625	5	70.13	0	
44	N_PENT	n-pentane	c3	a034		P13	G	C5H12	ppbC	0.643	5	72.15	Р	
45	pr2oh	i-propanol	c3	a035	0				ppbC	0.893	3	60.10	OH	
46	I_PREN	isoprene	c3	a036		P14	G	C_5H_8	ppbC	0.607	5	68.11	0	
47	T2PENE	t-2-pentene	c3	a037		P15	G	$C_{5}H_{10}$	ppbC	0.625	5	70.13	0	
48	C2PENE	c-2-pentene	c3	a038		P16	G	$C_{5}H_{10}$	ppbC	0.625	5	70.13	0	
49	mecl2	methylene chloride	c3	a039	n			CH_2CL_2	ppbC	3.784	1	84.93	Х	
50	B2E2M	2-methyl-2-butene	c3	a040				C5H10	ppbC	0.625	5	70.13	0	
51	tbuoh	t-butanol	c3	a041	0				ppbC	0.937	4	84.16	OH	
52	f113	F113 (trichlorotrifluoroeth)	c3	a042	n			$C_2F_3Cl_3$	ppbC	4.174	2	187.38	Х	
53	BU22DM	2,2-dimethylbutane	c3	a043		P17	G	C_6H_{14}	ppbC	0.640	6	86.17	Р	
54	PRAL2M	2-methylpropanal	c3	a044	0			C ₃ H ₇ CHO	ppbC	0.803	4	72.09	AL	
55	CPENTE	cyclopentene	c3	a045				C ₅ H ₈	ppbC	0.607	5	68.11	0	
56	meacro	methacrolein	c3	a046	0			05118	ppbC	1.561	2	70.09	AL	
57	P1E4ME	4-methyl-1-pentene	c3	a047	0			C ₆ H ₁₂	ppbC	0.625	6	84.16	0	
58	P1E3ME	3-methyl-1-pentene	c3	a048				C_6H_{12} C_6H_{12}	ppbC	0.625	6	84.16	0	
58 59						D10	C							
	CPENTA	cyclopentane	c3	a049		P18	G	C5H10	ppbC	0.625	5	70.13	CA	
60	BU23DM	2,3-dimethylbutane	c3	a050		P19	G	$C_{6}H_{14}$	ppbC	0.640	6	86.17	Р	
61	MTBE	methyl-t-butylether	c3	a051		_	G	C ₅ H ₁₂ O	ppbC	0.899	4.37	88.14	E	
62	PENA2M	2-methylpentane	c3	a052		P20	G	$C_{6}H_{14}$	ppbC	0.640	6	86.17	Р	
63	bual	butanal	c3	a053	0			C ₃ H ₇ CHO	ppbC	0.803	4	72.09	AL	
64	mek buone	methyl ethyl ketone	c3	a054	0			C_4H_8O	ppbC	0.803	4	72.09	K	
65	PEN22M	2,2-dimethylpentane	c3	a055				C7H16	ppbC	0.638	7	100.20	Р	
66	PENA3M	3-methylpentane	c3	a056		P21	G	$C_{6}H_{14}$	ppbC	0.640	6	86.17	Р	
67	P1E2ME	2-methyl-1-pentene	c3	a057		P22	G	C ₆ H ₁₂	ppbC	0.625	6	84.16	0	
68	HEX1E	1-hexene	c3	a058			0	C ₆ H ₁₂	ppbC	0.625	6	84.16	0 0	
69	c6ole1	C6 Olefin	c3	a038 a059				C6H12	ppbC ppbC	0.625	6	84.16 84.16	0	
69 70	N_HEX	n-hexane	c3	a039 a060		P23	G	C6H12 C6H14	ppbC ppbC	0.623	6	86.17	P	
						1 43	J							
71	ccl3 T3HEXE	chloroform t-3-hexene	c3	a061	n			CHCl ₃	ppbC	5.319	1	119.38	X O	
72		r s hevene	c3	a062				$C_{6}H_{12}$	ppbC	0.625	6	84.16	0	

Appendix A
Desert Research Institute Organic Analysis Parameter List

	Mnemonic ^a			_		Codes				Conversion			
Para #	for CMB	Compound Name	Method ^b	Data ^c	Sum ^d	PAMS ^e	CMB ^f	Formula	Units	to ug/m3 ^g	C_no	mw	Group ^h
73	T2HEXE	t-2-hexene	c3	a063				C6H12	ppbC	0.625	6	84.16	0
74	P2E2ME	2-methyl-2-pentene	c3	a064				$C_{6}H_{12}$	ppbC	0.625	6	84.16	0
75	P2E3MC	cis-3-methyl-2-pentene	c3	a065				C6H12	ppbC	0.625	6	84.16	0
76	C3HEXE	c-3-hexene	c3	a066				$C_{6}H_{12}$	ppbC	0.625	6	84.16	0
77	C2HEXE	c-2-hexene	c3	a067				$C_{6}H_{12}$	ppbC	0.625	6	84.16	0
78	P2E3MT	trans-3-methyl-2-pentene	c3	a068				$C_{6}H_{12}$	ppbC	0.625	6	84.16	0
79	MCYPNA	methylcyclopentane	c3	a069		P24	G	C6H12	ppbC	0.625	6	84.16	Р
80	PEN24M	2,4-dimethylpentane	c3	a070		P25	G	$C_{7}H_{16}$	ppbC	0.638	7	100.20	Р
81	mecc13	methyl chloroform	c3	a071	n			$C_2H_3Cl_3$	ppbC	2.659	2	119.38	Х
82	BU223M	2,2,3-trimethylbutane	c3	a072				C7H16	ppbC	0.638	7	100.20	Р
83	CPENE1	1-methylcyclopentene	c3	a073				C_6H_7	ppbC	0.610	6	82.15	0
84	BENZE	benzene	c3	a074		P26	G	C_6H_6	ppbC	0.580	6	78.11	А
85	PEN33M	3,3-dimethylpentane	c3	a075				C7H16	ppbC	0.638	7	100.20	Р
86	CYHEXA	cyclohexane	c3	a076		P27	G	C6H12	ppbC	0.625	6	84.16	CA
87	HEXE4M	4-methylhexene	c3	a077				C7H16	ppbC	0.625	7	98.19	Р
88	HEXA2M	2-methylhexane	c3	a078		P28	G	$C_{7}H_{16}$	ppbC	0.638	7	100.20	Р
89	PEN23M	2,3-dimethylpentane	c3	a079		P29	G	$C_{7}H_{16}$	ppbC	0.638	7	100.20	Р
90	CYHEXE	cyclohexene	c3	a080				$C_{6}H_{10}$	ppbC	0.610	6	82.15	0
91	HEXA3M	3-methylhexane	c3	a081		P30	G	$C_{7}H_{16}$	ppbC	0.638	7	100.20	Р
92	c7ole1	C7 olefin-1	c3	a082				C7H14	ppbC	0.625	7	98.19	0
93	CPA13M	1,3-dimethylcyclopentane	c3	a083				$C_{7}H_{14}$	ppbC	0.625	7	98.19	А
94	PA3ET	3-ethylpentane	c3	a084				$C_{7}H_{16}$	ppbC	0.558	8	100.20	Р
95	hept1e	1-heptene	c3	a085					ppbC	0.625	7	98.18	0
96	PA224M	2,2,4-trimethylpentane	c3	a086		P31	G	C ₈ H ₁₈	ppbC	0.636	8	114.23	Р
97	c7ole2	C7 olefin-2	c3	a087				C7H14	ppbC	0.625	7	98.19	0
98	T3HEPE	t-3-heptene	c3	a088			~	C ₇ H ₁₄	ppbC	0.625	7	98.19	0
99 100	N_HEPT	n-heptane	c3	a089		P32	G	C ₇ H ₁₆	ppbC	0.638	7	100.20	Р
100 101	c8ole1 c8ole2	C8 olefin-1 C8 olefin-2	c3 c3	a090 a091				C8H16 C8H16	ppbC ppbC	0.625 0.625	8 8	112.21 112.21	0
101	c8ole3	C8 olefin-3	c3	a091 a092				C8H16	ppbC	0.625	8	112.21	0
102	P1E244	2,4,4-trimethyl-1-pentene	c3	a093				C ₈ H ₁₆	ppbC	0.625	8	112.21	õ
104	MECYHX	methylcyclohexane	c3	a094		P33	G	C ₇ H ₁₄	ppbC	0.625	7	98.19	P
105	c8pa1	C8 paraffin-1	c3	a095			-	C8H18	ppbC	0.636	8	114.23	Р
106	HEX25M	2,5-diemthylhexane	c3	a096				C8H18	ppbC	0.636	8	114.23	Р
107	HEX24M	2,4-diemthylhexane	c3	a097				C ₈ H ₁₈	ppbC	0.636	8	114.23	Р
108	c8pa2	C8 paraffin-2	c3	a098				C8H18	ppbC	0.636	8	114.23	Р
109	PA234M	2,3,4-trimethylpentane	c3	a099		P34	G	C_8H_{18}	ppbC	0.636	8	114.23	Р
110	TOLUE	toluene	c3	a100		P35	G	C_7H_8	ppbC	0.586	7	92.14	А
111	HX23DM	2,3-dimethylhexane	c3	a101				C8H18	ppbC	0.636	8	114.23	Р
112	HEP2ME	2-methylheptane	c3	a102		P36	G	C8H18	ppbC	0.636	8	114.23	Р
113	HEP4ME	4-methylheptane	c3	a103				C8H18	ppbC	0.636	8	114.23	Р
114	c8pa3	C8 paraffin-3	c3	a104				C8H18	ppbC	0.636	8	114.23	Р
115	HEP3ME	3-methylheptane	c3	a105		P37	G	C_8H_{18}	ppbC	0.636	8	114.23	Р
116	hexal	hexanal	c3	a106	0			C5H11CHO	ppbC	0.744	6	100.16	AL
117	HEX225	2,2,5-trimethylhexane	c3	a107				C9H20	ppbC	0.635	9	128.26	Р
118	OCT1E	octene-1	c3	a108				C8H16	ppbC	0.625	8	112.21	0
119	CHX11M	1,1-dimethylcyclohexane	c3	a109				C ₈ H ₁₆	ppbC	0.625	8	112.21	Р
120	N_OCT	n-octane	c3	a110		P38	G	C8H18	ppbC	0.636	8	114.23	Р
121	HEX235	2,3,5-trimethylhexane	c3	a111				C ₉ H ₂₀	ppbC	0.635	9	128.26	Р
122	HEP24D	2,4-dimethylheptane	c3	a112				C ₉ H ₂₀	ppbC	0.635	9	128.26	Р
123	c9ole2	C9 olefin-2	c3	a113				C9H18	ppbC	0.625	9	126.24	0
124	HEP44D	4,4-dimethylheptane	c3	a114				C9H20	ppbC	0.635	9	128.26	Р
125	HEP26D	2,6-dimethylheptane	c3	a115				C ₉ H ₂₀	ppbC	0.635	9	128.26	Р
126	HEP25D	2,5-dimethylheptane	c3	a116				C ₉ H ₂₀	ppbC	0.635	9	128.26	Р
127	HEP33D	3,3-dimethylheptane	c3	a117				C ₉ H ₂₀	ppbC	0.635	9	128.26	Р
128	c9ole1	C9 olefin-1	c3	a118				C9H18	ppbC	0.625	9	126.24	0
129	ETBZ	ethylbenzene	c3	a119		P39	G	C8H10	ppbC	0.591	8	106.16	A
130	c9ole3	C9 olefin-3	c3	a120				C9H18	ppbC	0.625	9	126.24	0
131	MP_XYL	m- & p-xylene	c3	a121		P40	G	C_8H_{10}	ppbC	0.591	8	106.16	А
132	OCT2ME	2-methyloctane	c3	a122				C9H20	ppbC	0.635	9	128.26	Р
133	OCT3ME	3-methyloctane	c3	a123				C9H20	ppbC	0.635	9	128.26	Р
134	c9par1	C9 paraffin-1	c3	a124				C9H20	ppbC	0.635	9	128.26	Р
135	STYR	styrene	c3	a125		P41	G	C_8H_8	ppbC	0.580	8	104.14	А
136	O_XYL	o-xylene	c3	a126		P42	G	C_8H_{10}	ppbC	0.591	8	106.17	А
137	none1	1-nonene	c3	a127				C_9H_{18}	ppbC	0.625	9	126.24	0
138	c9par2	C9 paraffin-2	c3	a128				C9H20	ppbC	0.635	9	128.26	Р
139	N_NON	n-nonane	c3	a129		P43	G	C_9H_{20}	ppbC	0.635	9	128.26	Р
140	c9par3	C9 paraffin-3	c3	a130				C9H20	ppbC	0.635	9	128.26	Р
141	c9ole4	C9 olefin-4	c3	a131				C9H18	ppbC	0.625	9	126.24	0
142	c9par4	C9 paraffin-4	c3	a132			~	C9H20	ppbC	0.635	9	128.26	Р
143	IPRBZ	isopropylbenzene	c3 c3	a133 a134		P44	G	C_9H_{12} C_9H_{18}	ppbC	0.595	9 9	120.20 126.28	A P
144	IPCYHX	isopropylcyclohexane							ppbC	0.625			

Appendix A
Desert Research Institute Organic Analysis Parameter List

_	Mnemonic ^a		Sort Codes						Conversion						
Para #	for CMB	Compound Name	Method ^b	Data ^c	Sum ^d	PAMS ^e	CMB ^f	Formula	Units	to ug/m3 ^g	C_no	mw	Group ^h		
145	benzal	benzaldehyde	c3	a135	0			C7H6O	ppbC	0.675	7	106.12	AL		
146	OCT26D	2,6-dimethyloctane	c3	a136				$C_{10}H_{22}$	ppbC	0.634	10	142.29	Р		
147	A_PINE	alpha-pinene	c3	a137			G	C ₁₀ H ₁₆	ppbC	0.607	10	136.23	0		
148	OCT36M	3,6-dimethyloctane	c3	a138				C ₁₀ H ₂₂	ppbC	0.634	10	142.29	Р		
149	N_PRBZ	n-propylbenzene	c3	a139		P45	G	C ₉ H ₁₂	ppbC	0.595	9	120.20	А		
150	M_ETOL	m-ethyltoluene	c3	a140		P46	G	C ₉ H ₁₂	ppbC	0.595	9	120.20	A		
150	P_ETOL	•	c3	a140 a141		P47	G			0.595	9	120.20			
		p-ethyltoluene						C ₉ H ₁₂	ppbC				A		
152	BZ135M	1,3,5-trimethylbenzene	c3	a142		P48	G	C ₉ H ₁₂	ppbC	0.595	9	120.20	A		
153	c10p_a	C10 paraffin-a	c3	a143		D 40	0	C10H22	ppbC	0.634	10	142.29	Р		
154	O_ETOL	o-ethyltoluene	c3	a144		P49	G	C ₉ H ₁₂	ppbC	0.595	9	120.20	A		
155	octal	octanal	c3	a145	0			$C_9H_{16}O$	ppbC	0.714	8	128.22	AL		
156	B_PINE	beta-pinene	c3	a146			G	$C_{10}H_{16}$	ppbC	0.607	10	136.23	0		
157	DEC1E	1-decene	c3	a147					ppbC	0.625	10	140.27	0		
158	BZ124M	1,2,4-trimethylbenzene	c3	a148		P50	G	C9H12	ppbC	0.595	9	120.20	Α		
159	N_DEC	n-decane	c3	a149		P51	G	$C_{10}H_{22}$	ppbC	0.634	10	142.29	Р		
160	c10ar1	C10 aromatic-1	c3	a150				C10H14	ppbC	0.598	10	134.22	Α		
161	I_BUBZ	isobutylbenzene	c3	a151				$C_{10}H_{14}$	ppbC	0.598	10	134.22	Α		
162	S_BUBZ	sec-butylbenzene	c3	a152				$C_{10}H_{14}$	ppbC	0.598	10	134.22	А		
163	c10ol2	C10 olefin-2	c3	a153				C10H20	ppbC	0.625	10	140.27	0		
164	BZ123M	1,2,3-trimethylbenzene	c3	a154		P52	G	$C_{9}H_{12}$	ppbC	0.595	9	120.20	А		
165	c10p_c	C10 paraffin-c	c3	a155				C10H22	ppbC	0.634	10	142.29	Р		
166	LIMON	limonene	c3	a156			G	C10H16	ppbC	0.607	10	136.23	0		
167	indan	indan	c3	a157			-	C ₉ H ₁₀	ppbC	0.585	9	118.17	A		
168	indene	indene	c3	a157				C ₉ HC ₈	ppbC	0.575	9	116.15	A		
168	DETBZ1		c3			P53	G			0.575	9 10	134.22	A		
		1,3-diethylbenzene		a159		P55	G	C10H14	ppbC						
170	c10ar2	C10 aromatic-2	c3	a160		D5.4	0	C10H14	ppbC	0.598	10	134.22	A		
171	DETBZ2	1,4-diethylbenzene	c3	a161		P54	G	C ₁₀ H ₁₄	ppbC	0.598	10	134.22	A		
172	N_BUBZ	n-butylbenzene	c3	a162				$C_{10}H_{14}$	ppbC	0.598	10	134.22	А		
173	DETBZ3	1,2-diethylbenzene	c3	a163				$C_{10}H_{14}$	ppbC	0.598	10	134.22	А		
174	c10ar3	C10 aromatic-3	c3	a164				C10H14	ppbC	0.598	10	134.22	А		
175	BZDME	1,3-dimethyl-4-ethylbenzene	c3	a165				$C_{10}H_{14}$	ppbC	0.598	10	134.22	А		
176	c10ar4	C10 aromatic-4	c3	a166				C10H14	ppbC	0.598	10	134.22	А		
177	c10ar5	C10 aromatic-5	c3	a167				C10H14	ppbC	0.598	10	134.22	А		
178	IPRTOL	isopropyltoluene	c3	a168				$C_{10}H_{14}$	ppbC	0.598	10	134.22	А		
179	nonal	nonanal	c3	a169	0			$C_9H_{18}O$	ppbC	0.704	9	142.24	AL		
180	UNDE1E	1-undecene	c3	a170					ppbC	0.625	11	154.30	0		
181	N_UNDE	n-undecane	c3	a171		P55	G	$C_{11}H_{24}$	ppbC	0.633	11	156.30	Р		
182	c10ar6	C10 aromatic-6	c3	aa172	Z			C10H14	ppbC	0.598	10	134.22	А		
183	c11p_a	C11 paraffin-a	c3	aa173	z				ppbC	0.600	11	148.25	Р		
184	bz1245	1,2,4,5-tetramethylbenzene	c3	aa174	z			$C_{10}H_{14}$	ppbC	0.598	10	134.22	А		
185	bz1235	1,2,3,5-tetramethylbenzene	c3	aa175	z			$C_{10}H_{14}$	ppbC		10	134.22	А		
186	bz1234	1,2,3,4-tetramethylbenzene	c3	aa176	z			C10H14	ppbC	0.598	10	134.22	А		
187	ind_2m	2-methylindan	c3	aa177	z			C ₁₀ H ₁₂	ppbC	0.589	10	132.21	A		
188	ind_1m	1-methylindan	c3	aa178				$C_{10}H_{12}$ $C_{10}H_{12}$		0.589	10	132.21	A		
189	cl1ar1	c11 aromatic-1	c3	aa178 aa179	z			$c_{10}n_{12}$	ppbC	0.589	10		A		
189	c11ar1 c11ar3	c11 aromatic-1 c11 aromatic-3	c3	aa179 aa180	z				ppbC ppbC	0.600	11	148.25 148.25	A A		
190	dodele	1-dodecene	c3	aa180 aa181	z z			C12H24	ppbC ppbC	0.632	12	148.23	0		
									ppbC						
192	naphth	naphthalene	c3	aa182	z			$C_{10}H_{8}$	ppbC	0.571	10	128.16	A		
193	n_dode	n-dodecane	c3	aa183	Z			$C_{12}H_{26}$	ppbC	0.528	12	142.29	Р		
194	idnmhc	idnmhc, canister/FID	c3	aaa184					ppbC						
195	unid	unidentified canister/GC-FID id oxygenates, canister/FID	c3	aaa185											
196 197	idoxy idothr	id others, canister/FID	c3 c3	aaa186 aaa187					ppbC ppbC						
197	etbz	ethylbenzene	t	t001					ug/m3		8	106.17	А		
198		m&p-xylene	t	t001				СЧ	ug/m3		8	106.17	A		
200	mp_xyl cybeone		t	t002 t003				C_8H_{10}	-		8 6	98.15	A K		
200	cyheone meoct2	cyclohexanone 2-methyloctane	t	t003 t004					ug/m3 ug/m3		6 9	98.15 120.20	к Р		
201	heptone	2-heptanone	t t	t004 t005					ug/m3		9 7	120.20	F K		
202	oct3me	3-methyloctane	t	t005				C9H20	ug/m3		9	128.26	P		
		•				D41			-						
204	styr	styrene	t	t007		P41		C_8H_8	ug/m3		8	104.15	A		
205	hepal	heptanal	t	t008		10		C 11	ug/m3		7	114.19	AL		
206	o_xyl	o-xylene	t	t009		p42		C ₈ H ₁₀	ug/m3		8	106.17	A		
207	none1	1-nonene	t	t010				$C_{9}H_{18}$	ug/m3		9	126.24	0		
208	n_non	nonane	t	t011				C_9H_{20}	ug/m3		9	128.26	Р		
209	iprbz	isopropylbenzene	t	t012		p44	G	C9H12	ug/m3		9	120.20	А		
210	prcyhex	propylcyclohexane	t	t013					ug/m3		9	126.24	Р		
211	hepenal	t-2-heptenal	t	t014					ug/m3		7	112.17	AL		
	benzal	benzaldehyde	t	t015				C_7H_6O	ug/m3		7	106.12	AL		
212	a_pine	alpha-Pinene	t	t016				C10H16	ug/m3		10	136.24	0		
	a_pine								-						
212	dmoct	dimethyloctane	t	t017					ug/m3		10	142.28	Р		
212 213	dmoct	•	t t	t017 t018		p45		CoHin	-		10 9		P A		
212 213 214	-	dimethyloctane propylbenzene benzonitrile				p45		$C_{9}H_{12}$	ug/m3 ug/m3 ug/m3			142.28 120.20 103.12			

Appendix A
Desert Research Institute Organic Analysis Parameter List

	Mnemonic ^a				Sort Code	es				Conversion			
Para #	for CMB	Compound Name	Method ^b	Data ^c	Sum ^d PA	MS °	CMB ^f	Formula	Units	to ug/m3 ^g	C_no	mw	Group ^h
218	p_etol	p-ethyltoluene	t	t021				C9H12	ug/m3		9	120.20	А
219	bz135m	1,3,5-trimethylbenzene	t	t022				C_9H_{12}	ug/m3		9	120.20	А
220	PHENOL	phenol	t	t023					ug/m3		6	94.11	А
221	o_etol	o-ethyltoluene	t	t024	I	p49		C_9H_{12}	ug/m3		9	120.00	А
222	b_pine	beta-pinene	t	t025				$C_{10}H_{16}$	ug/m3		10	136.24	0
223	FURBZ	2,3-benzofuran	t	t026					ug/m3		8	118.14	K
224	FURPEN	2-pentylfuran	t	t027					ug/m3		9	138.21	А
225	t_bubz	t-butylbenzene	t	t028					ug/m3		10	134.22	А
226	OCTAL	octanal	t	t029			G	$C_9H_{16}O$	ug/m3		8	128.22	А
227	bz124m	1,2,4-trimethylbenzene	t	t030				C_9H_{12}	ug/m3		9	120.20	Α
228	MESTYR	4-methylstyrene	t	t031					ug/m3		9	118.18	Α
229	mpcbz	1,3-dichlorobenzene	t	t032					ug/m3		6	146.00	Х
230	dec1e	1-decene	t	t033					ug/m3		10	140.27	0
231	i_bubz	isobutylbenzene	t	t034				$C_{10}H_{14}$	ug/m3		10	134.22	А
232	n_dec	decane	t	t035				$C_{10}H_{22}$	ug/m3		10	142.29	Р
233	s_bubz	sec-butylbenzene	t	t036				$C_{10}H_{14}$	ug/m3		10	134.22	Α
234	bz123m	1,2,3-trimethylbenzene	t	t037				$C_{9}H_{12}$	ug/m3		9	120.20	А
235	m_iprtol	m-isopropyltoluene	t	t038					ug/m3		10	134.22	А
236	p_iprtol	p-isopropyltoluene	t	t039					ug/m3		10	134.22	А
237	odcbz	1,2-dichlorobenzene	t	t040				C ₆ H ₄ Cl ₂	ug/m3		6	146.00	Х
238	INDAN	indan	t	t041				C ₉ H ₁₀	ug/m3		9	118.18	А
239	limon	(+/-)-limonene	ť	t041				$C_{10}H_{16}$	ug/m3		10	136.24	0
239	INDENE	(+/-)-Innonene	t t	t042 t043				C101116	-		9	136.24	A
240 241	o_iprtol	o-isopropyltoluene	t t	t043 t044					ug/m3 ug/m3		10	134.22	A
241	O_MEPHOL	o-methylphenol	t t	t044					ug/m3		7	108.00	A
242	detbz1	1,3-diethylbenzene	t	t045	T	P53			ug/m3		10	134.22	A
244	ACPHONE	Acetophenone	t	t047	-				ug/m3		8	120.15	ĸ
245	M_TOLALD	m-tolualdehyde	t	t048					ug/m3		8	120.00	AL
246	tol4pr	4-n-propyltoluene + 1,4-diethylbenz	t	t049					ug/m3		10	134.22	А
247	butbz	Butylbenzene	t	t050				C4H6	ug/m3		10	134.22	А
248	m_xylet5	5-ethyl-m-xylene	t	t051					ug/m3		10	134.22	А
249	detbz3	1,2-diethylbenzene	t	t052					ug/m3		10	134.22	А
250	MP_MEPHO	m/p-methylphenol	t	t053					ug/m3		7	108.14	А
251	tol2pr	2-n-propyltoluene	t	t054					ug/m3		10	134.22	Α
252	guacol	guaiacol	t	t055					ug/m3		7	124.14	K
253	p_xylet2	2-ethyl-p-xylene	t	t056					ug/m3		10	134.22	А
254	o_xylet4	4-ethyl-o-xylene	t	t057					ug/m3		10	134.22	Α
255	tbutol_4	4-tert-butyltoluene	t	t058					ug/m3		11	148.24	Α
256	NONAL	nonanal	t	t059			G	$C_9H_{18}O$	ug/m3		9	142.24	AL
257	undele	1-undecene	t	t060					ug/m3		11	154.30	0
258	fubz2me	2-methylbenzofuran	t	t061					ug/m3		9	132.13	K
259	n_unde	undecane	t	t062				$C_{11}H_{24}$	ug/m3		11	156.31	Р
260	IPRXYL_5	5-isopropyl-m-xylene	t	t063					ug/m3		11	148.24	А
261	BZ1245	1,2,4,5-tetramethylbenzene	t	t064				$C_{10}H_{14}$	ug/m3		10	134.22	А
262	BZ1235	1,2,3,5-tetramethylbenzene	t	t065				$C_{10}H_{14}$	ug/m3		10	134.22	А
263	IAMBZ	isoamylbenzene	t	t066					ug/m3		11	148.24	А
264	IND_2M	2-methylindan	t	t067				C10H12	ug/m3		10	132.21	А
265	IND_1M	1-methylindan	t	t068				C10H12	ug/m3		10	132.21	А
266	BZ1234	1,2,3,4-tetramethylbenzene	t	t069				C ₁₀ H ₁₄	ug/m3		10	134.22	А
267	DIPRB_13	1,3-diisopropylbenzene	t	t070				0101114	ug/m3		12	162.28	A
268	C5BZ_3	Pentylbenzene	t	t070					ug/m3		11	148.25	A
269	THNAPH	1,2,3,4-tetrahydronaphthalene	t	t072					ug/m3		10	132.21	A
270	DHNAPH	1,2-dihydronaphthalene	t	t072					ug/m3		10	130.19	A
271	DIPRB_14	1,4-diisopropylbenzene	t	t074					ug/m3		12	162.28	A
272	NAPHTH	naphthalene	t	t075			G	$C_{10}H_{8}$	ug/m3		10	128.16	А
273	INDDMA	A-dimethylindane	t	t076				C11H14	ug/m3		11	146.23	A
274	INDDMB	B-dimethylindane	t	t077				C11H14	ug/m3		11	146.23	A
275	INDDMC	C-dimethylindane	t	t078				C11H14	ug/m3		11	146.23	А
276	INDDMD	D-dimethylindan	t	t079				C11H14	ug/m3		11	146.23	А
277	DECONE2	2-decanone	t	t080					ug/m3		12	156.27	К
278	DECAL	decanal	t	t081					ug/m3		10	156.27	AL
279	DODE1E	dodecene	t	t082				C12H24	ug/m3		12	170.34	0
280	N_DODE	dodecane	t	t083			G	C12H26	ug/m3		12	142.29	Р
281	PMEBZ	pentamethylbenzene	t	t084			-	12 20	ug/m3		11	148.25	A
282	NAP_2M	2-methylnaphthalene	t	t085			G	$C_{11}H_{10}$	ug/m3		11	142.20	A
282	NAP_1M	1-methylnaphthalene	t	t085			G	$C_{11}H_{10}$ $C_{11}H_{10}$	ug/m3		11	142.20	A
		• •							-				P
284	N_TRID	tridecane	t	t087			G	$C_{13}H_{28}$	ug/m3		13	184.37	
285	GNONLA	g-nonanoic lactone	t	t088					ug/m3		9	156.23	K
286	EUGOL	eugenol	t	t089					ug/m3		10	164.20	K
287	BIPHEN	Biphenyl	t	t090					ug/m3		12	154.21	A
288	ENAP12	1+2-ethylnaphthalene	t	t091					ug/m3		12	156.23	A
289	DMN267	2,6+2,7-dimethylnaphthalene	t	t092			C	0.11	ug/m3		12	156.23	A
290	N_TETD	tetradecane	t	t093			G	$C_{14}H_{30}$	ug/m3		14	198.40	Р
291	DM1367	1,6+1,3+1,7-dimethylnaphthalene	t	t094					ug/m3		12	156.23	A
292	D14523	2,3+1,5+1,4-dimethylnaphthalene	t	t095					ug/m3		12	156.23	A
293	ISOEUG	isoeugenol Acenaphthylene	t	t096					ug/m3		10	164.20	K
294	ACENAP		t	t097				$C_{12}H_{8}$	ug/m3		12	152.20	Α

Appendix A
Desert Research Institute Organic Analysis Parameter List

	Mnemonic ^a				Sort	Codes				Conversion			
Para #	for CMB	Compound Name	Method ^b	Data ^c	Sum ^d	PAMS ^e	CMB ^f	Formula	Units	to ug/m3 ^g	C_no	mw	Group ^h
295	gdecla	g-decanolactone	t	t098					ug/m3		10	170.25	L
296	DMN12	1,2-dimethylnaphthalene	t	t099					ug/m3		12	156.23	А
297	ACENPE	Acenaphthene	t	t100				$C_{12}H_{10}$	ug/m3		12	154.21	А
298	N_PEND	pentadecane	t	t101			G	$C_{15}H_{32}$	ug/m3		15	212.42	Р
299	UNGLAC	Undecanoic-g-lactone	t	t102					ug/m3		11	184.28	K
300 301	FLUORE N_HEXD	Fluorene Hexadecane	t t	t103 t104			G	C16H34	ug/m3 ug/m3		13 16	166.22 226.45	A P
302			t	t104			G		-		10	220.43 240.48	P
	N_HEPD	heptadecane					0	C ₁₇ H ₃₆	ug/m3				
303	PHENA	phenanthrene	t	t106			C	$C_{14}H_{10}$	ug/m3		14	178.23	A
304	N_OCTD	octadecane	t	t107			G	C ₁₈ H ₃₈	ug/m3		18	254.50	P
305	N_NOND	nonadecane	t	t108			G	C ₁₉ H ₄₀	ug/m3		19	268.53	Р
306	N_EICO	eicosane	t	t109			G	$C_{20}H_{42}$	ug/m3		20	282.56	Р
307 308	gcapla tidnmhc	caprolactone id NMHC by tenax/GC-FID	t t	t110 t111					ug/m3		6	114.14	L
308	tunid	unidentified tenax/GC-FID	t t	t112					ug/m3 ug/m3				
310	t_bkg		t	t113					ug/m3				
311	tidothr	id others by tenax/GC-FID	t	t114					ug/m3				
312	FORMAL	formaldehyde	d	d01			G	HCHO	ppbv	1.472	1	33.03	AL
313	ACETAL	acetaldehyde	d	d02			G	CH ₃ CHO	ppbv	1.963	2	44.05	AL
314	ACETO	acetone	d	d03			G	C_3H_6O	ppbv	2.588	3	58.08	K
315	ACROLN	acrolein	d	d04				C ₃ H ₄ O	ppbv	2.498	3	56.07	AL
316	PROAL	propionaldehyde	d	d05			G	C ₂ H ₅ CHO	ppbv	2.588	3	58.08	AL
317	CROTON	crotonaldehyde	d	d06				C ₃ H ₅ CHO	ppbv	3.123	4	70.09	AL
318	MEK	methyl ethyl ketone	d	d07			G	C ₄ H ₈ O	ppbv	3.212	4	72.09	K
319	acrolx	acrolein-X	d	d08			0	-4-180	rr		3	. 2.07	
320	MEACRO	methacrolein	d	d09			G	C ₄ H ₅ CHO	ppbv	3.123	2	70.09	AL
321	BUAL	butanal	d	d10			G	C ₃ H ₇ CHO	ppbv	3.212	4	72.09	AL
322	BENZAL	benzaldehyde	d	d11			G	C ₇ H ₆ O	ppbv	4.728	7	106.13	AL
323	glyoxl	glyoxal	d	d12			0	OCHCHO	ppbv	2.586	2	58.04	AL
324	VALAL	valeraldehyde	d	d13				C ₄ H ₉ CHO	ppbv	3.838	5	86.14	AL
325	TOLUAL	tolualdehyde	d	d14				C ₈ H ₈ O	ppbv	5.353	8	120.16	AL
326	HEXAL	hexanal	d	d15			G	C ₅ H ₁₁ CHO	ppbv	4.462	6	100.16	AL
327	F12	F12 (dichlorodifluoromethane)	c4	e01			0	CF ₂ Cl ₂	ppbv	5.387	1	120.91	X
328	F114		c4 c4	e02				$C_2F_4Cl_2$		7.614	1	120.91	X
328	MEBR	F114 (dichlorotetrafluoroeth)	c4 c4						ppbv	4.230			
	F11	methylbromide		e03				CH ₃ BR	ppbv		1	94.94	X X
330		F11 (trichlorofluoromethane)	c4	e04				CFCl ₃	ppbv	6.120	1	137.37	
331	VINECL	vinylidenechloride	c4	e05			~	C ₂ H ₂ Cl ₂	ppbv	4.319	2	96.94	X
332	MECL2	methylene chloride	c4	e06			G	CH ₂ CL ₂	ppbv	3.784	1	84.93	Х
333	F113	F113 (trichlorotrifluoroeth)	c4	e07				$C_2F_3Cl_3$	ppbv	8.348	2	187.38	Х
334	T12DCE	trans-1,2-dichloroethylene	c4	e08				$C_2H_2Cl_2$	ppbv	4.319	2	96.94	Х
335	C12DCE	cis-1,2,-dichloroethylene	c4	e09				$C_2H_2Cl_2$	ppbv	4.319	1	96.94	Х
336	CCL3	chloroform	c4	e10				CHCl ₃	ppbv	5.319	1	119.38	Х
337	ETDC12	1,2-dichloroethane	c4	e11				$C_2H_4Cl_2$	ppbv	4.409	2	98.96	Х
338	MECCL3	methyl chloroform	c4	e12			G	$C_2H_3Cl_3$	ppbv	5.319	2	119.38	Х
339	CCL4	carbon tetrachloride	c4	e13				CCl_4	ppbv	6.853	1	153.82	Х
340	DBRME	dibromomethane	c4	e14				CH ₂ Br ₂	ppbv	7.745	1	173.85	Х
341	TCENE	trichloroethylene	c4	e15				C ₂ H ₃ Cl ₃	ppbv	5.854	2	131.39	Х
342	T13DCP	trans-1,3-dichloropropene	c4	e16					ppbv	4.944	3	110.97	Х
343	C13DCP	cis-1,3-dichloropropene	c4	e17				$C_3H_4Cl_2$	ppbv	4.944	3	110.97	Х
344	TCE112	1,1,2-trichloroethane	c4	e18				$C_2H_3Cl_3$	ppbv	5.944	2	133.41	Х
345	CLDBRM	chlorodibromomethane	c4	e19				CHClBr ₂	ppbv	9.279	1	208.28	Х
346	ETDB12	1,2-dibromoethane	c4	e20				$C_2H_4Br_2$	ppbv	8.370	2	187.87	Х
347	PERC	perchloroethylene (tetra)	c4	e21			G	C_2Cl_4	ppbv	7.388	2	165.83	Х
348	CLBZ	chlorobenzene	c4	e22				C ₆ H ₅ Cl	ppbv	5.014	6	112.55	Х
349	TCLETH	1,1,2,2-tetrachloroethane	c4	e23				C ₂ HCl ₃	ppbv	7.478	2	167.85	Х
350	MDCBZ	m-dichlorobenzene	c4	e24				C ₆ H ₄ Cl ₂	ppbv	6.549	6	147.00	x
351	PDCBZ	p-dichlorobenzene	c4 c4	e25				$C_6H_4Cl_2$ $C_6H_4Cl_2$	ppbv	6.549	6	147.00	X
352	ODCBZ	o-dichlorobenzene	c4 c4	e26				$C_6H_4Cl_2$ $C_6H_4Cl_2$		6.549	6	147.00	X
	I_BUTA					.06	C		ppbv	0.349	4		P
353	BUTIE	i-butane/methanol Butene-1	g1	g001		p06	G	C ₄ H ₁₀	wt%		4	58.12	
354 355	N_BUTA	n-Butane	g1 g1	g002 g003		р07 р08	G G	C4H8	wt% wt%		4	56.11 58.12	O P
			-	-		-		C_4H_{10}					
356 357	T2BUTE PR22M	t-butene-2 2,2-dimethylpropane	g1 g1	g004 g005		p09	G	C ₄ H ₈ C5H12	wt% wt%		4 5	56.11 72.15	O P
358	C2BUTE	c-Butene-2	g1 g1	g005 g006		p10	G	C4H8	wt%		4	56.11	r O
359	ETHOH	ethanol	g1 g1	g000 g007		P10	5	C ₂ H ₅ OH	wt%		2	46.07	ОН
360	BUDI12	1,2-Butadiene	gl	g007 g008				C4H6	wt%		4	54.09	0
361	B1E3ME	3-Methylbutene-1	gl	g009				C ₅ H ₁₀	wt%		5	70.14	0
362	C501	C5 Olefin	gl	g010				C5H10	wt%		5	70.14	0
363	C5O2	C5 Olefin	g1	g010				C5H10	wt%		5	70.14	õ
364	IPENTA	i-pentane	g1	g012		p11	G	C5H12	wt%		5	72.15	Р
365	PENI14	1,4-pentadiene	g1	g013		•		C5H8	wt%		5	68.12	0
366	PR2OH	i-propanol	g1	g014				C3H8O	wt%		3	60.10	OH
367	BUTY2	Butyne-2	g1	g015				C4H6	wt%		4	54.09	Y

Appendix A
Desert Research Institute Organic Analysis Parameter List

	Mnemonic ^a											
Para #	for CMB	Compound Name	Method ^b	Data ^c	Sort Codes Sum ^d PAMS ^e	CMB ^f	Formula	Units	Conversion to ug/m3 ^g	C_no	mw	Group ^h
368	PENTE1	pentene-1	g1	g016	p12	G	C5H10	wt%		5	70.14	0
369	B1E2M	2-Methylbutene-1	g1	g017		G	C_5H_{10}	wt%		5	70.14	0
370	N_PENT	n-pentane	g1	g018	p13	G	C_5H_{12}	wt%		5	72.15	Р
371	I_PREN	isoprene	g1	g019	p14	G	C_5H_8	wt%		5	68.12	0
372	T2PENE	t-pentene-2	g1	g020	p15	G	C ₅ H ₁₀	wt%		5	70.14	0
373 374	B1E33M TBUOL	3,3-Dimethylbutene-1 t-butanol	g1 g1	g021 g022			C6H12 C4H10O	wt% wt%		6 4	84.16 74.12	O OH
375	C2PENE	c-Pentene-2	g1 g1	g022 g023	p16	G	C5H10	wt%		5	70.14	0
376	B2E2M	2-Methylbutene-2	g1	g024	1	G	C_5H_{10}	wt%		5	70.14	0
377	P1T3DI	1t,3-pentadiene	g1	g025			C5H8	wt%		5	68.12	0
378	B12DI3M	3-Methylbutadiene-1,2	g1	g026			C5H6	wt%		5	66.10	0
379 380	CYPDI P1C3DI	Cyclopentadiene 1c,3-pentadiene	g1 g1	g027 g028			C5H6 C5H8	wt% wt%		5 5	66.10 68.12	0 0
381	BU22DM	2,2-Dimethylbutane	gl	g029	p17	G	C_6H_{14}	wt%		6	86.18	P
382	C5O3	C5 Olefin	g1	g030			C5H10	wt%		5	70.14	0
383	C5O4	C5 Olefin	g1	g031			C5H10	wt%		5	70.14	0
384	NPROL	n-propanol	g1	g032			C3H8O	wt%		3	60.10	ОН
385 386	CPENTE	Cyclopentene	g1	g033			C ₅ H ₈	wt%		5 6	68.12 84.16	0 0
380	P1E4ME P1E3ME	4-methylpentene-1	g1	g034			C_6H_{12} C_6H_{12}	wt% wt%		6	84.16 84.16	0
388	MTBE	3-methylpentene-1 methyl-t-butylether	g1 g1	g035 g036		G	C ₅ H ₁₂ O	wt%		5	88.15	0
389	CPENTA	Cyclopentane	g1 g1	g030 g037	p18	G	C ₅ H ₁₂ O	wt%		5	70.14	4
390	BU23DM	2,3-Dimethylbutane	g1 g1	g037	p18 p19	G	C ₅ H ₁₀ C ₆ H ₁₄	wt%		6	86.18	4 P
390	PC2E4M	4-methyl-c-pentene-2	g1 g1	g038 g039	P13	U	C6H12	wt%		6	84.16	P O
392	B1E23M	2,3-Dimethylbutene-1	g1	g040			C6H12	wt%		6	84.16	0
393	PENA2M	2-methylpentane	g1	g041	p20	G	C_6H_{14}	wt%		6	86.18	Р
394	PT2E4M	4-methyl-t-pentene-2	g1	g042			C6H12	wt%		6	84.16	0
395 396	C6O1	C6 Olefin	g1	g043			C6H12 C6H10	wt%		6	84.16 82.15	0
396 397	P14DI2M HEX15DI	2-methyl-1,4-pentadiene 1,5-hexadiene	g1 g1	g044 g045			C6H10 C6H10	wt% wt%		6 6	82.15 82.15	0
398	PENA3M	3-methylpentane	g1	g046	p21	G	C ₆ H ₁₄	wt%		6	86.18	P
399	P1E2ME	2-methylpentene-1	g1	g047	p22	G	C ₆ H ₁₂	wt%		6	84.16	0
400	HEX1E	hexene-1	g1	g048	1		C ₆ H ₁₂	wt%		6	84.16	0
401	C6O2	C6 Olefin	g1	g049			C6H12	wt%		6	84.16	0
402	HXCT14DI	1c/t,4-hexadiene	g1	g050			C6H10	wt%		6	82.15	0
403	B1E2E	2-Ethylbutene-1	g1	g051	- 22	C	C6H12	wt%		6	84.16	0
404 405	N_HEX T3HEXE	n-hexane t-hexene-3	g1	g052	p23	G	C ₆ H ₁₄	wt% wt%		6 6	86.18 84.16	P O
405	T2HEXE	t-hexene-2	g1	g053			C_6H_{12} C_6H_{12}	wt%		6	84.16 84.16	0
408	P2E2ME	2-methylpentene-2	g1 g1	g054 g055		G	C_6H_{12} C_6H_{12}	wt%		6	84.16 84.16	0
407	CPENE1	Methylcyclopentene	g1 g1	g055 g056		G	C6H10	wt%		6	82.15	0
409	PC2E3M	3-methyl-c-pentene-2	g1	g057		0	C ₆ H ₁₂	wt%		6	84.16	õ
410	C6O3	C6 Olefin	g1	g058			C6H12	wt%		6	84.16	0
411	C3HEXE	c-Hexene-3	g1	g059			$C_{6}H_{12}$	wt%		6	84.16	0
412	C2HEXE	c-Hexene-2	g1	g060			$C_{6}H_{12}$	wt%		6	84.16	0
413	C6O4	C6 Olefin	g1	g061			C6H12	wt%		6	84.16	0
414 415	ETBE P1E33M	ethyl-t-butylether 3,3-dimethylpentene-1	g1 g1	g062 g063			C6H14O C7H14	wt% wt%		6 7	102.18 98.19	E O
416	PT2E3M	3-methyl-t-pentene-2	g1	g064		G	C ₆ H ₁₂	wt%		6	84.16	0
417	HXCT13DI	1c/t,3-hexadiene	g1	g065		-	C6H10	wt%		6	82.15	0
418	PT2E22M	4,4-dimethyl-t-pentene-2	g1	g066			C7H14	wt%		7	98.19	0
419	PEN22M	2,2-dimethylpentane	g1	g067			C7H16	wt%		7	100.21	Р
420	MCYPNA	methylcyclopentane	g1	g068	p24	G	$C_{6}H_{12}$	wt%		6	84.16	CA
421	PEN24M	2,4-dimethylpentane	g1	g069	p25	G	C ₇ H ₁₆	wt%		7	100.21	Р
422 423	B1E233M C7O1	2,3,3-Trimethylbutene-1 C7 Olefin	g1 g1	g070 g071			C7H14 C7H14	wt% wt%		7 7	98.19 98.19	0
424	BU223M	2,2,3-Trimethylbutane	g1 g1	g071 g072			C7H14 C7H16	wt%		7	100.21	P
425	C7O2	C7 Olefin	gl	g073			C7H14	wt%		7	98.19	0
426	C7O3	C7 Olefin	g1	g074			C7H14	wt%		7	98.19	0
427	P1E34M	3,4-dimethylpentene-1	g1	g075			C7H14	wt%		7	98.19	0
428 429	PC2E44M	4,4-dimethyl-c-pentene-2 2,4-dimethylpentene-1	g1	g076			C7H14 C7H14	wt%		7	98.19	0
429	P1E24M C6O5	2,4-dimetnyipentene-1 C6 Olefin	g1 g1	g077 g078			C/H14 C6H12	wt% wt%		7 6	98.19 84.16	0
431	MECYP1E	1-methylcyclopentene	gl	g079		G	C6H10	wt%		6	82.15	Ō
432	BENZE	Benzene	g1	g080	p26	G	C_6H_6	wt%		6	78.11	А
433	P1E3E	3-ethylpentene-1	g1	g081			C7H14	wt%		7	98.19	0
434 435	NBUOL HY1E3M	n-butanol 3 methylbexene 1	g1	g082			C4H10O C7H14	wt%		4 7	74.12	OH O
435 436	HX1E3M HXC3E2M	3-methylhexene-1 2-methyl-c-hexene-3	g1 g1	g083 g084			C7H14 C7H14	wt% wt%		7	98.19 98.19	0
	PEN33M	3,3-dimethylpentane	g1 g1	g084 g085			C7H14 C7H16	wt%		7	100.21	P
437	HX1E5M	5-methylhexene-1	g1	g086			C7H14	wt%		7	98.19	0
437 438	11111120111		-									
438 439	CYHEXA	Cyclohexane	g1	g087	p27	G	$C_{6}H_{12}$	wt%		6	84.16	CA
438 439 440	CYHEXA HXT3E2M	2-methyl-t-hexene-3	g1	g088	p27	G	C7H14	wt%		7	98.19	0
438 439	CYHEXA		-		p27	G						

Appendix A
Desert Research Institute Organic Analysis Parameter List

	Mnemonic ^a				Sort	Codes				Conversion			
Para #	for CMB	Compound Name	Method ^b	Data ^c	Sum ^d	PAMS ^e	CMB ^f	Formula	Units	to ug/m3 ^g	C_no	mw	Group ^h
444	HXCT2E4M	4-methyl-t/c-hexene-2	g1	g092				C7H14	wt%		7	98.19	0
445	HEXA2M	2-methylhexane	g1	g093		p28	G	C7H16	wt%		7	100.21	Р
446	PEN23M	2,3-dimethylpentane	g1	g094		p29	G	C7H16	wt%		7	100.21	Р
447	HXT2E5M	5-methyl-t-hexene-2/TAmE	g1	g095				C7H14	wt%		7	98.19	0
448	TAME	t-amylmethylether (TAME)	g1	g096				C6H14O	wt%		6	102.18	0
449	CYPEN11M	1,1-Dimethylcyclopentane	g1	g097				C7H14	wt%		7	98.19	CA
450	CYHEXE	Cyclohexene	g1	g098				$C_{6}H_{10}$	wt%		6	82.15	0
451	HEXA3M	3-methylhexane	g1	g099		p30	G	C7H16	wt%		7	100.21	Р
452	HP16DI	1,6-heptadiene	g1	g100				C7H12	wt%		7	96.17	0
453	PC2E34M	3,4-dimethyl-c-pentene-2	g1	g101				C7H14	wt%		7	98.19	0
454	HXC2E5M	5-methyl-c-hexene-2	g1	g102				C7H14	wt%		7	98.19	0
455	CYP1C3M	1c,3-Dimethylcyclopentane	g1	g103				C7H16	wt%		7	100.21	CA
456	CYP1T3M	1t,3-Dimethylcyclopentane	g1	g104				C7H16	wt%		7	100.21	CA
457	PA3ET	3-ethylpentane	g1	g105				C7H16	wt%		7	100.21	Р
458	HX1E2M	2-methylhexene-1	g1	g106				C7H14	wt%		7	98.19	0
459	CYP1T2M	1t,2-Dimethylcyclopentane	gl	g107			~	C7H16	wt%		7	100.21	CA
460	PA224M	2,2,4-trimethylpentane	g1	g108		p31	G	C ₈ H ₁₈	wt%		8	114.23	Р
461	HEPT1E	heptene-1	g1	g109				C7H14	wt%		7	98.19	0
462 463	P1E2E	2-ethylpentene-1	g1	g110				C7H14	wt%		7 7	98.19	0 0
463	HP15DI C7O4	1,5-heptadiene C7 Olefin	gl gl	g111 g112				C7H12 C7H14	wt% wt%		7	96.17 98.19	0
465	HX3CE3M	3-methyl-c-hexene-3	g1 g1	g112 g113				C7H14 C7H14	wt%		7	98.19	0
465	T3HEPE	t-heptene-3	g1 g1	g113 g114				C7H14 C7H14	wt%		7	98.19	0
460 467			-	-			G				7	100.21	P
	N_HEPT	n-heptane	g1	g115 g116		p32	U	C7H16	wt%		7		
468 469	HPC3E HX2E2M	c-heptene-3 2-methylhexene-2	g1 g1	g116 g117				C7H14 C7H14	wt% wt%		7	98.19 98.19	0 0
409	HXC2E3M HXC2E3M	3-methyl-c-hexene-2	g1 g1	g117 g118				C7H14 C7H14	wt%		7	98.19	0
471	HXT3E3M	3-methyl-t-hexene-3	gl	g110 g119				C7H14	wt%		7	98.19	0
472	HPT2E	t-heptene-2	gl	g120				C7H14	wt%		7	98.19	õ
473	P2E3E	3-ethylpentene-2	g1	g121				C7H14	wt%		7	98.19	0
474	HXT2E3M	3-methyl-t-hexene-2	g1	g122				C7H14	wt%		7	98.19	0
475	C7O5	C7 Olefin	g1	g123				C7H14	wt%		7	98.19	0
476	HPC2E	c-heptene-2	g1	g124				C7H14	wt%		7	98.19	0
477	P2E23M	2,3-dimethylpentene-2	g1	g125				C7H14	wt%		7	98.19	0
478	CYPE3E	3-Ethylcyclopentene	g1	g126				C7H14	wt%		7	98.19	0
479	C7O6	C7 Olefin	g1	g127				C7H14	wt%		7	98.19	0
480	CYPA1C2M	1c,2-Dimethylcyclopentane	g1	g128				C7H14	wt%		7	98.19	CA
481	MECYHX	methylcyclohexane	g1	g129		p33	G	C7H14	wt%		7	98.19	CA
482	C707	C7 Olefin	gl	g130				C7H14	wt%		7	98.19	0
483	CYP113M	1,1,3-Trimethylcyclopentane	g1	g131				C8H16	wt%		8	112.22	CA
484	HEX22M	2,2-dimethylhexane	g1	g132				C ₈ H ₁₈	wt%		8	114.23	Р
485 486	C7O8 C7O9	C7 Olefin C7 Olefin	g1	g133				C7H14 C7H14	wt%		7 7	98.19 98.19	0
480	C7010	C7 Olefin	g1 g1	g134 g135				C7H14 C7H14	wt% wt%		7	98.19 98.19	0
488	C7011	C7 Olefin	g1 g1	g135 g136				C7H14 C7H14	wt%		7	98.19	0
489	C7012	C7 Olefin	gl	g130 g137				C7H14	wt%		7	98.19	Ő
490	CYPAE	Ethylcyclopentane	gl	g138				C7H16	wt%		7	100.21	CA
491	HEX25M	2,5-dimethylhexane	g1	g139			G	C ₈ H ₁₈	wt%		8	114.23	Р
492	PA223M	2,2,3-trimethylpentane	gl	g140			-	C ₈ H ₁₈	wt%		8	114.23	Р
493	HEX24M		-	-			G	C ₈ H ₁₈ C ₈ H ₁₈			8	114.23	P
	C7O13	2,4-dimethylhexane	g1	g141			G		wt%		7		
494 495	CYP1C2T4	C7 Olefin 1c,2t,4-Trimethylcyclopentane	g1 01	g142 g143				C7H14 C8H16	wt% wt%		8	98.19 112.22	O CA
493	HX33M	3,3-dimethylhexane	g1 g1	g145 g144				C8H18	wt%		8	112.22	P
490	C7014	C7 Olefin	g1 g1	g144 g145				C7H14	wt%		7	98.19	0
498	CYP1T2C3	1t,2c,3-Trimethylcyclopentane	gl	g145 g146				C8H16	wt%		8	112.22	CA
499	C7015	C7 Olefin	g1	g147				C7H14	wt%		7	98.19	0
500	PA234M	2,3,4-trimethylpentane	g1	g148		p34	G	C ₈ H ₁₈	wt%		8	114.23	P
501	C7016	C7 Olefin	g1	g149				C7H14	wt%		7	98.19	0
502	TOLUE	Toluene	g1	g150		p35	G	C ₇ H ₈	wt%		7	92.14	A
502	P233M	2,3,3-trimethylpentane	g1	g150 g151		1.22	-	C8H18	wt%		8	114.23	P
505	C8O1	C8 Olefin	gl	g151 g152				C8H16	wt%		8	112.22	0
505	C8O2	C8 Olefin	gl	g153				C8H16	wt%		8	112.22	õ
506	C8O3	C8 Olefin	g1	g154				C8H16	wt%		8	112.22	0
507	HX23DM	2,3-dimethylhexane	g1	g155				C8H18	wt%		8	114.23	Р
508	P2M3E	2-methyl-3-ethylpentane	g1	g156				C8H18	wt%		8	114.23	Р
509	CYP112M	1,1,2-Trimethylcyclopentane	g1	g157				C8H16	wt%		8	112.22	CA
510	C8O4	C8 Olefin	g1	g158				C8H16	wt%		8	112.22	0
511	C8O5	C8 Olefin	g1	g159				C8H16	wt%		8	112.22	0
512	C7017	C7 Olefin	g1	g160		-	_	C7H14	wt%		7	98.19	0
513	HEP2ME	2-methylheptane	g1	g161		p36	G	$C_{8}H_{18}$	wt%		8	114.23	Р
514	HX1E2E	2-ethylhexene-1	g1	g162				C8H16	wt%		8	112.22	0
515	HEP4ME	4-methylheptane	g1	g163				C8H18	wt%		8	114.23	Р
516	P3M3E	3-methyl-3-ethylpentane	g1	g164				C8H18	wt%		8	114.23	Р
	HEX34M	3,4-dimethylhexane	g1	g165				$C_{8}H_{18}$	wt%		8	114.23	Р
517		1 . 0 . 4 Tol	g1	g166				C8H16	wt%		8	112.22	CA
518	CYP1C2C4	1c,2c,4-Trimethylcyclopentane											
518 519	CHX1C3M	1c,3-Dimethylcyclohexane	g1	g167				C8H16	wt%		8	112.22	CA
518						p37	G						

Appendix A
Desert Research Institute Organic Analysis Parameter List

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 542 543 544 545 546 547 548 549 550 551	for CMB HEX3E CHX1T4M 013DI C806 CHX11M HEX225 CYPM3CE HP1E26M CYPM3TE OCT1E CYPM2TE CYP11ME HX122M CHX1172M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1173M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1 CYPIPR	Compound Name 3-ethylhexane 1t,4-Dimethylcyclohexane 1,3-octadiene C8 Olefin 1,1-Dimethylcyclohexane 2,2,5-trimethylhexane 3-Ethylmethylcyclopentane 2,6-dimethylheytene-1 3t-Ethylmethylcyclopentane 0,1-Methylethylcyclopentane 1,1-Methylethylcyclopentane 2,2,4-trimethylhexane 1,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 1,3-dimethylcyclohexane 1,3-dimethylcyclohexane 1,3,3-dimethylcyclohexane 1,3-dimethylcyclohexane 1,3-dimethylcyclohexane 1,3-dimethylcyclohexane 1,3-dimethylcyclohexane 1,2-Dimethylc	Method ^b g1 g1 g1 g1 g1 g1 g1 g1 g1 g1	Data ^c g170 g171 g172 g173 g174 g175 g176 g177 g178 g179 g180 g181 g182 g183 g184 g185 g185 g186 g185 g188 g189	PAMS ^e	CMB [†]	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Units wt% wt% wt% wt% wt% wt% wt% wt% wt% wt%	to ug/m3 ^g	C_no 8 8 8 8 9 8 8 9 8 8 8 8 8 8 8 8 8 8 8	mw 114.23 112.22 110.20 112.22 128.26 112.22 126.24 112.22 112.22 112.22 112.22 112.22 112.22 112.22 112.22 112.22 112.22 112.22 128.26 112.22 128.26 112.22 128.26 12.22 128.26 12.22 128.26 12.22 128.26 12.22 128.26 12.22 128.26 12.22 128.26 126.24	Group ^h P CA O CA P CA O CA O CA CA P CA O O CA O CA O O CA O O CA O O CA O O CA O O CA O O CA O O CA O O CA O O CA O CA O O CA O CA O CA O CA O CA O CA O CA O CA O CA O CA O CA O CA O CA O CA CA O CA O CA CA CA CA CA CA CA CA CA CA
523 524 525 526 527 528 529 530 531 532 533 534 533 534 535 536 537 538 539 540 541 542 543 544 544 544 544 544 544 545 550 551	CHX1T4M 013DI C806 CHX11M HEX225 CYPM3CE HP1E26M CYPM3TE OCT1E CYP1ME HX1235 CYP11ME HX12355M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	1t,4-Dimethylcyclohexane 1,3-octadiene C8 Olefin 1,1-Dimethylcyclohexane 2,2,5-trimethylhexane 3c-Ethylmethylcyclopentane 2,6-dimethylcyclopentane 2,6-dimethylcyclopentane octene-1 2t-Ethylmethylcyclopentane 1,1-Methylethylcyclopentane 1,2-Dimethylcyclohexane 1,2-Dimethylcyclohexane 1,2-5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane 1c,4-Dimethylcyclohexane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	g171 g172 g173 g174 g175 g176 g177 g178 g179 g180 g181 g182 g183 g184 g185 g186 g187 g188			$\begin{array}{c} C8H16\\ C8H14\\ C8H16\\ C8H16\\ C_9H_{20}\\ C8H16\\ C9H18\\ C8H16\\ C8H16\\ C8H16\\ C8H16\\ C8H16\\ C9H20\\ C8H16\\ C8H16\\ C9H18\\ \end{array}$	wt% wt% wt% wt% wt% wt% wt% wt% wt% wt%		8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	112.22 110.20 112.22 128.26 112.22 126.24 112.22 112.22 112.22 112.22 112.22 112.22 128.26 112.22 128.26 112.22 128.22	CA O O CA P CA O CA CA CA P CA O O O
524 525 526 527 528 529 530 531 532 533 534 535 535 535 535 536 537 538 539 540 541 542 543 544 544 545 544 545 547 548 549 550	013DI C806 CHX11M HEX225 CYPM3CE HP1E26M CYPM3TE OCT1E CYP1ME HX224M CHX1T2M OCTT4E HX1E355M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	1,3-octadiene C8 Olefin 1,1-Dimethylcyclohexane 2,2,5-trimethylhexane 3c-Ethylmethylcyclopentane 2,6-dimethylheptene-1 3t-Ethylmethylcyclopentane 0,1-Methylethylcyclopentane 1,1-Methylethylcyclopentane 1,2-Dimethylcyclohexane t-octene-4 3,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	91 91 91 91 91 91 91 91 91 91 91 91 91 9	g172 g173 g174 g175 g176 g177 g178 g179 g180 g181 g182 g183 g184 g185 g186 g187 g188			$\begin{array}{c} C8H14\\ C8H16\\ C8H16\\ C_9H_{20}\\ C8H16\\ C9H18\\ C8H16\\ C8H16\\ C8H16\\ C8H16\\ C8H16\\ C8H16\\ C9H20\\ C8H16\\ C8H16\\ C9H18\\ \end{array}$	wt% wt%		8 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	110.20 112.22 128.26 112.22 126.24 112.22 112.22 112.22 112.22 112.22 128.26 112.22 112.22	O O CA P CA O CA CA CA P CA O O O
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 541 542 543 544 544 545 544 545 547 548 547 550 551	C806 CHX11M HEX225 CYPM3CE HP1E26M CYPM3TE OCT1E CYPM2TE CYP11ME HX224M CHX112M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	C8 Olefin 1,1-Dimethylcyclohexane 2,2,5-trimethylhexane 3c-Ethylmethylcyclopentane 2,6-dimethylheytolopentane octene-1 2t-Ethylmethylcyclopentane 1,1-Methylethylcyclopentane 1,2-Dimethylcyclopentane 1,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane 1t,3-Dimethylcyclohexane 1c,4-Dimethylcyclohexane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-3	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g	g173 g174 g175 g176 g177 g178 g179 g180 g181 g182 g183 g184 g185 g186 g187 g188			$\begin{array}{c} C8H16\\ C8H16\\ C,H_{20}\\ C8H16\\ C9H18\\ C8H16\\ C8H16\\ C8H16\\ C8H16\\ C8H16\\ C8H16\\ C9H20\\ C8H16\\ C8H16\\ C9H18\\ \end{array}$	wt% wt% wt% wt% wt% wt% wt% wt% wt% wt%		8 9 8 9 8 8 8 8 8 9 8 8	112.22 112.22 128.26 112.22 126.24 112.22 112.22 112.22 112.22 128.26 112.22 112.22	O CA P CA O CA CA CA P CA O O
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 544 545 544 544 545 546 547 548 549 550 551	CHX11M HEX225 CYPM3CE HP1E26M CYPM3TE OCT1E CYP11ME HX224M CHX112M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX113M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	1,1-Dimethylcyclohexane 2,2,5-trimethylhexane 3c-Ethylmethylcyclopentane 2,6-dimethylheptene-1 3i-Ethylmethylcyclopentane octene-1 2t-Ethylmethylcyclopentane 1,1-Methylethylcyclopentane 2,2,4-trimethylhexane 1t,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-1	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g	g174 g175 g176 g177 g178 g179 g180 g181 g182 g183 g184 g185 g184 g185 g186 g187 g188			$\begin{array}{c} C8H16\\ C_9H_{20}\\ C8H16\\ C9H18\\ C8H16\\ C_8H16\\ C_8H16\\ C8H16\\ C8H16\\ C9H20\\ C8H16\\ C8H16\\ C8H16\\ C9H18\\ \end{array}$	wt% wt% wt% wt% wt% wt% wt% wt% wt% wt%		8 9 8 8 8 8 8 9 8 8	112.22 128.26 112.22 126.24 112.22 112.22 112.22 112.22 128.26 112.22 112.22	CA P CA O CA O CA CA P CA O O
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 544 545 544 544 545 546 547 548 549 550 551	HEX225 CYPM3CE HP1E26M CYPM3TE OCT1E CYP1IME HX224M CHX1T2M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	2,2,5-trimethylhexane 3c-Ethylmethylcyclopentane 2,6-dimethylheytene-1 3t-Ethylmethylcyclopentane octene-1 2t-Ethylmethylcyclopentane 1,1-Methylethylcyclopentane 2,2,4-trimethylhexane 1,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheytene-1 octene-2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	g175 g176 g177 g178 g179 g180 g181 g182 g183 g184 g185 g186 g186 g187 g188			C_9H_{20} C8H16 C9H18 C8H16 C_8H_{16} C8H16 C8H16 C9H20 C8H16 C8H16 C9H20 C8H16 C8H16 C9H20	wt% wt% wt% wt% wt% wt% wt% wt% wt%		9 8 9 8 8 8 9 8 8	128.26 112.22 126.24 112.22 112.22 112.22 112.22 128.26 112.22 112.22	P CA O CA O CA CA P CA O O
528 529 530 531 532 533 534 535 535 535 536 537 538 539 540 541 542 543 544 543 544 545 544 545 547 548 549 550	CYPM3CE HP1E26M CYPM3TE OCT1E CYPM2TE CYP11ME HX224M CHX172M OCT74E HX1E355M OCT73E CYP1C2C3 CHX173M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	3c-Ethylmethylcyclopentane 2,6-dimethylheptene-1 3t-Ethylmethylcyclopentane octene-1 2t-Ethylmethylcyclopentane 1,1-Methylethylcyclopentane 1,2-Dimethylcyclopentane 1,2-Dimethylcyclohexane t-octene-4 3,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	g176 g177 g178 g179 g180 g181 g182 g183 g184 g185 g186 g187 g188			C8H16 C9H18 C8H16 C ₈ H ₁₆ C8H16 C8H16 C9H20 C8H16 C8H16 C8H16 C9H18	wt% wt% wt% wt% wt% wt% wt% wt% wt%		8 9 8 8 8 9 8 8	112.22 126.24 112.22 112.22 112.22 112.22 128.26 112.22 112.22	CA O CA O CA CA P CA O O
529 530 531 532 533 534 535 536 537 538 539 540 541 543 544 543 544 545 545 547 548 547 548 550 551	HP1E26M CYPM3TE OCT1E CYPM2TE CYP11ME HX224M CHX112M OCT74E HX1E355M OCT73E CYP1C2C3 CHX113M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	2,6-dimethylheptene-1 3:Ethylmethylcyclopentane octene-1 2:Ethylmethylcyclopentane 1,1-Methylethylcyclopentane 2,2,4-trimethylhexane 1t,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	g177 g178 g179 g180 g181 g182 g183 g184 g185 g186 g187 g188			C9H18 C8H16 C ₈ H ₁₆ C8H16 C8H16 C9H20 C8H16 C8H16 C8H16 C9H18	wt% wt% wt% wt% wt% wt% wt% wt%		9 8 8 8 9 8 8 8	126.24 112.22 112.22 112.22 112.22 128.26 112.22 112.22	O CA O CA P CA O O
530 531 532 533 534 535 536 537 538 537 538 537 541 542 543 544 545 544 545 546 547 548 549 550 551	CYPM3TE OCTIE CYPM2TE CYP11ME HX224M CHX1T2M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	3t-Ethylmethylcyclopentane octene-1 2t-Ethylmethylcyclopentane 1,1-Methylethylcyclopentane 2,2,4-trimethylhexane 1t,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g	g178 g179 g180 g181 g182 g183 g184 g185 g186 g187 g188			C8H16 C ₈ H ₁₆ C8H16 C8H16 C9H20 C8H16 C8H16 C8H16 C9H18	wt% wt% wt% wt% wt% wt% wt%		8 8 8 9 8 8	112.22 112.22 112.22 112.22 128.26 112.22 112.22	CA O CA P CA O O
531 532 533 534 535 535 538 539 540 541 542 543 544 545 544 545 546 547 548 549 550 551	OCT1E CYPM2TE CYP1IME HX224M CHX1T2M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	octene-1 2t-Ethylmethylcyclopentane 1,1-Methylethylcyclopentane 2,2,4-trimethylhexane 1t,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexne-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	g179 g180 g181 g182 g183 g184 g185 g186 g187 g188			C ₈ H ₁₆ C8H16 C8H16 C9H20 C8H16 C8H16 C9H18	wt% wt% wt% wt% wt% wt%		8 8 9 8 8	112.22 112.22 112.22 128.26 112.22 112.22	O CA CA P CA O O
532 533 534 535 535 536 537 538 539 540 541 542 543 544 543 544 545 544 545 547 548 549 550 551	CYPM2TE CYP11ME HX224M CHX1T2M OCTT4E HX1E355M OCTT3E CYP1C2C3 CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	2t-Ethylmethylcyclopentane 1,1-Methylethylcyclopentane 2,2,4-trimethylhexane 1t,2-Dimethylcyclohexane t-octene-4 3,5-frimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1	g180 g181 g182 g183 g184 g185 g186 g187 g188			C8H16 C8H16 C9H20 C8H16 C8H16 C9H18	wt% wt% wt% wt% wt%		8 9 8 8	112.22 112.22 128.26 112.22 112.22	CA CA P CA O O
533 534 535 536 537 538 539 540 541 542 543 544 543 544 545 547 548 549 550 551	CYP11ME HX224M CHX1T2M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	1,1-Methylethylcyclopentane 2,2,4-trimethylhexane 1t,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g] g] g] g] g] g] g] g] g]	g181 g182 g183 g184 g185 g186 g187 g188			C8H16 C9H20 C8H16 C8H16 C9H18	wt% wt% wt% wt%		8 9 8 8	112.22 128.26 112.22 112.22	CA P CA O O
534 535 536 537 538 539 540 541 542 543 544 545 546 547 546 547 548 549 550 551	HX224M CHX1T2M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	2,2,4-trimethylhexane 11,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 11,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1 g1 g1 g1 g1 g1 g1 g1 g1	g182 g183 g184 g185 g186 g187 g188			C9H20 C8H16 C8H16 C9H18	wt% wt% wt% wt%		9 8 8	128.26 112.22 112.22	P CA O O
535 536 537 538 539 540 541 542 543 544 545 545 545 545 545 546 547 548 550 550	CHX1T2M OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	It,2-Dimethylcyclohexane t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 Ic,2c,3-Trimethylcyclopentane It,3-Dimethylcyclohexane n-octane Ic,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1 g1 g1 g1 g1 g1 g1 g1 g1	g183 g184 g185 g186 g187 g188			C8H16 C8H16 C9H18	wt% wt% wt%		8 8	112.22 112.22	CA O O
536 537 538 539 540 541 542 543 544 545 544 545 546 547 548 549 550 551	OCTT4E HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	t-octene-4 3,5,5-trimethylhexene-1 t-octene-3 1c,2c,3-Trimethylcyclopentane 1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1 g1 g1 g1 g1 g1 g1 g1	g184 g185 g186 g187 g188			C8H16 C9H18	wt% wt%		8	112.22	0 0
537 538 539 540 541 542 543 544 545 544 545 546 547 548 549 550 551	HX1E355M OCTT3E CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	3,5,5-trimethylhexene-1 t-octene-3 lc,2c,3-Trimethylcyclopentane lt,3-Dimethylcyclohexane n-octane lc,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1 g1 g1 g1 g1 g1 g1	g185 g186 g187 g188			C9H18	wt%				0
539 540 541 542 543 544 545 546 547 548 549 550 551	CYP1C2C3 CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	lc,2c,3-Trimethylcyclopentane lt,3-Dimethylcyclohexane n-octane lc,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1 g1 g1 g1	g187 g188			C8H16	101				~
540 541 542 543 544 545 546 547 548 549 550 551	CHX1T3M N_OCT CHX1C4M HP1E33M OCT2E C807 C9P1	1t,3-Dimethylcyclohexane n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1 g1 g1	g188				wt%		8	112.22	0
541 542 543 544 545 546 547 548 549 550 551	N_OCT CHX1C4M HP1E33M OCT2E C8O7 C9P1	n-octane 1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1 g1	-			C8H16	wt%		8	112.22	CA
542 543 544 545 546 547 548 549 550 551	CHX1C4M HP1E33M OCT2E C8O7 C9P1	1c,4-Dimethylcyclohexane 3,3-dimethylheptene-1 octene-2	g1	g189			C8H16	wt%		8	112.22	CA
543 544 545 546 547 548 549 550 551	HP1E33M OCT2E C8O7 C9P1	3,3-dimethylheptene-1 octene-2			p38	G	C8H18	wt%		8	114.23	Р
544 545 546 547 548 549 550 551	OCT2E C8O7 C9P1	octene-2	g1	g190			C8H16	wt%		8	112.22	CA
545 546 547 548 549 550 551	C8O7 C9P1		-	g191			C9H18	wt%		9	126.24	0
546 547 548 549 550 551	C9P1	C8 Olefin	g1	g192			C ₈ H ₁₆	wt%		8	112.22	0
547 548 549 550 551			g1	g193			C8H16	wt%		8	112.22	0
548 549 550 551	C I PIPK	C9 Paraffin	g1	g194			C9H20	wt%		9	128.26	P
549 550 551	UV244M	i-Propylcyclopentane	g1	g195			C8H16	wt%		8 9	112.22	CA P
550 551	HX244M C9O1	2,4,4-trimethylhexane C9 Olefin	g1 g1	g196 g197			C9H20 C9H18	wt% wt%		9	128.26 126.24	P 0
551	C808	C8 Olefin	g1 g1	g197 g198			C8H16	wt%		8	112.22	0
	C8N1	C8 Naphthene	gl	g199			C8H16	wt%		8	112.22	CA
	P2234M	2,2,3,4-tetramethylpentane	g1	g200			C9H20	wt%		9	128.26	Р
553	HX234M	2,3,4-trimethylhexane	g1	g201			C9H20	wt%		9	128.26	Р
554	C8N2	C8 Naphthene	g1	g202			C8H16	wt%		8	112.22	CA
	C8N3	C8 Naphthene	g1	g203			C8H16	wt%		8	112.22	CA
	HX1E233	2,3,3-trimethylhexene-1	g1	g204			C9H18	wt%		9	126.24	0
	HX235	2,3,5-trimethylhexane	gl	g205			C9H20	wt%		9	128.26	Р
	CHX1C2M	1c,2-Dimethylcyclohexane	g1	g206			C8H16	wt%		8	112.22	CA
	HEP22M	2,2-dimethylheptane	g1	g207			C ₉ H ₂₀	wt%		9	128.26	Р
	CHX114M	1,1,4-Trimethylcyclohexane	g1	g208			C9H18	wt%		9 9	126.24	CA
	HPT3E22M HX223M	t-2,2-dimethylheptene-3 2,2,3-trimethylhexane	g1	g209 g210			C9H18 C9H20	wt% wt%		9	126.24 128.26	O P
	C8N4	C8 Naphthene	g1 g1	g210 g211			C9H20 C8H16	wt%		8	1128.20	CA
	HEP24D	2,4-dimethylheptane	g1	g212			C ₉ H ₂₀	wt%		9	128.26	Р
	HEP44D	4,4-dimethylheptane	g1	g212			C9H20	wt%		9	128.26	P
	C8N5	C8 Naphthene	g1	g213			C8H16	wt%		8	112.22	CA
	CHXETH	Ethylcyclohexane	gl	g215			C8H16	wt%		8	112.22	CA
	CYPNPR	n-Propylcyclopentane	g1	g216			C8H16	wt%		8	112.22	CA
569	CHX1C3C5M	1c,3c,5-Trimethylcyclohexane	g1	g217			C9H18	wt%		9	126.24	CA
570	HEP33D	3,3-dimethylheptane	g1	g218			C9H20	wt%		9	128.26	Р
571	HX2M4E	2-methyl-4-ethylhexane	g1	g219			C9H20	wt%		9	128.26	Р
572	HEP26D	2,6-dimethylheptane	g1	g220			C_9H_{20}	wt%		9	128.26	Р
573	C9N1	C9 Naphthene	g1	g221			C9H18	wt%		9	126.24	CA
	CHX113M	1,1,3-Trimethylcyclohexane	g1	g222			C9H18	wt%		9	126.24	CA
	HP1E24M	2,4-dimethyldheptene-1	g1	g223			C9H18	wt%		9	126.24	CA
	C8N6	C8 Naphthene	g1	g224			C8H16	wt%		9	112.22	0
	HEP25D	2,5-dimethylheptane	g1	g225			C9H20	wt%		8	128.26	Р
	C8N7	C8 Naphthene	g1	g226			C8H16	wt%		8	112.22	CA
	C9N2	C9 Naphthene	g1	g227	-20	~	C9H18	wt%		9	126.24	CA
	ETBZ CON2	ethylbenzene C0 Norbthana	g1	g228	p39	G	C8H10 C9H18	wt%		8 9	106.17	A
	C9N3 CHX1C2T4T	C9 Naphthene 1c,2t,4t-Trimethylcyclohexane	g1 g1	g229 g230			C9H18 C9H18	wt% wt%		9	126.24 126.24	CA CA
	O1E2M	2-methyloctene-1	g1 g1	g230 g231			C9H18 C9H18	wt%		9	126.24	0
	C9P2	C9 Paraffin	g1 g1	g231 g232			C9H18 C9H20	wt%		9	120.24	P
	O2E2M	2-methyloctene-2	g1	g233			C9H18	wt%		9	126.20	0
	C9N4	C9 Naphthene	g1	g234			C9H18	wt%		9	126.24	CA
	C9N5	C9 Naphthene	g1	g235			C9H18	wt%		9	126.24	CA
	M_XYL	m-xylene	g1	g236	p40	G	C8H10	wt%		8	106.17	А
	P_XYL	p-xylene	g1	g237	p40	G	C8H10	wt%		8	106.17	А
590	HEP23M	2,3-dimethylheptane	g1	g238			C_9H_{20}	wt%		9	128.26	Р
591	HEP34M	3,4-dimethylheptane	g1	g239			C_9H_{20}	wt%		9	128.26	Р
592	HEP35M	3,5-dimethylheptane	g1	g240			C9H20	wt%		9	128.26	Р
	C9N6	C9 Naphthene	g1	g241			C9H18	wt%		9	126.24	CA
	C9P3	C9 Paraffin	g1	g242			C9H20	wt%		9	128.26	Р
595	NON1E	nonene-1	g1	g243			C9H18	wt%		9	126.24	0
596	HEP4E	4-ethylheptane	g1	g244			C9H20	wt%		9	128.26	Р
597	OCT4M	4-methyloctane	g1	g245			C_9H_{20}	wt%		9	128.26	Р
598	OCT2ME	2-methyloctane	g1	g246			C9H20	wt%		9	128.26	Р
599	C9N7	C9 Naphthene	g1	g247			C9H18	wt%		9	126.24	CA
600	C9N8	C9 Naphthene	g1	g248			C9H18	wt%		9	126.24	CA

Appendix A
Desert Research Institute Organic Analysis Parameter List

	Mnemonic ^a				Sort Codes				Conversion			
Para #	for CMB	Compound Name	Method ^b	Data ^c	Sum ^d PAMS ^e	CMB ^f	Formula	Units	to ug/m3 ^g	C no	mw	Group ^h
601	HEP3E	3-ethylheptane	g1	g249			C ₉ H ₂₀	wt%		9	128.26	Р
602	OCT3ME	3-methyloctane	g1	g250			C ₉ H ₂₀	wt%		9	128.26	Р
603	PEN33E	3,3-diethylpentane	g1	g251			C9H20	wt%		9	128.26	Р
604	CHX1C2T4C	1c,2t,4c-Trimethylcyclohexane	g1	g252			C9H18	wt%		9	126.24	CA
605	C9P4	C9 Paraffin	g1	g253			C9H20	wt%		9	128.26	Р
606	O_XYL	o-xylene	g1	g254	p42	G	C8H10	wt%		8	106.17	А
607	CHX112	1,1,2-Trimethylcyclohexane	g1	g255			C9H18	wt%		9	126.24	CA
608	C9P5	C9 Paraffin	g1	g256			C9H20	wt%		9	128.26	Р
609	C9P6	C9 Paraffin	g1	g257			C9H20	wt%		9	128.26	Р
610	C9N9	C9 Naphthene	g1	g258			C9H18	wt%		9	126.24	CA
611	C9N10	C9 Naphthene	g1	g259			C9H18	wt%		9	126.24	CA
612	C9P7	C9 Paraffin	g1	g260			C9H20	wt%		9	128.26	Р
613	NONT2E	t-nonene-2	g1	g261			C_9H_{18}	wt%		9	126.24	0
614	C9N11	C9 Naphthene	g1	g262			C9H18	wt%		9	126.24	CA
615	OT3E2M	t-2-methyloctene-3	g1	g263			C9H18	wt%		9	126.24	0
616	CYPIBU	i-Butylcyclopentane	g1	g264			C9H18	wt%		9	126.24	CA
617	C9N12	C9 Naphthene	g1	g265			C9H18	wt%		9	126.24	CA
618	C9N13	C9 Naphthene	g1	g266			C9H18 C9H18	wt%		9 9	126.24	CA
619	C9N14	C9 Naphthene	gl	g267				wt%			126.24	CA
620	NONC2E	c-nonene-2	g1	g268			C ₉ H ₁₈	wt%		9	126.24	0
621	C9P8	C9 Paraffin	g1	g269			C9H20	wt%		9	128.26	Р
622	HP2E23M	2,3-dimethylheptene-2	gl	g270			C9H18	wt%		9	126.24	0
623	NONT3E	t-nonene-3	g1	g271		_	C ₉ H ₁₈	wt%		9	126.24	0
624	N_NON	n-nonane	g1	g272	p43	G	C ₉ H ₂₀	wt%		9	128.26	Р
625	CHX11ME	1,1-Methylethylcyclohexane	g1	g273			C9H18	wt%		9	126.24	CA
626	01E37M	3,7-dimethyloctene-1	g1	g274			C10H20	wt%		10	140.27	0
627	C9N15	C9 Naphthene	g1	g275			C9H18	wt%		9	126.24	CA
628	HX3E2255	t-2,2,5,5-tetramethylhexene-3	g1	g276		~	C10H20	wt%		10	140.27	0
629	IPRBZ	i-propylbenzene	g1	g277	p44	G	$C_{9}H_{12}$	wt%		9	120.20	А
630	C9N16	C9 Naphthene	g1	g278			C9H18	wt%		9	126.24	CA
631	NONC3E	c-nonene-3	g1	g279			C9H18	wt%		9	126.24	0
632	C9N17	C9 Naphthene	g1	g280			C9H18	wt%		9	126.24	CA
633	C10P1	C10 Paraffin	g1	g281			C10H22	wt%		10	142.29	Р
634	CHXIPR	i-Propylcyclohexane	g1	g282			C9H18	wt%		9	126.24	CA
635	C10P2	C10 Paraffin	g1	g283			C10H22	wt%		10	142.29	Р
636	OCT22M	2,2-dimethyloctane	g1	g284			$C_{10}H_{22}$	wt%		10	142.29	Р
637	OCT24M	2,4-dimethyloctane	g1	g285			$C_{10}H_{22}$	wt%		10	142.29	Р
638	C9N18	C9 Naphthene	g1	g286			C9H18	wt%		9	126.24	CA
639	C9N19	C9 Naphthene	g1	g287			C9H18	wt%		9	126.24	CA
640	OCT26D	2,6-dimethyloctane	g1	g288			C10H22	wt%		10	142.29	Р
641	OCT25M	2,5-dimethyloctane	g1	g289			$C_{10}H_{22}$	wt%		10	142.29	Р
642	C10P3	C10 Paraffin	g1	g290			C10H22	wt%		10	142.29	Р
643	CYPNBU	n-Butylcyclopentane	g1	g291			C9H18	wt%		9	126.24	CA
644	C10P4	C10 Paraffin	g1	g292			C10H22	wt%		10	142.29	Р
645	C10N1	C10 Napththene	g1	g293			C10H20	wt%		10	140.27	CA
646	C10P5	C10 Paraffin	g1	g294			C10H22	wt%		10	142.29	Р
647	OCT33M	3,3-dimethyloctane	g1	g295			$C_{10}H_{22}$	wt%		10	142.29	Р
648	C10N2	C10 Napththene	g1	g296			C10H20	wt%		10	140.27	CA
649	N_PRBZ	n-propylbenzene	g1	g297	p45	G	C_9H_{12}	wt%		9	120.20	Α
650	OCT36M	3,6-dimethyloctane	g1	g298			$C_{10}H_{22}$	wt%		10	142.29	Р
651	HP3M5E	3-methyl-5-ethylheptane	g1	g299			C10H22	wt%		10	142.29	Р
652	C10N3	C10 Napththene	g1	g300			C10H20	wt%		10	140.27	CA
653	M_ETOL	1-methyl-3-ethylbenzene	g1	g301	p46	G	C ₉ H ₁₂	wt%		9	120.20	Α
654	P_ETOL	1-methyl-4-ethylbenzene	g1	g302	p47	G	$C_{9}H_{12}$	wt%		9	120.20	А
655	C10N4	C10 Napththene	g1	g303			C10H20	wt%		10	140.27	CA
656	BZ135M	1,3,5-Trimethylbenzene	g1	g304	p48	G	C_9H_{12}	wt%		9	120.20	А
657	OCT23M	2,3-dimethyloctane	g1	g305	-		C10H22	wt%		10	142.29	Р
658	C10P6	C10 Paraffin	g1	g306			C10H22	wt%		10	142.29	Р
659	C10N5	C10 Napththene	g1	g307			C10H20	wt%		10	140.27	CA
660	C10P7	C10 Paraffin	g1	g308			C10H22	wt%		10	142.29	Р
661	C10P8	C10 Paraffin	g1	g309			C10H22	wt%		10	142.29	Р
662	NON5M	5-methylnonane	g1	g310			C10H22	wt%		10	142.29	Р
663	O_ETOL	1-methyl-2-ethylbenzene	g1	g311	p49	G	C_9H_{12}	wt%		9	120.20	А
664	NON2M	2-methylnonane	g1	g312			C10H22	wt%		10	142.29	Р
665	OCT3E	3-ethyloctane	g1	g313			$C_{10}H_{22}$	wt%		10	142.29	Р
666	C10N6	C10 Napththene	g1	g314			C10H20	wt%		10	140.27	CA
667	NON3M	3-methylnonane	g1	g315			C10H22	wt%		10	142.29	Р
668	HP2E2M3E	3-ethyl-2-methylheptene-2	g1	g316			C10H20	wt%		10	140.27	0
669	C10N7	C10 Napththene	g1	g317			C10H20	wt%		10	140.27	CA
670	C10P9	C10 Paraffin	g1	g318			C10H22	wt%		10	142.29	Р
671	C10P10	C10 Paraffin	g1	g319			C10H22	wt%		10	142.29	Р
672	BZ124M	1,2,4-Trimethylbenzene	g1	g320	p50	G	$C_{9}H_{12}$	wt%		9	120.20	А
(72)	C10P11	C10 Paraffin	g1	g321			C10H22	wt%		10	142.29	Р
673	CYHXIBU	i-Butylcyclohexane	g1	g322			C10H20	wt%		10	140.27	CA
673 674	CHIMBO											D
674 675	C10P12	C10 Paraffin	g1	g323			C10H22	wt%		10	142.29	Р
674 675 676	C10P12 C10P13	C10 Paraffin	g1	g324			C10H22	wt%		10	142.29	Р
674 675	C10P12											

Appendix A
Desert Research Institute Organic Analysis Parameter List

679 I 680 6 681 C 682 I 683 C 684 C 685 S 684 C 685 S 686 P 687 C 688 C 690 I 691 C 692 I 693 C 694 C 695 C 696 I 697 C 698 C 699 I 700 P 701 C 703 C 707 I 710 P 711 I 712 C 713 P 714 C 717 C 717 C 717 C	for CMB DECIE C10P15 C10P15 C10P15 UEDE DECE DECE DEEE DEEEE DEEEEEEEEEEEE	Compound Name Decene-1 C10 Paraffin 2,3-dimethyloctene-2 i-butylbenzene It-Methyl-2-n-proplycyclohexane C10 Paraffin sec-butylbenzene n-decane C11 Paraffin C10 Napthhene 1,2,3-Trimethylbenzene I-Methyl-3-i-propylbenzene C11 Naphthene 1-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin Indan sec-Butylcyclohexane C11 Paraffin I-Methyl-2-i-propylbenzene 3-ethylhonane C11 Naphthene C11 Paraffin I-Methyl-2-i-propylbenzene 3-ethylhonane C11 Naphthene C11 Paraffin I-Methyl-2-i-propylbenzene 3-ethylhonane C11 Paraffin C11 Paraffin	Method ^b g1 g1 g1 g1 g1 g1 g1 g1 g1 g1	Data ^c g327 g328 g329 g330 g331 g332 g333 g334 g335 g336 g337 g338 g339 g340 g341 g342 g343 g343 g343	Sum ^d	p51 p52	CMB ^r G G	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Units wt% wt%	to ug/m3 ^g	C_no 10 10 10 10 10 10 10 10 10 10	mw 140.27 142.29 140.27 134.22 140.27 142.29 134.22 142.29 134.22 142.29 134.22 142.29 134.22 142.29 156.31 140.27 120.20 134.22 154.30 134.22	Group ^h O P O A CA P A P CA A A CA A A CA
680 681 681 681 682 1 682 1 683 683 684 683 6 6 684 6 6 6 685 5 6 6 686 1 6 6 687 1 6 6 690 1 6 6 691 1 1 6 693 1 6 6 694 1 1 1 700 1 1 1 1 701 1 1 1 1 701 1 1 1 1 701 1 1 1 1 701 1 1 1 1 711 1 1 1 1 711 1 1 1 1 711 1 1 1	C10P15 O2E23M LBUBZ CHX1TM2P C10P16 S_BUBZ N_DEC C11P1 C10N9 BZ123M BZ1M3IPR C11N1 BZ1M4IPR C11P2 C11P3 C11P4 NDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P5 BZIM2IPR C11P6 C11P7 DETBZ1 BZ1M3PR C11P8	C10 Paraffin 2,3-dimethyloctene-2 i-butylbenzene 11-Methyl-2-n-proplycyclohexane C10 Paraffin sec-butylbenzene n-decane C11 Paraffin C10 Napthtene 1,2,3-Trimethylbenzene 1.Methyl-3-i-propylbenzene C11 Napthtene 1.Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin C11 Paraffin C11 Paraffin I-Methyl-2-i-propylbenzene 3-ethylnonane C11 Napthtene C11 Napthtene C11 Napthtene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g	g328 g329 g330 g331 g332 g333 g334 g335 g336 g337 g338 g339 g340 g341 g342 g343 g344		•		$\begin{array}{c} C10H22\\ C10H20\\ C_{10}H_{14}\\ C10H20\\ C10H22\\ C_{10}H_{14}\\ C_{10}H_{22}\\ C11H24\\ C10H20\\ C_{9}H_{12}\\ C10H14\\ C11H22\\ \end{array}$	wt% wt% wt% wt% wt% wt% wt% wt% wt% wt%		10 10 10 10 10 10 10 11 10 9 10 11	142.29 140.27 134.22 140.27 142.29 134.22 142.29 156.31 140.27 120.20 134.22 154.30	P O A CA P A P CA A A CA
681 682 682 I 683 6 684 6 685 S 686 I 687 G 688 G 689 I 690 I 691 G 692 I 693 G 694 G 695 G 696 I 697 G 698 G 699 I 700 I 703 G 7070 I 7070 I 7070 I 708 I 711	02E23M LBUBZ CHX1TM2P C10P16 S_BUBZ N_DEC C11P1 C10N9 BZ123M BZ1M3IPR C11N1 BZIM4IPR C11P2 C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P5 BZIM2IPR C11P6 C11P7 DETBZ1 BZIM3PR C11P8	2,3-dimethyloctene-2 i-butylbenzene It-Methyl-2-n-proplycyclohexane C10 Paraffin sec-butylbenzene n-decane C11 Paraffin C10 Napthtene 1,2,3-Trimethylbenzene 1Methyl-3-i-propylbenzene C11 Napthtene 1Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin C11 Paraffin I-Methyl-2-i-propylbenzene C11 Paraffin 1Methyl-2-i-propylbenzene 3-ethylnonane C11 Paraffin C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g	g329 g330 g331 g332 g333 g334 g334 g335 g336 g337 g338 g339 g340 g341 g342 g343 g344		•		$\begin{array}{c} C10H20\\ C_{10}H_{14}\\ C10H20\\ C10H22\\ C_{10}H_{14}\\ C_{10}H_{22}\\ C11H24\\ C10H20\\ C_{9}H_{12}\\ C10H14\\ C11H22\\ \end{array}$	wt% wt% wt% wt% wt% wt% wt% wt% wt%		10 10 10 10 10 11 10 9 10 11	140.27 134.22 140.27 142.29 134.22 142.29 156.31 140.27 120.20 134.22 154.30	O A CA P A P CA A A CA
682 I 683 G 684 G 684 G 685 G 686 N 687 G 688 G 689 H 690 H 691 G 692 H 693 G 694 G 695 G 696 H 697 G 698 G 699 H 700 N 701 G 707 H 707 H 707 H 708 H 710 H 711 H 711 H 711 H 711 H 711 H 717 G 717 G	LBUBZ CHX1TM2P C10P16 S_BUBZ N_DEC C11P1 C10N9 BZ123M BZ1M3IPR C11N1 BZ1M4IPR C11P2 C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P5 BZIM2IPR C11P2 C11P3 C11P3 C12P2 C12P	i-butylbenzene It-Methyl-2-n-proplycyclohexane C10 Paraffin sec-butylbenzene n-decane C11 Paraffin C10 Napththene 1.2,3-Trimethylbenzene 1.Methyl-3-i-propylbenzene C11 Naphthene I-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin Sec-Butylcyclohexane C11 Paraffin I-Methyl-2-i-propylbenzene 3-ethylmonane C11 Paraffin C11 Paraffin I-Methyl-2-i-propylbenzene 3-ethylmonane C11 Paraffin C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g	g330 g331 g332 g333 g334 g336 g337 g338 g339 g340 g341 g342 g343 g344		•		$\begin{array}{c} C_{10}H_{14} \\ C10H20 \\ C10H22 \\ C_{10}H_{14} \\ C_{10}H_{22} \\ C11H24 \\ C10H20 \\ C_{9}H_{12} \\ C10H14 \\ C11H22 \end{array}$	wt% wt% wt% wt% wt% wt% wt% wt%		10 10 10 10 11 10 9 10 11	134.22 140.27 142.29 134.22 142.29 156.31 140.27 120.20 134.22 154.30	A CA P A P CA A A CA
683 684 6 684 6 6 685 5 6 686 1 6 687 6 6 688 6 1 690 1 6 691 6 6 692 1 6 693 6 6 694 6 6 695 6 6 698 6 6 699 1 1 700 0 1 701 0 1 702 0 1 703 0 1 706 0 1 710 1 1 711 1 1 711 1 1 713 1 1 717 0 1 717 0 1	CHX1TM2P C10P16 S_BUBZ N_DEC C11P1 C10N9 BZ123M BZ1M3IPR C11N1 BZ1M4IPR C11P2 C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P5 C11P6 C11P7 DETBZ1 BZ1M3PR C11P8	It-Methyl-2-n-proplycyclohexane C10 Paraffin sec-butylbenzene n-decane C11 Paraffin C10 Napththene 1.3.3-Trimethylbenzene I-Methyl-3-i-propylbenzene C11 Naphthene I-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin Sec-Butylcyclohexane C11 Paraffin I-Methyl-2-i-propylbenzene 3-ethylnonane C11 Napthtene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g	g331 g332 g333 g334 g335 g336 g337 g338 g339 g340 g341 g342 g343 g344		•		$\begin{array}{c} C10H20\\ C10H22\\ C_{10}H_{14}\\ C_{10}H_{22}\\ C11H24\\ C10H20\\ C_{9}H_{12}\\ C10H14\\ C11H22\\ \end{array}$	wt% wt% wt% wt% wt% wt% wt% wt%		10 10 10 11 10 9 10 11	140.27 142.29 134.22 142.29 156.31 140.27 120.20 134.22 154.30	CA P P CA A A CA
684 685 5 685 5 5 686 1 6 687 6 6 688 6 1 690 1 6 691 6 6 693 6 6 694 6 6 695 6 6 697 6 6 698 0 6 699 1 6 700 1 0 703 0 1 706 0 1 707 1 1 711 1 1 711 1 1 713 1 1 714 0 0 717 0 0 717 0 0	C10P16 S_BUBZ N_DEC C11P1 C10N9 BZ123M BZ1M3IPR C11N1 BZIM4IPR C11P2 C11P3 C11P4 NDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P6 C11P7 DETBZ1 BZ1M3PR C11P8	C10 Paraffin sec-butylbenzene n-decane C11 Paraffin C10 Napththene 1,2,3-Trimethylbenzene 1-Methyl-3-i-propylbenzene C11 Napththene 1-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Napthtene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g	g332 g333 g334 g335 g336 g337 g338 g339 g340 g341 g342 g343 g344		•		$\begin{array}{c} C10H22\\ C_{10}H_{14}\\ C_{10}H_{22}\\ C11H24\\ C10H20\\ C_{9}H_{12}\\ C10H14\\ C11H22\\ \end{array}$	wt% wt% wt% wt% wt% wt% wt%		10 10 11 10 9 10 11	142.29 134.22 142.29 156.31 140.27 120.20 134.22 154.30	P A P CA A A CA
685 5 686 1 687 6 688 6 689 1 690 1 691 6 692 1 693 6 694 6 695 1 696 1 697 6 698 0 699 1 700 1 700 1 703 0 707 1 707 1 707 1 707 1 707 1 708 1 711 1 712 0 713 1 714 0 717 0 718 0	S_BUBZ N_DEC C11P1 C10N9 BZ123M BZ123M BZ1M3IPR C11N1 BZ1M4IPR C11P2 C11P2 C11P3 C11P4 NDAN C11P5 BZIM2IPR NON3E C11P5 C11P2 C11P6 C11P7 DETBZ1 BZ1M3PR C11P8	sec-butylbenzene n-decane C11 Paraffin C10 Napthhene 1,2,3-Trimethylbenzene 1-Methyl-3-i-propylbenzene C11 Maphthene 1-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Paraffin C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Paraffin	gl gl gl gl gl gl gl gl gl gl gl gl gl g	g333 g334 g335 g336 g337 g338 g339 g340 g341 g342 g343 g344		•		$\begin{array}{c} C_{10}H_{14} \\ C_{10}H_{22} \\ C11H24 \\ C10H20 \\ C_{9}H_{12} \\ C10H14 \\ C11H22 \end{array}$	wt% wt% wt% wt% wt% wt%		10 10 11 10 9 10 11	134.22 142.29 156.31 140.27 120.20 134.22 154.30	A P CA A A CA
686 1 687 6 688 6 689 1 690 1 691 6 692 1 693 6 694 6 695 6 696 1 697 6 698 6 699 1 700 1 700 1 700 1 700 1 700 1 700 1 700 1 700 1 700 1 700 1 707 1 707 1 707 1 708 1 711 1 712 1 713 1 714 1 717 1	N_DEC C11P1 C10N9 BZ123M BZ1M3IPR C11N1 BZ1M4IPR C11P2 C11P2 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P5 C11P2 C11P6 C11P7 DETBZ1 BZLM3NPR C11P8	n-decane C11 Paraffin C10 Napththene 1,2,3-Trimethylbenzene 1-Methyl-3-i-propylbenzene C11 Naphthene 1-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin indan sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylmonane C11 Naphthene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g	g334 g335 g336 g337 g338 g339 g340 g341 g342 g343 g344		•		$\begin{array}{c} C_{10}H_{22} \\ C11H24 \\ C10H20 \\ C_9H_{12} \\ C10H14 \\ C11H22 \end{array}$	wt% wt% wt% wt% wt%		10 11 10 9 10 11	142.29 156.31 140.27 120.20 134.22 154.30	P P CA A A CA
687 C 688 C 689 H 690 H 691 C 692 H 693 C 694 C 695 C 696 H 697 C 698 C 699 H 700 N 701 C 702 C 707 H 705 H 706 N 707 H 710 H 711	C11P1 C10N9 BZ123M BZ1M3IPR C11N1 BZ1M4IPR C11P2 C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P5 C11P2 C11P2 C11P2 C11P2 C11P2 C11P7 DETBZ1 BZ1M3PR C11P8	C11 Paraffin C10 Napththene 1,2,3-Trimethylbenzene 1-Methyl-3-i-propylbenzene C11 Naphthene 1-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin indan sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylmonane C11 Naphthene C11 Paraffin	gl gl gl gl gl gl gl gl gl gl gl gl gl	g335 g336 g337 g338 g339 g340 g341 g342 g343 g344		•		C11H24 C10H20 C9H12 C10H14 C11H22	wt% wt% wt% wt% wt%		11 10 9 10 11	156.31 140.27 120.20 134.22 154.30	P CA A CA
688 689 689 1 690 1 691 6 692 1 693 6 694 6 695 6 696 1 697 6 698 6 699 1 700 0 701 0 702 0 703 0 707 1 706 0 707 1 711 1 711 1 711 1 713 1 714 0 715 1 717 0 718 0	C10N9 BZ123M BZ1M3IPR C11N1 BZ1M4IPR C11P2 C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P5 C11P6 C11P7 DETBZ1 BZ1M3PR C11P8	C10 Napththene 1.2.3-Trimethylbenzene 1-Methyl-3-i-propylbenzene C11 Napthtene 1-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin indan sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Napthtene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1	g336 g337 g338 g339 g340 g341 g342 g343 g344		p52	G	C10H20 C ₉ H ₁₂ C10H14 C11H22	wt% wt% wt% wt%		10 9 10 11	140.27 120.20 134.22 154.30	CA A A CA
689 I 690 I 691 C 692 I 693 C 694 C 695 C 6964 C 697 C 698 C 696 I 700 P 701 C 703 C 707 I 707 T 707 T 707 I 710 C 707 I 710 I 711 I 712 C 710 I 711 I 712 C 713 P 714 C 715 I 716 C 717 C 717 C	BZ123M BZ1M3IPR C11N1 BZ1M4IPR C11P2 C11P2 C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P6 C11P7 DETBZ1 BZIM3NPR C11P8	1,2,3-Trimethylbenzene 1-Methyl-3-i-propylbenzene C11 Naphthene 1-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin indan sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1 g1	g337 g338 g339 g340 g341 g342 g343 g344		p52	G	C ₉ H ₁₂ C10H14 C11H22	wt% wt% wt%		9 10 11	120.20 134.22 154.30	A A CA
690 I 691 G 692 I 693 G 694 G 695 G 696 I 697 G 698 G 699 I 700 N 701 G 703 G 707 I 706 G 7070 N 710 I 707 I 708 I 710 I 711 II 712 G 713 N 714 G 715 I 716 G 717 G 717 G 717 G	BZ1M3IPR C11N1 BZ1M4IPR C11P2 C11P2 C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P7 C11P6 C11P7 DETBZ11 BZ1M3VPR C11P8	1-Methyl-3-i-propylbenzene C11 Naphthene 1-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin C11 Paraffin indan sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1 g1	g338 g339 g340 g341 g342 g343 g344		p52	G	C10H14 C11H22	wt% wt%		10 11	134.22 154.30	A CA
691 692 693 693 694 6694 695 6695 6967 6696 697 6696 699 H 700 N 701 6 6703 6 704 H 705 H 706 N 707 H 711 H 717 H 717 H 718 H	C11N1 BZIM4IPR C11P2 C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P6 C11P7 DETBZ1 BZIM3PR C11P8	C11 Naphthene I-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin indan sec-Butylcyclohexane C11 Paraffin I-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1	g339 g340 g341 g342 g343 g344		-		C11H22	wt%		11	154.30	CA
692 I 693 G 694 G 695 G 696 I 697 G 698 G 699 I 700 G 701 G 702 G 703 G 707 I 706 G 707 G 710 I 711 I 711 I 712 G 713 I 714 G 715 I 716 G 717 G 718 G	BZ1M4IPR C11P2 C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P2 C11P2 C11P6 C11P7 DETBZ1 BZ1M3PR C11P8	1-Methyl-4-i-propylbenzene C11 Paraffin C11 Paraffin indan sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1	g339 g340 g341 g342 g343 g344									
693 694 694 6 695 6 696 1 697 6 698 6 697 6 698 6 700 1 701 0 702 0 703 0 707 1 707 10 707 10 710 10 711 11 712 0 713 11 714 0 715 11 716 0 717 0 718 0	C11P2 C11P3 C11P4 NDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P2 C11P6 C11P7 DETBZ1 BZIM3NPR C11P8	C11 Paraffin C11 Paraffin C11 Paraffin indan scc-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1 g1 g1	g341 g342 g343 g344				C10H14			10	134.22	А
694 6 695 6 696 1 697 6 698 6 699 1 700 N 701 6 702 7 703 6 707 1 707 1 707 1 707 1 707 1 707 1 707 1 707 1 707 1 707 1 707 1 707 1 711 1 712 1 713 1 714 6 717 6 717 1	C11P3 C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11P2 C11P6 C11P7 DETBZ1 BZIM3NPR C11P8	C11 Paraffin C11 Paraffin C11 Paraffin indan scc-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1	g342 g343 g344				C101114	wt%		10		
695 6 696 I 697 C 698 C 699 I 700 C 701 C 702 C 703 C 704 I 705 I 706 C 707 I 710 I 710 I 711 C 711 C 711 C 717 C 718 C	C11P4 INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11N2 C11P2 C11P7 DETBZ1 BZIM3NPR C11P8	C11 Paraffin indan sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1 g1 g1 g1 g1 g1 g1	g343 g344				C11H24	wt%		11	156.31	Р
696 I 6697 C 6698 C 6699 I 700 C 701 C 702 C 703 C 704 I 705 I 706 C 707 I 710 F 711 I 712 C 713 F 714 C 715 I 716 C 717 C 718 C	INDAN CYHXSBU C11P5 BZIM2IPR NON3E C11N2 C11P6 C11P7 DETBZ1 BZ1M3NPR C11P8	indan sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1 g1 g1 g1	g344				C11H24	wt%		11	156.31	Р
697 6 698 6 699 H 700 H 701 C 702 C 703 C 704 H 705 H 706 C 7070 H 708 H 710 H 711 H 712 C 713 H 714 C 715 H 716 C 717 C 718 C	CYHXSBU C11P5 BZIM2IPR NON3E C11N2 C11P6 C11P7 DETBZ1 BZ1M3NPR C11P8	sec-Butylcyclohexane C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1 g1 g1					C11H24	wt%		11	156.31	Р
698 6 699 I 7700 I 7701 C 7702 C 7703 C 7704 I 7705 I 7706 C 7707 I 7708 I 7710 I 7710 I 7713 I 7715 I 7717 C 7717 C 7717 C 7718 C	C11P5 BZIM2IPR NON3E C11N2 C11P6 C11P7 DETBZ1 BZ1M3NPR C11P8	C11 Paraffin 1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1 g1	g345			G	C9H10	wt%		9	118.18	А
699 I 700 N 701 C 702 C 703 C 704 I 705 I 706 C 707 I 708 I 709 N 710 I 711 I 711 I 713 N 714 C 715 I 716 C 717 C 718 C	BZIM2IPR NON3E C11N2 C11P6 C11P7 DETBZ1 BZ1M3NPR C11P8	1-Methyl-2-i-propylbenzene 3-ethylnonane C11 Naphthene C11 Paraffin	g1					C10H20	wt%		10	140.27	CA
700 P 701 C 702 C 703 C 704 I 705 H 706 C 707 I 707 I 707 I 707 I 708 H 710 H 711 I 712 C 713 H 714 C 715 H 716 C 717 C 718 C	NON3E C11N2 C11P6 C11P7 DETBZ1 BZ1M3NPR C11P8	3-ethylnonane C11 Naphthene C11 Paraffin		g346				C11H24	wt%		11	156.31	Р
701 0 702 0 703 0 704 1 705 1 706 0 707 1 707 1 708 1 709 1 710 1 711 1 712 0 713 1 714 0 715 1 716 0 717 0 718 0	C11N2 C11P6 C11P7 DETBZ1 BZ1M3NPR C11P8	C11 Naphthene C11 Paraffin	σ1	g347				C10H14	wt%		10	134.22	А
702 C 703 C 704 I 705 I 705 I 706 C 707 I 708 I 709 N 710 I 711 I 712 C 713 N 714 C 715 I 716 C 717 C 718 C	C11P6 C11P7 DETBZ1 BZ1M3NPR C11P8	C11 Paraffin	51	g348				C11H24	wt%		11	156.31	Р
703 C 7704 I 7705 I 7705 I 7706 I 7707 I 7708 I 7708 I 7708 I 7710 I 7711 I 7712 C 7713 I 7714 C 7715 I 7716 C 7717 C 7718 C	C11P7 DETBZ1 BZ1M3NPR C11P8		g1	g349				C11H22	wt%		11	154.30	CA
704 I 705 H 706 C 707 I 707 I 708 H 709 N 710 H 711 I 712 C 713 N 714 C 715 H 716 C 717 C 718 C	DETBZ1 BZ1M3NPR C11P8	C11 Paraffin	g1	g350				C11H24	wt%		11	156.31	Р
705 H 706 C 707 H 708 H 709 N 710 H 711 H 712 C 713 N 715 H 716 C 717 C 718 C	BZ1M3NPR C11P8		g1	g351				C11H24	wt%		11	156.31	Р
706 C 707 I 708 I 709 I 710 I 711 I 712 C 713 I 714 C 715 I 716 C 717 C 718 C	C11P8	1,3-Diethylbenzene	g1	g352		p53	G	C10H14	wt%		10	134.22	А
707 I 708 I 709 N 710 I 711 I 712 O 713 N 714 O 715 I 716 O 717 O 718 O		1-Methyl-3-n-propylbenzene	g1	g353				C10H14	wt%		10	134.22	А
708 H 709 N 710 H 711 I 712 O 713 N 714 O 715 H 716 O 717 O 718 O	The William Day of the	C11 Paraffin	g1	g354				C11H24	wt%		11	156.31	Р
709 11 710 H 711 H 712 Q 713 H 714 Q 715 H 716 Q 717 Q 718 Q	DETBZ2	1,4-Diethylbenzene	g1	g355		p54	G	C10H14	wt%		10	134.22	А
710 H 711 I 712 C 713 N 714 C 715 H 716 C 717 C 718 C	BZ1M4NPR	1-Methyl-4-n-propylbenzene	g1	g356				C10H14	wt%		10	134.22	А
711 I 712 Q 713 N 714 Q 715 H 716 Q 717 Q 718 Q	N_BUBZ	n-butylbenzene	g1	g357			G	$C_{10}H_{14}$	wt%		10	134.22	А
712 0 713 11 714 0 715 11 716 0 717 0 718 0	BZ13M5E	1,3-Dimethyl-5-ethylbenzene	g1	g358				C10H14	wt%		10	134.22	А
713 M 714 C 715 H 716 C 717 C 718 C	DETBZ3	1,2-Diethylbenzene	g1	g359				C10H14	wt%		10	134.22	А
714 C 715 H 716 C 717 C 718 C	C11P9	C11 Paraffin	g1	g360				C11H24	wt%		11	156.31	Р
715 H 716 C 717 C 718 C	NAPTDHY	t-decahydronaphthalene	g1	g361				C11H10	wt%		11	142.20	CA
716 0 717 0 718 0	C11N3	C11 Naphthene	g1	g362				C11H22	wt%		11	154.30	CA
717 C 718 C	BZIM2NPR	1-Methyl-2-n-propylbenzene	g1	g363				C10H14	wt%		10	134.22	А
718 0	C11P10	C11 Paraffin	g1	g364				C11H24	wt%		11	156.31	Р
	C11P11	C11 Paraffin	g1	g365				C11H24	wt%		11	156.31	Р
	C11P12	C11 Paraffin	g1	g366				C11H24	wt%		11	156.31	Р
	C11P13	C11 Paraffin	g1	g367				C11H24	wt%		11	156.31	Р
	BZ14M2E	1,4-Dimethyl-2-ethylbenzene	g1	g368				C10H14	wt%		10	134.22	Α
	BZ13M4E	1,3-Dimethyl-4-ethylbenzene	g1	g369				C10H14	wt%		10	134.22	A
	C11P14	C11 Paraffin	g1	g370				C11H24	wt%		11	156.31	Р
	C11P15	C11 Paraffin	g1	g371				C11H24	wt%		11	156.31	Р
	BZ12M4E	1,2-Dimethyl-4-ethylbenzene	g1	g372				C10H14	wt%		10	134.22	A
	C11P16	C11 Paraffin	g1	g373				C11H24	wt%		11	156.31	Р
	BZ13M2E	1,3-Dimethyl-2-ethylbenzene	g1	g374				C10H14	wt%		10	134.22	A P
	C11P17	C11 Paraffin	g1	g375				C11H24	wt%		11	156.31	P P
	C11P18	C11 Paraffin	g1	g376				C11H24	wt%		11	156.31	
	BZ1M4TB	1-Methyl-4-t-butylbenzene	g1	g377				C11H16	wt%		11	148.25	A
	BZ12M3E	1,2-Dimethyl-3-ethylbenzene	g1	g378				C10H14	wt%		10	134.22	A
	BZ1E2IP	1-Ethyl-2-i-propylbenzene	g1	g379		-55	C	C11H16	wt%		11	148.25	A
	N_UNDE	n-undecane	g1	g380		p55	G	C ₁₁ H ₂₄	wt%		11	156.31	Р
	BZ1E4IP	1-Ethyl-4-i-propylbenzene	g1	g381				C11H16	wt%		11	148.25	A
	BZ1245	1,2,4,5-Tetramethylbenzene	g1	g382				$C_{10}H_{14}$	wt%		10	134.22	А
	BZ1M2NB	1-Methyl-2-n-butylbenzene	g1	g383				C11H16	wt%		11	148.25	А
	BZ1235	1,2,3,5-Tetramethylbenzene	g1	g384				$C_{10}H_{14}$	wt%		10	134.22	А
	BZ1TB2M	1-t-Butyl-2-methylbenzene	g1	g385				C11H16	wt%		11	148.25	А
	IND_5M	5-methylindan	g1	g386				C10H12	wt%		10	132.21	А
	C12P1	C12 Paraffin	g1	g387				C12H26	wt%		12	170.34	Р
740 I	IND_4M	4-methylindan	g1	g388				C10H12	wt%		10	132.21	А
	BZ1E2NP	1-Ethyl-2-n-propylbenzene	g1	g389				C11H16	wt%		11	148.25	А
	IND_2M	2-methylindan	g1	g390				C10H12	wt%		10	132.21	А
743 I	BZ1M3NP	1-Methyl-3-n-propylbenzene	g1	g391				C11H16	wt%		11	148.25	А
744 I	BZ1234	1,2,3,4-Tetramethylbenzene	g1	g392				$C_{10}H_{14}$	wt%		10	134.22	А
745 H	BZ13IP	1,3-Di-i-propylbenzene	g1	g393				C12H18	wt%		12	162.28	А
746 H	BZSPEN	s-Pentylbenzene	g1	g394				C11H16	wt%		11	148.25	А
747 H	BZNPEN	n-Pentylbenzene	g1	g395				C11H16	wt%		11	148.25	А
	CYP1M2_4	1t-M-2-(4-MP)cyclopentane	g1	g396				C12H24	wt%		12	168.32	CA
749 H	BZ12IP	1,2-Di-i-proplybenzene	g1	g397				C12H18	wt%		12	162.28	А
	BZIM2NB	1-Methyl-2-n-butylbenzene	g1	g398				C11H16	wt%		11	148.25	А
	BZ14IP	1,4-Di-i-proplybenzene	g1	g399				C12H18	wt%		12	162.28	А
	NAP1234H	1,2,3,4-tertrahydornaphthalene	g1	g400				C10H8O	wt%		10	192.17	А
	NAPHTH	naphthalene	g1	g401			G	$C_{10}H_8$	wt%		10	128.17	А
	BZ1TB35M	1-t-Butyl-3,5-dimethylbenzene	g1	g402			-	C12H18	wt%		12	162.28	A
	C12P2	C12 Paraffin	gl	g403				C12H26	wt%		12	170.34	Р
		C12 Paraffin	gl	g404				C12H26	wt%		12	170.34	P
	CI2P3	C12 Paraffin	g1	g404									
758 0	C12P3 C12P4		8-					C12H26	wt%		12	170.34	Р

Appendix A
Desert Research Institute Organic Analysis Parameter List

	Mnemonic ^a				Sort	Codes				Conversion			
Para #	for CMB	Compound Name	Method ^b	Data ^c	Sum ^d	PAMS ^e	CMB ^f	Formula	Units	to ug/m3 ^g	C_no	mw	Group ^h
759	C12P6	C12 Paraffin	g1	g407				C12H26	wt%		12	170.34	Р
760	BZ13NP	1,3-Di-n-propylbenzene	g1	g408				C12H18	wt%		12	162.28	Α
761	C12A1	C12 Aromatic	g1	g409				C12H18	wt%		12	162.28	Α
762	N_DODE	n-dodecane	g1	g410			G	C12H26	wt%		12	170.34	Р
763	BZ135E	1,3,5-Triethylbenzene	g1	g411				C12H18	wt%		12	162.28	А
764	BZ1TB4E	1t-Butyl-4-ethylbenzene	g1	g412				C12H18	wt%		12	162.28	А
765	BZ124E	1,2,4-Triethylbenzene	g1	g413				C12H18	wt%		12	162.28	А
766	BZ1M4NPE	1-Methyl-4-n-pentylbenzene	g1	g414				C12H18	wt%		12	162.28	Α
767	BZNHX	n-Hexylbenzene	g1	g415				C12H18	wt%		12	162.28	Α
768	C13P1	C13 Parffin	g1	g416				C13H28	wt%		13	184.37	Р
769	BZMPEN	Pentamethylbenzene	g1	g417				C11H16	wt%		11	148.25	Α
770	NAP_2M	2-methylnaphthalene	g1	g418			G	$C_{11}H_{10}$	wt%		11	142.20	А
771	N_TRID	n-tridecane	g1	g419				C13H28	wt%		13	184.37	Р
772	NAP_1M	1-methylnaphthalene	g1	g420			G	C11H10	wt%		11	142.20	А
773	IDNMHC	idnmhc, gasoline	g1	g421					wt%				
774	UNID	unidentified, gasoline	g1	g422									
775	PAMS	Sum of PAMS for gasoline	g1	g423									

Footnotes to Appendix A

a. Definition of sums of species.

2 • • • • • • • • • •	
PAMS	Sum of PAMS target compounds, =sum(p01p55)
OTHER	Other identified to undecane, idnmhc-pams - sum(aa172.aa183), para#194
	- para#1 - sum(para#182para#193).
UNID	Unidentified to undecane, 0.5*UNID, 0.5 * para#195.
TNMHC	TNMHC (Para#4): total NMHC to undecane, pams + other + unid, para#1
	+ para#2 + para#3.
IDNMHC_p	TO14-FID identified NMHC reported by other laboratories
UNID_p	TO14-FID unidentified reported by other laboratories
IDOXY	Sum of oxygenates, sum of species with sum code $=$ o.
CARB	Sum of carbonyls by DNPH/HPLC-UV, =sum(para#312para#326).
HALO	Sum of halocarbons by GC-ECD, =sum(para#327para#352)
TENAX11	Sum of tenax >undecane

- b. Method Codes
 - c1 canister methane, CO,CO2
 - c2 canister/FID light HC, alumina column
 - c3 canister/FID C3-C12, DB-1 column
 - c4 canister /ECD, DB-1 column
 - c5 canister/PDFID
 - d dnph/HPLC-UV
 - t tenax/GC-FID or MS
 - g1 direct GC-FID gasoline
 - p1 TIGF filter/PUF/XAD, GC/MS for PAHs
 - p2 TIGF filter/PUF/XAD, GC/MS for meat and wood markers
 - p3 TIGF filter/PUF/XAD, GC/MS for hopanes and steranes
- c. Data code: sort code corresponding to order of species in database.
- d. Sum code: o oxygenated compounds; n non-hydrocarbon compounds; z elutes after n-undecane.
- e. PAMS target list of hydrocarbons
- f. Export to data base for CMB application
- g. ppbC to ug/m3 @ 1 atm, 298 K: ug/m3 = ppbC * (mw/22.4457 * C_no) and ppbv to ug/m3 @ 1 atm, 298 K: ug/m3 = ppbv * (mw/22.4457)
- h. A = aromatic, AL = Aldehyde, O = alkene (olefin), P = parafin, Y = alkyne, K = ketone, E = ether, X = haogenated, OH = alcohols, CA = cycloalkanes.

VALIDATION AND APPLICATION PROTOCOL FOR SOURCE APPORTIONMENT OF PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS) AMBIENT VOLATILE ORGANIC COMPOUUND (VOC) DATA

Appendix **B**

Volatile Organic Compound Source Composition Profile Library

Category	year loca		ne as INDEX#	profile code	Profile	Description
IP		CARB MEDS	3	CA0003	NGboiler	External combustion boiler - natural gas
IP		CARB MEDS	4	CA0004	PGboiler	External combustion boiler - process gas
P		CARB MEDS	5	CA0005	CGboiler	External combustion boiler- coke oven gas
?		CARB MEDS	9	CA0009	DistOilC	Industrial ice- distillate oil
IP		CARB MEDS	ú	CA0011	CokeOven	Coke oven stack gas - primary metals
IP IP			13	CA0013		Iron sintering - primary metals
		CARB MEDS			IronSint	
Р		CARB MEDS	16	CA0016	SteelPr1	Primary metals - steel production - basic oxygen furnace
Р		CARB MEDS	21	CA0021	AspRoof1	Asphalt roofing - blowing operation
P		CARB MEDS	22	CA0022	AspRoof2	Asphalt roofing - dipping
P		CARB MEDS	24	CA0024	AspRoof3	Asphalt roofing - tar kettle
P		CARB MEDS	29	CA0029	RefBoilr	Refinery co boiler - fcc
P		CARB MEDS	31	CA0031	Ref Fug1	Refinery- fugitive emissions from covered drainage/separation pits
IP IP		CARB MEDS	35	CA0035	Ref Fug2	Refinery cooling towers fugitive emissions
Р		CARB MEDS	51	CA0051	RefNGcom	Refinery flares- natural gas
Р		CARB MEDS	53	CA0053	Ref_Fug3	Petroleum industry - refinery catalytic reformer - fugitive emissions
Р		CARB MEDS	72	CA0072	Printng1	Printing ink cooking- general
ΑF		CARB MEDS	76	CA0076	Pesticid	Pesticide use- composite domestic & commercial
Р		CARB MEDS	79	CA0079	ChemMfg1	Flares- chemical manufacturing
SS		CARB MEDS	90	CA0090	Toluene	Degreasing- toluene
ΑV		CARB MEDS	100	CA0100	JETAevap	Jet fuel evaporation (jet a)
					-	
P		CARB MEDS	122	CA0122	IncinSW_	Bar screen waste incinerator- solid waste
P		CARB MEDS	182	CA0182	PrintSol	Evaporation- gravure printing- general solvent
COAT		CARB MEDS	196	CA0196	PaintSol	Architectural surface coatings- composite solvent
CP		CARB MEDS	197	CA0197	SolCPcom	Domestic solvents- general composite
AF		CARB MEDS	203	CA0203	Manure	Animal waste decomposition
Р		CARB MEDS	217	CA0217	CokeOvPG	Coke oven blast furnace- process gas
SS		CARB MEDS	230	CA0230	PetroSt1	Petro storage- fixed roof- hexane
COAT		CARB MEDS	280	CA0230 CA0280	PaintWBA	Surface coating primer- water based auto paint spray booth
Р		CARB MEDS	297	CA0297	OilEvCom	Crude oil evaporation- vapor composite from fixed roof tanks
SS		CARB MEDS	298	CA0298	Benzene_	Petro storage- fixed roof- benzene
SS		CARB MEDS	299	CA0299	Cyhexane	Petro storage- fixed roof- cyclohexane
s		CARB MEDS	301	CA0301	Heptane_	Petro storage- fixed roof- heptane
s		CARB MEDS	303	CA0303	Pentane_	Petro storage- fixed roof- pentane
Р		CARB MEDS	306	CA0306	SteelPr2	Open hearth with oxygen lance- steel production
SIO		CARB MEDS	307	CA0307	FrstFire	Forest fires
P		CARB MEDS	316	CA0316	RefinLk1	Refinery- pipes, valves & flanges- composite
Р		CARB MEDS	321	CA0321	RefinLk2	Refinery- pump seals- composite
σV	97	CARB MEDS	325	CA0325	MTBeva97	MTBE Diurnal Evaporatives - MTBE/ETOH Fleet - 1997
σV	97	CARB MEDS	326	CA0326	MTB_HS97	MTBE Hot Soak Evaporatives - MTBE/ETOH Fleet - 1997
ĴΕ	97	CARB MEDS	327	CA0327	MTBstb97	MTBE Stabilized Exhaust - MTBE/ETOH Fleet - 1997
GE	97	CARB MEDS	328	CA0328	MTBstr97	MTBE Starts Exhaust - MTBE/ETOH Fleet - 1997
GV	97	CARB MEDS	330	CA0330	EtOeva97	EtOH Diurnal Evaporatives - MTBE/ETOH Fleet - 1997
	97					
GV		CARB MEDS	331	CA0331	EtO_HS97	EtOH Hot Soak Evaporatives - MTBE/ETOH Fleet - 1997
GΕ	97	CARB MEDS	332	CA0332	EtOstb97	EtOH Stabilized Exhaust - MTBE/ETOH Fleet - 1997
ЭE	97	CARB MEDS	333	CA0333	EtOstr97	EtOH Starts Exhaust - MTBE/ETOH Fleet - 1997
COM		CARB MEDS	390	CA0390	SCOSav00	SCOS97 Inventory Average Profile - 8/16/2000
COM		CARB MEDS	391	CA0391	SCAQav00	SCAQS97 Inventory Average Profile - 8/16/2000
GΕ	96	CARB MEDS	400	CA0400	NCAT1e96	Gasoline - non-cat - FTP Bag 1 Excess - ARB IUS summer 1996
ĴΕ	96	CARB MEDS	401	CA0401	NCATsb96	Gasoline - non-cat - stabilized exhaust - ARB IUS summer 1996
JE	96 96	CARB MEDS	402	CA0402	NCATsr96	Gasoline - non-cat - FTP bag1-3 STARTS - ARB IUS summer 1996
ЗE	96	CARB MEDS	403	CA0403	NCATco96	Gasoline - non-cat - FTP Composite - ARB IUS summer 1996
GE	96	CARB MEDS	404	CA0404	NCAT1x96	Gasoline - non-cat - FTP Bag 1 exhaust - ARB IUS summer 1996
GΕ	96	CARB MEDS	405	CA0405	NCAT3x96	Gasoline - non-cat - FTP Bag 3 exhaust - ARB IUS summer 1996
GE	94	CARB MEDS	410	CA0410	NCAT1e94	Gasoline - non-cat - FTP Bag 1 Excess - ARB IUS summer 1994
ЭE	94	CARB MEDS	411	CA0411	NCATsb94	Gasoline - non-cat - stabilized exhaust - ARB IUS summer 1994
GE	94	CARB MEDS	412	CA0411 CA0412	NCATsr94	Gasoline - non-cat - FTP Bag 1-3 STARTS - ARB IUS summer 1994
<u>ы</u>	74	CARD MEDS	412	CA0412	INCA 15194	Gasonine - non-eat - 1 11 Bag 1-3 STARTS - ARD 105 Summer 1994
	o :	0.000 · 000 -		010.00	10.2	
GE	94	CARB MEDS	413	CA0413	NCATco94	Gasoline - non-cat - FTP Composite - ARB IUS summer 1994
GE	94	CARB MEDS	414	CA0414	NCAT1x94	Gasoline - non-cat - FTP Bag 1 exhaust - ARB IUS summer 1994
ЭE	94	CARB MEDS	415	CA0415	NCAT3x94	Gasoline - non-cat - FTP Bag 3 exhaust - ARB IUS summer 1994
GL		CARB MEDS	419	CA0418	LGetO11%	Liquid gasoline - ETOH 11% - 8 RVP (3.5% oxy) - MTBE/EtOH
5 L		cillub nilbbb	,	0.10.110	Lottoniv	program
GL		CARB MEDS	418	CA0419	LGmtb11%	Liquid gasoline - MTBE 11% - Commercial grade - MTBE/EtOH
						program
σV	96	CARB MEDS	420	CA0420	CBG_HSox	CBG - hot soak - MTBE/EtOH program - LDV
GΕ	88	CARB MEDS	430	CA0430	CATstb88	Gasoline - catalyst - stabilized exhaust - ARB summer 1988
GΕ	89	CARB MEDS	431	CA0431	CATstb89	Gasoline - catalyst - stabilized exhaust - ARB summer 1989
јЕ јЕ	91	CARB MEDS	432	CA0432	CATstb91	Gasoline - catalyst - stabilized exhaust - ARB summer 1991
	92	CARB MEDS		CA0432 CA0433	CATstb92	Gasoline - catalyst - stabilized exhaust - ARB summer 1991 Gasoline - catalyst - stabilized exhaust - ARB summer 1992
JE JE			433			-
ĴΕ	93	CARB MEDS	434	CA0434	CATstb93	Gasoline - catalyst - stabilized exhaust - ARB summer 1993
θE	95	CARB MEDS	435	CA0435	CATstb95	Gasoline - catalyst - stabilized exhaust - ARB summer 1995
ΈE	97	CARB MEDS	436	CA0436	CATstb97	Gasoline - catalyst - stabilized exhaust - ARB summer 1997
ìΕ	98	CARB MEDS	430	CA0430	CATstb98	Gasoline - catalyst - stabilized exhaust - ARB summer 1998
						-
ĴΕ	99	CARB MEDS	438	CA0438	CATstb99	Gasoline - catalyst - stabilized exhaust - ARB summer 1999
θE	1	CARB MEDS	439	CA0439	CATstb01	Gasoline - catalyst - stabilized exhaust - ARB summer 2001
ĴΕ	2	CARB MEDS	440	CA0440	CATstb02	Gasoline - catalyst - stabilized exhaust - ARB summer 2002
10			441	CA0441	CATstb03	Gasoline - catalyst - stabilized exhaust - ARB summer 2003
	3	CAKB MEDN				
θE	3	CARB MEDS				
GE GE GE	3 4 6	CARB MEDS CARB MEDS CARB MEDS	441 442 443	CA0442 CA0443	CATstb04 CATstb06	Gasoline - catalyst - stabilized exhaust - ARB summer 2004 Gasoline - catalyst - stabilized exhaust - ARB summer 2006

Category	year	location DataSource	same as	INDEX#	profile code	Profile	Description
GE	7	CARB MEDS		444	CA0444	CATstb07	Gasoline - catalyst - stabilized exhaust - ARB summer 2007
GE	8	CARB MEDS		445	CA0445	CATstb08	Gasoline - catalyst - stabilized exhaust - ARB summer 2008
GE	9	CARB MEDS		446	CA0446	CATstb09	Gasoline - catalyst - stabilized exhaust - ARB summer 2009
GV		CARB MEDS		449	CA0449	UnOx_eva	Gasoline - UCBerk - headspace vapors for unox SSD
GV		CARB MEDS		450	CA0450	2%etOeva	Gasoline - UCBerk - headspace vapors for EtOH 2.0 % O SSD
GV		CARB MEDS		451	CA0451	3%etOeva	Gasoline - UCBerk - headspace vapors for EtOH 3.5 % O SSD
GV		CARB MEDS		452	CA0452	UnO51eva	UNOX - ARB LAB- headspace vapors for fuel 51 gasoline
GV		CARB MEDS		453	CA0453	EtO52eva	EtOH 2.0 - ARB LAB- headspace vapors for fuel 52 gasoline
GV		CARB MEDS		454	CA0454	MTB50eva	MTBE 2.0 - ARB LAB- headspace vapors for fuel 50 gasoline
GE	3	CARB MEDS		455	CA0455	MTBstb03	MTBE 2% O catalyst - stabilized exhaust - ARB LAB 2003
GE	3	CARB MEDS		456	CA0456	UnOstb03	UNOX catalyst - stabilized exhaust - ARB LAB 2003
GE	3	CARB MEDS		457	CA0450	EtOstb03	EToH 2% O catalyst - stabilized exhaust - ARB LAB 2003
GE	3	CARB MEDS		458	CA0457 CA0458	MTBstr03	MTBE 2% O catalyst - starts exhaust - ARB LAB 2003
JE JE	3	CARB MEDS		459	CA0458 CA0459	UnOstr03	UNOX catalyst - starts exhaust - ARB LAB 2003
JE JE	3	CARB MEDS		460	CA0457 CA0460	EtOstr03	EtOH 2% O catalyst - starts exhaust - ARB LAB 2003
							CBG - catalyst stabilized - bin A (0.0025 g/mi THC) - 1996
JE JE	96 06	CARB MEDS	170	470	CA0470	CBGstb_A	
ĴΕ	96 96	CARB MEDS	470	471	CA0471	CBGstb_B	CBG - catalyst stabilized - bin B (0.2550 g/mi THC) - 1996
ĴΕ	96	CARB MEDS	470	472	CA0472	CBGstb_C	CBG - catalyst stabilized - bin C (0.50-1.0 g/mi THC) - 1996
ìΕ	96	CARB MEDS	470	473	CA0473	CBGstb_D	CBG - catalyst stabilized - bin D (1.00-2.0 g/mi THC) - 1996
ĴΕ	96	CARB MEDS	470	474	CA0474	CBGstb_E	CBG - catalyst stabilized - bin E (2.00-3.0 g/mi THC) - 1996
ĴΕ	96	CARB MEDS	470	475	CA0475	CBGstb_F	CBG - catalyst stabilized - bin F (>3.00 g/mi THC) - 1996
θE	95	CARB MEDS	435	476	CA0476	pCBstb_A	Pre-CBG - catalyst stabilized - bin A (0.0025 g/mi THC)
θE	95	CARB MEDS	435	477	CA0477	pCBstb_B	Pre-CBG - catalyst stabilized - bin B (0.2550 g/mi THC)
ĴΕ	95	CARB MEDS	435	478	CA0478	pCBstb_C	Pre-CBG - catalyst stabilized - bin C (0.50-1.0 g/mi THC)
ĴΕ	95	CARB MEDS	435	479	CA0479	pCBstb_D	Pre-CBG - catalyst stabilized - bin D (1.00-2.0 g/mi THC)
GΕ	95	CARB MEDS	435	480	CA0480	pCBstb_E	Pre-CBG - catalyst stabilized - bin E (2.00-3.0 g/mi THC)
ĴΕ	95	CARB MEDS	435	481	CA0481	pCBstb_F	Pre-CBG - catalyst stabilized - bin F (>3.00 g/mi THC)
3L	99	CARB MEDS		485	CA0485	LG_UnO99	UNOX LAB Compositon of fuel for test vehicles SEPT 1999
GL	99	CARB MEDS		486	CA0486	LG2%et99	EtOH 2.0 % o LAB Compostion of fuel for test vehicles SEPT 1999
GL	99	CARB MEDS		487	CA0487	LG2%MT99	MTBE 2.0 % o LAB Compostion of fuel for test vehicles SEPT 1999
ΞE		CARB MEDS		500	CA0500	CATnoC=O	Catalyst LDV exhaust - carbonyls not in ems (Black's data)
ΞE		CARB MEDS		502	CA0502	nCATnC=O	Non-catalyst LDV exhaust - carbonyls not in ems (Black's data)
P		CARB MEDS		504	CA0504	BoilrOil	External combustion boilers- distillate or residual
v		CARB MEDS		508	CA0508	JetExCom	Jet exhaust- composite
s		CARB MEDS		511	CA0508	PolyMfg1	Plastics mfg- polypropylene
P				517	CA0511 CA0517	PrintEva	Printing evaporation loss- general
		CARB MEDS					
CP IC		CARB MEDS		518	CA0518	Aerosol1	Aerosol sprays- non-synthetic
√G IG		CARB MEDS		520	CA0520	NG_comp_	Composite natural gas
١G		CARB MEDS		521	CA0521	LPG_comp	Composite LPG
BIO		CARB MEDS		523	CA0523	PileBurn	Open burning dump- landscape/pruning (modified KVB 121)
ĴΕ	79	CARB MEDS		526	CA0526	VEcomp79	1979 exhaust composite 50/50 (aldehydes in emissions)
ЭE		CARB MEDS		527	CA0527	nCATwC=O	Non-cat LDV exhaust (carbonyls in emissions) Black's data
Р		CARB MEDS		528	CA0528	OCS_Fug1	OCS production platform fugitives
Р		CARB MEDS		529	CA0529	PetDril1	Oil & gas extraction - pipeline valves & fittings
Р		CARB MEDS	529	530	CA0530	PetDril2	Oil & gas extraction - pump seals
Р		CARB MEDS	529	531	CA0531	PetDril3	Oil & gas extraction - compressor seals
Р		CARB MEDS	529	532	CA0532	PetDril4	Oil & gas extraction - well heads & cellars/oil&water separator
AF		CARB MEDS		533	CA0533	CAagriAM	Daytime biogenic profile- Kern county crops
ΔF		CARB MEDS		534	CA0534	CAagriPM	Nighttime biogenic profile - Kern county crops
Р		CARB MEDS		535	CA0535	CoalComb	Coal combustion - bituminous - fluidized bed
Р		CARB MEDS		546	CA0546	OilStor1	Crude oil - storage tanks - Kern county
S		CARB MEDS		547	CA0547	Propane	Propane
s		CARB MEDS		548	CA0548	Butane	Butane
C		CARB MEDS		549	CA0549	WdStvHW1	Red oak combustion - wood stove (w/o catalyst)
P		CARB MEDS		550	CA0550	OCS_Fug2	OCS - gas seeps
P		CARB MEDS		551	CA0551	OCS_Fug3	OCS - oil seeps - volatile fraction
s		CARB MEDS		559	CA0551 CA0559	Ethane_	Ethane
)E	88	CARB MEDS	561	560	CA0559 CA0560	DEnC=O88	On-road diesel hot exhaust (carbonyls not in emissions) EPA 4/88
DE	88	CARB MEDS	501	561	CA0500 CA0561	DEonRd88	On-road diesel hot exhaust (Carbonyis not in emissions) Er A 4/88
	00			561		EPwrGen1	Geysers power plant main steam
P		CARB MEDS			CA0562		
AV DE		CARB MEDS		563	CA0563	Jet4evap	Jet fuel evaporation (jp-4)
ÈE		CARB MEDS		564	CA0564	CATesRF1	Gasoline - catalyst - cold start exhaust - a/o RFA phase 1
ìΕ		CARB MEDS		565	CA0565	CATsbRF1	Gasoline - catalyst - stabilized exhaust - a/o RFA phase 1
ĴΕ		CARB MEDS		566	CA0566	CATwsRF1	Gasoline - catalyst - hot start exhaust - a/o RFA phase 1
ìΕ		CARB MEDS		570	CA0570	CATesCBG	CBG M7&8 - catalyst - cold start exhaust - a/o phase 2
ĴΕ		CARB MEDS		571	CA0571	CATsbCBG	CBG M7&8 - catalyst - stabilized exhaust - a/o phase 2
ìΕ		CARB MEDS		572	CA0572	CATwsCBG	CBG M7&8 - catalyst - hot start exhaust - a/o phase 2
ìΕ		CARB MEDS		573	CA0573	CATemCBG	CBG M7&8 - catalyst - composite exhaust - a/o phase 2
ìΕ		CARB MEDS		574	CA0574	CATcsRF2	RFA M7&8 - catalyst - cold start exhaust - a/o phase 2
θE		CARB MEDS		575	CA0575	CATsbRF2	RFA M7&8 - catalyst - stabilized exhaust - a/o phase 2
θE		CARB MEDS		576	CA0576	CATwsRF2	RFA M7&8 - catalyst - hot start exhaust - a/o phase 2
ĴΕ		CARB MEDS		577	CA0577	CATemRF2	RFA M7&8 - catalyst - composite exhaust - a/o phase 2
V		CARB MEDS		586	CA0586	Jet5exh_	Composite jet exhaust JP-5 (EPA 1097-1099)
COM		CARB MEDS		600	CA0600	AllComp	Species unknown- all category composite
ЭЕ	10	CARB MEDS		601	CA0600 CA0601	CATsr_10	Compsite 2010 - cat - start exhaust - 40%unox 60%etoh 2%o
						_	
ĴΕ	10	CARB MEDS		602	CA0602	CATsb_10	Compsite 2010 - cat - stabilized exhaust - 40%unox 60%etoh 2%o
	10	CARB MEDS		603	CA0603	nCATsr10	Compsite 2010 -ncat - start exhaust - 40%unox 60%etoh 2%o
	10						
GE GE GV	10 10	CARB MEDS CARB MEDS		604 605	CA0604 CA0605	nCATsb10 GasEva10	Compsite 2010 -ncat - stabilized exhaust - 40%unox 60%etoh 2%o Composite Diurnal Vaporse - 2010 40% unox 60% etoh 2% o

Category	year	location	DataSource	same as	INDEX#	profile code	Profile	Description
GL	10		CARB MEDS		606	CA0606	LGcomp10	Composite Liquid Gasoline - 2010 40% unox 60% etoh 2% o
GE	0		CARB MEDS		610	CA0610	LDGVcs00	CBG - LDGV cat - cold start exhaust - auto/oil phase 2:2000
GE	0		CARB MEDS		611	CA0611	LDGTcs00	CBG - LDGT cat - cold start exhaust - auto/oil phase 2:2000
GE	0		CARB MEDS		612	CA0612	LDGVsb00	CBG - LDGV cat - hot stabilized - auto/oil phase 2:2000
GE	0		CARB MEDS		613	CA0613	LDGTsb00	CBG - LDGT cat - hot stabilized - auto/oil phase 2:2000
GE	0		CARB MEDS		614	CA0614	LDGVws00	CBG - LDGV cat - hot start exhaust - auto/oil phase 2:2000
GE	0		CARB MEDS		615	CA0615	LDGTws00	CBG - LDGT cat - hot start exhaust - auto/oil phase 2:2000
GE	Ő		CARB MEDS		616	CA0616	LDGeva00	CBG - diurnal- Phase 2:2000 auto/oil LDGV & LDGT
GV	0		CARB MEDS		617	CA0617	LDGVhs00	CBG - hot soak Phase 2:2000 auto/oil LDGV - conforming
GV	Ő		CARB MEDS		618	CA0618	LDGThs00	CBG - hot soak Phase 2:2000 auto/oil LDGT - conforming
GV	Ő		CARB MEDS		619	CA0619	LDGrnl00	CBG - running loss - Phase 2:2000 auto/oil LDGV&LDGT
GV	0		CARB MEDS		620	CA0620	LDGrsl00	CBG - resting loss - Phase 2:2000 auto/oil LDGV&LDGT
GE	10		CARB MEDS		621	CA0620	LDGVcs10	CBG - LDGV cat - cold start exhaust - auto/oil phase 2:2010
GE	10		CARB MEDS		622	CA0622	LDGTcs10	CBG - LDGT cat - cold start exhaust - auto/oil phase 2:2010
GE	10		CARB MEDS		623	CA0622	LDGVsb10	CBG - LDGV cat - tot stabilized - auto/oil phase 2:2010
GE	10		CARB MEDS		624	CA0623 CA0624	LDGVs010 LDGTsb10	CBG - LDGV cat - hot stabilized - auto/oil phase 2:2010 CBG - LDGT cat - hot stabilized - auto/oil phase 2:2010
								1
GE	10		CARB MEDS		625	CA0625	LDGVws10	CBG - LDGV cat - hot start exhaust - auto/oil phase 2:2010
GE	10		CARB MEDS		626	CA0626	LDGTws10	CBG - LDGT cat - hot start exhaust - auto/oil phase 2:2010
GE	10		CARB MEDS		627	CA0627	LDGeva10	CBG - diurnal- Phase 2:2010 auto/oil LDGV & LDGT
GV	10		CARB MEDS		628	CA0628	LDGVhs10	CBG - hot soak Phase 2:2010 auto/oil LDGV - conforming
GV	10		CARB MEDS		629	CA0629	LDGThs10	CBG - hot soak Phase 2:2010 auto/oil LDGT - conforming
GV	10		CARB MEDS		630	CA0630	LDGrnl10	CBG - running loss - Phase 2:2010 auto/oil LDGV&LDGT
GV	10		CARB MEDS		631	CA0631	LDGrsl10	CBG - resting loss - Phase 2:2010 auto/oil LDGV&LDGT
GE	3		CARB MEDS		636	CA0636	UnO_sb03	Cat stabilzed exhaust 2003 SSD unox V5 (MTBE phaseout)
GE	3		CARB MEDS		637	CA0637	EtO_sb03	Cat stabilzed exhaust 2003 SSD et20 V5 (MTBE phaseout)
GE	96		CARB MEDS		640	CA0640	NCsbUn96	Non-cat stabilzed exhaust 1996 SSD unox V5 (MTBE phaseout)
GE	96		CARB MEDS		641	CA0641	NCsrUn96	Non-cat start exhaust 1996 SSD unox V5 (MTBE phaseout)
GE	96		CARB MEDS		642	CA0642	CTsbUn96	Cat stabilized exhaust 1996 SSD unox V5 (MTBE phaseout)
GE	96		CARB MEDS		643	CA0643	CTsrUn96	Cat start exhaust 1996 SSD unox V5 (MTBE phaseout)
GE	96		CARB MEDS		646	CA0646	NCsbEt96	Non-cat stabilzed exhaust 1996 SSD etoh 2.0% o V5 (MTBE phaseout)
								····· ································
GE	96		CARB MEDS		647	CA0647	NCsrEt96	Non-cat start exhaust 1996 SSD etoh 2.0% o V5 (MTBE phaseout)
GE	96		CARB MEDS		648	CA0648	CTsbEt96	Cat stabilized exhaust 1996 SSD 2.0% o V5 (MTBE phaseout)
GE	96		CARB MEDS			CA0649	CTsrEt96	Cat start exhaust 1996 SSD 2.0% o V5 (MTBE phaseout)
					649			
GL	96		CARB MEDS	((1	650	CA0650	LG_UnO96	Liquid gasoline 1996 SSD unox (MTBE phaseout)
GV	96		CARB MEDS	661	651	CA0651	EvaUnO96	Headspace vapors 1996 SSD unox (MTBE phaseout)
GV	96		CARB MEDS	662	652	CA0652	HS_UnO96	Hot soak vapors 1996 SSD unox (MTBE phaseout)
GE	96		CARB MEDS		653	CA0653	CsbUnO96	Cat stabilzed exhaust 1996 SSD unox (MTBE phaseout)
GE	96		CARB MEDS		654	CA0654	CsrUnO96	Cat start exhaust 1996 SSD unox (MTBE phaseout)
GE	96		CARB MEDS		655	CA0655	nCsbUn96	Non-cat stabilized exhaust 1996 SSD unox (MTBE phaseout)
GE	96		CARB MEDS		656	CA0656	nCsrUn96	Non-cat start exhaust 1996 SSD unox (MTBE phaseout)
GE	3		CARB MEDS		657	CA0657	CsbUnO03	Cat stabilzed exhaust 2003 SSD unox (MTBE phaseout)
GL	96		CARB MEDS		660	CA0660	LG_EtO96	Liquid gasoline 1996 SSD etoh 2.0% o (MTBE phaseout)
GV	96		CARB MEDS		661	CA0661	EvaEtO96	Headspace vapors 1996 SSD etoh 2.0% o (MTBE phaseout)
GV	96		CARB MEDS		662	CA0662	HS_EtO96	Hot soak vapors 1996 SSD etch 2.0% o (MTBE phaseout)
GE	96		CARB MEDS		663	CA0663	CsbEtO96	Cat stabilzed exhaust 1996 SSD etoh 2.0% o (MTBE phaseout)
GE	96		CARB MEDS		664	CA0664	CsrEtO96	Cat start exhaust 1996 SSD etoh 2.0% o (MTBE phaseout)
GE	96		CARB MEDS		665	CA0665	nCsbEt96	Non-cat stabilized exhaust 1996 SSD 2.0% o (MTBE phaseout)
GE	96		CARB MEDS		666	CA0666	nCsrEt96	Non-cat start exhaust 1996 SSD 2.0% o (MTBE phaseout)
GE	3		CARB MEDS		667	CA0667	CsbEtO03	Cat stabilzed exhaust 2003 SSD 2.0% o (MTBE phaseout)
GL	96		CARB MEDS	660	670	CA0670	LG 3%096	Liquid gasoline 1996 SSD 3.5% o (MTBE phaseout)
GV	96		CARB MEDS	661	671	CA0671	Eva3%O96	Headspace vapors 1996 SSD 3.5% 0 (MTBE phaseout)
GV	96		CARB MEDS	662	672	CA0672	HS_3%O96	Hot soak vapors 1996 SSD 3.5% o (MTBE phaseout)
GE	96		CARB MEDS		673	CA0673	Csb3%O96	Cat stabilzed exhaust 1996 SSD 3.5% o (MTBE phaseout)
GE	96		CARB MEDS		674	CA0674	Csr3%O96	Cat start exhaust 1996 SSD 3.5% o (MTBE phaseout)
GE	96		CARB MEDS		675	CA0675	nCsb3%96	Non-cat stabilized exhaust 1996 SSD 3.5% o (MTBE phaseout)
GE	96		CARB MEDS		676	CA0675 CA0676	nCsr3%96	Non-cat start exhaust 1996 SSD 3.5% o (MTBE phaseout)
GE	3		CARB MEDS		677	CA0676 CA0677	Csb3%O03	Cat stabilzed exhaust 2003 SSD 3.5% o (MTBE phaseout)
GL	85		CARB MEDS		707	CA0707	LGcom_85	Liquid gasoline 1985 (profile 709 normalized to 100%)
GV	85		CARB MEDS		708	CA0708	GVcom_85	Gasoline vapors-1985 (profile 710 normalized to 100%)
GL	85		CARB MEDS		709	CA0709	LGcomS85	Liquid gasoline-composite of product-summer blend (1985)
GV	85		CARB MEDS		710	CA0710	GVcomS85	Gasoline vapors-composite of product-summer blend (1985)
IP			CARB MEDS		711	CA0711	PntILaqr	Industrial surface coating-composite laquer
IP			CARB MEDS		712	CA0712	PntIEnam	Industrial surface coating-composite enamel
IP			CARB MEDS		713	CA0713	PntIPrim	Industrial surface coating-composite primer
Р			CARB MEDS		714	CA0714	PntIAdhe	Industrial surface coating-composite adhesive
P			CARB MEDS		715	CA0715	Asphalt1	Slow cure asphalt
Р			CARB MEDS		716	CA0716	Asphalt2	Medium cure asphalt
NG			CARB MEDS		719	CA0719	NG_ICE	ICE-reciprocating-natural gas
GL			CARB MEDS		729	CA0729	LGcomW??	Liquid gasoline-composite of product-winter blend
GV			CARB MEDS		730	CA0730	GVcomW??	Gasoline vapors-composite of product-winter blend
SS			CARB MEDS		753	CA0750	Styrene	Styrene
19 19			CARB MEDS		756	CA0755 CA0756	PetrFug1	Oil & gas production fugitives-liquid service
IP ID			CARB MEDS	764	757	CA0757	PetrFug2	Oil & gas production fugitives-gas service
IP IP			CARB MEDS	756	758	CA0758	PetrFug3	Oil & gas production fugitives-valves-unspecified
Р			CARB MEDS		760	CA0760	DFuelEva	Evaporative emissions-distillate fuel
P			CARB MEDS		763	CA0763	ChemMfg2	Phthalic anhydride mfgxylene oxidation
			CARB MEDS		772	CA0772	O_XYLene	Ortho-xylene
SS COAT			CARB MEDS		112	CA0783	PntISolB	Industrial surface coating-solvent based paint

Category	year loc	ation DataSource	same as	INDEX#	profile code	Profile	Description
IP		CARB MEDS		784	CA0784	ChemMfg3	Synthetic rubber mfg-styrene-butadiene rubber
IP		CARB MEDS		787	CA0787	CarbnMfg	Carbon black manufacturing
SS		CARB MEDS		791	CA0791	Varsol	Varsol
SS		CARB MEDS		793	CA0793	CyPentan	Cyclopentane
SS		CARB MEDS		794	CA0794	IsOctane	Isooctane
GE	82	CARB MEDS		800	CA0800	CAT_nC=O	Catalyst ldv exhaust - no carbonyls in emissions - Sigby's data
GE	82	CARB MEDS		801	CA0801	CAT_wC=O	Catalyst ldv exhaust - carbonyls in emissions - Sigby's data
IP		CARB MEDS		802	CA0802	MnSpirit	Composite mineral spirit (naphthas or lactol spirits)
SS		CARB MEDS	2068	806	CA0806	Isoprene	Isoprene & soil NO
СР	95	CARB MEDS	1799	814	CA0814	CPcomp95	EPA composite consumer products 9/29/95
GE	91	CARB MEDS		815	CA0815	SmE2cy91	Utility equipment - gasoline - 2 cycle - CalPoly 1991
GE	91	CARB MEDS		816	CA0816	SmE4cy91	Utility equipment - gasoline - 4 cycle - CalPoly 1991
DE		CARB MEDS	818	817	CA0817	AgDiesel	Farm equipment - diesel - light & heavy - (ems=HC)
DE		CARB MEDS		818	CA0818	AgDiesel	Farm equipment - diesel - light & heavy - (ems=actual weight)
CP		CARB MEDS		821	CA0821	CPcom+Ac	EPA composite consumer products with increased acetone & perc
GE	94	CARB MEDS		827	CA0827	CAT1xS94	Gasoline - catalyst - FTP Bag 1 Excess - ARB IUS summer 1994
GE	94	CARB MEDS		828	CA0828	CATsbS94	Gasoline - catalyst - 111 Bag 1 Excess - ARB IUS summer 1994
GE	94	CARB MEDS		828	CA0828 CA0829	CATsrS94	Gasoline - catalyst - Stabilized exhaust - ARB 103 summer 1994 Gasoline - catalyst - FTP Bag 1-3 STARTS - ARB IUS summer 1994
	94						
GE		CARB MEDS		830	CA0830	CATemS94	Gasoline - catalyst - FTP Composite - ARB IUS summer 1994
GE	94	CARB MEDS		831	CA0831	CATb1S94	Gasoline - catalyst - FTP Bag 1 exhaust - ARB IUS summer 1994
GE	94	CARB MEDS		832	CA0832	CATb3S94	Gasoline - catalyst - FTP Bag 3 exhaust - ARB IUS summer 1994
GE		CARB MEDS		833	CA0833	CATesCNG	Gasoline - catalyst - cold start exhaust - CNG - annual
GE		CARB MEDS		835	CA0835	CATwsCNG	Gasoline - catalyst - hot start exhaust - CNG - annual
GE		CARB MEDS		836	CA0836	CATesLPG	Gasoline - catalyst - cold start exhaust - LPG - annual
GE		CARB MEDS		837	CA0837	CATsbLPG	Gasoline - catalyst - stabilized exhaust - LPG - annual
GE		CARB MEDS		838	CA0838	CATwsLPG	Gasoline - catalyst - hot start exhaust - LPG - annual
GE		CARB MEDS		839	CA0839	CATcsM85	Gasoline - catalyst - cold start exhaust - M85 - annual
GE		CARB MEDS		840	CA0840	CATsbM85	Gasoline - catalyst - stabilized exhaust - M85 - annual
GE		CARB MEDS		841	CA0841	CATwsM85	Gasoline - catalyst - hot start exhaust - M85 - annual
GE	95	CARB MEDS		842	CA0842	CATesS95	Gasoline - catalyst - cold start exhaust - ARB IUS summer 1995
GE	95	CARB MEDS		843	CA0843	CATsbS95	Gasoline - catalyst - stabilized exhaust - ARB IUS summer 1995
GE	95	CARB MEDS		844	CA0844	CATwsS95	Gasoline - catalyst - hot start exhaust - ARB IUS summer 1995
GE	95	CARB MEDS		845	CA0845	CATcmS95	Gasoline - catalyst - composite exhaust - ARB IUS summer 1995
GL		CARB MEDS		850	CA0850	LGphs2S	Liquid gasoline-theoretical Phase 2 -summer blend
GV		CARB MEDS		851	CA0851	GVphs2S_	Gasoline vapors-theoretical Phase 2 -summer blend
GE	87	CARB MEDS		860	CA0860	CAT1xS87	Gasoline - catalyst - FTP Bag 1 Excess - ARB IUS summer 1987
GE	87	CARB MEDS		861	CA0861	CATsbS87	Gasoline - catalyst - stabilized exhaust - ARB IUS summer 1987
GE	87	CARB MEDS		862	CA0862	CATsrS87	Gasoline - catalyst - Stabilized called - FRED FOS summer 1987 Gasoline - catalyst - FTP Bag 1-3 STARTS - ARB IUS summer 1987
GE	87	CARB MEDS		863	CA0863	CATemS87	Gasoline - catalyst - FTP Composite - ARB IUS summer 1987
GE	87	CARB MEDS		864	CA0864	CATb1S87	Gasoline - catalyst - FTP Bag 1 exhaust - ARB IUS summer 1987
GE	87			865			Gasoline - catalyst - FTP Bag 3 exhaust - ARB IUS summer 1987
		CARB MEDS			CA0865	CATb3S87	, ,
GE	90 90	CARB MEDS		866	CA0866	CAT1xS90	Gasoline - catalyst - FTP Bag 1 Excess - ARB IUS summer 1990
GE		CARB MEDS		867	CA0867	CATsbS90	Gasoline - catalyst - stabilized exhaust - ARB IUS summer 1990
GE	90	CARB MEDS		868	CA0868	CATsrS90	Gasoline - catalyst - FTP Bag 1-3 STARTS - ARB IUS summer 1990
GE	90	CARB MEDS		869	CA0869	CATemS90	Gasoline - catalyst - FTP Composite - ARB IUS summer 1990
GE	90	CARB MEDS		870	CA0870	CATb1S90	Gasoline - catalyst - FTP Bag 1 exhaust - ARB IUS summer 1990
GE	90	CARB MEDS		871	CA0871	CATb3S90	Gasoline - catalyst - FTP Bag 3 exhaust - ARB IUS summer 1990
GE	96	CARB MEDS		875	CA0875	CAT1xS96	Gasoline - catalyst - FTP Bag 1 Excess - ARB IUS summer 1996
GE	96	CARB MEDS		876	CA0876	CATsbS96	Gasoline - catalyst - stabilized exhaust - ARB IUS summer 1996
GE	96	CARB MEDS		877	CA0877	CATsrS96	Gasoline - catalyst - FTP Bag 1-3 STARTS - ARB IUS summer 1996
GE	96	CARB MEDS		878	CA0878	CATemS96	Gasoline - catalyst - FTP Composite - ARB IUS summer 1996
GE	96	CARB MEDS		879	CA0879	CATb1S96	Gasoline - catalyst - FTP Bag 1 exhaust - ARB IUS summer 1996
GE	96	CARB MEDS		880	CA0880	CATb3S96	Gasoline - catalyst - FTP Bag 3 exhaust - ARB IUS summer 1996
GE	0	CARB MEDS		881	CA0881	CAT1xS00	Gasoline - catalyst - FTP Bag 1 Excess- from 96IUS summer 2000
GE	0	CARB MEDS		882	CA0882	CATsbS00	Gasoline - catalyst -stabilized exhaust-from 96IUS summer 2000
GE	0	CARB MEDS		883	CA0883	CATsrS00	Gasoline - catalyst - FTP Bag 1-3 STARTS - 96IUS summer 2000
GE	0	CARB MEDS		884	CA0884	CATemS00	Gasoline - catalyst - FTP Composite- from 96IUS summer 2000
GE	0	CARB MEDS		885	CA0885	CATb1S00	Gasoline - catalyst - FTP Bag 1 exhaust-from 96IUS summer 2000
GE	0	CARB MEDS		886	CA0886	CATb3S00	Gasoline - catalyst - FTP Bag 3 exhaust-from 96IUS summer 2000
GE	5	CARB MEDS		887	CA0887	CAT1xS05	Gasoline - catalyst - FTP Bag 1 Excess- from 96IUS summer 2005
GE	5	CARB MEDS		888	CA0888	CATsbS05	Gasoline - catalyst - 111 Bag 1 Excess- from 961US summer 2005 Gasoline - catalyst -stabilized exhaust-from 961US summer 2005
GE	5	CARB MEDS		889	CA0888 CA0889	CATsrS05	Gasoline - catalyst - STAD Bag 1-3 STARTS - 96IUS summer 2005
GE GE	5					CATemS05	
		CARB MEDS		890 801	CA0890		Gasoline - catalyst - FTP Composite- from 96IUS summer 2005 Gasoline - catalyst - FTP Bag 1 exhaust-from 96IUS summer 2005
GE	5	CARB MEDS		891	CA0891	CATb1S05	
GE	5	CARB MEDS		892	CA0892	CATb3S05	Gasoline - catalyst - FTP Bag 3 exhaust-from 96IUS summer 2005
GE	10	CARB MEDS		893	CA0893	CAT1xS10	Gasoline - catalyst - FTP Bag 1 Excess- from 96IUS summer 2010
GE	10	CARB MEDS		894	CA0894	CATsbS10	Gasoline - catalyst -stabilized exhaust-from 96IUS summer 2010
GE	10	CARB MEDS		895	CA0895	CATsrS10	Gasoline - catalyst - FTP Bag 1-3 STARTS - 96IUS summer 2010
GE	10	CARB MEDS		896	CA0896	CATemS10	Gasoline - catalyst - FTP Composite- from 96IUS summer 2010
GE	10	CARB MEDS		897	CA0897	CATb1S10	Gasoline - catalyst - FTP Bag 1 exhaust-from 96IUS summer 2010
GE	10	CARB MEDS		898	CA0898	CATb3S10	Gasoline - catalyst - FTP Bag 3 exhaust-from 96IUS summer 2010
GE	96	CARB MEDS		899	CA0899	CATs1S96	Gasoline - catalyst - FTP Bag 1 -STARTS - ARB IUS summer 1996
VE	94	CARB MEDS		901	CA0901	CalTuS94	Caldecott tunnel emissions - summer 1994 - mostly hot stabilized
VE	95	CARB MEDS		903	CA0903	CalTuS95	Caldecott tunnel emissions - summer 1995 - mostly hot stabilized
VE	96	CARB MEDS		905	CA0905	CalTuS96	Caldecott tunnel emissions - summer 1996 - mostly hot stabilized
GV		CARB MEDS		906	CA0906	GV2%MTBE	Gasoline - UCBerk - headspace vapors for MTBE 2.0 % O gasoline
IP		CARB MEDS		919	CA0919	Degreas1	DEGREASING: COLD CLEANING (BATCH, CONVEYOR, SPRAY
		CARD MEDS		717	CA0/17	Degreasi	GUN)
							0011
IP		CARB MEDS	919	920	CA0920	Degreas2	DEGREASING: HANDWIPING

Category	year location	DataSource	same as	INDEX#	profile code	Profile	Description
IP		CARB MEDS	90	921	CA0921	Degreas3	DEGREASING: COLD CLEANING (BATCH, CONVEYOR, SPRAY GUN)
Р		CARB MEDS	90	922	CA0922	Degreas4	DEGREASING: HANDWIPING
Р		CARB MEDS		930	CA0930	Degreas5	DEGREASING: COLD CLEANING (BATCH, CONVEYOR, SPRAY
						.9	GUN)
Р		CARB MEDS		932	CA0932	Degreas6	DEGREASING: HANDWIPING
SS		CARB MEDS		940	CA0940	IPentane	Isopentane
IP		CARB MEDS		1402	CA1402	H2OTreat	POTWs Wastewater Treatment, AB2588 Data, USEPA 50% unidentif.
-				1 40 2	G 1 1 402		BUDLICTBLAL BROCECOEC AVERAGE (CBA 0000)
P		CARB MEDS		1403	CA1403	InduComp	INDUSTRIAL PROCESSES - AVERAGE (EPA 9003)
P P		CARB MEDS		1404 1405	CA1404	ChemMfgC PlastMfs	CHEMICAL MANUFACTURING - AVERAGE (EPA 9004)
IP IP		CARB MEDS CARB MEDS		1405	CA1405 CA1409	PlastMfg MetalMf1	PLASTICS PRODUCTION - AVERAGE (EPA 9005) PRIMARY METAL PRODUCTION - AVERAGE (EPA 9009)
IP IP		CARB MEDS		1409	CA140) CA1410	MetalMf2	SECONDARY METAL PRODUCTION - AVERAGE (EPA 9009)
IP IP		CARB MEDS		1410	CA1411	MinerMfg	MINERAL PRODUCTS - AVERAGE (EPA 9011)
IP		CARB MEDS		1412	CA1412	PetPrCom	PETROLEUM INDUSTRY - AVERAGE (EPA 9012)
IP		CARB MEDS		1414	CA1414	RubbrMfg	RUBBER/MISC. PLASTICS PRODUCTN - AVERAGE (EPA 9014)
IP		CARB MEDS		1417	CA1417	DryClean	DRYCLEANING/DEGREASING - AVERAGE (EPA 9017)
COAT		CARB MEDS		1421	CA1421	Painting	SURFACE COATING OPERATIONS - AVERAGE (EPA 9021)
IP		CARB MEDS		1426	CA1426	Printing	PRINTING/PUBLISHING - AVERAGE (EPA 9026)
IP IP		CARB MEDS		1428	CA1428	ChemStor ChemSto2	ORGANIC CHEMICAL STORAGE - AVERAGE (EPA 9028)
r		CARB MEDS		1430	CA1430	ChemSto2	ORGANIC CHEM/FIXED ROOF:MISC ALKANES - AVG (EPA 9030
IP		CARB MEDS		1448	CA1448	AutoPntg	AUTO REFINISHING (US EPA #2402)
IP		CARB MEDS		1449	CA1449	MetalFab	FABRICATED METAL (US EPA #2466)
CP		CARB MEDS		1502	CA1502	CP_adhs1	DRAFT CONSUMER PRD: ARTS AND CRAFTS ADHESIVES
CP		CARB MEDS		1503	CA1503	CP_adhs2	DRAFT CONSUMER PRD: AUTOMOTIVE ADHESIVES
СР		CARB MEDS		1504	CA1504	CP_adhs3	DRAFT CONSUMER PRD: CARPET AND TILE ADHESIVES
СР		CARB MEDS		1505	CA1505	CP_adhs4	DRAFT CONSUMER PRD: CONSTRUCTION AND PANEL
							ADHESIVES
CP		CARB MEDS		1506	CA1506	CP_adhs5	DRAFT CONSUMER PRD: CONTACT ADHESIVE
CP		CARB MEDS		1507	CA1507	CP_adhs6	DRAFT CONSUMER PRD: GENERAL PURPOSE ADHESIVE
СР		CARB MEDS		1508	CA1508	CP_adhs7	DRAFT CONSUMER PRD: AEROSOL ADHESIVE (INCLUDING INDUSTRIAL)
СР		CARB MEDS		1520	CA1520	CP_caulk	DRAFT CONSUMER PRD: SEALANTS & CAULKING COMPOUNDS
СР		CARB MEDS		1521	CA1521	CP wdfil	DRAFT CONSUMER PRD: WOOD FILLERS
CP		CARB MEDS		1530	CA1530	CPauto 1	DRAFT CONSUMER PRD: BUG AND TAR REMOVERS
СР		CARB MEDS		1531	CA1531	CPauto_2	DRAFT CONSUMER PRD: AUTO CARPET AND UPHOLSTERY CLEANERS - AEROSOLS
СР		CARB MEDS		1533	CA1533	CPauto_3	DRAFT CONSUMER PRD: AUTOMOTIVE HARD PASTE WAXES
СР		CARB MEDS		1535	CA1535	CPauto_4	DRAFT CONSUMER PRD: AUTOMOTIVE WAXES/POLISHES/SEALANTS/GLAZES
СР		CARB MEDS		1536	CA1536	CPauto_5	DRAFT CONSUMER PRD: RUBBER AND VINYL PROTECTANTS AEROSOLS
СР		CARB MEDS		1537	CA1537	CPauto_6	DRAFT CONSUMER PRD: RUBBER AND VINYL PROTECTANTS NON-AEROSOLS
СР		CARB MEDS		1538	CA1538	CPauto_7	DRAFT CONSUMER PRD: AUTOMOTIVE RUBBING OR POLISHING COMPOUNDS
СР		CARB MEDS		1539	CA1539	CPauto_8	DRAFT CONSUMER PRD: TIRE CLEANERS
СР		CARB MEDS		1540	CA1540	CPauto_9	DRAFT CONSUMER PRD: VINYL AND LEATHER CLEANERS
СР		CARB MEDS		1541	CA1541	CPauto10	DRAFT CONSUMER PRD: WHEEL CLEANERS
СР СР		GARD MED C			CA1541 CA1550	CPauto10 CPauto11	DRAFT CONSUMER PRD: WHEEL CLEANERS DRAFT CONSUMER PRD: BATTERY CLEANERS
СР		CARB MEDS CARB MEDS		1550	CA1550 CA1551	CPauto11 CPauto12	DRAFT CONSUMER PRD: BATTERT CLEANERS DRAFT CONSUMER PRD: AUTOMOTIVE BRAKE CLEANERS
СР		CARB MEDS		1552	CA1552	CPauto13	DRAFT CONSUMER PRD: CARBURETOR OR FUEL-INJECTION
СР		CARB MEDS		1553	CA1553	CPauto14	AIR INTAKE CLEANERS DRAFT CONSUMER PRD: ENGINE DEGREASERS - AEROSOLS
СР		CARB MEDS		1554	CA1554	CPauto15	DRAFT CONSUMER PRD: ENGINE DEGREASERS - NON-
СР		CARB MEDS		1555	CA1555	CPauto16	AEROSOLS DRAFT CONSUMER PRD: SOLVENT PARTS CLEANER -
СР		CARB MEDS		1556	CA1556	CPauto17	AEROSOLS DRAFT CONSUMER PRD: SOLVENT PARTS CLEANER - NON-
СР		CARB MEDS		1558	CA1558	CPauto18	AEROSOLS DRAFT CONSUMER PRD: AUTOMOTIVE UNDERCOATINGS - AEROSOLS
СР		CARB MEDS		1559	CA1559	CPauto19	AEROSOLS DRAFT CONSUMER PRD: AUTOMOTIVE UNDERCOATINGS - NON-AEROSOLS
СР		CARB MEDS		1570	CA1570	CPsolv 1	DRAFT CONSUMER PRD: GRAFFITI REMOVERS
СР		CARB MEDS		1570	CA1570 CA1571	CPsolv_1 CPsolv_2	DRAFT CONSUMER PRD: DRAFTTI REMOVERS DRAFT CONSUMER PRD: PAINT REMOVERS OR STRIPPERS
CD		CARD MEDO		1500	CA1590	CDarles 2	DD AET CONCUMED DDD, MUI TIDUDDOOD OOL UDVING
CP CP		CARB MEDS		1580	CA1580	CPsolv_3	DRAFT CONSUMER PRD: MULTIPURPOSE SOLVENTS
		CARB MEDS		1581	CA1581	CPsolv_4	DRAFT CONSUMER PRD: ELECTRONIC CLEANER
CP		CARB MEDS		1582	CA1582	CPsolv 5	DRAFT CONSUMER PRD: ADHESIVE REMOVER

Category	year location	DataSource	same as INDEX	# profile code	Profile	Description
CP		CARB MEDS	1600	CA1600	CPpesti1	DRAFT CONSUMER PRD: NON-SELECTIVE
a b		0.000 M (000			670 V.8	HERBICIDES/DEFOLIANTS
CP		CARB MEDS	1601	CA1601	CPpesti2	DRAFT CONSUMER PRD: SELECTIVE
מי		CARB MEDS	1(12	CA1612	CDmaati2	HERBICIDES/DEFOLIANTS DRAFT CONSUMER PRD: WASP AND HORNET INSECTICIDE
CP		CARB MEDS	1613	CA1613	CPpesti3	DRAFT CONSUMER PRD: WASP AND HORNET INSECTICIDE
CP		CARB MEDS	1614	CA1614	CPpesti4	DRAFT CONSUMER PRD: LAWN AND GARDEN INSECTICIDES
		CITED MILDS	1014	CHIOI4	er pesu4	DRALT CONSOMERTIND, EAWAY AND GARDEN INSECTIONES
CP		CARB MEDS	1615	CA1615	CPpesti5	DRAFT CONSUMER PRD: CRAWLING BUG INSECTICIDES -
						AEROSOLS
СР		CARB MEDS	1616	CA1616	CPpesti6	DRAFT CONSUMER PRD: CRAWLING BUG INSECTICIDES -
						NON-AEROSOLS
CP		CARB MEDS	1617	CA1617	CPpesti7	DRAFT CONSUMER PRD: INSECTICIDE FOGGERS
CP		CARB MEDS	1625	CA1625	CPpesti8	DRAFT CONSUMER PRD: INSECT REPELLANTS - AEROSOLS
CP		CARB MEDS	1635	CA1635	CPclean1	DRAFT CONSUMER PRD: HOUSEHOLD CARPET AND
1		CITED MEDD	1000	entross	creicuiri	UPHOLSTERY CLEANERS - AEROSO
CP		CARB MEDS	1636	CA1636	CPclean2	DRAFT CONSUMER PRD: HOUSEHOLD CARPET AND
						UPHOLSTERY CLEANERS - NON-AE
CP		CARB MEDS	1638	CA1638	CPclean3	DRAFT CONSUMER PRD: SPOT REMOVERS - AEROSOLS
CP		CARB MEDS	1640	CA1640	CPclean4	DRAFT CONSUMER PRD: FABRIC PROTECTANTS
CP		CARB MEDS	1651	CA1651	CPclean5	DRAFT CONSUMER PRD: GENERAL PURPOSE CLEANERS -
						AEROSOLS
P		CARB MEDS	1653	CA1653	CPclean6	DRAFT CONSUMER PRD: GENERAL PURPOSE DEGREASERS -
סי		CADD MEDO	1/24	CA1654	C Doloor 7	AEROSOLS
Р		CARB MEDS	1654	CA1654	CPclean7	DRAFT CONSUMER PRD: GENERAL PURPOSE DEGREASERS - NON-AEROSOLS
Р		CARB MEDS	1655	CA1655	CPclean8	DRAFT CONSUMER PRD: GLASS CLEANERS - AEROSOLS
P		CARB MEDS	1657	CA1657	CPclean9	DRAFT CONSUMER PRD: METAL POLISHES/CLEANSERS
P		CARB MEDS	1658	CA1658	CPclea10	DRAFT CONSUMER PRD: OVEN CLEANERS -
						AEROSOLS/PUMPS
CP		CARB MEDS	1661	CA1661	CPclea11	DRAFT CONSUMER PRD: BATHROOM AND TILE CLEANERS -
						AEROSOLS
P		CARB MEDS	1670	CA1670	CPclea12	DRAFT CONSUMER PRD: LAUNDRY PREWASH -
						AEROSOLS/SOLIDS
P		CARB MEDS	1672	CA1672	CPclea13	DRAFT CONSUMER PRD: LAUNDRY STARCHES, SIZINGS, ETC.
P			1 (00	CA1680	CPclea14	DRAFT CONCURTER DRD, DUCTING ADD. AFDOROLO
P P		CARB MEDS CARB MEDS	1680 1681	CA1680 CA1681	CPclea14 CPclea15	DRAFT CONSUMER PRD: DUSTING AIDS - AEROSOLS DRAFT CONSUMER PRD: DUSTING AIDS - NON-AEROSOLS
2P		CARB MEDS	1683	CA1683	CPclea16	DRAFT CONSUMER PRD: DOSTING AIDS - NON-AEROSOES DRAFT CONSUMER PRD: NON-RESILIENT FLOOR WAX/POLISE
•		ernite milleo	1000	erricos	create	
P		CARB MEDS	1684	CA1684	CPclea17	DRAFT CONSUMER PRD: WOOD FLOOR WAX/POLISH
Р		CARB MEDS	1685	CA1685	CPclea18	DRAFT CONSUMER PRD: FURNITURE MAINTENANCE
						PRODUCTS - AEROSOLS
P		CARB MEDS	1686	CA1686	CPclea19	DRAFT CONSUMER PRD: FURNITURE MAINTENANCE
un.			1(97	011(07	CD-1-20	PRODUCTS - OTHER FORMS
2P 2P		CARB MEDS CARB MEDS	1687 1700	CA1687 CA1700	CPclea20 CPlubr_1	DRAFT CONSUMER PRD: SHOE CARE PRODUCTS DRAFT CONSUMER PRD: MULTI-PURPOSE LUBRICANT
2P		CARB MEDS	1700	CA1701	CPlubr 2	DRAFT CONSUMER PRD: SILICONE BASED MULTI-PURPOSE
-		ernite milleo	1701	enniver	crituoi_2	LUBRICANT
P		CARB MEDS	1702	CA1702	CPlubr 3	DRAFT CONSUMER PRD: PENETRANT
Р		CARB MEDS	1703	CA1703	CPlubr_4	DRAFT CONSUMER PRD: SPECIALTY LUBRICANT
Р		CARB MEDS	1710	CA1710	CPaero_1	DRAFT CONSUMER PRD: SINGLE PHASE AEROSOL AIR
						FRESHENERS
P		CARB MEDS	1711	CA1711	CPaero_2	DRAFT CONSUMER PRD: DOUBLE PHASE AEROSOL AIR
_						FRESHENERS
P		CARB MEDS	1712	CA1712	CPaero_3	DRAFT CONSUMER PRD: DUAL PURPOSE AIR FRESHENER/DISINFECTANT
P		CARB MEDS	1720	CA1720	CPltrflu	DRAFT CONSUMER PRD: CHARCOAL LIGHTER MATERIALS
r		CARD MEDS	1720	CA1720	Criuliu	DRAFT CONSOMER FRD. CHARCOAL LIGHTER MATERIALS
Р		CARB MEDS	1721	CA1721	CPaero 4	DRAFT CONSUMER PRD: AEROSOL COOKING SPRAYS
ZP		CARB MEDS	1721	CA1730	CPaero 5	DRAFT CONSUMER PRD: UNDERARM ANTIPERSPIRANTS -
•		ernite milleo	1100	enniso	crucio_o	AEROSOLS
P		CARB MEDS	1732	CA1732	CPaero_6	DRAFT CONSUMER PRD: UNDERARM DEODORANTS -
					_	AEROSOLS
P		CARB MEDS	1760	CA1760	CPaero_7	DRAFT CONSUMER PRD: HAIR SPRAY
P		CARB MEDS	1765	CA1765	CPaero_8	DRAFT CONSUMER PRD: HAIR MOUSSES
P		CARB MEDS	1766	CA1766	CPaero_9	DRAFT CONSUMER PRD: HAIR SHINES
2P		CARB MEDS	1781	CA1781	CPaero10	DRAFT CONSUMER PRD: SHAVING CREAMS
		CARB MEDS	1782	CA1782	CPaero11 CPaero12	DRAFT CONSUMER PRD: SHAVING GELS DRAFT CONSUMER PRD: FOOT POWDERS
		CARB MEDS	1783	CA1783	CPaero12	
P		CARB MEDS CARB MEDS	1784 1792	CA1784 CA1792	CPaero13 CPclea21	DRAFT CONSUMER PRD: PERSONAL HYGIENE SPRAYS DRAFT CONSUMER PRD: HEAVY DUTY HAND CLEANER OR
CP CP		CARD MEDO	1/92	011172	C1 C1C421	SOAP
CP CP						
P P P		CARB MEDS	1799	CA1799	CPcomn 1	DRAFT CONSUMER PRD: COMBINED SMALL CATEGORIES
P P P		CARB MEDS	1799	CA1799	CPcomp_1	DRAFT CONSUMER PRD: COMBINED SMALL CATEGORIES EPA COMPOSITE
2P 2P 2P		CARB MEDS	1799 1800	CA1799 CA1800	CPcomp_1 Paint_1	
CP CP CP CP CP COAT COAT						EPA COMPOSITE

Category	year	location		ame as INDEX#		Profile	Description
COAT			CARB MEDS	1803	CA1803	Paint_4	DRAFT AEROSOL CTGS: METALLIC PIGMENTED COATINGS
COAT			CARB MEDS	1804	CA1804	Paint_5	DRAFT AEROSOL CTGS: NONFLAT COATINGS (UNSPECIFIED)
COAT			CARB MEDS	1805	CA1805	Paint 6	DRAFT AEROSOL CTGS: PRIMERS (UNSPECIFIED)
COAT			CARB MEDS	1806	CA1806	Paint 7	DRAFT AEROSOL CTGS: ART FIXATIVES AND SEALANTS
COAT			CARB MEDS	1803	CA1807	Paint 8	DRAFT AEROSOL CTGS: AUTO BODY PRIMERS
					CA1807	Paint 9	DRAFT AEROSOL CTGS: AUTO BUMPER AND TRIM COATINGS
COAT			CARB MEDS	1808	CA1808	Paint_9	DRAFT AEROSOL CTOS. AUTO BUMPER AND TRIM COATINGS
COAT			CARB MEDS	1809	CA1809	Paint 10	DRAFT AEROSOL CTGS: EXACT MATCH ENGINE ENAMEL
COAT			CARB MEDS	1810	CA1810	Paint 11	DRAFT AEROSOL CTGS: EXACT MATCH AUTOMOTIVE
COAI			CARD MEDS	1010	CAIGIO	1 ann_11	COATINGS
COAT			CARB MEDS	1811	CA1811	Paint_12	DRAFT AEROSOL CTGS: GROUND/TRAFFIC/MARKING COATINGS
COAT			CARB MEDS	1812	CA1812	Paint_13	DRAFT AEROSOL CTGS: HIGH TEMPERATURE COATINGS
COAT			CARB MEDS	1812	CA1812 CA1813	Paint_14	DRAFT AEROSOL CTGS: VINYL/FABRIC/LEATHER/POLYCARB
			GARD A CEDA				COATINGS
COAT			CARB MEDS	1814	CA1814	Paint_15	DRAFT AEROSOL CTGS: COATINGS (UNSPECIFIED)
COAT			CARB MEDS	1901	CA1901	Paint_16	DRAFT ARCHITECTURAL CTGS: SOLVENT BORNE (ARB 1998
CD				1020	CA 1020	DetThing	SURVEY)
СР			CARB MEDS	1930	CA1930	PntThinr	THINNING SOLVENT/MINERAL SPIRITS (CALPOLY SLO 1996)
СР			CARB MEDS	1941	CA1941	CPadhesC	DRAFT CONSUMER PRD COMPOSITE: ADHESIVES AND SEALANTS
СР			CARB MEDS	1942	CA1942	CPautomC	DRAFT CONSUMER PRD COMPOSITE: AUTOMOTIVE PRODUCTS
СР			CARB MEDS	1943	CA1943	CPsolveC	DRAFT CONSUMER PRD COMPOSITE: SOLVENTS AND COATING RELATED PRDS
СР			CARB MEDS	1944	CA1944	CPpestiC	DRAFT CONSUMER PRD COMPOSITE: PESTICIDES/FIFRA- REGULATED PRDS
СР			CARB MEDS	1945	CA1945	CPhholdC	DRAFT CONSUMER PRD COMPOSITE: HOUSEHOLD PRODUCTS
СР			CARB MEDS	1946	CA1946	CPpersoC	DRAFT CONSUMER PRD COMPOSITE: PERSONAL CARE PRODUCTS
СР			CARB MEDS	1947	CA1947	CPcleanC	DRAFT CONSUMER PRD COMPOSITE: SOAPS AND DETERGENT PRODUCTS
COAT			CARD MEDE	1949	CA 1040	Smm (DmtC	
			CARB MEDS		CA1949	SpryPntC	DRAFT AEROSOL COATINGS - OVERALL COMPOSITE
AM			CARB MEDS	2000	CA2000	LANM5-8	LA North Main 0500-0800 Ambient NMHC
AM			CARB MEDS	2001	CA2001	Azus5-8	Azusa 0500-0800 Ambient NMHC
AM			CARB MEDS	2002	CA2002	Burb5-8	Burbank 0500-0800 Ambient NMHC
AM			CARB MEDS	2003	CA2003	Fres5-8	Fresno 0500-0800 Ambient NMHC
AM			CARB MEDS	2004	CA2004	Hawt5-8	Hawthorne 0500-0800 Ambient NMHC
AM			CARB MEDS	2005	CA2005	Pico5-8	Pico Rivera 0500-0800 Ambient NMHC
AM			CARB MEDS	2006	CA2006	Sacr5-8	Sacramento 0500-0800 Ambient NMHC
AM	98	TX	CentralTexasHC	2007	AUST01	Bkgd_am_	Morning upwind background (composite of 00-06 samples from San Marcos), biogenics species removed
AM	98	TX	CentralTexasHC	2008	AUST02	Bkgd_pm_	Afernoon upwind background (composite of samples from McKinney Falls SP), biogenics species removed
AM	98	TX	CentralTexasHC	2009	AUST03	Bkgd_am	Morning upwind background (composite of 00-06 samples from San Marcos)
AM	98	TX	CentralTexasHC	2010	AUST04	Bio/Bkgd	Afernoon upwind background (composite of samples from McKinney
DE	92	MD	CentralTexasHC	2229 2011	AUST05	TuMchHD	Falls SP) Diesel Profile from Fort McHenry Tunnel in Baltimore, 1992
GE	92 98	TX	CentralTexasHC	2229 2011 2012	AUST05 AUST06	CTMV01bd	Composite of CTMVFLbd (conjested freeway) and CTMVSR02bd
СОМ	98	TX	CentralTexasHC	2013	AUST07	CTMV01	(surface road, am), bkgd and diesel removed Composite of CTMVFLbd (conjested freeway) and CTMVSR02bd
GE	98	TX	CentralTexasHC	2014	AUST08	CTMV02bd	(surface road, am) Composite of CTMVFHbd (free-flow freeway) and CTMVSRpmbd
СОМ	98	TX	CentralTexasHC	2015	AUST09	CTMV02	(surface road, pm), bkgd and diesel removed Composite of CTMVFHbd (free-flow freeway) and CTMVSRpmbd
GE	98	TX	CentralTexasHC	2016	AUST10	CTMVFLbd	(surface road, pm) Composite of CTMVFL01and CTMVFL02, congested freeway, bkgd
							and diesel removed
COM	98	TX	CentralTexasHC	2017	AUST11	CTMVFL	Composite of CTMVFL01and CTMVFL02, congested freeway
GE	98	TX	CentralTexasHC	2018	AUST12	CTMVFHbd	Composite of CTMVFH01, CTMVFH02 and CTMVFH03, free-flow freeway, bkgd and diesel removed
COM	98	TX	CentralTexasHC	2019	AUST13	CTMVFH	Composite of CTMVFH01, CTMVFH02 and CTMVFH03, free-flow freeway
GE	98	TX	CentralTexasHC	2020	AUST14	CTMVSR02	Surface Road_S2 Downtown Austin on 20-Aug-98: 0700 to 0800, bkgd and diesel removed
AM	98	TX	CentralTexasHC	2021	AUST15	CTMVSR02	Surface Road S2 Downtown Austin on 20-Aug-98: 0700 to 0800
GE	98	TX	CentralTexasHC	2021	AUST16	CTMVSR02	Composite of CTMVSR01, CTMVSR03, and CTMVSR04, surface roads, bkgd and diesel removed
СОМ	98	TX	CentralTexasHC	2023	AUST17	CTMVSRpm	Composite of CTMVSR01, CTMVSR03, and CTMVSR04, surface roads
BIO	98	TX	CentralTexasHC	2024	AUST18	CTOD	roads Organic Decay_S1 Carrow's Restaurant I-35 & Koenig on 18-Aug-98: 0815 to 0915
NG	98	ТХ	CentralTexasHC	2025	AUST19	CTCNG	0815 to 0915 Natural Gas Composite of CTCNG01 and CTCNG02
NG	98 98	TX	CentralTexasHC	2025	AUST20	CTLPG01	Liquefied petroleum gas

Category	year	location	DataSource same as	INDEX#	profile code	Profile	Description
GL	98	TX	CentralTexasHC	2027	AUST21	CTGASLCC	Gasoline, Liquid Composite, 68R12M20P
GL	98	TX	CentralTexasHC	2028	AUST22	CTGASLRC	Gasoline, Liquid Composite, Regular
GL	98	TX	CentralTexasHC	2029	AUST23	CTGASLMC	Gasoline, Liquid Composite, Mid-Grade
GL	98	TX	CentralTexasHC	2030	AUST24	CTGASLPC	Gasoline, Liquid Composite, Premium
GV	98	TX	CentralTexasHC	2031	AUST25	CTGASVCC	Gasoline, Vapor Composite, 68R12M20P
GV	98	TX	CentralTexasHC	2032	AUST26	CTGASVRC	Gasoline, Vapor Composite, Regular
GV	98	TX	CentralTexasHC	2033	AUST27	CTGASVMC	Gasoline, Vapor Composite, Mid-Grade
GV	98	TX	CentralTexasHC	2034	AUST28	CTGASVPC	Gasoline, Vapor Composite, Premium
SS	70	174	CentralTexasHC	2034	AUST40	A_PINENE	A PINENE
						-	
SS			CentralTexasHC	2036	AUST41	B_PINENE	B_PINENE
SS			CentralTexasHC	2037	AUST42	ISOPENTA 1 DENTEN	ISOPENTANE
SS			CentralTexasHC	2038	AUST43	1-PENTEN	1-PENTENE
IP			NFRAQS	2039	MAH1	COOKING1	MeatCooking:_hamburger_auto-charbroil_1
IP			NFRAQS	2040	MAH2	COOKING2	MeatCooking:_hamburger_auto-charbroil_2
IP			NFRAQS	2041	MAN1	COOKING3	MeatCooking:_chicken_patties_auto-charbroil
IP			NFRAQS	2042	MCCc	COOKING4	MeatCooking:_chicken_charbroil
IP			NFRAQS	2043	MCH1	COOKING5	MeatCooking: hamburger_charbroil
IP			NFRAQS	2044	MCK1	COOKING6	MeatCooking: steak_charbroil
IP			NFRAQS	2045	MGHc	COOKING7	MeatCooking: hamburger_griddle
IP			NFRAQS	2046	MGS1	COOKING8	MeatCooking:_sausage_griddle
RC			NFRAQS	2047	WFHc	FIREPLA1	Fireplace: hardwood
RC			NFRAQS	2048	WFSc	FIREPLA2	Fireplace:_softwood
RC			NFRAQS	2048	WFSyn	FIREPLA3	Fireplace:_softwood
RC			NFRAQS	2049	WSHc	WOODSTV1	Wood stove: hardwood
	0.9						
COAT	98		CentralTexasHC	2051	INK01_	ToyoInkM	ToyoInkMgfCoVariousInk
COAT	98		CentralTexasHC	2052	INK02_	PriscoA7	PriscoA766PowerkleneUK
COAT	98		CentralTexasHC	2053	INK03_	PriscoA2	PriscoA216Superklene2P
COAT	98		CentralTexasHC	2054	INK03r	PriscoA2	PriscoA216Superklene2P(reanalysis)
COAT	98		CentralTexasHC	2055	PNT01_	GlasUrit	GlasUrit_55PolyesterBasecoat
COAT	98		CentralTexasHC	2056	PNT02_	GlasUrit	GlasUrit_923-94HSClear
COAT	98		CentralTexasHC	2057	PNT03_	RM/Limco	RM/Limco_SupremeEnamelBasecoat
COAT	98		CentralTexasHC	2058	PNT04_	RM/Limco	RM/Limco_LC1300UrethaneClear
COAT	98		CentralTexasHC	2059	PNT05_	RM/Diamo	RM/Diamont_M6922PolyesterBasecoat
COAT	98		CentralTexasHC	2060	PNT06	RM/Diamo	RM/Diamont DC88DiamondClear
COAT	98		CentralTexasHC	2061	PNT07	SherwinW	SherwinWilliamsB20W201ProMar200Exterior
COAT	98		CentralTexasHC	2062	PNT08	SherwinW	SherwinWilliamsA82W596A-100ExteriorLatex
COAT	98		CentralTexasHC	2063	PNT09_	SherwinW	SherwinWilliamsA87W41SuperpaintInteriorLatex
COAT	98		CentralTexasHC	2003	PNT10	Behr75In	Behr75InteriorEnamelUndercoat
	98		CentralTexasHC	2064	_		
COAT					PNT11_	Behr436E	Behr436ExteriorWaterbasedPrimerSealer
COAT	98		CentralTexasHC	2066	PNT12_	Behr3050	Behr3050InteriorSemiglossEnamel
COAT	98		CentralTexasHC	2067	PNT12r	Behr3050	Behr3050InteriorSemiglossEnamel(reanalysis)
COAT	98		CentralTexasHC	2068	PNT13_	Behr4560	Behr4560ExteriorFlat
BIO			SCAQS CMB	2069	PAM001	Biogenic	Biogenic - isoprene
COAT			CalPoly SLO-ARB	2070	PAM002	coat_cwf	clear wood finishes
COAT			CalPoly SLO-ARB	2071	PAM003	coat_ga	graphic arts coatings
COAT			CalPoly SLO-ARB	2072	PAM004	coat_imc	solvent based industrial maintenance coatings
						_	
COAT			CalPoly SLO-ARB	2073	PAM005	coat_m&hg	solvent based medium gloss/high gloss
							···· ··· ··· ··· ··· ··· ··· ··· ··· ·
COAT			CalPoly SLO-ARB	2074	PAM006	coat_p&e	quick dry primers and enamels
0011			Currory SLO-AND	2074	1 / 101000	com_pace	quier ary primers and enamers
CONT				2055	D. 1. 1007		
COAT			CalPoly SLO-ARB	2075	PAM007	coat_p&s	solvent based primers and sealers
COAT			CalPoly SLO-ARB	2076	PAM008	coat_sts	semi-transparent stains
COAT			CalPoly SLO-ARB	2077	PAM009	coat_tp	traffic paint
COAT			CalPoly SLO-ARB	2078	PAM010	coat_ts	thinning solvent
00.11			can oly beo mide	20/0	11111010	cour_o	
COAT			CalPoly SLO-ARB	2079	PAM011	agent v	varnishes
COAT			CalPoly SLO-ARB	2079	PAMUII	coat_v	varinsnes
					D / 3 / 0 / 4		
COAT			CalPoly SLO-ARB	2080	PAM012	COATcomp	composite of coatings 2-11, weighted by total U.S. sales
COAT			SCAQS CMB	2081	PAM013	ACoat196	CARB Modeling Data System
COAT			SCAQS CMB	2082	PAM014	ICoat783	CARB Modeling Data System
NG	96	MX	Paso del Norte	2083	PAM016	CNG_J	Natural gas, Juarez
NG	96	TX	Paso del Norte	2084	PAM019	Prop_E	LPG from Super Energy Propane & Westex Conversion
NG	96	TX	Paso del Norte	2085	PAM020	Prop_J	LPG from Servigas & Commercial de Juarez
NG	72	SCAB	SCAQS CMB	2086	PAM015	CNG	Commercial Natural Gas from Los Angeles, Mayrsohn et al 1976
NG	72	SCAB	SCAQS CMB	2080	PAM015 PAM017	GNG	Geogenic Natural Gas from Los Angeles, Mayrsohn et al 1976
NG	72	SCAB	SCAQS CMB	2088	PAM018	LPG	Liquefied Petroleum Gas from Los Angeles, Mayrsohn et al 1976
GL	95	MA	CRC CMB	2089	PAM022	Bogl01	Composite gasoline liquid from Boston, Summer 1995 Fed Phase 1 RFG
	95	SCAB	CRC CMB	2090	PAM023	LA_liqGs	Composite gasoline liquid from Los Angeles, Summer 1995 Fed Phase 1
GL							RFG
GL							10.0
GL GL		GA	IMP CMB paper	2091	PAM021	Atla_liq	Composite gasoline liquid from Atlanta SOS, Conventional
		GA MX	IMP CMB paper IMP CMB paper	2091 2092	PAM021 PAM024	Atla_liq Maga_liq	

Category	year	location	DataSource	same as	INDEX#	profile code	Profile	Description
JL		MX	IMP CMB paper		2093	PAM028	Nova_liq	Nova (leaded)
JL	96	MX	Paso del Norte		2094	PAM025	ME50R50P	50% Reg + 50% Pre Juarez
GL	96	MX	Paso del Norte		2095	PAM026	ME67R33P	67% Reg + 33% Pre Juarez
GL .	96	MX	Paso del Norte			PAM027	ME75R25P	-
					2096			75% Reg + 25% Pre Juarez
JL	96	TX	Paso del Norte		2097	PAM029	US681220	68%R+12%M+20%P El Paso
GL	96	WA	Washington		2098	PAM030	WA_Liq	Composite liquid gasoline from Seattle (5 brands, 3 grades), Conventional
V	93	TX	COAST		2099	PAM034	HSkAD D1	Astrodome, hot soak, downwind sample.
γV	93	TX	COAST			PAM035	HSkAD D2	Astrodome, hot soak, downwind sample.
					2100		_	
γV	93	TX	COAST		2101	PAM036	HSkAD_DC	Composite of HSkAD_D1 and HSkAD_D2.
γV	93	TX	COAST		2102	PAM037	HSkAD N1	Astrodome, hot soak, downwind-upwind.
ïV	93	TX	COAST		2103	PAM039	HSvapGC	Composite of 14 gasoline head space vapor samples, HSvapG1 to HSvapG14
ĩν	95	MA	CRC CMB		2104	PAM032	BoGV01	Composite gasoline vapor from Boston, Summer 1995, Fed Phase 1 RFG
ïV	95	SCAB	CRC CMB		2105	PAM040	LA_HSvap	Composite gasoline vapor from Los Angeles, Summer 1995
)5							
iV		GA	IMP CMB paper		2106	PAM031	Atla_HS	Composite gasoline vapor from Atlanta SOS, Conventional
iV		MX	IMP CMB paper		2107	PAM033	Diurnal	Diurnal Evaporative, Mexico City
V		MX	IMP CMB paper		2108	PAM038	HSoak	Hot Soak, Mexico City
V		MX	IMP CMB paper		2109	PAM041	Maga_HS	Maga Sin, Mexico City
v		MX	IMP CMB paper		2110	PAM042	Nova HS	Nova, Mexico City
	06						_	
iV	96	WA	Washington		2111	PAM043	WA_Vap	Composite from Seattle (5 brands, 3 grades)
2	93	TX	COAST		2112	PAM044	BULK_plt	Composite of 5 emission profiles from miscellaneous industrial plants
2	93	TX	COAST		2113	PAM045	BULK_ter	Composite of 10 emission profiles from miscellaneous terminals.
							_	
2	93	TX	COAST		2114	PAM049	CHmf_eth	Composite of 6 emission profiles from ethylene production facilities.
2	93	TX	COAST		2115	PAM050	CHmf_fug	Composite of 3 fugitive emission profiles from chemical mfg. facilitie
Р	93	TX	COAST		2116	PAM052	HG0017W	Industrial point source, Amerada Hess, principle business: special warehousing a
9	93	TX	COAST		2117	PAM053	HG0048L	Industrial point source, Lyondell Citgo Refining, principle business: petroleum
Р	93	TX	COAST		2118	PAM054	HG0076G	Industrial point source, Fabricated Metal Products.
2	93	TX	COAST		2119	PAM055	HG0130C	Industrial point source, Phibro Energy, principle business: petroleum refining.
	93	TX	COAST		2120	PAM056	HG0176B	Industrial point source, Crown Central Petroleum, pri. business: bulk fuel stor
p	93	TX	COAST		2121	PAM057	HG0188R	Industrial point source, Miles Incorporated, principle business: synth rubb
Р	93	TX	COAST		2122	PAM058	HG0225N	Industrial point source, Albermarle, principle business: industrial organic che
Р	93	TX	COAST		2123	PAM059	HG0261J	Industrial point source, GATX Terminals, principle business: bulk storage termin
P	93	TX	COAST		2124	PAM060	HG0262H	Industrial point source, GATX Terminals, principle business: bulk storage termin
P	93	TX	COAST		2125	PAM061	HG0312R	Industrial point source, Chevron, principle business: bulk fuel storag termin
P P	93 93	ТХ ТХ	COAST		2126	PAM062 PAM063	HG0562P HG0565J	Industrial point source, Texas Petrochem, pri. business: organic chem synthe Industrial point source, Phillips Pipeline, principle business: bulk fu
P	93	TX	COAST		2127			stor
r P			COAST		2128	PAM064	HG0566H HG0669T	Industrial point source, Phillips Chemical Company, pri. bus: K-Resin polymer pr Industrial paint source. South Coast Terminale, pri. husisesse
P	93 93	ТХ ТХ	COAST		2129	PAM065 PAM066	HG06691 HG0786O	Industrial point source, South Coast Terminals, pri. business: petrochemical ta
_					2130			Industrial point source, Warren Petroleum, principle business: bulk storage ter
2	93	TX	COAST		2131	PAM067	IndAM_D1	Industrial cluster, Amoco, downwind sample.
	93	TX	COAST		2132	PAM068	IndAM_D2	Industrial cluster, Amoco, downwind sample.
)	93	TX	COAST		2133	PAM069	IndAM_D3	Industrial cluster, Amoco, downwind sample.
2	93	TX	COAST		2134	PAM070	IndAM DC	Composite of IndAM_D1, IndAM_D2, and IndAM_D3.
							_	
2	93	TX	COAST		2135	PAM071	IndSC_D1	Industrial cluster, Ship Channel, downwind sample.
2	93	TX	COAST		2136	PAM072	IndSL_D1	Industrial cluster, Shell, downwind sample.
2	93	TX	COAST		2137	PAM073	IndSL D2	Industrial cluster, Shell, downwind sample.
	93						IndSL_DC	
		TX	COAST		2138	PAM074		Composite of IndSL_D1, IndSL_D2.
2	93	TX	COAST		2139	PAM075	IndTX_D1	Industrial cluster, Texaco, downwind sample.
•	93	TX	COAST		2140	PAM076	IndTX_D2	Industrial cluster, Texaco, downwind sample.
•	93	TX	COAST		2141	PAM077	IndTX_DC	Composite of IndTX_D1, IndTX_D2.
•	93	TX	COAST		2142	PAM078	IndTX_N1	Industrial cluster, Texaco, downwind-upwind sample.
•	93	TX	COAST		2143	PAM079	IndUC_D1	Industrial cluster, Union Carbide, downwind sample.
)	93	TX	COAST		2144	PAM080	IndUC_D2	Industrial cluster, Union Carbide, downwind sample.
•	93	TX	COAST		2145	PAM081	IndUC_DC	Composite of IndUC_D1, IndUC_D2.
	93	TX	COAST		2146	PAM082	PEin_fug	Composite of 21 fugitive emission profiles from petroleum industry facilities.
P	93	TX TX	COAST		2147	PAM083	PEma_fug PEst cru	Composite of 5 fugitive emission profiles from petroleum marketing. Composite of 7 emission profiles from crude oil storage tanks.
Р	02	1.0	COAST		2148	PAM084	_	
P P P	93					D 1 1 100 5	DEat dia	Composite of 0 amigsion profiles from dist oil stores tonks
р Р	93	TX	COAST		2149	PAM085	PEst_dis	Composite of 9 emission profiles from dist. oil storage tanks.
2 2 2			COAST COAST		2149 2150	PAM085 PAM086	PEst_fug	Composite of 15 fugitive emission profiles from petroleum storage facilities
Р	93	TX					-	Composite of 15 fugitive emission profiles from petroleum storage

Category	year	location	DataSource	same as	INDEX#	profile code	Profile	Description
)	96	TX	Paso del Norte		2153	PAM047	ChevS	Chevron South
þ	96	TX	Paso del Norte		2154	PAM048	ChevT	Chevron TankFarm (Evap)
•	96	TX	Paso del Norte		2155	PAM051	Delmex	Delmex
	96	TX	Paso del Norte		2156	PAM088	Zenco	Zenco
Е	88	US	Auto/Oil		2157	PAM089	ACComp	Current Fleet FTP Composite, Conventional Fuel
E	88	US	Auto/Oil		2158	PAM090	ACCS	Current Fleet Cold Start
V	88	US	Auto/Oil		2159	PAM091	ACDiurn	Current Fleet Diurnal Evaporative
E	88	US	Auto/Oil		2160	PAM092	ACHS	Current Hot Start
V	88	US	Auto/Oil		2161	PAM093	ACHsoak	Current Fleet Hot Soak Evaporative
V	88	US	Auto/Oil		2162	PAM094	ACRunLs	Current Fleet Running Loss
E	88	US	Auto/Oil		2163	PAM095	ACST	Current Fleet Hot Stabilized
E	88	US	Auto/Oil		2164	PAM096	AOComp	Older Fleet FTP Composite
E	88	US	Auto/Oil		2165	PAM097	AOCS	Older Fleet Cold Start
v	88	US	Auto/Oil		2166	PAM098	AODiurn	Older Fleet Diurnal Evaporative
v	88	US	Auto/Oil		2167	PAM099	AOHS	Older Fleet Hot Start
v	88	US	Auto/Oil		2168	PAM100	AOHsoak	Older Fleet Hot Soak Evaporative
3	88	US	Auto/Oil		2169	PAM101	AORunLs	Older Fleet Running Loss
3	88	US	Auto/Oil		2170	PAM102	AOST	Older Fleet Hot Stabilized
3	93	TX	COAST		2171	PAM105	CStAD_D1	Astrodome, cold start, downwind sample.
1	93	TX	COAST		2172	PAM106	CStAD_D2	Astrodome, cold start, downwind sample.
3	93	TX	COAST		2173	PAM107	CStAD_DC	Composite of CStAD_D1 and CStAD_D2.
1	93	TX	COAST		2174	PAM108	CStAD_N1	Astrodome, cold start, downwind-upwind.
3	93	TX	COAST		2175	PAM148	WRuBT_D1	Baytown Tunnel, warm running, downwind sample.
3	93	TX	COAST		2176	PAM149	WRuWH D1	Westheimer, warm running, downwind sample.
3	93	TX	COAST		2177	PAM150	WRuWH D2	Westheimer, warm running, downwind sample.
3	93	TX	COAST		2178	PAM151	WRuWH_D3	Westheimer, warm running, downwind sample.
	93	TX			2178		_	
E E			COAST			PAM152	WRuWH_D4	Westheimer, warm running, downwind sample.
	93	TX	COAST		2180	PAM153	WRuWH_DC	Composite of WRuWH_D1, WRuWH_D2, WRuWH_D3, and WRuWH_D4.
1	93	TX	COAST		2181	PAM154	WRuWH_N1	Westheimer, warm running, downwind-upwind.
3	93	TX	COAST		2182	PAM155	WRuWH_N2	Westheimer, warm running, downwind-upwind.
	93	TX	COAST		2183	PAM156	WRuWH_NC	Composite of WRuWH_N1, WRuWH_N2.
3	95	MA	CRC CMB		2184	PAM103	BoCS_Tip	Tip O'Neill Garage Cold Start
3	95	MA	CRC CMB		2185	PAM125	Tu_Cal0	Callahan Tunnel diesel exhaust subtracted
3	95	MA	CRC CMB		2186	PAM126	Tu Cal1	Callahan Tunnel diesel and minimum running loss subtracted
	95	MA	CRC CMB		2180	PAM127	Tu Cal2	Callahan Tunnel diesel and maximum running loss subtracted
3							-	•
3	95	NY	CRC CMB		2188	PAM129	Tu_Lin0	Lincoln Tunnel diesel exhaust subtracted
3	95	NY	CRC CMB		2189	PAM130	Tu_Lin1	Lincoln Tunnel diesel and minimum running loss subtracted
3	95	NY	CRC CMB		2190	PAM131	Tu_Lin2	Lincoln Tunnel diesel and maximum running loss subtracted
3	95	SCAB	CRC CMB	2225	2191	PAM135	Tu_Sep0	Sepulveda Tunnel diesel exhaust subtracted
3	95	SCAB	CRC CMB		2192	PAM136	Tu_Sep1	Sepulveda Tunnel diesel and minimum running loss subtracted
3	95	SCAB	CRC CMB		2193	PAM137	Tu_Sep2	Sepulveda Tunnel diesel and maximum running loss subtracted
3	95	SCAB	CRC CMB		2194	PAM141	Tu_Van0	Van Nuys Tunnel diesel exhaust subtracted
3	95	SCAB	CRC CMB		2195	PAM142	Tu_Van1	Van Nuys Tunnel diesel and minimum running loss subtracted
3	95	SCAB	CRC CMB		2196	PAM143	Tu Van2	Van Nuys Tunnel diesel and maximum running loss subtracted
3	95	MA	CRC Tunnel		2197	PAM124	Tu_Cal	Callahan Tunnel
		NY						
3	95		CRC Tunnel	2220	2198	PAM128	Tu_Lin	Lincoln Tunnel
3	92	MD	FMH tunnel	2229	2199	PAM132	Tu_MchHD	Fort McHenry Tunnel Diesel
3	92	MD	CRC Tunnel		2200	PAM133	Tu_MchLD	Fort McHenry Tunnel Light Duty Gasoline
3	95	SCAB	CRC Tunnel		2201	PAM134	Tu_Sep	Sepulveda Tunnel
8	92	PA	CRC Tunnel		2202	PAM138	Tu_TusHD	Tuscarora Tunnel Diesel
3	92	PA	CRC Tunnel		2203	PAM139	Tu_TusLD	Tuscarora Tunnel Light Duty Gasoline
Ξ	95	SCAB	CRC Tunnel		2204	PAM140	Tu_Van	Van Nuys Tunnel
3		MX	IMP CMB paper		2205	PAM104	ColdSt	Cold Start from garage measurements in Mexico City
3		MX	IMP CMB paper		2203	PAM111	Exh Tun	Tunnel in Mexico City
	04						-	5
3	96	MX	Paso del Norte		2207	PAM109	Exh_J	Juarez rush hour traffic
3	96	MX	Paso del Norte		2208	PAM110	Exh_PBa	Juarez propane bus - adjusted for Juarez traffic
3			SCAQMD Orange		2209	PAM113	OCHiComp	100% high emitters
1			Co SCAQMD Orange		2210	PAM114	OCL10H90	90% high and 10% low emitters
3			Co SCAQMD Orange		2211	PAM115	OCL20H80	80% high and 20% low emitters
E			Co SCAQMD Orange		2212	PAM116	OCL30H70	70% high and 30% low emitters
8			Co SCAQMD Orange		2213	PAM117	OCL40H60	60% high and 40% low emitters
			Co SCAQMD Orange		2213	PAM118	OCL50H50	50% high and 50% low emitters
			Со					
E			SCAQMD Orange Co		2215	PAM119	OCL60H40	40% high and 60% low emitters
E			SCAQMD Orange Co		2216	PAM120	OCL70H30	30% high and 70% low emitters
E			SCAQMD Orange Co		2217	PAM121	OCL80H20	20% high and 80% low emitters
E			SCAQMD Orange Co		2218	PAM122	OCL90H10	90% high and 10% low emitters
3			SCAQMD Orange		2219	PAM123	OCLoComp	100% low emitters

Category	year	location	DataSource	same as	INDEX#	profile code	Profile	Description
GΕ	82	US	SCAQS CMB		2220	PAM112	Exh801a	EPA 46-car Study
/E	96	WA	Washington		2221	PAM144	WA_Tu	Mt. Baker Tunnel emissions, downwind exhaust.
ĴΕ	96	WA	Washington		2222	PAM145	WA_Tu0	Mt. Baker Tunnel emissions with diesel contributions removed.
ĴΕ	96	WA	Washington		2223	PAM146	WA_Tu1	Mt. Baker Tunnel emissions with diesel and 5~10% of running loss contributions r
βE	96	WA	Washington		2224	PAM147	WA_Tu2	Mt. Baker Tunnel emissions with diesel and 15~30% of running los contributions
GΕ	95	SCAB	CRC CMB		2225	TUN001	TuS95	Sepulveda Tunnel, diesel subtracted, 1995
θE	96	SCAB	CRC CMB		2226	TUN002	TuS96	Sepulveda Tunnel, diesel subtracted, 1996
θE	96	SCAB	CRC CMB	2226	2227	TUN003	TuS96lo	Sepulveda Tunnel, diesel subtracted, lo-speed traffic 1996
ĴΕ	96	SCAB	CRC CMB	2226	2228	TUN004	TuS96hi	Sepulveda Tunnel, diesel subtracted, hi-speed traffic 1996
DE	92	MD	CRC Tunnel		2229	TUN005	TuMchHDc	Diesel Profile (incl carbonyls), Ft McHenry Tunnel, Baltimore, 199
COAT		SCAB	SCOS97		2230	InkPic	PicoInk1	Ink from print shop near Pico Rivera Site
М		SCAB	SCOS97		2232	PtConc	BkgPtCon	Point Conception Ambient 8/11-10/4/97
М		SCAB	SCOS97		2233	SanNic	BkgSnNic	San Nicolas Island Ambient 7/14-10/4/97
М		SCAB	SCOS97		2234	Catlna	BkgCatal	Catalina Isl Ambient 8/4-10/3/97
M		SCAB	SCOS97		2235	BkgAM1	PtConcAM	Point Conception Ambient 0600 8/11-10/4/97
M		SCAB	SCOS97		2236	BkgPM1	PtConcPM	Point Conception Ambient 1800 8/11-10/4/97
M		SCAB	SCOS97		2237	BkgAM2	SNicIsAM	San Nicolas Island Ambient 0600 7/14-10/4/97
AM		SCAB	SCOS97		2238	BkgPM2	SNicIsPM	San Nicolas Island Ambient 1800 7/14-10/4/97
M		SCAB	SCOS97		2239	BkgAM3	CatlnaAM	Catalina Isl Ambient 0600 8/4-10/3/97
M		SCAB	SCOS97		2240	BkgPM3	CatlnaPM	Catalina Isl Ambient 1800 8/4-10/3/97
M		SCAB	SCOS97		2241	BkgAMc	BkgAMcom	Composite bkgrd ambient for SoCal 0600 summer 97 - Isoprene
						5	5	removed
AM		SCAB	SCOS97		2242	BkgPMc	BkgPMcom	Composite bkgrd ambient for SoCal 1800 summer 97 - Isoprene
						5	5	removed
s			DRI		2243	UNID	UNID	Unidentified Species
DE	1	CA	EC diesel		2244	ECDsl1	SchoolBs	SchoolBusCSHVR,CARBfuel,bkgd subtr.
DE	1	CA	EC diesel		2245	ECDsl2	HDDtruck	GroceryTruckCSHVR,CARBfuel,bkgd subtr.
DE	1	CA	EC diesel		2246	ECDsl3	TrnstBus	TransitBusCSHVR,CARBfuel,bkgd subtr.
DE	1	CA	EC diesel		2247	ECDcom	DieslCom	Composite of 3 diesel vehicles
DE	0	SCAB	WE/WD ozone		2248	WEOz01	WEOzHDD1	TruckStop@jxn I10 and I15 bkgd subtr. scaled to MTBE
θE	0	SCAB	WE/WD ozone		2249	WEOz02	WEOzLDV1	avg of Pasadena Fwy samples - bkgd subtr.
GL	0	SCAB	WE/WD ozone		2250	WEOz03	ArcoReg	Gas 1 ArcoReg
GL	0	SCAB	WE/WD ozone		2251	WEOz04	ArcoPrem	Gas 2 ArcoPrem
GL	0	SCAB	WE/WD ozone		2252	WEOz05	U76Prem	Gas 3 U76Prem
3L	0	SCAB	WE/WD ozone		2253	WEOz06	4 U76Reg	Gas 4 U76Reg
3L	0	SCAB	WE/WD ozone		2254	WEOz07	MobilPre	Gas 5 MobilPre
GL	0	SCAB	WE/WD ozone		2255	WEOz08	MobilReg	Gas 6 MobilReg
GL	0	SCAB	WE/WD ozone		2256	WEOz09	ShellPre	Gas 7 ShellPre
JL.	0	SCAB	WE/WD ozone		2257	WEOz10	ShellReg	Gas 8 ShellReg
JL	0	SCAB	WE/WD ozone		2258	WEOz11	ChevPrem	Gas 9 ChevPrem
JL	0	SCAB	WE/WD ozone		2259	WEOz12	ChevReg	Gas 10 ChevReg
ìL	0	SCAB	WE/WD ozone		2260	WEOz13	LiqGasAv	LigGasComposite
	0	SCAB	WE/WD ozone		2261	WEOz14	diesel#1	Diesel Fuel sample 1
		SCAB	WE/WD ozone		2261	WEOz15	diesel#2	Diesel Fuel sample 2
DE	0				2202			1
DE DE	0		WE/WD ozone		2263	WEOz16	diesel C	Diesel Fuel composite
DE	0 0 0	SCAB SCAB	WE/WD ozone WE/WD ozone		2263 2264	WEOz16 WE003	diesel_C Gas00LRPC	Diesel Fuel composite Composite liquid 68% Reg/32% Prem, WE Study 2000