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Abstract

In the framework of Quantum-Chromo-Dynamics (QCD), color-charged quarks and

anti-quarks are elementary particles and always confined in a color-less hadron via strong

forces intermediated by another color-charged gluons in the QCD vacuum. In an extremely

hot and/or dense QCD matter, however, quarks and gluons are expected to be deconfined

from hadrons and move freely to one another within the QCD theory. In the cosmology,

the new state of such partonic matter, called “Quark-Gluon Plasma” (QGP), is considered

to exist in the early Universe in a few µs after the Big-Bang. One can also expect to re-

form such a matter in relativistic heavy-ion collisions in a laboratory.

There are many discussions how to distinguish the QGP formation during a process

of heavy-ion collisions and some interesting ideas came out such as J/ψ suppression, jet

quenching, direct photons enhancement, strangeness enhancement and so on. If a first-

order phase transition from the QGP to a hadronic state is assumed, the physical volume is

prevented from its fast expansion and cooling due to the softening of the equation of state.

Hence, the theory of thermodynamics tells us that one of the crucial signatures could be

an enlargement of the physical volume and a prolongation of the duration of particle

emission (∆τ ∼ 10 fm). The method of Bose-Einstein correlation is a powerful tool to

study the space-time evolution of the physical volume in the heavy-ion collisions because

the width of the correlation peak is inversely proportional to the size of the emitting

source, often refered to as “HBT radius”, and a multi-dimensional analysis provides us

about temporal information of particle emissions from the source.

This thesis presents for the first time the measurement of Bose-Einstein correlations of

like-signed pions at the mid-rapidity in Au+Au collisions at
√
sNN = 200 GeV, measured

by the PHENIX experiment at the Relativistic Heavy-Ion Collider (RHIC) in Brookhaven

National Laboratory, U.S.A. I measured the multi-dimensional HBT radii and the dura-

tion of pion emission as a function of two independent external parameters; the mean

transverse momentum of pair (kT) and the collision centrality in detail.

In the central Au+Au collision, the HBT radii are found to depend strongly on kT,

indicating a picture of source which correctively expands in the transverse direction. From

a comparison with those results at lower energies at AGS or SPS, the transverse HBT

radii are realized to be less sensitive to the collision energy, while the longitudinal HBT

radius is found to slightly increase as the collision energy increasing from
√
sNN ∼4 to 200
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GeV. Taking a hydrodynamics model, the kT dependence of HBT radii shows about 7 fm

of the RMS-width of the transverse source size and about 9 fm/c of the life time at hadron

freeze-out stage. These results are only a few fm larger than those at AGS energies, even

though the center of mass energy increases by nearly one order of magnitude.

Two methodologies are applied in this analysis – the Coulomb correction that has

been conventionally used mostly in earlier Bose-Einstein correlation analyses so far, and

an improved Coulomb correction that is based on a picture of the core-halo structure.

With the conventional Coulomb correction, the duration of pion emission becomes ap-

parently negative which is not acceptable in a physics sense, and cannot be reproduced

by any models. Developing the new methodology, I found the duration to be zero within

the statistical and systematic errors for all the kT and centrality measured, and then the

duration time first gets a physical meaning at this RHIC energy. This is a great success

to understand the space-time evolution of the hot and dense matter created in heavy-ion

collisions at the RHIC energy and has solved the “HBT-puzzle”. However, this exper-

imental result would contradict to a simple picture of “slowly-burning” QGP, in which

quarks are slowly hadronized with a long-lived mixed phase due to the first-order phase

transition. There are still room to study properties of QGP, especially in terms of the

order of the phase transition between the QGP and hadronic phases.
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Chapter 1

Introduction

1.1 Relativistic Heavy-Ion Experiments

1.1.1 Quark-gluon plasma

“How nuclear matter was created after the Big-Bang, and how it can be created at present

world?” The nature of quark matter at extreme high energy density, which is believed to

exist in the early universe in a few µs after the Big-Bang, is one of the most interesting

themes not only for cosmologists but also for particle and nuclear physicists because a

new form of quark matter is theoretically expected to be created at a high energy density.

According to the Quantum-Chromo-Dynamics (QCD) theory, quarks and anti-quarks,

which are elementary particles in the QCD frame, interact with one another exchanging

gluons, namely strong force. In the QCD vacuum, the effective coupling constant decreases

as the 4-momentum transfer increases at small distance of the interaction range, called

“asymptotic freedom”. Thus, in a normal condition, color-charged quarks are always

confined in neutral color (color-singlet) states, comprising baryons (3-quark bound state)

or mesons (2-quark bound state) by exchanging their color charges through gluons. At

extremely high density and/or temperature, however, the color force between quarks for

long distance is screened by dense gluons, allowing quarks to propagate for a long distance.

In such a medium, quarks are deconfined and can traverse freely to one another. The

deconfinement state is referred to as “Quark-Gluon Plasma” (QGP) because of the QCD

1
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Figure 1.1: A phase diagram of nuclear matter as a function of baryon density ρ and

temperature T . Hadronic phase is shown at low density and temperature, and the QGP

phase is shown at high density and/or temperature, separated by mixed phase shown by

the black band. The predicted transitions from hadronic to QGP phase at RHIC and

LHC experiments are shown by arrows.

analogue of the plasma phase of ordinary atomic matter.

At one extreme condition, the QGP state is expected to exist in the center of cold

neutron stars, in which the baryon density reaches about 10 times more than that of

ordinary nuclear matters on earth. In our world, relativistic heavy-ion collisions would

provide the unique opportunity to study the nature of nuclear matter at such a high energy

density, which could be the QGP state, in the laboratory. Recent lattice QCD models,

which can provide a treatment of non-perturbative QCD using lattice gauge simulation

from the first principle, predict that the QGP state could be formed at a high energy

density around a few GeV/fm3, corresponding to the temperature of a few hundred MeV.

Fig. 1.1 shows a naive phase diagram of nuclear matter as a function of baryon

density and temperature, and how the QGP state can be explored in relativistic heavy-ion

collisions. To study nature of the state of high baryon and/or energy densities, enormous
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experimental effort has been carried out in the fixed target programs using Bevatron at

Lawrence Berkeley National Laboratory (LBNL), the Alternating Gradient Synchrotron

(AGS) at Brookhaven National Laboratory (BNL), and also the Super Proton Synchrotron

(SPS) at CERN. Despite some of the experimental results suggest the signatures of the

QGP formation in the AGS-SPS energies [1, 2], the smoking gun has not been confirmed

in the fixed target experiments. Following the fixed target experiments till 1999, the study

of high energy nuclear collisions has opened a new stage with the Relativistic Heavy-Ion

Collider (RHIC) at BNL, where the initial energy density in central collisions is expected

to be sufficient for QGP formation.

1.1.2 Space-time evolution of heavy-ion collisions

In the relativistic heavy-ion collisions, nuclei are contracted in the beam direction like

pancakes due to the Lorentz boost. Fig. 1.2 shows a schematic drawing of a heavy-ion

collision. The number of nucleons participating in the collision, called “participants”, and

the rest that do not participate in the collision, called “spectators”, could be geometrically

determined by cut with the straight line at the impact parameter b, namely the length of

the overlap region of colliding two nuclei.

In heavy-ion collisions at RHIC, the participants may deposit the energy density about

5 fm/cm3, equivalent to the temperature about 300 MeV. The energy density is sufficient

to form the QGP state comparing to the QGP formation temperature evaluated by lattice

QCD to be of the order of 1−3 GeV/fm3, corresponding to the temperature T = 150−200

MeV. Similar to the phase transition of an ideal gas, the evolution of a heavy-ion collision

from QGP to hadronic state is described in terms of the equation of state. The order of

the transition is still open question, and the investigation is one of the important topics

in heavy-ion programs. For a good example, Fig. 1.3 show a schematic diagram of the

space-time evolution of the medium in relativistic heavy-ion collisions assuming the first-

order phase transition, where the “space” corresponds to the extent of the longitudinal

source size. The space-time evolution is summarized as four different stages below:
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1. In the initial stage of collisions, labelled as “pre-equilibrium” in Fig. 1.3, processes

of parton-parton hard scatterings may predominantly occur in the overlap region

of two colliding nuclei, depositing a large amount of energy in the medium. The

matter is not still in thermal equilibrium state and perturbative QCD models can

describe its dynamics by a cascade of freely colliding partons. The time of the

pre-equilibration state is predicted to be about 1 fm/c or less.

2. After the short pre-equilibration time, the QGP phase would be formed, in which

parton-parton and string-string interactions reach thermal equilibration state. The

volume of the QGP state, which energy density is expected to reach above 3−5

GeV/fm3, equivalent to the temperature 200−300 MeV, rapidly expands with de-

creasing its temperature and energy density.

3. If the first-order phase transition is assumed, the “mixed phase” is expected to

exist between the QGP and hadron phases, in which quarks and gluons are being

again confined into hadrons at the critical temperature Tc. At the mixed phase, the

entropy density is being transferred into lower degrees of freedom, and therefore, the

system is prevented from its fast expansion and cooling due to the “softest point”

defined by a minimum ε/p (pressure/energy density) in the equation of state. This

leads to a maximum in the lifetime of the mixed phase, which is expected to last for

a relatively long time (τ > 10 fm/c) during the softening of the equation of state.

4. In the hadronic phase, the system keep collective expansion via hadron-hadron in-

teractions, decreasing its temperature. Then, the hadron interactions cease when

the system reaches a certain size and temperature (called the hadron freeze-out

temperature Tf ), and hadrons freely stream out from the medium to be detected.

1.2 Approach to a quark-gluon deconfined state

Unlike the plasma of ordinary atomic matter, most of the observables in the relativistic

heavy-ion collisions may not be direct signals of the QGP formation due to the fun-



1.2. APPROACH TO A QUARK-GLUON DECONFINED STATE 5

�

�������	�
������ � � ��� �	� ��� � ��������� � � ��� �	�������
 �! "�! #%$'&

( ")$ ! *  %* ��"�+�! &

,.-/$ "��.* 0�* !
,

Figure 1.2: A schematic diagram of a heavy-ion collision. Nucleons are geometrically

separated into participants and spectators for the impact parameter b.

damental confining property of the physical QCD vacuum. Instead, most experimental

investigations should rely on the indirect signatures which are sensitive to the transient

QGP state. This section introduces the approaches to investigate the QGP formation

and its phase transition to hadronic matter, and the space-time evolution of the medium

produced in the relativistic heavy-ion collisions.

1.2.1 Medium effect

The observation of the so-called “jet quenching” effect is a prominent signature of the

medium effect of the QGP [7]. In the RHIC energy, parton hard scatterings with large

4-momentum transfer happen at the initial stage of collision. In the p+p or p+ p̄ collisions

in the RHIC energy range, the scattered high pT partons can be observed as two back-

to-back jets that fragment into high pT hadrons at pT >2 GeV/c, and the production

rate is well calculated by perturbative QCD. If the QGP is formed in the heavy-ion

collisions, the scattered high pT partons may loose their large fraction of momentum by

induced gluon bremsstrahlung when traversing in the hot and dense color field, resulting
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Figure 1.3: A schematic diagram of space-time evolution of a relativistic heavy-ion colli-

sion.

in the suppression of high pT particle. To study the suppression, the so-called “nuclear

modification factor” (RAA) has recently been measured in heavy-ion experiments at RHIC.

The RAA is defined by the ratio of the yield of high-pT particle in nucleus-nucleus collisions

to the yield in nucleon-nucleon collisions normalized by the number of binary scaled

nucleon-nucleon collisions, and it should be unity if there is no any medium effect in the

nucleus-nucleus collisions.

The PHENIX collaboration has reported that RAA of charged hadrons measured in

Au + Au collisions is significantly suppressed less than unity while that measured in

deuteron (d)+Au collisions is apparently more than unity at high pT region [12]. This

is considered as a strong evidence of the existence of a medium effect of QGP. Also the

jet quenching effect can be observed via the azimuthal correlation of high-pT particles.

If the deconfinement state is produced in relativistic heavy-ion collisions, observed jets

predominantly produced near the surface and directed outward. In case one of jets travers-

ing the dense core loose its energy, resulting in the suppression of back-to-back high-pT

pairs, while near side pairs are not suppressed and similar to those of p + p collisions.

Recently, the STAR experiment have reported a signature of jet quenching by compar-
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ing two-particle azimuthal distributions of inclusive charged hadrons at high-pT between

Au+ Au, p+ p and d+ Au collisions [13].

The measurement of J/ψ is also believed to be one of the major signatures of the

presence of QGP since Matsui and Satz predicted the suppression of J/ψ yield in the

QGP formation in heavy-ion collisions [10]. Because the J/ψ, which is a bound state

of cc̄ pair, is formed in a hard scattering process at the very early stage of heavy-ion

collisions, then it would be melt through color screening in the QGP state, commonly

referred to as Debye screening [10]. The deconfined c and c̄ are mostly coupled with

the other quarks, then observed as charmed bosons such as D and D̄. Recently, a clear

observation of J/ψ suppression has been reported by NA50 experiment at SPS [11].

1.2.2 Temperature of hot and dense matter

The measurements of transverse momentum pT and energy ET spectra of single particles

provide the temperature of the medium by fitting the spectra the slopes with a Boltzmann

distribution if the medium is assumed to be in thermal equilibrium state [3, 4]. The so-

called “thermal” photons and dileptons (i.e. virtual photons) which are directly emitted

from the early stage of a collision would not be disturbed by the final state interactions,

and carry information on the temperature of the hot and dense matter at the moment of

their production.

The thermal photons from the thermalized QGP state are created by annihilation

(q + g → q + γ) and Compton scattering (q + q̄ → g + γ) processes, and those photons

are expected to be visible at the momentum range 2< pT <5 GeV/c. At lower pT region,

background photons which are originated from electro-magnetic decays, such as π0 and

η, would significantly exceed the yield of the thermal photons from the QGP, and those

photons would represent the temperature of the medium after the mixed phase. At very

high pT region, the yield of “hard” photons, which are originated from the single-parton

scatterings and the Drell-Yan process at the very early stage of the collision, probably

become dominant.
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Also thermal dileptons, which are originated from virtual photons created in the same

stage as the thermal photons, may carry information on the temperature of the hot and

dense matter. The transverse mass spectrum of dilepton pairs in a window of its invariant

mass around 1−2 GeV is expected to be most visible for the temperature of the QGP

state. Background dileptons originate from pion annihilation, resonance decays and π−ρ
interaction become dominant at lower mass region, and dileptons from Drell-Yan processes

exceeds the yield of thermal dileptons at higher mass region.

1.2.3 Chiral symmetry

When the deconfinement state is formed, chiral symmetry, which is always broken at lower

temperature, is expected to be restored [14]. According to lattice QCD calculations, the

deconfinement and the chiral symmetry restoration occur at the same critical temperature

Tc. The chiral symmetry restoration results in the modification of hadronic property, and

observed as decrease of effective mass (mass shift) or mass width of light vector mesons

[16]. Experimentally, the measurement of enhancement of dileptons at low invariant

mass region decayed from ρ meson is suggested to be one of useful tools to observe the

chiral symmetry restoration, because ρ meson is a short-lived resonance and dileptons

decayed from the ρ meson are not subjected to the strong final-state interactions. The

CERES/NA45 experiment has measured the inclusive e+e− invariant-mass distribution,

and reported the enhancement of e+e− pairs at low mass region comparing to the sum of

the expected contributions from hadron decays [15].

1.2.4 Dynamics

The measurement of the space-time evolution of the hot and dense matter is an essential

and a very important tool to comprehensively understand what happens in the relativistic

heavy-ion collisions.

The dynamics of the system expansion is very sensitive to the pressure gradient at the

initial stage of collisions, which is fully governed by the collision anisotropy. In non-central
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collisions, the overlap region of two colliding nuclei form an ellipsoid shape. If the QGP is

formed at the very early stage of collisions in about 1 fm/c, the strong interactions would

be sufficient to establish local equilibrium keeping the medium in the ellipsoid shape,

resulting in a rapid pressure gradient in the short direction. This anisotropic pressure

gradient produces the higher transverse momentum of hadrons emitted from the final

stage in the short direction than those in the long direction, aka elliptic flow. Thus, the

measurement of elliptic flow is recognized as a very important tool to investigate whether

the local equilibrium due to the QGP is created in the early stage of heavy-ion collision

[7]. Recently, the PHENIX and STAR experiments have presented the detailed studies

of charged hadron spectra [5, 6] and elliptic flow [8, 9] at
√
sNN = 200 GeV in Au+Au

collisions.

In the hadronic phase, the system is considered to expands with a finite collective

flow velocity βT, decreasing its temperature (energy density) until its kinetic freeze-out

temperature Tf . These βT and Tf are observable values through single particle spectra

of hadrons, such as pion, kaon and proton, assuming the Boltzmann distribution. The

measurement of Bose-Einstein correlation of an identical two-particle, aka HBT, provides

the extent of the system (HBT radius) and the emission duration of particles at the

freeze-out stage. In addition, the HBT measurement can be used to extract the βT and

Tf parameters from the pair momentum dependence of HBT radius. (Refer to the next

chapter and references therein for the detailed description.)

1.3 Motivation of this study

Although some of experimental data at SPS and RHIC show some hints at an existence

of the QGP state, we still have no clear insight in what happens in the system, e.g.

the space-time extents of the deconfinement state and hadron gas. As described in the

previous section, single particle spectrum, Bose-Einstein correlation and elliptic flow are

key observable signals to investigate the space-time evolution of system, and to understand

a comprehensive picture of the dynamics of expanding system from the formation of the
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deconfined state to hadron gas. If a hydrodynamics model will be able to reproduce

those experimental signals simultaneously, we could explicitly define some macroscopic

parameters of the system such as chemical freeze-out temperature Tch, hadron freeze-out

temperature Tf and collective flow velocity βf , which are important values to understand

its dynamics. The successful reproduction also validates the present of the deconfinement

state, because the transition of equation of state is usually assumed in hydrodynamics

models.

In this study, I present the measurement of Bose-Einstein correlations of like-sign

pions in Au+Au collisions at
√
sNN = 200 GeV and provide the extents of produced

source radius and the emission duration of particles. For this analysis, I utilize about 50

million minimum biased events taken by PHENIX detector for the second year’s running

at RHIC. The organization of this thesis is as follows:

In Chapter 2, the analytical method of the Bose-Einstein correlation function is ex-

plained in detail. The Bertsch-Pratt parameterization to extract multi-dimensional HBT

radii is described. Also a puzzle in the measurements of the HBT radii, which has recently

arisen, is briefly introduced here.

In Chapter 3, the RHIC accelerator and the experimental setup of the PHENIX de-

tector are introduced. In particular, subsystems, which are utilized to identify charged

pions for this analysis, are explained in detail.

In Chapter 4, data reduction procedure from the track reconstruction to the particle

identification, is described. Also a method for identical pair assemble and corrections for

two-track detection inefficiency by Monte-Carlo simulation are explained.

In Chapter 5, I focus on a new technique of the Coulomb final-state interaction correc-

tion, which is well improved from a traditional Coulomb correction used in earlier HBT

analyses. For the justification of the new Coulomb correction, I also measure the two-

particle correlation for unlike-sign pion pairs. In addition, studies of systematic errors are

given.

In Chapter 6, 1-dimensional and 3-dimensional π+π+ and π−π− correlation functions



1.3. MOTIVATION OF THIS STUDY 11

and resulting HBT radii are presented. To study the space-time evolution of the system,

the HBT radii are measured as a function of the mean transverse momentum of pair (kT)

and collision centrality. Theoretical interpretations of the kT dependence of the HBT radii

are explained. Fits of the theoretical models provide the geometrical source size and life

time of the system. These results are compared to those from earlier experimental analyses

at lower energies. Also the kT dependence of experimental HBT radii are compared to

those of theoretical predictions from recent hydrodynamics models.

Finally, I give the conclusion of this analysis in Chapter 7.



Chapter 2

Bose-Einstein correlation

2.1 Overview

In the early 1950’s, Hanbury Brown and Richard Twiss invented the technique to mea-

sure the angular diameter of stars by using intensity correlation between two photons [17].

Thus, two-particle interferometry is called as “Hanbury-Brown and Twiss” or “HBT” ef-

fect after the names of pioneers. In the field of particle physics, the HBT effect was inde-

pendently discovered by G. Goldhaber, S. Goldhaber, W. Lee and A. Pais who measured

the angular correlations between identical pions and extracted the extent of a source in

proton-antiproton collisions at Bevatron [19]. In this case the HBT effect differs from ordi-

nary amplitude interferometry, but which effect originates from quantum statistical effects

resulting from the symmetrization of the wave function of bosons, or anti-symmetrization

for fermions. The so-called “Bose-Einstein” correlation for identical boson (fermion) pairs

results in the enhancement (suppression) of the two-particle coincidence rate at small rel-

ative momentum of the pair. A striking point of the measurement of the Bose-Einstein

correlation is that it could provide not only the extent of the source but also the emission

duration of particles using a three-dimensional analysis.

As described in the previous chapter, one possible signature from the formation of the

QGP state is predicted to be the existence of a long mixed phase due to the softening of the

equation-of-state in a first-order phase transition, resulting in the long emission duration

of particles [18]. That’s why the Bose-Einstein correlations for identical particles have

12
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widely been measured in the field of high-energy heavy-ion experiments [23, 24, 25, 26,

27, 35, 28, 29]. Moreover, the Bose-Einstein correlation analyses have been served as an

important tool to measure the source profile, such as the thermal freeze-out temperature

Tf , the corrective flow velocity βf at the hadronic freeze-out of source, in conjunction with

information from the measurements of single particle spectra and elliptic flow. In SPS-

RHIC energies, much of efforts in Bose-Einstein correlation analyses have gone into the

extraction of such characterization parameters of dynamical source because it is closely

related to the property of the antecedent phase of hot and dense matter.

2.2 Two particle correlation function

The two-particle correlation function is defined by the ratio of the two particle coincidence

probability density over the product of the two single particle probabilities as

C2 =
P (p1,p2)

P (p1)P (p2)
, (2.1)

where p1 and p2 denote 4-vector momenta of observed identical particles. To explain how

the Bose-Einstein correlation term works in Eq. 2.1, we consider a simple model which

can be described in plane wave. As shown in Fig. 2.1, identical particle 1 and 2 which

have 4-momenta p1 and p2 respectively are emitted from the space-time points r1 and r2

in a source with the separation of R. After traveling the distance of L, they are observed

by detectors located at x1 and x2. Since we can not distinguish the emitted points of two

identical particles in the case of R << L, we have to consider two possible trajectories

as shown by solid and dashed lines. If we assume the particles are emitted independently

(“chaotic source”), the probability amplitude of detecting two identical particle is given

as

ψ12 =
1√
2
{A(p1, x1)A(p2, x2)e

−ip1(x1−r1)e−ip2(x2−r2)

±A(p1, x2)A(p2, x1)e
−ip1(x2−r1)e−ip2(x1−r2)} (2.2)

where + (upper) sign stands for bosons, − (lower) sign for fermions. A(p, x) is the

amplitude of a particle which is emitted by a point x with momentum p, and e−ip(x−r)
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is the propagation of the particle. The corresponding probability density of two-particle

momentum is obtained by an integral of the source according to the distribution function

ρ(r) as

P (p1, p2) =
∫
d4r1d

4r2ρ(r1)ρ(r2)|ψ12|2.

=
1

2

∫
d4r1d

4r2ρ(r1)ρ(r2)
{
A2(p1, x1)A

2(p2, x2) + A2(p1, x2)A
2(p2, x1)

+ A(p1, x1)A(p2, x2)A(p1, x2)A(p2, x1)e
ir1(p1−p2)e−ir2(p1−p2)

+ A(p1, x1)A(p2, x2)A(p1, x2)A(p2, x1)e
−ir1(p1−p2)eir2(p1−p2)

}
(2.3)

After r1 and r2 in the second to fourth terms are renamed, this equation is further rewritten

as

P (p1, p2) =
∫
d4r1d

4r2ρ(r1)ρ(r2)A
2(p1, x1)A

2(p2, x2)

+
∣∣∣

∫
d4rρ(r)A(p1, r)A(p2, r)e

−ir(p1−p2)
∣∣∣
2
. (2.4)

In the case of the detection single particle, the probability amplitude is expressed as

ψ1 = A(p, x)e−ip(x−r), (2.5)

and the probability density is described as

P (p) =
∫
d4rρ(r)|ψ1|2 =

∫
d4rρ(r)A2(p, x). (2.6)

From Eq. 2.1-2.6, the two-particle correlation function can be described as

C2 =
P (p1,p2)

P (p1)P (p2)
= 1 +

∣∣∣
∫
d4rρ(r)A(p1, r)A(p2, r)e

−irq
∣∣∣
2

∫
d4r1ρ(r1)A2(p1, x1)d4r2ρ(r2)A2(p2, x2)

(2.7)

where q is the relative difference of 4-vector momentum of pair, p1− p2. Here, we assume

a Gaussian distribution for the source density as

ρ(r) =
1

4π2R4
exp

(
− r2

2R2

)
(2.8)

where R is the standard deviation (the Gaussian width). Using the Gaussian parameteri-

zation, the correlation function of Eq. 2.7 can be rewritten by using the Fourier transform

of ρ(r) as

C2 = 1 + exp(−R2q2). (2.9)
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Figure 2.1: The general scheme of identical particle correlation in particle physics.

This equation is valid only for the fully “chaotic” source. However, experimentally ob-

served correlation function is further suppressed due to several effects such as the partial

coherence of the source and pairs come from the resonance decays. For the more realistic

“non-chaotic” source, Eq. 2.9 is modified as

C2 = 1 + λ exp(−R2q2), (2.10)

where λ is commonly referred to as “chaoticity parameter”, which is from 0 to 1.

In the one-dimensional Bose-Einstein correlation analysis, the correlation function is

measured as a function of a Lorentz-invariant relative momentum qinv:

C2(qinv) = 1 + λinv exp(−Rinv
2qinv

2), (2.11)

with qinv =
√
q2
x + q2

y + q2
z − q2

0 (2.12)

where Rinv is the 1-dimensional HBT radius, which is related to its spatial and temporal

sizes as described in section 2.4.1, and λinv is the 1-dimensional chaoticity parameter.

(qx, qy, qz) is the relative difference of measured momentum for each direction and q0 is

relative energy difference of pairs (q0 = E1 − E2). In this analysis, the particle energy

is determined by measured momentum p and the ideal mass as E =
√
p2 +m2

ideal. The

schematic correlation function as a function of qinv is illustrated in Fig. 2.2.
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Figure 2.2: One-dimensional correlation function as a function of qinv with input param-

eters, λinv = 1.0 and Rinv = 5.0 fm.

2.3 Two external parameters

2.3.1 Centrality dependence

Since a HBT radius represent the RMS-width of the geometrical source size at the hadronic

freeze-out stage assuming a static source, it could depend on the centrality of the collision,

namely the overlap region at the initial collision. It is interesting to investigate the

correlation between the initial overlap region and the HBT radius in terms of the following

questions:

• How the HBT radius scale to the initial overlap region?

• How many times does the overlap region increase during its evolution from the initial

to final stage?
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• If the QGP could be formed at a certain centrality of the nucleus-nucleus collision

and the overlap region is significantly enlarged due to the first-order phase transition,

which centrality it would take place at?

To investigate these dependencies, the HBT radius parameters are measured as a

function the number of participants, Npart. The Npart means the number of nucleons

participated in the overlap region of nucleus-nucleus collisions, namely Npart = 2 in p+p

collision and Npart = 394 in Au+Au at the most central collision.

2.3.2 kT dependence

So far I have discussed the particular case in which the source is static at its kinetic freeze-

out. However, a realistic source in high-energy heavy-ion collisions is considered to expand

with a finite collective flow (βf ) at the hadronic state. In such a dynamically expanding

source, the particle momenta are strongly correlated with their emission points, that

is commonly referred to as “space-momentum correlation” [22]. For example, particles

emitted from around the surface of the expanding source tend to have larger momenta

than those emitted from the center of it. The HBT radius size shrinks as the collective

flow velocity increases because the correlation function measures only some partial source

size through a filter of the wavelength of pair momenta, called “lengths of homogeneity”.

To study the space-time evolution of the source, the averaged transverse momentum of

pair kT is usually introduced as an independent external parameter.

The kT dependence of HBT radii (Bertsch-Pratt radius parameters) have been mea-

sured by earlier experiments at
√
sNN ∼4-5 GeV in Au+Au collisions [24, 25] at AGS,

√
sNN ∼17 GeV in Pb+Pb collisions at SPS [26, 27], and PHENIX and STAR have re-

cently reported the kT dependence of HBT radii in Au+Au collisions at
√
sNN = 130 GeV

at RHIC [28, 29]. The top panel of Fig. 2.4 shows the kT dependence of the HBT radius

parameter in transverse direction at
√
sNN = 130 GeV. These experimental results show

that the transverse HBT radius apparently decreases as kT increases, indicating a radially

expanding source.
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2.4 Bertsch-Pratt parameterization

2.4.1 HBT radius parameters

One of the advantages of the Bose-Einstein correlation measurement in relativistic heavy-

ion collisions is that the measurement of multi-dimensional correlation function can pro-

vide not only the spatial size but also the temporal size of source. The Bertsch-Pratt pa-

rameterization [20, 21] has been widely employed to analyze multi-dimensional HBT radii

in earlier Bose-Einstein correlation analyses. The schematic diagram of the parameteriza-

tion is illustrated in Fig. 2.3. In the parameterization, the relative momentum of pair q

is decomposed into the transverse direction qT, which is perpendicular to the beam-axis,

and the longitudinal direction qlong, which is parallel to the beam-axis (i.e. qlong = qz), as

shown by the left diagram in Fig. 2.3. Then, as shown in the right diagram, qT can be

decomposed into the outward direction qout, which is parallel to the averaged transverse

momentum of the pair, kT = (pT1 + pT2)/2 where pTi is the transverse momentum of each

particle of the pair, and the sideward direction qside, which is perpendicular to kT. Using

the Bertsch-Pratt parameterization, we can rewrite the correlation function as a function

of 4-vector momentum as

C2 = 1 + λ exp(−R2q2)

= 1 + λ exp(−R2
xq

2
x −R2

yq
2
y −R2

zq
2
z − σ2

t q
2
0)

= 1 + λ exp(−Rside
2qside

2 −Rout
∗2qout

2 −Rlong
2qlong

2 − σ2
t q

2
0). (2.13)

Fitted Rside, Rout
∗ and Rlong parameters, which are commonly referred to as “HBT radii”,

equal to the Gaussian widths of source size in qside, qout and qlong directions, not its hard

sphere radius value. σt is a temporal term, which corresponds to the Gaussian width

of the duration of particle emission. Assuming the longitudinal center-of-mass system

(LCMS) defined as pz1 + pz2 = 0, the energy difference q0 in Eq. 2.13 can be rewritten as

q0 = E1 − E2 =
p1 + p2

E1 + E2

(p1 − p2) = β12q12
LCMS≈ βTqout, (2.14)
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Figure 2.3: The general schematic diagrams of Bertsch-Pratt parameterization.

where βT corresponds to the transverse velocity of the pair. From Eq. 2.13 and Eq. 2.14,

the correlation function is reduced to a three-dimensional form as

C2 = 1 + λ exp(−Rside
2qside

2 − (Rout
∗2 + βTσ

2
t )qout

2 −Rlong
2qlong

2)

= 1 + λ exp(−Rside
2qside

2 −Rout
2qout

2 −Rlong
2qlong

2). (2.15)

The fit parameter Rout consists of the transverse source size and the emission duration of

particles. Here, if we assume a cylindrically symmetric (Rside = Rout
∗) and static source

which has a constant source size, the duration of particle emission can be observed as

σt =
√
Rout

2 −Rside
2/βT. (2.16)

In the Bertsch-Pratt parameterization described above, the cross-term between outward

and longitudinal direction, −2R2
olqout

2qlong
2, is eliminated because the source is approxi-

mately symmetric about the z = 0 plane.

2.4.2 RHIC-HBT puzzle

In the case of static source, its emission duration of particles is evaluated by Eq. 2.16. In

the realistic source in heavy-ion collisions, however, the source is considered to dynamically

expands. In case, the HBT radii are parameterized in more sophisticated forms due to
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the effect of its corrective expansion. For the simplification, the ratio of Rout to Rside (i.e.

Rout/Rside) is measured in several earlier Bose-Einstein correlation analyses to investigate

the extent of a finite duration of particle emission. If the source is transparent and has a

finite emission duration, the Rout/Rside ratio could become larger than unity.

The lower panel of Fig 2.4 shows the Rout/Rside ratios measured by PHENIX and

STAR in Au+Au collisions at
√
sNN = 130 GeV from kT ∼0.2 GeV/c to kT ∼0.6 GeV/c.

The experimental Rout/Rside ratios are equal to or less than unity within the errors, and

show a trend that the ratio slightly decreases as kT increases. The Rout/Rside ratios

from recent calculations for a thermalized source with a first-order phase transition at

different critical temperatures (Tc = 160 and 200 MeV) [30] are also given as a function

of kT in the figure. The ratios increase as kT increases due to the hadron re-scattering at

high-kT region, and are between about 1.5 and 2.2 for 0.2< kT <0.6 GeV/c. The large

discrepancy between experimental and theoretical HBT radii, called “RHIC-HBT puzzle”

[31], has two essences. One is a naive question that the Rout/Rside ratio should be larger

than unity. Another is the question that recent theoretical calculations are able to well

reproduce single particle spectra and many-particle correlations that give rise to elliptic

flow, but failed to reproduce the experimental HBT radii, especially such Rout/Rside < 1

value. Thus, the RHIC-HBT puzzle is one of the key issues on results obtained in the

RHIC program.

In this analysis, I focus on further detailed centrality and kT dependences of 1-

dimensional and 3-dimensional (Bertsch-Pratt) HBT radii by using an abundant statistics

of data which was taken in the PHENIX Year-2 running. Model fits to the experimental

HBT radii as a function of kT provide the information of dynamical source, such as the

geometrical source size and the life time. The comparison of HBT radii for such a wide

kT range between the detailed measurements and recent theoretical calculations based on

hydrodynamical models, could provide a strong constraints for model builders to solve

the RHIC-HBT puzzle. In addition, the HBT radii are measured as a function of collision

centrality in detail to investigate a relation between geometrical source sizes and the HBT
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radii.

I also focus on the recently developed Coulomb correction method which is suggested

by Sinyukov [33] based upon a picture of core-halo structure of source [34]. In the core-

halo model, a source produced in the relativistic heavy-ion collision is considered to be a

superposition of a central core surrounded by an extended halo. I present the compari-

son of resultant HBT radii extracted with the new Coulomb correction method and the

conventional full Coulomb correction most earlier analyses have used so far, then discuss

the RHIC-HBT puzzle in terms of the Coulomb correction method.
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Figure 2.4: The top panel shows Rside for identical pions measured by STAR [28] and

PHENIX [29]. The solid line is a fit of Eq. 6.8 to the PHENIX data. The dot-dashed

line is tha same fit to the STAR data. The bottom panel shows the ratio Rout/Rside as a

function of kT overlaid with theoretical predictions for a phase transition for two critical

temperatures [30].
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Experimental Setup

3.1 The RHIC accelerator

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has a

capability to accelerate and collide two types of particle species, e.g. gold-gold (Au+Au),

deuteron-gold (d+Au) and polarized proton-proton (p+p) collisions [36]. A schematic

diagram of the RHIC facility is shown by Fig. 3.1. In Au+Au collisions, bunches of Au-

ions are provided from the Tandem Van de Graaff and accelerated up to 1 A MeV, then

injected into the Booster Synchrotron to accelerated up to 192 A MeV, and then injected

in the Alternating Gradient Synchrotron (AGS) ring. The AGS accelerator, which has

been used for many fixed target experiments in heavy-ion collisions at the center of mass

energies from 2.5 to 4.5 GeV, is used as a pre-accelerator for the RHIC ring. The bunches

of Au-ions, accelerated up to 10.8 GeV by the AGS ring, are send to the AGS-To-RHIC

transfer line, where a switching magnet sends the ion bunches down one of two beam lines.

The two Au beams are injected into the right and left rings of RHIC, labelled yellow and

blue ring, respectively. Each ring is composed of six arc sections and six insertion sections

with a collision point. The injected two Au beams are accelerated by using dipoles and

quadrupoles in each arc section and a pulse of radio waves up to 100 GeV/nucleon (γ =

100) in the RHIC ring, and collide at six beam interaction points. In Au+Au collisions

at
√
sNN = 100 GeV, the number of bunches per ring is 56 and each bunch consists of

∼1×109 Au-ions, providing a luminosity of ∼2×1026 cm−2s−1. Fig. 3.2 shows a diagram

22
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Figure 3.1: A schematic diagram of the AGS and RHIC facilities.
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Figure 3.2: Au beam acceleration at the RHIC facility.

of Au-beam acceleration with the operating parameters.

In polarized p+p collisions, polarized proton beam is provided by the LINAC to

the Booster Synchrotron and injected into AGS ring, and then injected into the two

RHIC rings. The polarization of proton beams during being accelerated is maintained by

Siberian Snake magnets in the AGS and RHIC rings. The Siberian Snake is constructed

from four 2 m helical dipole modules, which provides a full 180◦ spin flip. The RHIC and

Siberian Snakes are designed to accelerate the polarized proton up to 500 GeV with 70%

polarization.

Four experiments are located at four of the six interaction points, i.e. PHENIX, STAR,

PHOBOS and BRAHMS as shown by Fig. 3.1. Among the four experiments, PHENIX

and STAR are largest detectors that are composed of lots of subsystems, designed to

measure many particle species for their large acceptances, and able to study some observ-

able signals simultaneously. On the other hand, PHOBOS and BRAHMS are designed to

study a few specific topics in detail, and are smaller detectors than PHENIX and STAR.
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Figure 3.3: Schematic drawings of the PHENIX detector setup for Year-2 running, viewed

in a cut through the collision vertex (top figure), parallel to the beam axis (bottom figure).
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Subsystem ∆η ∆φ (rad) Purposes

CM ±0.35 2π 0.78 T·m for η = 0

MM (south) -2.2 to -1.1 2π 0.72 T·m for η = 2

(north) 1.1 to 2.4 2π

BBC ±(3.1− 3.9) 2π vertex position, start timing, LVL1-

trigger.

ZDC |η| > 6 2π vertex position, LVL1-trigger.

MVD ±2.6 mrad 2π multiplicity (d2N/dηdφ).

DCH ±0.35 π/2× 2 Charged particle tracking.

PC(1,2,3) ±0.35 π/2× 2 Pattern recognition, tracking for non-

magnetic field running.

TOF ±0.35 π/4 Charged hadrons, π/K/p separation.

RICH ±0.35 π/2× 2 Electron detection, π/e separation.

EMCal (PbSc) ±0.35 π/2 + π/4 Photon, electron, hadron detection.

EMCal (PbGl) ±0.35 π/4 Photon, electron detection.

MuTr (south) -2.25 to -1.15 π/2 Muon tracking.

(north) 1.15 to 2.44 π/2

MuID (south) -2.25 to -1.15 π/2 Muon detection, µ/π separation.

(north) 1.15 to 2.44 π/2

Table 3.1: Summary of acceptances and purposes of the PHENIX subsystems.
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Figure 3.4: A schematic drawing of the PHENIX acceptance for leptons and hadrons in

the pseudorapidity η versus azimuthal angle φ.

3.2 The PHENIX detector

The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) detector, located

at one of the six interaction points at RHIC, is composed of global detectors for the charac-

terization of collision events and the triggering of the data acquisition, two mid-rapidity

spectrometer arms (the Central arms) and two forward spectrometer arms (the Muon

arms) for the tracking and identification of particles, as shown by schematic drawings

in Fig. 3.3. The purpose of the PHENIX is to provide powerful particle identification

(PID) capabilities for hadrons, leptons and photons over a wide momentum range. The

acceptance for these particle species is illustrated in Fig. 3.4.

3.2.1 The global detectors

The global detectors consist of the Zero-Degree Calorimeters (ZDC), the Beam-Beam

Counters (BBC) and the Multiplicity Vertex Detector (MVD). A pair of ZDCs, which

are located at 18.25 meters upstream and downstream of the beam crossing point, are

designed to measure spectator neutrons that escape from a collision, namely free neutrons
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which do not participate in the collision and also not coalesce with other spectator pro-

tons. The ZDCs are able to determine a collision position along the beam axis, called as

“vertex position”. A pair of BBCs, which surround the beam-pipe at 1.5 meters upstream

and downstream of the beam crossing point, are designed to measure forward particles

produced in a collision. The prior purpose of BBCs is to determine the vertex position

and the start time of a collision.

At PHENIX, the event centrality is determined from the correlation between charge

sum deposited in BBCs and energy sum deposited in ZDCs, as shown by Fig.3.5. The

BBC charge sum monotonically decreases as the collision centrality decreases, while the

ZDC energy sum increases as the centrality decreases due to the increases of the number

of spectator neutrons. In more peripheral collisions, however, spectator neutrons tend

to be bound in a deuteron or a heavier fragment, and a bigger fraction of the spectator

neutrons is removed from the ZDC acceptance by magnets in front of ZDCs. Therefore,

the energy deposited in ZDCs decreases in the peripheral collisions, resulting in such

a boomerang shaped correlation, as shown by Fig.3.5. In this plot, the distribution is

divided into centrality classes by the solid lines from a fixed point.

Figure 3.5: The correlation between BBC charge sum and energy deposit in ZDC.
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The MVD, which consists of two concentric barrels of silicon strip detectors around the

beam-pipe and two disk-shaped endcaps of silicon pad detectors, provides event character-

ization such as a collision vertex position and fluctuations in charged particle production.

3.2.2 The central spectrometers

Figure 3.6: A simulation of the magnetic field lines inside the three PHENIX magnets.

The arrows on the inner field lines represent the field direction.

The central spectrometers surrounds the both sides of the beam pipe as shown by the

right and left detector groups in the top panel of Fig. 3.3, called as the East arm and

the West arm, respectively. Each of the central arms covers the pseudorapidity region

|η| < 0.35 and ∆φ = π/2 in azimuthal angle.

The tracking system of the central spectrometers is composed of the Drift Chambers

(DCH), the Pad Chambers (PCs) and the Central Magnet (CM). The DCHs are primary

tracking detectors, which are located in the region from 2 to 2.4 m from the beam axis
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and 1.8 m width along the beam axis in the East and West arms. Each of DCHs covers

the pseudorapidity region |η| < 0.35 and ∆φ = π/2 in the azimuthal angle. In DCH,

hit positions of charged particles are mapped by 3 types of wires, called X,U,V wires –

X wire run in parallel to the beam axis and U,V wires have stereo angle about 6◦ to the

beam axis. Using these hit positions, the 3-dimensional trajectories of charged particles

are determined by a track reconstruction model.

The CM produces an axial magnetic field around the collision vertex that parallel to

the beam axis by two pairs of concentric coils. The track reconstruction model is able

to determines the transverse momentum of each particle from its curvature bended in

the magnetic field. Fig. 3.6 illustrates a vertical cutaway view of the PHENIX magnets

with the magnetic field lines. The total field integral of the CM is 0.78 T·m, and that is

minimized for the radius of R > 2 m to avoid photo-multiplier tubes of the Ring Imaging

Cherenkov Counter (RICH) and Electro-Magnetic Calorimeter (EMCal) detectors. The

field covers pseudorapidity region |η| < 0.35, allowing momentum measurement of charged

particles in the polar angle range 70◦ < Θ < 110◦.

Three (two) layers of PCs are installed in the West (East) arm. The PC1, which is

located at radius of ∼2.5 m between DCH and RICH detectors in both arms, is the most

inner pad chamber system. The z-coordinate hit position of charged particles in PC1 is

used in the track reconstruction instead of that measured by DCH. The PC2 is located at

radius of 4.2 m just behind RICH only in the East arm, and PC3 are located at radius of

5.0 m in front of EMCal in both arms. All the PC layers cover the full acceptance of each

arm (|η| < 0.35 and ∆φ = π/2) at different radial positions. The PC system provides

three-dimensional space points along the straight line particle trajectories outside the

magnetic field and are needed to resolve the ambiguities in the outer detectors.

In the central arms, the particle identification (PID) is carried out by three types of

detectors – RICH, EMCal and the Time-of-Flight counter (TOF), in conjunction with

information measured by the tracking system such as the momentum and flight length.

The RICH [42] is a threshold gas Cherenkov detector which serves as the primary electron
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Figure 3.7: The energy/momentum ratio of tracks in the transverse momentum range

1.1 < pT < 1.2 GeV/c, where the momentum is measured by DCH and the energy is

measured by EMCal. The dashed-dotted line shows the distribution of all DCH tracks,

and the solid line shows the tracks associated with RICH hits. The solid markers show

the distribution of tracks associated with RICH hits after background (dotted line) sub-

traction.

identification detector. It measures Cherenkov radiation emitted by charged particles as

they pass through a gas radiator with the high velocities greater than c/n, where c is the

speed of light and n is the index of the refraction of gas. It provides e/π discrimination

up to ∼4 GeV/c where is the Cherenkov threshold of π. The RICH is located at the

radial region from 2.6 to 4.1 m from the beam axis in the both east and west central

spectrometers. Fig. 3.7 illustrates electron identification using the RICH detector. The

dashed markers shows the ratio of energy and momentum (E/p) of charged tracks asso-

ciated with a RICH hit after subtracting the background. A clear peak around E/p ∼1
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Figure 3.8: Scatter plot of the time-of-flight by TOF versus reciprocal momentum (1/p)

in minimum bias Au+Au collisions at
√
sNN = 200 GeV.

is the electron signal.

The TOF is the primary device to identify charged hadrons in PHENIX, which is

located at the radius of ∼5.1 m from the beam axis. 960 plastic scintillation slats are

arranged into 8 panels in the top sector which covers |η| < 0.35 and ∆φ = π/4 and 2 panels

in the bottom sector which covers 1/4 of the top panel. The z-coordinate hit position

(along the beam axis) is determined with the 1.5 cm width of each slat, and the x(y)-

coordinate hit position (along the slat) is determined from the time difference of signals

observed by readouts at the two ends by using the known velocity of light propagation in

the scintillator. The hit timing of particle is determined from the averaged time of signals

read out at both ends. The timing resolution of the TOF is measured in the experimental

condition to be 120 psec in conjunction with the start time of collisions provided by BBC.

Fig. 3.8 shows a scatter plot of the time-of-flight measured by TOF versus reciprocal
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Figure 3.9: Scatter plot of the time-of-flight by EMCal (PbSc) versus reciprocal momen-

tum (1/p) in minimum bias Au+Au collisions at
√
sNN = 200 GeV.

momentum measured by DCH in minimum bias Au+Au collisions at the energy of
√
sNN

= 200 GeV. The good timing resolution allows π/K separation up to 2.4 GeV/c and K/p

separation up to 4 GeV/c.

The Electro-Magnetic Calorimeter (EMCal), which is the most outer detector in the

central arm, is the primary device to provide energies and spatial hit positions of photons

and charged particles. The EMCal consists of 8 sectors (4 in each arm) and covers the

full acceptance region of the two central arms, |η| < 0.35 and ∆φ = π/2×2. Its front face

is located at ∼5.1 m from the beam axis. There are two types of EMCal detectors in the

system, namely lead-scintillator sampling calorimeter (PbSc) and lead-glass Cherenkov

calorimeter (PbGl). The PbSc covers 6 out of the 8 EMCal sectors, i.e. 4 sectors in

the West arm and the top 2 sectors in the East arm, and the PbGl covers the remaining

bottom 2 sectors in the East arm. The PbGl has been utilized by not only photon analyses

but also lots of hadron analyses which need high statistics of data sample because of its

large acceptance coverage. The timing resolution of charged hadrons is measured to be

about 400 psec. Fig. 3.9 shows a scatter plot of the time-of-flight measured by PbSc
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versus reciprocal momentum measured by DCH in Au+Au collisions.

In addition to the detectors described above, the Time Expansion Chamber detector

(TEC) were being developed during Run-2 operation. The TEC is placed between the

DCH and the PC3 in the East arm, covering |η| < 0.35 and ∆φ = π/2, is capable of

tracking all charged particles passing through the acceptance of RICH and the electro-

magnetic calorimeter in the East arm.

3.2.3 The muon spectrometers

The muon spectrometers are located at the pseudorapidity ranges of −2.25 < η < −1.15

(the South Muon Arm) and 1.15 < η < 2.44 (the North Muon Arm) with the full

azimuthal coverages [38]. Each Muon Arm is composed of the Muon Tracker with the

Muon Magnet and the Muon Identifier. It is designed to measure vector mesons, especially

dimuons from J/ψ and ψ′, the Drell-Yan process and heavy quark productions.

Each Muon Tracker provides trajectories of charged particles with the resolution of 100

µm. It is comprised of three stations of cathode-strip readout tracking chambers which

are stationed inside the Muon Magnet, which produces radial magnetic fields by solenoid

coils, as shown by 3.6, and the total field integral is 0.72 T·m at Θ = 90◦. The Muon

Identifier is comprised of six walls of steel absorbers interleaved with five layers of plastic

proportional Iarocci tubes. The set of Iarocci tube layers provides muon identification

and µπ separation by the amount of radiation. Only the south Muon arm is installed for

Year-2 operation.

3.3 The PHENIX subsystems

For the identification of charged pions, I used the tracking system and EMCal (PbSc) at

the west central arm. The details of the PHENIX subsystems, which are needed for the

centrality determination and the charged pion identification, are described in this section.

Acceptances and purposes of all PHENIX subsystems are summarized in Table 3.1.
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Figure 3.10: A picture of BBC array comprising 64 BBC elements.

3.3.1 Beam-Beam Counters

The PHENIX Beam-Beam Counters (BBC) [39], which are located at 1.5 m upstream

and downstream of the beam crossing point and surround the beam pipe. Fig. 3.10

shows a picture of one of BBCs. Each BBC has 64 readout channels, and each channel

consists of a quartz Cherenkov radiator and a mesh-dynode photo-multiplier tube (PMT)

readout located behind the central magnet’s return yoke. Since the magnetic field around

this location is expected to be about 3kG, the BBC is designed to work in such a high

magnetic field environment. The elements are closely packed into a ring surrounding the

beam pipe and cover the pseudorapidity of 3 < |η| < 4 and in 2π in azimuthal angle. In

case of central Au+Au collisions at
√
sNN = 200 GeV, the number of charged particles

per BBC element is expected to be about 15, while in case of p+p collisions, no or a few

charged particles will be in the acceptance. Therefore, each element of BBCs is designed

to has a large dynamic range from 1 MIP (Minimum Ionizing Particle) up to over 30

MIPs. In addition, the BBC system is designed to be radiation hard because it locates

such a very forward angle where could be irradiated with an enormous amount of charged

and neutral particles from collisions.

The BBC provides the start timing information of the beam-beam interaction, which
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Figure 3.11: Zvertex distribution measured by BBC. The blue area corresponds to events

satisfying the Global Level-1 decision.

is calculated as:

tT0 = (T1 + T2 − 2L/c)/2, (3.1)

where T1 and T2 are the observed values of arrival time for prompt particles at the each

side and L is the length from the collision point to the surface of the BBC, 144 cm. Its

vertex position along the beam axis is evaluated from the difference of the averaged arrival

times as:

Zvertex = (T1 − T2)c/2. (3.2)

Fig. 3.11 shows the distribution of Zvertex measured by BBC. The measured collision

time is served as a start time for the time-of-flight measurement. The time resolution

of each BBC element is evaluated to be around 52 ± 4 psec under real experimental

conditions. The measured vertex position accuracy is estimated to be better than 1 cm.

The information of collision time, vertex position and the number of PMT hits are sent

to the LVL-1 trigger for the data acquisition system.
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Figure 3.12: Schematic views of ZDC [40]. The bottom panel (A) shows a top view of

the beam geometry and ZDC locations. The top panel (B) shows a “beam’s eye” view of

the ZDC location (section A-A in the top panel).

3.3.2 Zero-Degree Calorimeters

The Zero-Degree Calorimeters (ZDC) [40] is a hadron calorimeter, which is commonly

used by all RHIC experiments. In PHENIX, two ZDCs are located at 18.25 m upstream

and downstream of the beam crossing point, where 3 m behind the DX dipole magnets

which are used to bend beams, as shown by 3.12. At the location, charged particles

emitted from collisions are also bent by the magnets so that ZDCs detect only charged

free particles, i.e. spectator neutrons, traveling along the beam line left after collisions.

It is designed to measure the fraction of energy deposited by spectator neutron within a 2

mrad (|η| > 6) cone around the beam direction The ZDC provides information about the

vertex position and the start time of collisions from the difference of hit times between

two (north and south) ZDCs. The resolution of measured vertex position is about 2 cm.

The information of the number of hits on the ZDCs is sent to the LVL-1 trigger for the

data acquisition system.
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3.3.3 Drift Chamber detector
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Figure 3.13: The left shows the layout of DCH’s wire for one sector and the right shows

a schematic diagram from top view.

Each of DCH consists of 20 sectors that are equally arrayed in the azimuthal angle,

and each sector covers ∆φ = 4.5◦. Each sector, which is composed of 4 cathode and 4

anode wire planes in the azimuthal direction and is filled with a 50-50% Argon-Ethane

gas mixture, has six types of wire modules that are stacked radially from inside toward

outside as X1, U1, V1, X2, U2 and V2. The each X wire module has 12 planes of anode

wires in radial direction and those X wires are run parallel to the beam direction. Each

of U and V wire modules has 4 planes of anode wires in the radial direction and those U

(V) wires are tilted by about ±5◦ stereo angle relative to the X wires, allowing to measure

z coordinate of tracks. The layout of wire position of the DCH is shown in Fig. 3.13.

In the real experimental condition, hundreds of tracks come into the DCH region. The

anode wires are electrically separated into two halves at the center, and signals in each

side are read by independent readout channels. In case of Au+Au central collisions, the
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occupancy is about two hits per wire.

3.3.4 Pad Chamber detectors

The Pad Chamber (PC) [41] are multi-wire proportional chambers. At the west central

arm, there are three layers of PC, called PC1, PC2 and PC3, and each layer consists of 8

sectors. Each sector is composed of a single plane of anode and field wires inside a Argon-

Ethane mixture gas volume bounded by two cathode planes. One cathode is segmented

into an array of pixels and another is made of solid copper plane. The charge is induced

on a number of cathode pixels when a charged particle goes through the plane and starts

avalanche close to anode wires. The pixels of cathode wires correct the charge with readout

electronics. It provides 3-dimensional coordinates of charged tracks with the good spatial

resolution and high efficiency. The hit position resolution in the z direction of PC1 is

measured to be ±1.7 mm and the information is used by the offline track reconstruction

model. The position resolutions of the PC1, PC2 and PC3 are summarized in Table 3.2.

3.3.5 Electro-magnetic calorimeters

For PbSc sectors fully cover the acceptance of the west central spectrometer. As shown

by Fig. 3.14, each PbSc sector consists of 2592 (36×72) individual tower modules [43].

Each PbSc tower module is a shashlik type sampling calorimeter that is composed of

66 sampling cells made of alternating tiles of leads and scintillators. The surface area

of each tower module is 5.5×5.5 cm2 and the active depth is 38 cm with 18 radiation

lengths. The sampling cells are optically connected by 36 longitudinally penetrating

wavelength shifting fibers and collected light signals are read out by a PMT at the back

of the tower. The PbSc calorimeter is specialized in identifications and measurements of

total energies of photons and electrons. The energy resolution of the PbSc calorimeter is

8.1%/
√
E[GeV ]⊕2.1% and the timing resolution is around 300 psec for photons. Because

charged hadrons deposit a small fraction of those energies, PbSc also provides an arrival

time of charged pions, kaons and protons. Using charged pions, the timing resolution is
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Figure 3.14: A cutaway view of lead-scintillator calorimeter module.

evaluated to be around 400 psec.

3.4 Trigger and Data acquisition system

As described above, the PHENIX detector consists of several subsystems, and each has

hundreds to thousands readout channels. To handle a high rate and a large amount of

data, the PHENIX data acquisition (DAQ) system is designed by using the pipeline pro-

cessing technique which is performed by simultaneous triggering and readout. Fig.3.15

illustrates the block diagram of the DAQ system in detail. The PHENIX online system

has two types of triggering levels, called the Level-1 (LVL1) and Level-2 (LVL2) triggers.

The LVL1 trigger system is comprised of the Local Level-1 (LL1) systems which com-

municate with some participant detectors, and the Global Level-1 (GL1) system which

provides a trigger decision according to the LL1 algorithm. If the LVL1 trigger accepts a

collision event, the LVL1 trigger sends a signal to the Granule Timing Module (GTM) in

conjunction with the RHIC clock provided by the the Master Timing Module. The GTM,

which is equipped on each detector, requires the Front End Module (FEM) to send its
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Subsystem Resolutions

BBC σt0 ∼ 20 psec, σzvertex ∼ 0.6 cm

ZDC σzvertex ∼ 2.5 cm

DCH σα ∼ 1 mrad, σz ∼ 2 mm

PC1 σr-φ ∼ 2.5 mm, σz ∼ 1.7 mm

PC2 σr-φ ∼ 3.9 mm, σz ∼ 3.1 mm

PC3 σr-φ ∼ 4.6 mm, σz ∼ 3.6 mm

TOF σt ∼ 110 psec

PbSc σE/E = 8.1%/
√
E ⊕ 2.1%,

σt(photon) <300psec, σt(hadron) <400psec

PbGl σE/E = 5.95%/
√
E ⊕ 0.76%

Table 3.2: Summary of resolutions of the PHENIX subsystems for Year-2 running.

digitized data to the Data Correction Module (DCM). The DCM is designed to compress

the large uncompressed raw data and send the data to the Event Builder (EvB). Finally,

the EvB assembles the events in the final form.

The beam crossing rate of Au+Au at
√
sNN = 200 is 9.4 MHz and the Luminosities of

2×1026cm−2s−1. On the other hand, the maximum average of the PHENIX LVL1 trigger

rate is about 25 kHz for Au+Au data taking. Therefore, the LVL2 trigger is designed

to select potentially interesting events for all colliding species and to reject uninteresting

events for the reduction of the data to the designed data acquisition rate.
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Figure 3.15: A block diagram of the PHENIX data acquisition system.
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Data Analysis

4.1 Run summary and event selection

In the Year-2 Au+Au running at RHIC, the PHENIX experiment took two types of

physics events by the LVL-1 and LVL-2 triggers. The “minimum bias” events have been

taken by the LVL-1 trigger determined by the two LL1 trigger requirements for BBC and

ZDC as:

• At least two PMTs are fired in each of two (North and South) BBCs. And the

collision vertex (Zvertex) measured by BBC is within ± 75 cm from the center of the

central spectrometers.

• At least one forward neutrons has to be registered in each of two ZDCs.

The minimum bias events include collision events from central to peripheral in 92% of the

interaction cross section.

The interaction rate of the LVL-1 trigger is about 1400 Hz which corresponds to a data

rate of 224 MB/s while the maximum event rate achieved by the data rate of PHENIX

DAQ system during Year-2 operation is about 140 MB/s. The LVL-2 trigger is used

to take only interesting physics events, which for example have high pT particles, single

electron (muon), electron (muon) pair, allowing to process all minimum bias triggers at

the available maximum DAQ throughput and to reduce the data volume sufficiently so

that all events accepted by the rare event triggers could be written to disk.

43
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The PHENIX accumulated the integrated luminosity
∫
Ldt ∼ 24 mb−1 which corre-

sponds to 170 M minimum bias events in total for Year-2 Au+Au run. Fig. 4.1 shows

a summary plot of luminosity measured by 4 experiments at RHIC. Out of the 170 M

events, about 92 M events are taken as minimum bias events and about 14 M “rare”

(about 64 M “non-interesting”) events are taken (rejected) in the LVL-2 trigger. This

analysis is based on about 90 M minimum biased events with the full magnetic field (0.78

T·m). In offline analysis, we required only one event selection cut to the minimum biased

events as:

• The collision vertex position measured by BBC has to be Zvertex < 30 cm.

After the above an event selection, we finally selected 23.1 M “good” events in total, which

were guaranteed as high quality data enough for this analysis. The used run number is

listed in table 7.1.

Figure 4.1: Luminosities estimated by PHENIX (blue), STAR (red), PHOBOS (green)

and BRAHMS (black) for Year-2 Au+Au running.
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4.2 Identical pair reconstruction

4.2.1 Track reconstruction and qualification

d
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Figure 4.2: A schematic illustration of the Hough transform parameters φDCH and αDCH.

Track reconstruction for charged particles in the central arm is performed by using its

hit information at DCH and PC1. In the DCH, the track finding is performed based on the

Combinatorial Hough Transform (CHT) technique [45]. In this technique, trajectories of

charged particles are determined in two dimensional coordinate space from those hits on

X-wires of DCH, as shown by a schematic illustration in 4.2. The two-dimensional space

is defined by the polar angle φDCH at the intersection of the track with a radius at the mid

point of the DCH (R = 220 cm), and the inclination angle of the track αDCH at the point.

The αDCH is the angular deflection from a straight line of φDCH and proportional to the

inverse of the transverse momentum in the magnetic field bend plane. The z information

of charged tracks is obtained by using stereo wires, called U,V-wires, of the DCH with the

resolution of σ ∼2.0 mm. In the reconstruction model used in this study, more precise

z information is actually provided by PC1 with the resolution of σ ∼1.7 mm. Thus we
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required the projection of reconstructed track onto the PC1 has an associated cluster. In

addition, we required the reconstructed track to have hit on U,V-wires also for the track

qualification. The details of the CHT technique and track reconstruction at PHENIX can

be found in references [44, 45].

Momentum for each charged particle is reconstructed from its azimuthal and polar

angles determined by DCH and PC1, and the vertex position measured by BBC. Since

the analytical determination of momentum at PHENIX central spectrometers is too com-

plicated to solve due to its non-uniform integrated magnetic field, so a look-up table has

been used to determine the momentum. In the Year-2 calibration, the momentum reso-

lution is δp/p ' 0.7% ⊕ 1.0% × p (GeV/c), where the first term is due to the multiple

scattering before the DCH and the second term is the angular resolution of the DCH.

4.2.2 Track matching to EMCal cluster

The arrival time of particles of interest for this analysis, namely charged pions, are mea-

sured by EMCal (PbSc) at the west central spectrometer. To remove ghost tracks and

also accidentally mis-identified tracks, each track is required to have an associated hit on

the EMCal within an acceptable σ of the track’s projection to the EMCal, where σ refers

to the resolution of the projection. We call this method as “track matching” cut for the

track qualification. The track matching cut is done in two directions, φ and z, separately

defined as:

∆φmatch = φclus − φproj = tan−1(yclus/xclus)− tan−1(yproj/xproj) (4.1)

∆zmatch = zclus − zproj, (4.2)

where xproj, yproj and zproj are the projection of each track onto the EMCal surface, and

xclus, yclus and zclus are the hit position of a EMCal cluster which is nearest from the

track’s projection. Left two panels in Fig. 4.3 show the contour plots of ∆φmatch (top)

and ∆zmatch (bottom) versus signed momentum. The resolutions of track matching in

φ (σφ) and z (σz) directions are evaluated by Gaussian fits of the residual distributions

of track matching in each 100 MeV slice of momentum. Right two panels in Fig. 4.3
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Figure 4.3: Track matching between reconstructed track and its associated cluster on

EMCal. (a) and (c) show contour plots of residuals of track matching in φ and z direction

versus signed momentum. The right panels show the momentum dependence of the

matching resolution for positive charged tracks in φ (b) and z (d) directions. The overlaid

lines are fits of an exponential function.

show σφ and σzs for positive charged tracks as a function of momentum. The momentum

dependences of σφ and σz are parameterized by the fit of an exponential function, as

shown by curves in Fig. 4.3, then we require tracks to be within 2-σφ and 2-σφ from

the center of widths. These matching cuts are done for positive and negative charged

particles, separately. Then, we finally obtained an arrival time of each associated track

on EMCal.

4.2.3 Particle identification

For each track which is qualified by track selection and matching cuts described above,

we measured its mass by using time-of-flight technique. The time-of-flight (T ) of each
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Figure 4.4: Scatter plot of signed momentum versus squared mass reconstructed using

EMCal’s timing information. Overlaid dashed lines mean 1.5-σ width of estimated squared

mass resolution for pions, kaons and (anti-)proton. Charged tracks, in the regions within

1.5-σ from pion mass peaks and 1.5-σ away from kaon mass peak and 0.2 < |p| < 2.0

GeV/c as shown solid lines, is identified as pions for this analysis.

particle was determined by the difference between a start time measured by BBC and an

arrival time by EMCal as:

T = TEMC − tT0. (4.3)

For EMCal, run-by-run and tower-by-tower timing offsets are calibrated using photons so

that the arrival time of photon is set to zero. Thus, the arrival time of each particles is

determined by its arrival time plus the ideal time of flight of photon for the length from
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Figure 4.5: The left panel shows a squared mass distribution of positive particles in a

momentum slice between 0.6 < p < 0.7 GeV/c (left). The red and blue lines show the

real and background distributions. The right panel shows squared mass resolution (σm2)

as a function of momentum.

collision vertex to the particle hit position as:

TEMC = T0EMC +
√
x2

clus + y2
clus + (zclus − Zvertex)2/C. (4.4)

As described in the previous subsection, momentum for each particle (p) were determined

from its curvature in the magnetic field by using the track model. In addition, the track

model provides its flight path-length (L) from the collision vertex to the hit position on

EMCal for each particle. Using these parameters, the squared mass for each particle was

measured as:

m2 = p(
T 2c2

L2
− 1). (4.5)

A scatter plot of signed momentum versus the calculated squared mass is shown in

Fig. 4.4. A squared mass distribution of positive charged particles in the slice of 0.6−0.7

GeV/c is shown by the red in the left panel in Fig. 4.5. To account for the background

distribution due to the accidental hit on EMCal cluster, we use “z-flip” technique. In the
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technique, the projection of each track onto EMCal in z direction zproj is converted to the

opposite signed value, −zproj, then applied the same 2-σ matching cut to the z-flipped

track to find out an accidentally associated cluster. Using the arrival time of the cluster,

the background distribution of squared mass is evaluated by Eq. 4.5, as shown by the

blue in the left panel in Fig. 4.5. After subtracting the background from the real mass

squared distribution, we fit pion peak with a Gaussian function to estimate the squared

mass resolution as a function of momentum range, as shown in the right panel in Fig. 4.5.

Assuming the error on the path-length can be neglected, the resolution of squared mass

has been parameterized as:

σm2(p) =

√√√√ σ2
α

K2
l

(4m2p2) +
σ2

ms

K2
l

[4m4(1 +
m2

p2
)] +

σ2
t c2

L2
[4p2(m2 + p2)], (4.6)

where σα and σms are an angular resolution of αDCH and a contribution from multiple

scattering at DCH [46], which have been fixed in Run-2 to be σalpha= 0.86 mrad and

σms = 0.835 mrad, respectively. K2
l is an angular field kick parameter, which has been

determined to be 84 mrad/GeV in the previous analysis. From the fit of measured

σm2(p) with Eq. 4.6, the timing resolution of EMCal (PbSc) σt is evaluated to be ∼500

psec. Using the momentum dependent squared mass resolution, pions are selected by a

requirement that its squared mass must be lie within 1.5-σ of their squared mass peak

but 1.5-σ away from the kaon PID bands, as shown by solid curves in Fig. 4.4. After

the PID qualification cut, about 45 million positive pions and 51 million negative pions

are selected in a momentum range from 0.2 to 2.0 GeV/c for the most central 92% of

collisions. The number of events and tracks utilized in this analysis are summarized in

Table 4.1.

4.2.4 Signal and background pairs

Using identified charged pions, I assemble like-sign pion pairs. “Signal” pairs are assem-

bled from all possible pair combination of like-sign pions in each event. For example, if

one event contains 4 positive pions, this algorithm returns 6 positive pion pairs. Hence,

we explicitly required each event to have 2 positive and/or negative pions at least.
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(1) Minimum biased events ∼92M

(2) “good” events 23.1M

(3) Total num. of tracks in (2) 2751.2M

(4) (3) + EMCal matching cut 683.7M

(5) (4) + DCH quality cut 261M

(6) (5) + PID cut π+: 84.8M (∼3.7/event)

π−: 93.1M (∼4.0/event)

(7) pion pairs made from (6) π+π+: 110.4M, π−π−: 139.8M

(8) (7) + pair separation cut π+π+: 109.8M (∼4.8/event)

π+π+: 139.1M (∼6.1/event)

Table 4.1: Summary of utilized statistics of event, track and pair.

The product of two single particle probabilities, described in the dominator of Eq. 2.1,

is experimentally measured by using “mixing” technique, in which pairs are assembled

from different two events. We call it “background” pair hereafter. To make the back-

ground pairs, we hold a hundred events which were used for signal pair generation, then

all possible event combinations are assembled with a selection cut as:

|Zvertex(i)− Zvertex(j)| < 1.0 cm (i, j = 1, 2, 3, ..., 100, i 6= j). (4.7)

We call it “mixed event” hereafter. Then, the background pairs are assembled by the

combinations of two identical pions picked up from any different two mixed events. After

all possible background pairs are assembled using the first hundred events, we move on

to the next hundred events.

4.3 Two-track efficiency corrections

4.3.1 Monte Carlo data reconstruction

The two-particle correlation function could be degenerated experimentally by two-track

detection inefficiencies due to the finite resolution of detectors in a small relative sep-

aration. Thus the observation probability of the signal pairs for like-sign pions in low
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relative momentum are depend not only on the Bose-Einstein correlation and Coulomb

repulsion but also on the two-track detection inefficiencies while the background pairs are

independent of those effects. To correct only the effect due to the detection inefficiency

from the signal pair distribution, the Monte-Carlo (MC) detector simulation is applied to

estimate the correction factor for the DCH and EMCal. (Please refer to the next chap-

ter the Coulomb correction.) For the MC study, we generated about 150M events with

Zvertex = 0 and each event contains 10 positive pions. The 10 pions were generated to

reproduce pion momentum spectra measured by PHENIX at
√
sNN = 200 GeV [5], only

within its acceptance for the PHENIX west-arm in the full (0.78 T·m) magnetic field. Hit

responses in the detector components, such as electro-magnetic shower and Cherenkov

radiation, are emulated by the GEANT simulator [48]. The detector simulator outputs

the same raw data format as the real data. After reconstruction of simulated event data

from the raw data set, we applied the same track quality and EMCal association cuts

as those described in the previous section. Fig. 4.6 (left) shows a scatter plot of track

matching defined by Eq. 4.1 evaluated by the MC (∆φMC
match) versus momentum of pions,

and the right plot shows the resolution of track matching as a function of momentum. The

momentum dependence of matching resolutions from MC simulation is in good agreement

with that of the real data. We applied the same 2-σ matching cuts in φ and z directions

to the pion tracks of MC simulation as that used to real data.

Fig. 4.7 (left) shows the scatter plot of signed momentum versus squared mass of

simulated positive pions after applying the track qualification and matching cuts. Fig.

4.7 (right) shows the squared mass distribution of the simulated pions for momentum

range 0.7 < p < 1.0 GeV/c, comparing to that of charged particles of real data. We

applied the same PID cut to the simulated pions as the real data, namely 1.5-σ within its

pion peak for the momentum range between 0.2 to 2.0 GeV/c. After applying the PID

cut, about 18 million pions remain. Then we assembled pion pairs by using the same

method as that used for the real data. About 10 million simulated pion pairs are selected

and used for the pair inefficiency estimate.
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Figure 4.6: A scatter plot of ∆φmatch versus reconstructed momentum of simulated posi-

tive pions (left), and the resolution of track matching as a function of momentum (right)

comparing to that of real data for Year-1 and Year-2 running.

4.3.2 Two-track detection efficiency at DCH

Using MC simulation data, the two-track (pion pair) detection efficiency is defined by the

intensity of signal pion pairs relative to that of background pion pairs respectively. For

DCH, the efficiency is determined as a function of relative separations of the azimuthal

angle (∆φDCH) and the longitudinal distance (∆ZDCH) of pion pairs in DCH as:

εmix(∆φDCH) = AMC(∆φDCH)/BMC(∆φDCH)× norm., (4.8)

εmix(∆ZDCH) = AMC(∆ZDCH)/BMC(∆ZDCH)× norm., (4.9)

and AMC and BMC are signal and background pion pair distributions of MC data, re-

spectively. The yield of background pair distribution is normalized to that of signal pair

distribution at high ∆φDCH region where the perfect pair detection efficiency is expected

(∆φDCH > 0.1 rad).

Fig. 4.8 (left) shows the intensity of simulated positive pion pairs at DCH as a func-

tion of ∆φDCH and ∆ZDCH. There is a significant enhancement and suppression of the

two-track detection efficiency in small ∆φDCH and ∆ZDCH regions, which are due to ghost

tracks and a track sharing effect, respectively. After eliminating both signal and back-
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Figure 4.7: A scatter plot of signed momentum versus squared mass of simulated pos-

itive pions reconstructed by the PHENIX Monte-Carlo detector simulator (left), and a

comparison of squared mass distributions between the simulated positive pion and real

positive particles in a momentum range for 0.7 GeV/c < p < 1.0 GeV/c (right).

ground pairs in these small relative separation regions, the two-track detection inefficiency

is seen only in the small ∆φDCH while it is constant at unity in ∆ZDCH direction. Thus the

two-track detection efficiency of DCH is defined as a function of ∆φDCH, (εmix(∆φDCH)).

The estimated εmix(∆φDCH) is shown in the right panel of Fig. 4.8, where we removed

pairs in ∆ZDCH < 1 cm and ∆φDCH < 0.06 rad, ∆ZDCH < 5 cm and ∆φDCH < 0.03 rad

to avoid the ghost tracks and track sharing effect, respectively.

4.3.3 Multiple track reconstruction efficiency

So far we have been talking about the two-track detection efficiency in a case of a low

multiplicity event, as denoted as We denoted the multiplicity insensitive efficiency as

εmix(∆φDCH). In a realistic experimental condition, however, the two-track detection

efficiency is rather suppressed by the track multiplicity. The multiplicity dependence of

the two-track detection efficiency has been estimated by using an embedding technique.

In an embedding method, few simulation tracks are embedded into a minimum bias event
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Figure 4.8: Relative separations of simulated positive pion pairs at the DCH. The pair

distribution is statistically normalized by the background pair distribution. In the left

panel, the horizontal axis is ∆ZDCH and the vertical axis is ∆φDCH. The left panel shows

the ∆φDCH distribution after removing pairs in ghosting and significant pair inefficient

region.

of real data, then reconstructed as real tracks. In case of a high multiplicity event, some

of the embedded tracks must be lost due to the finite reconstruction capability of DCH

or anything else.

For the embedding, we prepared about one million minimum-biased real events in

Au+Au collisions at
√
sNN = 200 GeV, and 10 million MC events, each has 5 positive

pions emitted only to its acceptance region of the west central spectrometer. The pions

of each MC events were embedded into a real event which was randomly selected from

peripheral to central collisions, then pion pairs were assembled in the same manner as

that of real data. The multiplicity dependence of the two-track detection efficiency of

DCH, εmulti(∆φDCH), is defined as:

εmulti(∆φDCH) =
AMC

embed(∆φDCH)/AMC(∆φDCH)

BMC
embed(∆φDCH)/BMC(∆φDCH)

. (4.10)
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where AMC and BMC are signal and background pion pair distributions without embed-

ding, respectively, and AMC
embed and BMC

embed are those after embedded into real data. The

numerator AMC
embed/A

MC corresponds to the multiple track detection efficiency for signal

pion pairs, and the dominator BMC
embed/B

MC corresponds to that for background pion pairs.

The multiple track detection efficiencies are shown by Fig. 4.9, where MC events were

embedded into real data for 0− 30% centrality and 2-σ matching cuts have been applied.

In case of a matching to EMCal as shown by the left panel, the multiple track detection

efficiency of DCH is about 0.9 and it gently decreases as ∆φDCH decreases. In two-particle

analysis, a multiple track detection inefficiency for single-particle can be cancelled by di-

viding by its background pair distribution, BMC
embed/B

MC, as described in the denominator

in Eq. 4.10 and as shown by open red points in Fig. 4.9 (left).

The multiple track reconstruction efficiency, εembed, of pion pairs is shown in the right

panel in Fig. 4.9. For the efficiency correction of various data set from central to peripheral

collisions, we estimate the multiple track reconstruction efficiencies for 0-20%, 20-50% and

50-93% centralities, as shown in the left panel of Fig. 4.10. The efficiency εembed(∆φDCH)

for 50-93% centrality is almost unity because the track multiplicity is negligibly small in

the peripheral events. The total two-track detection efficiency of DCH can be determined

as:

εtotal(∆φDCH) = εmix(∆φDCH)× εembed(∆φDCH), (4.11)

Fig. 4.10 right shows εtotal(∆φDCH) for 3 different centralities.

4.3.4 Two-track detection efficiency at EMCal

Two-track detection efficiency of EMCal was estimated in the same manner as that of

DCH. For EMCal, the efficiencies are determined as a function of the relative separations

of the distance (∆REMC) of hit positions of pion pairs, and the total efficiency is expressed

as:

εtotal(∆REMC) = εmix(∆REMC)× εmulti(∆REMC), (4.12)
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Figure 4.9: The left panel shows pair reconstruction efficiencies as a function of ∆φDCH

for signal (filled symbols) and background (open symbols) pairs estimated by embedding

for the top 30% centrality. The right panel shows the normalized pair reconstruction

efficiencies.

where ∆REMC defined as:

∆REMC =
√

(xclus1 − xclus2)2 + (yclus1 − yclus2)2 + (zclus1 − zclus2)2. (4.13)

The two-track detection efficiency of EMCal in low multiplicity event εmix(∆REMC) was

estimated by using the same data set as one used for the estimate of εmix(∆φDCH), which

is defined as:

εmix(∆REMC) = AMC(∆REMC)/BMC(∆REMC)× norm., (4.14)

where the background pair distribution, BMC, is normalized to the yield of the signal pair

distribution, AMC, at ∆REMC > 20 cm.

The multiple track detection efficiency of EMCal εmulti(∆REMC) was estimated by

using the same data set as one used for the estimate of εembed(∆φDCH), which is defined

as:

εmulti(∆REMC) =
AMC

embed(∆REMC)/AMC(∆REMC)

BMC
embed(∆REMC)/BMC(∆REMC)

. (4.15)
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Figure 4.10: Multiplicity dependent pair reconstruction efficiencies εmulti(∆φDCH) for 0-

20%,20-50% and 50-93% centrality classes (left), and total pair reconstruction efficiencies

εtotal(∆φDCH) (right).

Estimated εmulti(∆REMC) for different centrality classes are shown in the Fig. 4.11. Since

the εmulti(∆REMC) doesn’t show a significant inefficiency beyond its statistic error even

for the central collision. we define the total two-track detection efficiency at EMCal as:

εtotal(∆REMC) = εmix(∆REMC). (4.16)

Finally, the correlation function including the correction for its two-track detection

inefficiency was obtained as:

Craw
2 (∆φDCH,∆REMC) =

Cmeasure
2 (∆φDCH,∆REMC)

εtotal(∆φDCH) · εtotal(∆REMC)
. (4.17)

4.3.5 Two-track qualification cuts

Fig. 4.12 shows the intensity of positive pions of real data normalized by the background

pairs as a function of ∆φDCH and ∆ZDCH. As shown by the left panel, there is a significant

suppression of the detection efficiency for pion pairs in a small ∆φDCH and ∆ZDCH region.

Also the right panel shows a steep rise in a small ∆φDCH and ∆ZDCH region due to ghost
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Figure 4.11: Two-track detection efficiencies of EMCal. The two-track detection efficiency

in low multiplicity event (εmix(∆REMC)) is shown by open triangle. Multiple track detec-

tion efficiency (εmulti(∆REMC)) of simulated pion pairs for 0-20% (red), 20-50% (purple)

and 50-93% (blue) centralities. The ∆REMC distribution of positive pions of real data is

shown by filled triangle.

tracks. To avoid the significant suppression region and ghost tracks, we applied following

two-track qualification cuts to both signal and background pairs.

∆ZDCH > 1.0 cm “OR′′ ∆φDCH > 0.06 rad,∆ZDCH > 5.0 cm “OR′′ ∆φDCH > 0.03 rad.

(4.18)

As described in the previous section, the two-track detection inefficiency as a function

of ∆φDCH was corrected by using MC simulation. In addition to the correction, we applied

a two-track qualification cut to both signal and background pairs as:

∆φDC > 0.005 rad. (4.19)

because a strong suppression of the yield of signal pairs compared to that of background

pairs still remains in the very small ∆φDCH region even after the inefficiency correction

by MC.
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Figure 4.12: Relative separations of positive pion pairs in ∆φDCH versus ∆ZDCH (left) and

its lego plot (right). The pair distribution is statistically normalized by the background

pair distribution.

As shown by Fig. 4.11, the intensity of pion pairs measured by EMCal drops at a small

∆REMC less than 15 cm and is completely suppressed less than 6 cm due to the cluster

sharing with nearby tracks. Although the inefficiency was corrected by using the MC

simulation, in case the statistics error of MC data became significant at a small ∆REMC.

To avoid such a significant statistical error, we required a two-track qualification cut to

both signal and background pairs as:

∆REMC > 8.0 cm (4.20)

The total number of charged pion pairs utilized in this analysis are summarized in

Table 4.1.



Chapter 5

Coulomb Interaction

Two different types of Coulomb corrections and fitting methods for charged pion pairs

are explained. An unlike-sign correlation function (π+π−) and a simulation study for the

Coulomb correction are presented. The total systematic error, mainly originates from the

Coulomb and two-track detection efficiency corrections described in the last chapter, is

described in the last section of this chapter.

5.1 The conventional Coulomb correction

5.1.1 Coulomb strength estimation

Any final state interactions (FSI), most likely due to Coulomb force between adjacent

charged tracks, degenerate the Bose-Einstein correlation. The repulsive Coulomb force

between like-sign pairs disturbs its relative momentum and strongly suppresses its yield

at the relative momentum q = p1 − p2 ∼ 0, and the effect has to be removed from the

Bose-Einstein correlation. Since it is too complicate to solve a multi-body Coulomb effect,

we can approximately evaluate the suppression factor of pair in the relative momentum q

based upon two-body Coulomb effect, and remove the contribution of the Coulomb effect

from the correlation function.

If we know the quantum information of the particle source, we basically can calculate

the Coulomb effect, but we are not able to know all the quantum information of the

61
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source in realistic methods. Therefore I assume a geometrical source volume first, and

then calculate the Coulomb strength of each pair in the volume by using the Coulomb wave

function integration method [49]. The detailed description of the Coulomb wave function

can be found in the appendix of a text book written by Messiah [50]. In the correction

method, a Gaussian source volume is assumed from HBT radius parameters, which is

evaluated beforehand. Then, initial space points of each pair are randomly determined

according to the Gaussian distribution. With a measured relative momentum and the

initial space separation of the pair, a probability amplitude is calculated by using two-track

wave function with Coulomb term, and normalized by an alternative probability amplitude

calculated without the Coulomb term. For the accuracy, the probability amplitude is

integrated and averaged over several points on the Gaussian distribution. The normalized

probability amplitude corresponds to the suppression factor for each pair. 20 sampling

points are averaged over for speeding up of the calculation but the evaluated Coulomb

strength is consistent with that of 100 sampling points within 1%.

5.1.2 Outline of Coulomb correction procedure

Coulomb correction is necessary for the extraction of the HBT radius, while the calculation

of the Coulomb wave function requires the HBT radius for its input parameter. To solve

this issue, an “iterative” Coulomb correction method is used here. At the first process of

the iterative Coulomb correction, each pair is applied to the Gamov Coulomb correction,

which is the limit of the Coulomb wave function for a point-like source defined as:

Cgamov =
2πη

e2πη − 1
(η = mα/q) , (5.1)

where η is comprised of an ideal pion mass m, the fine structure constant, α, and the

relative momentum of pair, q. Then, the 1-dimensional and 3-dimensional Bose-Einstein

correlation function with the Gamov Correction is fitted to Eq. 2.11 and Eq. 2.15,

respectively, providing a roughly estimated HBT radii. At the next step, Coulomb effect

on each pair is further precisely evaluated by using the Coulomb wave function assuming a

finite volume, which is obtained from the previous step. The iterative Coulomb correction
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lasts until the output HBT radius become consistent with the input HBT radius within

an acceptable accuracy.

In the traditional Coulomb correction method, which has been used over the past sev-

eral years in Bose-Einstein correlation analyses, all like-sign pairs are uniformly applied to

the Coulomb correction described above. The correction method is called “full” Coulomb

correction hereafter. To compare with those results, I also utilize the full Coulomb cor-

rection method. This full Coulomb correction procedure and the calculation code used

in this analysis have been built based upon the Coulomb correction algorithm used by

NA44 experiment [27]. The correction method, for the 1-dimensional analysis, requires

the one-dimensional HBT radius, Rinv, and an invariant relative momentum, qinv. For the

3-dimensional analysis, the Bertsch-Pratt radius parameters, Rside, Rout and Rlong, in the

LCMS frame are utilized as input parameters, then calculates the Coulomb strength of

each pair using corresponding 3-dimensional relative momenta, qside, qout and qlong. Fig.

5.1 shows the 1-dimensional Coulomb correlation as a function of qinv, estimated from

the ratio of the qinv distribution for π+π+ with the full Coulomb correction to the same

distribution without any Coulomb correction. The Coulomb effect can be seen at low qinv

region less than 100 MeV/c.

For a cross check, I also used the Coulomb correction code which was developed by

AGS-E866 experiment [24]. In the E866-type’s full Coulomb correction, the Coulomb

interaction of pairs is corrected in the pair center-of-mass frame, which just requires the

one-dimensional parameters, Rinv and qinv. The Coulomb correction factors calculated by

these two codes are quite consistent with one another, and the systematic error on the

resulting HBT radius parameters depending on the correction frame is less than 1%.

5.2 New Coulomb correction

5.2.1 Contribution from Long-live particles

In RHIC energies, lots of heavier particles and resonances could be produced in collisions

more than those at AGS-SPS energies, and therefore, some pions could be decay products
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Figure 5.1: A histogram of Coulomb correlation as a function of qinv, estimated by the

full Coulomb correction with a input source size of 5 fm using π+π+ for kT = 0.2 − 2.0

GeV.

of long-lived particles, such as η, η′ and K∗. Those pions, which are produced mostly

out of the HBT radius, may experience a negligibly small Coulomb force from another

like-sign pions. Thus, the full Coulomb correction, in which all pions are assumed to be

produced in a well localized source within the given HBT radius parameters, is considered

to be unable to deal with the Coulomb correction properly for such long-lived particles,

and could be a somewhat excessive evaluation.

To evaluate how much Coulomb strength (λ+−) contribute to the correlation function

in the real data, I measured the unlike-sign (π+π−) correlation function using the same

data sample as the like-sign correlations. The π+π− correlation function is expected to

be affected by the Coulomb effect but not by the Bose-Einstein correlation. Fig. 5.2

shows 1-dimensional π+π− correlation function for kT = 0.2 − 2.0 GeV/c at the most

0 − 30% central collision. The overlaid histograms are Coulomb correlation functions,
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which are estimated in the same way as for Fig. 5.1, for 3 different partialities [%] of

Coulomb correction. Here, the percentage of Coulomb correction means the proportion

of the number of corrected pairs to the total pairs, namely 100% and 0% partial Coulomb

correction corresponds to the full and no Coulomb correction.

To compare the Coulomb attractive force of the unlike-sign pion, the calculated

Coulomb correlation functions are reversed around unity. A chi-square test between the

π+π− correlation function and the “reversed” Coulomb correlation functions varied from

0% to 100% partiality, yields the fraction of partial Coulomb strength λ+− to be 0.50±0.04

with χ2/DoF = 3.0. In this fitting test, I removed the lowest qinv bin (<10 MeV) where

the difference of Coulomb effects between like-sign and unlike-sign pairs becomes signifi-

cant [33]. This evaluation indicates that the full Coulomb correction, in which λ+− = 1.0

is assumed, could be an excessive correction method in RHIC energies.

5.2.2 Coulomb correction based on core-halo model

A new Coulomb correction based upon a picture of the “core-halo” source structure is

being recently developed by Sinyukov [33] for a realistic Coulomb correction rather than

the full Coulomb correction for charged pions in relativistic heavy-ion collisions.

Charged pions originated from long-lived particles experience negligibly small Coulomb

forces comparing to pions emitted from the well localized “core” source. Also they obvi-

ously do not contribute to the Bose-Einstein correlation function of the core source. In

other words, they form a “halo” structure which is much larger (e.g. ∼40 fm) than that

of the core source, and the Bose-Einstein enhancement of the halo structure make a very

narrow peak at q ∼0. Since such a narrow correlation function can not be resolved by

the experimental momentum resolution, it may contribute only to the λ parameter [34].

In the picture of core-halo structure of source, the λ parameter can be parameterized [51]

as:

λ = (Nc/(Nc +Nh))
2 (5.2)

where Nc is the number of core pions which directly emitted from the source or originated
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Figure 5.2: One-dimensional correlation function of unlike-sign pion pairs (π+π−) for

kT = 0.2 − 2.0 GeV/c at the top 30% centrality. Overlaid histograms correspond to

the Coulomb correlation functions for 20% (dotted) and 50% (solid) partial Coulomb

corrections, and the full Coulomb correction (dashed), which are reversed around unity.

from short-lived resonances particles, while Nh is the number of halo pions originated

from long-lived resonances and particles.

In this new Coulomb correction method, the Gaussian fit function is decomposed into

the core and halo parts as defined by:

C2(raw) = C2(core) + C2(halo)

= [λ(1 +GBE)]Fcoul + [1− λ], (5.3)

where

Fcoul = ω(kT)(Fcoulomb(qinv)− 1) + 1, (5.4)

ω(kT) = λideal/λ and (5.5)

GBE = exp(−Rinv
2qinv

2)
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= exp(−Rside
2qside

2 −Rout
2qout

2 −Rlong
2qlong

2). (5.6)

Fcoul is the full Coulomb correction term as a function of qinv, and is applied only to

the core part. A complementary 3-dimensional histogram as a function of qside, qout and

qlong, which contains mean qinv values in each of the 10 MeV/c bins, is prepared for the

correction of the 3-dimensional correlation function. The Fcoulomb(qinv) is derived from

the ratio of π+π+ distribution as a function of qinv with no Coulomb correction to the

same histogram of π+π+ with the full Coulomb correction, which is just reverse of Fig.

5.1. The momentum smearing effect on the Coulomb correlation function is already taken

into account in Fcoulomb(qinv). In addition, the Coulomb correlation function, which can

be scaled with λ parameter, is suppressed by the finite momentum resolution on the

measured λ parameter. The correction factor, ω(kT), is evaluated from the ratio of the

ideal λ parameter (λideal) without momentum resolution to the measured λ parameter with

finite momentum resolution, as defined in Eq. 5.6. In this analysis, ω(kT) is estimated by

using simulated Bose-Einstein correlation with MC detector simulation described below.

5.3 Systematic error by Coulomb correction

The new Coulomb correction would cause systematic errors on resulting HBT radii due to

a momentum resolution effect on the λ parameter and a contribution from intermediate-

lived particles such as ω. These systematic errors can be estimated by using MC simulation

and an alternative Coulomb correction method.

5.3.1 Momentum resolution effect

The new Coulomb correction defined by Eq. 5.3 requires the ideal λ parameter, λideal,

which does not suffer from any experimental resolution. In a realistic experimental con-

dition, however, the λ value is slightly suppressed by a finite momentum resolution. The

correction factor, ω(kT), incorporated in the new Coulomb correction as defined by Eq.

5.6, can be estimated by using MC detector simulator.
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Figure 5.3: Simulated Bose-Einstein correlation functions of MC positive pion pairs for

3 different kT bins, 0.20−0.42 GeV/c (top), 0.42−0.60 GeV/c (middle) and 0.60−2.00

GeV/c (bottom), as a function of qside (left), qout (center) and qlong (right). The red and

blue points are obtained with and without a finite momentum resolution.

I used the same simulation data sample as one used for the pair efficiency correction,

described in section 4.3, for ω(kT) estimate. Since the momentum resolution essentially

gets worse as kT increases, the ω(kT) might depend on kT accordingly. To investigate

the kT dependence of ω(kT), I divide the data sample of pion pairs into 3 different kT

bins, 0.20−0.42, 0.42−0.60 and 0.60−2.00 GeV/c. Each pion pair is weighted by the

Bose-Einstein enhancement, which is approximately evaluated based on Eq. 2.11 with

its relative momentum q and an input HBT radius parameter. The input HBT radius

parameter is obtained from the fit of the correlation function of real data measured in
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Figure 5.4: Fitted λ parameters with and without a finite momentum resolution for 3

different kT bins. The correction factor ω(kT), which is defined as the ratio of these λ

parameters, is shown by open square.

similar kT region. Fig. 5.3 shows the 3-dimensional Bose-Einstein correlation function of

positive pion pairs obtained from the MC simulation for the 3 kT bins. The 3-dimensional

correlation function is projected onto qside, qout and qlong directions for the orthogonal

components less than 40 MeV/c. Compared to the ideal correlation function without

finite momentum resolution (blue symbol), the correlation functions after reconstructed

by the detector simulator with a finite momentum resolution is slightly suppressed (red

symbol).

Fig. 5.4 shows the fitted λ parameters w/o the momentum resolution as a function of

kT. The suppression factor ω(kT), which is estimated from the ratio of those λ parameters,

is about 1.2 and less sensitive to kT in the measured momentum range owing to the good

momentum resolution at PHENIX. The ω(kT) derived from the MC simulation is still

consistent with unity within the statistical error. Therefore, the ω(kT) is set to 1 in this

analysis and the contribution from the finite the momentum resolution is included as a
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systematic error due to the new Coulomb correction, which is evaluated from differences of

resulting HBT radii between with (ω(kT) ∼ 1.2) and without (ω(kT) = 1) the momentum

resolution.

5.3.2 Another new idea of Coulomb correction

The new Coulomb correction based on a core-halo structure assumes that Coulomb effects

for pairs in the halo part are negligibly small. In order to test the underlying hypothesis

of the new Coulomb correction, I fit the strength of the Coulomb interaction (λ+−) to the

unlike-sign correlation function and obtained a value for λ+− ∼ 0.50, as described above.

This value is clearly inconsistent with the full strength Coulomb correction, but it is also

significantly greater than the value of λ. I attribute this difference to the ω resonance,

which is sufficiently long-lived to be unresolved with Bose-Einstein correlations, but may

contribute significantly to the Coulomb interaction.

To account for this contribution, I suggest an alternative formula to Eq. 5.3, in which

the total Coulomb strength is fixed at λ+− = 0.5, but the fraction of pairs which contribute

to both Bose-Einstein and Coulomb effects are allowed to vary to fit the data, as defined

by:

C2(raw) = C2(core) + C2(Coulomb− only) + C2(halo)

= [λ(1 +GBE)]Fcoul + [λ+− − λ]Fcoul + [1− λ+−] (5.7)

In applying this formula, I still calculate the additional Coulomb fraction using the

Bertsch-Pratt source of approximately 5 fm, rather than estimating the larger source

distribution for the ω decay products. Therefore I use this formula to provide an upper

bound on the effect of the additional Coulomb interaction.

The difference of resultant HBT radius parameters obtained from fits to Eq. 5.3 and

Eq. 5.7 are included as a systematic error of the partial Coulomb correction.
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5.4 Total systematic error

Here, I explain the remaining systematic errors except the systematic error due to the

Coulomb correction, and the corresponding total systematic errors. Any other final-state

strong interaction except for the Coulomb effect is not corrected because it is expected

to be negligibly small compared to the Coulomb interaction [52]. Each and the total

systematic errors on the HBT radius parameters are summarized in Table 5.1. For its

detailed study, the total systematic errors are estimated for each of nine kT and nine

centrality classes, as shown by 5.5.

• Pair separation cuts.

The uncertainty of the resultant radius parameters originated by pair separation

cuts is not negligible. Since the reconstruction inefficiency of pairs basically appears

at its low relative separation region in which the HBT effect also significant, the

separation cuts for pairs at low relative separation obviously degenerates the Bose-

Einstein enhancement. I evaluate the systematic errors due to the pair separation

cuts by varying the cut conditions.

For example, the applied nominal separation cut for EMCal is ∆REMC > 8.0 cm .

In case, I apply a separation cut which is twice as large as the nominal separation

pair cut, as defined by ∆ZEMC > 16.0 cm . Then, the systematic errors of HBT

radii due to the pair separation cut are estimated from the differences of resultant

HBT radii between above two cuts. Also a similar estimate of the systematic error

is performed for the pair separation cuts at DCH.

• MC corrections.

The inefficiencies of two-track detection with DCH and EMCal have been corrected

by using GEANT-based MC simulation. Due to the finite statistics of MC data,

however, those inefficiency corrections also have statistical uncertainties. I account

the statistical uncertainty of the the two-track detection inefficiency corrections
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systematics [%] λinv Rinv λ Rside Rout Rlong Rout/Rside

Mom. resolution on λ 6.35 1.15 5.38 2.02 0.92 1.66 2.93

Intermediate resonance 13.32 2.03 5.49 1.71 1.80 1.72 3.52

Pair cut for DCH 6.85 3.66 6.77 1.60 3.13 4.33 1.85

Pair cut for EMCal 4.18 1.68 3.13 1.33 0.86 1.69 1.15

MC correction for DCH 2.13 1.99 1.02 1.57 3.25 3.94 4.82

MC correction for EMCal 1.13 0.24 1.05 0.28 0.33 0.75 0.61

Residual HBT effect 0.55 1.35 0.36 1.57 1.66 1.55 0.30

Table 5.1: Systematic errors of the one-dimensional and three-dimensional (Bertsch-Pratt)

radius parameters in the LCMS. Errors are expressed as a percentage of the measured

radius parameters.

by MC as a systematic error. I artificially varied the correction factors within

the statistical errors, then the systematic errors is evaluated from the maximum

differences of resulting HBT radii obtained in the variation.

• Residual HBT effect.

In case of a small acceptance detector, a residual Bose-Einstein correlation effect

in each single track is not negligible [23], and it contaminates each track of the

background pairs. In NA44’s analysis [27], the residual HBT effect was estimated

and corrected by applying HBT weight to background pairs randomly by using

real event. Also in this analysis, I estimated the residual HBT effect by using

the same algorithm as NA44’s method, and the systematic error of residual HBT

is estimated from the difference of resultant radius parameters between w/o the

residual correction code.
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Figure 5.5: Total systematic errors on one-dimensional radius parameters (top) and

Bertsch-Pratt radius parameters (bottom) as a function of Npart
1/3 (left) and kT (right).



Chapter 6

Results and discussions

In this chapter, results of one-dimensional and three-dimensional HBT radii for π+π+ and

π−π− at
√
sNN = 200 GeV in Au+Au collisions are shown as a function of three external

independent parameters, the mean transverse momentum of pair, kT, and the number of

participants, Npart. In addition, the comparison of the HBT radii with those of earlier

experiments shows those collision energy dependence. The detailed description on the

systematic errors of the HBT radii are in the last section.

6.1 Collision energy dependence

I present one-dimensional and three-dimensional correlation functions and the resulting

HBT radii. The three-dimensional HBT radii are compared to those of earlier experimen-

tal results to investigate the collision energy dependence. All of the HBT radii presented

in this section are obtained with the traditional full Coulomb correction.

6.1.1 One-dimensional correlation function

The Bose-Einstein correlation function is experimentally measured by the ratio of the

two-particle inclusive cross section to the product of the two single particle cross sections.

In case of pion pair, the correlation function is defined as:

C2(p1,p2) = N

(
σπ

d6σπ

d3p1d3p2

) / (
d3σπ

d3p1

d3σπ

d3p2

)

74
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Figure 6.1: qinv distributions of signal pairs (filled triangle) and background pairs (open

square) for π+π+ (left) and π−π− (right) with no Coulomb correction. Each distribution

of background pairs is normalized to the yield of its signal pairs.

=
A(q)

B(q)
(6.1)

where N is the normalization factor and A(q) is the intensity of signal pairs at a relative 4-

vector momentum, q (= p1−p2), and B(q) is the background pair distribution obtained

from mixed events. The detailed procedure to make signal and background pairs has

been described in section 4.2.4. Here, I introduce a Lorentz-invariant relative momentum,

qinv, given by Eq. 2.12, for the analysis of the one-dimensional correlation function.

Fig. 6.1 shows qinv distributions of signal pairs (filled symbols) and background pairs

(open symbols) for π+π+ (left) and π−π− (right) pairs. The background pair distribution

is normalized to the yield of signal pairs at the large qinv region (qinv > 0.2 GeV/c)

where Bose-Einstein and Coulomb effects are negligible. The correction factors for the

finite resolution of two-track reconstruction, which were evaluated by using MC detector

simulation described in section 4.3, are subjected to the signal pair distributions. The

ratio of the distribution of signal pairs to that of background pairs corresponds to the

correlation function.
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Figure 6.2: One-dimensional correlation functions of π+π+ (left) and π−π− (right) as a

function of qinv for kT = 0.2−2.0 GeV/c (〈kT〉 ∼ 0.46 GeV/c) for the top 30% centrality.

The filled triangles show correlation functions with pair efficiency corrections but without

any Coulomb correction, and the open circles show ones after the full Coulomb correction.

The error bars are statistical only. The lines overlaid on the open circles correspond to

fit of Eq. 2.11.

Fig. 6.2 shows the one-dimensional correlation functions of π+π+ (left) and π−π−

(right) pairs as a function of qinv, for the “semi-inclusive” kT range from 0.2 to 2.0 GeV/c

for the 0−30 % centrality of collisions. The mean kT is estimated to be 〈kT〉 ∼ 0.45

GeV/c. Eq. 2.11 is utilized to fit one-dimensional correlation functions, yielding HBT

radius parameters λinv about 0.4 and Rinv about 6 fm. The fit parameters are given in

Table 6.1.

6.1.2 Three-dimensional correlation function

As described in chapter 2, I choose the Bertsch-Pratt parameterization for three-dimensional

analysis, in which the relative momentum q is decomposed into sideward (qside), outward

(qout) and longitudinal (qlong) directions. Fig. 6.3 shows the three-dimensional correlation

function as a function of qside (left), qout (center) and qlong (right) for π+π+ (top) and
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Figure 6.3: Three-dimensional correlation functions of π+π+ (top) and π−π− (bottom)

projected onto each direction, qside (left), qout (center) and qlong (right), for the orthogonal

components of q less than 40 MeV/c. kT is between 0.2 GeV/c and 2.0 GeV/c (〈kT〉 ∼
0.46 GeV/c) for 0 − 30% centrality. The filled triangles show correlation functions with

pair efficiency corrections but without Coulomb correction, and the open circles show ones

after the full Coulomb correction. The error bars are statistical only. The curves overlaid

on the open circles show the 3-dimensional fit (Eq. 2.15) which is projected onto each

direction, as well.

π−π− (bottom) pairs at kT = 0.2−2.0 GeV/c for the 0−30 % centrality of collision. The

projections of the 3-D correlation functions are averaged over the lowest 40 MeV in the or-

thogonal directions. For example, in case of the correlation function as a function qside, the

other two variables, qout and qlong are projected on qside if |qout|, |qlong| < 40 MeV/c. The

filled triangles show the correlation functions with detector inefficiency corrections but

without any Coulomb correction, and the open circles show those with the full Coulomb

correction.

Eq. 2.15 is used to fit the three-dimensional correlation functions, yielding HBT

(Bertsch-Pratt) radius parameters λ, Rside, Rout and Rlong. The Bertsch-Pratt HBT radii,

Rside, Rout and Rlong are around 4−5 fm, as shown by Table 6.2.
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pair λinv Rinv χ2/DoF

π−π− 0.390±0.007 5.96±0.05 460/16

π+π+ 0.394±0.007 5.91±0.05 364/16

Table 6.1: One-dimensional fit parameters by Eq. 2.11 for π+π+ and π−π− for kT =

0.2-2.0 GeV/c at the top 0-30% centrality. All radii are in fm, and errors are statistical

only.

pair λ Rside Rout Rlong χ2/DoF

π+π+ 0.423±0.007 4.50±0.06 3.81±0.06 4.71±0.07 6196/4096

π−π− 0.441±0.007 4.50±0.06 3.87±0.06 4.80±0.07 6200/4096

Table 6.2: Three-dimensional (Bertsch-Pratt) fit parameters by Eq. 2.15 for π+π+ and

π−π− for kT = 0.2 − 2.0 GeV/c at the top 0 − 30% centrality. All radii are in fm, and

errors are statistical only.

6.1.3 Collision energy dependence of HBT radii

A source size at hadronic freeze-out stage is theoretically expected to become significantly

large due to the formation of QGP. To investigate the collision energy dependence of the

source size, hopefully searching for the formation of QGP, the HBT radii are compared

with those measured by earlier experiments at lower collision energies. Fig. 6.4 shows

the HBT radii measured from
√
sNN =2 GeV to 200 GeV in central Au+Au (AGS and

RHIC) and Pb+Pb (SPS) collisions [24, 25, 27, 28, 29]. The measured pair momentum

range is kT =0.3−0.5 GeV/c. The results by AGS-E895 between
√
sNN ∼ 2−4 GeV show

a rapid decrease of Rside. The decrease is considered to be originated from the increase

of a transverse flow with the energy of collisions. As was reported in [54], the transverse

flow velocity steeply rises in the AGS energies, where the thermal energy goes into kinetic

degrees of freedom, and saturates at ∼ 4 GeV. The HBT radii are less sensitive to the

collision energy above the saturation point of transverse flow up to the RHIC energy of

200 GeV; Rside and Rout are constant at about 4 fm, but Rlong is slightly increased from

about 4 fm to 5 fm. This excitation functions of HBT radii suggest that the transverse
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HBT radius is less sensitive to collision energy, while the longitudinal HBT radius looks

sensitive to the collision energy. If assuming that QGP is formed at RHIC at
√
sNN =

200 GeV but not at lower AGS energies at
√
sNN = 2 GeV, these results are obviously

contrary to a naive theoretical expectation. Furthermore, the fact that the HBT radii are

less sensitive to collision energy is a striking result comparing to the fact that the charged

multiplicity increases from hundreds to thousands between AGS-SPS energy region.

6.2 Centrality dependence

I study the centrality dependence of one-dimensional and three-dimensional correlation

function and resulting HBT radii. The centrality of collisions is expressed in terms of the

number of participant, evaluated by the Glauber calculation. The HBT radii are measured

as a function of the cubic root of the number of participants. The Bertsch-Pratt HBT

radii are also measured with new Coulomb corrections based on the core-halo structure.

6.2.1 Determination of the number of participants

Collision events are triggered by hit information on both ZDC and BBC as described in

chapter 3. Each event centrality is determined from the correlation between charge sum

deposited in BBC and energy sum deposited in ZDC, as shown by Fig.3.5, and the trigger

includes about 92±3% of the total inelastic cross section of 6.8 b [55]. A simulation of the

BBC and ZDC responses with a Glauber model [56, 57] is used to evaluate the number

of participating nucleons, Npart, in these event centrality classes. I divide the centrality

for 0−92% into nine different centrality classes, as listed in Table 6.3 where the averaged

number of participants, 〈Npart〉, with systematic error and the number of pairs in each of

those subdivided centrality classes are given. 〈Npart〉 reaches 351.4±2.9 for the top 5%

centrality and 17.1±3.3 at the most peripheral collision for 65−92% centrality. The cubic

root of the number of participants 〈Npart〉1/3, which is proportional to one-dimensional

geometrical size if three-dimensional volume is assumed to be uniformly comprised of

Npart, is also give in Table 6.3. The kT range is 0.2−2.0 GeV/c with 〈kT〉 ∼ 0.45 GeV/c
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Figure 6.4: Excitation functions of one-dimensional and Bertsch-Pratt HBT radii for cen-

tral nucleus-nucleus collisions. All HBT radii are measured for π−π− in Au+Au collisions,

except for NA44 which is for π+π+ in Pb+Pb collision. Error bars are statistical only.

for all of the centrality classes.
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class cent. [%] 〈Npart〉 sys.err. 〈Npart〉
1
3 sys.err. stat.(π+π+) stat.(π−π−)

inc. 0-92 109.1 4.1 4.78 0.18 108.52 M 137.48 M

semi 0-30 280.6 4.0 6.55 0.09 98.56 M 124.80 M

1 0- 5 351.4 2.9 7.06 0.06 32.64 M 40.80 M

2 5-10 299.0 3.8 6.69 0.09 23.21 M 29.24 M

3 10-15 253.9 4.3 6.33 0.11 16.81 M 21.39 M

4 15-20 215.3 5.3 5.99 0.15 12.10 M 15.51 M

5 20-30 169.3 5.3 5.53 0.17 13.80 M 17.86 M

6 30-40 116.7 4.7 4.89 0.20 6.14 M 8.01 M

7 40-50 76.4 4.0 4.24 0.22 2.44 M 3.20 M

8 50-65 44.5 3.4 3.54 0.27 0.97 M 1.28 M

9 65-92 17.1 3.3 2.58 0.50 0.14 M 0.19 M

Table 6.3: The definition of the inclusive, semi-inclusive and nine subdivided centrality

classes. The kT range is 0.2−2.0 GeV/c for all centrality classes. The mean of the number

of participant (〈Npart〉) in each centrality class is calculated based upon the Glauber model

[56]. The number of π+π+ (π−π−) pairs, analyzed for each of the nine centrality classes,

are given in million.



82 CHAPTER 6. RESULTS AND DISCUSSIONS

 [GeV/c]  invq
0 0.05 0.1 0.15

 [GeV/c]  
side

q
0 0.05 0.1 0.15

 [GeV/c]  outq
0 0.05 0.1 0.15

 [GeV/c]  
long

q
0 0.05 0.1 0.15

1

1.2

1.4

1

1.2

1.4

1

1.2

1.4

1

1.2

1.4

1

1.2

1.4

1

1.2

1.4

1

1.2

1.4

1

1.2

1.4

1

1.2

1.4

0 - 5 % centrality

5 - 10 % centrality

10 - 15 % centrality

15 - 20 % centrality

20 - 30 % centrality

30 - 40 % centrality

40 - 50 % centrality

50 - 65 % centrality

65 - 93 % centrality

<
40

M
eV

/c
] 

   
 fo

r 
9 

ce
nt

ra
li

ty
 b

in
s

or
th

og
on

al
) 

[q
si

de
,o

ut
,lo

ng
(q 2

) 
  o

r 
  C

in
v

(q 2
C

Figure 6.5: One-dimensional and three-dimensional correlation functions of π−π− for nine

centrality classes, as defined in Table 6.3, with the full Coulomb correction (open circle)

and without Coulomb correction (filled triangle). The projections of the three-dimensional

correlation functions are averaged over the lowest 40 MeV in the orthogonal directions.
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(Npart) for π+π+ (left) and π−π− (right), for kT = 0.2−2.0 GeV/c (〈kT〉 ∼ 0.45 GeV/c).

The results are obtained with the full Coulomb correction and fit of Eq. 2.11. The error

is statistical only.
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Figure 6.7: Bertsch-Pratt radius parameters as a function of the number of participants

(Npart) for π+π+ (left) and π−π− (right), for kT = 0.2−2.0 GeV/c (〈kT〉 ∼ 0.45 GeV/c).

All radii are obtained with the full Coulomb correction and fit of Eq. 2.15, and the error

is statistical only.
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6.2.2 Centrality dependence of HBT radii

The Bose-Einstein correlation functions for π+π+ and π−π− are measured for the nine

subdivided centrality classes. Fig. 6.5 shows the one-dimensional and three-dimensional

correlation functions of π−π− for the centralities. Each of the nine one-dimensional cor-

relation functions are fitted by Eq. 2.11. Fig. 6.6 shows the fitted one-dimensional HBT

radius parameters, Rinv and λinv, as a function of Npart for π+π+ (left) and π−π− (right).

Rinv increases from ∼ 2− 3 fm to ∼6 fm as Npart increases from about 17 to 352. On the

other hand, λinv is less sensitive to the centrality and constant at ∼0.5 for all centrality

classes within the statistical errors.

Fig. 6.7 shows the three-dimensional HBT radii Rside, Rout, Rlong and λ (Fit of Eq.

2.15) with the full Coulomb correction, as a function of Npart for π+π+ (left) and π−π−

(right). All of the HBT radii show increase with Npart, while the chaoticity parameters,

λ, are less sensitive to the centrality class.

The bottom of Fig. 6.7 shows the Rout/Rside ratio as a function of Npart, which

indirectly denotes the centrality dependence of the emission duration of pions. For all

measured centrality classes, however, the ratio is less than unity and constant at ∼0.8

within the errors.

6.2.3 Characteristics of Npart dependence

The Npart denotes the source volume at the initial stage of collisions, while the HBT

radius denotes the source volume at the final stage of collisions. The relation between

those volumes is one of interesting characteristics of the space-time evolution of source.

To investigate the Npart dependence of the Bertsch-Pratt radius parameters, I fit with a

linear function as:

0.5 + p1 ×Npart
p2 . (6.2)

Here, “0.5” means a finite HBT radius observed in earlier analyses in p − p̄ collisions

[58, 59]. In those studies, the multiplicity dependence of HBT radius has been measured
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Figure 6.8: Bertsch-Pratt radius parameters versus the cubic root of the number of par-

ticipants for π−π− with the full Coulomb correction (Eq. 2.15), for kT = 0.2−2.0 GeV/c

with 〈kT〉 ∼ 0.45 GeV/c. The error is statistical only. The solid curves overlaid on the

filled circles show fit lines by 0.5+ p1×Npart
p2 . Fitted p1 and p2 values are given in Table

6.4.
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Figure 6.9: Bertsch-Pratt radius parameters as a function of the cubic root of the number

of participants for π−π− with the full Coulomb correction (Eq. 2.15), for kT = 0.2−2.0

GeV/c with 〈kT〉 ∼ 0.45 GeV/c. The error is statistical only. The solid lines overlaid on

the filled circles show fits to p0 + p1×Npart
1/3. Fitted p0 and p1 values are given in Table

6.5. Open lozenges show results measured at
√
sNN = 4.9 Au+Au and

√
sNN = 5.4 GeV

Si+Au collisions [24], with the linear fit of p0 + p1 ×Npart
1/3, as shown by dashed lines.
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and the extrapolation of the HBT radius to zero multiplicity yields a finite size of 0.5

fm. Fig. 6.8 shows the Bertsch-Pratt radius parameters for π−π− as a function of Np

with fitted lines, and resulting fit parameters, p1 and p2, are summarized in Table 6.4.

The multiplier factor, p2, is found to be consistent with 1/3 with respect to Rside and

Rlong within the errors. Assuming a cylindrical source, this fit result implies the following

relation:

Vfreeze−out ≈ const.×Rside
2 ×Rlong ∝ Npart,≈ Vinitial, (6.3)

where Vinitial and Vfreeze−out denote source volumes at initial and hadronic freeze-out stages

of collisions. Namely, this results indicates that the overlapping region at final stage is

uniformly proportional to its initial stage from peripheral to central collisions. In addition,

it looks like that the HBT radii at Npart ∼2 is around 0.5 which is consistent within errors

with those measured p − p̄ collisions. If assuming that a phase transition takes place at

a certain volume size but not in p − p̄ collisions, this intriguing result suggests that the

final source volume are not sensitive to the phase transition, which contradicts to a naive

picture of the first-order phase transition.

Then, assuming p2 = 1/3, I fit the Npart dependence with a linear function as:

p0 + p1 ×Npart
1/3. (6.4)

and compare the result with at a lower collision energy. In Fig. 6.9, filled triangle

shows the Bertsch-Pratt radius parameters for π−π− as a function of Np with fitted

lines, and resulting fit parameters, p0 and p1, are summarized in Table 6.5. Rside and

Rlong show similar Npart dependencies with one another, while Rout has a slightly smaller

Npart dependence. The open symbols in Fig. 6.9 shows a similar study on the centrality

dependence of the Bertsch-Pratt radii measured at
√
sNN = 4.9 GeV Au+Au and

√
sNN

= 5.4 GeV Si+Au collisions [24]. The fits of p0 + p1×Npart
1/3 are shown by dashed lines.

At peripheral collisions, measured Rlong are similar for the energy region from ∼ 5 to 200

GeV, while at central collisions, Rlong at 200 GeV is significantly larger than that at ∼5

GeV. In other words, the Npart dependence of Rlong at
√
sNN = 200 GeV shows a steep
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rise rather than the result measured at ∼5 GeV, while, that dependence of transverse

HBT radii, Rside, is similar to that at the lower energy.

6.2.4 Results with new Coulomb corrections

The conventional full Coulomb correction method, which has been used so far in many

earlier analyses, seems to be an excessive correction because of pions decays from long-

lived particles, as was assessed in chapter 5. To solve the issue, the new (called “partial”)

Coulomb correction, which is expressed by Eq. 5.3, is applied to measure the HBT radii

in the assumption of the core-halo structure of source. In case of the correlation functions

with the full Coulomb correction, as shown by open circles in Fig 6.5, were fitted to Eq.

2.15. On the other hand, in the partial Coulomb correction, “raw” correlation functions,

namely with detector efficiency corrections but no Coulomb correction, are fitted to the

core-halo parameterization including the Coulomb correction term defined by Eq. 5.3.

Fig. 6.10 shows the Npart
1/3 dependences of Bertsch-Pratt HBT radii for π+π+ and

π−π− with the partial Coulomb correction (filled triangle) comparing to those with the

full Coulomb correction (open circle). Total systematic errors of the HBT radii, including

the systematic errors due to the partial Coulomb correction, are given by two solid lines

that mean the upper and lower bounds of the systematic error. The chaoticity param-

eter, λ, and Rout are significantly changed from those with the full Coulomb correction,

especially at central collisions.

The investigation of the Npart dependences of HBT radii is done by fitting of Eq. 6.2

and Eq. 6.4 to the radii with the partial Coulomb correction. The fitted parameters

are given in Table 6.4 and 6.5. The fit of Eq. 6.2 provides in a similar result as the

full Coulomb correction that the centrality dependences of HBT radii are well described by

linear functions of Npart
1/3. The dashed lines in Fig. 6.10 show the fits of p0 +p1×Npart

1/3

to the Npart dependence of HBT radii with the partial Coulomb correction. With respect

to the Npart dependences of Rside and Rlong, the fit results are not changed and equal to

those of the full Coulomb correction within the statistical errors. On the other hand, the
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Figure 6.10: Bertsch-Pratt radius parameters as a function of Npart
1/3 for π+π+ and π−π−,

for kT = 0.2− 2.0 GeV/c with 〈kT〉 ∼ 0.45 GeV/c. Filled triangles show results from fits

to a core-halo structure by Eq. 5.3, with statistical error bars and systematic error bands.

Dashed lines show fits of p0 +p1×Npart
1/3. Fitted p0 and p1 values are given in Table 6.5.

Open circles show the results from the full Coulomb correction (Eq. 2.15) with statistical

error bars.
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Figure 6.11: Centrality (Npart
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fit result on Rout changes significantly and come to close with the dependences of Rside

and Rlong. As a result, all Bertsch-Pratt HBT radii from the partial Coulomb correction

are consistent with a linear increase with Npart
1/3, and all radii also show similar Npart

1/3

dependencies.

Fig. 6.11 shows Rout/Rside ratios for π+π+ (left) and π−π− (right) pairs as a function

of Npart measured with the two Coulomb corrections. While Rout/Rside ratios with the

full Coulomb correction are ∼0.8 especially at central collisions, Rout/Rside ratios with the

partial Coulomb correction are approximately constant at unity over the entire centrality

range. The difference seems to be prominent at the most central collisions, where the

Rout/Rside of the partial Coulomb is about 20% larger than that of the full Coulomb

correction and the difference is apparently larger than the total error, ∼ 10%.
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Radius p1 p2 χ2/DoF

Rside 0.82±0.12 0.28±0.03 2.55/7

full π+π+ Rout 0.92±0.15 0.23±0.03 5.38/7

Coulomb Rlong 0.78±0.13 0.30±0.03 3.83/7

Eq.2.15 Rside 0.66±0.09 0.32±0.03 3.01/7

π−π− Rout 0.75±0.12 0.26±0.03 9.36/7

Rlong 0.65±0.10 0.33±0.03 5.85/7

Rside 0.83±0.14 0.27±0.03 2.18/7

partial π+π+ Rout 0.70±0.13 0.30±0.03 6.19/7

Coulomb Rlong 0.78±0.16 0.28±0.04 4.44/7

Eq.5.3 Rside 0.61±0.11 0.32±0.03 3.07/7

π−π− Rout 0.61±0.11 0.33±0.03 5.68/7

Rlong 0.58±0.11 0.34±0.03 5.76/7

Table 6.4: Fit parameters by 0.5 + p1 × Npart
p2 for the measured Bertsch-Pratt radius

parameters with the full and partial Coulomb correction.

Radius p0 p1 χ2/DoF

Rside 1.00±0.31 0.55±0.05 1.57/7

full π+π+ Rout 1.39±0.28 0.38±0.05 4.53/7

Coulomb Rlong 0.86±0.35 0.59±0.06 2.75/7

Eq.2.15 Rside 0.60±0.31 0.61±0.05 2.19/7

π−π− Rout 1.03±0.28 0.43±0.05 7.96/7

Rlong 0.46±0.34 0.67±0.06 4.40/7

Rside 1.12±0.33 0.48±0.06 1.43/7

partial π+π+ Rout 0.78±0.37 0.56±0.06 5.07/7

Coulomb Rlong 0.96±0.39 0.52±0.07 3.52/7

Eq.5.3 Rside 0.58±0.33 0.56±0.06 2.37/7

π−π− Rout 0.55±0.35 0.58±0.06 4.75/7

Rlong 0.39±0.37 0.64±0.06 4.67/7

Table 6.5: Fit parameters by p0 + p1 × Npart
1/3 for the measured Bertsch-Pratt radius

parameters with the full and partial Coulomb corrections.
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6.3 kT dependence

To study the characteristics of dynamical source, the Bose-Einstein correlation functions

are measured as a function of the mean transverse momentum of pairs, kT. Model fits of

the kT dependence of Bertsch-Pratt HBT radii provide the geometrical size and life time

of the source. Comparisons with the earlier experimental results and recent theoretical

predictions are also presented.

6.3.1 Definition of kT class

The data sample for the inclusive kT range from 0.2 to 2.0 GeV/c is divided into nine

data samples for different kT range as shown by Fig. 6.12. The mean kT values and

errors are summarized in Table 6.6 with statistics available. In the estimate of the mean

kT, I used only pairs at low relative momentum region qinv < 2/Rinv, where Rinv is the

measured one-dimensional HBT radius for each kT range, because pairs in the region carry

information on the source dimensions [24]. In Table 6.6, 〈kT〉 shows the restricted mean

kT and 〈kT〉∗ shows the simple mean kT, which is estimated by using all pairs in the kT

range. The both mean kT are quite same values except for the inclusive kT range. 〈kT〉
at the lowest kT class is 0.27±0.02 GeV/c, and reaches 1.15±0.18 GeV/c at the highest

kT class.

6.3.2 Results: kT dependence of HBT radii

The Bose-Einstein correlation functions of π+π+ and π−π− are measured in each of the

nine different kT ranges, in Table 6.6. Fig. 6.13 shows the one-dimensional and the three-

dimensional correlation functions of π−π− for the nine kT classes for 0−30% centrality of

collisions.

Fig. 6.14 shows one-dimensional HBT radius parameters, Rinv and λinv, and Fig. 6.15

shows the three-dimensional Bertsch-Pratt radius parameters, Rside, Rout, Rlong and λ,

as a function of kT. Here, the kT values in x-axis correspond to 〈kT〉 for the nine kT

classes. and results are obtained with the full Coulomb correction. All of the measured
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Figure 6.12: The kT distribution of π+π+ pairs, divided into nine kT classes as shown by

dashed lines. The numbering of each class corresponds to that in Table 6.6.

HBT radii, Rside, Rout and Rlong, decrease by a factor of ∼ 2 − 3 as kT increases from

∼0.2 to ∼1.2 GeV/c. Bottom panels in Fig. 6.15 show the kT dependence of Rout/Rside

ratios. The Rout/Rside ratio is apparently less than unity, and systematically decreases as

kT increases.

6.3.3 Results with partial Coulomb correction

In the study of centrality dependence of HBT radii in the previous section, discrepancies

of HBT radii between the full and partial Coulomb corrections can be clearly seen at

central collisions. Here, I study the kT dependence of HBT radii with partial Coulomb

correction by Eq. 5.3, at the central collisions. The Bertsch-Pratt radius parameters and

the Rout/Rside ratio for π+π+ and π−π− with partial Coulomb correction are shown in

Fig. 6.16 and 6.17, respectively, comparing to those of the full Coulomb correction. The

total systematic errors on the HBT radius parameters for the nine kT classes are shown
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Figure 6.13: One-dimensional and three-dimensional correlation functions of π−π− for

nine kT classes as defined by Table 6.6, with the full Coulomb correction (open circle)

and without Coulomb correction (filled triangle), for 30% centrality of collisions. The

projections of the three-dimensional correlation functions are averaged over the lowest 40

MeV in the orthogonal directions.
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with full Coulomb correction (Eq. 2.11) for 0-30% centrality. The error is statistical only.



6.3. KT DEPENDENCE 97

   
 

λ

0.2

0.4

0.6

 [
fm

] 
si

d
e

R

2

4

6

 [
fm

] 
o

u
t

R

2

4

6

 [
fm

] 
lo

n
g

R

2

4

6

   
 

si
d

e
/R

o
u

t
R

0.6

0.8

1

1.2

1.4

 [GeV/c]Tk

0.2 0.4 0.6 0.8 1 1.2

Graph

 [GeV/c]Tk

0.2 0.4 0.6 0.8 1 1.2

Graph

+π+π -π-π

Figure 6.15: The kT dependence of λ, Rside, Rout and Rlong for π+π+ (left) and π−π−

(right) pairs with full Coulomb correction (Eq. 2.15) for 0-30% centrality. The error is

statistical only.
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Figure 6.16: The kT dependence of the λ, Rside, Rout and Rlong for π+π+ (left) and π−π−

(right) pairs for 0-30% centrality. Filled triangles show results with partial Coulomb cor-

rection by fits to a core-halo structure (Eq. 5.3), with statistical error bars and systematic

error bands. Open circles show results with the full Coulomb correction (Eq. 2.15) with

statistical errors.
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class kT range 〈kT〉 r.m.s 〈kT〉∗ r.m.s stat.(π+π+) stat.(π−π−)

inc. 0.20−2.00 0.446 0.167 0.582 0.206 98.56 M 124.80 M

1 0.20−0.30 0.265 0.023 0.270 0.022 4.04 M 6.63 M

2 0.30−0.36 0.330 0.017 0.330 0.017 6.72 M 8.52 M

3 0.36−0.42 0.389 0.017 0.389 0.017 7.22 M 8.63 M

4 0.42−0.48 0.448 0.017 0.448 0.017 6.53 M 7.65 M

5 0.48−0.54 0.508 0.017 0.508 0.017 5.37 M 6.25 M

6 0.54−0.60 0.568 0.017 0.568 0.017 4.16 M 4.80 M

7 0.60−0.75 0.663 0.040 0.663 0.039 7.67 M 9.04 M

8 0.75−1.00 0.844 0.063 0.845 0.061 5.26 M 6.07 M

9 1.00−2.00 1.156 0.137 1.180 0.156 1.76 M 1.97 M

Table 6.6: The definition of the inclusive and nine subdivided kT classes. The restricted

mean 〈kT〉 and simple mean 〈kT〉∗ (see text) are given for each of the kT ranges, with

root mean square values of the kT distributions. All kT values are in GeV/c. The pair

statistics in each class is also given.

in the right panel of Fig. 5.5, and given as systematic error bands in those figures.

The chaoticity parameters, λ, with the partial Coulomb correction are significantly de-

creased from that of with the full Coulomb correction in the low kT regions. Also Rside and

Rlong show a similar trend for the Coulomb corrections that results from partial Coulomb

correction clearly decrease from those of the full Coulomb correction at low kT region.

On the other hand, Rout significantly increase for entire measured kT range. Due to the

opposite effect on Rside and Rout, the Rout/Rside ratio is found to be very sensitive to the

strength of Coulomb correction. We found that the Rout/Rside ratio is 0.8-1.1 with the

partial Coulomb correction for the measured kT range, which is about 20% larger than

that with the full Coulomb correction, which is 0.7-0.9. In any case, the Rout/Rside ratio

shows a similar trend that gently decreases as kT increases.
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Figure 6.17: The kT dependence of Rout/Rside for π+π+ (left) and π−π− (right) pairs for

0-30% centrality. Filled triangles show results with partial Coulomb correction by fits to

a core-halo structure (Eq. 5.3), with statistical error bars and systematic error bands.

Open circles show results with the full Coulomb correction (Eq. 2.15) with statistical

errors.

6.3.4 Model fit on kT dependence

As described in Chapter 2, HBT radius is considered to decrease as kT increases due to

“length of homogeneity” in the expanding source. Fig. 6.18 shows the kT dependence of

the HBT radii evaluated by numerical calculations [60]. As shown in the top two panels,

Rside is constant with kT in the case without transverse flow, and the slope becomes

steeper as transverse flow increases, and Rout is slightly larger than Rside because of the

additional term of the emission duration of particles. In theoretical approximation, the

Bose-Einstein correlation function can be expressed as:

C2(q,k) = 1+
∣∣∣

∫
d4xS(x, k)e−ix·q
∫
d4xS(x, k)

∣∣∣
2

(6.5)

where k = (p1 + p2)/2 is the mean of the momentum of pair. The emission function

S(x,K) is an effective single-particle Wigner phase-space density of the particles in the

emitting source. Assuming a azimuthally symmetric Gaussian source, longitudinal boost-

invariant and no resonance contribution, the emission function is analytically expressed
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Figure 6.18: kT dependence of the HBT radii Rout (a), Rside (b) and Rlong (c) for different

collective flow velocities (ηf ) [60], where a linear transverse flow rapidity profile ηt(r) =

ηf (r/Rgeom) is assumed. The solid and dashed lines are numerically calculated from space-

time variances and Gaussian widths, respectively. The dash-dotted lines show results of

saddle point approximation around xµ, while the true saddle point x̄µ for finite ηf is

shifted in the outward direction.

as:

S(x, k) =
τ0mT cosh(η − Y )

(2π)3
√

2π(∆τ)2
exp

[
−k · u(x)

Tf

− r2

2Rgeom
2 −

η2

2(∆η)2
− (τ − τ0)

2

2(∆τ)2

]
(6.6)

where Tf is a constant freeze-out temperature and τ0 is the proper time of the freeze-

out, mT(=
√
kT

2 +m2) is the transverse mass momentum of pair, r =
√
x2 + y2, η =

1
2
ln[(t+ z)/(t− z)] is the space time rapidity and τ =

√
t2 − z2 is the longitudinal proper

time. Rgeom and ∆η denote the transverse and longitudinal Gaussian widths of the source,

and ∆τ is a Gaussian width of a finite emission duration of particles. The flow field u(x)

can be decomposed in the form

u(x) = (cosh η cosh βt,
x

r
sinh βt,

y

r
sinh βt, sinh η cosh βt). (6.7)
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Figure 6.19: kT dependence of 3-dimensional HBT radii for π−π− at the top 30% centrality

of collisions. The radii are obtained with the partial Coulomb correction. The solid lines

in the top and bottom panels are fits of Eq. 6.8 and Eq. 6.10, respectively. The fitted

parameters, Rgeom and τ0, are given in Table 6.7.



6.3. KT DEPENDENCE 103

With the emission function and assuming transverse and longitudinal motion can be

decoupled, the kT dependence of transverse HBT radius, Rside, can be parameterized [60]

as:

Rside
2(mT) = Rgeom

2
/ (

1 + β2
f

mT

Tf

)
(6.8)

where its transverse flow is linearly expressed as βT(r) = βf (r/Rgeom).

Thus, the fit of Eq. 6.8 to the kT dependence of Rside yields the geometrical Gaussian

width of transverse source radius, Rgeom, at the kinetic freeze-out stage. Fig. 6.19 top

shows the fit of Eq. 6.8 to the kT dependence of Rside measured using π−π− data with the

partial Coulomb correction. The fit gives Rgeom ∼ 7.1 ± 0.1 with χ2/DoF ∼5.6/8. Here,

we assumed Tf = 120 MeV and βT = 0.70, which have been determined using charged

pion spectra at central collisions measured by PHENIX at
√
sNN = 200 GeV [5, 63]. The

fit for π+π+ result yields the consistent value within the error, as summarized in Table

6.7. The size is significantly larger than the comparable geometrical size, namely the

Gaussian width of Au nuclei, Rgeom(Au) = 3.07 fm.

The bottom figure of Fig. 6.18 shows a theoretical calculation of the kT dependence

of Rlong, which shows much stronger kT dependence than those of transverse HBT radii

because the source expands predominantly in the beam direction and pairs at high-kT

tend to be less affected by the longitudinal expansion. In the longitudinal boost-invariant

system, Rlong is independent of longitudinal flow βL. The kT dependence of Rlong is

approximately expressed as:

Rlong
2(mT) ≈ τ 2

0

T

mT

(
1 +

(
1

2
+

1

1 + β2
f
mT

T

)
T

mT

)
. (6.9)

where τ0 is the proper time that means the life time of source from collision to the kinetic

freeze-out [61]. In relativistic heavy-ion collisions, where T
mT

<< 1, Eq. 6.9 can be

reduced to the leading order approximation without transverse flow [62] as,

Rlong
2(mT) ≈ τ 2

0

Tf

mT

. (6.10)

Eq. 6.10 has been widely used to fit earlier experimental results, and well described those

Rlong dependencies.
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Fit to Eq.6.8 Fit to Eq.6.10

Rgeom (fm) χ2/DoF τ0 (fm/c) χ2/DoF

full Coulomb

π+π+ 7.5±0.1 16.6/8 9.0±0.1 26.6/8

π−π− 7.6±0.1 23.9/8 9.2±0.1 18.6/8

partial Coulomb

π+π+ 7.0±0.1 2.9/8 8.5±0.2 13.8/8

π−π− 7.1±0.1 5.6/8 8.8±0.2 9.4/8

Table 6.7: Model fits parameters, Rgeom by Eq. 6.8 and τ0 by Eq. 6.10 for results with

the full and partial Coulomb corrections, where Tf = 120 MeV and βf = 0.7 [63].

Fig. 6.19 bottom shows the fit of Eq. 6.10 to the kT dependence of Rlong. Assuming Tf

is 120 MeV, the proper time τ0 is evaluated to be ∼ 8.8± 0.2 fm/c with chi2/DoF∼9.4/8

for pimp data, as summarized in Table 6.7.

6.3.5 Comparison with HBT radii at lower energies

Fig. 6.20 shows the kT dependence of Bertsch-Pratt radius parameters measured at mid-

rapidities for various collision energies –
√
sNN = 4.1 GeV (E895) [25] and

√
sNN = 4.9 GeV

(E866) [24] in Au+Au at AGS,
√
sNN = 17.3 GeV in Pb+Pb (NA44) [27] at SPS,

√
sNN

= 130 GeV (PHENIX [29] and STAR [28]) and
√
sNN = 200 GeV (PHENIX) in Au+Au

at RHIC. In this figure, all results are obtained with the full Coulomb correction. The

comparison indicates that the transverse HBT radii, Rside and Rout, are less sensitive to

the collision energy, while only the longitudinal HBT radius, Rlong, significantly depends

on its collision energy.

Rgeom for each collision energy is derived by the fit of Eq. 6.8. Fig 6.21 shows evaluated

Rgeom as a function of collision energy for
√
sNN ∼ 5− 200 GeV with statistical error bar,

and the comparable geometrical size of a Au nucleus (Rgeom = 3.07 fm) is overlaid by

the dashed line. In the fits, βf is set to 0.4 for AGS and SPS energies and to 0.7 for

RHIC energies, while Tf is fixed to 120 GeV for all energies [54]. The filled (opened)

symbols denote results with the partial (full) Coulomb correction. A result from CERES
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Figure 6.20: kT dependence of 3-dimensional HBT radii measured at various collision

energies;
√
sNN ∼ 5 GeV at AGS (E895 and E866), 17.3 GeV at SPS (NA44), 130 GeV and

200 GeV at RHIC (PHENIX and STAR). All HBT radii are measured with full Coulomb

correction for π−π−, except for NA44 (π+π+). In the top panel, the solid line is a fit of

Eq. 6.8 to the PHENIX-200 GeV. In the bottom panel, solid lines show fits of Eq. 6.10

to data at
√
sNN ∼ 5 GeV (red), 17.3 GeV (green), 130 GeV (blue) and 200 GeV (black).
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Figure 6.21: The excitation function of the geometrical source size, Rgeom, evaluated from

the fit of Eq. 6.8. Results with partial and full Coulomb corrections are shown by filled

and opened symbols, respectively.

obtained with the partial Coulomb correction [35] is also overlaid. The difference between

the partial and full Coulomb corrections looks not significant for Rgeom. It is found that

Rg increases from 5−6 fm at AGS-SPS energies to 7−8 fm at RHIC energies. All the

measured Rgeom are significantly larger than the comparable Au nucleus radius in RMS-

width, 3.07 fm. Evaluated Rgeom sizes at freeze-out at RHIC energies increase about 2

fm from those of AGS-SPS energies, nonetheless the transverse HBT radius parameter,

Rside, does not show any increase. The reason apparently due to the stronger transverse

flows at RHIC energies than those at AGS-SPS energy region. In other words, we in

RHIC energy region measure rather “small length of homogeneity” in the Bose-Einstein

correlations than those of AGS-SPS energy region.

On the other hand, the kT dependence of Rlong, which is independent of transverse

flow, shows a clear increase with the collision energy, as shown in the bottom panel of
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Figure 6.22: The excitation function of the proper time, τ0, evaluated from the fit of Eq.

6.10. Results with partial and full Coulomb corrections are shown by filled and opened

symbols, respectively.

Fig. 6.20. The fit of Eq. 6.10 provides the collision energy dependence of the proper time,

τ0, i.e. the life time of the system, as shown by Fig. 6.22. Assuming a kinetic freeze-out

temperature Tf = 120 MeV for
√
sNN ∼ 5 − 200 GeV [54], tau0 rapidly enlarges from

around 6 fm/c to 8 fm/c between AGS and SPS energies, then show a gradual increase

from SPS to RHIC energy up to about 9 fm/c. The comparison of results at RHIC 130

GeV and 200 GeV indicates that τ0 is already saturated at the energy region.

6.4 Comparison to hydrodynamical models

The kT dependence of the Bertsch-Pratt radius parameters is compared to recent the-

oretical predictions by Soff [30] and Hirano [64] in Fig 6.23. In the Soff’s calculation

(uRQMD), the QGP is modeled as an ideal fluid, expanding with a bag model equation

of state, hadronizing via a first-order phase transition at the critical temperature Tc = 160
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MeV. The Hirano’s calculation is a fully three-dimensional hydrodynamic model, assum-

ing chemically non-equilibrium equation of state, called partial chemical equilibrium, and

thermal freeze-out temperature at Tf = 140 MeV. In fact, this hydro-model calculation

is known to well reproduce experimental results of single particle pT spectra for various

particle species at various rapidities as well as elliptic flows. The comparison with the

theoretical predictions indicates that Hirano’s hydro-model well reproduces the kT depen-

dence of Rlong. However the kT dependences of transverse radii, Rside and Rout, are still

under-estimated even by the model.

Fig 6.24 shows the comparison of Rout/Rside ratios between experimental and theoret-

ical results as a function of kT. The Rout ratios measured at CERES for
√
sNN = 17.3

GeV [35] are also overlaid on the figure, which are obtained with full and partial Coulomb

corrections as well. The Rout/Rside ratios measured at PHENIX shows a similar trend

as those of the CERES results – Rout/Rside decreases as kT increases and results from

partial Coulomb correction are significantly larger than those of the full Coulomb correc-

tion. As indicated by this comparison, Rout/Rside ratios from different collision energies

are indeed similar – e.g. at kT = 0.3 − 0.4 GeV/c, Rout/Rside are ∼ 1.0 − 1.1 with

partial Coulomb correction while ∼ 0.7 − 0.9 with full Coulomb correction. This result

possibly excludes a theoretical prediction that the Rout/Rside increases as kT increases

because pairs at high kT would predominantly come from a hadronic re-scattering phase

[30].

These detailed measurements of the transverse momentum dependence of the HBT

radii, in particular that of Rout/Rside, are expected to provide strong constraints for

model builders. The improved partial Coulomb correction, which yields higher values

of Rout/Rside, certainly help to the solve the RHIC-HBT puzzle.
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Figure 6.23: kT dependence of Bertsch-Pratt radius parameters for π−π− with

partial (filled triangle) and full Coulomb (open circle) corrections, with statistical er-

ror bars and systematic error bands. Recent theoretical predictions based upon uRQMD

[30] and hydrodynamics [64] calculations are shown by red and blue squares.
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Chapter 7

Conclusion

The Bose-Einstein correlations of like-sign pion pairs, π+π+ and π−π−, are measured at

the mid-rapidity in Au+Au collisions at
√
sNN = 200 GeV for the first time by using high

statistics data taken by PHENIX at RHIC.

To assess the conventional full Coulomb correction for π+π+ and π−π− used in most

earlier analyses, I also measured the π+π− correlation function using the same real data

sample. From the study, it is found that the realistic Coulomb strength for charged pion

pairs is 50% of the conventional Coulomb correction. Such a dilution could be explained

as a picture that, in relativistic heavy-ion collisions, many charged pions are originate

from long-lived particles (e.g. η, η′) and their Coulomb interactions are negligibly small.

On the other hand, charged pions originate from a well-localized “core” source are eligible

for the full Coulomb correction. To solve this issue, I applied a well improved Coulomb

correction based on a picture of “core-halo” structure of source.

The Bertsch-Pratt parameterization in a longitudinally centre-of-mass frame is used

to analyze the correlation functions to extract multi-dimensional HBT radii, Rlong, Rside

and Rout, and the emission duration of particles evaluated by Rout/Rside. At central

nucleus-nucleus collisions, the comparison of the HBT radii to those measured at earlier

experiments reveals a fact that the transverse HBT radii, Rside and Rout are less sensitive

to the energy of collision, while the longitudinal HBT radius, Rlong, slightly increases as

the collision energy increases.

111
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To investigate the space-time evolution of the overlap region between its initial and

final state, the HBT radii are measured as a function of collision centrality. The centrality

dependence is reasonably fitted by a linear function of the cube root of the number

of participants, p0 + p1 × Npart
1/3, yielding p1 ∼ 0.5 for all radius parameters. The

degrees of Npart
1/3 dependence of Rside and Rout are similar to the results from the same

examination at
√
sNN ∼ 4 − 5 GeV at AGS. On the other hand, Rlong shows stronger

Npart
1/3 dependence, namely the difference of Rlong between AGS and RHIC energies are

significant at central collisions while those are consistent at peripheral collisions.

To study the dynamics of an expanding source, I have measured the mean transverse

momentum of pair (kT) dependence of the measured HBT radii. All HBT radii are

decrease from ∼ 5 − 6 fm to ∼ 2 − 3 fm as kT increases from ∼0.2 to ∼1.2 GeV/c. The

strong kT dependence of the transverse HBT radii is explained by a picture of source

which rapidly expands in transverse direction with a strong collective flow. Assuming

that charged pions are freezed out at the temperature T0 =120 MeV with the transverse

flow velocity βT = 0.7 obtained from its pT spectrum, model fits to the kT dependence of

Rside and Rlong yield the geometrical Gaussian width of the system about 7 fm, which is

significantly larger than the comparable Gaussian width of Au nucleon of 3.07 fm. From

a model fit to the kT dependence of Rlong provided the life time of the system about 8−9

fm/c. The comparisons to earlier experimental results at lower energies shows that the

Rgeom and τ slightly increase with the collision energy. The reason that the transverse

HBT radii are less sensitive to the collision energy in spite of the the increase of Rgeom, is

reasonably explained by the fact that the βT increases from 0.4 to 0.7 between AGS and

RHIC energies.

With the conventional full Coulomb correction, the Rout/Rside ratio, which has been

naively considered to become more than unity in case of the finite emission duration of

particles, is about 0.6-0.8 for 0.2 < kT < 1.2 GeV, called “RHIC-HBT puzzle”. With the

new Coulomb correction method, however, the Rout/Rside ratio is systematically larger

than that of the conventional Coulomb correction, being about 0.8-1.1 for 0.2 < kT < 1.2



113

GeV. As a result the RHIC-HBT puzzle has been partially solved by using the improved

Coulomb correction.

These results generally describe a picture that, in relativistic heavy-ion collisions at

√
sNN = 200 GeV, the system lasts about τ = 8 − 9 fm/c expanding from Rgeom = 3.07

fm to ∼7 fm with a strong collective flow, then rapidly freeze out in a few fm/c.

However, hydrodynamical calculations, which are based on a first-order phase transi-

tion, is still unable to describe the experimental HBT radii, especially such a very small

emission duration, while they can well reproduce single momentum spectra and the ellip-

tic flow simultaneously. A few scenario would be able to explain this discrepancy. One

possibility is that there actually is no such a long emission duration of particles – with-

out the first-order phase transition, or via a “super-cooled” QGP. Secondly, some effects,

which could effectively shrink the measured Rout size, are considered – a source opacity

stemming from hadronic rescatterings or the two-particle correlation of jet fragmenta-

tions which significantly contributes only at the source surface. Moreover, recent lattice

QCD calculations are actually suggesting the crossover phase transition from the QGP

to hadronic state, not the first-order phase transition [65]. In case, the increases of the

source size and the emission duration would not take place during the transition. Thus,

detailed studies of the Bose-Einstein correlations in this thesis provide strong constraints

for hydrodynamics and transport theories in relativistic heavy-ion collisions.
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Data Tables
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28163 28170 28199 28209 28212 28284 28286 28302 28444 28447

28450 28479 28483 28485 28488 28490 28570 28573 28577 28623

28625 28627 28632 28717 28718 28749 28750 28751 28761 28765

28768 28775 28777 28781 28791 28794 28798 28902 28903 28956

28958 28961 28962 28966 28968 28971 28972 28973 28987 29014

29015 29016 29017 29035 29036 29116 29122 29146 29171 29178

29179 29183 29184 29185 29186 29190 29197 29212 29213 29255

29267 29268 29354 29355 29368 29372 29380 29386 29392 29393

29401 29404 29445 29446 29454 29459 29461 29510 29512 29514

29515 29529 29531 29534 29536 29537 29555 29561 29562 29563

29566 29980 29982 29987 29989 29991 29999 30000 30001 30002

30003 30007 30008 30009 30010 30014 30015 30019 30060 30062

30069 30074 30087 30088 30112 30113 30117 30119 30123 30126

30128 30148 30149 30153 30158 30159 30193 30195 30196 30197

30218 30292 30321 30326 30329 30350 30356 30358 30388 30631

30633 30637 30642 30650 30807 30812 30813 30814 30816 30820

30910 30911 30913 30916 30917 30920 31009 31013 31014 31021

31024 31025 31058 31060 31072 31075 31076 31079 31080 31140

31143 31145 31147 31148 31152 31230 31232 31233 31239 31240

31243 31244 31249 31252 31254 31256 31343 31459 31460 31463

31464 31497 31500 31503 31515 31517 31520 31628 31631 31633

31637 31639 31641 31807 31811 31814 31815 31824 31831 31836

31837 31868 31870 32010 32017 32028 32043 32123 32127 32128

32217 32218 32222 32239 32241 32242 32271 32272 32279 32280

32367 32382 32385 32387 32435 32437 32438 32440 32441 32523

32524 32525 32526 32548 32549 32709 32713 32716 32719 32720

32721 32722 32747 32912 32913 32914 32929 32934 32948 32949

33049 33050 33051 33055 33056 33064 33067 33068 33082 33083

33085 33095 33098 33113 33119 33123 33124 33149 33150 33161

33166 33168 33169 33295 33298 33299 33303 33308 33309 33314

33321 33323 33327 33336 33337 33345 33388 33392 33393 33460

33463 33468 33526 33535 33541 33542 33547 33550 33557 33577

33608 33609 33610 33611 33612 33693 33694

Table 7.1: Run list for the PHENIX Run2-HBT analysis.
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cent. 〈Npart〉1/3 corr. λinv(π
+π+) Rinv(π

+π+) lami(π−π−) Rinv(π
−π−)

0- 5 7.06±0.06 P.C. 0.215±0.015 6.05±0.18 0.240±0.015 6.05±0.16

F.C. 0.352±0.010 6.06±0.09 0.375±0.010 6.11±0.09

50% 0.269±0.013 6.15±0.15 0.291±0.013 6.16±0.14

5-10 6.69±0.09 P.C. 0.243±0.017 5.67±0.17 0.237±0.015 5.54±0.15

F.C. 0.374±0.011 5.74±0.09 0.363±0.010 5.65±0.09

50% 0.295±0.015 5.80±0.15 0.282±0.013 5.62±0.13

10-15 6.33±0.11 P.C. 0.248±0.019 5.58±0.20 0.240±0.016 5.27±0.17

F.C. 0.379±0.014 5.70±0.11 0.368±0.012 5.42±0.10

50% 0.301±0.017 5.74±0.18 0.287±0.015 5.41±0.15

15-20 5.99±0.15 P.C. 0.245±0.019 5.06±0.19 0.290±0.020 5.42±0.18

F.C. 0.370±0.014 5.28±0.11 0.411±0.014 5.55±0.10

50% 0.292±0.017 5.21±0.17 0.330±0.018 5.51±0.16

20-30 5.53±0.17 P.C. 0.255±0.016 4.77±0.15 0.255±0.015 4.76±0.14

F.C. 0.375±0.012 4.98±0.09 0.370±0.011 4.95±0.08

50% 0.299±0.014 4.89±0.13 0.296±0.013 4.87±0.12

30-40 4.89±0.20 P.C. 0.301±0.023 4.76±0.18 0.275±0.019 4.32±0.16

F.C. 0.413±0.016 4.92±0.11 0.384±0.014 4.52±0.10

50% 0.335±0.020 4.83±0.17 0.310±0.017 4.43±0.15

40-50 4.24±0.22 P.C. 0.309±0.028 4.04±0.20 0.330±0.028 4.22±0.19

F.C. 0.410±0.021 4.25±0.13 0.423±0.019 4.36±0.12

50% 0.342±0.026 4.14±0.19 0.354±0.025 4.27±0.17

50-65 3.54±0.27 P.C. 0.376±0.039 3.81±0.23 0.332±0.032 3.52±0.21

F.C. 0.466±0.028 4.03±0.15 0.416±0.022 3.67±0.13

50% 0.395±0.035 3.85±0.22 0.353±0.029 3.57±0.19

65-92 2.58±0.50 P.C. 0.329±0.071 3.13±0.47 0.289±0.045 2.40±0.40

F.C. 0.397±0.049 3.25±0.28 0.359±0.030 2.33±0.24

50% 0.347±0.065 3.17±0.44 0.307±0.043 2.47±0.38

Table 7.2: 1-dimensional fit parameters from π+π+ and π−π− for nine centrality classes

for 0.2< kT <2.0 GeV/c with 〈kT〉 ∼0.45 GeV/c, with fits of Eq. 5.3 (P.C.), Eq. 2.15

(F.C.) and Eq. 5.7 with lambda+− = 0.5 (50%). Centrality is in %, and all radii are in

fm. Errors are statistical only.
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cent. 〈Npart〉1/3 corr. λ Rside Rout Rlong

0- 5 7.06±0.06 P.C. 0.308±0.017 4.54±0.17 4.90±0.18 4.85±0.19

F.C. 0.417±0.015 4.90±0.13 4.10±0.12 5.18±0.15

50% 0.341±0.015 4.67±0.15 4.68±0.17 4.98±0.17

5-10 6.69±0.09 P.C. 0.324±0.018 4.25±0.16 4.31±0.16 4.42±0.18

F.C. 0.436±0.016 4.61±0.13 3.78±0.12 4.80±0.15

50% 0.358±0.016 4.37±0.15 4.19±0.15 4.57±0.17

10-15 6.33±0.11 P.C. 0.338±0.020 4.14±0.17 4.42±0.17 4.18±0.20

F.C. 0.452±0.018 4.53±0.14 3.95±0.13 4.60±0.17

50% 0.371±0.018 4.26±0.16 4.34±0.17 4.33±0.19

15-20 5.99±0.15 P.C. 0.357±0.022 4.05±0.17 4.15±0.17 4.03±0.19

F.C. 0.456±0.019 4.36±0.14 3.75±0.14 4.35±0.16

50% 0.381±0.019 4.13±0.16 4.08±0.17 4.12±0.18

20-30 5.53±0.17 P.C. 0.349±0.017 3.67±0.12 3.71±0.13 3.70±0.15

F.C. 0.446±0.016 3.96±0.11 3.41±0.11 4.04±0.13

50% 0.375±0.015 3.75±0.12 3.65±0.13 3.80±0.14

30-40 4.89±0.20 P.C. 0.374±0.025 3.45±0.16 3.42±0.16 3.50±0.21

F.C. 0.460±0.021 3.70±0.14 3.18±0.13 3.76±0.16

50% 0.393±0.021 3.51±0.14 3.38±0.16 3.56±0.18

40-50 4.24±0.22 P.C. 0.427±0.031 3.03±0.17 3.26±0.18 3.18±0.20

F.C. 0.498±0.028 3.21±0.15 3.11±0.15 3.36±0.18

50% 0.437±0.028 3.06±0.16 3.25±0.18 3.21±0.19

50-65 3.54±0.27 P.C. 0.455±0.044 2.95±0.20 2.75±0.22 3.19±0.30

F.C. 0.517±0.039 3.07±0.19 2.65±0.19 3.33±0.27

50% 0.461±0.040 2.96±0.20 2.74±0.22 3.21±0.29

65-92 2.58±0.50 P.C. 0.423±0.085 2.48±0.46 2.83±0.63 2.25±0.38

F.C. 0.467±0.075 2.59±0.42 2.66±0.52 2.34±0.35

50% 0.427±0.077 2.49±0.45 2.79±0.62 2.26±0.37

Table 7.3: Bertsch-Pratt fit parameters from π+π+ for nine centrality classes for 0.2<

kT <2.0 GeV/c with 〈kT〉 ∼0.45 GeV/c, with fits of Eq. 5.3 (P.C.), Eq. 2.15 (F.C.) and

Eq. 5.7 with lambda+− = 0.5 (50%). Centrality is in %, and all radii are in fm. Errors

are statistical only.
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cent. 〈Npart〉1/3 corr. λ Rside Rout Rlong

0- 5 7.06±0.06 P.C. 0.351±0.018 4.61±0.15 4.83±0.16 5.06±0.18

F.C. 0.452±0.015 4.95±0.12 4.17±0.11 5.29±0.14

50% 0.374±0.015 4.69±0.14 4.68±0.15 5.12±0.16

5-10 6.69±0.09 P.C. 0.328±0.017 4.32±0.15 4.24±0.16 4.62±0.18

F.C. 0.427±0.015 4.63±0.12 3.68±0.11 4.88±0.14

50% 0.354±0.015 4.41±0.14 4.09±0.15 4.70±0.17

10-15 6.33±0.11 P.C. 0.327±0.018 3.98±0.15 4.11±0.16 4.20±0.17

F.C. 0.428±0.016 4.33±0.13 3.60±0.12 4.48±0.14

50% 0.354±0.016 4.08±0.14 4.00±0.16 4.29±0.16

15-20 5.99±0.15 P.C. 0.366±0.022 4.04±0.17 4.02±0.16 4.22±0.20

F.C. 0.467±0.019 4.37±0.14 3.64±0.13 4.54±0.16

50% 0.391±0.019 4.12±0.16 3.96±0.16 4.31±0.19

20-30 5.53±0.17 P.C. 0.364±0.017 3.70±0.13 3.88±0.13 3.86±0.14

F.C. 0.454±0.015 4.00±0.11 3.54±0.11 4.13±0.12

50% 0.385±0.015 3.77±0.12 3.81±0.13 3.92±0.13

30-40 4.89±0.20 P.C. 0.345±0.020 3.18±0.15 3.27±0.15 3.41±0.17

F.C. 0.433±0.018 3.46±0.13 3.01±0.12 3.67±0.14

50% 0.367±0.018 3.25±0.14 3.23±0.15 3.48±0.16

40-50 4.24±0.22 P.C. 0.432±0.031 3.08±0.17 3.15±0.17 3.42±0.21

F.C. 0.500±0.027 3.26±0.16 3.00±0.15 3.57±0.19

50% 0.438±0.027 3.09±0.17 3.13±0.17 3.43±0.20

50-65 3.54±0.27 P.C. 0.395±0.033 2.65±0.20 2.53±0.20 2.54±0.20

F.C. 0.462±0.031 2.81±0.19 2.42±0.17 2.71±0.18

50% 0.407±0.030 2.68±0.20 2.52±0.20 2.57±0.20

65-92 2.58±0.50 P.C. 0.371±0.061 1.97±0.34 2.25±0.54 2.19±0.35

F.C. 0.420±0.056 2.09±0.33 2.10±0.44 2.25±0.32

50% 0.379±0.057 2.00±0.34 2.22±0.53 2.20±0.34

Table 7.4: Bertsch-Pratt fit parameters from π−π− for nine centrality classes for 0.2<

kT <2.0 GeV/c with 〈kT〉 ∼0.45 GeV/c, with fits of Eq. 5.3 (P.C.), Eq. 2.15 (F.C.) and

Eq. 5.7 with lambda+− = 0.5 (50%). Centrality is in %, and all radii are in fm. Errors

are statistical only.
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kT range 〈kT〉 corr. λinv(π
+π+) Rinv(π

+π+) lami(π−π−) Rinv(π
−π−)

0.20-0.30 0.27±0.02 P.C. 0.248±0.018 6.45±0.22 0.257±0.018 6.62±0.21

F.C. 0.427±0.013 7.04±0.13 0.431±0.013 7.15±0.12

50% 0.311±0.016 6.60±0.19 0.312±0.015 6.68±0.18

0.30-0.36 0.33±0.02 P.C. 0.303±0.022 6.50±0.19 0.311±0.020 6.27±0.18

F.C. 0.444±0.015 6.70±0.12 0.444±0.014 6.47±0.11

50% 0.348±0.018 6.54±0.18 0.350±0.017 6.30±0.16

0.36-0.42 0.39±0.02 P.C. 0.250±0.019 5.66±0.19 0.272±0.019 5.78±0.19

F.C. 0.377±0.013 5.79±0.11 0.396±0.013 5.94±0.11

50% 0.295±0.016 5.72±0.17 0.313±0.017 5.82±0.17

0.42-0.48 0.45±0.02 P.C. 0.254±0.021 5.49±0.20 0.263±0.020 5.44±0.18

F.C. 0.369±0.014 5.58±0.11 0.376±0.014 5.58±0.11

50% 0.294±0.018 5.54±0.18 0.301±0.017 5.49±0.17

0.48-0.54 0.51±0.02 P.C. 0.263±0.027 5.57±0.25 0.265±0.027 5.64±0.25

F.C. 0.369±0.018 5.54±0.14 0.371±0.018 5.62±0.14

50% 0.303±0.024 5.61±0.23 0.305±0.023 5.69±0.22

0.54-0.60 0.57±0.02 P.C. 0.205±0.025 4.73±0.29 0.206±0.020 4.50±0.22

F.C. 0.311±0.018 4.84±0.15 0.307±0.015 4.64±0.12

50% 0.247±0.023 4.85±0.25 0.244±0.019 4.60±0.20

0.60-0.75 0.66±0.04 P.C. 0.189±0.023 4.61±0.28 0.232±0.024 4.98±0.23

F.C. 0.286±0.016 4.61±0.14 0.324±0.016 4.90±0.12

50% 0.231±0.022 4.73±0.24 0.267±0.021 5.02±0.21

0.75-1.00 0.84±0.06 P.C. 0.150±0.022 3.52±0.31 0.161±0.025 3.89±0.33

F.C. 0.239±0.017 3.80±0.16 0.239±0.018 3.88±0.17

50% 0.184±0.022 3.70±0.28 0.196±0.024 4.03±0.29

1.00-2.00 1.15±0.14 P.C. 0.121±0.036 2.87±0.64 0.134±0.063 3.76±0.89

F.C. 0.185±0.027 2.90±0.30 0.204±0.042 3.64±0.41

50% 0.144±0.038 3.02±0.56 0.165±0.062 3.87±0.76

Table 7.5: 1-dimensional fit parameters from π+π+ and π−π− for nine kT classes at the

top 0-30% centrality with Npart ∼280, with fits of Eq. 5.3 (P.C.), Eq. 2.11 (F.C.) and

Eq. 5.7 with lambda+− = 0.5 (50%). kT range and 〈kT〉 are in GeV/c, and Rinv is in fm.

Errors are statistical only.



120 CHAPTER 7. CONCLUSION

kT range 〈kT〉 corr. λ Rside Rout Rlong

0.20-0.30 0.27±0.02 P.C. 0.288±0.018 4.67±0.20 4.93±0.21 5.86±0.27

F.C. 0.459±0.017 5.51±0.17 4.82±0.15 6.53±0.21

50% 0.338±0.016 4.90±0.18 4.69±0.19 6.01±0.24

0.30-0.36 0.33±0.02 P.C. 0.389±0.023 4.70±0.19 4.94±0.17 5.17±0.22

F.C. 0.507±0.020 5.17±0.16 4.53±0.14 5.56±0.18

50% 0.415±0.020 4.80±0.18 4.84±0.17 5.25±0.21

0.36-0.42 0.39±0.02 P.C. 0.366±0.022 4.15±0.17 4.39±0.18 4.75±0.21

F.C. 0.460±0.019 4.50±0.14 3.70±0.13 5.03±0.17

50% 0.391±0.020 4.24±0.16 4.28±0.18 4.84±0.20

0.42-0.48 0.45±0.02 P.C. 0.421±0.026 4.02±0.16 4.18±0.16 4.45±0.20

F.C. 0.493±0.022 4.23±0.14 3.60±0.13 4.63±0.17

50% 0.432±0.023 4.05±0.15 4.13±0.17 4.48±0.20

0.48-0.54 0.51±0.02 P.C. 0.430±0.030 3.93±0.18 3.99±0.17 3.99±0.20

F.C. 0.497±0.026 4.12±0.16 3.41±0.14 4.21±0.18

50% 0.439±0.027 3.95±0.17 3.95±0.17 4.02±0.20

0.54-0.60 0.57±0.02 P.C. 0.433±0.036 3.88±0.21 3.60±0.20 3.79±0.21

F.C. 0.484±0.031 3.97±0.18 2.97±0.16 3.93±0.18

50% 0.446±0.033 3.92±0.21 3.59±0.20 3.82±0.21

0.60-0.75 0.66±0.04 P.C. 0.437±0.029 3.57±0.16 3.46±0.15 3.30±0.15

F.C. 0.484±0.026 3.68±0.14 2.90±0.12 3.44±0.14

50% 0.443±0.027 3.59±0.15 3.44±0.16 3.31±0.15

0.75-1.00 0.84±0.06 P.C. 0.480±0.040 3.33±0.19 2.91±0.17 2.89±0.16

F.C. 0.519±0.036 3.38±0.17 2.50±0.14 2.99±0.15

50% 0.482±0.037 3.33±0.18 2.90±0.17 2.89±0.16

1.00-2.00 1.15±0.14 P.C. 0.363±0.066 2.64±0.38 2.06±0.37 1.97±0.31

F.C. 0.409±0.060 2.67±0.34 1.75±0.25 2.10±0.28

50% 0.370±0.064 2.66±0.37 2.06±0.37 1.99±0.30

Table 7.6: Bertsch-Pratt fit parameters from π+π+ for nine kT classes at the top 0-30%

centrality with Npart ∼280, with fits of Eq. 5.3 (P.C.), Eq. 2.11 (F.C.) and Eq. 5.7 with

lambda+− = 0.5 (50%). kT range and 〈kT〉 are in GeV/c, and all radii are in fm. Errors

are statistical only.
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kT range 〈kT〉 corr. λ Rside Rout Rlong

0.20-0.30 0.27±0.02 P.C. 0.307±0.018 4.92±0.21 5.21±0.21 5.92±0.25

F.C. 0.464±0.017 5.69±0.18 5.02±0.16 6.47±0.20

50% 0.348±0.015 5.09±0.19 4.94±0.19 5.99±0.22

0.30-0.36 0.33±0.02 P.C. 0.401±0.022 4.66±0.18 4.66±0.16 5.38±0.20

F.C. 0.513±0.019 5.10±0.16 4.30±0.13 5.68±0.17

50% 0.422±0.019 4.73±0.17 4.57±0.17 5.43±0.19

0.36-0.42 0.39±0.02 P.C. 0.420±0.024 4.32±0.17 4.65±0.17 4.89±0.19

F.C. 0.507±0.021 4.66±0.15 4.05±0.14 5.13±0.17

50% 0.436±0.021 4.37±0.16 4.59±0.18 4.94±0.19

0.42-0.48 0.45±0.02 P.C. 0.448±0.025 4.28±0.16 4.20±0.15 4.44±0.17

F.C. 0.518±0.022 4.48±0.14 3.67±0.12 4.62±0.15

50% 0.455±0.022 4.29±0.16 4.17±0.16 4.45±0.17

0.48-0.54 0.51±0.02 P.C. 0.462±0.030 4.02±0.18 4.24±0.17 4.10±0.19

F.C. 0.526±0.026 4.24±0.16 3.65±0.14 4.31±0.17

50% 0.471±0.027 4.05±0.17 4.23±0.18 4.13±0.19

0.54-0.60 0.57±0.02 P.C. 0.433±0.032 3.53±0.18 3.62±0.18 3.72±0.20

F.C. 0.481±0.026 3.67±0.14 3.00±0.14 3.82±0.15

50% 0.440±0.027 3.55±0.16 3.59±0.18 3.73±0.17

0.60-0.75 0.66±0.04 P.C. 0.479±0.029 3.53±0.14 3.47±0.13 3.65±0.15

F.C. 0.525±0.025 3.66±0.13 2.99±0.11 3.76±0.13

50% 0.481±0.026 3.53±0.14 3.46±0.14 3.65±0.15

0.75-1.00 0.84±0.06 P.C. 0.517±0.043 3.34±0.18 3.19±0.17 2.99±0.17

F.C. 0.553±0.039 3.40±0.16 2.77±0.15 3.10±0.16

50% 0.517±0.041 3.34±0.18 3.19±0.19 2.99±0.17

1.00-2.00 1.15±0.14 P.C. 0.446±0.098 3.18±0.49 2.65±0.36 2.26±0.37

F.C. 0.499±0.093 3.25±0.44 2.40±0.32 2.41±0.34

50% 0.452±0.093 3.19±0.48 2.65±0.36 2.28±0.36

Table 7.7: Bertsch-Pratt fit parameters from π−π− for nine kT classes at the top 0-30%

centrality with Npart ∼280, with fits of Eq. 5.3 (P.C.), Eq. 2.15 (F.C.) and Eq. 5.7 with

lambda+− = 0.5 (50%). kT range and 〈kT〉 are in GeV/c, and all radii are in fm. Errors

are statistical only.
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