Effects of In-situ Conditions on Relative Permeability Characteristics of CO₂-Brine Systems

Dr. Stefan Bachu Alberta Energy and Utilities Board

Dr. Brant Bennion Hycal Energy Research Laboratories

Alberta Energy and Utilities Board

Alberta Geological Survey

Stefan.Bachu@gov.ab.ca

CO₂ Storage in Geological Media

- In oil and gas reservoirs
- In coal beds
- In deep saline aquifers:
 Static trapping in stratigraphic and structural enclosures
 Hydrodynamic trapping in deep long-range flow systems
 Residual-gas trapping in the pore space

Need to know the relative-permeability displacement characteristics of CO₂-brine systems for storage capacity and for CO₂ injectivity and migration

Laboratory Work and Detailed Results

Details in a series of SPE papers by Bennion and Bachu:

- SPE 95547 presented at the SPE Annual Technical Conference and Exhibition, Dallas, TX, October 9-12, 2005
- SPE 99325 to be presented at the SPE/DOE 15th Symposium on Improved Oil Recovery, Tulsa, OK, April 22-26, 2006
- SPE 99326 to be presented at the SPE Europec/EAGE Annual Conference and Exhibition, Vienna, Austria, June 12-15, 2006
- SPE 102138 to be presented at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, September 24-27, 2006

Work in progress; new and synthesis results presented here; Synthesis data in tables in the written abstract.

Location of Major CO₂ Sources in the Edmonton – Wabamun Lake Area 114°W

Down-Hole Stratigraphic Model for the Lake Wabamun Area, Alberta, Canada – Pre-Cretaceous Unconformity to Surface

Location:00/10-05-052-2W5

Down-Hole Stratigraphic Model for the Lake Wabamun Area, Alberta, Canada – Precambrian to Pre-Cretaceous Unconformity

Aquitard/ Aquiclude

Alberta Geological Survey AGS

Location of Wells with Core Tested for Relative Permeability of Brine-CO₂ Systems 114°W

Alberta Geological Survey 🖌

Capillary Pressure and Relative Permeability

$P_c=2 \times IFT \times \cos\theta / r = 4 \times IFT \times \cos\theta / d$

If displacement characteristics depend on the capillary pressure P_c , and the interfacial tension IFT depends on in-situ conditions, then:

The relative permeability of brine-CO₂ systems depends on in-situ conditions!

Pore Size Distribution for Viking Fm. Sandstone

Wabamun Lake Area, Alberta Basin, Canada

CO₂-Brine Capillary Pressure for Viking Fm. Sandstone Wabamun Lake Area, Alberta Basin, Canada

Relative Permeability of Brine and CO₂ in Viking Fm. Sandstone

Low Permeability Well 09-20-52-03W5M Depth 1240.35 m

High Permeability Well 16-33-48-01W5M Depth 1342.46 m

_ Alberta Geological Survey AGS

Pore Size Distribution for Ellerslie Fm. Sandstone

Wabamun Lake Area, Alberta Basin, Canada

CO₂-Brine Capillary Pressure for Ellerslie Fm. Sandstone Wabamun Lake Area, Alberta Basin, Canada

Pore Size Distribution for Calmar Fm. Shale

Wabamun Lake Area, Alberta Basin, Canada

CO₂-Brine Capillary Pressure for Calmar Fm. Shale Wabamun Lake Area, Alberta Basin, Canada

Relative Permeability of Brine and CO₂ in Calmar Fm. Shale

Well 07-03-52-27W5M; Depth 1566.05 m

Relative Permeability of CO₂-Brine in Wabamun Group Carbonate

Effect of Viscosity Contrast on Endpoint CO₂ Relative Permeability for Wabamun Gp. Core Sample, Wabamun Lake Area, Alberta, Canada

Effect of Viscosity Contrast on Maximum CO₂ Saturation for Wabamun Gp. Core Sample, Wabamun Lake Area, Alberta, Canada

Alberta Energy and Utilities Board

Variation of Permeability to Brine at In-situ Conditions With Rock Pore Size

Relative Permeability of CO₂ at Irreducible Brine Saturation versus Permeability to Brine

Variation of Interfacial Tension of CO₂-Brine Systems with Pressure

Variation of CO₂-Brine Interfacial Tension with Pressure and Temperature

Salinity 144,304 mg/l

Variation of CO₂-Brine Interfacial Tension with Pressure and Water Salinity

Temperature 41°C

Conclusions - I

Laboratory determinations for the relative permeability of CO_2 displacing brine at in situ conditions for sandstone and carbonate formations in western Canada show that:

- Pore distribution and size affect the absolute permeability to brine, CO₂ capillary pressure, and the shape and characteristics of relative permeability curves
- The relative permeability to supercritical CO₂ at irreducible brine saturation is ~ 1/7th to 1/5th of that of brine at 100% brine saturation

 The relative-permeability displacement characteristics of CO₂-brine systems, i.e. the endpoint relative permeability and maximum saturation for CO₂, both decrease with increasing contrast between brine and CO₂ viscosity

Continued....

Conclusions - II

...Continuation

- The interfacial tension (IFT) for CO₂-brine systems decreases with increasing pressure, and increases with increasing temperature and salinity
- The IFT dependence on pressure, temperature and salinity are likely due to phase and solubility effects
- It is expected that, for the same rock and pore system, the relative-permeability characteristics of CO₂-brine systems depend on IFT (*work in progress*), hence on in-situ pressure, temperature and water salinity

Implications

→ Assuming constant relative-permeability displacement characteristics for supercritical CO₂ and formation water may result in significant errors in estimates of CO₂ storage capacity at irreducible saturation, and in rates of CO₂ injection (injectivity) and migration