6th IEA & JUPITER Joint Workshop on Vanadium Alloys for Fusion Applications Loews Ventana Canyon Resort Tucson, Arizona June 21- 22, 2002

Session II – Microstructural Evolution -Summary Effect of impurities and alloying additions (binary V-X systems) on the formation of dislocation loops, voids, and precipitates during irradiation

H. Matsui IMR, Tohoku University

Fundamental point defects parameters

- Point defects parameters in the literature, both theoretical and experimental studies, are summarized.
- HVEM in situ experiments provide real engineering material relevant data.
- Many of the parameters depend only on computer simulation studies, and accurate experimental data is necessary to validate simulation data.
- *Knowledge on impurity effects are not sufficient, and more work is necessary.*
- Dislocation loop and cavity formation
 - Based on low dose neutron irradiation TEM and positron annihilation data, the temperature range where nucleation or growth occurs has been identified for several binary V-X alloys.
 - Vacancy mobility is significantly retarded by oversized atoms, especially by Ti.
 - Effect of interstitial impurities is significant and complex. Alloys purified with "Zr-treatment" contain typically only approx 10ppm O and N. Density and size of loops formed at 400C are not significantly affected by Zr-treatment while channeling tendency is significantly reduced.
 - More work using controlled amount of O, N, C is necessary

- Precipitates
 - Most of the precipitates are interstitial impuriy originated.
 - "Pure V":VC; V-5% Ti:Ti₂O, TiO, TiO₂; V-Cr-Ti(-Si): TiO, Ti(O,C,N), Ti₅Si₃, etc.
 - O, N, C, should be considered as alloying elements in vanadium, analogous to carbon in steel; development of better control technique of O, N, C is required.
- Hydrogen effects
 - After cathodic charging an additional hardening takes place in neutronirradiated V and V alloys (300 C, 0.01 dpa), as well as radiation hardening.
 - Disappearing Luders Strain by irradiation:
 - In un-irradiated V and V alloys Luders strain develops after cathodic charging, but it disappears in irradiated samples.
 - Reduction in free hydrogen in irradiated samples.

- Variable temperature irradiation results
 - Can result in significant change in microstructure, especially when the temperature excursion occurs between nucleation regime and growth regime.
 - Precipitate stability may be influenced significantly by temperature variation.
 - Theory and modeling on variable temperature effects is necessary.

- High dose irradiation tests are lacking.
 - Fully utilize existing facilities and irradiation opportunities
 - JOYO, HFIR,
 - Utilize irradiated specimens left over from previous irradiation campaigns: FFTF/MOTA, DHCE, EBR-II..?
 - *AI: Kurtz will provide information to JP on the existing irradiation specimens in PNNL*

• He and H effects are still need to be addressed intensely.

- Qualitative understanding has been obtained, while quantitative evaluation is not possible with high accuracy.
- Fusion neutron source is awaited;
- Simulation technique, e.g. DHCE may be useful.

