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Abstract

This manual contains detailed instructions for operating the POP code. It
should be the only manual needed to use POP “as is”. Topics include:

• How to compile POP, including compile-time options

• How to run POP, including run-time options in namelist input

• Procedures for preparing auxiliary input files that are needed if you are
setting up a new grid

• Options for model diagnostics

• Options for model output files and formats

Throughout this manual, it is assumed that the operating system is some
variant of Unix. However, POP has been run on PCs under windows (see Sec.
6.1 for details)..

To keep the User’s Guide as short as possible, a Reference Manual is pro-
vided for those users who seek an in-depth understanding of the code, such as
would be needed to make changes to the source code. It contains a thorough
description of the code, including the model equations, their discretized form,
and the numerical methods used for their solution. The principal modules and
subroutines are explained, the organization of the code is outlined, and the
principal variables are defined.

Whenever POP is run, the version number and release date of the source
code on your local system is output at the beginning of the log file. They should
agree with the information on the front cover of this manual. If they do not,
you can obtain the current version of this manual at
http://climate.acl.lanl.gov/models/pop/documentation.

The Manual revision letter and release date indicate corrections or additions
to the manual corresponding to the stated version of the model.

If you obtained POP directly from LANL, technical support is provided by
John Davis ( jfd@lanl.gov, 505-667-4793) and Phil Jones (pwjones@lanl.gov ,
505-667-6386). If you are using POP as a component of the NCAR Climate
System Model (CCSM), technical support is provided by NCAR.

We are always interested in learning about your experiences with POP, fa-
vorable or otherwise. Send your comments and suggestions for improvements to
pop feedback@acl.lanl.gov. Bug reports should be sent to pop bugs@acl.lanl.gov.

http://climate.acl.lanl.gov/models/pop/documentation
mailto:jfd@lanl.gov
mailto:pwjones@lanl.gov
mailto:pop_feedback@acl.lanl.gov
mailto:pop_bugs@acl.lanl.gov
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Chapter 1

Introduction

Here we present a bit of POP history so you may marvel at the once-revolutionary
advances and rest secure in the knowledge that we are working diligently (and
sometimes even successfully) to continue such advances in the future. If you
are bored with such historical ramblings or simply wish to rush into actually
running ocean simulations, feel free to skip over this section and perhaps read it
later over a nice cappuccino, or a glass of port beside the fire, or maybe a beer
at your favorite brew pub.

1.1 Brief history of POP development

The Parallel Ocean Program (POP) was developed at LANL under the spon-
sorship of the Department of Energy’s CHAMMP program, which brought mas-
sively parallel computers to the realm of climate modeling. POP is a descendent
of the Bryan-Cox-Semtner class of ocean models first developed by Kirk Bryan
and Michael Cox [4] at the NOAA Geophysical Fluid Dynamics Laboratory
in Princeton, NJ in the late 1960s. POP had its origins in a version of the
model developed by Semtner and Chervin [18] [5]. The complete “family tree”
of the BCS models is displayed in Figure 1.1 (courtesy of Bert Semtner, Naval
Postgraduate School).

Under the CHAMMP program, the Semtner-Chervin version was rewritten
in CM Fortran for the Connection Machine CM-2 and CM-5 massively parallel
computers. Experience with the resulting model led to a number of changes
resulting in what is now known as the Parallel Ocean Program (POP). Although
originally motivated by the adaptation of POP for massively parallel computers,
many of these changes improved not only its computational performance but
the fidelity of the models physical representation of the real ocean. The most

Figure 1.1: Bryan-Cox-Semtner model family tree
Figure currently exists in on-line version only.
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significant of these improvements are summarized below. Details can be found
in articles by Smith, [19], Dukowicz et al., [7], and Dukowicz and Smith [6].
The model has continued to develop to adapt to new machines, incorporate new
numerical algorithms and introduce new physical parameterizations.

1.2 Improvements introduced in POP

1.2.1 Surface-pressure formulation of barotropic mode

The barotropic streamfunction formulation in the standard BCS models required
an additional equation to be solved for each continent and island that penetrated
the ocean surface. This was costly even on machines like Cray parallel-vector-
processor computers, which had fast memory access. To reduce the number
of equations to solve with the barotropic streamfunction formulation, it was
common practice to submerge islands, connect them to nearby continents with
artificial land bridges, or merge an island chain into a single mass without
gaps.The first modification created artificial gaps, permitting increased flow,
while the latter two closed channels that should exist.

On distributed-memory parallel computers, these added equations were even
more costly because each required gathering data from an arbitrarily large set of
processors to perform a line-integral around each landmass. This computational
dilemma was addressed by developing a new formulation of the barotropic mode
based on surface pressure. The boundary condition for the surface pressure at a
land-ocean interface point is local, which eliminates the non-local line-integral.

Consequently, the surface-pressure formulation permits any number of is-
lands to be included at no additional computational cost, so all channels can be
treated as precisely as the resolution of the grid permits.

Another problem with the barotropic streamfunction formulation is that the
elliptic problem to be solved is ill-conditioned if bottom topography has large
spatial gradients. The bottom topography must be smoothed to maintain nu-
merical stability. Although this reduces the fidelity of the simulation, it does
have the desirable side effect (given the other limitations of the streamfunction
approach mentioned above) of submerging many islands, thereby reducing the
number of equations to be solved. In contrast, the surface-pressure formula-
tion allows more realistic, unsmoothed bottom topography to be used with no
reduction in time step.

1.2.2 Free-surface boundary condition

The original “rigid-lid” boundary condition was replaced by an implicit free-
surface boundary condition that allows the air-sea interface to evolve freely and
makes sea-surface height a prognostic variable.
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1.2.3 Latitudinal scaling of horizontal diffusion

Scaling of the horizontal diffusion coefficient by cosn(θ) was introduced, where
θ is latitude, n = 1 for Laplacian mixing and n = 3 for bi-harmonic mixing.
This optional scaling prevents horizontal diffusion from limiting the time step
severely at high latitudes, yet keeps diffusion large enough to maintain numerical
stability.

1.2.4 Pressure-averaging

After the temperature and salinity have been updated to time-step n + 1 in the
baroclinic routines, the density ρn+1 and pressure pn+1 can be computed. By
computing the pressure gradient with a linear combination of p at three time-
levels (n − 1, n, and n + 1), a technique well known in atmospheric modeling
[3], it is possible to increase the time-step by as much as a factor of two.

1.2.5 Designed for parallel computers

The code is written in Fortran90 and can be run on a variety of parallel and
serial computer architectures. Originally, the code was written using a data-
parallel approach for the Thinking Machines Connection Machine. Later ver-
sions used a more traditional domain decomposition style using MPI or SHMEM
for inter-processor communications. The most recent version of the code sup-
ports current clusters of shared-memory multi-processor nodes through the use
of thread-based parallism (OpenMP) between processors on a node and message-
passing (MPI or SHMEM) for communication between nodes. The flexibility of
mixing thread-based and message-passing programming models gives the user
the option of choosing the best combination of styles to suit a given machine.

1.2.6 General orthogonal coordinates in horizontal

The primitive equations were reformulated and discretized to allow the use
of any locally orthogonal horizontal grid. This provides alternatives to the
standard latitude-longitude grid with its singularity at the North Pole.

This generalization made possible the development of the displaced-pole grid
(Fig.1.2.6), which moves the singularity arising from convergence of meridians
at the North Pole into an adjacent landmass such as North America, Russia
or Greenland. Such a displaced pole leaves a smooth, singularity-free grid in
the Arctic Ocean. That grid joins smoothly at the equator with a standard
Mercator grid in the Southern Hemisphere. The most recent versions of the
code also support a tripole grid (Fig.1.2.6) in which two poles can be placed
opposite each other in land masses near the North Pole to give more uniform
grid spacing in the Arctic Ocean while maintaining all the advantages of the
displaced pole grids.
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Figure 1.2: Displaced-pole grid
Figure currently exists in on-line version only.

Figure 1.3: Tripole grid
Figure currently exists in on-line version only.

1.3 POP applications to date

1.3.1 High-resolution global and regional modeling

In the period 1994-97, POP was used to perform high resolution (0.28◦ at the
Equator) global ocean simulations, running on the Thinking Machines CM5
computer then located at LANL’s Advanced Computing Laboratory. (Output
from these runs is available at http://climate.acl.lanl.gov. The primary moti-
vation for performing such high-resolution simulations is to resolve mesoscale
eddies that play an important role in the dynamics of the ocean. Comparison of
sea-surface height variability measured by the TOPEX/Poseidon satellite with
that simulated by POP gave convincing evidence that still higher resolution was
required (Fu and Smith [9]; Maltrud [15]).

At the time, it was not possible to do a higher resolution calculation on
the global scale, so an Atlantic Ocean simulation was done with 0.1◦ resolu-
tion at the Equator. This calculation agreed well with observations of sea-
surface height variability in the Gulf Stream. Many other features of the flow
were also well simulated [20]. Using the 0.1◦ case as a benchmark, lower
resolution cases were done at 0.2◦ and 0.4◦; a comparison can be found at
http://neit.cgd.ucar.edu/oce/bryan/woce-poster.html.

Recently, it has become possible to begin a 0.1◦ global simulation and such
a simulation has been started. In addition, higher resolution North Atlantic
simulations have also been initiated.

1.3.2 Coupled models

POP and the Los Alamos sea-ice model (CICE) have been adopted as the ocean
and sea ice components of the Community Climate System Model (CCSM) at
NCAR. POP and CICE are also being used in coupled model development efforts
at Colorado State University and UCLA. Information on CICE can be found at
http://climate.acl.lanl.gov/models/cice.
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Chapter 2

Installing and Building
POP

Now that you’ve presumably perused the first chapter describing all the great
features of POP, you’re understandably anxious to leap in and run some sim-
ulations yourself. The general procedure for unpacking and building a POP
executable will be described here. Exceptions to this procedure for some archi-
tectures will be noted.

2.1 Supported architectures

POP uses standard Fortran and will work on any machine with a compliant
Fortran compiler (Fortran here denotes Fortran 90 or later – FORTRAN 77,
FORTRAN 66, FORTRAN IV or other antiquated dialects are only supported
to the extent that F90 is backward compatible). Two levels of parallelism are
supported and combinations of these two levels can be used on architectures
which support them. For shared-memory parallelism, OpenMP can be used.
For distributed-memory parallelism, MPI or SHMEM can be used. In clustered
SMP architectures, OpenMP can be used for multiple processors on a node
while MPI can be used between nodes.

2.2 Obtaining the POP code

If you have not done so already, you must first actually download a version of
the POP code, maybe even the latest version. The preferred place to get the
POP code is our main web site at Los Alamos:
http://climate.acl.lanl.gov/models/pop
from which you probably downloaded or are viewing this manual.

If you are running POP as part of the NCAR Climate System Model (CCSM),
you should download POP as part of the CCSM distribution.
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2.3 Creating a run directory

The POP distribution you obtained is probably in the form of a compressed tar
file. You must first uncompress the tar file using

uncompress popXXXX.tar
where XXXX refers to the version number which appears in the file name. Then
the tar archive must be unpacked using

tar -xvf popXXXX.tar.
This process will result in a directory named pop with several subdirectories
containing source code, templates for various input files, utilities and test codes.

In order to build a version of POP to run, a directory with the appropriate
makefiles and input files must be created. In the main POP directory, a script
has been provided to create all the necessary structure. Typing

setup run dir dirname [model]
will create a directory called dirname with all the necessary makefiles and input
files. A sub-directory called compile will also be created to provide a work area
for the compilation process. The optional argument model will copy files that
are specific to a standard resolution or model setup. One example of such a
setup is the test case (see Sec. 2.7 which should be used to test the code for
the first time.

2.4 Building POP

2.4.1 Make Procedure

The POP make procedure consists of several steps that are governed by options
in an architecture-specific archdir.gnu file. The correct .gnu file is chosen based
on an environment variable called ARCHDIR, which is a combination of vendor
name and communication paradigm. For example, if you are compiling for an
SGI Origin you will have the choice of sgi serial, sgi mpi, sgi shmem, sgi omp,
or sgi mpiomp depending on whether you want to run serially, in parallel using
message-passing (MPI or SHMEM), in parallel using thread-based parallelism
(OpenMP) or in parallel using a hybrid of threads and message-passing. The
archdir.gnu file contains the proper paths and compiler options for the particular
architecture chosen. A variety of these .gnu files have been provided with the
standard distribution in the input templates directory. If a archdir.gnu file does
not exist for your choice, a file generic.gnu exists with comments on how to
configure it for your particular machine and environment. Also, if your site has
an unusual setup for locations of compilers and various other tools like netCDF,
you may have to edit the archdir.gnu file to reflect the different setup.

POP version 2.0 or later requires version 3.5 or later of the netCDF library.
If not already installed on your system, the netCDF package can be obtained
free of charge from
http://my.unidata.ucar.edu/content/software/netcdf/index.html
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Once the ARCHDIR environment variable has been set, typing gmake should
start the make process. The make process includes a step which runs scripts to
generate dependencies for the makefile. After the dependencies are generated,
the source code passes through a preprocessor and the resulting routines are
finally compiled into an executable named pop.

If you wish to compile a version of POP suitable for debugging or wish to
turn all optimizations off, typing

gmake OPTIMIZE=no
will create an exectutable named pop db for this purpose.

2.5 Domain decomposition

In order to understand some aspects of compiling and running POP, a few
words must be said here about how POP breaks up a problem to run on different
threads and processors. Note that even the serial versions decompose the domain
in order to achieve better performance on cache-based microprocessors.

In POP, the full horizontal domain size (nx global,ny global) is broken up
into domains or blocks. The size of these blocks can be chosen to achieve better
performance as described below. Any block size can be chosen, but to avoid
padding the domain with extra points, the block size in each direction should
be chosen such that it divides the global domain size in that direction evenly.

Once the domain has been decomposed into blocks, the blocks are distributed
among the processors or nodes, ignoring blocks that only contain land points.
The distribution of blocks across processors or nodes can be performed using
either a load-balanced distribution to try to give all processors an equal amount
of work or a Cartesian distribution which ensures that the block’s north, south,
east and west neighbors remain nearest neighbors. A load-balanced distribution
is generally better for the baroclinic section of the code; a Cartesian distribution
is better for the barotropic solver. Different distributions can be specified for
the baroclinic and barotropic parts of the code.

Such a domain decomposition allows some flexibility in tuning the model
for the best performance. Generally, a smaller block size will improve processor
performance on cache-based microprocessors and a smaller block size should
ensure a better load balance and better land point elimination. However, smaller
block sizes add complexity to the communication routines (boundary updates,
global reductions) and will result in a performance penalty for the barotropic
solver. The user will need to experiment with a few combinations to find the
best configuration for the simulation being run.

2.6 Compile-time options

There are a few options for POP that must be determined at compile time. Some
of these options are set by editing modules; one option requires a preprocessor
directive which is handled by a C-language preprocessor (cpp) or equivalent (if
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the Fortran compiler understands such directives). The options below are the
only options that need to be decided at compile time; all other options are set
at run time through a namelist input file.

2.6.1 Domain

The full model size must be set in the domain size module (in the file do-
main size.F90 located in the run directory). The horizontal extents of the grid
nx global and ny global are defined here as well as the number of vertical levels
km. The number of tracers nt also must be defined here and must be at least
two to handle potential temperature and salinity which are always assumed to
be tracer number one and two, respectively.

2.6.2 Blocks

The size of the blocks for which the domain is decomposed (see Sec. 2.5) is
set by two parameters in the domain size module (contained in the file do-
main size.F90 in the run directory). The parameter block size x determines the
number of physical grid points in the first horizontal dimension; the parame-
ter block size y determines the number of physical grid points in the (wait for
it...) second horizontal dimension. The two parameters max blocks clinic and
max blocks tropic determine the maximum number of blocks that can be dis-
tributed onto a processor or node. An initial guess for these two parameters
can be made by dividing the total number of blocks by the number of processors
you plan to run on

(nx global/block size x)(ny global/block size y)
nprocs

. (2.1)

Only an initial guess is required; when running the code, the actual numbers
required will be output so that the user can set these parameters correctly. Also,
note that these parameters can be set higher than required with no penalty
other than memory use. For example, the parameters can be set for the lowest
processor count you plan to use and then the same executable can be used to
run at higher processor counts with no change other than the namelist inputs
for number of processors.

As mentioned in previous sections, finding the optimal block size and dis-
tribution can require experimentation. However, a starting point for users who
are familiar with previous versions of POP is to set the block size such that
only one block is distributed on each processor. In this case, block size x =
nx global/NPROCX where NPROCX is the value found in the old POP .gnu
files; values for the y direction are computed analogously. The max blocks pa-
rameters are then set to one. After using this configuration, users can experi-
ment with reducing the block size to improve performance.
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2.6.3 Coupled model runs

If POP is run in coupled mode, the default interface communicates with the
NCAR CCSM Flux Coupler. This requires message-passing calls and linking
with additional libraries (including MPI whether MPI is used internally or not).
To enable this capability, the coupled option must be requested on the makefile
command line:

gmake COUPLED=yes.
This option turns on the COUPLED ifdef flag for the preprocessor so that the
code necessary for model coupling is included during the preprocessing phase.

2.6.4 Debugging

Similar to the coupling option, if you wish to create a non-optimized pop ex-
ecutable for use with a debugging tool, you must specify this on the make
command line:

gmake OPTIMIZE=no.
By default, this will create an executable named pop db rather than the usual
pop.

2.7 Testing POP

The POP distribution includes a simple test case that can be used for a variety
of purposes, including validation, performance tuning and benchmarking. The
key point is that there are no input fields: the model grid, topography, initial
state, equation of state coefficients and wind stress (there is no other forcing
enabled) are all generated internally. The only file that is read is pop in.

To run the test problem, type
./setup run dir test test

and a directory called test will be created that contains all of the appropriate
files. The default model size is 192x128x20 grid points, though this can be
changed arbitrarily by the user. The grid generated internally is an equally-
spaced latitude-longitude global grid with idealized landmasses. Make the ex-
ecutable as described in Sec. 2.4. The pop in file defaults to running 20 steps
with full diagnostics output every step. Note that for performance benchmarks,
the diagnostic frequency should be set to ‘never’ as the global diagnostics are
expensive and typically requested relatively infrequently (e.g. every 10 days) in
a production simulation.

To use this test case for validation, the user can compare their ouput with
the file pop/input templates/pop sgi.log.test which contains the output of a 20
step calculation run on 4 processors of an SGI Origin3000. The results from
other computer platforms should agree reasonably well – within roundoff for the
first step for most of the larger fields (the nearly-zero fields are very sensitive
and my not agree to that level of precision).
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Once the answers have been validated using the 192x128x20 grid, perfor-
mance and scaling can be investigated by varying the grid size (in domain size.F90)
and the number of processors (in the pop in file).
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Chapter 3

Running POP

This chapter begins with the assumption that the user has followed the instruc-
tions in the previous chapter and has successfully built a pop executable. A
second assumption is that the user might want to actually run an ocean simu-
lation with the code, thereby impressing friends and colleagues and becoming
a card-carrying member of the POP user’s club. Given these assumptions, the
following describes all the many options for configuring an ocean simulation
with POP.

POP requires some input data to run correctly. The first requirement is
a file called pop in that contains many namelists that determine options and
parameter values for the run. A sample input file should have been created in
the run directory, but can also be found in the input templates directory.

In addition to the namelist input file, files will be required to initialize grids,
preconditioners, fields for output and possibly other options. These will be dis-
cussed in more detail below and in later chapters.

The namelists and the model features that they control are presented below.
Each namelist appears in a table whose columns contain:

• The name of the namelist, followed by the names of all parameters.

• The range (discrete or continuous) of possible values of the parameter.
Square brackets surround the [default value] and numerical ranges will be
denoted by (min,max) where the limits are inclusive.

• The units, if applicable, and a description of the parameter.

The namelists are presented in approximately the order in which they are called
during the initialization of a POP run. However, some regrouping has been done
to bring related topics together. The actual order of the namelists within the
pop in file can be arbitrary; the code will search the file for the proper namelist
to be read.
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3.1 Operational control

This section describes various input options that control the operation control
(rather than physical parameters) of the model, including processor configura-
tion, time management and some input/output control.

3.1.1 Processor configuration

The first namelist read by the POP model determines how many processors it
should use and how to distribute blocks of the domain across processors (see
Sec.2.5).

The number of processors used by the model is governed by the nprocs clinic
parameter. The parameter nprocs tropic determines whether the barotropic
solver is run using the same or fewer number of processors; specifying a number
larger than the clinic value will result in an error.

Table 3.1: Domain namelist
&domain nml options for controlling

domain decomposition
nprocs clinic (1,machine max-

imum)
number of processors to be
used for most of the code

nprocs tropic (1,nprocs clinic) number of processors to be
used for barotropic solver

clinic distribution type [‘balanced’],
‘cartesian’

method for distributing
blocks across processors for
most of the code

tropic distribution type ‘balanced’,
[‘cartesian’]

method for distributing
blocks across processors
barotropic solver

ew boundary type [‘cyclic’], ‘closed’ type of boundary in the log-
ical east-west direction for
global domain

ns boundary type [‘cyclic’],
‘closed’,’tripole’

type of boundary in the log-
ical north-south direction for
global domain

/

The distribution of blocks across processors is determined by the parameters
clinic distribution type and tropic distribution type. Typically, the
‘balanced’ choice is best for the baroclinic part of the code and ‘cartesian’
is best for the barotropic solver.

In order to update “ghost cells” and implement proper boundary conditions,
some boundary information for the global domain is required. The parame-
ter ew boundary type determines the type of boundary for the logical east-
west direction (i direction). Acceptable values are currently ’cyclic’ and
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’closed’ for periodic and closed boundaries, respectively. The parameter for
the logical north-south direction (j direction) is ns boundary type and accepts
’cyclic’,’closed’ and ’tripole’, where cyclic and closed have the same
meaning as the east-west direction and tripole refers to use of a tripole grid.

3.1.2 Input/Output

POP supports both binary and netCDF file formats. The formats for each type
of file (e.g. restart, history, movie) are set in individual namelists for those
operations. For binary output format, POP can perform parallel input/output
in order to speed up IO when writing large files. Because most files read or
written by POP utilize direct-access IO with a horizontal slice written to each
binary record, the parallel IO routines allow several processors to write indi-
vidual records to the same file. The user can specify how many processors
participate in the parallel IO with some restrictions. The number of processors
obviously cannot exceed the total number of processors assigned to the job.
In addition, it is not productive to assign more processors than the number of
vertical levels as these processors will generally remain idle (or even perform
unnecessary work). Lastly, there may be some restrictions based on the partic-
ular architecture. Some architectures have a limit on the number of effective IO
units that can be open simultaneously. Some architectures (e.g. loose clusters
of workstations) may not have a file system accessible to all of the participat-
ing processors, in which case the user must set the number of IO processors
appropriately. Lastly, note that netCDF does not support parallel I/O, so any
netCDF formatted files will be read/written from a single processor regardless
of the num iotasks setting.

The POP model writes a variety of information, including model configu-
ration and many diagnostics, to standard output. Typically standard output
would be redirected to a log file using a Unix redirect > operator. However,
in some cases this is not possible, so a namelist flag lredirect stdout can be
turned on to redirect standard output to a log file. The logfile will have the
name log filename.date.time where the date and time are the actual wallclock
time and not the model simulation time.

During production runs, it is not convenient to have to change the pop in
file for every run. Typically, the only changes necessary are the names of any
restart input files. To avoid having to change these filenames in the pop in
file for every run, an option luse pointer files exists. If this flag is .true.,
the names of restart output files are written to pointer files with the name
pointer filename.suffix, where suffix is currently either restart or tavg to
handle restart files and tavg restart files. When a simulation is started from
restart, it will read these pointer files to determine the location and name of the
actual restart files.
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Table 3.2: I/O namelist
&io nml options for controlling I/O
num iotasks (1,min(km,

nprocs clinic))
number of I/O processes for parallel
binary I/O

lredirect stdout [.false.] flag to write stdout to log file
log filename [‘pop.out’] root filename (with path) of optional

output log file
luse pointer files [.false.] flag to turn on use of pointer files
pointer filename [‘pop pointer’] root filename (with path) of pointer

files
/

3.1.3 Time management

The time manager nml namelist controls the timestep, the length of the current
run, the method used to suppress the leapfrog computational mode, and the date
on which this run-sequence began. A run-sequence consists of one or more job
submissions, each of which produces a restart file that is used to begin the next
job in the sequence. A run-sequence is identified by a runid that is declared
in the first job of the sequence and held fixed throughout the sequence; runid
is used in generating default names for the model’s output files. Similarly, the
start date and time for the run sequence (iyear0...,isecond0), are set in the
first job and held fixed throughout the sequence. An additional variable called
date separator can be used to govern the form of the date that is appended to
various output files. The date separator is a single character used to separate
yyyy, mm, and dd in a date format. A blank character is the default and is
translated to no separator (yyyymmdd); a value of ’-’ would result in the format
yyyy-mm-dd.

The timestep is defined using a combination of dt option and dt count. If
steps per (day,year) is chosen, the timestep is computed such that dt count
steps are taken each day or year. If hours or seconds is chosen, the timestep is
dt count in hours or seconds (note that dt count is an integer). If auto dt is
chosen, the timestep is automatically computed based on the grid size. The time
step may be adjusted from these values to accomodate averaging time steps.

In order to control a computational mode resulting from the use of a leapfrog
time stepping scheme, either a time-averaging method (‘avg’,‘avgbb’,‘avgfit’) or
a Matsuno (‘matsuno’) time step must be specified through the time mix opt
parameter. The frequency (in time steps) for applying one of these methods is
defined by the time mix freq parameter. If ‘avg’ is selected for time mix opt,
the averaging results in only a half timestep being taken every time mix freq
steps. This may result in a non-integral number of steps per day and will
result in irregular day boundaries. If an integral number of steps per day is
required, two alternative options are provided. Choosing ’avgbb’ will enable
always taking two half steps back-to-back, thus giving a full time step, but with
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Table 3.3: Time manager namelist
&time manager nml management of time-

related quantities
runid must be sup-

plied
alphanumeric run-sequence
identifier

stop option [‘nstep’], ‘nday’,
‘nyear’, ‘date’

units of time for ‘stop count’

stop count [20] how long in above units to run
this segment (use yyyymmdd
for date)

time mix opt [‘avgfit’],
‘avgbb’, ‘avg’,
‘matsuno’

Method to suppress leapfrog
computational mode.

fit freq [1] When using ‘avgfit’, the inter-
vals per day into which full and
half steps must fit

time mix freq [17] Requested frequency (in steps)
for taking mixing steps

dt option [‘auto dt’],
‘steps per day’,
‘steps per year’,
‘seconds’,
‘hours’

units for determining timestep
(combined with dt count)

dt count [1] number of timesteps in above
units to compute timestep

impcor [.true.] If .true., the Coriolis terms
treated implicitly

laccel [.false.] if .true., tracer timesteps in-
crease with depth

accel file [‘unknown accel’] file containing vertical profile
of timestep acceleration factor

dtuxcel 1.0 factor to multiply momentum
timestep for different momen-
tum and tracer timesteps

allow leapyear [.false.] use leap years in calendar
iyear0 [0] year (yyyy) at start of full run

sequence
imonth0 [1] Month at start of sequence
iday0 [1] day at start of sequence
ihour0 [0] hour at start of sequence
iminute0 [0] Minute at start of sequence
isecond0 [0] Seconds at start of sequence
date separator [‘ ’] Character to separate yyyy

mm dd in date (‘ ’ means no
separator)

/
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increased diffusion. The ‘avgfit’ option will compute a number of full and half
steps that will fit into a particular time interval. The time interval to be fit is
governed by the ‘fit freq’ parameter which sets the number of time intervals per
day (1=once per day) into which the time steps must fit exactly. The Matsuno
scheme does not use half steps, but Matsuno is generally more diffusive than
time averaging and has been shown to be unstable in many situations.

The timestep above can be increased for tracers in the deep ocean. If such
acceleration is requested (laccel = .true.), a profile of the acceleration with
depth must be read from the file accel file, an ascii file with a single column
of numbers giving the acceleration factor for each vertical level. Another form
of acceleration is to take a longer tracer timestep than momentum timestep.
This can be specified by changing dtuxcel to a factor smaller than 1.0.

3.2 Grid and bottom-topography definition

POP can be configured to use a variety of grids, because it is written to allow
any logically rectangular, orthogonal coordinate system on a sphere. Generation
grids and topography can be time consuming, but it only needs to be done once
for a given run-sequence (or even for a set of run-sequences based on the same
grid). Consequently, grids and topography are usually generated off-line and
grid information is stored in files that are read in during initialization of each job.
A graphical tool for generating and modifying grids and topography will soon
be released and can be obtained on request. This tool supports almost-global
Mercator grids, global displaced-pole grids, global tripole grids and regional
grids.

When generating the grid off-line, a horizontal grid file is created containing
arrays of double precision values for:

• latitude (radians) of velocity (U) points

• longitude (radians) of velocity (U) points

• length (cm) of north side of tracer (T) cell

• length (cm) of east side of tracer (T) cell

• length (cm) of south side of velocity (U) cell

• length (cm) of west side of U velocity (U) cell

• angle formed by the south U cell side and latitude circle passing through
the soutwest corner of U cell

where north, south, east and west refer to logical directions, not necessarily
geographic directions. The vertical grid file is an ASCII file containing the
thickness of each grid layer on a separate line.

Options exist to generate both horizontal and vertical grids internally (‘in-
ternal’). Because any grid size can be easily produced and IO is unnecessary,
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Table 3.4: Grid and topography namelist
&grid nml input/generation of

grid and bottom to-
pography

horiz grid opt ‘file’, [‘internal’] read horizontal grid
from a file OR create
simple lat/lon grid

horiz grid file [‘unknown grid file’] filename (with path) of
file containing horizon-
tal grid info

sfc layer opt [‘varthick’], ‘rigid’, ‘oldfree’ surface layer is variable
thickness OR rigid lid
OR old free surface for-
mulation

vert grid opt ‘file’, [‘internal’] read vertical grid struc-
ture from file OR com-
pute vertical grid inter-
nally

vert grid file [‘unknown vert grid file’] file containing thick-
ness (cm) of each ver-
tical layer

topography opt ‘file’, [‘internal’] read discretized bot-
tom topography from
file or compute ideal-
ized flat-bottom topog-
raphy internally

topography file [‘unknown topography file’] file containing index of
deepest level at each
gridpoint

region mask file [‘unknown region mask’] file containing region
number at each grid-
point

partial bottom cells [.false.] use partial bottom cells
bottom cell file [‘unknown bottom cell’] file containing thick-

ness (cm) of partial
bottom cell for each
column

topo smooth [.false.] if .true., smooth topog-
raphy using 9-point av-
eraging stencil

flat bottom [.false.] if .true., flat bottom is
used

lremove points [.false.] if .true., remove iso-
lated or disconnected
ocean points

/
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this option is used for the benchmark test problem (see Sec.2.7). The hori-
zontal grid in this case is a simple latitude-longitude grid. The vertical grid
uses an algorithm identical to the off-line vertical grid generator located in the
tools/grid directory; vertical grids are generated which have relatively shallow
surface layers and increasing thickness with depth.

The bottom topography is defined by a field of integers (KMT) which gives
the index of the deepest vertical level at each horizontal grid point. This field
should also be generated off-line because it often requires modification for narrow
channels and other small-scale features. For off-line generated topography, the
code expects a binary file with the integer KMT field. Topography can be gen-
erated internally, but this option currently only creates an idealized continental
outline with a flat bottom; it should not be used for serious ocean simulations.
Bottom topography can be modified to include partial bottom cells. If partial
bottom cells are selected, the thickness of the bottom cell in each column can
be less than the full thickness of the bottom model layer, giving a better repre-
sentation of the actual bottom topography. For this option, an array containing
the thickness of each bottom cell (in cm) must be read from a bottom cell input
file.

At present, POP does not support in-flow/out-flow boundary conditions
for regional grids. For such regional simulations, closed boudaries are used
with buffer zones whose thermohaline properties are maintained by restoring to
climatology (see Sec. 3.8.3).

Three options are available for the surface layer. The default is now a vari-
able thickness surface layer (‘varthick’) in which the thickness of the surface
layer adjusts to fresh water input/export. Note that in this formulation, an
assumption remains that the changes in thickness should be much smaller than
the thickness of the surface layer itself. A second option is the original free sur-
face formulation (‘oldfree’) where the thickness remains constant, but changes
in the free surface height are used in forcing terms. In this case, fresh water
fluxes are treated as virtual salinity fluxes and conservation of tracers is not
exact (though the residual tracer flux is globally very small). The last option is
the rigid lid option (‘rigid’). As it implies, there is no variation is surface height
with this option. Note that when using this option, the barotropic solver takes
much longer to converge so the maximum iteration parameter must be increased
to account for this slower convergence. The rigid lid option is not recommended
for typical ocean simulations.

For some forcing options (and in future versions for regional diagnostics
and river runoff), a region mask is necessary to define various regions. This
mask is a simple two-dimensional integer mask that assigns a region number for
each horizontal grid point. Negative values of the region number are used to
indicate marginal seas. If such a region mask is necessary, it is read from the
region mask file. If the mask is not necessary, region mask file must be
set to ’unknown region mask’.
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3.3 Initializing the model state

3.3.1 Temperature and salinity distribution

Most jobs are continuations of a run-sequence, so the potential temperature and
salinity (and other necessary variables) are read in from a restart file (see Sec.
3.3.2). In this case, the init ts opt should be set to ‘restart’ and the runid
and iyear0,...,isecond0 parameters in time manager nml are reset by the
values in the restart file.

Table 3.5: Temperature and salinity initialization
&init ts nml initial temperature and

salinity distribution
init ts option ‘restart’, ‘branch’, ‘file’,

‘mean’, [‘internal’]
start from restart OR read
initial ocean conditions from
a file OR create conditions
from an input mean ocean
profile OR create initial con-
ditions based on 1992 Levitus
mean ocean profile computed
internally

init ts file ‘unknown ts file’ restart file OR file contain-
ing 3D potential temperature
and salinity at grid points
OR file containing depth pro-
file of potential tempera-
ture and salinity OR (ig-
nored for ‘internal’ or when
luse pointer files is enabled)

init ts file fmt [‘bin’], ‘nc’ data format (binary or
netCDF) for input init ts file
(‘file’ and ‘restart’ options
only)

/

If you want to start from an old restart file, but also want the new run to
start from time zero, the init ts opt should be set to ‘branch’. In this case,
the time information in the restart file is ignored (namelist inputs for the various
parameters are used instead), but the ocean state is initialized with the data in
the restart file. Note, that this will not give an exact restart because the code
will start with an Euler forward step as if it were starting from scratch.

To begin a run from scratch, any of the other three options can be used.The
‘file’ option reads a file containing the 3-d fields for potential temperature and
salinity and uses those fields for the initial condition. The ‘mean’ option reads
a mean profile from an ascii input file with potential temperature and salinity
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given in two columns as a function of depth.This mean state will be spread
across the horizontal domain to create horizontally-uniform 3-d fields. The final
option is ‘internal’ which generates a mean vertical profile by interpolating
from the 1992 Levitus mean ocean profile. As in the ‘mean’ option, this vertical
profile is then spread across the horizontal domain to create the full 3-d fields.

3.3.2 Restart control

As a POP calculation proceeds, restart files are produced at intervals of simu-
lated time specified by the parameter restart freq in namelist restart nml.
The root of the restart filename is given by the restart outfile variable. The
actual full filename will be restart outfile.runid.suffix where suffix is a number
that depends on restart freq opt. If this option is ‘nyear’, ‘nmonth’ or ‘nday’
suffix will be the calendar day in yyyymmdd. If the option is ‘nstep’, suffix will
be the current step number. In the unlikely case that the user chooses ‘nhour’
or ‘nsecond’, suffix will be yyyymmdd.[hh,sssss] where hh and sssss denote the
current hour or seconds in the current day. A common convention (see Chapter
4) is to give restart files the simple root name ‘d’ (for dump).

Table 3.6: Restart file namelist
&restart nml generation of restart files
restart freq opt ‘nyear’, ‘nmonth’,

‘nday’, ‘nhour’,
‘nsecond’,
‘nstep’,[‘never’]

units of time for ‘restart freq’

restart freq [100000] number of units between out-
put of restart files

restart outfile [‘d’] root filename (with path
prepended, if necessary) for
restart files (‘runid’ and suf-
fixes will be added)

restart fmt [‘bin’],‘nc’ data format (binary or
netCDF) for restart output
files

leven odd on [.false.] create alternating even/odd
restart outputs which over-
write each other

even odd freq [100000] frequency (in steps) for
even/odd output

pressure correction [.false.] if true, corrects surface pres-
sure error due to (possible)
different timestep. use .false.
for exact restart

/
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In addition to these named restart files, additional restart files may be writ-
ten using the even/odd convention. If leven odd is set to .true., the model
will write restart files every even odd freq steps. These files will be named
restart outfile.runid.even,odd where the code alternately writes to an even or
odd file. Any previous file of the same name will be overwritten. This capability
is particularly useful for backup in case the simulation terminates prematurely;
it provides restart capability without needing to keep many named restart files
present in the file system. The model writes alternately to each of two such files
so that if an error occurs while writing one restart file, the other restart file will
still (presumably) be all right.

Restart files contain only the minimum information required to restart the
model exactly, so that the results are the same after a restart as would have
been the case had no restart been done.This means that two time-levels (n-1
and n) of the prognostic variables (PT, S, U, V and H) must be saved in 64-bit
precision. The restart format is governed by the restart fmt option. Note
that using netCDF for restarts on machines that do not use the IEEE binary
format standard will result in restart files that are not exact due to internal
conversion by the netCDF library. This will prevent exact reproducibility on
such machines. Binary format is therefore highly recommended for restart files.

3.4 Computational options

3.4.1 Barotropic mode solver

As part of the implicit solution of the barotropic mode, a two-dimensional el-
liptic equation for the surface pressure is solved. Three solver methods are
available, all iterative (preconditioned conjugate gradient, conjugate residual
and Jacobi). Convergence of the iterative solvers is governed by the two pa-
rameters solv convrg and solv max iters as shown in the table below. The
convergence criterion solv convrg should be chosen small enough such that the
pressure balance (printed as part of the model global diagnostics) agrees to 3-4
digits. The parameter solv max iters must be chosen large enough to allow
the solver to converge (typically a few hundred), but small enough so that the
code will terminate in a reasonable time if the solver is unable to converge.

Occasionally, when benchmarking the code, it is useful to fix the number
of iterations to give a consistent iteration count between runs. In this case,
solv convrg is set to exactly zero and the solver will iterate solv max iters
and continue with the simulation without terminating. This feature should only
be used for benchmarking and not for actual ocean simulations.

The solv ncheck provides a means to improve performance by checking for
convergence every solv ncheck iterations, thus eliminating an extra global sum
on most iterations. Another means for improving performance is to supply a
preconditioner to improve convergence. The preconditioner must be computed
off-line and must be in the form of a nine point stencil operator. The pre-
conditioner is then supplied in a file named precond file containing the nine
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Table 3.7: Barotropic solver namelist
&solver nml control of iterative solver

for barotropic mode
solv type [‘pcg’], ‘cgr’, ‘jac’ preconditioned conjugate

gradient OR conjugate
gradient residual OR jacobi

lprecond [.false.] if .true., use preconditioner
to reduce number of itera-
tions to convergence

precond file [‘unknown precond file’] file containing preconditioner
coefficients for solver

solv convrg 1.00E-12 convergence criterion:
|δX/X| < solv convrg

solv max iters 1000 upper limit on number of it-
erations allowed

solv ncheck 10 check for convergence every
solv ncheck iterations

/

operator weights. The Jacobi method converges very slowly; it is not recom-
mended but is provided as an alternative.

3.4.2 Advection methods

Currently, advection of momentum is always done by leapfrog centered advection
with periodic ‘mixing’ steps (see Sec. 3.1.3) For tracer advection, two options are
available. The first is standard leapfrog centered advection; the second is a 3rd-
order upwinding [14] which, although not monotone, will improve monotonicity
at a somewhat increased computational cost.

Table 3.8: Advection namelist
&advect nml advection methods for tracers
tadvect ctype [‘centered’],

‘upwind3’
centered differences OR 3rd-order up-
winding

/

3.4.3 Pressure gradient options

The pressure-averaging technique was explained in section 1.2.4. Because it
increases the timestep, it should always be enabled. The option to turn it off
is provided only to permit comparisons with and without pressure-averaging or
between POP and other codes that do not incorporate this technique.
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The pressure gradient term includes a density factor which is assumed to be a
constant reference density in Boussinesq models. The depth-dependent pressure
effects on this density can be corrected for using simple depth-dependent factors.

Table 3.9: Pressure averaging namelist
&pressure grad nml averaging of horizontal pressure

gradient
lpressure avg [.true.] use pressure averaging to increase

time step
lbouss correct [.true.] applies depth-dependent factor to

correct for assumed constant density
/

3.5 Vertical mixing and convection parameteri-
zations

Several vertical mixing parameterizations are available within the POP model
and are described in much more detail in the Reference Manual. The value
of vmix choice determines whether a simple constant mixing, a Richardson-
number dependent mixing or the KPP mixing parameterization is used. Addi-
tional mixing parameters for each of these schemes are set in individual namelists
shown below; only the namelist associated with the mixing choice is actually
read.

The treatment of convection is also specified in the vertical mixing namelist
through the convection type variable. Convection can be treated using either
convective adjustment or by specifying large diffusion coefficients in convectively
unstable regions. The KPP vertical mixing parameterization must use the dif-
fusion option. If convective adjustment is chosen, the number of passes through
the vertical column to adjust is determined by the parameter nconvad. The
treatment of convection by diffusion is governed by the input diffusion coeffi-
cients convect diff and convect visc. Note that for constant vertical mixing,
you can apply diffusion to tracers only by setting convect visc to zero; this is
not true for Richardson number mixing or KPP.

Some vertical and horizontal mixing parameterizations (e.g. KPP and Gent-
McWilliams to be discussed later) create large vertical mixing coefficients. In
addition, when diffusion is used as the method for treating convection, the
diffusion coefficients are large. In such cases, implicit vertical mixing must be
enabled (implicit vertical mix = .true.) to avoid severe restrictions on
the model time step.

If implicit vertical mixing is chosen, the parameter aidif governs the time-
centering of the implicit scheme.The bottom drag coefficient is used to compute
bottom drag. To simulate geothermal heating at the bottom of the ocean, a
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Table 3.10: Vertical mixing namelist
&vertical mix nml vertical mixing parameteriza-

tions
vmix choice ‘const’,

‘kpp’,[‘rich’]
method of computing vertical diffu-
sion

implicit vertical mix [.true.] if true, vertical mixing is solved im-
plicitly in time

aidif [1.0] 0.5-1.0 time-centering parameter for implicit
vertical mixing; use of the default
value [1.0] is recommended

bottom drag [1.0E-03] (dimensionless) coefficient used in
quadratic bottom drag formula

convection type ‘adjustment’,
[‘diffusion’]

Convection treated by adjustment or
by large mixing coefficients

nconvad 2 number of passes through the convec-
tive adjustment algorithm

convect diff [1000.] tracer mixing coefficient to use with
diffusion option

convect visc [1000.] momentum mixing coefficient to use
with diffusion option

bottom heat flx [0.0] constant (geothermal) heat flux
(W/m2) to apply to bottom layers

bottom heat flx depth [100000.] depth (cm) below which to apply bot-
tom heat flux

/
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constant heat flux can be applied below a fixed depth in the ocean. A heat flux
of zero turns off this option.

3.5.1 Constant coefficients

Constant vertical mixing simply uses a constant diffusion coefficient for mixing
everywhere in the domain.

Table 3.11: Constant vertical mixing namelist
&vmix const nml constant vertical mixing coefficients
const vvc [0.25] vertical viscosity coefficient (momentum

mixing) (cm2/s)
const vdc [0.25] vertical diffusivity coefficient (tracer mix-

ing) (cm2/s)
/

3.5.2 Richardson-number mixing

The Pacanowski and Philander [1] mixing scheme was developed primarily for
use in tropical ocean and, although it is often used elsewhere in the global ocean,
the user should be aware of the possible need to adjust its parameters ([17],[10]).

Table 3.12: Richardson-number vertical mixing namelist
&vmix rich nml Richardson-number mixing

(Pacanowski-Philander)
bckgrnd vvc [1.0] background vertical viscosity (cm2/s)
bckgrnd vdc [0.1] background vertical diffusivity (cm2/s)
rich mix [50.0] Coefficient for Richardson-number function
/

3.5.3 KPP mixing

The k-profile parameterization (KPP) [13] is relatively complex and only the
parameters that are routinely changed are shown here in the namelist. It is pos-
sible to change other parameters by editing the KPP module, but this should
not be necessary and is discouraged. As described previously, KPP utilizes en-
hanced diffusion for convection so implicit vertical mixing must be enabled and
diffusion must be specified as the convection method. Note that the constants
convect diff, convect visc are used for convection within KPP.

A recent change to the KPP implementation is to allow a depth dependent
background diffusivity κ and viscosity ν. The form of this dependence is

κ = κ 1 + κ 2 arctan((z − d)/L) (3.1)
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Table 3.13: KPP namelist
&vmix kpp nml KPP mixing
bckgrnd vdc1 [0.1] base background vertical diffusivity

(cm2/s)
bckgrnd vdc2 [0.0] variation in background vertical diffusivity

(cm2/s)
bckgrnd vdc dpth [250000.0] depth (cm) at which background vertical

diffusivity is vdc1
bckgrnd vdc linv [0.000045] inverse of the length scale (1/L in cm−1)

over which diffusivity transition takes place
Prandtl [10.0] (unitless) ratio of background vertical vis-

cosity and diffusivity
rich mix [50.0] Coefficient for Richardson-number function
lrich [.true.] use Richardson-number for interior mixing
ldbl diff [.false.] add double-diffusive parameterization
lshort wave [.false.] use penetrative shortwave forcing
lcheckekmo [.false.] check whether boundary layer exceeds Ek-

man or Monin-Obukhov limit
num v smooth Ri [1] Number of passes to smooth Richardson

number
/

ν = (Pr)κ. (3.2)

where z is the model depth, d is the depth at which κ reaches κ 1, L is a length
scale over which the transition between κ 1 and κ 2 takes place and Pr is the
Prandtl number. If a constant diffusivity and viscosity are required, simply set
vdc2 to zero and vdc1 to the appropriate diffusivity.

3.6 Horizontal mixing parameterizations

Several horizontal mixing options are available for mixing tracers and momen-
tum. With a few exceptions (discussed later), the choice of tracer mixing can
be made independently of the choice of momentum mixing. As with vertical
mixing, the main namelist input only selects the choice of mixing options; the
actual mixing parameters associated with each option are read from a namelist
specific to that option. The del2 (Laplacian) and del4 (bi-harmonic) mixing op-
tions are ad hoc level-oriented parameterizations that mix water-mass properties
across sloping isopycnic surfaces. The Gent-McWilliams [11] parameterization
remedies this shortcoming by forcing the mixing (of tracers only) to take place
along isopycnic surfaces. The principal drawback of the gent option is cost; it
nearly doubles the running time. For momentum mixing, an anisotropic vis-
cosity parameterization (aniso) is also available which assigns different values
of viscosity parallel and perpendicular to a given direction, where the direction
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can be specified as described in a later section. Under the aniso option, a
Smagorinsky form of viscosity can be specified.

Table 3.14: Horizontal mixing namelist
&hmix nml horizontal mixing methods
hmix momentum choice [‘del2’],

‘del4’, ‘anis’
method for horizontal mixing
of momentum (Laplacian, bihar-
monic or anisotropic)

hmix tracer choice [‘del2’],
‘del4’, ‘gent’

method for horizontal mixing of
tracers (Laplacian, biharmonic or
Gent-McWilliams)

/

3.6.1 Laplacian horizontal mixing.

The Laplacian mixing coefficients for tracers ah and momentum am are specified
in separate namelists. The defaults shown in the namelists are only valid for
a particular grid size; the user must determine the appropriate values for their
particular grid size. The variable hmix option modifies the coefficients ah
and am based on functions of the grid cell areas and will reduce the values for
smaller grid cells (am and ah thus represent the values at the largest grid cells).
Currently, the functional form of this scaling can only be changed by editing
the modules. The auto hmix option attempts to compute coefficients based on
known values for other resolutions. The result may or may not be suitable and
the auto hmix option is provided mainly for flexible benchmarking of the code
at various resolutions.

Table 3.15: Laplacian momemtum mixing namelist
&hmix del2u nml Laplacian momentum mixing pa-

rameters
lauto hmix [.false.] computes mixing coefficient based on res-

olution
lvariable hmix [.false.] scales mixing coeff by grid cell area
am ∼ 2× 107 momentum mixing coefficient (cm2/s)
/

3.6.2 Biharmonic horizontal mixing.

The biharmonic mixing coefficients for tracers ah and momentum am are spec-
ified in separate namelists. The defaults shown in the namelists are only valid
for a particular grid size; the user must determine the appropriate values for
their particular grid size. The variable hmix option modifies the coefficients

37



Table 3.16: Laplacian tracer mixing namelist
&hmix del2t nml Laplacian tracer mixing parameters
lauto hmix [.false.] computes mixing coefficient based on res-

olution
lvariable hmix [.false.] scales mixing coeff by grid cell area
ah ∼ 2× 107 tracer mixing coefficient (cm2/s)
/

ah and am based on functions of the grid cell areas and will reduce the values for
smaller grid cells (am and ah thus represent the values at the largest grid cells).
Currently, the functional form of this scaling can only be changed by editing
the modules. The auto hmix option attempts to compute coefficients based on
known values for other resolutions. The result may or may not be suitable and
the auto hmix option is provided mainly for flexible benchmarking of the code
at various resolutions.

Table 3.17: Biharmonic momentum mixing namelist
&hmix del4u nml Biharmonic momentum mixing

parameters
lauto hmix [.false.] compute mixing coefficient based on

resolution
lvariable hmix [.false.] scale mixing coeff by grid cell area
am ∼ −0.6×1020 momentum mixing coeff (cm2/s)
/

Table 3.18: Biharmonic tracer mixing namelist
&hmix del4t nml Biharmonic tracer mixing pa-

rameters
lauto hmix [.false.] compute mixing coefficient based on

resolution
lvariable hmix [.false.] scale mixing coeff by grid cell area
ah ∼ −0.2×1020 tracer mixing coefficient (cm2/s)
/

3.6.3 Gent-McWilliams isopycnic tracer diffusion

Gent-McWilliams (gent) mixing operates only on tracer species (potential tem-
perature, salinity and other tracers), so it should be used in conjunction with
a different option for hmix momentum choice, typically either del2 or aniso.
No bi-harmonic form of gent has been developed and accepted yet, so it is ap-
propriate to use the del2 values of ah. For vertical dependence of the mixing,
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a profile with the form κ1 + κ2 exp(−z/D) can be chosen, where D is a depth
scale, z is model depth and κ1 and κ2 parameters specifiy factors multiplying
the diffusivity. Note that this function is multiplied by the diffusivity ah; for
a constant κ, the first parameter should be set to 1 and the second to 0. Two
diffusivities can be specified for the Redi and bolus parts of the GM parame-
terization; ah is used for the Redi part, ah bolus is used for the bolus part.
Two different maximum slopes can also be specified to allow different taperings
of the Redi and bolus terms. A backgroud horizontal diffusivity ah bkg can be
used for bottom cells. If the gm bolus flag is set, the bolus velocity is explicitly
calculated and used as part of the velocity field, as opposed to the incorporating
this process as part of the horizontal mixing. This last option does not currently
work with partial bottom cells.

Table 3.19: Gent-McWilliams horizontal mixing namelist
&hmix gm nml Gent-McWilliams isopycnic diffu-

sion
kappa choice [’constant’],

’variable’
constant or (horizontally) variable
kappa

slope control choice [’notanh’],
’tanh’,
’clip’,
’gerdes’

control slope using tanh, algebraic ap-
proximation to tanh (notanh), clipping
or method of Gerdes

kappa depth 1 [1.0] the first term in the function for varia-
tion of kappa with depth

kappa depth 2 [0.0] the coefficient of the exponential in the
function for variation of kappa with
depth

kappa depth scale [150000.0] the depth scale for the exponential in
the function for variation of kappa with
depth

ah 0.8× 107 diffusion coeff for Redi part (cm2/s)
ah bolus 0.8× 107 diffusion coeff for bolus part (cm2/s)
ah bkg 0.0 diffusion coeff for bottom cells (cm2/s)
slm r 0.01 max slope for Redi terms
slm b 0.01 max slope for bolus terms
gm bolus [.false.] option for explicit calculation of bolus

velocity

3.6.4 Anisotropic viscosity options

The anisotropic viscosity routine computes the viscous terms in the momentum
equation as the divergence of a stress tensor, which is linearly related to the
rate-of-strain tensor with viscous coefficents visc para and visc perp . These
coefficients represent energy dissipation in directions parallel and perpendicular
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to a specified alignment direction which breaks the isotropy of the dissipation.
There are three options for choosing the alignment direction: 1) along the local
instantaneous flow direction, 2) along the east direction, and 3) along the coor-
dinate directions (note: the viscous operator is invariant under a rotation of the
alignment direction by 90 degrees, so for example, choosing the alignment di-
rection as north, south, east or west are all equivalent.). A functional approach
is used to derived the discrete operator, which ensures positive-definite energy
dissipation, provided visc para > visc perp.

Parallel and perpendicular viscosities can vary in space by setting the flag
lvariable hmix aniso to true. The spatially-varying viscosities in the parallel
and perpendicular directions are read from a file (var viscosity infile). A
specific form of the viscosities useful for CCSM coupled simulations can be
internally computed if the input filename is ’ccsm-internal’. In such a case, the
six viscosity parameters for the form must also be supplied.

The viscosities may optionally (lsmag aniso = .true.) be evaluated with
Smagorinsky-like non-linear dependence on the deformation rate, which is pro-
portional to the norm of the strain tensor. With the Smagorinsky option, the
viscosities are evalutated as

ν‖ → max(c‖|D|ds2), u‖ds)

ν⊥ → max(c⊥|D|ds2), u⊥ds) (3.3)

where ds = min(dx, dy), |D| =
√

2|E| is the deformation rate, |E| is the norm of
the strain tensor, c‖ and c⊥ are dimensionless coefficients of order 1, and u‖ and
u⊥ are velocities associated with the grid Reynolds number which determine
minimum background viscosities in regions where the nonlinear viscosities are
too small to control grid-point noise. Typically u‖ and u⊥ are order 1 cm/s.
Perpendicular Smagorinsky coefficients can be reduced using a latitudinally-
dependent Gaussian function. The form of this function is governed by the
three smag lat parameters.
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Table 3.20: Anisotropic viscosity namelist
&hmix aniso nml Anisotropic viscosity
hmix alignment choice [’flow’],

’grid’,
’east’

choice for alignment of parallel viscosity
component (aligned with local flow, grid
lines or east-west direction)

lvariable hmix aniso [.false.] use spatially-varying viscosity
lsmag aniso [.false.] compute viscosities using a Smagorinsky

formulation
visc para [0.0] parallel viscosity component(cm2/s)
visc perp [0.0] perpendicular viscosity component

(cm2/s)
c para [0.0] dimensionless parallel Smagorinsky co-

eff
c perp [0.0] dimensionless perpendicular Smagorin-

sky coeff
u para [0.0] velocity (cm/s) for grid Reynolds no.

viscous limit in parallel direction
u perp [0.0] velocity (cm/s) for grid Reynolds no.

viscous limit in perpendicular direction
var viscosity infile ’ccsm-

internal’,
’file-
name’

name of file containing variable viscosity
factors or internal generation of a ccsm-
specific form

var viscosity infile fmt ’bin’,’nc’ viscosity input file format
var viscosity outfile ’filename’ output file for writing internally-

generated variable viscosity
var viscosity outfile fmt ’bin’,’nc’ viscosity output file format
vconst 1 1.e7 CCSM variable viscosity parameter
vconst 2 24.5 CCSM variable viscosity parameter
vconst 3 0.2 CCSM variable viscosity parameter
vconst 4 1.e-8 CCSM variable viscosity parameter
vconst 5 3 CCSM variable viscosity parameter
vconst 6 1.e7 CCSM variable viscosity parameter
smag lat 20.0 latitude (degrees) for starting variation

in Smagorinsky viscosity
smag lat fact 0.98 amplitude of Gaussian function for re-

ducing Smagorinsky coefficients
smag lat gauss 98.0 width (degrees squared) of Gaussian

function for reducing Smagorinsky coef-
ficients
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Table 3.21: Equation of state namelist
&state nml equation of state approximation
state choice [’mwjf’],

‘jmcd’, ‘poly-
nomial’,
‘linear’

McDougall et al. eos OR Jackett and
McDougall eos OR polynomial fit to UN-
ESCO eos OR linear eos

state file [‘internal’],
filename

compute polynomial coefficients inter-
nally OR read from file filename

state range opt [‘ignore’],
‘check’,
‘enforce’

ignore when T,S outside valid polynomial
range OR check and report OR compute
eos as if T,S were in valid range (but
don’t alter T,S)

state range freq [1] frequency (steps) for checking T,S range
/

3.7 Physical process options

3.7.1 Equation of state approximation

Four options for computing the density from salinity and potential temperature
are available. The first is an equation of state introduced by McDougall, Wright,
Jackett and Feistel (MWJF [16]) which is a faster and more accurate alternative
to the UNESCO equation of state. The second is a UNESCO equation of state
based on potential temperature from Jackett and McDougall (JMCD [12]). The
third is a polynomial fit to the full UNESCO equation of state. The advantage of
the polynomial form is that it is faster; the disadvantage is that the polynomial
is only valid over a specified temperature and salinity range and exceeding that
range will have unpredictable results. This is a particular issue with the KPP
vertical mixing scheme which often computes buoyancy by displacing water near
the surface to deep water where the EOS range has been restricted. The last
option is a linear eos which is supplied for use only in special situations where
such an approximation is appropriate.

For the polynomial option, there are two methods for determining the poly-
nomial coefficients and these are determined by the value of state file. If
this variable is defined as ‘internal’, the code will determine the polynomial co-
efficients internally based on the vertical grid. The internal routines currently
use hard-wired profiles for the limits of validity of the polynomial eos; if the
user wishes to change these limits, they can be changed in an off-line coefficient
generator (in the tools/eos directory) and the coefficients can be read in from
a file. The value of state file will be the name of the coefficient input file.
As mentioned above, the polynomial eos has a certain temperature and salinity
range over which the polynomial is valid. The state range opt variable deter-
mines what to do if these limits are exceeded during a simulation. The first
option is to simply ‘ignore’ when these occur; this is generally not as bad as it
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sounds as the range is valid for nearly all normal cases. The second option is
to ‘check’ whether the range is exceeded and print a warning if such problems
are detected. The last option, ‘enforce’, simply makes sure the polynomial is
evaluated within the correct range without changing the values of T or S. For
example, if the temperature drops below -2C, the code will compute a den-
sity based on a temperature of -2C without actually changing the temperature.
The state range freq can be used to perform the checks infrequently to save
computational time.

3.7.2 Baroclinic-mode parameters

The reset to freezing option exists to make sure the surface temperature
does not drop below freezing, a situation that can occur with some types of
forcing in stand-alone mode. This option should be disabled if sea ice formation
is enabled (see Sec.3.7.3).

Table 3.22: Baroclinic namelist
&baroclinic nml parameters used in baroclinic mode

calculations
reset to freezing [.true.] if .true. and Tsurf (i, j) < Tfreezing,

Tsurf (i, j) is reset to Tfreezing

/

3.7.3 Sea-ice emulation parameters

If ice freq opt is not ’never’, the code will create ice whenever the ocean tem-
perature drops below freezing at levels higher then kmxice. This ice formation
will be computed at frequencies determined by the ice freq in ice freq opt
units. If the model is being run in coupled mode, ice freq opt should be set
to ‘coupled’ to compute ice formation on coupling timesteps. In coupled mode,
the heat and water fluxes associated with ice formation are saved and sent to
the flux coupler for use in the ice model.

3.7.4 Topographic stress

If ltopostress is .true., then an implementation of a topographic stress param-
eterization [8] is enabled. In effect, this changes the field acted on by the Lapla-
cian operator from (U,V) to (U-U*,V-V*) where (U*,V*) are derived based on
the topography gradient and a specified length scale (note that this only works
for Laplacian mixing). A smoothed topography can be used to compute this
gradient with the number of smoothing passes with a 9-point averaging stencil
is governed by nsmooth topo.
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Table 3.23: Ice formation namelist
&ice nml parameters used to emulate

sea-ice
ice freq opt [‘never’], ‘coupled’,

‘nyear’, ‘nmonth’,
‘nday’, ‘nhour’,
‘nsecond’, ‘nstep’

frequency units for computing ice
formation

ice freq 1 frequency in above units for com-
puting ice formation

kmxice [1], 1-km compute ice formation above this
vertical level

/

Table 3.24: Topographic stress namelist
&topostress nml Topographic stress parameters
ltopostress [.false.] true if topographic stress enabled
nsmooth topo [0] number of passes to smooth topography
/

3.8 Forcing options (ocean-only mode)

Presently, POP includes routines for specifying the surface forcing for the veloc-
ity, pressure, temperature and salinity as well as interior forcing for temperature
and salinity. While it is impossible to anticipate every kind of forcing a user
might want, the routines have been constructed so that it should be relatively
easy to add new types of forcing by using existing types as a template. In the
following sections, these abbreviations apply:

ws: wind stress; surface forcing for the horizontal velocity field

shf: surface heat flux; surface forcing for the potential temperature equation

sfwf: surface fresh water flux; surface forcing for the salinity equation

ap: surface pressure forcing due to variations in the atmospheric pressure

pt interior: interior forcing for the potential temperature equation

s interior: interior forcing for the salinity equation

Sometimes an asterisk (*) will be used as a UNIX-like wildcard.
Each forcing category listed above has a namelist, and a set of options must

be specified in each namelist. The options are:

• periodicity

• temporal interpolation method and interval
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• formulation

• files containing forcing data

• units of forcing variables

• updating the forcing values

Since the options apply to several or all of the forcing categories, the options
will be explained first, then the namelists for the categories will be given.

3.8.1 Periodicity of forcing data

First, the user must decide on the periodicity (or ‘type’) of the data that will
force the model, for example, an annual mean climatology or a re-analysis
product available every day. This choice is specified by the namelist variables
* data type where * denotes each of ws, shf, sfwf,etc. The options for
data type are:

‘none’ no forcing

‘analytic’ a time-invariant analytic form for the forcing

‘annual’ a time-invariant annual mean forcing

‘monthly-equal’ a monthly mean climatology assumed to consist of 12 values
that are separated equally in time by 365/12 = 30.4166 days.This was
included mostly for backward compatibility.

‘monthly-calendar’ a monthly mean climatology whose 12 values correspond
to the non-leap-year calendar

‘monthly’ synonymous with ‘monthly-calendar’

‘n-hour’ forcing is specified every ‘n’ equally spaced hours. If this is cho-
sen, the user must also specify a value for * data inc which is the in-
crement (in hours) between consecutive values of the forcing data. For
example, ws data inc =24 denotes daily wind stress forcing. The value of
* data inc is disregarded for all of the other * data type options.

3.8.2 Temporal interpolation of forcing data

Next, the user must decide how to temporally interpolate the forcing data to
the appropriate point in time for the model to use. If the data type of the
forcing is either ‘none’, ‘analytic’, or ‘annual’, then the interpolation options
are disregarded since the forcing is invariant in time. The type of interpolation
is specified by the value of * interp type and the options are (envelope,please):

‘nearest’ use the forcing from the time that is closest to the current model
time
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‘linear’ use a linear interpolation to the current model time using the two
nearest forcing times

‘4point’ use a 3rd order polynomial fit using the 4 nearest forcing times and
evaluate it at the current model time

How often interpolation is done is specified using the namelist variables
* interp freq and the options are:

‘never’ never perform any temporal interpolation

‘n-hour’ perform temporal interpolation every ‘n’ hours. If this is chosen, the
user must also specify a value for * interp inc which is the increment
(in hours) between interpolation calculations. Note that it is assumed that
this value is less than or equal to the data increment.

‘every-timestep’ perform temporal interpolation every timestep

3.8.3 Forcing formulation

For those model forcing terms that typically depend explicitly on the model state
(shf, sfwf, pt interior, s interior) there are various ways of formulating
the forcing which can be specified using the * formulation namelist variables
for each case.

shf formulation options:

‘restoring’ a simple restoring of the top layer potential temperature in the
model to a data value, dT/dt = (Tdata − Tmodel)/τ , where τ is a con-
stant time scale. Tdata represents a space- and possibly time-dependent
array of values of sea-surface temperature (SST) and is the only necessary
forcing field. If this option is chosen, then a value for the space- and time-
independent restoring time-scale variable shf restore tau (in days) also
needs to be specified.

‘Barnier-restoring’ use the ECMWF heat flux analysis of [2] arranged in
restoring form. Necessary forcing fields consist of (in order) an effective
SST, spatially varying restoring time scale, sea ice mask, and net down-
ward short-wave radiation. If this option is chosen, then it is also necessary
to specify the namelist variable jerlov water type to calculate the depth
of short-wave penetration.

’bulk-NCEP’ calculate fluxes based on atmospheric state variables and radi-
ation similar to a fully-coupled model (and using bulk flux formulations
extracted from the NCAR flux coupler). Necessary forcing fields consist
of (in order) SST, air temperature, air humidity, downward short-wave
radiation, cloud fraction, and wind speed. If this option is chosen, then it
is also necessary to specify the namelist variable jerlov water type to
calculate the depth of short-wave penetration. This option also expects
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the name of a file used to define different regions of the ocean (including
marginal seas) specified by the namelist variable region mask filename
in the grid namelist (see Sec.3.2).

sfwf formulation options:

‘restoring’ a simple restoring of the top layer salinity in the model to a data
value, dS/dt = (Sdata−Smodel)/τ , where τ is a constant time scale. Sdata

represents a space- and possibly time-dependent array of values of sea-
surface salinity (SSS) and is the only necessary forcing field. If this option
is chosen, then a value for the space- and time-independent restoring time-
scale variable sfwf restore tau (in days) also needs to be specified.

‘bulk-NCEP’ calculate fluxes based on atmospheric state variables similar
to coupled mode (and using bulk flux formulations extracted from the
NCAR flux coupler). Necessary forcing fields consist of (in order) SSS
and precipitation.If this option is chosen, it is necessary to also choose
‘bulk-NCEP’ for shf formulation since the evaporation rate (part of the
sfwf-formulation) must be proportional to the latent heat flux (part of
the shf-formulation).

pt,s interior formulation options:

‘restoring’ a simple restoring of the potential temperature or salinity below
the top level in the model to a data value, d(T, S)/dt = (T, S)data −
(T, S)model/τ , where τ is a constant time scale. Values of the potential
temperature or salinity in the entire volume of the ocean ((T, S)data) are
the only necessary forcing fields. If this option is chosen, then a value for
the restoring time scale namelist variable pt,s interior restore tau (in
days) also needs to be specified. In addition, a value for the namelist vari-
able which specifies the maximum level for which interior restoring is per-
formed (pt,s interior restore max level) is necessary. For example, if
s interior restore tau=365 and s interior restore max level=17,
then salinity will be restored to data with a time scale of one year for
model levels 2 through 17 everywhere in the ocean.

Having interior restoring occur everywhere in the ocean as described above
is more relevant to data-assimilation than to prognostic simulations, so there is
support for variable interior restoring specified by

pt,s variable interior restore = .true..
If this option is selected, the user must supply a file

pt,s interior restore filename
that contains the maximum model depth for which interior restoring is per-
formed and the inverse restoring timescale (1/days) for each horizontal grid
point. This option can be useful for creating graduated ‘buffer zones’ at the
boundaries of non-global models or to set water mass properties due to outflow
from unresolved marginal seas.For example, the maximum level for restoring can
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be set to zero everywhere except for north of 75N where it takes on a nonzero
(though not necessarily constant from point to point) value to help create Arc-
tic water masses. To reduce the direct influence of the buffer zone, the inverse
restoring time-scale can be tapered from zero at 75N to a finite value at the
northern edge of the grid. Note that the code expects both fields to be double
precision, but converts the maximum depth-level field to integer internally to
the nearest integer.

3.8.4 Forcing files

If any of the options for * data type are chosen to be anything besides ‘none’
or ‘analytic’, then the user must supply files that contain the appropriate data
via the variables * filename. All data files are currently assumed to be double-
precision, direct-access files with each record having the dimensions of the full
horizontal grid. The data is also assumed to be in a specific order that varies
depending on the forcing formulation to be used. For ‘annual’ and ‘n-hour’
forcing, one occurrence of each forcing field should be in the file; for ‘monthly-
calendar’ or ‘monthly-equal’ forcing, all 12 months of each field should be in
the file. For example, if the heat flux is ‘monthly-calendar’ ‘Barnier-restoring’,
and the horizontal grid is 172x128, then the forcing file should have data in the
following order:

1. effective temperature(1:172,1:128,1:12)

2. time scale(1:172,1:128,1:12)

3. ice mask(1:172,1:128,1:12)

4. net shortwave(1:172,1:128,1:12).

If the forcing is ‘n-hour’ then there needs to be a different file for each forcing
time in the sequence. The files are assumed to be labeled by the date of the
middle of the forcing period; and are of the form ‘root.yyyy.ddd.hh’ where ‘root’
is specified using * filename, yyyy is the year (0000-9999), ddd is the day (001-
366), and hh is the hour (01-24). Note that the dating convention is relative to
year 0000, so results may not be what the user expects. For example, with wind
stress forcing every 2 days (ws data inc = 48.), even number years will expect
files dated on even days of the year, and odd days for odd numbered years (in
the absence of leap years). Thus, the expected sequence of files at the end of
year 1492 is (with ws filename = ‘ws’): ... ws.1492.362.00, ws.1492.364.00,
ws.1493.001.00, ws.1493.003.00 ... because ws.1492.364.00 refers to forcing cov-
ering days 363 and 364 of year 1492, while ws.1493.001.00 refers to forcing cov-
ering day 365 of year 1492 and day 1 of year 1493. Makes perfect sense, doesn’t
it? It is possible to change the labeling date from the middle of the forcing
interval to the beginning by changing a flag in the source code.
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3.8.5 Forcing units

The code makes assumptions about the units of the fields read in from the
forcing files as follows:

potential temperature: degrees C
salinity: g/g
wind stress: dyne/cm2

restoring time scale: days
heat flux: W/m2

precipitation: kg/m2/s
air temperature: degrees K
humidity: kg/kg
wind speed: m/s
cloud fraction: dimensionless, varying from 0 to 1
ice mask: dimensionless, varying from 0 to 1

Any input data that isn’t in the correct units can be multiplied by a renor-
malization factor specified by a component in the namelist variable vector
* data renorm. The components of this vector match up with the order of
the fields in the forcing file. For example, salinity data sets are often in psu
(ppt), while the model expects msu(g/g) = (0.001)psu, so the user can specify
sfwf data renorm(1) = 0.001 in the namelist if sfwf formulation = ‘restor-
ing’ or ‘bulk-NCEP’.

3.8.6 Updating the forcing values

Forcing values are updated based on the value of * interp inc and whether
the value of the forcing term depends explicitly on the ocean state, as detailed
below.

Wind stress (ws) and atmospheric pressure (ap) forcing currently do not
depend explicitly on the ocean state so the forcing terms in the equations are
updated depending on the value of [ws,ap] interp freq. For example, with
ws data type = ‘monthly-calendar’, ws interp type = ‘linear’, and
ws interp freq = 24., the code will linearly interpolate monthly wind stress
values at the beginning of each day and will use this interpolated value for one
model day.

Potential temperature and salinity forcing typically do explicitly depend on
the ocean state (for example, restoring to climatology depends on the difference
between the climatological value and the current model value) so the forcing
terms in the equations are evaluated every timestep. However, just like with
the wind stress and atmospheric pressure, the value of the data used in calcu-
lating the forcing terms depends on the value of * interp freq. For example,
with pt interior data type = ‘monthly-calendar’, pt interior interp type
= ‘linear’, pt interior interp freq = 48., and pt interior formulation =
‘restoring’, the code will linearly interpolate monthly potential temperature val-
ues at the beginning of each 2-day interval and will use this interpolated value
for two model days when calculating the forcing. Again, the actual forcing term
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is evaluated every timestep, but the value that is being restored to stays constant
over the 2 day period.

3.8.7 Forcing modules

The files forcing [ws,shf,sfwf,ap,pt interior,s interior].F90 are the mod-
ules that initialize and calculate the forcing terms. forcing.F90 is the driver
module and forcing tools.F90 contains routines shared by all of the individual
forcing modules.
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3.8.8 Forcing namelists

Wind stress

Table 3.25: Windstress forcing namelist
&forcing ws nml surface wind stress forc-

ing
ws data type [‘analytic’], ‘none’,

‘nhour’, ‘annual’,
‘monthly-calendar’,
‘monthly-equal’

type or periodicity of wind
stress forcing

ws data inc [1020] increment (in hours) be-
tween forcing times if
ws data type=‘n-hour’

ws interp freq [‘never’], ‘n-hour’,
‘every-timestep’

how often to temporally in-
terpolate wind stress data to
current time

ws interp type [‘nearest’], ‘linear’,
‘4point’

type of temporal interpola-
tion for wind stress data

ws interp inc [1020] increment (in hours) be-
tween interpolation times if
ws interp freq = ‘n-hour’

ws filename [‘unknown-ws’] name of file containing wind
stress, or root of filenames if
ws data type=‘n-hour’

ws file fmt [‘bin’], ‘nc’ format of wind stress file
ws data renorm(20) [20*1.] renormalization constants for

the components in the wind
stress forcing file

/
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Surface heat flux

Table 3.26: Surface heat flux forcing namelist
&forcing shf nml surface heat flux (SHF)

forcing
shf formulation ‘bulk-NCEP’,

‘Barnier-restoring’,
[‘restoring’]

surface heat flux formulation

shf data type [‘analytic’], ‘none’,
‘annual’, ‘n-hour’,
‘monthly-calendar’,
‘monthly-equal’

type or periodicity of surface
heat flux forcing

shf data inc [1020] increment (in hours) be-
tween forcing times if
shf data type=‘n-hour’

shf interp freq [‘never’], ‘n-hour’,
‘every-timestep’

how often to temporally in-
terpolate surface heat flux
data to current time

shf interp type [‘nearest’], ‘linear’,
‘4point’

type of temporal interpola-
tion for surface heat flux data

shf interp inc [1020] increment (in hours) be-
tween interpolation times if
shf interp freq = ‘n-hour’

shf restore tau [1020] restoring timescale (days) if
type restoring

shf filename [‘unknown-shf’] name of file containing
surface heat flux data,
or root of filenames if
shf data type=‘n-hour’

shf file fmt [‘bin’], ‘nc’ format (binary or netCDF) of
shf file

shf data renorm(20) [20*1.] renormalization constants for
the components in the sur-
face heat flux forcing file

jerlov water type [3], 1-5 Jerlov water type for short-
wave penetration

shf weak restore [0.0] restoring flux for weak restor-
ing in bulk-NCEP

shf strong restore [92.64] restoring flux for strong
restoring in bulk-NCEP

/
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Surface fresh water flux

Table 3.27: Surface fresh water flux forcing namelist
&forcing sfwf nml surface fresh-water flux

(SFWF) forcing
sfwf formulation ‘bulk-NCEP’,

[‘restoring’]
surface fresh water flux for-
mulation

sfwf data type [‘analytic’], ‘none’,
‘n-hour, ‘annual’,
‘monthly-equal’,
‘monthly-calendar’

type or periodicity of surface
fresh water flux forcing

sfwf data inc [1020] increment (hours) be-
tween forcing times if
sfwf data type=‘n-hour’

sfwf interp freq [‘never’], ‘n-hour’,
‘every-timestep’

how often to temporally in-
terpolate surface fresh water
flux data to current time

sfwf interp type [‘nearest’], ‘linear’,
‘4point’

type of temporal interpola-
tion for surface fresh water
flux data

sfwf interp inc [1020] increment (hours) be-
tween interpolation times if
sfwf interp freq = ‘n-hour’

sfwf restore tau [1020] restoring timescale (days) if
restoring

sfwf filename [‘unknown-sfwf’] name of file containing
surface fresh water flux
data, or root of filenames if
sfwf data type=‘n-hour’

sfwf file fmt [‘bin’], ‘nc’ format (binary or netCDF)
for sfwf file

sfwf data renorm(20) [20*1.] renormalization constants for
components in sfwf forcing
file

ladjust precip [.false.], .true. adjust precipitation to bal-
ance water budget

lfw as salt flx [.false.], .true. treat fresh water flux as vir-
tual salt flux when using
varthick sfc layer

sfwf weak restore [0.092] restoring flux for weak restor-
ing in bulk-NCEP

sfwf strong restore [0.6648] restoring flux for strong
restoring in bulk-NCEP

/
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Atmospheric pressure

Table 3.28: Atmospheric pressure forcing namelist
&forcing ap nml atmospheric pressure

(AP) forcing
ap data type ‘none’, [‘analytic’],

‘annual’ , ‘n-hour’,
‘monthly-calendar’,
’monthly-equal’

type or periodicity of atmo-
spheric forcing forcing

ap data inc [1020] increment (in hours) be-
tween forcing times if
ap data type=’n-hour’

ap interp freq [‘never’], ‘n-hour’,
‘every-timestep’

how often to temporally in-
terpolate atmospheric forcing
data to current time

ap interp type [‘nearest’],‘linear’,
‘4point’

type of temporal interpola-
tion for atmospheric forcing
data

ap interp inc [1020] increment (in hours) be-
tween interpolation times if
ap interp freq = ‘n-hour’

ap filename [‘unknown-ap’] name of file containing at-
mospheric forcing, or root of
filenames if ap data type=‘n-
hour’

ap file fmt [‘bin’], ‘nc’ format (binary or netCDF)
for ap file

ap data renorm(20) [20*1.] renormalization constants for
the components in the atmo-
spheric pressure forcing file

/
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Interior potential temperature

Table 3.29: Interior potential temperature forcing namelist
&forcing pt interior nml potential tempera-

ture (pt) forcing at
interior points

pt interior formulation [‘restoring’] interior pt formulation
pt interior data type [‘none’], ‘annual’,

‘monthly-calendar’,
‘monthly-equal’, ‘n-hour’

type or periodicity of in-
terior pt forcing

pt interior data inc [1020] increment (hours) be-
tween forcing times if
data type ‘n-hour’

pt interior interp freq [‘never’], ‘n-hour’,
‘every-timestep’

how often to tempo-
rally interpolate interior
pt data to current time

pt interior interp type [‘nearest’], ‘linear’,
‘4point’

type of temporal interpo-
lation for interior pt data

pt interior interp inc [1020] increment (hours) be-
tween interpolation
times if interp freq =
‘n-hour’

pt interior restore tau [1020] restoring timescale
(days) if restoring

pt interior filename [‘unknown-pt interior’] file containing interior pt
data, or root of filenames
if data type=‘n-hour’

pt interior file fmt [‘bin’], ‘nc’ file format (binary or
netCDF)

pt interior data renorm(20) [20*1.] renormalization con-
stants for components in
interior pt forcing file

pt interior restore max level [0] 0 km maximum level for inte-
rior pt restoring

pt interior variable restore [.false.] enable variable interior
pt restoring

pt interior restore filename [‘unknown-
pt interior restore’]

name of file contain-
ing variable interior pt
restoring data

pt interior restore file fmt [‘bin’], ‘nc’ file format (binary or
netCDF)

/
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Interior salinity

Table 3.30: Interior salinity restoring namelist
&forcing s interior nml salinity (S) forcing at

interior points
s interior formulation [‘restoring’] forcing formulation
s interior data type [‘none’], ‘annual’,

‘monthly-calendar’,
‘monthly-equal’,
‘n-hour’

type or periodicity of in-
terior salinity forcing

s interior data inc [1020] increment (hours) be-
tween forcing times if
data type ‘n-hour’

s interior interp freq [‘never’], ‘n-hour’,
‘every-timestep’

how often to tempo-
rally interpolate interior
S data to current time

s interior interp type [‘nearest’], ‘linear’,
‘4point’

type of temporal interpo-
lation for interior S data

s interior interp inc [1020] increment (in hours)
between interpolation
times if interp freq
‘n-hour’

s interior restore tau [1020] restoring timescale
(days) if restoring

s interior filename [‘unknown-s interior’] name of file containing
interior S data, or root of
filenames if data type ‘n-
hour’

s interior file fmt [‘bin’], ‘nc’ format (binary or
netCDF) of s interior file

s interior data renorm(20) [20*1.] renormalization con-
stants for components in
interior S forcing file

s interior restore max level [0] 0 km maximum level for inte-
rior S restoring

s interior variable restore [.false.] enable variable interior S
restoring

s interior restore filename [‘unknown-
s interior restore’]

name of file containing
variable interior S restor-
ing data

s interior restore file fmt [‘bin’], ‘nc’ format (binary or
netCDF) of variable
interior s file

/
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3.9 Running POP in coupled mode

POP is the ocean component of the Community Climate System Model (CCSM2),
a community coupled climate model developed by NCAR and many other collab-
orators. Other coupled models are adopting POP and CICE for their ocean and
sea ice components, including groups at Colorado State University and UCLA.
Only the interface to the CCSM2 model will be outlined here and supported in
the model.

In the CCSM2 model, POP runs as a separate executable and communicates
with other models using messages passed to and from a ‘flux coupler’. The rou-
tines for passing these messages are included in the forcing coupled module.
In addition, this module takes care of all the manipulations (unit conversions,
rotations of vector fields) necessary for the form expected by the flux coupler.
POP typically sends current state data to the coupler and receives the usual
surface forcing fluxes (windstress, heat flux, water flux, solar short-wave), im-
plying that the fluxes were actually computed using ocean state variables from
the previous coupling interval. The flux coupler performs all the computations
and necessary averaging and interpolation of these quantities.

To run POP in coupled mode, the coupling interface must be activated at
compile-time by specifying -Dcoupled in the makefile (see Sec.2.4.1). Then
the following namelist becomes available. Basically, the only quantities under
run-time control are the frequency at which the model communicates with the
coupler.

Table 3.31: Coupled namelist
&coupled nml activate interface to coupled

model
coupled freq opt [‘never’], ‘nyear’,

‘nmonth’, ‘nday’,
‘nhour’, ‘nsecond’

unit of time for coupled freq

coupled freq [1] frequency in above units for bi-
directional communication with
’flux coupler’

/

3.9.1 Real-time X-window display

A rudimentary X-display can be used to monitor the model’s behavior as it is
running, which can sometimes be useful in locating when and where (on the
model grid) things start to go bad. This capability relies on an unsupported,
not-necessarily-portable interface to an X library called fix. There are no guar-
antees that this will work on your system or that this will be supported in fu-
ture releases. Currently, the fields to be viewed in the x-window are hard-wired
and can only be changed by changing the source code. The default version of
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Table 3.32: Xdisplay namelist
&xdisplay nml real-time display via x-window
lxdisplay [.false.] if .true., enable x-display
nstep xdisplay [1] frequency (in steps) for updating x-display
/

this module in the source directory is only a stub version with no executable
code. If the user wishes to try this option, the actual code resides in the in-
put templates directory in a file called xdisplay.F90.unsupported and this
file must be copied into the source directory, overwriting the default xdisplay
module.
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Chapter 4

Model diagnostics and
output

While it is possible to run a POP ocean simulation without generating any
output at all, most users desire a means of looking at the results of their sim-
ulation. POP offers several types of model output with choices governed by
several types of model input. The following sections describe all of the options
currently available.

4.1 Output formats

POP now supports both netCDF and binary output formats. The format for
a particular type of file is chosen at run time through namelist input for each
of the output types. In both cases, most output is in single precision (32-bit).
The exception is restart files which are written in full double precision (64-bit)
format. There are advantages and disadvantages of using each format which are
discussed below.

4.1.1 netCDF

The netCDF output format provides a self-describing output file which is portable
across machines. It is also recognized by many graphics and post-processing
utilities. These are important and very useful features and are the reasons a
netCDF option has been included in POP. However, there are two disadvantages
to using this format.

The most serious disadvantage with netCDF format is that netCDF does
not currently permit parallel I/O; all netCDF operations are funneled through
a single processor. For high resolution simulations, this can present a serious
performance bottleneck as the model attempts to pass several Gbytes through
a single processor. If netCDF output is desired and is proving to be too slow,
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the user should switch to binary format and convert the binary files off-line to
netCDF.

Currently, the data portion of a netCDF file utilizes IEEE binary format. For
portability, if a machine does not use IEEE format for its native binary format,
netCDF will be performing a conversion (hidden to the user) to this format. In
such a case, loss of precision during this conversion will occur and exact restart
can not be guaranteed. To avoid this, binary format should typically be chosen
for all restart files.

4.1.2 binary

The binary format option creates files in local machine binary format. These
files are written as Fortran direct-access files so there are no record headers or
footers and the file can be read by other applications as a pure binary stream.
Typically, each record in the file contains a horizontal slice of a particular field
(so the record length is the size of a horizontal slice of the global data). On
parallel machines, fast parallel I/O is achieved by reading/writing each of these
slices from a different processor with the number of processors reading/writing
data specified in the I/O namelist (see Sec.3.1.2).

Unlike netCDF, these binary files contain no information about themselves
(not self-describing) and no information about the fields in the files. To remedy
this, each binary file written by POP is accompanied by a ‘header file’ with the
same name as the binary file and an additional suffix ‘.hdr’. This header file is
an ASCII file which contains all the information you would find in a netCDF
file, including file attributes, fields in the file and attributes of those fields. As
part of the field attributes, the starting record of the field in the binary file is
included. Such a header file provides some of the capability of a self-describing
data format and also provides information for easy conversion to netCDF (or
other self-describing format).

Because binary formats differ across machines, binary files are not typically
portable across machines. To achieve portability, the user is encouraged to
convert the binary files to a more portable data format like netCDF.

4.2 File-naming convention

All output file names have the form: root-filename.runid.time-indicator.output-format.
Here root-filename is a name defined by the user through namelist input for
each file type, runid (see Sec. 3.1.3) is a character identifier for the run sequence,
time-indicator depends on the output frequency chosen and output-format
is either ‘nc’ for netCDF files or ‘bin’ for binary files.If the output file is written
at a frequency of nday, nmonth or nyear, the time-indicator is typically the
date in yyyymmdd (where yyyy, mm and dd can be optionally separated by a
character defined in the time manager namelist). If the output file is written
every nstep steps, the time-indicator is the step number.
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A convention has been developed for naming POP output files in which the
root filenames for restart, time-averaged history, snapshot history, and moviefiles
are simply the one-letter names ‘d’, ‘t’, ‘h’, ‘m’ respectively. These are the
default values in the namelists for each of these options, but the user is not
required to follow this convention. Come up with your own convention. We don’t
mind. Really. Have fun with it. The only requirement is that the root-filename
must be distinct for each type of output file. Because ‘.’ is used to delimit runid
in file names and ‘/’ is reserved as a separator in Unix path names, neither should
be used within runid.

4.3 Model diagnostics

The progress of a POP simulation is recorded in a ‘log file’ that is either written
to standard output (stdout) or redirected to an optional log file (see Sec.3.1.2). A
new log file is created each time the model is started. Values of the model version
number, release date, date and time of the run, input namelist parameters, and
initial or restart conditions are documented at the beginning of each log file.
After the introductory information, the log file will contain output from model
timers and all the scalar diagnostics.

There are three types of scalar diagnostics available. Global diagnostics
compute a variety of globally-averaged values of tracers, kinetic energy and
several tendencies for checking balances. CFL diagnostics compute the Courant
numbers for advection and diffusion terms. Transport diagnostics compute mass,
heat and salt transports through various regions defined in an input file.

These diagnostics are chosen by setting the frequency freq opt at which
each diagnostic is computed. If diagnostics are chosen, the diagnostics are writ-
ten both to the log file (or stdout) and to a separate diagnostics output file.
Monitoring this output as the model runs is a useful way of making sure the
model is behaving reasonably. For example, the Courant numbers reported in
the CFL diagnostics should remain small and various tendencies reported in the
global diagnostics should remain balanced.

In addition to printing these diagnostics to a log file, the diagnostics are
printed to other output files in a format more suitable for various graphics pro-
grams. The output files are ASCII files with each line containing tday (decimal
time in days for the entire simulation), the value of the diagnostic and a name
for the diagnostic. The name of these output files can be changed using the
variables diag outfile, diag transport outfile.

4.3.1 Transport diagnostics

Computing transport diagnostics requires an input file describing the requested
transports. A sample transport input file is provided with the distribution.
The transport input file must contain the number of transport regions in the
first record. Each following record must contain 6 integers imin, imax, jmin,
jmax, kmin, kmax which are global array indices which define the transport
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Table 4.1: Diagnostics namelist
&diagnostics nml generation of model diagnostics
diag global freq opt[‘never’],

‘nstep’, ‘nyear’,
‘nmonth’,
‘nday’, ‘nhour’,
‘nsecond’

units of time for ’diag global freq’

diag global freq [100000] how often (in above units) to compute
and print global diagnostics

diag cfl freq opt [‘never’],
‘nstep’, ‘nyear’,
‘nmonth’,
‘nday’, ‘nhour’,
‘nsecond’

units of time for ’diag cfl freq’

diag cfl freq [100000] how often (in above units) to compute
and print CFL stability diagnostics

diag transp freq opt[‘never’],
‘nstep’, ‘nyear’,
‘nmonth’,
‘nday’, ‘nhour’,
‘nsecond’

units of time for ’diag transp freq’

diag transp freq [100000] how often (in above units) to compute
and print transport diagnostics

diag transport file ‘sample transport file’input filename (with path) describing
requested transports

diag outfile ‘pop diag’ file to which global and cfl diagnostics
are to be written

diag transport outfile‘pop transp’ file to which transport diagnostics are
to be written

diag all levels [.false.] if true, tracer mean diagnostics at all
vertical levels are output

cfl all levels [.false.] if true, cfl diagnostics at all vertical
levels are output

/
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Table 4.2: Transport descriptions
imin imax jmin jmax kmin kmax section label
64 64 1 128 1 20 merid sample meridional section
1 192 64 64 1 10 zonal sample zonal section

region. Note that the region must be a plane so that one of the horizontal
dimensions must be fixed.Following these integers must be a 5-character string
that specifies ‘zonal’ or ‘merid’ transport. Note that this descriptor defines the
orientation of the section and not the direction of the velocity normal to it.
A ‘zonal’ section implies the transport across that section uses the meridional
velocity (velocity perpendicular to the section). The last item in each record is
a name for the transport region (e.g. ‘Drake Passage’).

4.4 Model output files

In this section, we often refer to ‘model dates’ and ‘model times’ as correspond-
ing to actual dates and times in the real world. This is only true if the model
initial time was set appropriately and only has true meaning if the model is
forced by actual observed forcing fields with proper dates associated with them.
Otherwise, ‘model time’ simply refers to the model’s internal calendar.

4.4.1 Time-averaged history files

The namelist tavg nml controls the frequency and content of time-averaged
history files. These files are constructed by accumulating in memory at each
time-step the running sums of selected variables or correlation of variables.
Consequently, time averaging can be very memory intensive and may not be
feasible on your computer. Snapshot history files (see Sec.4.4.2) provide an
alternative, but at the price of having to recall many files from archival storage
to compute the sums. The tavg freq determines both the frequency at which
the files are written as well as the interval over which the time average is to be
performed.

Because the time averages are running averages, tavg restart files are written
whenever a model restart file is written so that the averaging can continue
upon restart. Note that the fields in the output files are normalized by the
accumulated time since the start of the time average. The time interval used
for this normalization is output as the file attribute tavg sum. When the model
restarts from a restart file, the sums are de-normalized before continuing the
accumulated sum.

The user may also control when the time averaging will begin. For example,
if the time averaging should be started after the model has equilibrated, the user
can specify when time averaging should start through the tavg start variables.
The choices are similar to the model start options.
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Table 4.3: Time-average file namelist
&tavg nml generation of time-average

history files
tavg freq opt [‘never’], ‘nyear’,

‘nmonth’, ‘nday’,
‘nhour’, ‘nsecond’,
‘nstep’

units of time for ‘tavg freq’

tavg freq [100000] interval in above units for compu-
tation and output of time-average
history files

tavg start opt [‘nstep’], ‘nyear’,
‘nmonth’, ‘nday’,
‘date’

units for tavg start (‘date’ im-
plies yyyymmdd)

tavg start [100000] time in above units after which to
start accumulating time average

tavg infile [‘unknown’] restart file for partial tavg sums
if starting from restart (ignored
if luse pointer files is enabled)

tavg fmt in [‘bin’],‘nc’ format for tavg restart file (bi-
nary or netCDF)

tavg outfile [‘unknown’] root filename (with path) for
tavg output files (suffixes will be
added)

tavg fmt out [‘bin’],‘nc’ format for tavg output files (bi-
nary or netCDF)

tavg contents ‘sample tavg contents’ file name for input file containing
names of fields requested for tavg
output

/
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IMPORTANT: Before a new run-sequence is begun, careful thought should
be given to the contents of the time-average history files. The same consider-
ations apply to snapshot history and movie files. Although it is possible to
redefine the contents at any time during the sequence, this is not recommended.
Changing the contents can greatly complicate the process of combining short-
interval (e.g., monthly) files into longer-interval files, such as seasonal, annual
and multi-year composite files.

For time-averaged output, a tavg contents file is required containing a
simple list (one field per line) of accepted short names for all the fields desired for
the output file. A sample tavg contents file is supplied containing a large list
of fields available for tavg output. It is meant for the user to use as a template,
modifying it for their own needs by deleting entries or adding new ones. If a
user wishes to add a field that is currently not available, the user must modify
the code to add that field using other available fields as a template.
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Table 4.4: Current available tavg fields
Name Units Description
SHF W/m2 Surface Heat Flux
SFWF mm/day Surface Freshwater Flux (p-e)
SSH cm Sea Surface Height
H2 cm2 SSH2

H3 unitless (∆x(SSH))2 + (∆y(SSH))2

TAUX dyne/cm2 Zonal windstress
TAUY dyne/cm2 Meridional windstress
UVEL cm/s Zonal Velocity
VVEL cm/s Meridional Velocity
KE cm2/s2 Horizontal Kinetic Energy (U2 +

V 2)/2
TEMP ◦C Potential Temperature
SALT g/g Salinity
TEMP2 ◦C2 Temperature2

SALT2 (g/g)2 Salinity2

UET ◦C/s East Flux of Heat
VNT ◦C/s North Flux of Heat
WTT ◦C/s Top Flux of Heat
UES g/g/s East Flux of Salt
VNS g/g/s North Flux of Salt
WTS g/g/s Top Flux of Salt
UEU cm/s2 East Flux of Zonal Momentum
VNU cm/s2 North Flux of Zonal Momentum
UEV cm/s2 East Flux of Meridional Momentum
VNV cm/s2 North Flux of Meridional Momentum
PV 1/s Potential Vorticity
Q g/cm4 z-derivative of potential density
PD g/cm3 Potential density referenced to sur-

face
UDP erg Pressure work
PEC g/cm3 Potential energy release due to con-

vection
NCNV adjustments/s Convective adjustments per second
WTU cm/s2 Top flux of Zonal Momentum
WTV cm/s2 Top flux of Meridional Momentum
ST ◦Cg/g Temperature*Salinity
RHO g/cm3 In-situ density
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4.4.2 Snapshot history files

If sufficient memory is not available for run-time accumulation of time-averaged
history files or if the user simply needs an instantaneous view of the ocean
state, snapshot history files can be written at regular intervals. The interval
must be short enough that whatever time-averaging interval may be desired
in the future, there will be three or more samples (snapshots) per averaging-
interval. For monthly averages, snapshots should be collected at intervals of
10 days or less. Only one time-level of the prognostic variables and selected
diagnostic variables needs to be saved, since second-moments and correlations
can be computed later from these snapshot files, at the cost of retrieving a
potentially large number of snapshot files. To choose which fields are written
to the history files, a history contents file must be supplied with a list of fields
desired. A sample file is included which contains all the currently available
fields; the user may edit this file to select the desired fields. If a field is not
currently included in the list of available fields, the user must modify the source
code to make that field available (see the Reference Manual).

Table 4.5: History file namelist
&history nml Generation of snapshot history

files
history freq opt [‘never’],‘nstep’,

‘nyear’,
‘nmonth’,
‘nday’, ‘nhour’,
‘nsecond’

units of time for history freq

history freq [100000] number of units between output of
snapshot history files

history outfile [‘unknown’] root filename with path of history file
output (suffixes will be added)

history fmt [‘bin’],‘nc’ format for history files (binary or
netCDF)

history contents [‘history contents’] input file containing names of fields
requested to be output

/
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Table 4.6: Currently available history fields
Name Units Description
SHGT cm surface height
UBTROP cm/s barotropic ‘zonal’ velocity
VBTROP cm/s barotropic ‘meridional’ velocity
UVEL cm/s ‘zonal’ velocity
VVEL cm/s ‘meridional’ velocity
TEMP ◦C potential temperature
SALT g/g (msu) salinity
SUF cm2/s2 surface velocity flux in U direction
SVF cm2/s2 surface velocity flux in V direction
SHF W/m2 surface heat flux
SFWF m/year surface fresh water flux
SOLAR W/m2 solar short wave flux at surface

4.4.3 Movie files

One of the most exciting aspects of ocean simulation is the opportunity to
visualize and animate the evolution of the model variables in time and space.
Making movies that progress smoothly requires either output of model variables
frequently enough to avoid jerkiness or temporal interpolation of model variables
to similarly frequent intervals. Experience has shown that a snapshot every three
days (see movie freq) gives satisfactory results. Any variable can be output,
but to reduce archiving cost and retrieval time, movie files typically contain
only a few two-dimensional arrays, such as sea-surface temperature, salinity and
height, and a few sub-surface variables. The choice of fields is made through
an input movie contents file containing the names (one per line) of the fields
requested. A sample file is included with a list of available fields; the user may
modify this list to choose the desired fields. If a field does not appear in the
list of available fields, the user may add fields by modifying the source code as
described in the Reference Manual.
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Table 4.7: Movie file namelist
&movie nml generation of snapshot movie

files
movie freq opt [‘never’], ‘nstep’,

‘nyear’,‘nmonth’,‘nday’,
‘nhour’,‘nsecond’

units of time for movie freq

movie freq [100000] number of units between output of
movie files

movie outfile [’unknown’] root filename with path of movie file
output (suffixes will be added)

movie fmt [‘bin’],‘nc’ format for movie file output (binary
or netCDF)

movie contents [‘sample movie contents’]input file containing names of fields
requested for movie output

/

Table 4.8: Currently available movie fields
Name Units Description
SHGT cm surface height
UTRANS cm2/s vertically integrated ‘zonal’ transport
VTRANS cm2/s vertically integrated ‘meridional’

transport
TEMP1 2 ◦C potential temperature averaged over

levels 1,2
SALT1 2 g/g (msu) salinity averaged over levels 1,2
TEMP6 ◦C potential temperature at level 6
SALT6 g/g (msu) salinity at level 6
VORT 1/s relative vorticity at surface

4.4.4 Current meters, drifters and hydrographic sections.

Versions of these exist for some machines but these are not yet included in the
present version of the code. They will be added soon.

69



70



Chapter 5

POP tools

This chapter describes various tools available for creating POP input or analyz-
ing POP output.

5.1 Visualizing output

There is currently no standard tool for visualizing POP output. There are two
freely-available software packages that can be used.

Ferret is a visualization tool developed by Steve Hankin at NOAAs Pacific
Marine Environmental Laboratory (PMEL) in Seattle. It is designed specifi-
cally for visualizing ocean model output and data. Ferret is constantly being
improved and extended, and there is a very active email-based user group. For
more information about Ferret, check the Ferret website

http://ferret.wrc.noaa.gov/Ferret/.
Other free visualization and analysis packages are available from the DOE-

sponsored Program for Climate Model Diagnosis and Intercomparison (PCMDI)
at Lawrence Livermore National Laboratory (LLNL). Although originally de-
signed for visualizing atmospheric model output from the Atmospheric Model
Intercomparison Project (AMIP), many are applicable to ocean model output
and future ocean analysis tools are being added. For more information, check
the website

http://www-pcmdi.llnl.gov/software/.

5.2 Transformations from general grids

All POP output is on the computational grid. For general grids that are not
based on latitude and longitude (e.g. the displaced-pole or tripole grids), analyz-
ing or visualizing data leads to a distorted view of the world and colleagues may
begin to question your geography. Transformation to latitude-longitude grids
can be performed using the Spherical Remapping and Interpolation Package
(SCRIP), available from
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http://www.acl.lanl.gov/lanlclimate/SCRIP/.

5.3 File format conversion

POP now supports direct netCDF output and such output is recommended
unless it creates a performance bottleneck for large grids. In cases where binary
output is required, conversion to netCDF can be achieved off-line through a
utility called bin2nc. Unfortunately, this utility is being re-worked to handle the
new binary output format so is unavailable at this time. It would be relatively
easy for a user to create such a code however.

5.4 Generating grid and bottom topography files

5.4.1 Horizontal grid and topography

A graphical tool for generating horizontal grids and creating bottom topogra-
phy has been developed. A working version is currently in the process of being
released and will support almost-global Mercator grids, global displaced-pole
grids, global tripole grids and regional grids. Some standard grids and topogra-
phy used in current production runs are available from the POP website.

5.4.2 Vertical grid

There is a vertical grid generating routine in the tools/grids subdirectory. This
code is essentially the same code used to generate vertical grids internally in
POP, but can be used to generate a vertical grid file off-line which can be edited
to suit your simulation. Note that when changing the vertical grid, you will
need to re-generate the bottom topography.
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Chapter 6

Trouble-shooting

If you encounter problems gettingPOP to run, a list of known bugs is maintained
at the POP website and the user should check there before contacting the de-
velopers. In addition, there are other common sources of error listed below with
suggestions for avoiding such problems.

6.0.1 Timestep stability criteria

As part of the POP diagnostics, the Courant number for various processes can
be output. The Courant number should always be less than one and often
should be kept under 0.5 for stability. If such a CFL condition is exceeded,
reducing the timestep may be a solution. However, it should be noted that
often other underlying problems may be causing these limits to be exceeded
(e.g. unrealistically high velocities) and reducing the timestep will only prolong
the agony. In such cases, the particular CFL condition that is violated can help
pinpoint the source of the problem.

6.0.2 Checking the global energy and work balances

6.0.3 Getting the right combination of mixing options

6.0.4 Getting the right combination of forcing options

6.0.5 Properly normalizing input salinity values

The units for salinity in the model are g/g. Care must be taken to renormalize
salinity data, which is often in g/kg.

6.1 Running POP on PCs

POP has been successfully run on a single-processor Intel PC with Windows NT.
POP was built with Digital Visual Fortran 5.0 as a Win32 console application
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(meaning you run it with a command line in a DOS window). The make system
used for other platforms was not used on the PC. Instead, a standard Visual
Studio project was created.

Source files added to the project were

• All .F90 and .C files in source subdirectory

• All .F90 files in serial subdirectory

In addition to the defaults, these Fortran preprocessor options ‘/fpp’ was
needed. To enable POP to run the test problem without stack overflow, reserve
stack memory was set to 64 MB. A lower value may be possible, but 48 MB
was not enough. The debug version required the link option: /nodefaultlib:libc.
The release version (optimized) ran the test problem in about four minutes (262
seconds) on a 450 MHz, 256 MB Pentium II PC.
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