
SALINAS–Program Notes

Garth Reese∗ Dan Segalman† Manoj K. Bhardwaj‡

Kenneth Alvin§ Brian Driessen Kendall Pierson¶

Timothy Walsh‖

Sandia National Laboratories
Albuquerque, NM 87185-0847

January 8, 2004

Revision: 1.30

Date: 2003/10/27 23:32:21

∗Phone: 845-8640
†Phone: 844-0972
‡Phone: 844-3041
§Phone: 844-9329
¶Phone: 284-5894
‖Phone: 284-5374

Contents

1 Notes on calculating stiffness matrixes for Hex elements 1
1.1 Derivation . 1
1.2 Implementation . 3

2 Notes on volumetric and deviatoric strain coefficient set-
tings for higher order elements (Hex20, Tet10, ...) 3

3 Notes on calculating stiffness matrixes for Wedge elements 4
3.1 Shape Functions . 4
3.2 Quadrature . 4

4 Notes on calculating stiffness and mass matrices for Tet10
elements 5

5 Notes on Tetrahedral shape functions and related functions 5

6 Notes on calculating shape functions and their gradients for
the Hex20 element 6

7 Anisotropic Elasticity 6

8 Two Node Beam 6

9 Truss 7

10 Springs 7

11 Multi-Point Constraints, MPCs 8
11.1 Constraint Transforms . 9

12 Rigid Elements 10
12.1 RROD . 11
12.2 RBAR . 11
12.3 RBE3 . 11
12.4 Parallel Implementation of Rigid Elements 13

13 Notes on shell offset 14

i

14 Notes on Consistent Loads Calculations 15
14.1 Salinas Element Types . 16
14.2 Pressure Loading . 17
14.3 Shape Functions for Calculating Consistent Loads 17

15 Shell Elements 18

16 Thermal Expansion loads (or initial strains) 19

17 Stress/Strain Recovery 21

18 Coordinate Systems 21

19 Constraint Transformations in General Coordinate Systems 22
19.1 Decoupling Constraint Equations 23
19.2 Transformation of Stiffness Matrix 24
19.3 Application to single point constraints 25
19.4 Multi Point Constraints . 26
19.5 Transformation of Power Spectral Densities 26

20 History and Frequency files - in parallel 27

21 Random Vibration 29
21.1 algorithm . 29
21.2 Power Spectral Density . 30
21.3 RMS Output . 30
21.4 RMS Stress . 31
21.5 matrix properties for RMS stress 31
21.6 model truncation . 32

22 High Precision solutions 33

23 HexShells 34

24 Adding a New element 35

25 Adding an Output Variable 36

26 GasDmp 38

ii

27 Interpolation of Direct FRF results 40
27.1 Rational Function Interpolation - C1 43
27.2 Rational Function Interpolation - C2 44
27.3 Derivatives of Frequency Dependent Dynamic Matrix 45

28 Triangular Shell Element 46
28.0.1 Allman’s Triangular Element 46
28.0.2 Discrete Kirchoff Element 47
28.0.3 Verification and Validation 47

29 Using the Test Problem Implementation Tool 49
29.1 Quick Start . 49
29.2 Creating and running a test problem 49
29.3 Adding a Test Problem to the CVS Repository 51
29.4 Explanation of Various Files 52

30 Offset Beams and Shells 53
30.1 Stress and Strain Recovery 54
30.2 Coordinate Tranformation U ′ = LU 54
30.3 Force and Pressure Loading 54
30.4 Implementation Details . 55
30.5 Test Cases . 56

31 Thermal Structural Response 57
31.1 governing equations . 57

32 File Naming Conventions 58
32.1 File Locations . 59

33 Assembling element to system matrices 60

34 Time integration 61
34.1 Linear transient analysis . 61
34.2 Nonlinear transient analysis 63
34.3 Modal Damping with the Generalized Alpha Method 64

35 Matrix dimensions in Salinas 67

36 Isotropic Material Parameters and Sensitivities 70
36.1 Material Relations . 70
36.2 Sensitivities . 71

iii

37 Stochastic FE Integration 73
37.1 Solution Proceedure for Stochastic FE 74

38 Eigen Accuracy 77

39 Eigenvalue Error Estimators 79
39.1 Issues in computing ρinternal 79
39.2 Issues in computing ρboundary 80
39.3 Development Schedule . 80

40 Acoustic Coupling 80

41 Shift-Invert Mode in ARPACK for the Right-Most Modes 82
41.1 Background . 82
41.2 ARPACK-Cayley Code . 82
41.3 Features . 84

41.3.1 Supplying Shifts . 85
41.4 Anasazi . 86

iv

Salinas - Program Notes

The problem of calculating the terms of the stiffness matrix.

1 Notes on calculating stiffness matrixes for Hex
elements

The following applies to any solid isoparametric element, but is implemented
in code on hex elments. This discussion addresses calculation of relevant
operators on the shape functions and eventual integration into the stiffness
matrices.

1.1 Derivation

We begin with the separation of the strain into deviatoric and dillitational
parts so that their contributions to the stiffness matrix can be computed
separately. This is part of the strategy for avoid ing overstiffness with respect
to bending.

The strain energy density in the case of an isotropic, linearly elastic
material is:

p =
1
2
(2Gε+ λtr(ε)I) • ε (1)

with some re-arrangement, this can be shown to be:

p = Gε̂ • ε̂+
1
2
β(tr(ε))2 (2)

where ε̂ = ε− 1
3 tr(ε)I.

Having separated the part of the strain energy density due to deviatoric
part of the strain from the part of the strain energy density due to the
dillitational part of the strain, we shall integrate them separtely. First,
we must determine how to express the strains in terms of nodal degrees of
freedom.

We know that the deformation field is linear in the nodal degrees of
freedom and that the displacement gradient is also, so we should be able to
expand each of those quantities as follows. Let Pj be the node associated
with the jthe degree of freedom and let sj be the direction associated with
that degree of freedom. The displacement field is:

~u(x) = ÑPj (x)uPj
sj ~esj (3)

1

where summation takes place over the degree of freedom j.
Similarly, the displacment gradient is:

~∇~u(x) = (
∂

∂xk
)ÑPj (x)uPj

sj ~esj~ek (4)

We now define the shape deformation tensor W j corresponding to the j
th nodal degee of freedom:

W j(x) = (
∂

∂u
Pj
sj

)~∇~u(x) (5)

which, with Equation 4 yields:

W j(x) = (
∂

∂xk
)ÑPj (x)~esj~ek (6)

The symmetric part of this tensor is:

Sj(x) =
1
2
(W j(x) +W j(x)T) (7)

and the strain tensor is
ε(x) = Sj(x)uPj

sj (8)

From the above, we construct the dillatational and deviatoric portions
of the strain in terms of the nodal displacement components:

tr(ε(x)) = bj(x)uPj
sj (9)

where
bj(x) = tr(Sj(x)) (10)

Similarly,
ε̂(x) = B̂j(x)uPj

sj (11)

where
B̂j(x) = Sj(x)− 1

3
bj(x)I (12)

The stiffness matrix is evaluated using the consitutive equation (Equa-
tion 2) and the following definition:

Km,n =
∂2

∂uPm
sm ∂u

Pn
sn

∫
volume

p(x)dV (x) (13)

2

This plus our expressions for strain in terms of the nodal degrees of freedom
yield us the following expression for element stiffness:

Km,n = G

∫
volume

(B̂m(x))T • B̂n(x)dV (x) (14)

+β
∫

volume
bm(x)bn(x)dV (x) (15)

1.2 Implementation

From the above it is seen that once the shape deformation tensor W j is
found, the rest of the calculation follows naturally. The calculation of the
components of that tensor is presented here.

The components of W j are

W j
mn = ~em ·W j · ~en (16)

= δm,sj (
∂

∂xn
)ÑPj (x) (17)

The partial derivative (∂
∂xn

)ÑPj (x) is calculated from

(
∂

∂xn
)ÑPj (x(ξ)) = (

∂

∂ξα
)NPj (ξ)J−1

α,n (18)

where
Jm,γ =

∂

∂ξγ
xm(ξ) (19)

and
N(ξ) = Ñ(x(ξ)) (20)

The issue of selective integration in the elements is discussed in a Framemaker
file /home/djsegal/MPP/notes/IsoInt.frm. The formulation discussed there
applies to all the isoparametric solid elements.

2 Notes on volumetric and deviatoric strain coeffi-
cient settings for higher order elements (Hex20,
Tet10, ...)

Quadratic elements (elements with bilinear or higher order shape functions)
such as the Hex20 and Tet10 are naturally soft and do not need to be softened
by positive values of G and β (see the section ”Notes on calculating stiffness
matrices for Hex elements” and the associated Framemaker file IsoInt.frm
for definitions of G and β.) Therefore, G=0 and β=0 are good values for
such elements.

3

3 Notes on calculating stiffness matrixes for Wedge
elements

3.1 Shape Functions

The shape functions are given explictly in Hughes. These are provided as
bi-linear polynomials in r, s, t, and ξ, where r and s are independent coor-
dinates of the triangular cross-sections, t = 1−r−s, and ξ is the coordinate
in the third direction. For our purposes, it is necessary to expand the shape
functions as polynomials in r, s, and ξ:

Nk = Ak
0 +Ak

1r +Ak
2s+Ak

3ξ +Ak
4rξ +Ak

5sξ (21)

The shape functions and the coefficients are given in the following table:
Shape Function A0 A1 A2 A3 A4 A5

N1 = 1
2(1− ξ)r 1

2 -1
2

N2 = 1
2(1− ξ)s 1

2 −1
2

N3 = 1
2(1− ξ)t 1

2 -1
2 -1

2 -1
2

1
2

1
2

N4 = 1
2(1 + ξ)r 1

2
1
2

N5 = 1
2(1 + ξ)s 1

2
1
2

N6 = 1
2(1 + ξ)t 1

2 -1
2 -1

2
1
2 -1

2 -1
2

3.2 Quadrature

Three reasonable quadratures for wedges that come to mind are indicated
in the following table:

No. Points r s ξ

1 1/3 1/3 0
2 1/3 1/3 -1/

√
3

1/3 1/3 1/
√

3
6 1/6 1/6 -1/

√
3

1/3 1/6 -1/
√

3
1/6 1/3 -1/

√
3

1/6 1/6 1/
√

3
1/3 1/6 1/

√
3

1/6 1/3 1/
√

3

4

4 Notes on calculating stiffness and mass matrices
for Tet10 elements

The 4-point integration is given in Hughes, and the 16-point integration is
given in Jinyun. It is believed that a higher order integration is needed for
the mass matrix than the stiffness matrix and that the reason is that the
mass matrix involves higher degree polynomials. (Using 4-point integration
to try to estimate the mass matrix of a natural element resulted in a 30 by
30 mass matrix with several zero eigenvalues.)

5 Notes on Tetrahedral shape functions and re-
lated functions

gmreese. Dec 19, 2000.
The tet elements (both tet4 and tet10) were developed from formula-

tions in Cook. In that formulation, the element shape functions are defined
in terms of four volumetric coordinates ξi. However, we have implemented
the element using the standard isoparametric formulation. This uses three
coordinates (which I will label wi). Most of the internal formulation of the
element uses the volumetric coordinates. However, when computing jaco-
bians of transformation, the isoparametric formulation uses a 3x3 matrix.
The code simply used the first three coordinates, and computed the fourth
coordinate internally. This results in an incorrect jacobian.

To do it correctly, we should compute the full jacobian of transformation
from the x, y, z coordinates of the real space, to the w1, w2, w3 coordinates
of the isoparametric space. Thus,

dxi

dwi
=
dxi

dξi

dξi
dwi

Since, dξi/dwi is computed in element space, it is a constant.

dξi
dwi

=

 −1 −1 −1
1 0 0
0 1 0

The determinant of transformation of this matrix is −1. Since we don’t

actually use the jacobian matrix in external calculations, it is only neces-
sary to transform the determinant of the jacobian. Internally we compute
det(dxi/dξi); to get det(dxi/dwi) we simply multiply by -1.

5

The current code does not make all these changes. However, the current
code has been performing well, and has had verified results. Rather than
changing all the gradients, etc. I am changing only the computation of the
determinant of the jacobian which is found in Jacobian(). Later there will
be a need to reformulate many of our elements for inclusion in Sierra. This
may be a good time to consider getting all the gradients correct.

6 Notes on calculating shape functions and their
gradients for the Hex20 element

See file Hex20.frm, which is a Framemaker file with a detailed description
of how the shape functions and their gradients are calculated for the Hex20
element.

7 Anisotropic Elasticity

Anisotripic elasticity requires special care in the rotation of the matrix of
matrerial parameters when those parameters are given in some coordinate
system other that in which the element matrices are calculated. A derivation
of the formulae for rotating those matrices is given in a framemaker file

/home/djsegal/MPP/notes/anisoConst.frm.

8 Two Node Beam

This is the definition for a Beam element based on Cook’s development. See
Cook, Robert D, Malkus, David S., and Plesha, Michael E. “Concepts and
Applications of Finite Element Analysis”, Wiley 1989, pp 113-115.

The beam uses underintegrated cubic shape functions. Only isotropic
material models are supported. Torsional affects are accounted for in the
axis of the beam. The beam is uniform in area and bending moments, i.e.
they are not a function of position in the beam.

The following parameters are read from the exodus file.

1. The cross sectional area of the beam (Attribute 1)

2. The orientation of the beam (Attributes 2, 3 and 4)

The orientation should not be aligned with the beam axis. In the event
of an inproperly specified orientation, a warning will be written, and a
new orientation selected. The orientation is an x,y,z triplet specifying

6

a direction. It does not need to be completely perpendicular to the
beam axis, nor is it required to be normalized. The orientation vector,
and the beam axis define the plane for the first bending direction.

3. The first bending moment, I1. (Attribute 5).

4. The second bending moment. I2. (Attribute 6).

5. The torsional moment, J. (Attribute 7).

9 Truss

This is the definition for a Truss element based on Cook. See Cook, Robert
D, Malkus, David S., and Plesha, Michael E. “Concepts and Applications
of Finite Element Analysis”, Wiley 1989, pp 214-216.

The truss uses linear shape functions. Unlike the truss elements used by
Nastran, there is no torsional stiffness. The truss is uniform in area, i.e. the
area is not a function of position in the truss.

The following parameters are read from the exodus file.

1. The cross sectional area of the truss (Attribute 1)

10 Springs

The Spring element is the simplest one dimensional element. It has no mass.
Entries in the stiffness matrix are added by hand. Note the following.

• The force generated in a Spring element should be colinear with the
the nodes. Typically spring elements connect coincident nodes so that
no torques are generated.

• Springs attach 3 degrees of freedom. In the event that some of the
spring constants are zero, there is no effective stiffness for that asso-
ciated degree of freedom. However, the degree of freedom will remain
in the A-set matrices. This will be a problem if the other degrees
of freedom are not attached to other elements which provide stiffness
entries connecting them to the remainder of the model.

7

The data for spring elements is entered in the input file. Three values
are given, Kx, Ky, and Kz. This results in a 6x6 element stiffness matrix,

K ′ =

Kx 0 0 −Kx 0 0
0 Ky 0 0 −Ky 0
0 0 Ky 0 0 −Kz

−Kx 0 0 Kx 0 0
0 −Ky 0 0 Ky 0
0 0 −Kz 0 0 Kz

Notice that K ′ is blocked. It could be written more simply,

K ′ =

(
K ′

11 K ′
12

K ′
12 K ′

11

)

The rotation matrix for the two endpoints is block diagonal. As a result,
the stiffness matrix in the basic coordinate system can be written,

K =

(
K11 K12

K12 K11

)

where,
Kij = RTK ′

ijR

and R is the 3x3 rotation matrix of section 18.

11 Multi-Point Constraints, MPCs

A description of MPCs is contained in the users manual. This section dis-
cusses the coordinate system dependencies.

MPCs may be defined in any coordinate system. However, all nodes in
the MPCs are defined in the same system. This is done for convenience in
parsing, and not for any fundamental reason. Consider a constraint equation
where each entry in the equation could be specified in a different coordinate
system. ∑

i

Ciu
(ki)
i = 0

where Ci is a real coeffient, and u(ki)
i represents the displacement of degree of

freedom i in degree of coordinate system ki. We can transform to the basic

8

coordinate system using u
(ki)
i =

∑
j R

(ki)
ji u

(0)
j , where R(ki) is the rotation

matrix for coordinate system ki. Then we may write,∑
i,j

CiR
(ki)
ji u

(0)
j = 0

or, ∑
i

C
(ki)
i u

(0)
i = 0

where C(ki)
i =

∑
j R

(ki)
ij Cj . Note however, that in this analysis, we have

assumed that the dimension of C is 3. Thus, rotation into the basic frame
will likely increase the number of coefficients.

Salinas is designed to support constraints through at least two meth-
ods. This include a constraint transform method and Lagrange multipliers.
Lagrange multipliers have not been implemented at this time.

11.1 Constraint Transforms

Constraints may be eliminated using the constraint transform method. This
is described in detail in Cook, chapter 9. In this method, the analysis set
is partitioned into constrained degrees of freedom and retained degrees of
freedom. The constrained dofs are eliminated.

Unlike many Finite Element programs, Salinas does not support user
specification of constraint and residual degrees of freedom. The partition
of constrained and retained degrees of freedom is performed simultaneously
in the “gauss()” routine. This routine performs full pivoting so the con-
strained degrees of freedom are guaranteed to be independent. Redundant
specification of constraint equations is handled by elimination of the redun-
dant equations and issue of a warning. User selection of constrained dofs in
Nastran has led to serious difficulty to insure that the constrained dofs are
independent and never specified more than once.

For constraint elimination we have a constraint matrix C = CcCr, where
Cc is a square, nonsingular matrix and Cr is the solution. We wish to solve
for,

Crc = −[Cc]−1Cr

This is equivalent to the Gauss-Jordan elimination probrlem for Kx = b
if we let Cr = b, Cc = K and x = −Crc. There is one additonal wrinkle:
we have mixed the rows of C so Cc is intermingled with Cr. However, we
only require that CC be non-singular. Therefore if we do a gauss elimination

9

with full pivoting we should simultaneously obtain an acceptable reordering
of C, and botain Crc.

In practice, it is not even necessary that Cc be non-singular. It is not
uncommon for two identical constraints to be specified. The program issues
a warning and continues.

Constraint transform methods do not currently support recovery of MPC
forces.

The Gaussian elimination is presently being performed with a sparse
package called ”SuperLU,” instead of a dense gaussian elimination, to speed
up the time to create Crc. On some platforms, e.g., sgi and dec, the blas rou-
tine dmyblas2.c in the CBLAS directory of of the SuperLU directory (need
superlu-underscore-salinas.tar to create this) should be the one and only
routine whose object file is placed into the SuperLU-blas library (presently
called libblas-underscore-super.a) to be linked in to create the salinas exe-
cutable. Failure to include this routine will cause failures of the type ”Il-
legal value in call to DSTRV” on the above platforms, and including more
than just dmyblas2.c can cause slow performance on many platforms as the
SuperLU-CBLAS could override the built-in blas routines. (The built-in
routines are almost always faster.)

12 Rigid Elements

Salinas will support standard pseudoelements for rigid bodies. These in-
clude,

• RRODs - a rigid truss like element, infinitely stiff in extension, but
with no coupling to bending degrees of freedom.

• RBARS - a rigid beam, 6 degrees of freedom deleted

• RBE2 - a rigid solid. 6(n− 1) degrees of freedom deleted, where n is
the number of nodes

• RBE3 - an averaging type solid. This connects to many nodes, but
removes only 6 dofs.

All of the rigid elements are stored and applied internally as MPC equa-
tions. The RBE2 is a special case of RBAR (actually just multiple in-
stances). Note, that unlike MPC equations, these rigid elements do activate
(or touch) degrees of freedom. In general, an MPC equation will not activate
a degree of freedom. In the case of a rigid element however, it is necessary

10

to activate the degrees of freedom before constraining them. Otherwise the
rigid elements do not act like real elements.

Rigid elements are input into Salinas using exodus beam elements. A
block entry is then provided in the input file indicating what type of rigid
element is required. There is no stiffness or mass matrix entry for any type
of rigid elements (only the MPC entries described above).

12.1 RROD

An RROD is a pseudoelement which is infinitely stiff in the extension di-
rection. The constraints for an RROD may be conveniently stated that the
dot product of the translation and the beam axial direction for a RROD is
zero. There is one constraint equation per RROD.

12.2 RBAR

An RBAR is a pseudoelement which is infinitely stiff in all the directions.
The constraints for an RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

It is apparent that the last two of these constraints may be specified
mathematically by requiring that the translation be the cross product of
the rotation vector and the bar direction.

~T = ~R× ~L

where ~T is the translation difference of the bar (defined as ~U2 − ~U1),
~R is the rotation vector, and
~L is the vector from the first grid to the second.
The three constraints in the cross product, together with the three con-

straints requiring identical rotations at both ends of the bar form the six
required constraint equations.

12.3 RBE3

The RBE3 elements behavior is taken from Nastran’s element of the same
name. Note however, that the precise mathematical framework of the Nas-
tran RBE3 element is not specified in the open literature. This element

11

should act like an RBE3 for most applications. The element is used to ap-
ply distributed forces to many nodes while not stiffening the structure as
an RBE2 or RBAR would. The RBE3 uses the concept of a slave node.
Constraints are specified as follows.

1. The translation of the slave node is the sum of translations of all the
other nodes in the element.

2. The rotation of the slave node is the weighted average rotation of all
the other nodes about it.

While the first of these constraints is easy enough to apply using multi-
point constraints, the second is a little more difficult. We seek a least squares
type solution.

Let ~Di = ~Ui − ~Uslave,
~Li = ~Xi − ~Xslave

The L represent a vector from the “origin” to the point i, while the Di

represent the differential displacement of the same points. Note that the
origin is at the location of the slave node, and will not in general be at the
centroid of the structure.

We will use least squares to compute the rotational vector of the slave
node. This is equivalent to computing a rotational inertial term and requir-
ing a similar net rotation for the centroid.

The displacement at the centroid should be given by,

~Di = ~R× ~Li

or, in the least squares sense we seek to minimize E.

E =
∑

i

(~Di − ~R× ~Li) · (~Di − ~R× ~Li)

Take the derivative of E with respect to a component of R, rk.

dE

drk
= 0 = 2

∑
i

(êk × ~Li) · (~R× ~Li)− ~Di · (êk × ~Li)

Now, let R =
∑

m rmêm. We substitute for R in the previous equation to
obtain, ∑

m

∑
i

rm(êk × ~Li) · (êm × ~Li)− ~Di · (êk × ~Li) = 0

12

Now, if we write Li as a column vector then the expression (êk × ~Li) ·
(êm × ~Li) can be written as LT

i Li · I − LiL
T
i . If the sum on i is performed

for the first term, we may write,∑
m

rmAmk −
∑

i

êk · (~Li × ~Di) = 0

This provides three equations (one for each k) in the 3 unknowns, rm.
The solution is found by looping once through all i to fill in the A

matrix, and simultaneously to fill out the coefficients for the three equations
involving Di. Once the loop has been completed, the coefficients of R are
known, and the three components of rm can be added for each of the three
equations. Each equation has 3 components of R, 2n components of Ui and
2 components of Uslave for a total of 2n+ 5 equations.

12.4 Parallel Implementation of Rigid Elements

The constraints listed above can be divided into three main groups.

global Equations that are by construction, global in nature. This includes
all equations entered directly in the .inp file.

local Constraints that are specifically local in nature. This includes RBAR
elements within a subdomain. Indeed, since an RBAR is entered as
a pseudo element, it will exist in only one subdomain (though both
nodes could be boundary nodes).

other Constraints that could be either. This includes portions of an RBE3
element for example.

This division is important for two reasons. First, the division helps us
keep track of order. Second, some local processing of local constraints may
be possible, which could lead to a reduction in communication during the
solve stage.

To build the global constraint equations, every processor must arrive at
the same sorted list of constraints. The global equations are easy. Every
processor reads these first from the input token files. The local equations
are also relatively straightforward. We choose an rb root. Every processor
sends their local constraints to this root, which concatenates them, and
sends them back out. The order is unimportant. (Alternatively we could
do an all-to-all and sort by processor). The other equations are more of a
challenge, which may need to be handled on a case by case basis. Currently
they are only represented by RBE3 elements.

13

For RBE3 elements, every processor can determine the number and rank
order of the RBE3. We determine a root for each equation. Each processor
may then send its contribution to the RBE3 to that root. Note that the
data format for an RBE3 is not the same as an MPC. Finally, the root can
assemble all the components of the RBE3 so the equations can be assembled.
Assembled RBE3 equations can be sent to the rb root for concatenation with
the local equations.

The selection of the root node for this operation is not very important.
Note that after the message passing, all the processors have the same data,
so there is no real memory issue. Also, the computational burden is light,
and the algorithm has all processors waiting for this processor anyway.

13 Notes on shell offset

These are preliminary notes... A sort of design document. They are made
before any implementation.

Consider a shell offset, with an offset vector, ~v. Notice that ~v could be
defined at each nodal location in what follows, but for this development,
we assume a single offset ~v which applies to all nodes. Define a coordinate
system at the node, with variables u. On the offset beam the coordinate
system is ũ.

Now, u is related simply to ũ. The constraint of a constant offset may
be stated that the displacement difference of the two systems must be or-
thogonal to ~v, i.e. (u − ũ) = ~v × ~κ, where ~κ is the rotation at the nodes.
Notice that the rotation is the same at both nodes.

Thus we can write, (
ũ
κ

)
= [L]

(
u
κ

)
(22)

where L is a constant matrix which depends only on the geometry. We can
use this transformation matrix to eliminate the degrees of freedom associated
with ũ. The energy of the shell can be written,

Estrain = 0.5

{
ũ
κ

}T [
K̃
]{ ũ

κ

}
(23)

But with this substitution,

Estrain = 0.5

{
u
κ

}T [
LT K̃L

]{ u
κ

}
(24)

14

If we let K = LT K̃L, then,

Estrain = 0.5

{
u
κ

}T

[K]

{
u
κ

}
(25)

Thus, ũ has been eliminated, and the equations may be rather simply
put in terms of the output variables.

One of the critical issues with offsets, is how to specify them in an exodus
file. We should use the attributes, but since there is no standard for what an
attribute means (except that the first attribute for a shell means thickness),
the tools are not well established. Dan suggested that we let the user specify
which attribute defines the thickness. The end user could also specify a
scaling factor, so the thickness itself might be used as the offset attribute.
For example,

Block
Tria3
thickness=0.01
off_attr=1 // use thickness as the attribute
off_scale=-0.5

End

14 Notes on Consistent Loads Calculations

Starting with equation 4.1-6 from Concepts and Applications of Finite Ele-
ment Analysis by Cook et al.,

{re} =
∫

Ve

[B]T [E]{ε0}dV−
∫

Ve

[B]T {σ0}dV+
∫

Ve

[N]T {F}dV+
∫

Se

[N]T {Φ}dS

(26)
where each of these terms are defined in Section 4.1 of the above mentioned
reference. The load vector, {re}, is composed of four parts in Eqn. 26. In
this document, only the last part, which is the contribution of the surface
tractions to the load vector, will be considered. Rewritting,

{re} =
∫

Se

[N]T {Φ}dS (27)

Here, the integral is calculated over the surface of the element on which the
surface traction, {Φ}, is applied. Therefore,

15

{Φ} = [ΦxΦyΦz]T (28)

and [N] is the shape function matrix of the element on which the surface
tractions, {Φ}, are applied. In Salinas, {Φ} can be applied within PATRAN
by applying a spatial field to a specified side set. As a result, when calcu-
lating the load vector, this field must be accounted for. In Salinas however,
this spatial field values will be available only at the nodes of the element.
Using the nodal values of this surface traction, the value inside must be de-
fined using an interpolation function over the surface or side of the element.
Since only one value per node may be specified on the side set in Salinas, a
surface traction may be applied only in one direction at a time. Therefore,
{Φ} will be defined as

{Φ} =

nx

ny

nz

Φ(x, y, z) (29)

14.1 Salinas Element Types

The following 3-D and 2-D elements have consistent loads implemented:

1. Hex8

2. Hex20

3. Wedge6

4. Tet4

5. Tet10

6. Tria3

7. TriaShell

8. Tria6 (four Tria3s)

9. QuadT (twor Tria3s)

10. Quad8T (1 QuadT and 4 Tria3s)

16

14.2 Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

{Φ} =

Nx

Ny

Nz

Φ(x, y, z) (30)

where [Nx, Ny, Nz]T is the normal to the element face. Hence, the consistent
loads can be calculated as,

{re} =
∫

Se

[N]T {Φ}dS =
∫

Se

[N]T Φ(x, y, z)(~a×~b)dSe (31)

Here,

~a = [
∂x

∂r
,
∂y

∂r
,
∂z

∂r
]T (32)

~b = [
∂x

∂s
,
∂y

∂s
,
∂z

∂s
]T (33)

where Φ is the pressure load, and (x, y, z) are the physical coordinate direc-
tions, and (r, s) are the local element directions for the face of the element.
Notice, taking the cross-product of ~a and ~b, the normal is obtained.

14.3 Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped.
Hence, shape functions for quads and triangles could be used to evaluate the
consistent loads. If the shape functions for the 3-D elements are used, it will
reduce code and “fit” better into the current finite element class structure.
This is what is currently implemented. This requires a “mapping” of the 3-
D elements’ faces to a 2-D plane. The additional overhead for using the 3-D
elements is that each face of the element must have this “mapping” which
states how the elements’ 3-D shape functions will map to a 2-D element.
For example, for a Hex20, the element coordiantes (η1, η2, η3) are defined in
a particular way. For each face of the Hex20, defined by a side id, the face
will have a local coordinate system (r, s). The “mapping” will define how
(r, s) are related to (eta1, eta2, eta3). This will also help defined what how
2-D Gauss points are mapped to the 3-D face. These mappings are done for
all the 3-D elements.

17

15 Shell Elements

All the 2-D elements (shell elements) are based on the Tria3. The consistent
loads calculations for the Tria3 can be “copied” to the TriaShell. This way
all the shell elements will use the same consistent loads implementation.
Since Carlos Felippa designed the Tria3, his consistent loads implementation
is used. The portion for linearly varying pressure loads is shown here. If
the loads are aligned along an edge, {q}, they need to be decomposed into
(qs, qn, qt). Where (s, n, t) are coordinate directions along the element edge.
Coordinate s varies along the element edge tangentially, n is normal to the
element edge, and t is tangent to the element edge in the transverse direction,
i.e., in the direction of the thickness. Once, the edge load is decomposed,
the equations for consistent loads are

f1
s =

1
20

(7qs1 + 3qs2)L21 f2
s =

1
20

(3qs1 + 7qs2)L21 (34)

f1
n =

1
20

(7qn1 + 3qn2)L21 f2
n =

1
20

(3qn1 + 7qn2)L21 (35)

f1
t =

1
20

(7qt1 + 3qt2)L21 f2
t =

1
20

(3qt1 + 7qt2)L21 (36)

m1
s = m2

s = 0 (37)

m1
n = − 1

60
(3qt1 + 2qt2)L2

21 m2
n =

1
60

(2qt1 + 3qt2)L2
21 (38)

m1
t = − 1

40
(3qn1 + 2qn2)L2

21 m2
t =

1
40

(2qn1 + 3qn2)L2
21 (39)

where qs1 is the value of q in the s direction at node 1 of the edge, L12 is the
length of the edge. The superscipts 1,2 are the node numbers of the edge.
Note, it is assumed here that the load q is per unit length, but this is not
assumed when creating the sideset in PATRAN for example. Therefore, this
distributed load is multiplied, in Salinas, by the thickness of the triangle.
Now if the pressure load is on the face of the Tria3, the equations become

f1
x = f1

y = m1
z = f2

x = f2
y = m2

z = f3
x = f3

y = m3
z = 0 (40)

f1
z = (

8
45
p1 +

7
90
p2 +

7
90
p3)A (41)

f2
z = (

7
90
p1 +

8
45
p2 +

7
90
p3)A (42)

f3
z = (

7
90
p1 +

7
90
p2 +

8
45
p3)A (43)

18

m1
x =

A

360
[7(y31 + y21)p1 + (3y31 + 5y21)p2 + (5y31 + 3y21)p3] (44)

m1
y =

A

360
[7(x13 + x12)p1 + (3x13 + 5x12)p2 + (5x13 + 3x12)p3] (45)

m2
x =

A

360
[(5y12 + 3y32)p1 + 7(y12 + y32)p2 + (3y12 + 5y32)p3] (46)

m2
y =

A

360
[(5x21 + 3x23)p1 + 7(x21 + x23)p2 + (3x21 + 5x23)p3] (47)

m3
x =

A

360
[(3y23 + 5y13)p1 + (5y23 + 3y13)p2 + 7(y23 + y13)p3] (48)

m3
x =

A

360
[(3x32 + 5x31)p1 + (5x32 + 3x31)p2 + 7(x32 + x31)p3] (49)

where yij = yi − yj and xij = xi − xj , A is the area of the triangle, pi is
the value of the pressure load at node i, and (xi, yi) are coordinates of the
triangle in 2-D space.
Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by using
Tria3s require a little extra overhead. For example, the Quad8T is composed
of 1 QuadT and 4 Tria3s. However, since it is defined as a Quad8T, it will
have distribution factors at its 8 nodes, and these distribution factors have
to be mapped to the 1 QuadT and the 4 Tria3s. The number of distribution
factors will be 3 however, if the load is applied to its edge. Therefore, this
extra coding can be seen in the ElemLoad method of the shells’ classes.

16 Thermal Expansion loads (or initial strains)

We have user requests for a thermal expansion load. These can be used
for preloads for bolts for example. I here outline the procedure. Equations
reference Cook, 3rd edition.

We are really doing a statics calculation, with the loads defined from
equation 4.1-6.

{re} =
∫

Ve

[B]T [E]{ε0}dV−
∫

Ve

[B]T {σ0}dV+
∫

Ve

[N]T {F}dV+
∫

Se

[N]T {Φ}dS

(50)
where each of these terms are defined in Section 4.1 of the above mentioned
reference. The load vector, {re}, is composed of four parts in Eqn. 50.
In this section, only the first term is considered, as thermal loads can be
thought of as initial strain, ε0. This capability is somewhat complementary
to the TSR (initial stress) calculation, but I’d like it generalized to solids,
shells and beams.

19

The initial strain from thermal expansion can be written (1.7-9),

{ε0} = [αxT αyT αzT 0 0 0] (51)

Cook states (p. 134) that it’s not clear if we should average the tem-
perature field (to be of the same order as the stress field in the element),
or not. For simplicity, we average the field, and we consider only isotropic
thermal expansion.

{re} = αT

∫
Ve

[B]T [E][1 1 1 0 0 0] dV (52)

Note that this is very similar to the expression for the element stiffness
matrix. Thus very few modifications are needed for the isoparametric solids.

Shells are a little trickier, as we want consistent loads. Beams are easy
as the force is just αEAT in the beam direction on each of the nodes (in
the element coordinate system).

The user interface is straightforward and is shown in this example.

Solution
statics

End

Loads
nodeset 1 force 1 0 0
nodeset 2 temperature 5.0

end

Block 1
material 1

end

Material 1
E=10e6
density=.1
Talpha=1e-6

end

The new keywords are temperature and Talpha. The first acts much
like a pressure. Of course the temperature value of “5” in the example is
multiplied by the nodeset distribution factors as well, so a spatially varying
load is possible. These are body loads so they should not be divided on

20

boundaries (just like pressure again). The material parameter Talpha is just
the temperature dependent α described above.

17 Stress/Strain Recovery

Stresses and strains are recovered at the centroids of the finite elements using
standard finite element procedures. Currently, stress/strain recovery is not
implemented for 1-D elements. Nodal stresses/strains are not recovered at
this point. In addition, the stresses/strains calculated for shell elements are
calculated in element space and not global space.

18 Coordinate Systems

Coordinate systems are provided for a number of applications including:

1. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs) - not implemented

3. specification of material property rotations for anisotropic materials.

4. specification of spring directions (see section 10).

There are some applications for coordinate systems which we do NOT
intend to support. These include,

1. specification of nodal locations,

2. specification of output coordinate systems.

3. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates
may be defined. In the case of noncartesian systems, the XZ plane is used
for defining the origin of the θ direction only.

Each coordinate system carries with it a rotation matrix. It is important
to clarify the meaning of that matrix. Specifically,

X ′ = RX

Where X ′ is the new system of coordinates, R is the rotation matrix and X
is the basic coordinate system. For cartesian systems, the rotation matrix

21

- X

6

Y

�
�

�
�

���

X ′

@
@

@
@

@@I

Y ′

θ

Figure 1: Original, and rotated coordinate frames

is static. Curvilinear systems will require computation of a new rotation
matrix at each location in space.

The usual identity on rotation matrices applies, namely:

X = RTX ′ (53)

and
RTR = RRT = I

As an example, consider a cartesian system as shown in Figure 1.
The new system (marked by primes) is rotated θ from the old system

with the new X ′ axis in the first quadrant of the old system. The rotation
matrix is,

R =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

19 Constraint Transformations in General Coor-

dinate Systems

In general, constraint equations can be applied in any coordinate system.
We here describe the transformation equations and implications for general
constraints in any coordinate system. The implications of this use in Salinas
are also outlined.

Consider a constraint equation,

C ′u′ = Q (54)

where the primes indicate a generalized coordinate frame. The frame
may be transformed to the basic coordinate system using equation 53, and

u′ = Ru (55)

22

We can now rewrite equation 54,

C ′Ru = Q
Cu = Q

(56)

where C = C ′R.
Thus a general system of constraint equations may be easily transformed

to the basic system. Further, the rotational matrix is a 3x3 matrix which
may be applied to each node’s degrees of freedom separately.

19.1 Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into
constrained and retained degrees of freedom, and describe the constrained
dofs in terms of its Schurr complement.

u =

[
ur

uc

]
(57)

The whole constraint equation may be similarly partitioned.

[
Cr Cc

] [ur

uc

]
= [Q] (58)

Note that Cr is an cxr matrix, Cc is cxc, and Q is a vector of length c.
Under most conditions Q is null.

This may be solved for uc,

uc = C−1
c Q− C−1

c Crur (59)

We must be concerned with cases where Cc may be either singular or over
constrained. The former case occurs if we try to eliminate c equations, but
the rank of C is less than c. This could occur if the equations are redundant.
We can over constrain the system only if Q is nonzero. Both these situations
need attention, but both can be dealt with.

We may also write the solution using a transformation matrix, T .[
ur

uc

]
= [T] [ur] + Q̃ (60)

where

T =

[
1
Crc

]
(61)

23

Crc = −C−1
c Cr (62)

and

Q̃ =

[
0

C−1
c Q

]
=

[
0
Q̆

]
(63)

19.2 Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for
statics are then, [

Krr Krc

Kcr Kcc

] [
ur

uc

]
=

[
Rr

Rc

]
(64)

or,
[K] [T]ur + [K]

[
Q̃
]

= R (65)

and
T TKTur = T T

{
R−KQ̃

}
= R̃ (66)

We can define the reduced equations,

K̃ = T TKT = Krr +KrcCrc + CT
rcKcr + CT

rcKccCrc (67)

and,

R̃ = T TR− T T

[
KrcQ̆

KccQ̆

]
= Rr + CT

rcRc −KrcQ̆− CT
rcKccQ̆

(68)

The solution in the retained system is

K̃ur = R̃ (69)

The system may now be solved using the reduced equations, and the
constrained degrees of freedom may be solved using equation 59. Much of
this is detailed in Cook, but without the constrained right hand side.

For eigen analysis the mass matrix may be transformed exactly as the
stiffness matrix in equation 67. There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same.
The force vector and force vector corrections may be time dependent. There
is currently no structure to store these time dependent terms in Salinas.

24

19.3 Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited
to the basic coordinate system. In that system the equations decouple, Cc

is unity and Crc is zero. Then equations 67 and 68 reduce to elimination of
rows and columns.

To properly account for the coupling that occurs when the constraints
are not applied in the basic coordinate system, we must generate all the
constraint equation on the node. This may be up to a 6x6 system. I believe
that there is no real conflict in first applying constraints in the basic system,
then adding additional constraints in other systems.

The process for applying constraints can be summarized as follows.

1. Generate the constraint equation in the generalized coordinate system
(equation 54).

2. Transform the constraint equation to the basic coordinate system
(equation 55).

3. Determine the constraint degrees of freedom. It may need to be done
in concert with the next step to keep from degrading the matrix con-
dition.

4. Compute the two transformation matrices C−1
c and Crc from equations

58 and 62.

5. Compute the corrections to the force vector from equation 68. We
currently do not have a structure to store these corrections, except for
the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 67.

7. Eliminate the constraint degrees of freedom from the mass and stiffness
matrix.

In addition, for post processing,

8. store the terms of the equations necessary to recover the constraint
degrees of freedom (equation 59).

A few words about post processing could also prove useful. In the first
implementation of Salinas, constraints were applied only in the basic coor-
dinate system. The degree of freedom to eliminate was obvious from the

25

exodus file, and it’s value was a constant (usually zero). Note that we re-
opened the exodus file to get the required information. In this later version,
a more general approach must be used. We use the following strategy.

1. degrees of freedom directly constrained to zero are handled implicitly.
This is done by setting the G-set vector to zero before merging in the
A-set results. There is no storage cost for this.

2. Other degrees of freedom are managed using an spc info object. An
array of these objects will be stored globally. Each object contains
the degree of freedom to fill, an integer indicating the number of other
terms, a list of dofs/coefficients, and a constant. This facilitates solu-
tions of the form,

uspc = constant +
retained dofs∑

i

uiCi (70)

19.4 Multi Point Constraints

The application to multipoint constraints is very straight forward. The only
difference is that the whole system of equations must be considered together.
This changes the linear algebra significantly because the matrices must now
be stored in sparse format. However, the steps that are applicable for single
point constraints apply here as well. Section 11 deals more explicitly with
MPCs.

19.5 Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book. We identify
how to transform output PDS.

Let H(f) denote a frequency response function vector for a given input
(in the global system) expressed as,

H(f) = H1(f)e1 +H2(f)e2 +H3(f)e3

where ei represents the unit vectors of this space. Note that H(f) is an
output vector at a single location in the model. H(f) can also be expressed
using an alternate set of unit vectors, ẽi.

H(f) = H̃1(f)ẽ1 + H̃2(f)ẽ2 + H̃3(f)ẽ3

26

Taking the dot product of these two equations and equating the results,
we have,

H̃1(f) =
3∑

k=1

ckiHk(f) (71)

where
cki = ek · ẽi

The spectral density function Gij(f) (for a given input and at a single output
location) can be expressed as,

Gij(f) = αH∗
i (f)Hj(f) (72)

where α is a constant and superscript * denotes complex conjugate. Simi-
larly for the alternative coordinate frame,

G̃ij(f) = αH̃∗
i (f)H̃j(f)

We may use equation 71 to express G̃ in terms of the Hi. We may then
use the spectral definition in equation 72 to provide the transformation of
spectral densities.

G̃ij(f) = α

(
3∑

k=1

ckiH
∗
k(f)

)(
3∑

m=1

cmjHm(f)

)

=
3∑

k=1

3∑
m=1

ckicmjGkm (73)

This can be expressed in matrix notation as G̃ = CTGC.

20 History and Frequency files - in parallel

History and frequency files differ from standard exodus output in several
important ways. All of these stem from the difference that there is no direct
mapping from an original genesis file.

1. Node and element mappings may be quite different.

2. Some element blocks in the original may be NULL. In the extreme
cases, there may be NO elements at all in the output.

27

3. nemesis type information is fragmented. The originals have communi-
cators, and other information on how to join these files. The reduced
files will have to extract this information for nem join type programs
to run properly.

4. Typical history files are much smaller. This can mean that some sub-
domains have no data for history files.

5. outputs may be used for different purposes. For example, the frf files
will not typically be used for visualization, but only for frf plots.

Because of inherent difficulties in joining these files, and particularly
when there are empty files on a subdomain, I propose that we do our own
“join” operation on the fly. The process is outlined here.

1. A “root” node is selected. Because many of our decompositions are not
well balanced, I propose selecting a processor with the least number
of geometric nodes (and the greatest processor number).

2. The output file should be unique, and not depend on that root. I
propose using a file name as if the root were always zero.

3. Nodes should be gathered from the different processors. However, I
propose duplicating nodes on the boundaries of subdomains. This
will lead to a model that cannot be run as a genesis file, (since nodes
aren’t equivalenced). But that should not be a problem since the .h
or .frq files are not intended as genesis input. This also leads to a
solution that depends (slightly) on decomposition. I don’t see that as
a problem. A more sticky problem is that the node number map will
no longer be unique. I’m not sure if this is a problem or not. Also, the
node number map will point to the implicit numbering of the genesis
file, rather than the explicit numbering.

4. Elements would need to be gathered by blocks and their results con-
catenated. There will be complications here since some blocks will
record the element type as NULL. However, these can all be overcome.
The end file will again have the implicit genesis element numbers.

5. Nodal results can be concatenated easily, in an almost subdomain
by subdomain fashion. There will be duplication for nodes on the
boundary, and the ordering will be determined by the decomposition.

28

Element results will be more complicated, because the concatenation
would first occur on the block level. Again, the element ordering would
be partly determined by the decomposition.

6. Parallel and serial files will differ in the number of nodes and in the
node and element numbering. These issues could be resolved by a fairly
simple program to equivalence and add the new numbering. That
would be a serial program requiring the .h file and the original genesis
file as an input.

21 Random Vibration

Details of random vibration analysis are included in a number of papers1.
These few paragraphs document what was implemented.

21.1 algorithm

The first step in the calculation is computation of Γqq, which is performed
in ComputeGammaQQ. This is accomplished as follows.
Let the modal frequency response be defined as,

qi(f) =
1

ω2
i − ω2 + 2jωωiγi

The modal force contribution from load a is,

Fi,a(f) =
∑
k

φikf
a
k sa(f)

= Zi
asa(f)

where fa
k is the k component of the force vector associated with load a,

and sa(f) contains all of the frequency content of the force, but none of the
spatial dependence. We have defined Zi

a for each load that represents the
sum of all the spatial contributions for mode i. It represents the frequency
independent component of the force for load a.

Zi
a =

∑
k

fa
kφik

1Reese, Field and Segalman, A Tutorial on Design Analysis Using von Mises Stress in
Random Vibration Environments Shock and Vibr. Digest, Vol. 32, No. 6, Nov 2000.

29

A transfer function to an output degree of freedom, k, from the input load
a, may be written as a modal sum.

Hka(f) =
∑

i

Fia(f)qi(f)φik

where φik is the eigenvector of mode i.

21.2 Power Spectral Density

The displacement power spectral output (at a single location) is a 3 × 3
matrix.

Gmn(f) =
∑
a,a′

H∗
ma(f)Hna′(f)

=
∑
i,j

∑
a,a′

F ∗
ia(f)q∗i (f)φimF

∗
ja′(f)qj(f)φjn

=
∑
i,j

∑
a,a′

q∗i (f)qj(f)φimφjnZ
i
aS

a,a′(f)Zj
a′

Here Sa,a′(f) is the complex cross-correlation matrix between loads a and
a′. The subscripts m and n are applicable to the 3 degrees of freedom at a
single location.

By summing over the loads we may reduce the power spectral expression
to a sum on modal contributions.

Gmn(f) =
∑
i,j

φimφjnGij(f) (74)

where
Gij(f) = q∗i (f)qj(f)

∑
a,a′

Zi
aZ

j
a′S

a,a′(f) (75)

Note that with the exception of the Zi
a (which may be computed only once

and are a fairly small matrix), all the terms in equation 75 are completely
known on each subdomain.

21.3 RMS Output

The RMS output for degree of freedom m is given by,

Xrms =

√∫
Gmm(f)df

30

=

√√√√∫ ∑
i,j

φimφjmGij(f)df

=
√∑

i,j

φimφjmΓij

where
Γij =

∫
Gij(f)df

.
The parallel result can be arrived at by computing Zi

a on each subdo-
main, and then summing the contributions of each subdomain. Note that
Zi

a contains the spatial contribution of the input force. At boundaries that
interface force must be properly normalized just as an applied force is nor-
malized for statics or transient dynamics by dividing by the cardinality of
the node. Once Z has been summed, Γij may be computed redundantly
on each subdomain. The only communication required is the sum on Z (a
matrix dimensioned at the number of loads by the number of modes).

The acceleration power spectral density is just Gmm(ω)ω4. Section 19.5
provides details about transforming power spectra to an output coordinate
system.

21.4 RMS Stress

A description of the algorithm for computation of the von Mises RMS stress
is included in the reference at the beginning of this chapter. Two methods
are available, but both use the integrated modal contribution Γij as the basis
for their computation. The more complete method relies on a singular value
decomposition. Portions of that method are touched on below

21.5 matrix properties for RMS stress

Since S(f) is Hermitian, it follows that Γqq is also necessarily hermitian. It
will not in general be real. Therefore, the svd() must be computed using
complex arithmetic. We use the zgesvd routine from arpack. The results
from the svd of an hermitian matrix are real eigenvalues (stored in X), and
complex vectors, stored in Q.

At the element level another svd must be performed. In this case we are
computing the singular values of the matrix C.

C = XQ†BQX

31

where,
B = ΨTAΨ

Obviously, B is symmetric. It can be shown that Q†BQ is hermitian. If we
examine a single element of C we can see that it contains the sum over all
the terms in an hermitian matrix. That sum is necessarily real, since it can
be computed by adding the lower half with it’s transpose and then summing
the diagonal. Let,

Aij =
∑
m,n

Q∗
miBmnQnj =

∑
m,n

aij

But,
A∗

ji =
∑
m,n

Qm, j ∗BmnQ
∗
ni =

∑
m,n

QnjBmnQ
∗
mi =

∑
m,n

a∗ij

We therefore only need use the real svd routines to compute the results
at each output location.

21.6 model truncation

The svd calculations provide the information needed for model truncation.
In general, if the size of the model grows, the number of modes required for
an analysis also grows. The relationship is very model dependent. However,
the computational time for calculating the svd varies as the cube of the
dimension of the matrix. Since the svd(Γ) is only computed once, it is not
terribly important. However, the computation of each decomposition of C
occurs at each output location and can significantly affect performance. In
the model problem where the dimension of C was allowed to remain the
same as the number of modes, increasing the number of modes from 20 to
100 changed the time for the analysis by factor of more than 100 (close to
the 53 one might expect). Clearly, this is unacceptable especially as the
desired models may have many hundreds of modes.

The svd(Γ) provides important information about the number of inde-
pendent processes. Note that C includes the svd values from this calculation.
We truncate by computing all the nmodes x nmodes terms in B, but only
retaining Cdim columns of Q, where Cdim is chosen so the values of X are not
too small. Thus, X[(Cdim)]/X[0] > 10−14. This restricts the dimension of
C to a fairly small number, while retaining all components that contribute
significantly to its value. As a result, the entire calculation appears to scale
approximately linearly with the number of modes.

32

22 High Precision solutions

We’ve built serial salinas on DEC workstations with Real=long double, or
128 bits of precision. It was a significant effort to rebuild all the libraries to
be compatible, and there are still issues and limitations.

1. We are limited to a serial solution on DEC and SGI workstations only.
On DEC, libraries were built using “-real size 128” for fortran and
“-long double size 128” for C programs. On SGI we used the “-d16”
flag for fortran. C programs need ’long double’ explicitly (there is no
flag to turn doubles into 128 bits).

2. complex solutions are not at all to be trusted. Thus, the direct frf
solution fails. This is certainly due to blas and superlu libraries.

3. MPC elimination is not working on the SGI.

4. I suspect superlu wasn’t translated properly. Unlike most of the for-
tran code, source code changes were required in the superlu package.
Many of these changes could be accomplished with a few changes to
the include files, but based on the success (or lack thereof), I still
haven’t got it all right.

5. Some of the regression tests fail. For example, the modaltrans test
fails, but the differences are fairly small. I suspect that this is an issue
of increased accuracy, but that has not been confirmed.

6. complex variables are different on the different platforms. The DEC
provides for a compiler flag to generate 256 bit complex. The SGI does
not.

7. Long doubles use a different print format than standard doubles. You
can of course cast the long doubles to double (for output), but that
does not always give the desired result. I’ve tried to make the required
changes. On the SGI, the compiler checks for errors in print statements
for stdio functions. I think I’ve cleaned them all up. Unfortunately,
this doesn’t catch error() functions. This points out the advantage in
using ostream instead of stdio type functions. If I’ve missed some of
these on output, the values will not print properly, but the code should
not fail. If any have been missed on input, there is a more significant
problem.

33

23 HexShells

Hexshells are provided to give the analyst an element with performance
similar to a standard shell, but with the mesh topography of a brick. Thus,
thin regions of the model can be meshed with hexshells, without concern for
the bad aspect ratio of the elements, and with topography consistent with
a solid mesh.

The element is documented extensively in the description by Carlos Fe-
lippa. The paragraphs in this document summarize the limitations of the
shells and the possible usage.

Because hexshells have an inherent thickness direction, it is important
to be able to identify that direction. There are (at least) four methods to
accomplish this.

natural The natural ordering of the nodes in the element can determine the
thickness direction. This is the method used by Carlos in developing
the element. I believe that the connectivity for the element will indeed
have to be modified to properly interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the
elements uniquely identifies the thickness direction.

topology Usually the topology can be used to identify the thickness di-
rection. The hexshell should be used in a sheet. If the hexshells are
considered alone, only the free surfaces of the sheet are candidates for
the thickness direction. Further, once the thickness direction is estab-
lished for one element, it must propagate to the neighbors. (Note that
this implies that we can’t have a self intersecting sheet).

projection The thickness direction could be determined by the closest pro-
jection to a coordinate direction.

We will try to support all of the above methods. The topology method puts
the least burden on the analyst. It is the least explicit however, and the
most work to implement (especially in parallel). The next simplest (for
the analyst) is the projection method. Sideset methods are burdensome for
both the analyst and the code development team. The natural method is
the easiest to implement, but can be next to impossible for the analyst to
use.

Input will be structured as follows. Keywords are associated with each
method. Only one of the four keywords above can be entered. If no keyword
is entered, then topology is assumed.

34

Block 9
HexShell
orientation sideset=’1,2’
material=9

end

or,

Block 10
HexShell
orientation topology
material=9

end

24 Adding a New element

At the request of Dan Segalman, I’m adding this description of what must be
done when adding a new element. Much of this documentation is duplicated
in the source code.

1. First, you must determine where the element ought to fit in the element
inheritance heirarchy. I prefer to copy both a .H and a .C file from an
element that is somewhat similar.

Give the element a meaningful name, and have it inherit from appro-
priate elements. Usually this means from IsoSolid, TwoDim, OneDim,
ZeroDim or Rigid, but it could be from another element.

2. Select the appropriate attributes for the element. Attributes may be
input in the exodus file or in the text control file (the .inp file). Since
it is harder to add these new elements to preprocessors than it is to
salinas, you may want to consider carefully how to structure things
so the attributes come out in the right order. For example, if your
element is beam-like, and has one attribute that you may want to put
in by a field in patran, you would have that attribute be first. Within
patran your analysts may specify that this is a beam, and enter the
attribute with a field 2. Once the salinas control has been written, the
attribute takes on the meaning of the new element.

2In the beam element, this would be the “area” attribute.

35

This sort of “trickery” on attributes is unavoidable since exodus has
no way of assigning any meaning to an attribute. All we get is the
attribute order.

The number of attributes and their text values are typically set in the
.H file. At the element level they are then accessed by element->Attribute(k).

3. Add the .H file to the included files in Elements.H.

4. Edit Elements.C. Make the following changes.

• add the element to the identity list

• add it to the allocation block. Make sure you keep the same
order.

• make sure MAXELEM is large enough.

• if the element is a higher order isoparametric solid element, add
its Typename() to the if-test in the ElemMass function of IsoSolid.C

5. Generate a control file, make a new copy of salinas, and test it.

25 Adding an Output Variable

It is still a bit of a chore to add an element output variable. Following
the addition of element orientations, or eorient, I am sketching the process.
The sketch will necessarily be incomplete, but may make the next addition
easier.

1. The first step is to add the documentation to the user’s manual, and
to the theory manual if needed. I find it very important to get the
input format right first. I find it deplorable to modify our user input
format just so it is easy to parse.

2. Next, we must insure that the proper output can be computed. This
usually involves modifications of the element routines. For example,
to add eorient output, I needed to add a routine to Element.[HC],
IsoSolid.[HC] and to TwoDim.[HC].

3. Because it is simpler, I usually test the routines using the ECHO op-
tions first. To do this, I did the following.

36

(a) add a class derived from ElemVar. I just copied the ElemForce
class and added appropriate data for my element orientation.
These are relatively compact classes with a lot of polymorphism,
so cut and paste is not such a bad idea.

(b) insert the class at the end of the WriteElemVars routine. This is
only about 3 or 4 lines.

(c) Modify options1.C and echo.h to include the additional vari-
ables and the associated parsing.

(d) Try to build. I think in this example, there were a few small other
changes, but I can’t recall the details.

(e) Modify the input, run it, and look for the results in the output.
I know that in this case, I had to run the code in the debugger
to see why it wasn’t writing my variable. Clearly the design or
process could stand improvement.

4. Next we need to get the exodus output going. Unfortunately, that is
a bit more of a mess.

(a) Edit genstuff.C. It contains sections on adding the element labels,
the truth table, and returning the element variable id. All need to
be updated. As part of this process, I found I had to also update
the dimension of the flag passed to some of these routines. That
required modification of a few more routines.
Add element labels to the AddExoElemLabels, and insure that
they are properly activated there. This means adding a “flag”
for the new element variable. The flag must be turned on in
SetExoParams. There is also a counter later in that routine that
will need to be corrected for the new number of element variables.
If you don’t fix that, you’ll hit an assert when you execute (so
that’s easy at least). Also in this routine, you have to add the
logic for modifying the element variable truth table.

(b) I had to edit output.C as well, to insure that nothing had a con-
flict there. This even though I wasn’t yet adding history file
output (see below). These are in OutFileBlock::ExoElemVar.

(c) Modify the input, run it, and debug it. I’m probably forgetting
a fair amount here.

5. Finally the history files need attention. This is currently a huge mess.
I ran into problems with the spell checker, but the biggest problems

37

included incompatibilities in the truth table and the element variable
output. This code currently fails in parallel runs. It is really in disar-
ray. I’d like to see the code combined in some way with what we do
in genstuff (which works OK by the way).

(a) You’ll have to make sure the element variable is included in the
switch statement in OutFileBlock::ElemVar.

(b) You must make sure the index gets right in OutFileBlock::ExoElemVar.

While the process is a bit too complex, it did take less than a day to add
all of the code and documentation for the element orientation output.

26 GasDmp

Comments on implementation by Troy Skousen. July 1, 2003.
The version that is in the code that I added is equation 10 in the memo.

Γ = − 1
U

∫ W/2

−W/2
(p[x]−p∞)dx = µ

(
W

G

)3 (
1 +

6Λ
G

)−1
{

1 + 6η
(
G

W

)
+ 12ζ

(
G

W

)2
}

(76)
It integrates the pressure along the width of the beam resulting in force

per unit length, Γ. Multiply that result by the length of the portion of the
beam corresponding to the GasDmp element to obtain force. The inputs
required to evaluate equation 10 are as follows:

Memo Name Code Name Description
W W Beam Width
dL dL Considered Length of Beam
m mm Molecular Mass of Gas
pref P0 Reference pressure
T T Gas Temperature
µref muRef Reference Viscosity
Tref TRef Reference Temperature
ω ww Viscous Temperature Exponent

The constant values are:
Memo Name Code Name Description

kB kb Boltzmann Constant
σ sigma Coefficient of Tangential Momentum
π pi Pi

38

I was told that the value for the coefficient of tangential momentum should
be 1 for now.

With some of these values the following are evaluated.
Memo Name Equation Code Variable Description

ρ mp/kBT rho Gas Density
µ µref (T/Tref)ω mu Gas Viscosity
c (8kBT/πm)1/2 cbar Mean Molecular Speed
λ 2µ/ρc lambda Mean free path
Λ

(
2−σ

σ

)
λ LL Slip Length

The following values are evaluated as well.

η =
0.63393 + 3.23135(Λ/G) + 1.78154(Λ/G)2

1 + 1.17621(Λ/G)
(correlation), (77)

ζ =
0.44525 + 1.84421(Λ/G) + 0.90995(Λ/G)2

1 + 0.86502(Λ/G)
(correlation). (78)

In the code these values are eta and xsi respectively. See the memo for a
description of what they are.

Values obtained from Salinas:
Memo Name Code Name Description

du0 Relative Displacement
U v Relative Velocity

The relative displacement is used to find the total gap,

G = G0 + du0 (79)

where G0 is the initial gap.
With this information equation 10 from the memo can be calculated.
The result from this is multiplied by dL to get the force value.

Notes:

At this point the entire length of the beam is considered with one
GasDmp element, but after a proper mesh of the beam is made
this should change to be the portion of the length of the beam
that is considered in association with a GasDmp element. This
equation is only good for meshes that have one element across
the width of the beam.

39

For meshes with more than one element across the width, equa-
tion 9 from the memo should be used, multiplied by the length
and width associated with a GasDmp element. The position
along the width of the beam becomes a part of the equation at
that point.

27 Interpolation of Direct FRF results

Charbel Farhat put out a paper that demonstrates for certain acoustics
problems, a Taylor series expansion of the solutions may be made. Thus, by
computing a few linear solves, you can get the derivatives of the function,
and nearby solutions can be found by expansion. The trade off is that
you must compute the multiple right hand sides for the derivatives, but a
reformulation of the left hand side is not required.3

I thought that it may also be possible to do the same thing with struc-
tural response. It is true that the derivatives in a direct frf are not hard
to obtain. However, as the graphs below demonstrate, the resonance is too
sharp to be recovered by a power expansion.

Several things were attempted. I tried computing the power series by
itself. This was then expanded in a Taylor series. With 8 terms in the ex-
pansion, we were clearly not converging. I next tried looking at interpolating
using the known values of the derivatives.

I examined retaining only the first derivative, and retaining both the
first and second derivatives. The results were interesting, and retain some
of the features of the full solution. As shown in figure 2, the real values of
the function have more fidelity than the coarse solution. They also have the
proper shape. Likewise, the imaginary parts of the function have the right
general features (as shown in figure 3). However, it is also clear from both
of these figures, that the interpolated function cannot truly follow the fully
sampled function. This becomes more obvious in figure 4, where errors in
the relative phase term results in a noticable dip in the function where a
peak is expected.

Charbel’s work studied the acoustic response due to a plane wave re-
flecting from a perfectly rigid reflector. The acoustic field must have a non-
reflecting boundary condition. These are the conditions required to have no
resonance in the field. His Taylor series approximation was adequate for the
sinusoidal variations required in this special case problem.

3 Djellouli, R., Farhat, C. and Tezaur, R. “A Fast Method for Solving Acoustic Scat-
tering Problems in Frequency Bands”, J. Comp. Physics, 168, 412, 2001.

40

Figure 2: Real part of Solution

Figure 3: Imaginary part of Solution

41

Figure 4: Magnitude of Solution

A better functional for representing these resonant conditions is a ratio-
nal function such as those used by Padé.

U(x) =
∑M

i=0 aix
i∑L

j=0 bjx
j

(80)

where b0 = 1 and other terms are selected to meet the boundary conditions.
By maintaining continuity of the function and 2 derivatives at each end,

there are six (complex) parameters. Initial studies with M = 0 and L = 5
were very successful in matching the resonant response, but unsuccessful at
the zeros of the function. Experiments with M = 2 and L = 3 provide
excellent agreement with the direct response terms. At the peaks, and at
the zeros, the functions are in agreement to more than 7 digits. See Figure
5

This method also has potential to provide an error indicator. In theory,
increasing the order of the derivative (and hence the order of the rational
function) should increase the accuracy of the solution. Thus, the difference
between a 6 term (2nd derivative) and a 4 term (1st derivative) match can
be easily and inexpensively computed. Unfortunately, this difference is only
an error indicator, it is not an estimator. There is no mathematics to prove

42

Figure 5: Interpolation Using Rational Functions

that the real error will be bounded by this indicator.

27.1 Rational Function Interpolation - C1

We present the mathematics behind a rational function interpolation in C1,
i.e. continuity of the function and 1st derivatives. We describe the function
using a rational function with L = 1, and M = 2.

u(x) =
a0 + a1x

1 + b1x+ b2x2
(81)

Multiplying by the denominator and differentiating we have,

(b1 + 2b2x)u+
(
1 + b1x+ b2x

2
)
u′ = a1 (82)

Here the primes indicate the derivative with respect to x.
We obtain 4 equations in 4 unknowns by evaluating these two equations

at x = 0 and x = h.

u0 = a0 (83)
b1u0 − a1 = −u′0 (84)

b1huh + b2h
2uh − a1h = a0 − u1 (85)

b1(uh + hu′h) + 2b2huh + b2h
2u′h − a1 = −u′1 (86)

43

Where u0 = u(0), u′0 = du
dx |x=0, and similar expressions hold at x = h.

The first equation is trivial. Substituting u0 for a0 in the remaining
equations, we arrive at a simple 3x3 expression for the coefficients. u0 0 −1

huh h2uh −h
uh + hu′h 2huh + h2u′h −1

 b1
b2
a1

 =

 −u′0
u0 − uh

−u′h

 (87)

These equations are solved at each degree of freedom in the model, at each
coarse frequency step. With the coefficients known, intermediate points may
be interpolated using equation 81.

27.2 Rational Function Interpolation - C2

We present the mathematics behind a rational function interpolation in C2,
i.e. continuity of the function and 1st and 2nd derivatives. We describe the
function using a rational function with L = 2, and M = 3.

u(x) =
a0 + a1x+ a2x

2

1 + b1x+ b2x2 + b3x3
(88)

Multiplying by the denominator and differentiating we have,(
b1 + 2b2x+ 3b3x2

)
u+

(
1 + b1x+ b2x

2 + b3x
3
)
u′ = a1 + 2a2x (89)

(2b2 + 6b3x)u+ 2
(
b1 + 2b2x+ 3b3x2

)
u′ +(

1 + b1x+ b2x
2 + b3x

3
)
u′′ = 2a2 (90)

Again the primes indicate the derivative with respect to x.
We obtain 6 equations in 6 unknowns by evaluating these three equations

at x = 0 and x = h.

u0 = a0 (91)
b1u0 − a1 = −u′0 (92)

2b2u0 + 2b1u′0 + u′′0 = 2a2 (93)
(1 + b1h+ b2h

2 + b3h
3)uh = a0 + a1h+ a2h

2 (94)
(b1 + 2b2h+ 3b3h2)uh +

(1 + b1h+ b2h
2 + b3h

3)u′h = a1 + 2a2h (95)
(2b2 + 6b3h)uh + 2(b1 + 2b2h+ 3b3h2)u′h +

(1 + b1h+ b2h
2 + b3h

3)u′′h = 2a2 (96)

44

Where u0 = u(0), u′0 = du
dx |x=0, and similar expressions hold at x = h.

Again, the first equation is trivial. Substituting u0 for a0 in the remaining
equations, we arrive at a 5x5 matrix expression for the coefficients.

u0 0 0 −1 0
2u′0 2u0 0 0 −2
huh h2uh h3uh −h −h2

uh + hu′h 2huh + h2u′h 3h2uh + h3u′h −1 −2h
2u′h + hu′′h A52 A53 0 −2

b1
b2
b3
a1

a2

 =

−u′0
−u′′0

u0 − uh

−u′h
−u′′h

(97)

Where A52 = 2uh + 4hu′h + h2u′′h, and A53 = 6huh + 6h2u′h + h3u′′h.
These equations are solved at each degree of freedom in the model, at

each coarse frequency step. With the coefficients known, intermediate points
may be interpolated using equation 88.

27.3 Derivatives of Frequency Dependent Dynamic Matrix

A necessary key to computation of the interpolant is the derivative of the
dynamic matrix with respect to frequency, ω. We consider here only the
system where the coefficient matrices are constants (i.e. we do not con-
sider viscoelasticity). The dynamic matrix is a combination of the stiffness,
damping and mass matrices.(

K + iωC − ω2M
)
u(ω) = f(ω) (98)

or (99)
A(ω)u(ω) = f(ω) (100)

For convenience, we define variables for the first and second derivatives
of A with respect to ω.

A′ ≡ dA

dω
= iC − 2ωM (101)

A′′ ≡ d2A

dω2
= −2M (102)

The derivatives up to 6th order in ω are tabulated in table 1. Note that
in each case, determination of the derivative requires solution of the same
matrix with a right hand side containing only lower order derivatives. In
the table, u(n) = dnu/dωn.
where cn = cn−1 + (n− 1).

45

Table 1: Nth Derivatives of Dynamic Solutions

Order Functional
1 Au(1) = −A′u+ f (1)

2 Au(2) = −A′′u− 2A′u(1) + f (2)

3 Au(3) = −3A′′u(1) − 3A′u(2) + f (3)

4 Au(4) = −6A′′u(2) − 4A′u(3) + f (4)

5 Au(5) = −10A′′u(3) − 5A′u(4) + f (5)

6 Au(6) = −15A′′u(4) − 6A′u(5) + f (6)

n Au(n) = −cnA′′u(n−2) − nA′u(n−1) + f (n)

28 Triangular Shell Element

The triangular shell element (TriaShell) is derived as follows. The bending
d.o.f. (w, θx, θy) and the membrane d.o.f. (u, v, θz) are decoupled. The idea
is to obtain the membrane response using Allman’s triangle and the bending
response using the discrete Kirchoff triangular (DKT) element.

28.0.1 Allman’s Triangular Element

Using the formulation given in Ref. 1 and replacing cos(γij) = yji

lij
and

sin(γij) = −xji

lij
, we get

u = u1ψ1+u2ψ2+u3ψ3+
1
2
y21(ω2−ω1)ψ1ψ2+

1
2
y32(ω3−ω2)ψ2ψ3+

1
2
y13(ω1−ω3)ψ3ψ1

(103)

v = v1ψ1+v2ψ2+v3ψ3+
1
2
x21(ω2−ω1)ψ1ψ2−

1
2
x32(ω3−ω2)ψ2ψ3−

1
2
x13(ω1−ω3)ψ3ψ1

(104)
The stiffness and mass matrices ([K]AT , [M]AT) are found using general

finite element procedures. Unfortunately, a mechanism exists for this el-
ement if the deformations are all zero and the rotations are all the same
value. Cook et al.2 have a “fix” for this which has been implemented to
avoid undesirable low energy modes produced by this mechanism.

46

28.0.2 Discrete Kirchoff Element

As for the DKT3 element, things are not so simple. The nine d.o.f. element
is obtained by transforming a twelve d.o.f. element with mid-side nodes to
a triangle with the nodes at the vertices only. This is obtained as follows.
Using Kirchoff theory, the transverse shear is set to zero at the nodes. And
the rotation about the normal to the edge is imposed to be linear. Using
these constraints, a nine d.o.f. bending element is derived (DKT) using the
shape functions for the six-node triangle. Unfortunately, the variation of w
over the element cannot be explicitly written. Therefore, the w variation
over the element needs to be calculated before the mass matrix can be
obtained.

As stated, the equation for w is not explicitly stated over the element
in the derivation by Batoz at al.. Using a nine d.o.f. element, a complete
cubic cannot be written, since 10 quantities would be needed to get a unique
polynomial. The strategy taken here is that the stiffness matrix produced
using for the DKT element provides reasonable results, and the derivation
of the mass matrix is not as critical. So, the equation for w is taken from
Ref. 4, as

w = α1ψ1+α2ψ2+α3ψ3+α4ψ1ψ2+α5ψ2ψ3+α6ψ3ψ1+α7ψ1
2ψ2+α8ψ2

2ψ3+α9ψ3
2ψ1

(105)
For the AT and DKT elements, the stiffness and mass matrices are de-

rived with the help of Maple. The consistenet mass matrix is derived using
“normal” finite element procedures. If a lumped mass matrix is requested
then the mass matrix terms associated with the translation d.o.f. are found
in the “normal” sense. However, mass matrix terms for the rotational d.o.f.
are set to 1

125 of the translation terms.
In summary, the code has been written which uses the AT and DKT

element use in combination as a shell element. The stiffness matrices are
calculated without complication. The mass matrix for the AT element is
also derived without complication. The mass matrix for the DKT element
is derived using an incomplete polynomial, but the results obtained should
not be effected very much.

28.0.3 Verification and Validation

The AT element is verified by comparing calculated results with the results
published by Allman in Ref. 1. The square plate in pure bending and a
cantilvered beam with a parabolic tip load are used as verification examples.

47

DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z -1.405 × 10−2 -1.398 × 10−2 -1.398 × 10−2

θx 3.337 × 10−2 3.337 × 10−2 3.337 × 10−2

θy 3.106 × 10−2 3.089 × 10−2 3.089 × 10−2

θz 0.000 0.000 0.000

Table 2: Comparison of deflections at Node 2

DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 1.949 × 10−2 1.955 × 10−2 1.955 × 10−2

θx 3.363 × 10−2 3.363 × 10−2 3.363 × 10−2

θy -2.686 × 10−2 -2.702 × 10−2 -2.702 × 10−2

θz 0.000 0.000 0.000

Table 3: Comparison of deflections at Node 3

The mass matrix is not verified except to note that the mass is conserved in
the u, v directions.

The DKT element is validated by using the experimental data published
by Batoz et al. in Ref. 3 for a triangular fin. The first 10 eigenvalues for the
triangular fin (cantilever) match very well. In addition, the DKT element
is verified by using a cantilevered beam and matching deflection results at
the tip. If ν = 0, then results should match very closely with Euler-Beam
theory results, and they did.

Finally, the AT/DKT element is verified by comparing with published
results from Ref. 5. Tables 2 and 3 show that our elements match exactly
with ABAQUS to the number of digits shown. The first column is the
result produced by Ertas et al., the second column is the result produced by
ABAQUS, and the third column is the result produced by SALINAS using
this DKT/AT element.

48

29 Using the Test Problem Implementation Tool

The Test Problem Implementation Tool (TEPIT) was created to allow code
developers to easily add test problems to the test suite for Salinas. These
problems will be tested in serial and/or parallel depending on the informa-
tion given.

29.1 Quick Start

For a quick start, change directories to ’test tool’ within Salinas. Create
a link using ’ln -s Makefile make.??’. The file you link with will depend
on which machine you are running the test. For most cases, link with
make.all. After which, type ’make fresh start’. Next, change directories
to ’test problems1’, type ’TestSuite ??’. Currently, the choice are ’serial’,
’parallel’, or ’parallel sgi’. This assumes that an appropriately complied sali-
nas exists, otherise the path to the salinas executable is also needed when
running ’TestSuite’.

29.2 Creating and running a test problem

To run a test problem, an input file for the test problem is needed. This file
must have a suffix of ’ test’. For example, in the test tool/test problems1/test example1
subdirectory, a test input file, beam0 test, exists. The contents of the file
are:

1: begin Beam0_Test
2: input_file beam.inp
3: exodus_input_file beam.exo
4: dispx 5 7.1446e-03 1
5: dispx 12 1.6418e-02 0.001
6: sstressx1 100 -2.8175e+03 2%
7: dispx 1 0 0.005%
8: end

The line numbers are added for this document only.

Line 1: begin Beam0_Test

All input files must have a ’begin’ keyword followed by the name of the test.

Line 2: input_file beam.inp

49

The ’input file’ keyword followed by the filename specifies the Salinas input
file to be used in this test. This Salinas input file must have some changes
made to it to be part of the test suite. The ’file’ block, e.g. in beam.inp,
must look as follows:

File
NUMRAID
geometry_file ’FILEPATH’

end

This is done so that the test problem can be run on various systems with little
difficulty. Since the utility ’grope’ is used to determine passes and failures,
and since grope only is used with Exodus type files, there is no need to have
any options on which will not result any changes to the Exodus output file.
E.g., the entire ’ECHO’ block isn’t needed. Therefore it is recommended
that all the options in ’ECHO’ and ’OUTPUTS’ be turned off if not needed
for the test problem.

Line 3: exodus_input_file beam.exo

The ’exodus input file’ is needed to specify the Exodus file which will be
used with the input file.

Lines 4-7: keyword node#/element#/eigenvalue# value tolerance

This format is defined as follows. The ’grope’ utility will search for nodal
or element variables defined by ’keyword’. It will then use the value found
at the node#/element#/eigenvalue# to see if it matches the value within
the given tolerance. If so, the test passes, if not, the test fails. All the
possible values for ’keyword’ are all the elemental or nodal variables that
can be output in Salinas, with one exception. The exception is the ’eigen-
value’ keyword. This is a recognized keyword, but is NOT a elemental or
nodal variable. Note: the node#/element#/eigenvalue# start at 1 for their
indexing and not 0.

line 8: End

This is required to specify the end of the test problem input file.

To run the example test, go to the test problems1 subdirectory. To check
that all the test input files are correct, run the script ’FileCheck’. This will

50

create a file ’Log Test Suite’ which will contain the output of ’FileCheck’.
To check only one test problem input file and execute it using salinas, e.g.
beam0 test located in test example1 subdirectory, use the utility ’TestOn-
lyOne test example1
beam0 test’. Finally, to run the entire set of test suite problems within the
test problems1 subdirectory, run the script ’TestSuite serial’. The ’serial’
keyword could be ’parallel’ or ’parallel sgi’. This will depend on which ma-
chine you are on and which version of salinas needs to be tested. To clean
up all the temporary files created, run the script ’clean up’ when done.

29.3 Adding a Test Problem to the CVS Repository

For a serial test, the following files are needed:

Salinas Input File
Exodus Input File

For a parallel test, the additional information is needed:

Nemesis Load Balance File
Number of Processors

The parallel information for the example given above, can be added to the
test problem input file as follows:

load_balance_file beam.nem
num_procs 4

With the load balance file and number of processors information given, this
test is a serial and a parallel test. In other words, if all of the information
for a test problem is given, the test problem will be considered a parallel
and a serial test problem. However, there might be a need to label a test as
a parallel test only. Therefore, the keyword ’parallel only’ is a recognized
keyword which will only allow the test to be run on a parallel machine. For
an example of a serial and parallel test, see the test example2 subdirectory
located in test tool/test problems1 subdirectory of Salinas.

Now that the required files for a serial and/or parallel test are known,
simply ’cvs add’ the files to the repository and then ’cvs commit’ them.
However, when adding binary files such as Exodus and Nemesis files, the
’-kb’ flag must be used when adding the files. For example, to add the
example test problem in test example1 subdirectory:

51

prompt> cvs add beam.inp beam0_test
prompt> cvs add -kb beam.exo
prompt> cvs commit beam.inp beam0_test beam.exo

29.4 Explanation of Various Files

To run the set of test problems, change directories to test problems1 in the
test tool subdirectory and type ’TestSuite serial’ or ’TestSuite parallel’ or
’TestSuite parallel sgi’. This will run the tests and print out results in the
file ’Log Test Suite’ and print to stdout the number of passes and failures.

The ’TestSuite’ script runs the following pieces of scripts/executables:

1: clean_up (Shell script)
2: begin (C++ executable)
3: createdirs_script (Shell script created by ’begin’)
4: readtest (C++ executable)
5: the_script (Shell script created by ’readtest’)
6: final (C++ executable)
7: the_script1 (Shell script created by ’final’)
8: qsubit (Shell script run only when doing parallel tests, but not
parallel_sgi runs)

1: The script ’clean up’ cleans up any temporary files, lingering Exodus II
output files, etc., that might still exist from a previous test run.
2: ’begin’ creates temp files(for recording passes and failures), a Log file (for
recording various information during the test), and starts ’the script’ file
for later use by ’readtest’. It also creates a script ’createdirs script’ which
will create necessary directories for running on janus, the ASCI Option Red
Supercomputer.
3: ’createdirs script’ creates /pfs grande/tmp 1/$USER directories on janus,
the ASCI Option Red Supercomputer, for running parallel tests. Also used
when running parallel sgi tests on Atlantis.
4: The C++ code ’readtest’ parses the test problem input file and cre-
ates the necessary Salinas input file, nem spread input file (if needed), and
nem join input file (if needed). It appends to ’the script’ for running salinas,
nem spread, and nem join for each test problem.

52

5: ’the script’ runs the actual code salinas, and any other codes necessary
to set up the necessary files, i.e. nem spread and nem join. It also runs
the utility ’grope’ to extract the information it needs to determine a pass or
failure. After ’grope’ is executed, ’the script’ will execute ’compare values’
to compare the expected and actual values to determine if they match within
the specified tolerance. The results will be written into ’Log Test Suite’ and
the temporary passes and failures file.
6: ’final’ simply outputs to stdout the total number of passes and failures.
7: ’the script1’ created by final will clean up certain temporary files if there
are no failures. Otherwise, it does nothing.
8: ’qsubit’ created by ’readtest’ will submit ’the script’ script to the snl.day
queue to be run. An e-mail will be sent to the submitter when the job is
done. This will run all the parallel test problems when doing parallel tests
on the ASCI Option Red Supercomputer.

30 Offset Beams and Shells

September 28, 2000. Garth Reese
Beams are rather unique in that everything for beams is solved in the beam
coordinate systems, and they are then transformed back to the basic system.
I think we can easily incorporate the offset into the beam formulation. But,
in what follows, I believe that the offset would apply equally well to offset
shells, provided only that there is only one offset vector which is applied
uniformly to all the nodes on the element.

Consider two coordinate systems, X and X ′ where the prime denotes a
coordinate system actually on the element, and the unprimed denotes an
offset coordinate. The strain energy is represented naturally in the primed
coordinate.

Estrain =
1
2
U ′TK ′U ′

Now the transformation from the primed coordinate to the unprimed coor-
dinate is a simple linear coordinate transformation, i.e. U ′ = LU . Also, we
require that the strain energy be invariant to the transformation. Thus,

Estrain =
1
2
(LU)TK ′(LU)

or
Estrain =

1
2
UTKU

where K is defined as K = LTK ′L.

53

A similar relation can be worked out for the mass matrix of the element.
The velocity transforms with the same transformation relation as the dis-
placement. Since the kinetic energy must be invariant, we end up with an
unprimed mass matrix, M = LTM ′L, where M ′ is the mass matrix in the
primed system. Note that for lumped masses, we should be able to check
this relation against the parallel axis relation, I = ml2.

30.1 Stress and Strain Recovery

Once the equations of motion have been solved, the displacements in the
unprimed system are determined. These may be transformed directly to the
primed system using U ′ = LU . Standard tools can be used to determine
both stress and strain in the primed system, which is the appropriate re-
sponse to report. Of course, for beams we report neither stress nor strain,
but this should apply to any type of offset element.

30.2 Coordinate Tranformation U ′ = LU

This transformation is purely geometric. For almost all elements, it is re-
quired that the offset vector be normal to the element. In what follows, that
is assumed. Each node pair contributes a 6x6 block to the transformation
matrix L. The general transformation for single node pair is,(

u′t
u′r

)
=

(
I R
0 I

)(
ut

ur

)

Thus, rotations are directly tied between the systems and translations
are the sum of the translational terms and the rotational components. We
can show that u′t = ut − O × ur. Here O is the offset vector and × is the
cross product, as shown in the figure.. Obviously, only the submatrix R is
of much interest. It could either be stored or recomputed each time it is
needed.

30.3 Force and Pressure Loading

Loadings applied directly to the element are properly applied in the primed
coordinate system. They must be transformed back to the unprimed system.
This is the inverse transform. The force on the unprimed system requires a
a transformation similar to the displacements. Specifically,

Ft = F ′
t −RF ′

r

54

���
���

��

���
���

��

fuA
A

A
A

A
A

AK

O

���
���

��

���
���

��

vu’

Figure 6: Offset Nodal Pair Geometry

where R is defined above, and,

Fr = F ′
r

30.4 Implementation Details

We have several options in offsets.

1. We could require all elements to have an offset, but provide a default
of 0. This would require us to add the attributes to the exodus options
and the input file. It would require addition of a transformation matrix
to the element. This could be implemented at the element level and
percolate down to all elements. There is some need at the TwoDim
level, a strong need at the OneDim level, but no need at the isosolid
level.

2. We could implement offsets for beams only. They would incur the
extra overhead of the offset, but no other element would.

3. We could generate a offset-beam. Then only beams that have off-
sets would have the overhead. This type of beam could inherit from
standard beam formulations.

4. We could do some tricks so all 1D and 2D elements have the option
of offsets, but they are turned on selectively. This would mean some
funky things in constructors, and a variable number of attributes, i.e.
the number of attributes for an element will depend on whether it has
an offset or not. Since that is not known at the time of the constructor,
it could be tricky.

55

I don’t like 1 because of the extra overhead. Options 2 and 3 are rather
restrictive. I think that we can implement option 4 without too much trou-
ble. We would use the standard constructor, but add to the constructor a
method to check for offsets. If the keyword “offset” is found in the input,
or if the number of attributes is right for offsets, then they will be used.
There could be a general element level option to check on offsets. In fact,
most of the algorithms should be written at the element level so they are
inherited for all elements. This would get around the offset shell problem
that Howard has been wanting for some time.

Note that offsets MUST be supported both in the .inp file and in the
exodus file. They will have to be added to the translators. This is because
in a cylindrical geometry the offsets of the beam must vary as we go around
the structure. Note also that offset shells in nastran are not vectors, but
only a signed float. They must be normal to the surface. Only the normal
component would be used in Salinas, but it seems that the offset should be
specified the same for all types of elements. Thus, there will inevitably be
complications in the translator.

Another issue is just what must be stored. Clearly there must be access
to the offset, as attribute type data. However, it is pretty straightforward
to compute a normal vector from the offset, and the rotation matrix R is
easily computed. Thus, I don’t see a need to store this matrix. The terms
of the R matrix are simply,

Rii = 0

Rxy = Oz

Rxz = −Oy

Ryz = Ox

And, R is antisymmetric.
It would also be nice if there is a way to save the normalized terms in the

attributes of the element. Then, further calculations of the normalization
need not be performed.

30.5 Test Cases

1. An offset beam by itself must have the same eigen properties as the
un-offset structure. Use beam 100.exo for this.

2. Build two models, one with offset beams, one with MPC structures
to accomplish the same thing. They should have identical mass and

56

stiffness matrices (and identical eigenproperties as well). Ideally such
models would have an arbitrary rotation. I would suggest two beams
side by side, for a total of 4 elements.

3. For completeness, we should look at beam stiffeners on plates. This
is done just as the previous case with an offset MPC in one case and
an offset beam in the other. This would be done on a single quad and
single beam, in plane.

4. We should look at a stiffening ring on a cylinder, and compare it with
a stiffener ring made by a shell model. This model should be rotated
arbitrarily. It would serve as the regression and coverage test for offset
beams.

5. We could look at offset T stiffeners with plates. They would serve
as the regression test for offset shells. We should do stress recovery
on these elements. Perhaps both a modal and a gravity loaded static
solution would be appropriate.

31 Thermal Structural Response

In this section we describe the governing equations and corresponding finite
element formulation for structural response in the presence of a steady state
temperature distribution. By ’steady state’ we mean the temperature dis-
tribution is constant in time, and thus is a solution of the Laplace equation.
This induces a corresponding static thermal stress field that can simply be
superposed with the remaining stress field, which may be time varying.

31.1 governing equations

In the general case we have the following equations of motion

ρüi −
∂σij

∂xj
= ρbi (106)

where standard index summation is used, i.e. two j’s in the same term
implies summation j = 1..3, ui is the ith component of displacement, and bi
is the ith component of the body force.

Multiplying by a test function we obtain

(ρüi, v)− (
∂σij

∂xj
, v) = (ρbi, v) (107)

57

Integrating the middle term by parts, we obtain

(ρüi, v)− (σij ,
∂vi

∂xj
) = (ρbi, v) (108)

We now decompose the stress field into two parts as follows

σij = σ0
ij + σij(t) (109)

where σ0
ij is the constant thermal stress, and σij(t) is the remaining stress,

which is time-varying.
Using this decomposition, equation 108 can be written as

(ρüi, v)− (σij(t),
∂vi

∂xj
) = (ρbi, v)− (σ0

ij ,
∂vi

∂xj
) (110)

The second term on the right hand side is treated as in internal thermal
force that is constant for all time, and thus need only be computed once
in the simultation. Then, at each time step, this constant internal force is
subtracted from the right hand side.

Notationally, the internal force term can be written as

(σ0
ij ,

∂vi

∂xj
) =

∫
Ω
BTσ0

ij (111)

where B is the standard strain displacement matrix. Thus, this internal force
can be computed on the element level simply be integrating the product of
the transpose of the strain displacement matrix with the thermal stress
tensor. In terms of strains, the thermal stress tensor can be written as

σ0
ij = −Cijkl(εkl) = −Cijkl(αkl∆T) (112)

32 File Naming Conventions

File naming conventions can be something of a religious war. We’ll try to
avoid that here. I will try to outline the different file names, and provide
justification for the naming.

Salinas outputs two kinds of files, exodus outputs, and the .rslt file
which is an ASCII text file. There may be up to three types of exodus files.

standard exodus output These are standard exodus files with full detail
included. They will be designated by the .exo extension.

58

history output These are subsets of the exodus files generated using the
history command. As a subset, they may not have all the data nor-
mally associated with an exodus file. For example, they may not have
element block information. They use the .h extension.

frequency output These files are developed using the “frequency” block
in the input. They are similar to history output, but data is written
specifically in the frequency domain. They use the .frq extension.

Each file is built up of three parts, 1) a base file name, 2) case descriptor,
and 3) the extension.

The base file name is determined by the parent file. Thus, the exodus
output files all derive their base file name from the exodus parent. This
means that they will all reside in the same directory as the parent. This
is critically important on parallel machines where the I/O performance is
optimized. The text .rslt file, uses the base name derived from the input
text file (i.e. the .inp file).

The case descriptor describes the solution itself. Only exodus files have
a case descriptor part to the file name. In multicase solutions, the case
descriptor will match the case descriptor in the input. This allows us to
write more than one exodus file for a multicase solution. For single case
solutions, the case descriptor will be “out”. The case descriptor is always
preceeded by a dash “-”. For example, junk-eig.exo has a case descriptor
of “eig”.

The extension indicates the file type. The extensions are described
above, and will be “exo”, “h”, “frq” or “rslt”.

32.1 File Locations

In a serial solution, it is expected that the files will all be located in the same
working directory. While that is not required, it is generally a good idea.
However, in parallel systems, this cannot always be readily accomplished
because of the need to store the parallel exodus files on multiple disk RAIDS.
The files will be stored in the following directories.

standard exodus output These are always stored in the same directory
as the spread exodus file.

history and frequency output These are stored in the same directory as
the first spread exodus file. These files are “joined” on the fly inside
of Salinas. However, to insure that the files are written to the RAID

59

disks, we have opted to store them in the same directory as the first
spread file.

results These files are typically small and should be written by only a
subset of the processors. For this reason, and for convenience, they
are written to the directory where the input is found. This is usually
the working directory.

33 Assembling element to system matrices

At this time we are using lmatrices to assemble the stiffness and mass mass
matrices. These are inefficient, and a pain. I’d like to get away from sup-
porting these matrices. To do this, we need a procedure to assemble the
system matrices directly into a sparse format. This outline of the process
comes from Clark Dohrman.

In a nutshell, the assembly follows these steps.

1. generate a list of elements connected to node k, A1.

2. from this list, and from the connectivity, generate a list of nodes ad-
jacent to node k, B1.

3. This list provides the node sparsity pattern. A dof sparsity can be
easily generated from that.

4. The number of terms in the dof graph is the NNZ of the stiffness
matrix.

5. Clark uses an A, I, J array, each of length NNZ to store the data. That
could be easily converted to the standard CSR format.

The pseudo code he presented, is listed below. It is a mix of matlab, C
and fortran

elemnt i nodes
E1(E2(i):E2(i+1)-1) is the connectivity of element i.

count=zeros(1,nnode)
for i=1,nelem

j(i) = nodes_for_element_i
count(j(i))= count(j(i)+1

end

60

A2=zeros(nnodes)
A2(1)=1
A2(2)=A2(1)+count(1)
A2(3)=A2(2)+count(2)

A1=new A2(nnodes+1)-1

// copy the section with count in it, with slight modifications
// then, A1(A2(K):A2(K_1)-1) = elements connected to node k

// next, find nodes adjacent to node K, B1(B2(k):B2(k+1)-1)
zero(count,nnodes)

for i=1,nnodes
nanode=0
naelem=A2(i+1)-A2(i)
for j=1,naelem

elem=A1(A2(i)+j-1)
for k=E2(elem+1)-E2(elem)

node=E1(E2(elem)+K-1)
if (count(node)==0) then

nanode=nanode+1
count(node)=1
anode(nanode)=node

end
count(anode(1:nanode))=0 // no need to zero the whole thing
end
end

end

34 Time integration

34.1 Linear transient analysis

The equations of motion of the structure are

M [(1− αm)an+1 + αman] + Ĉ [(1− αf)vn+1 + αfvn] +
K [(1− αf)dn+1 + αfdn] = Fn+1+αf

61

(113)

where αf , αm are the integration parameters for the generalized α method,
and Ĉ = C + αM + βK. That is, the damping matrix is the sum of the
standard damping matrix C plus the proportional damping terms. Also,

Fn+1+αf
= F ((1− αf)tn+1 + αf tn) (114)

The time integration scheme is defined as follows

dn+1 = dn + ∆tvn +
∆t2

2
[(1− 2βn)an + 2βnan+1]

vn+1 = vn + ∆t [(1− γn)an + γnan+1]
(115)

where γn, βn are the integration parameters for the Newmark method. In
order to have a displacement-based method, we solve these equations for the
acceleration and velocity in terms of displacement, which yields

an+1 =
1

βn∆t2
[dn+1 − dn − vn∆t]− 1− 2βn

2βn
an

vn+1 = vn + ∆t [(1− γn)an + γnan+1]

= vn + ∆t
[
(1− γn)an +

γn

βn∆t2
[dn+1 − dn − vn∆t]− γn

1− 2βn

2βn
an

]
(116)

Substituting these equations into the equation of motion, and collecting
terms, we obtain[

M
(1− αm)
βn∆t2

+ Ĉ(1− αf)
γn

βn∆t
+K(1− αf)

]
dn+1 =

Fn+1+αf
−Kαfdn

−Ĉ
[
αfvn + (1− αf)

[
vn + ∆t(1− γn)an +

γn

βn∆t
[−dn −∆tvn]− γn∆t(1− 2βn)

2βn
an

]]

+M
[
−αman +

1− αm

βn∆t2
[dn + vn∆t] + (1− αm)

1− 2βn

2βn
an

]
There are three matrix-vector products on the right hand side of this

equation, one for each of the system matrices M , K, and C.

62

34.2 Nonlinear transient analysis

This section follows closely the nonlinear transient procedure given by Be-
lytschko et al,6 with the modification of using the generalized alpha inte-
grator rather than the Newmark beta approach. In the case of a nonlinear
transient analysis, the equation of motion is

M [(1− αm)an+1 + αman] + Ĉ [(1− αf)vn+1 + αfvn] +
(1− αf)F int

n+1 + αfF
int
n = Fn+1+αf

(117)

where F int
n+1 and F int

n are the internal forces at the current and previous time
steps, respectively.

Using the tangent stiffness method, we replace F int
n+1 as

F int
n+1 = F int

n +Kt∆d (118)

where Kt is the tangent stiffness matrix. Also, we use equations 116, which
are the same as in the linear case.

First, we substitute equations 116 and 118 into equation 117. This results
in the following equations, which are almost identical to the ones from the
linear case[

M
(1− αm)
βn∆t2

+ Ĉ(1− αf)
γn

βn∆t
+Kt(1− αf)

]
dn+1 =

Fn+1+αf
− αfF

int
n − (1− αf)

[
F int

n −Ktdn

]

−Ĉ
[
αfvn + (1− αf)

[
vn + ∆t(1− γn)an +

γn

βn∆t
[−dn −∆tvn]− γn∆t(1− 2βn)

2βn
an

]]

+M
[
−αman +

1− αm

βn∆t2
[dn + vn∆t] + (1− αm)

1− 2βn

2βn
an

]
Finally, we want the unknown to be ∆d = dn+1−d̂, where d̂ is the current

iterate of displacement. To accomplish this, we subtract the appropriate
terms from both sides, which yields, after collecting terms[

M
(1− αm)
βn∆t2

+ Ĉ(1− αf)
γn

βn∆t
+Kt(1− αf)

]
∆d =

Fn+1+αf
− (1− αf)F̂ int − αfF

int
n − C [(1− αf v̂ + αfvn] (119)
−M [(1− αm)â+ αman] (120)

(121)

63

where again hats denote current iterates of acceleration, velocity, etc. Upon
using the Newmark beta time integrator (γn = 1

2 , βn = 1
4 , αf = αm = 0,

equation 120 reduces to[
M

4
∆t2

+ Ĉ
2

∆t
+Kt

]
∆d =

Fn+1 − F̂ int − Cv̂ −Mâ (122)
(123)

which is the same equation given by Belytschko et al.6

We note that equation 120 can be written as

A∆d = res (124)

where A is the dynamic matrix, ∆d is the change in displacement from the
previous Newton teration to the current Newton iteration, and res is the
residual, i.e. the amount by which the equations of motion (equation 117)
are not satisfied by the current iterate.

34.3 Modal Damping with the Generalized Alpha Method

Modal damping in transient analysis was originally implemented for the
Newmark beta method, with γn = 1

2 and βn = 1
4 , and the implementation

was based on the acceleration-based transient analysis. For more details on
this, we refer to the original paper.7

This section describes the modifications necessary to change the modal
damping implementation to a displacement based method, and for the gen-
eralized alpha method. The main approach is the same.

For the generalized alpha method with arbitrary Newmark parameters,
the equations of motion of the structure are

M [(1− αm)an+1 + αman] + Ĉ [(1− αf)vn+1 + αfvn] +
K [(1− αf)dn+1 + αfdn] = Fn+1+αf

(125)

where αf , αm are the integration parameters for the generalized α method,
and Ĉ = C + Cξ + αM + βK = Cξ + Cαβ . That is, the damping matrix
is the sum of the standard damping matrix C, plus the contribution from
modal damping Cξ, plus the proportional damping terms Cαβ . Also,

Fn+1+αf
= F ((1− αf)tn+1 + αf tn) (126)

64

We note that from this point on, we will assume that C = 0, that is, that the
damping matrix only includes contributions from modal and proportional
damping.

The time integration scheme is defined as follows

dn+1 = dn + ∆tvn +
∆t2

2
[(1− 2βn)an + 2βnan+1]

vn+1 = vn + ∆t [(1− γn)an + γnan+1]
(127)

where γn, βn are the integration parameters for the Newmark method. In
order to have a displacement-based method, we solve these equations for the
acceleration and velocity in terms of displacement, which yields

an+1 =
1

βn∆t2
[dn+1 − dn − vn∆t]− 1− 2βn

2βn
an

vn+1 = vn + ∆t [(1− γn)an + γnan+1]

= vn + ∆t
[
(1− γn)an +

γn

βn∆t2
[dn+1 − dn − vn∆t]− γn

1− 2βn

2βn
an

]
(128)

Substituting these equations into the equation of motion, and collecting
terms, we obtain[

M
(1− αm)
βn∆t2

+ Ĉ(1− αf)
γn

βn∆t
+K(1− αf)

]
dn+1 =

Fn+1+αf
−Kαfdn

−Ĉ
[
αfvn + (1− αf)

[
vn + ∆t(1− γn)an +

γn

βn∆t
[−dn −∆tvn]− γn∆t(1− 2βn)

2βn
an

]]

+M

[
−αman +

1− αm

βn∆t2
[dn + vn∆t] + (1− αm)

1− 2βn

2βn
an

]
= g

(129)

We note that the vector g is defined as the right hand side of the above
equation.

We define ĝ as follows[
M

(1− αm)
βn∆t2

+ Cαβ(1− αf)
γn

βn∆t
+K(1− αf)

]
dn+1 =

65

Fn+1+αf
−Kαfdn

−Cαβ

[
αfvn + (1− αf)

[
vn + ∆t(1− γn)an +

γn

βn∆t
[−dn −∆tvn]− γn∆t(1− 2βn)

2βn
an

]]

+M
[
−αman +

1− αm

βn∆t2
[dn + vn∆t] + (1− αm)

1− 2βn

2βn
an

]
= ĝ

That is, we define ĝ to be the right hand side corresponding to the case
when the damping matrix only consists of proportional damping terms.

Next, we consider the case Ĉ = Cξ + Cαβ in equation 129. In analogy
with the approach in,7 we carry the term Cξv to the right hand side.[

M
(1− αm)
βn∆t2

+ Cαβ(1− αf)
γn

βn∆t
+K(1− αf)

]
dn+1 =

ĝ − Cξv =

g − Cξ
γn

βn∆t
dn+1

(130)

We note that

g = ĝ − Cξ

[
αfvn + (1− αf)

[
vn + ∆t(1− γn)an +

γn

βn∆t
[−dn −∆tvn]− γn∆t(1− 2βn)

2βn
an

]]
= ĝ − Cξ ṽ

(131)

where ṽ is defined as

ṽ =
[
αfvn + (1− αf)

[
vn + ∆t(1− γn)an +

γn

βn∆t
[−dn −∆tvn]− γn∆t(1− 2βn)

2βn
an

]]

Following the same approach as in,7 we represent the matrix Cξ as

Cξ = MΦΣΦTM

We also represent the unknown current displacement dn+1 as

dn+1 = Φx+ z (132)

66

where z is the residual contribution to dn+1, which is mass-orthogonal to Φ.
We next note that

Cξ
γn

βn∆t
dn+1 =

γn

βn∆t
MΦΣx (133)

The right hand side of equation 133 is the contribution to the force equa-
tion due to modal damping. To compute γn

βn∆tMΦΣx, we simply need to
determine x.

x can be found by inserting equation 132 into equation 129, premulti-
plying by ΦT , and using the fact that z is mass-orthogonal to Φ. We also
have to use equation 131.[

I
(1− αm)
βn∆t2

+
[
Σ + αI + βΩ2

]
(1− αf)

γn

βn∆t
+ Ω2(1− αf)

]
x =

ΦT ĝ − ΦTCξ ṽ =
ΦT ĝ − ΣΦTMṽ

Since the right hand side of the above equation is known, and the left hand
side is a diagonal matrix, the solution x can be found easily.

Once x is known, the right hand side of equation 133 can be computed.
Then, the right hand side of equation 130 can be computed, which completes
the derivation of the right hand side contribution for modal damping.

35 Matrix dimensions in Salinas

There are number of different dimensions in Salinas. These will be sum-
marized here with a focus on using the data within the matlab framework.
Examples of how to convert data from one dimensionality to another will
be given.

The subject of matrix dimensions is an important one. Salinas has a
fairly simple set of dimensions compared to more complex systems like Nas-
tran. However, it is critical that these be well understood if we wish to
manipulate the data.

As an example, I consider an eigen analysis of a structure with 9938
nodes. This structure is made of shells and solids. There are no boundary
conditions, but there are 9 mpcs applied. I look at only the serial file sizes.

67

To get the required maps and other m-files, we must select ’mfiles’ in the
output section. To get the eigenvector data, we must also write the exodus
file with ’disp’ selected in the output section.
For this model, we have the following important dimensions.

1. #nodes=9938

2. external set= #nodes * 6 dofs/node = 59628

3. G-set = # active dofs before boundary conditions = 42708

4. A-set = analysis set = # equations to be solved = 42699

5. reduced external set = #nodes * 3 = 29814

There are 3 dofs/node for solid elements, but shells and beams have 6. In
aggregate, the total dofs is 42708 before boundary conditions and mpcs are
applied. There are no BCs in the model, but there are 9 MPC equations,
each of which eliminates 1 dof, so the Aset is reduced to 42699.

Unfortunately, the eigen disp*.m files are written in the reduced ex-
ternal set since this is what the analysts typically want. The bad news is
that these m-files are useless to us. The good news is that all the data is
available in either m-files or in the exodus output.

The matrices Mssr and Kssr contain the mass and stiffness matrices
in the A-set. They are symmetric matrices and only one half of the off
diagonal is stored. To get the complete matrix within matlab,

>>> K = Kssr + Kssr’ - speye(size(Kssr)).*Kssr;

The full eigenvectors (in the external set) are available in the output exodus
file. To get them use the seacas command exo2mat.

> exo2mat example-out.exo

Within matlab, the data can be converted to a properly shaped matrix.

>>> load example-out
>>> phi = zeros(nnodes*6,nsteps);
>>> tmp = (0:nnodes-1)*6;
>>> phi(tmp+1,:)=nvar01;
>>> phi(tmp+2,:)=nvar02;
>>> phi(tmp+3,:)=nvar03;
>>> phi(tmp+4,:)=nvar04;
>>> phi(tmp+5,:)=nvar05;
>>> phi(tmp+6,:)=nvar06;

68

We now have phi as a matrix with each column corresponding to an eigen-
vector. However, phi is dimensioned at 59628 x 10 for this example. We
clearly can’t multiply phi by K for example - the dimensions don’t match.
To do this we need a map.

We have two maps in our directory. FetiMap a.m is the map from the
external set to the A set. Thus we can reduce phi to the A-set by combining
it with Fetimap a. If the G-set is desired instead of the A-set, replace
FetiMap a with FetiMap.

>>> p2=zeros(max(max(FetiMap_a)),nsteps);
>>> for j=1:nnodes*6
>>> i=FetiMap_a(j);
>>> if (i > 0)
>>> p2(i,:)=phi(j,:);
>>> end
>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mapp1=FetiMap_a+1;
>>> tmp=zeros(max(max(mapp1)),nsteps);
>>> tmp(mapp1,:)=phi;
>>> p2=tmp(2:max(max(mapp1)),:);

Now we can do all the neat things like p2’*K*p2.
To get back to the external set, we again use this map. For example, if

we have a vector of dimension 42699,

>>> x=1:42699’;
>>> XX = zeros(59628,1);
>>> for i=1:59628
>>> if (FetiMap_a(i)>0)
>>> XX(i)=x(FetiMap_a(i));
>>> end
>>> end

Obviously, similar shortcuts can be made to make this more efficient. One
that appears to work is shown here.

>>> xtmp=[0 x’];
>>> X2=xtmp(mapp1);

69

36 Isotropic Material Parameters and Sensitivi-
ties

Issue: There are 4 commonly used parameters for input to isotropic materials
(E, ν,K and G). Only two of these are appropriate at a time, i.e. exactly 2
are required for complete material specifications.

Within Salinas, only K and G are stored. Thus, we must provide rela-
tions to derive these from the other two parameters. From these relations,
we must also develop the relations for sensitivity.

36.1 Material Relations

Relations for K and G for given input are provided below.
Case 1: E and ν are provided.

K =
E

3(1− 2ν)
(134)

G =
E

2(1 + ν)
(135)

Case 2: G and ν are provided.

K =
2G(1 + ν)
3(1− 2ν)

(136)

Case 3: G and E provided.

K =
GE

3(3G− E)
(137)

Case 4: K and ν provided.

G =
3K(1− 2ν)

2(1 + ν)
(138)

Case 5: K and E provided.

G =
3KE

9K − E
(139)

70

36.2 Sensitivities

Sensitivies are computed using the above relations. For example, if E and
ν are provided (as in case 1), we compute deriviatives using equation 134

∂K

∂E

∣∣∣∣
ν=0

=
d

dE

(
E

3(1− 2ν)

)
Each case must be considered separately because different variables are

held fixed during differentiation. We store dK/dp and dG/dp (where dp is
the change in a parameter). We then use the chain rule to compute the total
derivative.

∂λ

∂p
=

∂λ

∂K

∂K

∂p
+
∂λ

∂G

∂G

∂p
(140)

Case 1: E and ν provided.

using K =
E

3(1− 2ν)

dK

dE
=
K

E
(141)

dK

dν
=

2K
1− 2ν

(142)

using G =
E

2(1 + ν)

dG

dE
=
G

E
(143)

dG

dν
=

−G
1 + ν

(144)

Case 2: G and ν are provided.

using K =
2G(1 + ν)
3(1− 2ν)

dK

dG
=
K

G
(145)

dK

dν
=

2G
(1− 2ν)2

(146)

71

Case 3: G and E provided.

using K =
GE

3(3G− E)

dK

dG
=

−E2

3(3G− E)2
(147)

dK

dE
=

G2

(3G− E)2
(148)

Case 4: K and ν provided.

using G =
3K(1− 2ν)

2(1 + ν)

dG

dK
=
G

K
(149)

dG

dν
=

−9K
2(1 + ν)2

(150)

Case 5: K and E provided.

using G =
3KE

9K − E

dG

dK
=

−3E2

(9K − E)2
(151)

dG

dE
=

27K2

(9K − E)2
(152)

72

37 Stochastic FE Integration

At this time, stochastic FE have been introduced in Salinas only in a very
unobtrusive way, i.e. we have generated an element that reads parameters
from a file and computes the result. Salinas is treated only as a black-box
function evaluator. This has limitations, the most important of which is
that the statistics are sampled. The benefit is that all the real stochastic
work is done outside of the Salinas framework.

Roger Ghanem has suggested a more intrusive approach which would
allow greater power in application of the stochastic method. The drawback is
that Salinas must absorb more of the modifications. I here try to summarize
the ideas behind these modifications.

The variation is written as an expansion in terms of orthogonal basis
functions.

u(x, ξ) =
∑

i

ui(x)ψi(ξ) (153)

Where u represents the response,
ui represents the deterministic coordinates,
ψi represents the random variable basis functions, and
ξ is the basic random variable on which everything depends. For example, ξ
might represent the variation in Youngs modulus in a given finite element.

The random variable basis functions are orthogonal (but not orthonor-
mal), ie.

< ψiψj >= δij < ψ2
i > (154)

We can combine these relations to solve for uj ,

uj =
< uψj >

< ψ2
j >

(155)

Now take the equation for statics (it appears that each problem must be
examined individually in this method).

Ku = f (156)

Using the KL optimal basis expansion (φi), K may be expanded in terms
of the basic random variables (other expansions also exist including an ex-
pansion in terms of ψ). ∑

i

ξiKi(φi)u = f (157)

73

∑
i,j

< ξiψjψk > Kiuj = < fψk > (158)

or,∑∑
j

(∑
i

CijkKi

)
uj = fk (159)

or,∑
j

K̃jkuj = fk (160)

Where Cijk =< ξiψjψk >, and K̃jk =
∑

iCijkKi. One of the important
aspects of this approach is that the Cijk terms can be computed exactly.

This is a huge block diagonal system, where each block in the system is
the K̃jk matrix associated with the expansion of the random variable ψk.
These submatrices have some interesting properties. The K̃00 term is just
the deterministic solution, and is thus positive definite. The other terms may
not be positive definite, but the sum of the terms always is, provided only
that the variations in ξ are physical (e.g. we don’t want negative Young’s
modulus).

There may be interesting ways to solve these coupled systems, which are
based on the fact that each of the K̃jk are similar to the deterministic one.
One such method would write K̃ij = K̃00δij + ∆ij . The ∆ terms are moved
to the right hand side of the equation and we solve iteratively,

K̃00u
(r+1)
i = fi + g(r) (161)

where g contains a product of the ∆ terms with u(r). The nice part of this
kind of solution is that we are always solving the same left hand side. The
down-side is that the solution is iterative. I don’t know if we can prove
under what conditions it is guaranteed to converge.

Symbolically,
K00

.
.
K00

u

(r+1)
0
...

u
(r+1)
n

 =

f0

...
fn

+

∆00 ∆01 ... ∆0n

∆10 ∆11 ... ∆1n

. . . .
∆n0 ∆n1 ... ∆nn

u

(r)
0
...

u
(r)
n

(162)

37.1 Solution Proceedure for Stochastic FE

The issues involved in this kind of solution are significant. It would be very
helpful to break things out into different tasks, especially if some of these

74

tasks could be handled by a library callable by the FE application. Goals
of this effort include.

1. As much work as possible should be abstracted and placed in a callable
library, so as to reduce the impact on the FE code.

2. The solution must be structured to maintain parallel distributed com-
puting. There may be more than one way to exploit parallelism here.
For example, a set of processors could be dispatched to solve each of
the blocks in the system. We will focus on using parallelism the same
way as it is used in the deterministic system, i.e. our first focus will
solve K0 in a distributed manner.

3. The FE code should be able to provide a linear solver to the statistical
library.

4. We anticipate that even on a distributed machine, we will have trouble
with memory.

A first cut at the task breakdown follows.

1. The finite element program reads and manages a list of the stochas-
tic information. I envision this to be similar to current sensitivity
information. I’ll call this stoch info for convenience.

2. The KL expansion must be computed. This is a big deal because
the matrices that are generated are full. It is not hopeless because
in a typical application, only a small part of the model is involved in
a KL expansion. But, it does mean that a separate partition must
be established for KL eigenfunction evaluations. The terms to be
computed are, ∫

Ω
R(x, y)φ(y)dy = λφ(x)

This will require connectivity and coordinates from the FE application,
but should be otherwise independent of the application. I suggest that
this could be put into a library very nicely, but it represents a lot of
work.

3. Assemble the Ki(φi) from equation 157. This is clearly the FE appli-
cation’s reponsibility once φ has been provided.

4. The FE application reserves space for ui. It computes u0 = K−1
0 f ,

and ui = 0.

75

5. The library solves the matrix system. A strawman interface is,
Solve StochAxb(K0,Ki,U0,Ui,stoch info,tol,LinearSolver())
Obviously the Ki and Ui terms have to be pointers to arrays. However,
it may be better to have the FE application provide a function that
will compute Kiuj since that is all that is needed for the solution. This
follows since,

∆ikui =
(
K̃00 − K̃ik

)
ui

=

K̃00 −
∑
j

CjikKj

ui

= K̃00ui −
∑
j

Cjik(Kjui)

6. Some routines need to be provided for output. The library could
provide these. There is a concern about secondary variables (such as
stress) that are very much application dependent.

76

38 Eigen Accuracy

Rich and Ulrich,
I very much appreciated the time spent last week discussing the accuracy

of our eigen solutions. I have a number of issues and/or questions that I
hope you could address.

• It would be very helpful if I could get a copy of the slides that Rich
presented. My notes are rather incomplete. Could you shoot me the
powerpoint presentation?

• I understand that we need to be evaluating the M−1 norm. There
are a number of issues relating to this norm that you may be able to
provide insight to.

1. I thought I understand Rich to say that the ARPACK package
indirectly computes the proper M−1 norm. Is that correct? If
so, is there a reasonable way to extract this computed norm from
the ARPACK results?

2. In the textbooks, M is positive definite. In our models, this is
often not the case. Let me list a few of the common issues. Do
you have any suggestions on how to handle these issues?

(a) Multipoint constraints change the system of equations that
we are looking at. With multipoint constraints, we are look-
ing at a system of equations like the following.[(

K CT

C 0

)
− λ

(
m 0
0 0

)][
u
µ

]
= 0 (163)

Obviously, as here presented, M is singular. Clearly we could
do some kind of Schurr complement, but for a large system
of equations, this would be cost prohibitive (even if m were
diagonal).

(b) The inertia terms for rotational degrees of freedom tend to
zero faster than the translational terms. These leads to ill
conditioned mass matrices (though they are seldom truly sin-
gular).

(c) Mass lumping. Sometimes analysts tend to reduce the mass
of the model, and store it on concentrated masses on the
nodes. Those masses often have no rotational inertias. While

77

I wouldn’t think that is always the best modeling practice,
the analysts have excellent reasons for doing this, and I want
to support this if possible. This approach was used in the
Newport News model of an aircraft carrier.

(d) Specialized elements such as joint elements (which act like
springs) have no mass associated with them. Generally, there
is mass associated with the other elements, but that is not
always the case. For example, in a typical joint, a collection
of massless beams (or more typically MPCs) will reduce the
degrees of freedom on a face of solid elements to a single
node. The matching face (on the other side of the joint) will
likewise be reduced to a single node. These two nodes are
then joined with a rather complex Iwan element (which is,
and should be, massless).

3. Given that direct computation of the M−1 norm can be rather
challenging, is there any benefit in modifying our existing (inade-
quate) L2 norm? For example, would a computation of ||r||2/||M ||∞
be better than ||r||2 alone? Are there other, simple things we
could do when the computation of the correct norm may be too
expensive?

78

39 Eigenvalue Error Estimators

A number of error estimators have been defined for the computation of
uncertainty in eigenvalues. We will be evaluating explicit estimators. Most
of these have a form like the following.

|λtrue − λcomputed| = |error| (164)

=
∑
e

ρinternal
e + ρboundary

e (165)

where, ρinternal
e is the contribution of element, e, due to errors in the com-

putation of the eigenvalue equation, and ρboundary
e is the contribution due to

jumps in quantities through the boundaries of the elements.
Typically,

ρinternal
e =

∫
V
xT (Kx− λMx)dV

and,

ρboundary
e =

∫
Surface

n̂ · (Kx− λMx)dS

Here n̂ is the surface normal through the element. Two main quantities are
of interest. The global error, equation 165, indicates the uncertainty in the
computation of the global eigenvalue. The local error involves the element
contributions by themselves, but also includes the flux into the element by
neighbors. Because the normals are reversed, a uniform flux would result in
cancelation of the boundary term.
We consider only the contributions from solid elements.

39.1 Issues in computing ρinternal

There are few issues in computing the contribution from internal compo-
nents. Essentially all the components are in place. We must resolve only
these issues. There are no parallelization issues.

1. What must we integrate. Usually this would be xT (Kx− λMx), but
other options are possible.

2. What level of integration is required? We could integrate with the cur-
rent shape functions, or a higher level of integration may be required.

79

39.2 Issues in computing ρboundary

There are more issues for the boundary terms, particularly since we need to
know the neighbors to compute the local indicators.

1. What must we integrate, e.g. n̂ · (Kx− λMx)?

2. What surface integration gauss quadrature is appropriate?

3. How do we evaluate the integrand at an arbitrary point?

4. How do we determine the neighbors and their faces? This has impor-
tant parallelization issues.

39.3 Development Schedule

The following table indicates the tasks that we expect to accomplish, their
priority, and who leads that effort.
Description days priority who parallel next 6 weeks
Documentation 3 1 T/G ok yes
Input Specs 1 2 G ok yes
Computation of ρint 2 3 G ok yes
Complete the Gauss rule 4 4 T ok yes
Compute function on face 2 5 T ok yes
neighbor contributions 6 6 G/T no -
global sums 1 7 T some -
output routines 2 8 G some -

40 Acoustic Coupling

The coupling between an acoustic medium and a structure requires a def-
inition of the wet surface, which is the common interface between the two
media. A surface integral is performed on this interface in order to compute
the acoustic/structural coupling matrix L, which is defined as

L =
NumE∑

i=1

Le =
NumE∑

i=1

∫
Γwet

NT
s nNads (166)

where Γwet is the wet surface, NumE is the number of elements on the wet
surface, n is the unit normal on the surface (dependent on position), Ns is
the shape function matrix for the structural element, and Na is the shape

80

function matrix for the acoustical element. Note that both of the shape
function matrices only involve the degrees of freedom of the element that lie
on the wet surface. For example, for a hex8/hex8 interface, the Le would
be a 12x4 matrix.

The information defining the wet surface must be stored in an element-
wise manner. In parallel this is not a simple determination, since a potential
acoustic neighbor may lie on a different subdomain. For those portions of
the wet surface that are interior to a subdomain, the determination of the
wet surface pairs is straightforward. For any portion of the wet surface ly-
ing on a subdomain boundary, the corresponding structural elements must
know whether their neighbors on the matching subdomain are acoustical
elements. If so, then those structural elements are on the wet surface and
thus must be involved in the surface integral just described.

In order to overcome the difficulty of the wet surface definition in the
parallel setting, the following procedure is used to augment the neighbor in-
formation on a subdomain, so that the subdomain has enough information
to determine if any of its structural elements are on the wet surface. On
each subdomain, the exodus utilities are used to determine which elements
lie on the subdomain interface, and their subdomain interface connectivi-
ties. Then, for those elements that are acoustic, their subdomain interface
connectivities are sent to the corresponding subdomain neighbors via point
to point communications. The neighbors, upon receiving this information,
will check the incoming connectivities against those of the local elements in
their own subdomain. The matches that are found on structural elements
are marked as being on the wet interface. Then, the node to dof maps for
the nodes on these elements must be augmented with the acoustical degree
of freedom. This latter step is not needed for the elements on the internal
parts of the wet surface, whose nodes already know about the acoustical
dof. These updates, augmented with the information already generated on
each subdomain for the internal parts of the wet surface, completes the
elementwise description of the wet surface in a parallel setting.

Two important considerations should be emphasized.

1. The coupling needs to be computed on only one side of the interface.
We have chosen to do the computation on the structural side because
acoustic elements are simple at this stage. Since all acoustic elements
are solids (and we expect that for the foreseeable future) the shape
functions are easily estimated without requiring a pointer to the ele-
ment. The same can not be said for the structural elements which may
be solids or shells. Thus, the structural element uses its own shape

81

functions and a well known acoustic solid shape function to compute
the integral.

2. In parallel the coupling matrix appears on only one side of the inter-
face. Again we choose to put it on the structures side. The coupling
matrix L, couples the structural dofs on that subdomain to the acous-
tic dofs on the same subdomain. Lagrange multipliers in FETI then
couple acoustic dofs across the boundary.

41 Shift-Invert Mode in ARPACK for the Right-
Most Modes

David M. Day
October 2, 2003

41.1 Background

A prerequisite for reading these notes is a working knowledge of the contents
of the ARPACK.8 ARPACK implements Arnoldi’s method with restarts.
Arnoldi’s method refers to finding Vk with k orthonormal columns, and
upper Hessenberg Hk such that OP (Vk) = VkHk + fke

T
k

ARPACK approximates the wanted eigenvalues using a user specified
number of restarts. After the user specified number of restarts, ARPACK
returns the Ritz values that are wanted and converged.

An unsymmetric definite generalized eigenvalue problem (A,M) may be
solved in shift-invert mode: OP = (A −Mσ)−1M and B = M . If A is
real, then so is σ. ARPACK supports computing the eigenvalues of (A,M)
nearest to the shift. The gravest modes, the eigenvalues of (A,M) with
largest real part, are usually wanted. If the gravest modes are not the
closest to the shift, then a modified interface has advantages.

41.2 ARPACK-Cayley Code

LOCA contains an extended ARPACK-Cayley interface to ARPACK. The
interface is primarily designed to operate in in Cayley mode, and also can
operate in shift-invert mode. Is there a reference on the Cayley code?

The extension has two parts. Part one is six files that fit in the ARPACK
library. Add to SRC dnaup2c.f, dnaupc.f and dneupc.f. Add to PARPACK/MPI/SRC
pdnaup2c.f, pdnaupc.f and pdneupc.f. Part two is a suite of functions that
support the interface to ARPACK. Part two will be extensively modified.

82

• k = nev, m = ncv

• Build Vk,Hk

• while not converged

1. Extend to Vm, Hm

2. spectrum(Hm)

3. spectrum(Hm) = U ∪W
4. Finished?

5. Increment k,

(a) (Exact shift strategy) ∀ν: wanted and converged, as long as
k ≤ (ncv − neq)/2, + + k.

(b) For each unwanted Ritz value that is converged, + + k.
(c) Ensure that the conjugate of a shift is also a shift.

6. shifts u(1 : m− k) come from U

7. Restart (Vm, Hm) → (Vk, Hk).

Table 4: IRAM with Exact shift strategy

The ARPACK Cayley interface is used here to solve an eigenvalue prob-
lem not in Cayley mode, but in shift-invert mode. The status of shift-invert
mode in the ARPACK-Cayley code is documented. Changes and modifica-
tions are logged. I wrote comments. I reworked the code a little, and will
continue to do so. Needed improvements are documented.

The interface extension has three components.

1. Fulfil (polez3, sitest) The user evaluates the number of converged
Ritz values. In shift-invert mode, ARPACK-Cayley function polez3
counts the number of converged Ritz values. polez3 uses a function
sitest to discard negligible eigenvalues.

2. Shift The user supplies shifts. np < ncv if a leading block of Hncv

splits off. np = |{bounds([1 : kplusp]) > 0}|. ARPACK-Cayley uses
zero shifts.

3. Select (stslc3, sitest) The user selects the desired eigenvalues and
eigenvectors. ARPACK-Cayley uses stslc3 to select the converged

83

Ritz values. Note that polez3 passes some data to stslc3 polez3
such as a cutoff.

polez3 passes a cutoff value to stslc3. My polishing with the code
might have broken this.

41.3 Features

The relationship between the properties of the eigenvalues of Hk and the
eigenvalues of (A,M) is different in the symmetric case. A dispute is on-
going in computational science over whether or not to call the eigenvalues
of Hk Ritz values if A is unsymmetric. As the dimension of the Krylov
subspace expands, a Ritz value will converge to an eigenvalue of OP . The
information about the gravest modes provided by the Ritz values of OP is
deceptive. It is not clear whether or not a Ritz value really comes from its
reputed source.

sitest uses a culling formula that has proved robust in Cayley mode.
The justification depends on the Cayley transformation. The rational basis
begins with the fact that the error in a small eigenvalue of OP is amplified
in the transformation to (A,M). Small Ritz values are rejected based on a
criterion in the subroutine sitest. If m = ncv, and ν is an eigenvalue of
OP , then

|ν|2 > .02
m2 + 100

In shift-invert mode, sitest will not work. The criterion is not homoge-
neous with respect to a norm of OP . One approach is to include the spectral
radius of OP in the formula.

Another point of view is that no inaccurate Ritz value has physical sig-
nificance. User’s may assess Ritz values as follows. Suppose that a Ritz
value ν approximates an eigenvalue of OP with absolute error β and rela-
tive error ξ. That is, ν + z is an eigenvalue of OP for some |z| < β. The
information defines a set that contains an eigenvalue of (A,M). Inaccu-
rate approximations correspond to a large domain of uncertainty. It is the
left-most point in the domain of uncertainty that indicates the graveness of
the approximate mode (see Figure 1). A conservative approach is to use
an estimate of the accuracy of the Ritz value that tends to over-estimate
the accuracy. The Ritz error estimate tends to over-estimate the accuracy
(assumes unit separation).

A way to throw into the scale the Ritz error bounds in the assessment
of a Ritz value is to sort ν according to the minimum of the real part of

84

1/(ν + z). The image of the circle |z − ν| = β under inversion is another
circle |z − µ| = γ. If ν ≤ β, then inversion maps the neighborhood of ν to
the exterior of a neighborhood of 1/ν, and the left-most real part is −∞.

If ν > β, then ξ = β/|ν| < 1. The diametric points ν(1 ± ξ) on the ν
circle correspond to diametric points 1/(ν(1±ξ)) on the image µ circle. The
image circle has center

µ =
1
2ν

(
1

1− ξ
+

1
1 + ξ

)
=

ν∗

|ν|2 − β2
,

and radius such that

γ =
1

2|ν|

(
1

1− ξ
− 1

1 + ξ

)
=

β

|ν|2 − β2

Here the mode ν is sorted according to

<(ν)− β

|ν|2 − β2
(167)

The formula simplifies if ν is (nearly) real.
For shift-invert, add the function Assess that determines a permutation

of the Ritz values so that equation 167 is non-decreasing and conjugate
modes are adjacent.

The Fulfil function determines at what threshold are the nev gravest
modes converged. For restarts, the shift are the least grave modes. The
gravest modes are selected.

A different output would be useful. It would help to return the con-
verged or wanted Ritz values in three blocks: the converged and wanted,
the unconverged and wanted, and third the converged and unwanted.

41.3.1 Supplying Shifts

In Cayley mode, in order to update the shifts between restarts, zero shifts
are used:

zero(workl[ipntr[13]− 1], 2 ∗ iparam[7]);

workl[ipntr[13]− 1 + iparam[7]− 1] = 1.0;

In shift-invert mode, exact shifts are legal but not implemented.
Here is the specification for how to supply the shifts. Some notation

helps to clarify the description, i =
√
−1 and usp = ipntr(13). Supply up

to np = iparam(7) shifts, and set iparam(7) to the number of shifts actually

85

used. The real and imaginary parts of the complex shifts are returns in workl
at locations usp− 1 and usp+ np− 1.

Only complex conjugate pairs of shifts may be applied, and the conjugate
pairs must be placed in consecutive locations. If np = ncv, then location np
may not contain a conjugate pair.

The ncv Ritz values and Ritz error estimates are in workl too. ipntr(5 :
7) points to real, imaginary, and bounds respectively. Complex conjugate
pairs are consecutive.

41.4 Anasazi

Restarting in Anasazi is implemented as in Stewart.9 The ARPACK-Cayley
design for shift-invert corresponds to the following for Anasazi.

1. The user supplies a permutation of the Ritz values into Wanted and
Unwanted parts. The code might supply a default permutation. The
user needs access to the Ritz values and Ritz error estimates, and
supplies a permutation.

2. The existing Anasazi iterate capability allows the user to terminate or
resume the iteration, and compute the number of converged approxi-
mate eigenvalues.

3. The user selects some subset of Ritz values for which eigenvectors are
needed. Here one might duplicate the tools developed for ARPACK-
Cayley.

References

[1] Allman, D. J., “A Compatible Triangular Element Including Vertex
Rotations for Plane Elasticity Problems,” Computers and Structures,
vol. 19, no. 1-2, 1996, pp. 1–8.

[2] Cook, R. D. and D. S. Malkaus, M. E. P., Concepts and Applications of
Finite Element Analysis, John Wiley & Sons, third edn., 1989.

[3] Batoz, J.-L., Bathe, K.-J., and Ho, L.-W., “A Study of Three-Node Tri-
angular Plate Bending Elements,” International Journal for Numerical
Methods in Engineering , vol. 15, 1980, pp. 1771–1812.

86

Figure 7: Interpretation of OP Ritz values and error estimates. A neigh-
borhood of a small Ritz value ν of OP corresponds to a large neighborhood
of an eigenvalue 1/ν of (A,M).

87

[4] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method , vol. 2,
chap. 1, McGraw-Hill Book Company Limited, fourth edn., 1991, pp.
23–26.

[5] Ertas, A., Krafcik, J. T., and Ekwaro-Osire, S., “Explicit Formulation
of an Anisotropic Allman/DKT 3-Node Thin Triangular Flat Shell Ele-
ments,” Composite Material Technololgy , vol. 37, 1991, pp. 249–255.

[6] T. Belytschko, W. K. L. and Moran, B., Nonlinear Finite Elements for
Continua and Structures, John Wiley & Sons, first edn., 2000.

[7] Alvin, K. F., “Implementation of Modal Damping in a Direct Implicit
Transient Algorithm,” April 2001.

[8] Lehoucq, R. B., Sorensen, D., and Yang, C., ARPACK Users’ Guide,
SIAM, Philadelphia, PA, USA, 1998.

[9] Stewart, G. W., “A Krylov-Schur algorithm for large eigenvalue prob-
lems,” vol. 23, no. 3, June 2001, pp. 601–614.

88

	Notes on calculating stiffness matrixes for Hex elements
	Derivation
	Implementation

	Notes on volumetric and deviatoric strain coefficient settings for higher order elements (Hex20, Tet10, ...)
	Notes on calculating stiffness matrixes for Wedge elements
	Shape Functions
	Quadrature

	Notes on calculating stiffness and mass matrices for Tet10 elements
	Notes on Tetrahedral shape functions and related functions
	Notes on calculating shape functions and their gradients for the Hex20 element
	Anisotropic Elasticity
	Two Node Beam
	Truss
	Springs
	Multi-Point Constraints, MPCs
	Constraint Transforms

	Rigid Elements
	RROD
	RBAR
	RBE3
	Parallel Implementation of Rigid Elements

	Notes on shell offset
	Notes on Consistent Loads Calculations
	Salinas Element Types
	Pressure Loading
	Shape Functions for Calculating Consistent Loads

	Shell Elements
	Thermal Expansion loads (or initial strains)
	Stress/Strain Recovery
	Coordinate Systems
	Constraint Transformations in General Coordinate Systems
	Decoupling Constraint Equations
	Transformation of Stiffness Matrix
	Application to single point constraints
	Multi Point Constraints
	Transformation of Power Spectral Densities

	History and Frequency files - in parallel
	Random Vibration
	algorithm
	Power Spectral Density
	RMS Output
	RMS Stress
	matrix properties for RMS stress
	model truncation

	High Precision solutions
	HexShells
	Adding a New element
	Adding an Output Variable
	GasDmp
	Interpolation of Direct FRF results
	Rational Function Interpolation - C1
	Rational Function Interpolation - C2
	Derivatives of Frequency Dependent Dynamic Matrix

	Triangular Shell Element
	Allman's Triangular Element
	Discrete Kirchoff Element
	Verification and Validation

	Using the Test Problem Implementation Tool
	Quick Start
	Creating and running a test problem
	Adding a Test Problem to the CVS Repository
	Explanation of Various Files

	Offset Beams and Shells
	Stress and Strain Recovery
	Coordinate Tranformation U'=LU
	Force and Pressure Loading
	Implementation Details
	Test Cases

	Thermal Structural Response
	governing equations

	File Naming Conventions
	File Locations

	Assembling element to system matrices
	Time integration
	Linear transient analysis
	Nonlinear transient analysis
	Modal Damping with the Generalized Alpha Method

	Matrix dimensions in Salinas
	Isotropic Material Parameters and Sensitivities
	Material Relations
	Sensitivities

	Stochastic FE Integration
	Solution Proceedure for Stochastic FE

	Eigen Accuracy
	Eigenvalue Error Estimators
	Issues in computing internal
	Issues in computing boundary
	Development Schedule

	Acoustic Coupling
	Shift-Invert Mode in ARPACK for the Right-Most Modes
	Background
	 ARPACK-Cayley Code
	Features
	Supplying Shifts

	Anasazi

