NASA-CR-194241

p- '
K-Base: A Hybrid Analog‘ca]/Semanﬁc Modeler
for Computer-Aided Design
FINAL REPORT
NAS 9-17808
GMS Technolo
24 November, 1989
S C)} C ¥ hpae U
T
| L~ 0>~ ST 7
S BIR.- |
Ldgpne Aot 2]
(NASA-CR-174241) K-BASE: A HYBRID N94-T70330
AVALUGICAL/SeMANTIC MADELER FOR
COMPYTeR-AIDED DESIGN Final Report
(n45 Technoloay) 192 p uUnclas
19/61 0183159






K-Base: A Hybrid Analogical/Semantic Modeler
for Computer-Aided Design

FINAL REPORT
NAS 9-17808

GMS Technologg
24 November, 1989






Table of Contents

1. PrOJECt SUMMALY .ot eseesssrsssssssesessesesssesess oo .. 1-1
2 BACKBIOUNG .ottt 2-1
21 PLAID ENVIFONMENL..coivrrrvrrersssnreerssesssesessss oo 2-1

2.2 DECNet/VAX ERVITONIMENL ccoevrerrcocreerrsnnssmessessoesesssss 2-2

3. Programming Paradigm RESEAICH ........cvovoevsevmmrosoesessssn 3-1
3.1 Procedure-oriented PIOGrAMMUNG. oo 3-1

3.2 Object-oriented PIOGIAMIMING -.covvvrrveeerreerreee oo 3-2

3.3 Access-oriented PIOGIAMIMING.........occorcvvrvmmrroeseseossosss 34

34 Rule-based PIOGIAMMING.....vo.rovcerveermersseseooesessossn 3-4

3.5 Multiple Paradigm Programming SyStems..........uweevovoooovoeoom 3-5

36 CONCIUSIONS et 3-6

4 Development ENVIFONMENt SEArCh..........cooeoermorvsreoeooeosossnsnen 4-1
] CHHEA vttt 4-1

4.2 Product EVAIURHONS........ovoveeeerecrseresrnseesssssesssessossssossen 4-3

2T CoF s essnese s 4-3

4.2.2 COMUNON LISP..oorterrsereescereenes s 44

4.2.3 CLIPS - C Language Production System version 4.01.......................... 4-5

4.2.4 DC-Representation Language (DC-RL) oo 4-8

425 FlAVOTS oot 4-18

4.2.6 Knowledge Engineering Environment (KEE)....oomeieeeeomeereesrennnn. 4-18

4.2.7 LOOPS/XAIE.......oorivvrmressoeesersstressoeses e 4-19

4.2.8 NEW FIAVOLS.......ccocooeoeeeeeceennssesees oo 4-20

4.2.9 NEXPEIt ObJECt...o.crovvrneeereeeeeeenensees oo 4-20

4.2.10 PC-SChemME / SCOOPS......vrrceveccevrerormrereses oo 4-21

4211 PEADOAY oot 1-21

4212 SIAUTAIK-BO.....ooerveereeeecener e 1-23

4.3 Selected System CONfigUIAON. .....oceroeveoerreeeeeooosoososs 4-24

4.3.1 MicTOVAX IT BOOt NOE ......ccoecoeermrnreeses e 1-24

4.3.2 VAXstation 2000 WOTKStAHONS...o.cvvovereeeeseesoosoooooooo 4-24

4.3.3 Local-Area VAXcluster (LAV ). 1-24

4.3.4 COmMON LISP (LUCI) -.vveooeeveeeersrreeeseesoeosos oo 4-25

4.3.5 € COMPUICT.coierer et 1-25

4.3.6 FORTRAN COMPILET.covvoorocevccereeroemee e 4-25

5 WOTK PHOMMA oot 5-1
5.1 K-Base Symbol Management System (KB/SMS) Spedification.............. 5-1

5.1.1 PUIPOSE Of KB/SMS.....rccoeecteveeeenoemes oo 5-1

512 APPIOACH ..o 5-1

5.1.3 Description 0f a DeSCHPHON File ....vvrcveoonrooo 5-2

514 DAt EIY oo 5-3

5.1.5 Query COMMANS....ovvvoevrrceccereesermresseosoe oo 5-3

5.1.6 REPOTt GeNEIAtON...ovvvvroeeeercerereereres oo oo 5-5

5.1.7 Global Report AlGOrthim......ccccecovvmrrscoooeoosoooooson 5-6

5.1.8 Example of a Global Search.........cvercoocoosooooo 5-8

iii PRECEDING PACE BLANK NOT FHMZD



5.1.9 Notes on Report FOrmMat: ..ottt 5-11

5.2 Geometric Knowledge ENhancements........ooucuiiuinimmsnmissessssisissesssessasssnnees 5-12

B.2T SITES ..oeeeeeenresssnssssessssasessssesscsssssnsasssssssstssassassassassssssssssssassssessesssessensissiassssnss 5-12

5.2.2 CONNECT COMMANA. ...coreremiienrrriririsssnmmsissssssssssesssssisssssissasissinsassasasanens 5-12

523 ATTACH / DETACH COMMANS. ....ovurveimneerrmrinenmisensensensensensssessassssnsascsas 5-12

5.2.4 RIS INEEITACE. cecvvrerrereecrerneescenssesissarmsssnesessassssesssssssssssensessessessescssessensasencssusnns 5-12

5.2.5 DESCRIPTION cOMMAN. ...ccovsrrriiirrrnrumrnremmissssrsensesscssensessisssessssseasasesns 5-12

5.2.6 DISPLAY file TEVIEW. ...cceececricrrrrnricreirsesetnsssissssssssassnsessessnsesensasessacsessas 5-13

5.2.7 RMS additions and improvements. .........c..cimcinmnimmennincesesesenses 5-13

5.2.8 VIEW command imMpPrOVEIMENtS. .......cccceeressmesesesssssssssnisssmsssssssinissersesranse 5-13

5.2.9 ROTATION Of PaItS...cciueremsrresruessisserssassscnssssassssssssssssesmisassassssssssasssssssasnas 5-14

5.2.10 JOINT COMMANA. ...cv.crnrrrmrrnerserasensenssssssssssssasinsessssssssssassssasssssssssssssssssassses 5-14

5.2.11 SCALE COMMANA. ....coccoercereirirenrirensesrnssenssnsnssssssssssssssnscssessessisonsessasescassasas 5-14

6. CONCIUSIONS c.cccueecrruenirennrsnsnserssnsessssessssnasisuenasassens reereseetsresasas s R s antnreen 6-1
Appendix 1 -- Updated Multi-User DOCUMENEALON ..ovvvvvvvivcssssssmsmninsssesssssmnsinssssssssssss Al-1
Appendix 2 -- Updated DMC DOCUMENEAHON ..ccovcrvruveernssssssssssmsansssss s sssns A2-1
1. Updated DMC Routine Documentation. ... ecssissessssssmmmssmmsmmsnsssssssssnsnsseces A2-1

2. Transformation Operations...... ceveseesensa s bt sasaas s e s e A2-21

3. New and Updated User Commands for DMC. ... A2-25
Appendix 3 - RaStEriZEr SOftWATE. ....coovuvvvvessvesemmssisssmmnssessesssssssssmmissss s A3-1
ApPENdix 4 == DCRL BIOWSET..occuvcverrensersssssssssssssssssemssmsssssssss s s A4-1
Appendix 5 -- SCOOPS EVAlUHOMN....ooiviviississsssissssessscesmssssissesissssssss i A5-1
Appendix 6: Multi-User Files Modified for KB/SMS.....cccvcormresemmmmossviesssssisrrssssinnen A6-1
1331 oLz 1) 1) 2R B-1

iv
# e



1. Project Summary

The K-Base prod'ect was an investigation of methods for improving the
analytical and descriptive capabilities of Computer Aided Design éAD)
systems. The approach involved merging knowledge representation
concepts from contemporary Artificial Infelligence (AI) research with the
eometric modeling capabilities of the PLAID computer-aided design
iCrIlAD? system to provide a system capable of representing deep functional

ow eg e of a system of objects as well as its geometric appearance. The
set of erﬁxancements %flnerated by the K-Base effort have been applied to
the PLAID system which is currently in use by the Manned gystems
Division at JSTC.

In support of these objectives, GMS Technology conducted surveys of new

rogramming paradigms which offer improved  productivity and
Enowledge-re resentation schemes currently in use in Al research.
Evaluations o? available knowledEe r?resentation systems were conducted.
These evaluations included the DC- epresentation Language (a KL-ONE
derivative) and Peabody.

A system of hardware and software was selected for use in the
development of the K-Base software system. The selected development
system consists of a loosely-cootagled network of Di%td Equipment
orporation (DEC) VAXstation 2000’s and a DEC MicroVAX II" with C,
FO?TRAN, and CommonLisp compilers.

Enhancements were made to the PLAID system which substantially extend
its ability to model objects. The improvements fall into two categories: the
association of symbolic information with each PLAID part and the addition
of new geometric constructs. The utih;l?r of the new symbolic information
is demonstrated by the addition of Multi-User commands which allow the
location of PLAID models based upon symbolic information queries.

The PLAID software ?'stem is currentlg available throu%h Cosmic. We
envision the K-Base additions to PLAID being made available through the
Cosmic distribution channel.

K-Base Final Report
1-1






2. Background

The PLAID system was written for NASA by the principals of GMS
Technology beéginning in 1976, and has been continy y enhanced since
that time. As is ical of conventional CAD systems, the current
implementation of D provides a powerful working environment for
implementation of simulation and analysis tasks.

The PLAID system relies almost exclusivelgr upon geometric representations
to provide descrigtions of modeled objects. This limite knowledge
representation produces a system which is able to provide users with a
pictorial basis for analysis,” but is largely manual ‘in operation and is

unable to store or analyze non-geometric information.” The system is
therefore unable to aid the user in analysis of the advisabilit% or possible
consequences of his actions, For example, a traditional CAD system
contains no information which can differentiate a water ipe from an
electrical conduit, and will gladly allow the user to connect t em together.
The result provides no warning of the disastrous results which could result

from performing such an action in the real world.

eometric information. Any geometric information provided to the user has
geen two-dimensional and intended for illustrative purposes only. No
attempt has been made to include analyses of the geometry for purposes
such ‘as collision detection during object motion, Inference of mass or
moment of inertia from the volume of an irregularly shaped object, etc, Al
systems must therefore have such information manu y calculated and
input by the user before it can be utilized by the reasoning process.

2.1 PLAID Environment
2.1.1. History.

PLAID is the name of a graphics analysis system used at the NASA
JSC Manned Systems Division. Development of the system began in
1977 at the Universia?' of Texas at San Antonio as a NASA funded

roject. The original system was developed on a Data General
Echpse mini-computer using Tektronix display devices for raphic
input and output. In 1978, the software was c?orted to a SEL mini-
computer for on site utilization at NASA JSC. In 1980, the system
was moved to a VAX 11/780.

2.1.2. Applications.

Since the time of its initial installation, PLAID has been used for
many graphics analysis applications, such as vision analysis, reach
analysis, and clearance analysis. In the case of the ghallenger
acci!ent, PLAID images were wused for image processing
enhancements to identify fuel leaks. These images were also
included in the Rogers Commission report.

K-Base Final Report
2-1



2.1.3. Graphic Modules.

Currently, the PLAID system resides mainly on a VAX 11/785
running under VMS. It consists of three main modules. The BUILD
module is used to construct IBlrimitive objects which define the
geometry of a part The DMC module (previously the COG
module) is used to construct high level assemblies and sub-
assemblies, called COG files, using the primitive objects
constructed by BUILD. The COG files describe the transformations
used to properly place primitives and other COG files Ssub-
assembliesy into an assembcy. The DISPLAY module uses completed
assemblies output by DMC. These completed assemblies are stored
in TARGET files and used for generating perspective views with
hidden lines removed.

2.1.4. File Management Module.

In addition to these three functional modules, there is file
management system underlying each, which is used to partition the
PLAID database into projects and user work areas. The system,
known as MULTIUSER, permits the definition of new projects and
user work areas with varying degrees of visibility for each user.
However, due to the complex nature of the possible organization
schemes and the high degree of integration of the other three
modules, MULTIUSER must depend on specific features of the VMS
operating system which is the primary environment for PLAID.

2.2 DECnet/VAX Environment

The PLAID system exists within a multi-processor VAXcluster computer
system which allows numerous PLAID users to share a large database
of PLAID models.

K-Base Final Report
2-2



3. Programming Paradigm Research

GMS Technology conducted a survey of state-of-the art programming
paradigms. The following sections summarize what was learned in that

survey.
3.1 Procedure-oriented Programming
3.1.1 Description

Procedure-oriented programming is the classical paradigm of

computer

rogramming using one of the conventional

rogramming languages (e.g. assembly language, FORTRAN, Q).
Brocedure-onente programming is characterized by its focus upon
the sequential, algorithmic component rather than the data-

structure component of the program.

There are many procedure-oriented languages from which to
choose. The following discussion attempts to characterize the

attributes of the mainstream languages as a group.

3.1.2 Strengths

Procedure-oriented programming is well understood and widely
used. All of the major program:mng‘ languaﬁes ahre implementations
i e

of the procedure-oriented paradigm. T

uge majority of

Froduction quality software in use today was written in one of the

ollowing languages:
Ada
C

COBOL
BASIC
FORTRAN
Lisp
Modula-2
Pascal

PL/

Procedure-oriented Erogramming systems are t)?)icall very efficient
e

at execution time. Efficiency results from th

act that it is a key

design goal of almost all procedure-oriented languages. The notable

exceptions to this rule are the Lisp and BASIC languages.
3.1.3 Limitations

The price paid for execution-time efficency is execution-time
inflexibility which manifests itself in the areas of both data-

structures and procedures.

In the data-structure area, procedure-oriented languages require
that all data-types be known at compile-time. A new data-type can

K-Base Final Report
3-1



be introduced only by editing the program source code, re-
compiling it, and linking it.

Procedure-oriented languages lack the inheritance of attributes
found in object-oriented languages. The programmer must
implement a new data-type and all of the operations on that data-
e from scratch. The advent of user-defined types which allows
e programmer to define new types in terms of existing l?{Ees
helps alleviate this weakness but is far from being as powe a
construct as inheritance. (See Section 3.2)

Most procedure-oriented languages lack polymorphism. The
designers of the Ada language did address this issue with the
concept of generic procedures and operator over-loading. Generic
procedures allow the programmer to write a single procedure which
can be called with several different data-types. Even so, the e of
a given object must be known at compile-time which limits the
run-time flexibility of the program.

3.2 Object-oriented Programming
3.2.1 Description

The ob{:ct-oriented programming paradigm focuses upon data
rather than procedures. This approach is a complete inversion of
the algorithmic focus of procedure-oriented languages.

Object-oriented programming systems have the following attributes
[Pascoe 1986]:

e information hiding

e data abstraction

e dynamic binding (polymorphism)
e inheritance

Object-oriented languages bundle both data-structures and
procedures into modules called objects. The internal structure of
one tyI%e of object is completely hidden from objects of another
t);pe. e only access provided to an object is determined by the set
of messages which the object will accept. The message specification
is part of the object definition. This structure provides for both
information hiding and data abstraction.

A new object type may be defined as a refinement or specialization
of an existing object e. This mechanism, called inheritance
lessens the programming burden of creating new type because the
pro%:ammer need only modify the data-structures and procedures
of the new (child) object which differ from those of the existing
(parent) object.

Inheritance is also the basis of polymorphism in object-oriented
systems. Because of restrictions placed upon the way in which
escendants may differ from their ancestor objects, the programmer

K-Base Final Report
32



may develop generic procedures which can operate on any object
type in any given sub-tree of the object type hierarchy.

322 Strengths

The strengths of object-oriented programming languages are simply
the attributes discussed above. The toute implication of these
features is that programming projects may be completed much
more quickly and' that the resulting program will be more modular
and maintainable.

Certain kinds of programming problems seem to fit very naturally
into the object-oriented paradigm. Two of these are the
implementation of windowed, graphical user interfaces and
distributed applications.

Windowed interfaces may be structured such that each graphical
object that appears on the display is represented intemal% y an
object. The process of manipulating ' the graphical o ject is
accomplished by sending the internal object a message specifying
what 1t should”do. For example, the user may wish to select an
icon, then move it to another location on the screen. This is
accomplished by the window manager sending messages to the
object which say "select yourself", ther "move yourself".

Another mz(aiior advantage of object-oriented systems is that most of
them provide for incremental modification. en a change is to be
made to a component of the software system (i.e. an object), only

theallmodiﬁed component must be compiled and there is no link step
at all.

3.2.3 Weaknesses

The dynamic nature of object-oriented systems results in programs
which’ are slower than comparable procedure-oriented rograms on
comparable processors. The primary reason for this is the overhead
of message dispatching. Since there is no link step to resolve the
absolute addresses of procedures. Their locations must be computed
each time a message is received by an object.

Object-oriented programming languages are difficult or impossible
to interface to existing programs written in procedural languages.
The only effective solution to this problem is to completely rewrite

€ program in the context of the object-oriented environment. For

the oses of this project, it is simply not feasible to rewrite
PLAID. ? oY

The inheritance of attributes through the class hierarchy creates the
problem of extreme dependency between objects in an
ancestor/descendant relationship. The problem arises when
significant changes must be made to the ancestor. The programmer
must be aware of the implications of the modification for every
descendant of the modifie object definition. This obstacle may be

K-Base Final Report
3-3



overcome by creating a new object hierarchy, but can be a very
cumbersome and laborious task.

Programmers who are skilled in the procedure-oriented paradi
often find the shift to the object-oriented paradigm very difficult.
This problem has several roots. First, the structure of an object-
oriented program is dramatically different from a proce -
oriented one. The idea of telling a data item to do something to
itself seems very strange.

3.3 Access-oriented Programming
3.3.1 Description

The access-oriented programming paradiim is actually an adjunct
to procedure-oriented programming. The key difference between an
access-oriented language and its procedural host language is that
data items may be made to execute procedures when they are
accessed. For examlﬁle, a procedure may be attached to a variable in
such a way that the procedure is invoked each time the value of
the variable is modified. In general, an access-oriented declaration
consists of

@ a variable definition
® an access procedure
® an access mode

3.3.2 Strengths

Access-oriented prcégramming provides a mechanism for assuring
that certain procedures are executed whenever designated data-
items are accessed. This facility can be very useful in instances such
as placing probes on data-items so that a display can be
automatically updated when the item is modified.

3.4 Rule-based Programming
3.4.1 Description

The rule-based programming paradigm codifies expert knowledge
into a set of if-then structures called rules. Each rule consists of tEe
left-side or antecedent and a right-side or consequent. The left side
is a boolean expression which evaluates to either TRUE or FALSE.
If the left-side evaluates to TRUE, then the right-side is said to be
triggered.

The inference engine of the rule-based system determines which
rules are currently triggered and uses a rule selection strategy to
determine which rule or rules to execute or fire. When a rule gilres,
tl'fle li'lnff.lrﬂence engine performs the actions specified by the right-side
of the rule.

K-Base Final Report
34



Rule-based systems are said to embod! a shallow knowledge-
representation. The rule-based system does not know anything
about the domain to which it is applied than is built into the rules
If the rules do not cover a given situation, the inference engine
must simply halt. There is no deep knowledge about the
application domain from which to make inferences og to extend the
mlg set to include the exception.

3.4.2 Strengths

The rule-based paradi offers a relatively simple method for
coldifying expert knowledge into an automated, computer-based
solution.

3.4.3 Weaknesses

The rule-based programming paradigm is a radical departure from
procedure-oriented programming. In a rule-based programming
system, there are no procedures and no flow of contro] as in the
other paradigms. While this structure lends itself to the construction
of expert-systems for problem diagnosis, it is totally inappropriate
for many problems which are commonly solved with procedure-
oriented ‘systems.

3.5 Multiple Paradigm Programming Systems
3.5.1 Description

Multiple paradigm Ci)rogramming systems incorporate two or more
programming paradigms into a sinﬁle environment. This is a
praﬁmatic way of getting the best of several worlds. The user of
Such a system may utilize the capabilities of several paradigms in
the solution of one 1problem, applying the best paradigm for
approaching each problem fragment.

Many multi-paradigm programming systems currently exist. These
range from procedure-oriented programming languages with object-
oriented extensions (e.g. Common Lisp with “Flavors, Common
Loops, C++, Turbo Pascal 55, etc) to complete programming
environments which employ all of the paradigms within a
aphical user interface environment (e}.f. the Knowledge
nS%i]neering Environment from IntelliCorp) [Hailpern 1986] [Stetik
1986].

35.2 Strengths

The principal strength of multi-paradigm systems is that the most
appropriate paradigm may be brought to bear on any given aspect
o?a problem.

The procedural language with extensions approach has the strength
that it provides a growth path for systems written in the host
language. These systems are almost always strict super-sets of the

K-Base Final Report
3-5



host languaEes. As a result, programs written in the procedure-
oriented subset may be easily ported to the multi-paradigm
extension.

3.5.3 Weaknesses

Most multi-paradigm s¥1stems are a conglomeration of a procedure-
oriented langl}lage with object-oriented and rule-based "constructs
tacked on. These systems are often syntactically obscure and
confusing. Each such system represents a pragmatic solution to
adding capabilities to "the Frogrammin environment without
throwing away a huge body of existing software.

3.6 Conclusions

There is no best programming paradigm. Each paradigm matches well
with some types of problems and poorly with others.

Multi-paradigm programming systems are the wave of the future, but
they have not yet arrived. The comprehensive multi-paradiﬁm systems
are either closed or based upon the Lisp language. Both solutions
rﬁire that programs which are written in languages such as
FORTRAN be scrapped or rewritten. For better or worse, there is no
object-oriented (heaven help us) FORTRAN.

K-Base Final Report
3-6



4. Development Environment Search

The implementation of K-Base would be facilitated by a development
environment which supports several key features. The ideal development
environment would provide all of the programming paradigms listed
abm;fe, DECnet/VAX compatibility, and an Iintegrated, windowed user-
interface.

GMS Technology reviewed numerous products in search of an ideal
programming environment. The criteria used to judge the best
environment are enumerated in the following sections.

The development of an analogical/semantic modeler for CAD imposes
certain unique requirements on the host software development
environment. Simultaneous requirements exist for intensive numerical
computation, data storage and retrieval, extensive aphics capabilities,
transparent networking and non-numerical (or symbolic) processing. Also,
it is most desirable that the selected development environment be portable
across hardware platforms in order to take advantage of future advances
in computer hardware. In addition, cost of acquisition was taken into
account to insure compliance with budget limitations. These requirements
are not adequately addressed by any single software development
environment.

GMS Technology has evaluated several popular software development
environments and where necessary their required hardware platforms for
prospective use in development of K-Base. The systems reviewed include
two basic types: software systems which can reside in multiple hardware
environments, and integrated hardware/software environments.

4.1 Criteria
4.1.1 Multiple-paradigm Programming Environment
The availability of multiple programming paradigms would provide
the greatest capability and flexibility in the develgg:ment system.

The appropriate dprogrammjng paradi can si cantly reduce
the effort required to produce specific features in the targef system.

4.1.2 Strong Link to DECnet/VAX

A strong link to DECnet/VAX is required to integrate the developed
software system into the existing PLAID environment. This linkage
will allow the K-Base system to take advantage of the very
substantial hardware and software resources which already exist in
the Manned Systems Division computer system.

The DECnet/VAX linkage must include the following features:

K-Base Final Report
4-1



4.1.2.1 File Transfer Capability

The development environment must provide for transferring
(copying) files into and out of ‘the VAX/VMS system
environment. This feature will allow files containing both
source code (programs) and data to be transported between the
two environments.

4.1.2.2 Remote File Open

The development environment must provide the ability to
directly open files across the network so that large PLAID
database files may be accessed without duplicating their
contents. This is relevant to reducing hardware resources in the
K-Base development environment and maintaining the integrity
of the PLAID/K-Base databases.

4.1.2.3 Inter-process Communication

The development environment must provide the ability of
processes in the K-Base system to communicate directly with
processes in the PLAID environment via DECnet task-to-task

communication facilities. This is crucial to providing a seamless
integration between new and existing software systems.

4.1.3 Inter-language Call Facility

The development environment must provide the capability to call
procedures written in other languages (e.g. FORTRAN and C) as
well as the capability to be called by Erocedures written in other
languages. This feature is vital to the K-Base effort because of the
large quantity of software available for processing the geometric
data that exists in the PLAID environment. Thus, PLAID modules
must be ca‘fable of accessing software developed under K-Base and
K-Base modules must be capable of accessing Y’LAID modules.

4.1.4 Graphical User Interface (GUI)

The graphical user interface of the development environment must
provide a uniform presentation of the software development tools
and the software developed under the environment. The goal is to
secure a SmallTalk-80 style of user interface environment which
provides for the following features:

e Multiple Windows

e Bit-mapped Graphics

® Menu System

® Mouse Locator Device

® Applications Interface Library

K-Base Final Report
4-2



4.2 Product Evaluations

The following sections summarize the information gathered during the
product survey conducted by GMS Technology.

421 C++

C++ is an object-oriented extension to the ANSI Standard C
programming language.

C++ (pronounced "see plus plus") is a portable, hybrid, object-
oriente£ rocedure-oriented programming tool. The C+ language
is intended to add object-oriented features to the existing C
programming language as a strict superset. The goal is to make it
possible to  take advantage of object-oriented programmin

techniques while maintammg all the proven assets of the
language, including the large body of software written in C.

Several important compromises had to be made to achieve the
stated intent of the language. These include the static definition of
object types (classes), obfuscation of the message-passing paradigm,
and the weaknesses in automatic storage management.

The benefits gained from the compromises are good run-time
efficiency, portability, and upward compatibility with existing C
gro rams. While these are major achievements, the fact that the

D software system is wrtten in FORTRAN rather than C
sharply reduces the benefits that might be gained by using C++ as
the basis for new development.

Implementations of C++ are available for the VAX/VMS
environment which make all of the featu_res of the VMS

The definition of a standard set of classes and methods which
would serve as an application programmer interface (API) to the
VAXstation windowing system, or DECwindows, or X-Windows
would have given C++ a distinct advantage in the realm of user-
interface g)rogramming. Unfortunately, C++ has no standard
support for any graphical user ‘interface. The application
programmer will therefore be forced to invent and implement the
classes and methods required to utilize one of the most complex
parts of the user-interface in addition to solving his/her central
programming task.

Another major problem with C++ is that the definition of the
language is not yet either com(flete or stable. Each implementor of
C++ interprets the syntax and semantics of the language slightly
differently. The result is that C++ code written under one
implementation will not port to another implementation without
significant change. Such compatibility problems are typical of

K-Base Final Report
43



emerging technologies. C++ is not yet a mature software
development tool.

4.2.2 Common Lisp

Common LISP was evaluated for use as a platform for K-Base in
view of its wide acceptance by the artificial intelligence communit%
and because it is a portable, platform independent language whic
conforms to a vendor-independent standard.

The Common LISP environment chosen for serious evaluation was
Lucid LISP, from Lucid, Inc. Lucid LISP was chosen because its
environment is  relatively  consistent across =~ multiple
hardware/operating system platforms, it includes an object-oriented
programming environment (Flavors) and includes a fairly
comprehensive set of tools for dealing with bit mapped graphical
displays, mice, pull-down menu systems, efc.

In the VAX/VMS environment, Lucid LISP operates either in a
graphic workstation (VAXStation) environment or on character
ased displays. The S implementation also includes the ability
to call routines written in conventional lanﬁuages such as C or
FORTRAN from the LISP environment, as well as the ability to call
LISP routines from other languages.

Common LISP has a number of characteristics which recommend it
for the K-Base project. LISP is a highly dynamic environment, in
which variable bindings are determined at execution time. A single
variable may, during a single execution session, contain a floating
point number, a character string, a binary tree, an array, or any
other data type. Memory management is completely automatic and
is transparent to the programmer.

LISP code may be generated at execution time, and an interpreter is
available so that the generated code may be executed immediately
without any intervening compilation or linking steps. This level of
interactivity allows facile implementation of such advanced features
as frame-based systems with active slots, daemons which are
activated automatically upon occurrence of certain conditions, etc.

A number of test programs were written in Lucid LISP to evaluate
performance and mteracu'vil'ls_'l. Several issues surfaced during this
evaluation which reduced the programming team’s perception of
the utility of the Lucid LISP environment.

It was hoped that subsystems of K-Base could be implemented in
LISP and subsequently embedded in a more comprehensive
environment. The inter-language linkage, however, proved to be
unwieldy. Due to the dynamics of the LISP environment, routines
written “in LISP require that linkage to other languagﬁs be
performed at run time, thus burdening the user with the
performance penalty of a linkage editing step during program
execution. Worse yet, the inter-langua_ﬁv.:1 linkage must be initiated
in the LISP run-time environment. is complication precluded

K-Base Final Report
44



convenient installation of a LISP subsystem into an extant
environment. In addition, parameter passage between the different
languages is both cumbersome and limited in functionality

In addition to the linkage editirllg penalties, other performance
problems surfaced. The Lucd LIS lgarbage collection s[);stem uses
a_half-space stop-and-copy model. At any giver: time, half of the
allocated memory space 1s in use, while the other half is in reserve.
When free space becomes exhausted, program execution is
suspended and the garbage collection system proceeds to traverse
the association lists and copy any used storage from the active half-
space to the reserve half-space, discarding in the process any
storage which is unreferenced. This copy operation is f{aerformed in
its entirety before program execution can resume, often stopping
operation for several minutes. The garbage collection process is
extremely compute-intensive and will affect other users in a multi-
user environment.

Compared to the FORTRAN environment to which the PLAID

- communit{ has become accustomed, the numeric performance of
Common LISP is rather poor. Migration of substantial portions of
the PLAID functionality would, therefore, result in a perceived
reduction in performance.

4.2.3 CLIPS - C Language Production System version 4.01

- The Artificial Intelligence Section (AIS) at NASA/JSC has developed
a rule-based expert system tool called CLIPS. This tool is a
comIPuter language designed for creating expert system applications.
CLIPS was examined as a tool because of its portability and ease of
integration into external systems. However, it was not clear
whether its methodology could be used in a CAD knowledge base.

4.2.3.1 Portability

CLIPS is written in C using standard C library functions for its
low level operations. This approach makes it very portability.
CLIPS has been used on several ulplatforms ranging from
ersonal microcomputer’s to large multiuser systems such as a

- AX. It has been run under various operating systems such
MSDOS, UNIX and VMS.

4.2.3.2 Ease of integration

The ease of integration is found in the fact that CLIPS can be

- both extended and embedded. The authors of CLIPS state that
this was a primary reason for developing CLIPS. CLIPS can
access and be accessed by other modules written in C,
FORTRAN or ADA. (However, mixing languages requires
advanced programming skills because of the differences in
implementation of some data structures.)

K-Base Final Report
45



4.2.3.2.1 Stand alone system

CLIPS can be run as a stand alone system (not embedded)
where it can execute programs written in CLIPS. In this
mode, CLIPS appears as a command line interpreter of
CLIPS language programs.

4.2.3.2.2 User defined routines

CLIPS can be extended by linking user defined external
functions with it A routine named ‘usrfuncs’ is used to
contain all references to user defined routines and is

u cIiaged whenever a new routine is to become visible to
PS.

4.2.3.2.3 CLIPS as a library

CLIPS can be embedded in another program by linking its
modules as a library to the calling program. This is the most
useful feature when integrating with another large system
where the impact of integration must be taken into account.

4.2.3.3 Applicability to a CAD knowledge base

It is not clear how a rule-base language system such as CLIPS
can be used in the context of a CAD knowledge base. The
following sections discuss issue.

4.2.3.3.1 CAD Knowledge Base

CAD knowledge bases tend to be object oriented because of
the central occupation with objects.  Object definitions and
object relationships form the knowledge base. Users build
and manipulate objects in a more or less step bgr step
process. Parallel operations may be possible when dealing
with more than one object, but because of the strong
association of user interaction with objects and object
interaction with objects, a cause and effect scenario usually
develops.

4.2.3.3.2 CLIPS Knowledge Base

CLIPS represents knowledge as a set of rules (its knowledge
base). The rules are matched to a list of facts and actions are
taken as defined by the rule (inference engine). Its
operations are performed in parallel in contrast to the more
standard procedural (sequential) operations usual found in
CAD systems.

K-Base Final Report
46



4.2.3.3.3 User considerations

CLIPS defines a programmindg language and a user raust
learn to use the lan%;.lage to define the knowiedge base and
the facts which can be acted on. A CAD system will usually
have in place some user interface (user friendly or not)
which must be learned in order to use the system.
Integration of another language or user interface such as
CLIhS may introduce a considerable learning curve problem
to the user.

4.23.34 An example

Consider, for example, the RMS (Remote Manipulator
System) simulation problem. Currently, the RMS is modeled
as a set of connected part nodes in the form of a tree. Each
part down the length of the RMS is joined to the next part
in a chain of parent-child relationships.

The joint angles computed by the RMS inverse kinematic
routines are agplied to each of the RMS parts which defines
a joint. In order to properly update the transformations of
each part defining the joints, the names of the arts must be
known to the routine applying these joint angles. Currently
a list in pro memory of the parts must be defined
(there are default names) y the user prior to a simulation
&uunﬁf there is a change in the names, the user must update
is list.

What the implication of this mode of operation is that for
each RMS chain (there may be multiple configurations), the
list must be made consistent by the user. Command files can
be used to ease this task, but it would be hel ful if the list
could be part of the root node for each RMS chain of parts.

For example, a node may contain CLIPS lan age which
can define the list of parts, the joint limits and the actions to
be taken when a limit is reached (the RMS inverse
kinematic routine deals with this, but in a special-purpose
manner). Then the user can execute the node containing the
CLIPS instructions with a set of joint angles as parameters
with the rules of joint angle application embodied as part
the data used to define an RIBI% model (a command file
embedded in the data defining an RMS).

The problem with the use of CLIPS in this example, is the

formulation of the CLIPS language by the user and

applicability of the CLIPS paradigm to the RMS problem.
o clear solution (if any) is evident. It might be easier to

embed the current user interface command %anguage in the

:l}e‘ita and use the currently language processor to execute
em.

K-Base Final Report
47



4.2.3.35 Future considerations

A solution to the user interface problem may be the
integration of the CLIPS lanéuage with an existing_ user
interface. The existing interface could generate CLIPS
statements in response to appropriate user commands.
However, this a non-trivial solution and would require some
analysis.

4.2.4 DC-Representation Language (DC-RL)

DC-RL (Dave Cebula Representation Language) is a frame based
knowledge representation language. It was developed at the
University of Pennsylvania for research applications related to
check-list processing. DC-RL is written in LISP and at the time its
review it was operational for a VAX/VMS operating system
environment.

4.2.4.1 Brief Description of DC-RL.

DC-RL is a derivation of the KL-ONE framed based system
[Brachman 1985]. It is intended to provide a representation
which can Xermit inferential operations, a structured semantic
network and an external database referencing mechanism.

Concepts and roles are the basic elements of DC-RL. These
elements are called objects. A concept object is a collection, class
or thing. A role object is an the attribute associated with a
concept. Concepts and roles are typed in order to extend the
meaning a given concept or role relative to other concepts or
roles in a given network or context. Typing is the defining of
an object’s access, semantic and definedness th erties together
a value representing the range of a concept’s children or of a
role’s value.

For a concept, the access property defines storage and retrieval.
The semantic property determines whether the concept is an
instance, a class or a collection. The definedness property
determines the level of completeness of values associateg with a
concept.

For a role, the access property determines how the role is to be
used. The semantic fpro er_t['{‘ determines whether a role is an
instance or a type of role. The definedness property determines
the relevance of a role to the meaning or definition of the
concept owning the role.

In addition to typing, DC-RL has a multiple inheritance
R:radigm for both concepts and roles. Concepts and roles can

ve any number of parents and inherit properties from these
parents. However, roles are slightly different from concepts in
that they are owned by a concept.” This permits roles to have a
dual form of inheritance. They may inherit via the owning

K-Base Final Report
48



concept’s family tree or they may inherit from their own family
tree.

DC-RL also allows use of external database :zcilities to viriuaiize
its universe network. It permits the imbedding of external
interface functions to hancﬁe data conversion. These interfaces
may be written in other ]anguages (restricted to the linkage
fa&ties of the version of LISP used and the operating system
environment) and may access some commonly used data base
management system.

4.2.4.2 Evaluation Procedure.

Inheritance is an important issue with a knowledge base for
CAD because of the concern for objects and families of objects.
It a{;peared that the inheritance features of DC-RL were the
most interesting and useful; therefore the evaluation of DC-RL
dealt with an example using basic multiple inheritance. For
simplicity, only concepts were used in the examgle model. No
role objects were needed as the basic multiEe inheritance
scheme works the same with both types of DC-RL objects.

4.2.4.3 Evaluation Results.

The multiple inheritance reFresentation of DC-RL was
satisfactory. The declarations of the parent-child relationships
were straightforward although the syntax was not as clear. The
multiple inheritance representation scheme was very powerful
and easily handled the ]i)roblem. However, The fact that the
platform of DC-RL was LISP was a problem. As a consequence,
the DC-RL declaration and access procedures can not be
imbedded in other non-LISP environments,

4.2.4.4 DC-RL Browser - An Evaluation
See Appendix A-4.

4.2.4.5 Outline of sample data for use with DC-RL.

As a test for DC-RL, an outline describing some of the basic
shuttle components and systems was written. An outline form is
basically hierarchic and the components and systems can span
multiple sections.

For example, components such as seats appear in the sub-
sections, aft crew station, forward crew station and airlock. If
viewing the shuttle from the context of seating arrangements,
the emphasis of the outline is misplaced in that it is organized
as physical sections of the shuttle.

* Another example, is the reaction control system (RCS) which
appears in the nose section and the tail section. The fact that
€ nose section and the tail section both contain RCS elements

K-Base Final Report
49



is not obvious unless one scans the entire list of sections and
sub-sections.

DCRL was used as way to organize the information in the
outline such that a more flexible representation might provide
more knowledge about component relationships.

4.2.4.6 Shuttle OV-103 Discovery

The shuttle OV-103 is organized spatially as the forward section,
the payload bay section, the wing section and the tail section.
Theslsle sc(:ictions are then further divided until basic components
are listed.

4.2.4.6.1 Forward Section

The forward section of the shuttle is that region forward of
the payload section. The forward section is where the crew
will spend most of their time.

4.2.4.6.1.1 Upper Deck
4.24.6.1.1.1 Aft Crew Station

Overhead viewports

Remote-Manipulator Translation Hand Controller
Remote-Manipulator Rotational Hand Controller
Orbitor Rotational Hand Controller

Payload Control Panel

Mission Specialist Seat

Payload Specialist Seat

Interdeck Access

4.2.4.6.1.1.2 Forward Crew Station

Mission Commander’s Seat

Pilot's Seat

Flight Computer and Navigation Console
Navigation Unit

42.4.6.1.2 Lower Deck
Galley Space
424.6.1.2.1 Airlock

Interdeck access

Telescoping Escape Pole (new)
Extra Payload Specialists’ seats (2)
Waste Management

Stowage Lockers
Avionics/Electronics Bay

K-Base Final Report
4-10



4.2.4.6.1.3 Nose Section

4.2.4.6.1.3.1 Reaction Control System (RCS)

RCS Forward Thrusters

RCS Oxidizer Tank

RCS Helium Tank

RCS Hydrazine Fuel Tank
Phasedyarra Radar

Nosewheel Landing Gear (improved)

4.2.4.6.2 Payload Bay Section

The payload bay section is that region between the forward
section and the tail section of the shuttle. It is used for
storing the shuttle payloads, articularly _deployable
payloads. It is sometimes visited by the crew for EVA tasks.

4.2.4.6.2.1 Payload Bay Doors (2)
Radiators (4)

4.2.4.6.2.2 Remote Manipulator Arm

Elbow Video Camera (Videocam
Extravehicular-activity Handhol

Getaway Special Canister

Aluminium Sheathing (Payload Bay lining)
(S'FBEg;ts ie. for Tracking and Data Relay Satellite

4.2.4.6.2.3 Below Payload Bay

Ventilator Liquid-O?rgen Tank
Fuel Cell Liquid-Hy: rogen/Liquid-Oxygen Tanks

4.24.6.3 Wing Section

Main Landing Gear
Reinforced Carbon-Carbon Leading Edge
Elevon (Aluminum Honeycomb Structure)

4.2.4.6.4 Tail Section

The tail section contains the bulk of the shuttle’s propulsion
systems. There is no crew space in the tail section.

K-Base Final Report
4-11



424.6.4.1 Space Shuttle Main Engines (3)

High-pressure Fuel TurboKAump Simproved)
Liquid-Hydrogen Sugplg'/l anifold
Liquid-Oxygen Supply Manifold

42.4.6.4.2 Auxiliary Power Hydrazine/Oxidizer Tanks
Fuel Cell

42.4.6.4.3 Reaction Control System (RCS)

RCS Oxidizer Tank

RCS Hydrazine Fuel Tank
RCS Thrusters

RCS Helium Tanks (2)

4.2.4.6.4.4 Orbital Maneuvering System (OMS)

OMS Hydrazine Fuel Tank
OMS Oxidizer Tank

OMS Helium Tank

OMS Thruster

4.2.4.6.45 Rudder (Aluminum Honeycomb Structure)

Rudder/Speed Brake Power Unit
Rudder/Speed Brake
Rudder/Speed Brake Hydraulics

4.2.4.7 Tracking and Data Relay Satellite

C-Band Commercial Antenna

4.9 Meter K/S-Band Antenna (2)

2.0 Meter K-Band Ground-Link Antenna
Stowed Solar Array

Inertial Upper Stage

42.4.8 A sample of DCRL knowledge representation.

The following DCRL code was used to represent the
information contained in the outline in section 3 above. The
terms universe and tout are introduced from DCRL to provide a
context for the shuttle-ov-103. The implication is that the
shuttle-ov-103 lives in a universe which is a collection of
universes found in tout (the top of universe tree).

The code given here is basically declarations of concepts (topics,
data, categories, etc) and their relationships with other concepts.
The example does not illustrate all of the capabili?' of DCRL,
but it does show those features of interest for a CAD
knowledge base.

K-Base Final Report
4-12



4.2.4.8.1 DCRL declarations.
57 setting up a universe for shuttle-ov-103 to live in

{ concept universe
is a collection of concept
from tout }

{ concept shuttle-ov-103
is a collection of concept
from universe }

> MOW, set up a concept (category)
;»» called people-seats within shuttle-ov-103

{ concept people-seats
1s a collection of concept
from shuttle-ov-103 }

+; set up other categories within shuttle-ov-103

{ concept propulsion-system
is a collection of concept
from shuttle-ov-103 }

{ concept guidance-system
1s a collection of concept
from shuttle-ov-103 }

{ concept fuel-system
is a collection of concept
from shuttle-ov-103 }

{ concept forward-section
is a collection of concept
from shuttle-ov-103 }

{ concept payload-section
is a collection of concept
from shuttle-ov-103 }

{ concept wing-section
is a collection of concept
from shuttle-ov-103 }

{ concept tail-section
is a collection of concept
from shuttle-ov-103 }

{ concept rms-system
is a collection of concept
from shuttle-ov-103 }

K-Base Final Report
413



{ concept hand-controllers
is a collection of concept
from shuttle-ov-103 }

;;; set up categories within previously defined
;;; categories, etc

{ concept upper-deck
is a collection of concept
from forward-section }

{ concept lower-deck
is a collection of concept
from forward-section }

{ concept nose-section
is a collection of concept
from forward-section }

{ concept main-engines
is a collection of concept
from
(tail-section
propulsion-system) }

;;; note, here the reaction-control-system is
.- defined such that is within several different
;;; categories at once

{ concept reaction-control-system
is a collection of concept
from

(node-section
tail-section
propulsion-system) }

{ concept rudder
is a collection of concept
from
(tail-section
guidance-system) }

{ concept rcs-oxidizer-tank
is a collection of concept
from
greaction-control-system
uel-system) }

{ concept rcs-hydrazine-tank
is a collection of concept
from
greacﬁon-control-system
uel-system) }

K-Base Final Report
414



{ concept res-helium-tank
is a collection of concept
from
§reaction-control-system
uel-system) }

{ concept rcs-aft-thrusters
is a collection of concept
from reaction-control-system }

{ concept oms-hydrazine-tank
is a collection of concept
from
gorbital-maneuvering-system
uel-system) }

{ concept oms-oxidizer-tank
is a collection of concept
from
gorbital-maneuvering-system
uel-system) }

{ concept oms-helium-tank
is a collection of concept
from
égrbital-maneuvering-,system
el-system) }

{ concept oms-thruster
is a collection of concept
from orbital-maneuvermg-system }

{ concept forward-crew-station
is a collection of concept
from upper-deck }

{ concept aft-crew-station
is a collection of concept
from upper-deck }

{ concept navigation-unit
is a collection of concept
from
(forward-crew-station
guidance-system) }

{ concept phased-array-radar
is a collection ‘of concept
from
(nose-section
guidance-system) }

K-Base Final Report
4-15



{ concept extra-mission-spec-seat
is a collection of concept
from

(lower-deck
people-seats) }

{ concept mission-spec-seat
is a collection of concept
from
(aft-crew-station
people-seats) }

{ concept payload-spec-seat
is a collection of concept
from
(aft-crew-station
people-seats) }

{ concept command-seat
is a collection of concept
from
(forward-crew-station
people-seats) }

{ concept pilot-seat
is a collection of concept
from
(forward-crew-station
people-seats) }

{ concept main-landing-gear
is a collection of concept
from wing-section }

{ concept nosewheel-landing-gear
is a collection of concept
from nose-section }

{ concept fuel-turbopump
is a collection of concept
from main-engines }

{ concept liquid-hydrogen-supply-manifold
is a collection of concept
from main-engines }

{ concept liquid-oxygen-supply-manifold
is a collection of concept
from main-engines }

K-Base Final Report
4-16



{ concept rms-translation-hand-controller
is a collection of concept
from
(aft-crew-station
rms-system hand-controllers) }

{ concept rms-rotational-hand-controller
is a collection of concept
from
(aft-crew-station
rms-system hand-controllers) }

{ concept orbitor-rotational-hand-controller
is a collection of concept
from
glft-crew-station
and-controllers) }

{ concept rms-arm
Is a collection of concept
from
(payload-section
rms-system) }

{ concept payload-bay-doors
1s a collection of concept
from payload-section }

{ concept waste-management
s a collection of concept
from lower-deck }

{ concept tdrs
is a collection of concept
from universe }

{ concept antennas
is a collection of concept
from universe }

{ concept ¢-band-commercial-antenna
is a collection of concept
from

(tdrs
antennas) }

{ concept ks-band-antenna
is a collection of concept
from
(tdrs
antennas) }

K-Base Final Report
4-17



{ concept K-band-ground-link—antenna
is a collection of concept
from
(tdrs
antennas) }

{ concept stowed-solar-array
is a collection of concept
from tdrs }

{ concept inertial-upper-stage
is a collection of concept
from tdrs }

These declarations form basic knowledge for use by other
features on DCRL which are mainly access routines.
However, the declarations Erovide a basis for analysis of
knowledge representation schemes.

4.2.5 Flavors

Flavors is an object-oriented r1:ro[§ramming extension to the
Common LISP language. As such, Flavors shares all the strengths
and weaknesses of 1ts parent environment. Programming in
Flavors, as in Common LISP, allows the programmer a great deal of
flexibility due to_the late binding of variables. Flavors adds to this
flexibility the object-oriented concepts of data abstraction, data
encapsulation, multiple inheritance and procedure encapsulation.

The Flavors system offers a vegr dynamic system of class definition
and object instancing. Class definitions may be altered and new
objects instanced at execution time.

Difficulties with the Flavors system are a superset of those
encountered with Common LISP. Although class definitions may
be changed at execution time, instances of that class do not reflect
the changes made to the parent class. In order to implement
changes in the instances, they must be destroyed after their data
has been copied to a new instance of the parent class.

At the time of the review, there was no standard for the Flavors
system such as that which exists for Common LISP. Programs
implemented with Flavors are, therefore, not completely portable.
A standard definition for the language is said to be forthcoming,

however, which would allow portable systems to be created.
4.2.6 Knowledge Engineering Environment (KEE)

The Knowledge Engineering Environment (KEE) system produced
by IntelliCorp is a Lisp-based multiple-paradigm software
development system. KEE incorporates the object-oriented, rule-
based, access-oriented, and frame-based programming paradigms

K-Base Final Report
4-18



into a software development environment which sports a
sophisticated graphical user-interface.

KEE has been ported to all the major computer architectures which

sugport Common Lisp including Sun workstations, VAXstations,
and Symbolics 3600's.

The fact that KEE is Lisp-based makes the ;ystem susceptible to all
of the problems associated with Lisp. Foremost among these
problems are run-time inefficiency and the dreaded garbage-
collection cycle.

Software written under the KEE system cannot be embedded
within other applications. KEE provides its own required execution
environment which is constructed atop the Lisp run-time
environment. This architecture makes KEE dix’fﬁcult to interface with
existing software systems such as PLAID.

4.2.7 LOOPS/XAIE

XAIE is an acronym for the Xerox Artificial Intelligence
Environment. This programming environment, which includes the
LOOPS object-oriented programmin system, was evaluated on the
only hardware platform upon which it is available- the Xerox 1186
Al %Jorkstation. The LOOPS environment is similar to the Flavors

env}ronment described above; similar strengths and weaknesses
apply.

The XAIE development environment has a number of attractive
characteristics for utilization in the K-Base project. XAIE has been
in development and use at Xerox Palo Alto Research Center for a
number of years and is a very mature, well-developed

rogramming environment. The gstem features excellent on-Ene
F\el facilities, and a facility called DWIM, an acronym for Do What
I Mean, which attempts to analyze typograﬁhical and syntactical
errors entered by the user and suggest what the correct entry might
have been. The system contains a toolbox of "gadgets and gauges",
graphical input and output valuators which allow the user to easily
view and manipulate program variables.

XAIE/LOOPS is Common LISP based, and shares the strengths and
weaknesses of the Common LISP environment as described above,
No languages other than Common LISP/Common LOOPS were
available on the system.

Two majlor faults made XAIE unusable as a K-Base development
tool:  platform dependency and network communications
deficiencies. ~ The Xerox 1186 workstation upon which XAIE
depends is both low in performance and limited in expansion
capabilities. The system as evaluated could be expanded to a
maximum configuration of 4Mb of RAM and 80 Mb of disk; both
constraints are extremely restrictive in a LISP environment. In
addition, network communications cagabilities with VMS/DECNET
were limited in scope and seemed to be poorly implemented. The

K-Base Final Report
4-19



only networking facility available for communication with VMS
was file transfer. As an example of implementation difficulties,
networking documentation stated that communications with
DECNET could be achieved only if the VMS system was runnin
Version 3 DECNET software; at that time, the current version o
VMS was Version 4.6, with Version 5 already announced.

4.2.8 New Flavors

New Flavors is the implementation of the Flavors system which is
available on the nSg;nbolics line of Al workstation products. New
Flavors is an enhanced imgl‘ementation of the Flavors system
described above, and shares the strengths and weaknesses of that
system.

The performance penalties associated with LISP/Flavors on the
Symbolics hardware are not as great as on general purpose
computer systems, as the Symbolics hardware is optimized for
Common LISP and implements a concept known as "ephemeral
garbage collection”, which reduces (but does not eliminate) the
need for the stop and colg garbage collection process as described
above. In addition, Genera, the Symbolics operating and
development environment, is both mature and rich in functionality.
Excellent on-line help facilities are available.

Inter-operability with the VAX VMS environment, however is less
than optimal. Network operations are limited to file transfers.

429 Nexpert Object

Nexpert Object is a multiple-paradigm, object-oriented
rogramming environment available “from Neuron Data, Inc.
expert shares a number of features with more expensive Al

development environments, such as KEE, and features such
advanced features as multiple inheritance of object classes, a rule-
based reasoning system and an object database complete with an
external representation. The system is available for multiple
hardware platforms, including V S workstations.

Nexpert initially appeared to be a promising platform for K-Base
development. A demonstration copy was procured and evaluated
on the IBM AT system.

Nexpert has a number of excellent features. The system includes
an excellent user interface, with multiple windows and tools such
as a hierarchy browser. Functionality of Nexpert is good, with
excellent implementation of the object-oriented programming
aradigm. Nexpert can also function as a knowledge base server
or external agplicaﬁons written in high-level languages such as
FORTRAN and C.

Upon careful evaluation, however, Nexpert was found to have a
single flaw which precluded its use as a platform for K-Base.

K-Base Final Report
4-20 po



Database access from foreign applications is read-only; only

Nexpert applications may modify the knowledge base. Since the

ability to modify the knowledge base from external applications

(such as PLAID) was deemed to be critical to the success of K-Base,

the principal advantage of Nexpert Object was nullified and no
er evaluation was undertaken.

4.2.10 PC-Scheme / Scoops

PC-Scheme/SCOOPS is a Texas Instruments, Inc. implementation of
the LISP-like rogrammindg language Scheme, which was
introduced in 1 by Gerald J. Sussman and Guy L. Steele which
has been extended by the addition of SCOO S, a LOOPS-like
object-oriented programming system.. Scheme was the first dialect
of LISP to fully support static scopin§, first-class procedures and
continuations, and was a precursor to the development of the
Common LISP language. Scheme is relatively small, and derives
most of its power from a small set of concepts. Its size permits it to
be utilized effectively on a microcomputer system with limited
memory.

PC-Scheme was purchased and evaluated on the IBM AT to assess
the feasibility of employing the object-oriented programming
paradigm for the K-Base project. Appendix 5 documents a familiar
agplication implemented” in Scheme/SCOOPS using (or perhaps
abusing) an object-oriented approach.

Due to its dependence on the IBM PC hardware platform, PC-
Scheme was not considered as a candidate for use in
im;lalementation of K-Base, but rather as a teaching and evaluation
tool for use by the research team. It served well in this role, and is
to be recommended for similar exercises in the future.

4.2.11 Peabody

Peabody is representation paradigm developed b University of
Pennsylvania. ~ Peabody is designed to model objects with
constraints. It attempts to define a joint and constraint network
representing segmented objects which can then be processed by a

aph spanning algorithm to satisfy joint and constraint definitions
or various scenarios involving object manipulation.

4.2.11.1 Environment

The Peabody environment is a collection of fi%*;ues, segments,
joints and constraints. It defines a g‘raph in which the nodes are
segments and the edges between the nodes are constraints and
joints. Segments are defined as primitive objects with an
associated “geometric definition. Joints are defined as tightly
bound connections between nodes. Their connection definitions
are rigid. Constraints are defined as loosely bound connections
between nodes. Their connection definitions are non-rigid
whenever loops within the graph are to be resolved. Figures are

K-Base Final Report
421



defined as sub-graphs of the environment graph and are
connected to the environment only by constraints .

Connection definitions are formulated with the use of sites.
Sites are defined as locations and attitudes relative to the local
coordinate system of a segment. A joint or constraint definition
is the binding of two sites on two different segments. Sites,
connections and segments are all referenced by unique names
given by the user to each of them.

Peabody is written in the C language and its user level syntax
for defining its representations is C like in form. The Peabody
representation se%:nents, connections and sites) is in the form
of a text file which is used like a script bethe graph resolving
algorithm to build a spanning tree. This tree permits the
articulation of the objects (segments) within the environment
defined by the representation.

4.2.11.2 Problems with Peabody

With regard to the K-Base paradigm, the Peabody
representation, in its form at the time of review, was
problematic.

For example, it could not represent a hierarchy of objects as
groups defined as a subassembly. It is true that a figure defined
as a sub-graph could be viewed as a subassemb l{é however,
sub-graphs could not be nested in other sub-graphs. In other
words, the Peabody environment permitted only one level of
assembly. In a complex environment, it is necessary to have
many levels of assembly or sub-graphs. On the abstract level,
single level hierarchies do not permit the richness of meaning
derived from the inheritance and class definitions supplied by
multiple level hierarchies. It was concluded that the Peabod

paradigm is an excellent one, but it just did not go far enoug

with its representation.

In addition to the multiple level hierarchy lproblem, the use of
text file formats as scripts was also a problem. The scripts are
not conducive to a high degree of user interaction. If a change
occurs in a definition of a component of the graph, the
complete script must edited and then resubmitted to the graph
.«E‘;‘:annin%l algorithm. This reduces user interaction greatl{ when

e graph becomes large. The script itself, is not the problem, it
is the question of how it is to be edited by the user in a highly
interactive session which must be addressed.

42.11.3 Peabody Contributions

In its role as a prototyping tool for K-Base, the PLAID system
incorporated several of the features found in the Peabody
system, because of the similarity in the target problem addressed

K-Base Final Report
422



bg both Peabody and PLAID: the assembly and articulation of
objects.

To add more knowledge to the current object representation in
PLAID, the Peabody features of named site efinitions and
assi%nable joint attributes were incorporated into the multiple
level hierarchy currently used by PLA%.

In the PLAID system, a site is a named location and attitude
defined relative "to the coordinate system local to the level of
assembly at which the site is placed. In other words, the site is
defined relative to all the other objects at the same level. The
site is an object which is part of the collection of objects at a
given level of assembly.

Joint attributes can be given to a site, defining its degrees of
freedom and any corresponding limits. However, these sites
with joint attributes are not quite like the constraint definitions
found in Peabody. For example, explicit loogs or cycles in the
tree graph defined by PLAID are not possible; so’the role of
constraints as breaking points for such loops or cycles is not
required. Anty 1El)otenti loops or cKcles, such as a hand grabbing
an object off the floor where the hand and the object are in the
same tree graph, are resolved dynamically at the moment the
object is  attached to the Rand. However, the explicit
representation of cyclical relationships possible with Pea ody
does permit a more dynamic redefinition of the root of a given
spanning tree graph.

4.2.11.4 Conclusion

The Peabody representation, in its form at the time of review,
could not be used directly b{ the K-Base paradigm. However,
many of its features were useful in ex loring the areas of object
representation and object articulation. Some of the features were
incorporated into the PLAID prototyping tool and made
available to its users.

4.2.12 SmaliTalk-80

SmallTalk, the prototypical object-oriented software development
environment, was developed at Xerox Palo Alto Research genter
beginning in the 1970’s. The visionaries who designed SmallTalk
invented many of the key features of the user-friendly graphical
user interfaces which now appear in numerous commercial
roducts including the Apple Macintosh and the Microsoft

indows system. The SmallTalk vision, however, extends far
beyond the user interface.

SmallTalk is a complete, self-contained software development
system which is comtﬁosed of a set of interlocking components. The
key components of the system are an object-oriented pro amming
language, a standard set of object classes defined in tg\e ﬁnguage,

K-Base Final Report
423



and the virtual SmallTalk machine. The predefined classes make it
ossible for a programmer to perform complex tasks in only a few
Enes of code written in the SmallTalk language.

The problem with the SmallTalk system is that it is an integrated
programming environment. No provision is made for incorporating
rograms written in non-SmallTalk languages into the environment

ghort of completely rewriting them.
4.3 Selected System Configuration

The system assembled as a vehicle for K-Base development consists of a
closely-coupled network of four Digital Equipment Corporation 32-bit
VAX ~microcomputers with a comprehensive set of software tools
running under the VMS operatir:ﬁ :Kstem. This system was chosen to
assure complete compatibility wi e target operatirli‘%environment at
JSC, and to provide an operating environment for PLAID, the primary
client application for K-Base.

The system hardware consists of a MicroVAX Il serving as a boot node
and file server for a Local Area VAXcluster (LAVC) which includes
three low-cost VAXStation 2000 workstations.

System software includes the pro%rietag VMS operating system, LAVC
software, DECnet software, a DEC FORTRAN language compiler, a
DEC C language compiler, and a Lucid LISP system from Lucid, Inc.

4.3.1 MicroVAX II Boot Node

The MicroVAX II boot node was provided by NASA as Government
Furnished Equipment (GFE). The system as provided contained 9
Mb of RAM, e 71 Mb disk drives, eight serial ports, and an
Ethernet interface. GMS added one 159 Mb disk drive and a
DESTA thin-wire Ethernet adapter to complete the configuration.

4.3.2 VAXstation 2000 Workstations

The MicroVAX II system served three identical VAXstation 2000
workstations; one for each member of the research team. Each
VAXstation included a thin-wire Ethernet interface, a bit-mapped

phic display, a mouse and workstation software as standard
equipment. In addition to the standard equipment, each
VAXstation was configured with 16Mb of memory from
Clearpoint, Inc. and a 71 Mb local disk drive to be used primarily
for paging and swapping storage.

4.3.3 Local-Area VAXcluster (LAVC)

The LAVC software ties the four systems together via Ethernet as a
VAXcluster, and provides most of the advantages of a VAXcluster
environment without requiring expensive hardware interconnects
between systems. VAXcluster advantages include simplified system
management, elimination of redundant data storage for system

K-Base Final Report
4-24



software, transparent access to disk drives which physically reside
on remote machines and a close approximation to the target
VAXcluster environment at JSC.

4.3.4 Common LISP (Lucid)

The LISP system chosen is Lucid LISP, from Lucid, Inc. The Lucid
system was chosen over VAX LISP due to its inclusion of an
imglementation of the Flavors object-oriented programming system
and its superior interface to the graphical user interface %Gf‘l’l) of
the VAXstations.

4.35 C Compiler

The VAX C language compiler was chosen as a K-Base
development tool because of its compatibility with the UNIX and
UL C languages and its efficient code generation.

4.3.6 FORTRAN Compiler
The VAX FORTRAN language compiler was chosen as a K-Base

development tool because of its efficient code generation and its
compatibility with existing PLAID software.

K-Base Final Report
4-25






5. Work Performed

The implementation of K-Base may be divided into two broad functional
areas; non-geometric (symbolic) knowledge enhancements and geometric
knowledge enhancements. This section of the report is divided along those
lines. We first consider the symbolic knowledge enhancements.

5.1 K-Base Symbol Management System (KB/SMS) Specification
5.1.1 Purpose of KB/SMS

The K-Base Symbol Management System (KB/SMS) is designed to
extend the modeling capabilities of the PLAID system beyond the
realm of purely geometric modeling while retaining the existing
Multi-User contextual referencing mechanism. This goal requires
that KB/SMS be a tightly-coupled component of the Multi-User
PLA}I\D system, utilizing and extending existing PLAID part access
mechanisms.

KB/SMS also embodies features which aid in the maintenance of
the large database of PLAID comfponent files, tagget files, and
display files by providing facilities for searching an reportinf on
arts based upon attributes of the parts. This facility will aid the
LAID user community in tracing the historical” genesis and
evolution of each part.

5.1.2 Approach

KB/SMS overcomes the symbolic information shortage by
associating relevant textual information with each PLAID part filé.
The additional information for a given part is stored in a
description file associated with the f)art file. Each description file
contains a basic set of attribute fields which are common to all
descn('lption files as well as optional fields which may be arbitrarily
added by PLAID users.

The description files are managed by the Multi-User Manager

Kdrocess in" conjunction with the various PLAID modules. The

anager Hrocess determines where the description files are stored

in the file system. The PLAID modules are responsible for

generating and maintaining these files. Please note that this

Piﬁgﬁgﬁon (Manager process vs. PLAID module) is invisible to the
user.

New commands added the PLAID Multi-User Interface program
rovide access to a set of new search and report generation
unctions. The new functions allow parts to be searched for on the

basis of information stored in the description files as well as on the

basis of partname specification. Searches which combine partname
searches with attribute-value searches provide a very powerful tool
for part-file management.

K-Base Final Report
5-1



5.1.3 Description of a Description File

A description file consists of a set of attribute name/value pairs. The
attribute name is a character string which serves the same function
as a field name in a database. The value part of each pair is a free-
form block of text which is available for editing with a standard
text editor.

Unlike a traditional database, KB/SMS allows any character string to
be used as an attribute name and an arbitrarily long string of text
to be used as its value. This has the benefit that the "database” is
not restricted to a fixed set of fields; attributes specific to a
articular item can be added at will. The negative side of this
eature is that any given description file may contain errors in
name spelling or total omission of data which would cause the
query system to generate incomplete or incorrect reports.

We propose a basic skeleton for the description files which
constitutes a required set of name/value pairs. The symbol
management system requires that these names be defined in each
description file’ and provides facilities for automatically maintaining
them. Along with the required set of names, the user may define
additional names as needed.

5.1.3.1 Description File Skeleton

:PARTNAME:: (name of the associated PLAID file)

::DOMAIN::(the name of the domain in which the file resides)
::REAL_NAME::(the title of the object, like "Tracking and Data Relay
Satellite (TDRS)")

::DESCRIPTION::(a textual description of the object)
::CREATOR_NAME:: (the name of the person who created this object).
::CREATION DATE:: (the date on which this object was created)
::CREATION_FUR:: (the FUR designation under which the object was
created)

MOD _LIST: (a sequence of time/date stamped events which have
caused changes to the file)

DATE: (date the change was made)

NAME: l\Sname of person making the change)

REASON: (reason for the change)

FUR: (for the change order)

ENDMODS:

(USER-DEFINED SYMBOLS GO HERE..))

K-Base Final Report
5-2



5.1.4 Data Entry

A description file is created each time a new PLA;D part file is
created and updated each time a PLAID part tile is modified.
KB/SMS automatically maintains the validity of the symbols which
are members of the skeleton symbol set.

5.1.4.1 Data Entry at File Creation Time

The sz‘:nbol management system f_Eenerates a new description
file which contains a description file skeleton whenever a new
PLAID part file is created. The newly created description file

- contains the fields shown in the Skeleton of a Description File.
Information that is known by the software will be filled-in
automatically (e.g. PARTNAM‘E, DOMAIN, CREATOR NAME,
CREATION_DATE). The user is subsequently given an
opportunity to edit the descn;_lption file in order to input
inf?nmation into the remaining fields of the skeleton, or to add
new fields to the description.

5.1.4.2 Data Entry at File Modification Time

The symbol management system updates each description file
whenever the associated PLAID part file is modified. The
default change to the description file is a new entry in the
- MODLIST section which indicates the account-name of the user
making the modification along with the date of modification.

5.1.4.3 Data Entry at Description Editing Time

The symbol management system allows the user to edit all or
part of a description file using a conventional text editor. The
user must be aware that editing the description file can cause
erroneous or incomplete query reports due to erroneous editing
with the text editor.

5.1.5 Query Commands

- Query commands provide facilities for %ﬁnerating reports based
upon information in the description files. Two fundamental
reporting modes are supported; gYobal reporting and contextual
reporting. Global queries traverse down the hierarchy of projects
(domajnsz{ collecting information on each occurrence which meets
the search criteria. Conversely, contextual queries traverse up the
hierarchy of projects (domains).

5.1.5.1 Contextual Queries

Contextual queries are searches that are performed in the
context of a specified project. These searches begin in a
specified project domain and search up the context, locating all
- occurrences of the specified part(s). The search order  for

K-Base Final Report
- 5-3



contextual queries is the same as the search order of the Multi-
User "RESO" (Resolve Partname) command.

5.15.1.1 Find All Occurrences of <part-expr>

This command searches the current context for all
occurrences of parts which match the given <part-expr>
and displays the filenames that it finds. The distinctive
feature of  this command is that it displays partname
overloading so that if one file hides another in the context,
both filenames are displayed with an annotation that
describes which file hides which.

The syntax of this command is
FIND <part-expr>

where <part-expr> is any valid VMS filename
expression which may include wild-cards.

5.1.?1.1.2 Find All Occurrences of <part-expr> with <expr-
ist>

This command will perform the same file search as the
previous command, then search the description files for
name/value pairs which satisfy the <expression-list>. For
exam&g, to locate all primitives and assemblies with
DESCRIPTION containing the string "space-station" one
could enter the command:

FIND *.PRI,*.COG DESCRIPTION=""space-station*"

Note the asterisks in the description search string. An
asterisk in any search string means that any string may
occur in place of the asterisk. In general, the search strings
may include any Unix-style regular expression.

5.1.5.2 Global Queries

Global queries are searches of an entire sub-tree of the project
hierarchy. These gueries begin at a specified root of the project
tree and search downward through all project sub-trees. The
order in which projects are searched is the same as the order of
projects listed bg e Multi-User "LCSF" (List Context Structure)
command. Global queries will show how partnames are
overloaded in each context that is scanned.

5.1.5.2.1 Find <part-expr>

This command searches downward in a Frglect hierarchy to
show all occurrences of a given set of files specified by
<part-expr> as well as any file overloading. For example,

K-Base Final Report
54



this command rmg)l&t) be used to locate all primitive files
which begin with " as follows:

FIND/GLOBAL XP*.PRI

5.1.?13.2.2 Find All Occurrences of <part-expr> with <expr-
ist>

This command performs the same hierarchy search as above,
then selects specified files from those located based upon
<expr-list>. For example, the command might be used to
locate all primitive files with names beginning with "XP"
which have PROJECT=TDRS with a command of the form:

FIND/GLOBAL XP*.PRI PROJECT=TDRS
5.1.6 Report Generation

The %eneration of reports is controlled by a single command which
specifies what information will be gathered and where it will be
stored. The syntax of the report specification command is be:

REPORT <name-list> <destination>
where

<name-list> is a list of the attribute names from which
informations is to be collected, and

<destination> is the name of the file in which the report is to
be placed. If no destination is specified, the report will be
displayed on the terminal.

Once the report format and destination are specified, the required
information is collected using the query commands described above.

5.1.6.1 Example of a Report Generation Session

Suppose that one wished to generate a report which listed all
PLAID part files which were associated with flight STS-29. The
following Multi-User dialog could be used to collect this
information (assuming that "STS-29" is somewhere in the
description files):

SETP root-project-name

REPORT PARTNAME STS-29.RPT
FIND/GLOBAL *.PRI,*.COG ANY="STS-29"
REPORT CLOSED

$PRINT STS-29.RPT

K-Base Final Report
55



5.1.7 Global Report Algorithm

This section provides the outline of the algorithms used by the
KB/SMS software to produce a global search report. The algonthms
and data-structures are described in pidgin Pascal.

1. Traverse the Context Structure in pre-order fashion, scanning
each domain for the specified files, and building an indexed file
with records like this:

Record Part_Entry is
name: g:arzgo, ;; ;llename.
seq_no: ar equence number.
d;:iin: chur'bs. // vhere file was found.

t_level: integer, // Context tree level.
o_level: integer // Occurrence level.
End_Record.

where name concatenated with seq_no is the primary key,
t_level is the depth of domain_name in the traversal of the
context, and o_level is the occurrence level which is initialized
to zero.

2. After all domains have been scanned and the indexed file built,
determine the occurrence level of each file as follows:

Procedure Set Occurrence Level:

Part_List: File of Part_Entry.
parent, Child: Part_gntry.
read-first-record from Part_List into: Parent.
) read-next-seqgential from Part_List into: Child.
while (Child.name == Parent.name),

do:
if child.t_Level <= Parent.t_level

then
pop (Parent). /* pops Parent.name==NULL if
stack is ty! */

e&seif Parent. in is on the path of Child.domain,

then

Child.o_level := Parent.o_level + 1.
rewrite Child record.
h (Parent).
arent := Child.
read next seq. record into Child.
else

(Parent).
endi??p

clear the stack.

Parent := Child.
until (EOF encountered on the indexed file).
End Procedure.

3. Each file name now has an occurrence level associated with it.
We can use the occurrence level numbers to correctly show the
nested overloading of the names as follows:

K-Base Final Report
56 po



Procedure Display Overloading;

Part_List: File of Part_Entry.
&e’set the indexed file to the beginning.

read the next sequential record into cur_*,
tab the output as a function of cur_o_level.
write the filename & domain name to output.
until EOF on the indexed file.
End Procedure.

K-Base Final Report
57



5.1.8 Example of a Global Search

This section elucidates the algorithms with which KB/SMS traverses a_global context and
produces a report. This information is meant for Frogrammers who might be tasked with
modifying the IS)rocedures. This process is, except for the output report, completely hidden
from the PLAID user.

5.1.8.1 GIVEN: The following domain hierarchy and parts:

X.PRI1
A
X.PRI X.PRI
Y.PRI Y.PRI
B E H

X.PRI X.PRI X.PRI X.PRI
Y.PRI Y.PRI Y.PRI
C D F G

K-Base Final Report
58 e




5.1.8.2 PRODUCE:

A report that shows the overloading of each of the parts in the
global context of the A domain as follows:

Part Domain Level
X.pri
X.pri
X.pri
X.pri
X.pri
X.pri
X.pri

PFHERPNNRO

Y.pri
Y.pri
Y.pri

=)

Y.pri

I Q@ UOw Toamonwmy

Y.pri

K-Base Final Report
59



Step 1:

KB/SMS produces an indexed file which contains the serialized part
names in the global scope of domain A. The sequence numbers are
the result of a running count of part files located during a pre-
order traversal of the tree of domains with root A:

Name Domain Seq# T Level O _level
X.pri A 1 ) 0
X.pri B 2 1 0
X.pri c 4 2 0
X.pri D 6 2 0
X.pri F 8 2 0
X.pri G 9 2 0
X.pri H 11 1 0
Y.pri B 3 1 0
Y.pri C 5 2 0
Y.pri D 7 2 0
Y.pri G 10 2 0
Y.pri H 12 1 0
Step 2

Run procedure Set_Occurrence_Level on the above file to
determine the parent/child relationship which constitutes
overloading to produce:

Name Domain Seg# T Level 0_Level
X.pri A 1 0 0
X.pri B 2 1 1
X.pri c 4 2 2
X.pri D 6 2 2
X.pri F 8 2 1
X.pri G 9 2 1
X.pri H 11 1 1
Y.pri B 3 1 0
Y.pri C 5 2 1
Y.pri D 7 2 1
Y.pri G 10 2 0
Y.pri H 12 1 0
Step 3:

Run procedure Display_Overloading to produce the desired
report:

K-Base Final Report
5-10



—
(1
<
]
b

Part Domain

X.pri
X.pri
X.pri
X.pri
X.pri
X.pri
X.pri

FRRNMNRO

Y.pri
Y.pri
Y.pri

Y.pri

T QUOW I O"MONWm )
Or PO

(]

Y.pri

5.1.9 Notes on Report Format:

1. Indentation of one partname under another means "is overloaded
by". In the above example, X.pri in domain A is overloaded b X.pri
in domain B, is overloaded by X.pri in Domain C. ("Overload%d by"
is an obscure way of saying "is hidden by")

2. Two occurrences of a %iven. partname which are at the same
indentation level are not visible to one-another because the
domains which contain them are "cousins" in the hierarchy.

3. A blank line between two occurrences of the same partname is
emphasis that the corresponding parts do not share a common
ancestor even though they have 'the same name. Look at the
occurrences of Y.pri in the ‘above report. The Y.pri’s in domains C
and D share Y.pri in domain B as a common ancestor, but the
occurrences of Y.pri in domains G and H do not share ances
with any of the first three occurrences and thus are likely to
contain totally unrelated components.

K-Base Final Report
5-11



5.2 Geometric Knowledge Enhancements

Geometric knowled,&e has been added to the object assembly process

MC - Dynamic Motion COG). This additional knowledge is in the
orm of new information to be associated with each part, such as joint
information; and new classes of objects such as sites. This additional
knowledge permits a higher, more symbolic level of interaction
between the model and the user.

5.2.1 SITES

A new COG record type called a SITE has been added. It is the
same as normal COG record but has a reference name ‘SITE".

5.2.1.1 Use of sites.

These sites can be used as both olla_;ects and targets of DMC
commands (see CONNECT, ATTACH, DETACH, S, VIEW).
For example, a site can be used as an eye or camera location
and viewpoint. A site can also be used as a location for

grasping.
5.2.1.2 Viewing sites.

Sites are displayed as individual coordinate systems (three axes).
The display of sites can be selectively enabled or disabled.

5.2.2 CONNECT command.

Used with sites to join two parts, this command permits the
symbolic assembling of parts. For example, the user can define a
connection point on a part q\xsing sites) and later connect that (I)art
to another part using only the part names and their corresponding
connection names.

5.2.3 ATTACH / DETACH commands.

The ATTACH and DETACH commands are now installed to permit
the grasping of objects by the RMS as well as by the man-model.
Using site definitions to specify grasping points, the user can attach
a hand to an object.

5.2.4 IRIS interface.

Many of the additions to DMC mentioned here have been
interfaced to the IRIS via the VAX ethernet.

5.2.5 DESCRIPTION command.

The user can add one line descriptions to COG records. This helps
to better identify a part. More extensive assembly and part
descriptions are forthcoming.

K-Base Final Report
5-12



5.2.6 DISPLAY file review.

The user can display previousl Fenerated display files (created by
the DISPLAY modulye of PLAID) for reviewing purposes.

5.2.7 RMS additions and improvements.
5.2.7.1 RMS joint name list.

A user defined joint list is a_parameter to RMS. The user does
not need to use a command file to update RMS joints. However,
more work in this area is needed.

5.2.7.2 Symbolic articulation of RMS.

RMS can be directed to go to a given site name. The user does
not need to enter coordinates and attitude information

explicitly, as the site is used to encapsulate this information as a
name.

5.2.8 VIEW command improvements.
5.2.8.1 VIEW from a site.

A viewpoint can be specified symbolically using a site which
defines an eye (or camera) location and direction of view. This
eye or camera site definition is being extended to include a
‘camera or eye’ field of view (angle o acceptance) which will
be associated” with the particular site.

5.2.8.2 VIEW attachment.

The current view point can now be attached to a particular site
(defined as a camera or an eye) such that whenever the site is
moved, the view will automatically change to reflect the new
location of the eye or camera.

5.2.8.3 VIEW tracking.

View point tracking is being examined as a way to permit the
automatic tracking of an object by the currently attached view
point. Whenever the object being looked at moves, the
viewpoint will automatically be updated so that it will follow
the object. For example, the man-model could visuall track an
object until the eye joint limits are reached or unnIy the head
joint limits are reached.

K-Base Final Report
5-13



5.2.9 ROTATION of parts.
5.2.9.1 Rotation of parts about an arbitrary axis.

An arbitrary axis of rotation can now be defined as well as the
normal X, Y or Z axes. This permits limit checking for rotations.

5.2.9.2 Limit checking of rotations.

Rotational limits can now be specified (see JOINT command)
and are checked when the limit checking is enabled.

5.2.10 JOINT command.
5.2.10.1 JOINT definitions for parts.

A part can now be defined as a joint with user defined axes of
rotation, orders of rotation and rotational limits. The JOINT
definition can be disabled or enabled.

5.2.10.2 Extensions for the JOINT command.

This command is being extended to permit the selective

enabling or disabling (by axis) of limit checking. Translational

ljn}]it checking is being examined as a new extension to the joint
efinitions.

5.2.11 SCALE command.

Differential scaling has been implemented which permits the
parameterized sizing of normalized components. For example, the
normalized man-model components (body segments) can be
parameterized for various statistically determined body sizes.

K-Base Final Report
5-14 po



6. Conclusions

The development of an analogical/semantic modeler for CAD imposes
certain unique requirements on the host software development
environment. Simultaneous requirements exist for intensive numerical
computation, data storage and retrieval, extensive graphics capabilities,
transparent networking and non-numerical ésymbolic) processing. These
requirements are not adequately addresse

development environment.

A survey of state-of-the-art programming paradigms was conducted which
examined the following paradigms:

® The Procedure-Oriented Programming Paradigm
® The Object-oriented Programming Paradigm
® The Access-oriented Programming Paradigm
® The Access-oriented Programming Paradigm
® Multi-Paradigm Programming Environments

There is no best pro amming paradigm. Each paradigm matches well
with some problem domains and poorly with others; Multi-paradigm
programming systems overcome this problem b incorporating several
paradi into a single programming environment, but they have not yet
reached maturity. The comprehensive multi-paradigm systems are eitl?x’er
closed or based upon the Lis language. Both approaches require that the
large body of programs which are written in languages such as FORTRAN
be scrapped or rewritten.

GMS Technology reviewed numerous products in search of an ideal
programming environment. The system assembled as a vehicle for K-Base
development consists of a closely-coupled network of four Digital
Equigment Corporation 32-bit VAX microcomputers with a comprehensive
set of software tools running under the VMS operating system. This system
was chosen to assure complete compatibility with the target operating
environment at NASA JSC, and to provide an operating environment for
PLAID, the primary client application for K-Base.

The implementation of K-Base may be divided into two broad functional
areas; non-geometric (symbolic) knowledge enhancements and geometric
knowledge enhancements.

6.1 Non-geometric Knowledge.

The K-Base Symbol Management System (KB/SMS) is designed to
extend the modeling capabilities of the PLAID system beyond the
realm of purely geometric modeling while retaining the existing Multi-
User PLAID ‘contextual referencing mechanism.~ KB/SMS embodies
features which aid in the maintenance of the large database of PLAID
component files, target files, and display files by _groviding facilities for
searching and reporting on parts based upon attributes of the parts.

KB/SMS provides facilities for assigning arbitrarily many attribute
name/value pairs to PLAID parts. Queries of the PLAID database may

K-Base Final Report
6-1



then be performed based upon the values of specified attributes. Two

Multi-User PLAID search algorithms were implemented; contextual and

global searches. These facilities provide the PLAID user with a
owgrfull) tool for tracking the genesis and evolution of parts stored in
e database.

6.2 Geometric Knowledge.

Geometric knowledge has been added to the object assembly process
(DMC - Dynamic Motion COG) running on a VAX under VMS
operating system. This module was chosen because it is currently used
in production work and provides a good vehicle for moving concept to
application. The added geometric knowledge permits the designation of
new classes of objects and permits a more symbolic utilization of those

objects.

It became clear during the course of our research that added geometric
information should take the form of information that would better
define the role of an object. Besides the normal definition of an object
as a part within an assembly, new classes of objects were added. Joint
information was added to some objects to define how the object could
be articulated, objects were designated as sites which are named
reference points on objects, and camera information was be embedded
in sites to further designate its function or role.

The classifications provide role information to better define the
relationship of objects to the world. When an object is designated by
name in an operation, its role information qualifies its use. If an object
designated as a joint is be moved as a joint, its joint limit information
controls its behavior. If a site is to be used as an eye point its camera
information can control the view port. Thus the user is using the
embedded information of an object by only using its name in the
correct context. This additional 'knowledge permits a higher, more
symbolic level of interaction between objects and users and a richer
level of knowledge representation for more advanced reasoning tasks.
The user’s specifications for object manipulation are easier to describe
and understand when previously defined geometric information is
accessible by name.

For example, the operation of reaching for an object is simplified
whenever the user predefines a named site and then uses that site by
name as a goal. Thus, whenever the goal is moved, the specification
for reaching it is unchanged because the encapsulated information as
to its location is automatically supplied whenever its name is used.

Viewing specifications are similarly simplified when a named site,
which encapsulates the location, direction and camera sFecifications, is
given the role as an eye point or camera. The eye point may move or
its camera definition may change, but the user’s viewing specifications
will remain the same.

It is apparent that the encapsulation of geometric information as
.Kmbols improves the ease of use and the level of understanding for

e user. In addition, it provides a link from the complex, less user-
friendly representation of geometry to the symbolic, more user-friendly,

K-Base Final Report
6-2



level. In addition, this symbolic level is more conducive to both
artificial and human reasoning processes. In the complex world of CAD
and CAE, the reduction of complexity means less "1, : 'r = o 1 - reas

better handled by computer and more utilization of 1 iser s kigner
level reasoning.

ORIGINAL PAGE (S
OF POOR QUALITY

K-Base Final Report
6-3






Appendix 1 — Updated Multi-User Documentation

The followmg gages should be added to the Multi-User PLAID User's
Guide at the end of Section 2.

OMINEL PAGE 18
CF POOR QUALITY

K-Base Final Report
Al-1



2.3. REPORT GENERATION COMMANDS

The report generation commands provide information on PLAID part
files in entire sets of Multi-User domains. These commands provide a
mechanism for listing files and retrieving information From the
associated description files.

The general outline for generating a report is as follows:

1. Use the FORM/OPEN command to open the file which is to
contain the report and optionallixs;ecify the description file fields
which are to be reported upon. TE: if you wish for the output
to be presented on your terminal, use a command like

FORM/OPEN TT: list-of-fields.

2. Use one or more FIND and/or DESCRIBE commands to cause
output to be generated into the report file.

3. Use the FORM/CLOSE command to cause the report file to be
released.

4. Use the DCL TYPE or PRINT commands to view the content of
the report.

K-Base Final Report
Al-2



2.3.1. FORMAT_REPORT Command

FORM/OPEN filename [field_name_list]
FORM/CLOSE
FORM/SHOW

The Format Report command (FORM) causes a report destination
file to be created and also allows the specification of the content of
the report. The regaort filename is specitied using the usual VMS file
specifier (e.g. MYSTUFF.RPT).

The content of the report is specified as a list of description file
field names.

NOTE: if a report generation command is issued when there is no
report file o&?r\, the report will be directed to the terminal. Use the
FORM/SHOW command to determine the status of the report file.

2.3.1.1. FORM/OPEN filename [field_name _list]

The FORM/OPEN command is specified BEFORE the report
eneration commands (i.e. FIND, DESCRIBE) are issued. The
ename parameter specifies the name of the file into which the

report will be stored. The optional field name list specifies

which fields from the description files selected by the report
generation commands will be copied into the report.

The field name_list is an optional parameter which may be

"ALL" (without the quotes), a single description file field name

(without the enclosing double colons), or a list of field names
with commas separating them from one another.

Parameters:
filename
the VMS filename into which the report will be stored
field_name_list (optional)

"ALL" or a comma-delimited list of field names which
will co(;)ied to the output report file. "ALL" specifies that
all fields of the description tile will be included in the
output report.

Required Privileges:
ALL (all users)
Possible Errors and Warnings:

none

K-Base Final Report
Al-3



Example 1:

The following example opens a report file named
MY _REPORT.RPT and selects ALL fields from the
description files:

MONITOR> FORM/OPEN MY REPORT.RPT ALL
Outfut Filename: MY REPORT.RPT
Field Neme_List: alT

Example 2:

The following example opens a report file named
GLOBAL.RPT and selects the creation date, project name,
and modification list fields:

MONITOR> FORM/OPEN GLOBAL.RPT

NAME ,PROJECT ,MOD
Output_Filename: GLOBAL.RPT
Field Name List: NAME,PROJECT,MOD
MONITOR> DESC/GLOBAL J*.PRI ALL

MONITOR> FORM/CLOSE
K-Base Format Close
MONITOR> STYPE GLOBAL.RPT

2.3.1.2. FORM/CLOSE

The FORM/CLOSE command closes the current report output
file and releases it NOTE: Nothing can be done with the
report file at the VMS/DCL level until FORM/CLOSE has been
issued. This is a result of the fact that Multi-User keeps the
report file open until the FORM/CLOSE is issued.

Parameters:
none
Required Privileges:
ALL (all users)
See Also:

DESC(ribe) command
FIND command

K-Base Final Report
Al4



Example:

MONITOR> FORM/CLOSE
Kbase Format Close

2.3.1.3. FORM/SHOW
The FORM/SHOW command disglays the current state of the

report file and associated list of field names to be included in

the report. If no report file is currently open, a message to that
effect is displayed.

Parameters:
none
Required Privileges:
ALL (all users)
See Also:

FORM/OPEN command
FORM/CLOSE command
DESC(ribe) command
FIND command

Example:

MONITOR> FORM/SHOM

Report in progress:

Outfut filename: GLOBAL.RPT

Field name List: NAME ,PROJECT ,MOD

K-Base Final Report
Al-5



2.3.2. FIND_FILES Commands

The FIND commands are designed to assist in locating files in the
Multi-User environment by performing contextual and global
searches of the context.

2.3.2.1. FIND/CONTEXT part_spec

The FIND/CONTEXT command is essentially the same as the
Multi-User DIR command in that it searches up the context tree
from the current default domain looking for files which match
the given part spec. The significant differences between
FIND%ON XT and DIR are:

(1) FIND/CONTEXT locates every occurrence of each file
n}'ﬁﬁl&ing the part_spec, tagging the hidden occurrences as
L 1 enl

(2) FIND/CONTEXT will send its output to the currently open
report file if one is currently open.

The product of the FIND/CONTEXT command is an
alphabetical list of all filenames in the current context which
match the given part _spec. If more than one occurrence of a

iven filename is found in the context, each occurrence is listed
in order of occurrence in the context. Each occurrence after the
first is tagged with "*hidden" to emphasize that it is obscured
from view in the current context by another file of the same
name.

2.3.2.2. FIND/GLOBAL part_spec

The FIND/GLOBAL command searches down the context
hierarchy for all files matching part_spec. This search begins in
the current default domain and proceeds to each tree of
domains which is attached to the default domain. The order of
domain searches is identical to the order of the list of domains
provided by a command of the form "LCSF
<current_domain>".

The product of this command is an alphabetical listing of
occurrences of all files located which match the given part_spec.
If more than one file is located with a given name, then an
indentation scheme is used to show the logical dependencies
between files with that name. There is a 1%1 ical dependence
between two occurrences of a filename if one file is a
descendant of the other in the context structure tree. The idea
here is that two occurrences of a given part name are really not
related to one another if they do not share a common
contextual ancestor.

K-Base Final Report
Al-6



Parameters:
part_spec

a VMS filename which mag include any valid
rd characters (e.g. FIND *.PRI).

Privileges Required:
ALL (all users)
See Also:
FIND command

DE}S{ﬂribe) command
FO command

Example: A Contextual FIND Command

wildca

MONITOR> SETP LEVEL1 2
MONITOR> FIND/CONTEXT *.PRI

------ LIST OF PART NAMES WITH OVERLOADING----
<PART_NAME> <DOMAIN_NAME>
X.PR1  LEVEL1 2

X.PRI *hidden LEVELO
Y.PRI LEVEL1_2

NOTE: & REPRESENTS FOREIGN REFERENCE

Example: A Global FIND Command

MONITOR> SETP LEVELO
MONITOR> FIND/GLOBAL *.PRI

----- GLOBAL LIST OF PART NAMES WITH OVERLOADING----
<PART_NAME> <LVL> <DOMAIN_NAME>

X.PRI  0: LEVELO
X.PRI_ 1: LEVEL1 0
X.PRI  2: LEVEL1_
X.PRI  2: LEVEL1TO
X.PRI  1: LEVEL] 1
X.PRI  1: LEVEL1T1
X.PRI  1: LEVEL1Z2
Y.PRI  0: LEVEL1 0
Y.PRI  1: LEVEL1 0 0
Y.PRI  1: LEVEL10_1
Y.PRI  0: LEVEL1 171
Y.PRI  0: L1.1.000
Y.PRI  O: LEVE[1Z2

NOTE: @ REPRESENTS FOREIGN REFERENCE

K-Base Final Report
Al-7




2.3.3. DESCRIBE_FILE

The DESC command allows the user to perform K-Base data
retrievals from PLAID part description files. The user may qualify
data retrieval by two regular expressions: one which matches field
names, and one which matches the contents of a field whose name
has previously been matched.

The listing may be Herformed either contextually or globally. The
contex search follows the normal part-name resolution strategy,
searching from the current domain toward the root of the

hierarchy; the global search proceeds from the current domain
toward the leaves of the hierarchy tree.

Modifiers

/CONTEXT - Performs a contextual search. (Default)
/GLOBAL - Performs a global search.

Parameters
PART_SPEC
Specification(s) for files to be retrieved. May be either a
single file specification or a comma-delimited list of file

specifications. Each specification should be a standard
S file specification; wild-cards are allowed.

FIELD_NAME_SPEC (optional)

A UNIX-style regular expression matching one or more
description file tield names.

CONTENT_SPEC (optional)

A UNIX-style reqular expression matching the contents
of any of the fields matched by FIELD _NAME_SPEC.

See Also

FORM command
FIND command

Examples: DESC/CONTEXT

This example generates a contextual report of all fields of all
primitives named X.PRI.

K-Base Final Report
Al-8



MONITOR> FORM/OPEN CONTEXT.RPT ALL

K-Base Format Omn

MONITOR> DESC/CONTEXT X.PRI ALL
K-Base Deccrlbe Context

Part_s X.PRI

Field Name _Spec: all
Content_Spec:

MONITOR> FORM/CLOSE

K-Base Format Close

MONITOR> STYPE CONTEXT.RPT

Domain: LEVEL1_0_0 Desc_name: X.PDF

NAME:: X.PRI

529&?:: 17-APR-1989 18:15:37.78  [300,300]
EZPROJECT-: DONALDSDUA1 : [GALLAWAY .PLAID . LEVEL1_0_0]
::géc:: {300,300]

¢:DESC::

CONTENTS:: Rev:E UOM: In. Space used: 5.95%
Object Count: 1
Name code Description Area Volume 0k?
22325(52) Milled solid 26.7462427.11373 YES
Cen.: 0.000000.000001.00000
Min.:-1.00000 -1,000000.00000
Max.: 1.000001.000002.00000
::VOLUME::7.11373 cu. In.
$:AREA:: 26.7424, sg In.
$:M0D::17-APR-1989 18 16:30.72  [300,300)

SINAME:: X.PRI

: CREATED:: 17-APR-1989 18:15:37.78  [300,300)
:tACCOUNT :

..5?8JEC};6 DONALDSDUA1 [GALLAWAY .PLAID.LEVEL1_0]

::OESC::
::CONTENTS:: Rev:E UOM: In. Space used: 5.95%
Object Count: 1
Name code Description Area Volume O
g:géE(SZ) Milled solid 26. 742427 11373 YES
Cen.: 0.000000.000001.00000
Min.:-1.00000 -1.000000.00000

Max.: 1.000001.000002.00000
::VOLUME::7. 11373 cu. In.
.:AREA.. 6.74242 s
$:MOD::17-APR- 1989 18: 16 05 07 {300,3001

DINAME:: X.PRI!
::CREATED:: 17-APR-1989 18:15:37.78 [300,300)
s 2ACCOUNT: :
$:PROJECT:: DONALDSDUA1: [GALLAWAY.PLAID.LEVELO]
:-UIC.. [300,300]

::DESC::
1:CONTENTS:: Rev:E UOM: In. Space used: 5.95%
Object Count: 1
Name code Description Area Volume 0
:nge(SZ) Milled solid 26. 742427 11373 YES
2:RA 15
Cen.: 0.000000.000001.00000
Min.:-1.00000 -1.000000. 00000

Max.: 1.00000%.000002.00000

tVOLUME: :7. 11373 cu. ln.

:'AREA:: sg
MOD::17-APR- 1989 18 15:51.7

[300,3001

K-Base Final Report
Al-9







Appendix 2 — Updated DMC Documentation
1. Updated DMC Routine Documentation.

Appendix two covers the areas of Chal?é]e for DMC. There are new and
modified routines for accessirlﬁ the worktile and part nodes. There are new
and modified commands for the user.

1.1 DMC Workfile Access Routines.

The DMC program uses a workfile to store the assembly and
subassembly files (PLAID files with extension ‘COG’) and to store the
primitive object definition files (PLAID files with extension ‘PRI') while
a_user is creating, editing or reviewing assemblies and subassemblies.
These files are copied into the work file area when they are referenced
by other files or when they are selected directly by the user.

At the fprogram level, access to these work file components is done via
a set of library routines (in DMC000.OLB). The following is a list of the
routines and description of their function. The routines are written in
Fortran so as to be compatiable with earlier PLAID modules, but they
could be called from other languages via ‘wrapper routines.

1.1.1 c7init

Function:
Initialize work file access and buffer areas.

Parameters:
none

1.1.2 c7look( assy, part, ier )

Function;

Inquire in the work file for the existence of the given assembly
or part. If the part name is blank then only the existence of the
assembly is performed.

Parameters:
assy = c*(*). Assembly name.(in)
part = c*(*). Part name.(in)

ler i*2. Error code.(out)
0 = ok

>0 = not found
1.1.3 c7qpar( assy, part, ier )

Function:
Query the work file for the existence of the given part.

K-Base Final Report
A21



Parameters:
assy
part
1ler

c*(*). Assembly name.(in)
c*(*). Part name.(in)
i*2. Error code.(out)

0 = Part found

18 = Part Not found

1.1.4 c7qass( assy, ier )

Function:
Query the work file for the existence of the given assembly.

Parameters:
assy = c*(*). Assembly name.(in)
ier’ = i*2 Error code.(out)

0 = ok
6 = Assembly not found

1.1.5 c7make( assy, part, ier )
Function:

Create an assembly or gart. If the assembly does not exist then
the assembly will be created before the part is created (if given).

Parameters:
assy = C"E" . Assembly name.(in)
part = c*(*). part name.(in)
ler = i*2 Error code.(out)

0 = ok
>0 = create error

1.1.6 c7read( assy, part, ier )

Function:

Read the given assembly or part from the work file into the
current record buffer.

Parameters:
assy = c* *;. assembly name.(in)
part = c¢*(*). part name.(in)

ler i*2. error code.(out)
0 = ok

>0 = read error
1.1.7 c7writ( assy, part, ier )
Function:

Write the current record buffer for the given assembly/part
name to the work file.

K-Base Final Report
A2-2



Parameters:
assy = c* ";. assembly name.(in)
part = c*(*). part name.(in)
ler =i*2e

rror code.(out)
0 = ok
>(0 = write error

1.1.8 c7kill( assy, part, ier )
Function:

Delete the given assembly/part from the work file. If deleting an
assembly, then all its parts wid also be deleted.

Parameters:
assy = c‘ﬁ‘g. assembly name.(in)
part = c*(*). part name.(in)
ler = i*2 error code.(out)

0 = ok
>0 = delete error

1.1.9 c7maka( assy, ier )
Function:

Create assembly in the work file. The assembly will have no
parts.

Parameters:
assy = c*(*). Assembly name.(in)
ier = i*2 Error code.(out)

0 = ok
11 = create error

1.1.10 c7puta( assy, ier )

Function:

Write the current record buffer to the named assembly in the
work file.

Parameters:
assy = c*(*). assembly name.(in)
ier =i*2 errorkcode.(out)
0=o

>0 = write error
1.1.11 c7geta( assy, ier )

Function:
Read the given assembly into the current record buffer.

K-Base Final Report
A2-3



Parameters:
assy = c*(*). assembly name.(in)
ier” = i*2 error code.(out)
0 = ok
>0 = read error

1.1.12 c7dela( assy, ier )

Function:

Delete the named assembly from the work file. The assembly
record is not removed from the file but is ﬂahgiged as deleted. The
parts records, however, are removed from the file.

Parameters:
assy = c*(*). assembly name.(in)
ier’ = i“zoerrorkcode.(out)
=0

>0 = delete error
1.1.13 c7makp( assy, part, ier )
Function:

Create the named %art in the work file. The record buffer for
this part is assumed to be properly initialized.

Parameters:
assy = c* ”g. assembly name.(in)
part = ¢*(*). part name.(in)
ier = i*2. error code.(out)

0 = ok
>0 = create error
20 = part already exists

1.1.14 c7getp( assy, part, ier )

Function:
Read the given part record into the current record buffer.

Parameters:
assy = c* ";. assembly name.(in)
part = c¢*(*). part name.(in)
ler = i*2. error code.(out)

0 = ok
>0 = read error

1.1.15 c7putp( assy, part, ier )

Function:
Write the current record buffer into the name part record in the
work file.

K-Base Final Report
A24



Parameters:

assy = c”ﬁ”g. assembly name.(in)
part = c*(*). part name.(in)
ler =

i*2. error code.(out)
0 = ok
>0 = write error

1.1.16 c7delp( assy, part, ier )

Function:

Delete the named part from the work file. The part record in
the work file is removed from the file and not flagged as with the
assembly records.

Parameters:
assy
part
1er

c
c*(*). part name.(in)
i*2. error code.(out)
0 = ok
>0 = delete error

* :; assembly name.(in)
e

1.1.17 c7nxta( assy, ier )

Function:
Read the next assembly in sequence from the work file.

Parameters:
assy = c¢*(*). assembly name.(in)
ier’ = i*2. error code.(out)
0 = ok
>0 = read error
-1 = end of file

1.1.18 c7nxtp( assy, part, ier )

Function:
Read the next part under the given assembly. Routine returns
error conditions for end of assembly, as well as, end of file.

Parameters:
assy = C*E";. assembly name.(in)
part = ¢*(*). part name.(in)
ler = i*2. error code.(out)
0 = ok
>0 = read error
-1 = end of file

-2 = end of assembly

1.1.19 c7next( assy, part, ier )

Function:
Read the next assembly or part from the work file.

K-Base Final Report
A25



Parameters:

assy =c¢* *g. assembly name.(in)
part = c*(*). part name.(in)
ler = i*2 error code.(out)

0 = ok

>0 = read error

-1 = end of file

-2 = end of assembly

1.1.20 c7pbuf( record, 1)

Function:

Store the given record area into the current record buffer for
the work file. If the current record buffer is larger than the specifed
length the input _record, the record buffer is zeroed filled. Current
record buffer in 512 bytes (256 words).

Parameters:
record = i*2. Record area to store.(in)
1 = i*2. Length of record area in
words.(in)

1.1.21 c7gbuf( record, 1)

Function:

Copy the contents of the current record bufferinto the given
record area up to the given length. If the record buffer is smaller
than the receiving buffer then the receiving buffer is zeroed filled.

Parameters:
record(l) = i*2. Receiving record area.(out)
1 = i*2. length of record area in

words.(in)

1.1.22 c7stat( istat )

Function:
Returns the current status field in the current record buffer. The
status currently has meaning for assembly header records only.

Parameters:
istat = i*2.5tatus.(out)
= no change
= modifie
2 = deleted

1.1.23 c7flag( assy, istat )

Function:
Update the current status of the given assembly.

K-Base Final Report
A2-6



Parameters:
assy = c*(*). Assembly name.(in)
istat = i*2. New status.(in)
0 = not modified
1 = assembly modified
2 = assembly deleted

1.1.24 cZclea

Function:

Delete all the current assemblies and parts in the work file.
Only assembly and part records are effective. All the records are
removed from the work file (not flagged).

Parameters:
none

1.1.25 c7file( name, ier )

Function:
Create an indexed file for storing processed primitives
referenced by the current part structure tree.

Parameters:
name = c*(*). File name.(in
ier = i*2. Error code.(out
0 = ok
>0 = Fortran error code
1.1.26 c7clwf
Function:
Close the current work file.
Parameters:
none

1.1.27 c7keys( assy, part, key )

Function:

Given the assembly and part names, construct a valid record
key for the work file. Note: extensions on the assembly name, such
as .COG’ are not passed onto the key name.

Parameters:
assy = c*(*). assembly name.(in)
art = c*(*). part name.(in)
= c*(

*
ey c*(*). record key.(out)

K-Base Final Report
A2-7



1.1.28 c7noex( assy, name, ext )

Function:
Strip the extension, if any, from the given assembly name and
place results into a new new name.

Parameters:
assy = c*(*). assembly name.(in)
name = c*(*). New assembly name.(out)
ext = c*(*). Extension to strip.(in)

1.1.29 c7mkex( assy, name, ext )

Function:
Add the extension, if any, to the given assembly name and
place results into a new new name.

Parameters:
assy = c*(*). assembly name.(in)
name = c*(*). New assembly name.(out)
ext = ¢*(*). Extension to add.(in)

1.1.30 c7gcog( name )
Function:

Get the cog file name or assembly name from current record
buffer. The extension .COG’ is implied, so it must be appended
before using as a file name.

Parameters:

name = c*(*). Assembly or cog file
name.(out)

1.1.31 c7gpar( part )

Function:
Get the current part name from the current record buffer.

Parameters:
part = c*(*). Name of part.(out)

1.1.32 c7ppar( part )
Function:
Replace the current part name in the record buffer with the
given part name.

Parameters:
part = c*(*). New part name.(in)

K-Base Final Report
A28



1.1.33 c7vref( ref, type, ier )

Function:
Verify the given reference name as a valid reference and return
the type of reference if so.

Parameters:
ref = ¢(*). Reference name to check.(in)
type = i*2. type of reference, if
valid.(out)
1 = primitive
2 = assembly
3 = site
ier = i*2. Error code.(out)
0 = ok

26 = invalid reference
1.1.34 c7gref( ref )

Function:

Get the reference name from the current record buffer. Note:
the extension for the reference is preserved so as to permit type
checking.

Parameters:
ref = c*(*). reference name.(out)

1.1.35 c7pref( ref )

Function:
Replace the current reference name in the record buffer with
the new reference name.

Parameters:
ref = c*(*). New reference name.(in)

1.1.36 c7gmat( m )

Function:
Get the local transformation from the current record buffer. The
matrix is of the form:

m(3,5)
where

m(1,1) thru m(3,3) is rotation matrix,
m(1,4) thru m(34) is scaling
m(1,5) thru m(3,5) is translation
Parameters:

m(3,5) = r*4. Transformation matrix.(out)

K-Base Final Report
A2-9



1.1.37 c7pmat( m )

Function:
Replace the local transformation matrix in the current record
lt:hufffer with the given matrix. current record buffer. The matrix is of

e form:

m(3,5)

where

is rotation matrix,
is scalin

is translation

m(1,4) thru m(3,4
m(1,5) thru m(3,5

Parameters:
m(3,5) = r*4. New transformation
matrix.(in)

m§1,1§ thru m§3,3

1.1.38 c7grot( r )

Function:
Get rotation matrix component of part transformation from the
current record buffer.

Parameters:
r(3,3) = r*4. Rotation matrix.(out)

1.1.39 c7prot( r )
Function:
Put rotation matrix component of part transformation into the
current record buffer.

Parameters:
r(3,3) = r*4. Rotation matrix.(in)

1.1.40 c7gtra( t )

Function:

Get translation component of transformation from current
record buffer.

Parameters:
t(3) = r*4. Translation vector.(out)

1.1.41 c7ptra( t )

Function:

buffPut translation component of transformation into current record
er.

K-Base Final Report
A2-10



Parameters:
t(3) = r*4. Translation vector.(in)

1.1.42 c7gsca( s )
Function:
uﬂ:Get scaling component of transformation from current record
er.

Parameters:
s = r*4. scaling.(out)

1.1.43 c7psca( s )

Function:

bufPut scaling component of transformation into current record
fer.

Parameters:
s(3) = r*4. Scaling.(in)

1.1.44 c7gdsca( s )

Function:
Get differential scaling from current record buffer.

Parameters:
s = r*4. scaling.(out)

1.1.45 c7pdsca( s )

Function:
Put differential scaling into current record buffer.

Parameters:
$(3) = r*4. Scaling.(in)

1.1.46 c7gcol( color )

Function:

Get the color name from the current record buffer. The color
name is assumed to be a valid name taken from the current color
name file in the Plaid system.

Parameters:
color = c*(*). Color name.(out)

1.1.47 c7pcol( color )

Function:
Replace the color name in the current record buffer with the

K-Base Final Report
A2-11



given color name. The color name is assumed to have been
validated.

Parameters: )
color = c*(*). New color name.(in)

1.1.48 7pdesc( desc )

Function:
Put part description in current record buffer.

Parameters:
desc = c*(*). Description.(in)

1.1.49 c7gdesc( desc )

Function:
Get the part description from the current part record buffer.

Parameters:
desc = c¢*(*). Description.(out)

1.1.50 c7gtyp( type )

Function:
Get the reference tyﬁe of the reference name in the current
record buffer. Currently there are valid types.

0 = neither

1 = primitive

2 = assembly

3 = site point

4 = eye point

5 = general reference point
Parameters:

type = i*2 type code.(out)
1.1.51 c7newp( part )

Function:

Initialize the current record buffer to be new part record. The
record buffer is zeroed out, then updated with the given part
name, a null reference (spaces), the identity transformation and the
color “white’.

Parameters:
part = c(*). New part name.(in)

K-Base Final Report
A2-12



1.1.52 c7pad( s, 1)

Function:
Replace all characters below 32 and above 127 ascii with spaces.

Paral({leters: d.(ivout
s = ¢(*) name to pad.(in/out
l ) =( z*z lengthpof name.(in)

1.1.53 c7sbuf

Function:
Save the current record buffer into an alternate record buffer
area.

Parameters:
none

1.1.54 c7rbuf

Function:
Replace the current record buffer with the record buffer
previous saved into thealternate record buffer area. (see c7sbuf)

Parameters:
none

1.1.55 ¢7gclr( scolor )

Function:

Get the color name from the color stack. The color name is
assumed to be a valid name taken from the current color name file
in the Plaid system.

Parameters:
scolor= c*(*). Color name.(out)

1.1.56 c7pcam( fov, aspect )

Function:

Update the field of view and aspect ratio of the camera
definition. The field of view of the camera definition is the angle in
degrees between the vertical frame size and the focal point. The
aspect ratio is (horizontal frame size) / (vertical frame sizeg).

Parameters:
fov = r*4. Field of view in degrees.(in)
aspect = r*4. Aspect ratio;a(lin)
Horz / Vertic

K-Base Final Report
A2-13



1.1.57 c7gcam( fov, aspect )

Function:

Get the current camera definitions. The field of view of the
camera definition is the angle in degrees between the vertical frame
size and the focal point. The aspect ratio is (horizontal frame size) /
(vertical frame size). If the camera definition was not user defined,
the default values will be returned.

Default:
fov = 50.0 degrees
aspect =10
Parameters:
fov = r*4. Field of view in degrees.(out)
aspect = r*4. Aspect ratioélout)
Horz / Vertic

1.2 DMC Assmbly Node Access Routines.

Assemblies and subassemblies are a collection of nodes which describe
objects and their relationships with other objects. At the program level,
access to the components in a node is done via a set of library routines
from DMCO000.OLB. These routines are written in Fortran to be
compatiable with older PLAID modules, but can be callable from other
langauges via a set of ‘wrapper routines’.

The node is stored as 512 bgvte fixed length) record. These routines
access this record via a record butfer which is assumed to contain the
currently selected part (see DMC work file access routines). The
routines do not perform any input or output to a file, they change
only the record buffer. It was intended that the routines "hide the
details of the record buffer description.

1.2.1 j7init( type )

Function:
Initialize the joint definition in the part record buffer.

Parameters:
type = i*2. Sets the jloint type field.(in)
0 = disables joint
1 = joint is enabled

1.2.2 j7iaor()

Function:
Initializes the axes of rotation to

#1 = <0,0,0> <1,0,0> x axis
#2 = <0,0,0> <0,1,0> y axis
#3 = <0,0,0> <0,0,1> z axis

K-Base Final Report
A2-14



in the current part record buffer.

Parameters:
none

1.2.3 j7pcode( code )

Function:

Put the given joint type code in current record buffer. The type
code is use enab{e/disa e joint information. Will be later used to
provided a classification of joint information.

Parameters:
code = i*2. Type cod%in)
0 = joint information not
initialized (disabled)
1 = joint is enabled and
joint information is valid.

1.2.4 j7gcode( code )

Function:
Get the joint type code from current record buffer.

Parameters:
code = i*2. Joint type code.(out)
0 = joint info not initialized
1 = has joint information

1.2.5 j7prlc( ano, switch )

Function:
Turn rotation limit checking on or off.

Parameters:
ano = i*2. Axis id number.(in)
switch = i*2. Switch.(in
0 = limit checking off
1 = limit checking on

1.2.6 j7grlc( ano, switch )

Function:
Get the rotation limit checking switch.

Parameters:
ano = i*2. Axis id number.(in)
switch = i*2. Switch.(out)
0 = limit checking off
1 = limit checking on

K-Base Final Report
A2-15



1.2.7 j7pooc( switch )

Function:
Turn order of rotation checking on or off.

Parameters:
switch = i*2. Switch.(in)
0 = order checking off
1 = order checking on

1.2.8 j7gooc( switch )

Function:
Get the order of rotation checking switch.

Parameters:
switch = i*2. Switch.(out)
0 = order checking off
1 = order checking on

1.2.9 j7ioor()
Function:
Initialize the order of rotation field in the current part buffer.
The order is setto 1, 2 and 3 or x, y and z.

Parameters:
none

1.2.10 j7poor( order )
Function:

Put the order of rotation into the current part record buffer. For
example, the order is specified in the array parameter as

order(1) = 3
order(2) = 1
order(3) = 2

which corresponds to the order of rotation Z, X and Y.

Parameters:
order(3) = i*2. Order array.(in)

1.2.11 j7goor( order )

Function:
Get the order of rotation from the current part record buffer.

Parameters:
order(3) = i*2. Order of rotation.(out)

K-Base Final Report
A2-16



1.2.12 j7paor( number, v1, v2 )

Function:

Put the axis of rotation in the current part record buffer. The
axis of rotation is identified by an axis id number. The maximum
number of axes is 3.

Parameters:
number = i*2. Axis id number.(in)
1,2o0r3
vi(3 = r*4. Origin of axis.(in)
v2(3 = r*4. End point of axis.(in)

1.2.13 j7gaor( number, v1, v2 )

Function:

Get the specified axis of rotation from the current part record
buffer.

Parameters:
number = i*2. Axis id number.(in)
1,2o0r3
v1(3 = r*4. Origin of axis.(out
v2(3 = r*4. End point of axis.(out)
1.2.14 j7purl( limit )
Function:

Put the upper rotation limits for x,y,z or the three axes of
rotation into the current part record buffer. The limits are in

degrees.
Parameters:
limit(3) = r*4. Ugfer) r((_)tz)ltion limits
eg).(in
1.2.15 j7gurl( limit )
Function:

buffGet the upper rotation limits in degrees from current part record
er.

Parameters:
limit(3) = r*4. Upper rotation limits
F(feg).(out)
1.2.16 j7plrl( Limit )
Function:

Get the lower rotation limits in degrees from the current part
record buffer.

K-Base Final Report
A2-17



Parameters:
limit(3) = r*4. Lower rotation limits
(deg).(in)

1.2.17 j7gir( limit )

Function:
buffGet the lower rotation limits in degrees from current part record
er.

Parameters:
limit(3) = r*4. Lower rotation limits
(deg).(out)

1.2.18 j7prot( angles )

Function:
Put the rotation angle accumulations in degrees into the current
part record buffer.

Parameters:
angles(3) = r*4. Rotation angle
accumulations.(in)

1.2.19 j7grot( angles )

Function:
Get the rotation angle accumulations in degrees from the
current part record buffer.

Parameters:
angles(3) = r*4. Rotation angle
accumulations.(out)

1.2.20 j7aorm( axis, angle, r )
Function:

Compute the rotation matrix using the given axis id number
and the given angle of rotation.

Parameters:
axis = i*2. Axis id number.(in)
angle = r*4. Angle of rotation in
degrees.(in)

r(3,5) = r*4. Rotation matrix.(out)
1.2.21 j7rlim( ano, angle, diff, ier )

Function:
Check rotation limits.

K-Base Final Report
A2-18



Parameters:
ano = i*2. Id number of axis.(in)
angle = r*4. Angle to check in degrees.(in)
diff = r*4. Angle change.Sout)
Set to upper or lower limit
when angle exceeds them.
ier = i*2. Error code.(out)
0 = ok
69 = upper limit exceeded
70 = lower limit exceeded

1.2.22 n7pshow( code )

Function:
Switch the "show site" on/off. If switch is off site will not be
displayed. The default is off.

Parameters:
switch = i*2. Switch.(in)
0 = do not display site.
1 = display site.

1.2.23 n7gshow( switch )

Function:
Get the "show site" switch.

Parameters:
switch = i*2. Switch.(out)
0 = do not display site
1 = display site

1.2.24 n7pdiff( code )

Function:
Switch the "show site" on/off. If switch is off site will not be
displayed. The default is off.

Parameters:
switch = i*2. Switch.(in)
0 = disable differential
scaling
1 = enable differential scaling

1.2.25 n7gdiff( switch )

Function:
Get differential scaling switch.

Parameters:
switch = i*2. Switch.(out)
0 = off
1 = on

K-Base Final Report
A2-19



1.2.26 n7pcam( code )

Function:
Flag node as having a camera or eye definition defined by the
user.

Parameters:
switch = i*2. Switch.(in)
0 = no user defined camera
definition
1 = user defined camera definition

1.2.27 n7gcam( switch )

Function:
Get camera definition flag. If the flag is set then camera
definition is user defined.

Parameters:
switch = i*2. Switch.(out)
0 = no user defined definition
user defined definition

1.2.28 n7pmodify( switch )

1

Function:
buffPut the value of the modified/created switch into part record
er.

Parameters:
switch = i*2. Switch value.(in
0 = not modified/created
1 = modified/created

1.2.29 n7gmodify( switch )

Function:

Get the value of the modified/created switch from part record
buffer.

Parameters:
switch = i*2. Switch value.(out)
0 = not modified/created
1 = modified/created

K-Base Final Report
A2-20



2. Transformation Operations.

The connecting, attaching and detaching of objects within DMC requires
the comdputation of a rigid body transformation for one or both the objects
involved (operations are pairwise). Each part can be located anywhere in
part structure tree and must have a common root.

Given these conditions, each part in the tree has three transformations
associated with it; a local transformation (stored with the part), a global
transformation, computed from the transformations of parts up the tree
and a composite transformation, computed from the local and global

transformations. The transformation operations of connecting, attaching
and detaching use these three transformations.

2.1 Affine or rigid body transformations.
The components of an affine transformation system are
R = rotation matrix for attitude. (3x3)
t = translation vector for positioning. (1x3)
$ = scaling for size. (scalar)
To transform a point
p = [xyz] top’'= [X'y' 2]
using an affine transformation
PP =p*R*s+t

To concatenate affine transformations, let G and L be affine
transformations such that L is transformed by G

(Ri*s .+t )*Ra*se + tq

Removing parenthesis

Ro*Ra*s *sg+t *Rs*se + 1o
then

Re =R.*Rs

tt =tt*Ra*sa+ts

S¢ =8 *§g

form the components of a new composite affine transformation C
which is the concatentation of G and L

K-Base Final Report
A2-21



2.2 Connection operation.
Let site A be defined by the affine transformation
Ra*sa+1a
and site B be defined by the affine transformation
Ra*ss +1s

To connect site A to site B, a new transformation must be computed

which will transform site A to site B (a three point to three point
transformation).

1. Undo the affine transformation currently defined by site A using its
inverse

R, = Rra (transpose of RA)

W o=

S =1/8a

The inverse affine transformation of a point p’ at site A is
P =(p'-tk)*R'a*s's

2. Apply to site A the transformation currently defined by site B. The
transformation of a point p at site A to site B is

PP =p*Rs*sg+ts

3. The composite transformation for connecting site A to site B is
derived from

[(P-t) *RWa*sW]*Re*Ss +1s
[P*RIL*S-ta*R1.*s", ] *Rg*sp + 15
P*RI.*S W *Rpg*Sg-ta*R1,*S1,*Rg *Sg + 13
where

R =R%*Rs

t=-ta*R*s1Wu*Reg*sp + 15

S=8"*Sp

K-Base Final Report
A2-22



are the elements of the transformation for site A such that site A is
connected to site B.

2.3 Detach Operation.

The detach operation permits removal of part A from its current
assembly sub-tree and attachment to the sub-tree of another assembly.
The detach operation is functionally the same as the attach operation,
but the objects of the operation are different. The part A is detached to
an assembly B rather than to part within assembly B.

Given

Ra * Sa + ta = transformation of part A.

Rg * g + § = transformation of assembly B.
then

Re =Ra*Ri%g*sa*st

te =(ta-t) *R%

Sc =Sa*s'

are the components of the new affine transformation for part A when
included as a part within the assembly B.

2.4 Attach Operation.

The attach operation permits the joining of part A at site A with part B
at site B. The attach operation requires that the original attitude and
position of part A must be preserved at the moment of attachment to
part B; but the transformation of part A will, however, be defined

relative to the global or assembly transformation for part B. This is in
contrast to the connect operation which permits modification of the

attitude and position to achieve connection of part A at site A to site B.
The attach operation is the more general form of the detach operation.

Given

Ra * sa + ta = global transformation for part

.

Rsa * Ssa + tsa = global transformation for
site on part A.

Rs * sg + ts = global transformation for part
B.

K-Base Final Report
A2-23



R * Sig + tis = local transformation for
site on part B.

A global transformation is defined in the world coordinate system of
the root assembly referencing both parts A and B. A local
transformation is defined relative to the coordinate system of the
assembly containing the part or site.

Then
Re =R.*R'
tc =ta*Ra*R%*Sea*S's + s

Sc =Ssa*ST

are the components of the new affine transformation for part A relative
to the assembly for part B, such that site A is attached to site B.

K-Base Final Report
A2-24



3. New and Updated User Commands for DMC.

User commands for DMC have been updated and several new commands
have been added to permit the utilization of new geometric and symbolic
constructs. The user may find these commands via the online help facility
gf’ DMC (the HELP command) or by issuing the command followed by a

3.1 ATTACH
The ATTACH command causes the specified part to become a part in
the assembly at the specified site. The command assumes that both part
and site are part of some larﬁer assembly selected with the OPEN
command. After the command has successfully executed, the site name

becomes the name of the attached part and the site reference is
replaced with the reference of the attached part. The attached part’s

original position in the assembly tree becomes a site with the original
part's name. Both part and site must already exist. (see DETACH
command)

Form:
ATTACH part sitel site2
part The part to be attached.

sitel  Attachment site on part to
mate with site2

site2 The destination site to mate
with sitel

3.1.1 Example
Assume the following part tree PLBAY.COG
PLBAY.LOAD with reference LOAD.COG
PLBAY.RMS with reference RMS.COG

LOAD.S1 with reference SITE
(this part is a site definition)

LOAD.S2 with reference LOAD.PRI
within RMS.COG part tree is the part

J7.ENDEFF with reference SITE
(this part is a site definition)

To attach PLBAY.LOAD to the end effector site ]J7Z.ENDEFF on the
RMS, enter the command

K-Base Final Report
A2-25



ATTACH PLBAY.LOAD LOAD.S1 J7.ENDEFF

If successful, the part J7.LOAD will be created using the part
definition PLBAY.LOAD. The part PLBAY.LOAD within PLBAY
will become a site definition (its reference will be changed from
LOAD.COG to SITE). The part J7.ENDEFF will remain the same.
Note, ifdthe part J7Z.LOAD already exists, then it will deleted then
recreated.

3.2 DETACH

The DETACH command permits the removal of a part from its current
assembly and attached to another assembly. If the receiving assembly is
not specified, it will be placed in currently opened assembly. The
DETACH command is functional the same as the ATTACH command,
except the objects of the operation are different (see ATTACH
command).

Form:
DETACH part [assembly]
part The part to be detached.

assembly The assembly to be attached
to.(optional)

3.2.1 Example
Usage:
DETACH ]J7.LOAD BASE
Will cause the part named J7.LOAD to be detached from the

assembly J7 and become the part BASE.LOAD in the assembly
BASE. J7.LOAD in the assembly IJ)7 will be redefined as a site.

3.3 DISPLAY

The DISPLAY command permits the reviewing of display files created
in the DISPLAY module. The command has a set of options to control
aspects of the display. The valid options are ZOOM, STATUS, KEEP,
DASH, NODRAW and CONFLICT. Up to four optionscan selected at
the same time.

Form:

DISPLAY file [option1..4] [scale]

K-Base Final Report
A2-26



file The name of a display file.
The implied extension is .DSP".

optionl..4 One to four of the display
options.

scale Optional scale factor.

3.3.1 options

The options control display file fpresentation. Up to three options
can be selected at the same time for a given command line.

ZOOM Fermits the definition of a zoom area prior to drawing a
display file.

glEEP disables the clearing of the screen prior to drawing a display
e.

STATUS Llpermits the output of the status information about the
display file.

DASH permits the display of hidden lines as dashed lines in hidden
line display files.

CONFLICT enables the displaying of conflict points in hidden line
display files.

NODRAW disables drawing of the display file and outputs status
information only.

3.3.2 Example
Usage:
DISPLAY SWITCH STATUS ZOOM

The display file SWITCH.DSP will be drawn using a zoom area
definition. The status information will also be output.

3.4 CLEAR

The CLEAR command is used to initialize all or portions of the
transformation associated with the named part or with the part
currently being edited. It can also be used to initialize the joint
information for a part. In addition, the reference and color names
associated with the part can also be cleared.

Form:

CLEAR [part] option

K-Base Final Report
A2-27



part The name of the part to be cleared.

option The keywords ROT, TRA, SCA, ALL, REF
or COL

3.4.1 ALL

The ALL keyword causes rotation angles to be set to zero, the
translation values to be set to zero and the scale to be set to one.

3.4.2 ROTATE

The ROT keyword causes the rotation angles for the named part to
be set to zero. All three angles for the e axes are cleared. The
joint angle accumulators are also set to zero (see JOINT command).

3.4.3 TRANSLATE
The TRA keyword causes the translation values for the named part

to be dset to zero. All three translation values for the three axes are
cleared.

3.4.4 SCALE

The SCA keyword causes the scale value for the named part to be
set to one.

3.4.5 URL

The URL keyword causes the upper rotation limit values to be set
to zero (see f'O“iNT command).

3.4.6 LRL

The LRL keyword causes the lower rotation limit values to be set to
zero (see JOINT command).

3.4.7 AXIS

The AXIS keyword causes the user defined axes of rotation to be
set to their initialized state (see JOINT command).

Qxis_#l endpoints are set to (0,0,0) and (1,0,0) corresponding to the
axis.

Axis #2 endpoints are set to (0,0,0) and (0,1,0) corresponding to the
Y axis.

Qxis.#B endpoints are set to (0,0,0) and (0,0,1) corresponding to the
axis.

K-Base Final Report
A2-28



3.4.8 ORDER

The ORDER keyword causes the order of rotation to set to its
initialized state of 1, 2 and 3 (see JOINT command).

3.4.9 REFERENCE

The REF keyword causes the reference name for part to set to
spaces.

3.4.10 COLOR
The COL keyword causes the color name for the selected part to be
set to spaces. A color name set to spaces causes the selected part to

use any previously used color name for the part’s default color. The
global default color for all parts is WHITE.

3.5 CONNECT
The CONNECT command is used to mate the specified part and site to
another part and site. The translation and rotation components to
accomplish mating are computed using the site definitions (see SITE
command). Note that only the transformation of the first named part
is updated. The second part is assumed to be the fixed part.
Form:
CONNECT part-a site-a part-b site-b
part-a  The name of the part to be attached.
site-a The name of the site on part-a.

part-b  The name of the part to be attached to.

site-b The name of the site on part-b.

K-Base Final Report
A2-29



3.5.1 Example

The following sequence of commands are example session using the
CONNECT command.

* define assembly al with two parts P1 and P2
DEFINE A1.P1 A2.COG

DEFINE A1.P2 A3.COG

* define assembly a2

DEFINE A2P1 PART2.PRI

* define site on assembly a2

SITE A2.P2

* orient site

TRANSLATE A2.P2-100

ROTATE A2P2 Z 45

* define assembly a3

DEFINE A3.P1 PART3.PRI

* define site on assembly a3

SITE A3.P2

* orient site

TRANSLATE A3.P2 10 3 12

ROTATE A3.P2Y -90

* mate part p2 to pl in assembly al
PARTA=A1.P2

SITEA=A3.P2

PARTB=A1.P1

SITEB=A2.P2

CONNECT PARTA SITEA PARTB SITEB
* parta now has a new transformation mating it
to partb

3.6 DESCRIPTION
The DESCRIPTION command has two forms. The first is used to add a
description to the given part. The second form is used to add a
description to the description file corresponding the given Plaid data
file; or to edit all fields of the description file by spawning a VAX edit
session if the description argument is not given.
Form 1:
DES [part_name] ["description"]
part_name The name of the part to be described.

description The new description in double
quotes for the named part.
Max 78 char.

Form 2:

DES option file ["description”]

K-Base Final Report
A2-30



option The ke ords PRIMI IVE, COG, ARGE
or DISPLAY to indicate the Plaid data

file type.
file The name of a Plaid data file.
description Optional description of Plaid
data file in double quotes.
Max 78 char.

}ﬁf]not given a VAX edit session will be spawned to edit the description
e.

3.6.1 Example
Form 1:
DES PANEL.SWITCH "Panel light control switch"
EDIT PANEL.SWITCH
DES "Panel light control switch"
Form 2:
DES TARGET XYZ "This is my target file"

This command will replace or add the given description to the
gi(eYsiri Ptli?(\)n file XYZ.TDF which is associated with the target file

DES TARGET XYZ

This command will cause a VAX edit session to be spawned which
will allow editing of the description file XYZ.TDF which is
associated with the target file XYZ.TAR.

3.7 JOINT

The JOINT command is used to set the joint information for the
specitied part. The joint information consists of upper and lower
rotation limits, order of rotation specification, joint angles accumulators
and user defined axes of rotation.

Form:
JOINT part option [arguments]

partName of the part to receive joint
information.

K-Base Final Report
A2-31



option A keyword specifying which joint
P in}’;vnnatio};\ fie dsgare to u%dated.

args Variable length list of values to use for
updating depending on the option.

3.7.1 INIT

The INIT keyword causes the named part’s joint information to be
initialized.

Example:
JOINT assy.part INIT
3.7.2 ENABLE

The ENABLE keyword causes joint rotation limit checking to be
turned on. If no axis number is given then all axes will be enabled.

Example:
JOINT assy.part ENABLE axis_no
3.7.3 DISABLE

The DISABLE keyword causes joint rotation limit checking to be
turned off. If no axis number is given then all axes will be disabled.

Example:

JOINT assy.part DISABLE axis_no

3.7.4 STATUS

The STATUS keyword causes the named part’s joint information to
be typed on the console.

3.7.5 URL
The keyword URL causes the upper rotation limits of the named

part to be set to the given angles. The angles are assumed to be in
degrees.

Example:

JOINT assy.part URL x_angle y_angle z_angle

K-Base Final Report
A2-32



3.7.6 LRL

The ke%word LRL causes the lower rotation limits of the named
part to be set to the given angles. The angles are assumed to be in

degrees.

Example:
JOINT assy.part LRL x_angle y_angle z_angle

3.7.7 ORDER
The keyword ORDER is used to define the order in which rotations
are to be applied. The default order is 123. This order information
does not currently affect the rotations perform with the ROT
command as these operations can be performed in any order.

Deﬁnjn%an order of rotation causes the rotational order flag to be
set (see DISABLE and ENABLE)

Example:

JOINT assy.part ORDER XYZ

or

JOINT assy.part ORDER 1 2 3
3.7.8 DISABLE

The DISABLE keyword causes the rotational order flag to be
turned off (set to zero). The order of rotation is unchanged, but
order of rotation is not imposed.

3.7.9 ENABLE

The ENABLE keyword causes the rotational order flag to be set
(set to one). The order of rotation currently defined is in effect.

3.7.10 ROTATE

The ROTATE keyword is used to set the joint angle accumulators
to the given set of angles. The angles are assumed to be in degrees.
These accumulators are used for comparisons to the joint angle
limits. These joint angle accumulators are updated whenever a
rotation about a user defined axis occurs (see JOINT name AXIS
command form ).

Example:

JOINT assy.part ROT x_angle y_angle z_angle

K-Base Final Report

A2-33 0-1



3.7.11 AXIS

The AXIS keyword is used to define an axis of rotation (arbitrarily
placed in space). There can be up to three axes defined. The angles
applied to these axes are accumulated in the joint angle
accumulators for joint limit comparison if enabled.

Example:

JOINT assy.part AXIS number x,y,z x,y,z

number The id number of the axis.

x,y,2 The first endpoint or origin of axis.

x,y,2 The second endpoint of axis.

3.8 RMS

The RMS command ]l)rovides an interface to the RMS joint angle
computation routines. If the user has components currently defined in
the DMC work file which are also currently defined in the RMS joint
definition list (see RMS DEFINE), those parts can be optionall
updated with joint angles computed by S. (see RMS module
documents for details on RMS and joint angles). The command
hasseveral options and forms depending on the keyword used. The

IRIS interface can take a slightly different form of the RMS command.
(see IRIS-form) ,

3.8.1 IRIS-form

The IRIS interfaces with the RMS in a different manner to permit
utilization of hardware features available on it.

Form:
RMS al a2 a3 a4 a5 aéb [step]
al..a6 The joint angles in degrees.

step The number of steps for each joint
angle to reach the given location
and attitude.

3.8.1.1 Example

The IRIS form of the RMS command makes the following
assumptions

o DMC is in IRIS direct mode.

K-Base Final Report
A2-34



o The parts of the arm and their respective
axes are named

JIR4ony
J2.R6 on x
J3.R8 on x
J4.R10 on x
J5.R12 on y
J6.R14 on z

The command has optional step argument to provide movement
in small increments.

To get a series of RMS actions, a command file of the form
RMSITFxyzxyz

RMS SHY SHP ELP WRP WRY WRR 100

RMSITF xyzxyz

RMS SHY SHP ELP WRP WRY WRR 100

can be run.

3.8.2 ATF
The ATF keyword executes the RMS auto-trajectory function. The

auto-trajectory function generates a series o }oint angles over a
time period required to move the end effector of the arm from

the current location and attitude to a new location and attitude.
Form:
RMS ATF part steps [sub-steps][file]

part The name of the part to reach
with RMS.

steps The number of calls to ATF to reach
part.

K-Base Final Report
A2-35



sub-steps The number of steps to use for
positioning between each call
to ATF
(optional, default is 1.0).

file The name of a command file (.CMD’ )

to receive output of ATF (optional,
no default).

3.8.3 KDG

The KDG keyword is used to output a location and attitude for a

gwen set of Aoint angles. The command is for information only and
oes not update any parts or disturb the current RMS end effector
location and attitude or RMS joint angles.

Form:

RMS KDG anglel ... angleé

anglel..angle6 The six joint angles in degrees
8 & of]RMS ar%n. &

3.84 INIT

The keyword INIT clears all accumulated RMS joint angle values
and updates all parts specified in thejoint definition list.(see RMS
DEFINE)

Form:

RMS INIT

3.8.5 DEFINE

The DEFINE keyword is used to review and/or modify the current

joint definition [ist. A joint definition list is a list of the names and

axes for the joints in RMS. This list is used to select and update
arts if in the work area. If no arguments follow the keyword
EFINE then the current joint definitions are listed.

Form:

RMS DEFINE [DEFAULT]

DEFAULT The optional keyword causes the
current joint definition list to be
initialize with the default list.

or

RMS DEFINE joint_number joint_name joint_axis

K-Base Final Report
A2-36



joint_number The sequence number of the joint.
A AR
assembly.part
joint_axisThe axis of rotation for joint.
3.8.5.1 Example
To change the third entry in the current joint definition list
RMS DEF 3 J3.R8 X
To review current list
RMS DEFINE
To set list to default
RMS DEFAULT
The default list is
RMS DEF 1 JLR4 Y
RMS DEF 2 J2R6 X
RMS DEF 3 J3.R8 X
RMS DEF 4 J4.R10 X
RMS DEF 5 J5.R12 Y
RMS DEF 6 J6.R14 Z

3.8.6 ITF

The keyword ITF invokes the RMS joint angle routine. The
keyword is followed by the destination location and attitude. A part
name may be used in’ place of numeric values; in which case, the
location and the attitude of the part will be used. An optional site
name defined within the given part’s sub-assembly definition, can
be used for determining the location and attitude information send
to RMS. The optional keyword UPDATE causes immediate update
of the parts specified in the joint definition list(see RMS DEFINE)
The optional steps size value is used to increment the the joint
angles with positioning the end effector. This useful for smoothing
the motion for animation.

K-Base Final Report
A2-37



3.8.6.1 Explicit_values

This form of the RMS ITF command is used to input explicit
lc;gation and attitude information for positioning the end
effector.

RMS ITF x y z x y z [UPDATE](steps]

x y z The location to be reached by
the RMS

x y z The attitude, in degrees, of the
location.

UPDATE Optional keyword causing the
' immediate update of the parts
specified in the joint
efinition list.
(see RMS DEFINE)

steps Optional step size to use in moving
RMS end effector.

3.8.6.2 Symbolic_values

This form of the RMS ITF command permits the selection of
location and attitude information to be done symbolically with
the use of part names and site names.

RMS ITF part [site] [UPDATE][steps]
part The name of a part to reach with RMS.

site  Optional name of a site within in the
given part’s sub-assembly. The site
will used to determine position and
attitude of end effector of RMS.

UPDATE Optional keyword causing the
immediate update of the parts
specified in the Ig'oint definition
list.(see RMS DEFINE)

steps Optional step size to use in
moving RMS end effector.

3 Examples

The following are some examples of the use of the RMS ITF
command. Note, that when the UP arwent is specified it is
assumed that the user has input an S assembly into the

K-Base Final Report
A2-38



work file and the part names of the arm components have been
defined with the RMS DEFINE command.

1. Using explicit input

RMS ITF 9 628 -1090 0 0 0 up 10

This command will cause the RMS end effector to be positioned
at x=9, y=628 and z=-1090 with attitude x=0, y=0 and z=0.
The 'UP’ argument will cause the RMS arm components
defined with the RMS DEFINE command will be updated with

the appropriate joint angle information. The step size 10 will
used to update the joint angle information in 10 steps.

2. Using symbolic input
RMS group1 blkp2 up 5
This command will cause the RMS end effector to be positioned
at the location and with the attitude of the site BLKP2 in the

sub-assembly named GROUP1. The ‘up’ argument specifies that
the RMS arm components are to be updated in 10 steps.

3.8.6.3 Command_files

The RMS module routine returns the results in variables
defined in the DMC language processor. These variables contain
the joint angle changes from the previous RMS ITF command.
The variables are named

SHY=shoulder yaw
SHP=shoulder pitch
ELP=elbow pitch
WRP=wrist pitch
WRY =wrist yaw
WRR=wrist roll
A command file (call it MOVE.CMD) of the form
ROT J1.R4 Y SHY
ROT J2.R6 X SHP
~ROT J3.R8 X ELP
ROT J4.R10 X WRP

K-Base Final Report
A2-39



ROT J5.R12 Y WRY
ROT J6.R14 Z WRR

can be executed to position the RMS to the new position (from
its previous position). For a series of RMS actions, a command
file can be run with the following contents

RMSITFxyzxyz
RUN MOVE.CMD
RMSITFxyzxyz
RUN MOVE.CMD

where MOVE.CMD is the command file described above.

3.8.7 PLAID

The keyword PLAID sets the RMS system to interpret input values
and output values in the coordinate system used by Plaid.

Form:
RMS PLAID
3.8.8 ORBITOR

The keyword ORBITOR set the RMS system to interpret input
vall)ues and output values in the coordinate system used for the
orbitor.

Form:
RMS ORBITOR
3.8.9 STATUS
The keyword STATUS displays the current RMS joint angles.
Form:
RMS STATUS
3.8.10 UPDATE

The keyword UPDATE causes the ulfl\(}late of the parts selected from
the current joint definition list (see RMS DEFINE‘.)I.J

K-Base Final Report
A240



Form:

RMS UPDATE
3.9 SET

The SET command is used to chanEe various control values for the
RM%Z Srogr?hr/rﬁ. Currently some of SET options are applicable only to
e or IML

3.9.1 PERSPECTIVE
The PERSPECTIVE keword is used to set the viewing mode to
perspective projection. View point definitions of eye point and view
direction are used to control viewing. (See VIEW command)
Form:

SET PER switch
switchThe keywords ON or OFF.

3.9.2 SPEED
Form:
SET SPEED sl s2 s3
sl Rotation speed.(0to 1)
s2 Translation speed.( 0 to .01 )
s3 Scale speed.(0 to .01)
3.10 SHOW

The SHOW command permits the display of information about features
of DMC and Plaid depending on the options and arguments given to
the command. The information is displayed on the command console.

3.10.1 DESCRIPTION

The DESCRIPTION option is used to display the contents of the
description file corresponding to a given Plaid data file. The valid
Plaid data files have the extensions ".PRI’, *.COG’, ".TAR’ or ".DSP’ ,
the default extension is .COG".

Form:

SHOW DESCRIPTION data_file

K-Base Final Report
A241



data file The name of a Plaid data file.
- The default extension is .COG’.

3.10.2 PROJECT

The PROJECT option is used to display the current multiuser
project name and account name.

Form:

SHOW PROJECT
3.10.3 USER

The USER option is used to display the current multiuser account
information, such as priviledges, etc.

Form:

SHOW USER
3.11 SITE

The SITE command permits the definition of a part as a site. The
commggl% Ifzi’enotes the part as a site by setting the part reference to the
name .

A site is a location in space with a given attitude. Sites can be
translated and rotated (j:ust like a normal part. For example, sites are
used by the CONNECT command to mate two parts. A site can be
optionally visible (default is invisible).

Form:

SITE site [visibility]

site The name of the site. The site name
follows the same rules as a part name.

visibility The optional keywords ON or OFF to
control whether the site is shown.

3.11.1 Example
SITE site-x

The command creates a part defined as a site with name site-x. The
reference name will be the name SITE.

K-Base Final Report
A2-42



3.12 STATUS

The STATUS command is used to display the current environment of
the DMC program. It will show the name of the current default
assembly and current default part (if any).

Form:

STATUS
3.13 TARGET

The TARGET command is used to traverse the named assembly and
generate the named target file. The target file is used by the (fi’s lay
processor in the PLAID system to generate hidden line and hidden
surface views from various viewpoints. The target file contains all the
transformed primitives referenced by the given root assembly.

Form:
TARGET assembly target
assembly The name of an existing assembly.

target The name of a target file to
receive the output of the
traversal process. If thefile
already exists, the user will
be asked to continue.

3.14 VERSION

Output to the console the current version number of the DMC
program.

Form:
VERSION
3.15 VIEW

The VIEW command is used to modify the parameters for viewing an
object and/or to actually execute the” drawing process for an object.
There are two ways of 'viewing an object, viewing with perspective
projection and viewing with orthograhic projection. When viewing in
perscf)ective mode, the defining of an eye point and view direction are
used to establish a view point. When viewing in orthographic mode,
gredefined I(:_i.e. FRONT, RIGHT, etc.) and user defined (i.e. ROTATE,

RANSLATE, ZOOM, etc.) viewing specifications and directives are
used to establish a view point. ( Note, that the DRAW command is a
subset of the VIEW command in that it is not used to define eye points
and eye directions for perspective viewing, see DRAW).

K-Base Final Report
A243



3.15.1 Explicit-viewpoints.

The eye point location and the view direction can be explicitly
entered as a single command. See also VIEW FROM, VIEW TO and
VIEW HEAD.

Form:

VIEW from_x from_y from_z
to x to_y to_z

[angle]
from_x,from_y,from_z The eye point location.

to x, to_y, to_z The ’tg’ point for view
irection.

angle Thtca1 head roll angle in
eg.

3.15.2 Predefined-views.
There are predefined views to provide for standard views.
Form:
VIEW view-name
view-name One of the eight predefined views.
FR (front)
RI (right)
LE (left)
TO (top)
BO (bottom)
RE (rear)
IS (isometric)
DI (dimetric)
3.15.3 FROM

The FROM keyword is used to select a site for determining eye
point location, view direction and field of view. If the view point is
currently attached (see VIEW ATTACH), then the view point will

K-Base Final Report
A2-44



become attached to the given site. An explicit x, y or z location may
be given in place of a site.

Form:

VIEW FROM site

site The name of a site to view from.

or

VIEW FROM x y z

x,y,z The location of the eye point.
3.15.4 SITE

See VIEW FROM.
3.15.5 EYE

See VIEW FROM

3.15.6 TO
The TO keyword is used to select a site for determining the view
direction for the view rg/c‘}int computation. If the view point is
currently tracked (see VI TRACK), then the view point will track

the given site. An explicit x,y and z location may be given in place
of the site name.

Form:

VIEW TO site

or

VIEWTO x y z

x,y,z The explicit location to view 'to’.
3.15.7 HEAD

The HEAD keyword is used update the head roll angle of the
current viewpoint. However, this value will be overridden if the
view point is attached or tracked.

Form:

VIEW HEAD angle

K-Base Final Report
A245



angle The head angle in degrees.

3.15.8 ROLL
See VIEW HEAD.

3.15.9 ATTACH

The ATTACH keyword is used to specify the part or site name to
be attached to the view point calculation routine. If any part within
the currently selected assembly is moved, the position and attitude
of the current selected site to view from (see VIEW FROM) will be
used to compute new view point information.

Form:
VIEW ATTACH [site]

site The optional name of a site to used as
the location of the eye point, the
direction of view and field of view.

3.15.9.1 Example

The following command will attach the view point to a given
site.

VIEW ATTACH PLBAY.EYE

The site plbay.eye will used to compute the view point
formation with ~the location and attitude of plbay.eye
determining the location the eye point and the direction of
view. The camera definition of plbay.eye will be used to
determine field of view.

The following set of commands are equivalent to the above
example.

VIEW FROM PLBAY.EYE
3.15.10 VIEW ATTACH
3.15.11 DETACH

The DETACH keyword is used to_ release the currently attached
site. The view point information will not be automatically updated
whenever a part is moved within the currently selected” assembly.
However, the DETACH command will not change the current state
of the view point.

Form:

K-Base Final Report
A2-46



VIEW DETACH

3.15.12 TRACK
The TRACK keyword is used to attach a site to the view point
calculation for detemﬁninél the direction of the view point. This
operation is analogous to the ATTACH keyword in that, whenever
a part within the ~currently selected assembly is moved; the view
point will automatically be recomputed usinf the currently attached
and track sites. Selecting a site to be tracked will override the any
previously determined direction of view.
Form:
VIEW TRACK [site]

site The optional name of a site to be used
for computing the view point direction.

3.15.12.1 Example
The following command is used to track a site.

VIEW TRACK J7.EYE

The site J7.EYE will be tracked by recomtﬁlutirtlﬁ the view
point direction whenever a part is moved within the currently
selected assembly

3.15.13 UNTRACK
The UNTRACK keyword is used reverse the effects of the VIEW
TRACK command. The view point direction will be not be changed
by this command, but it will not longer automatically computed.
Form:
VIEW UNTRACK

3.15.14 STATUS

The STATUS keyword will output the current values and state of
the view point parameters.

Form:

VIEW STATUS

K-Base Final Report
A247



3.15.15 ROTATE

Rotation of the scene using an explicit argument or the joystick is
accomplished with ROT argument.

form:
VIEW ROT [x y z] [step]
x, ¥, zRotation angles in degrees.

step Number of steps to rotate.

3.15.16 TRANSLATE

The TRA keyword permits the scene to be moved in x and y and
optionally in z. When in pers&ective mode translation in z has the
effect of scaling the scene. When the amount is not given the
joystick can be used to supply translation values.

form:

VIEW TRA [axis] [amount] [step]
axis Axis specification; X, Y or Z
amount The amount of translation.

step Number of steps to translate.

3.15.17 SCALE

The SCA keyword permits the scene to be scaled relative to the
view center. The scale value is absolute (not accumulative) when it
is entered exglicitly. When scaling is not explicitly entered then the
joystick can be used to provide values for scaling.

Form:

VIEW SCA [scale]

scale A positive scale value.
(not accumulative)

3.15.18 RESET

The RESET kegword will cause the current viewing transformation
to be initialized to a front view with scale of 1.0. The view center is
not affected.

Form:

K-Base Final Report
A248



VIEW RESET
3.15.19 CENTER

Form:
VIEW CENTER [x y z]

x,y,z The new center of the view.

K-Base Final Report
- A249






Appendix 3 -- Rasterizer Software.

During the course of research, experimentation and development, it became
necessarg to generate hardcopies of bitmapped and graphic images. The graphics
display device was the VaxStation 2000 monitor and the available hardcc‘)}py device
was an HP LaserJet II laser Frinter. To get hardcopB images from the VaxStation
to the laser printer, a sixel formatted bitmap (the DEC standard bitmag format)
had to be converted to the bitmap format of the HP LaserJet Il The ollowing
description is the system developed and used by GMS for this function.

In addition, software was developed to output PLAID DISPLAY files to the HP
Laserjet II dprinter. This program is capable of plotting DISPLAY files in either
portrait and landscape mode and at any level of resolution of which the printer is
capable. The program prompts for user input, and should be fairly self-
explanatory as its functionality is rather limited. Printer output is directed to the
printer queue HP$LASERJET.

Functional Description.

The program "SIXELDUMP.EXE" is the utility which reads a file containing a
sixel formatted bitmap, converts it to_an HP Laserjet II bitmap and dumps it
to the Laserfet II printer. The "Sixel Dumping Monitor" is the Vax command
file named "SIXELHP.COM" which is submitted to the batch queue to execute
this program whenever a file appears in the directory

"DISK$USER1:[SIXELDUMPS]".

This directory is named by the command file and may be changed. It is
assumed that this file is a’sixel formatted bitmap; unpredictable results ma
occur if the file is not. The "Sixel Dumping Monitor" executes repeatedly (in
this implementation, it executes every ten seconds) looking for files to ump
to the printer. It will terminate when it finds a file named "STOP.NOW".

User Interface Description.
Workstation Setup.

The user of a VaxStation 2000 workstation can perform screen dumps to
the HP Lasgt_‘{llet En’nter using the Vax Windowing System (VWS) screen
dumping facility built into the workstation. However, in order to perform
these screen dumps to the laser printer, the user must set up the
workstation. The procedure is

1. Move the mouse cursor to a blank area of the screen (gray{land click the
left mouse button. The menu titled "Workstation Options® wi appear.

2. Move the mouse to the option labeled "Set up the Workstation" and
click the left mouse button. The menu titled "Workstation Setup" will
appear.

3. Move the mouse to the option labeled "Printer Set Up" and click the left
mouse button. The menu title "Printer Setup" will appear.

K-Base Final Report
- A31 - po



4. Move the mouse to the option labeled "Aspect Ratio" and click the left
mouse button. A menu displaying the aspect ratio options will appear.
Select the aspect ratio 1 to 1 using the left mouse button.

5. Move the mouse to the option labeled "Enter new printer destination”
on the "Printer Setup" menu and click the left mouse button. A window
will appear showing the current name of the device to receive the sixel
bitmaps. Enter the name

"DISK$USER1:[SIXELDUMPS]MYPIC.R75A1"

Entering the name will not overwrite the current name until the carriage

return is pressed. Also, the file name can be permanently saved as part the

eneral workstation setup using the "Save current settings" option on the
orkstation Options" menu.

Performing a Screen Dump.

To perform a screen dump, select the "Print gmrﬁon of) screen” label on
the "WorkStation Options” menu. An arrowhead will appear (different
from the normal arrow cursor of mouse). Move the arrowhead to the
upFer left corner of the portion of the screen to dump. Press and hold the
left mouse button and move the arrowhead to the lower right corner of
the portion of the screen to dump. Release the left mouse button and wait
until the normal mouse cursor returns. After several minutes, the screen
dump will be output to the laser printer (this may take some time
de em;lii)ng on the size of screen area dumped and on the resolution
selected).

Aspect Ratio and Resolution.

The user can select various combinations of aspect ratios and resolutions.

This is done by using a naming convention for the file extenstion of the

file named by the user to receive the sixel formatted bitmaps. For example,

the extension "R75A1" will be dumped to laser printer at the resolution of

75 dots per inch with an aspect ratio of 1 to 1. The 1 to 1 aspect ratio

option in the "Printer Setup” menu must match the file extension selction.
e valid extentions are

R75A1 - 75 dpi with 1 to 1 aspect
R75A2 - 75 dpi with 2 to 1 aspect
R150A1 - 150 dpi with 1 to 1 aspect
R150A2 - 150 dpi with 2 to 1 aspect
R300A1 - 300 dpi with 1 to 1 aspect
R300A2 - 300 dpi with 2 to 1 aspect

For example, the file named "MYFILE.R150A2" will be dumped to the laser
printer at a resolution of 150 dots per inch with an aspect ratio of 2 to 1.

K-Base Final Report
- A3-2 -



Vax command file ‘Sixel Dumping Monitor’.

This command file should be executed by the S{lstem startup file. It will place
the ‘Sixel Dum ingEMonitor’ in the system batch queue and will monitor the
directory DISK$USERI:[SIXELDUMPS]. It will execute every ten seconds,
looking for files to dump to the laser printer.

SIXELHP.COM

......................................................

$ : How to Submit Sixel Dumping Monitor

$ 1 submit/nolog/noprint/notify -

$! sys$s eqﬁczgysm%rgixelhp.com

$ ! write syssou ut "Sixe Monitor (SDM) running"
SUBBIEHB SRR UIBHBHHBIHRUBH

$ Start:

$ set noon

$ define hp$laserjet sys$print

g Tsixeldump ;== $disk$userl:[plaid.exe]sixeldump.exe
op:
$ V\}')ait 00:00:10

$ Middle:

$ name = f$search( "Disk$userl:[SixelDumps]*.*;*" )

$ if name .eqs. " then L§oto to

$ if name .eqs. "DISK$ SERI:[EIXELDUMPS]STOP.NOW;1" then goto Done
$ open/read/err=Middle ch &name

$ close ch

$ sixeldump ‘name

$ delete &name/nolog

$ goto Middle

$ Done:

$ delete/nolog &name

$ exit

K-Base Final Report
- A3-3 -



Sixel Dumping Program and Support Routines.

The following listings form the kernel of the dumping utility. They are
compiled as follows:

$FORTRAN/CONT =99/14
Listing:
SIXELDUMP.FOR

K-Base Final Report
- A34 - PO



program sixel ) i
Program intended to accept a DEC SIXEL graphics file as input
and output to an HP Laserdet II.

Sam Smith
3-Feb-88

8itmap Memory
byte bitmap(300,3000)

integer*2 resolution,xdim,ydim .
common/BITMAP/bi tmap, resolution, xdim, ydim

0OO0O0O0OO0

c
c 1/0 Channels
c
integer*s tinp
integer*s tout
integer*s finp
integer*4 fout
data tinp/1/tout/2/finp/3/fout/4/
c
c Misc.
c
character*80 input_name(1)
character*80 ext
integer*2 line
c
¢ jcm05-feb-1988 changed dimension from 1500 to 3000
c to handle extra resolution
[
byte sixels(3000)
integer*2 scount
integer*2 i
integer n
integer ierr,eof
integer xunit
integer yunit
integer sixelmax
integer aspect
c
c Initialization
c
data xdim/1200/ydim/1500/resolution/2/
c
¢ jemDSfeb-1988 added these constants to deal with
c multi-resolution situation
c

data xunit / 600 /
data yunit / 750 /
data sixelmax / 3000 /

Begin

o000

open(unit=ti
name=" SYSEINPUT / ,

status='0LD’,
err=9000)

open(unit=tout,
name=/SYSSOUTPUT 7,
status=/0LD’,
err=9010)

29 Qo go

RO R0 0

open({unit=fout
& name='sysfscratch:$$laser_jet.dat ’,
& status=/NEW’,
& form= ’'FORMATTED’,
& err=9020)
t

ite banner

write(tout,10)
0 format(’ * Sixeldump V1.0 *’)

Get file name and open input file

0O00=20000

call getarg(input_name,1,n)

K-Base Final Report
- A3-5 -



check filename extension for resolution specification

o000 o0

default resolution is 150 dots per inch

call fparse( input_name(1), ext )

aspect = 2

resolution = 2

if( index( ext, ‘R753’ ) .gt. 0 ) resolution
if( index( ext, ‘R150’ ) .gt. 0 ) resolution
if( index( ext, ‘R300’ ) .gt. 0 ) resolution
if( index( ext, A1’ ) .gt. 0 ) aspect
if( index( ext, 'A2’ ) .gt. 0 ) aspect =2

compute dimensions for bitmap based on
file extension which is a request for
laserjet resolution

SN -

OO0 00

xdim = resolution * xunit
ydim = resolution * yunit

open sixel file

o000

call sixel (input_name, finp,ierr)
iftierr.ne.0)go to 9030 ®

c
c Clear bitmap

call clearmap
line =0

Read data records & convert

0000 continue
call sixelread( finp, sixels, sixelmax, scount, eof )
if (eof.ne.0)go to 40000

do 30099 i=0,scount-1

call sxtohp( i, tine, sixels(i+1), aspect )
30099 continue

line = line + 1

c
¢ Loop through remaining vectors
c
go to 30000
c
¢ Write bitmap to printer and stop

c
40000 continue
close (unit=finp)
c write(tout,170)
170 format(’+Writing to output file... ')
call outmap(fout)
close (unit=fout)
call libSspawn(
g /PRINT/PASS/QUE=HPSLASERJET/DEL SYS$SCRATCH:$SLASER_JET.DAT’

)
c write(tout,40020)
40020 format(’ Processing complete. L)

call exit
c
¢ Error conditions

c
9000 write(*,9001)
9001 format(’ ***** Error opening SYSSINPUT')

stop

c
9010 write(*,9011)
9011 format(! ***** Error opening SYS$OUTPUT')

stop

c
9020 write(tout ‘9021 ) .
9021 format(’ ***** Error opening $SLASER_JET.DAT’)

stop
c
9030 write(tout,?031)input_name

K-Base Final Report
- A3-6 -



9031

9051

format(’ ***** Error opening ’,aé4)

stop

write(tout, 9041)

format(’ *h**% Erpror writing $SLASER_JET.DAT’)
stop

write(tout,9051)

format(’ ***** Error opening SSLASER_JET.COM’)
stop

write(tout 9061)

format(’ *¥*** Error writing $$LASER_JET.COM’)
stop

end

K-Base Final Report
- A3-7 -



subroutine sxtohp( sixx, sixy, sixdat, aspect )

c
¢ Parameters
c
lnteger‘z sSixx,sixy
te sixdat
integer*2 aspect
c
c Locals
c
integer*2 hpx, hpy
integer*2 i
integer*2 mask
integer*2 element
byte onebyte(2)
equivalence (element,onebyte(1))
c
¢ Begin
c
onebyte(1) = sixdat-63
if(onebyte(1) .eq. O)return
hpx = sixx
mask = 1
do 99 i=0,5
if¢ |and(element ishft(mask,i)) .ne. 0 )then
if( aspect .eq. 1) ¢t then
DR ek o o
call setbit R
endif PX, PY
if( aspect .eq. 2 ) then
hpy = sixy * 12 + i * 2
call setblt( hpx hpy )
cp(l sepZ|t( hpx, hpy )
endif
99 continue
return
end

K-Base Final Report
- A3-8 -



subroutine fparse( name, ext )

c
character®*(*) name
character*(*) ext

c
n = index( name, ’:! )
ifC n .eq.0 ) n = len(name)
do10i=n, 1, -

if( name(iz1) .eq. '.’ ) then

ext = name(i+t:n-1)

10 continue

K-Base Final Report
- A39 -



SIXELIB.FOR
c!!i**i"*iQtQQQQ*Qt***itt**'ﬁt**ﬁ*tt***i*tﬁ*i*tttt*ﬁ
¢ sixelread( ¢1, out, last, count, eof )

¢ Author: James C. Maida

c Date: 3-FEB-1988 12:39:16.90

¢ Function: . .

Read a Line of data from sixel file and

return a byte array of the sixel data.

Line from sixel file is processed to remove
compression and escape characters.

Sixel Line Format:
esc P1q.... sixel data .... esc \
start end of data
(decimal 144 can be alternate
end of data)

Compression Format:
InnnnC

where
"1+ indicates start of duplicate character
count
nnnn is the count (1 to 5) in ascii numbers
(one byte per number)
C is the character to duplicate.

Raster format: )
All sixel data has ascii byte value of 63 to 127.
To ng to pixels, etc.
1. subtract 63 from sixel byte
2. each sixel byte represents a column of six
scan lines.(low order bit is 1st scan line of the six)

Parameters:
c = i*4, Input channel for sixel file.(in)
out(count) = b*1. Byte array.(out)
count = i*4. Number of bytes in array.(out)
eof = i*4, End file indicator.(out)

0 = ok

1 = end of file

Y 22 a2 22222 2223 2229222222 s e at il it lil el s
subroutine sixelread( c1, out, last, count, eof )
implicit integer (a-2)

c parameters

integer ci

byte out(1)

integer last

integer count

integer eof

NO0O000O000000000NNNOONNANON0O0ODO00000

¢ common
¢ functions
¢ locals
character*2048 line
character*! chr
integer eol
¢ begin
count = O
eof = 0
c
c read a line from sixel file
c
read( c1, 2, end = 99 ) line
2 format( a )
c
¢ process line for starting escape sequences
c gnd duplicate character counts
c

now = 1
doS5i=1, len(line)

c
¢ get characters
c
call getbyte( line, now, next, len(line), chr, nc, eol )
c
¢ end of line or end of sixel data ?
c

K-Base Final Report
- A3-10 -



if( eol .ne. 0 ) then
if( eol .eq. 2 ) eof = 1

return
endif
c
¢ character count and character are processed into
¢ byte array.
c
if( nc .gt. 0 ) then
do 10 j =1, nc
count = count + 1
c
¢ exceeded length of byte array ?
c
if( count .gt. last ) return
out(count) = ichar(chr)
10 continue
endi f
now = next
5 continue
return
c
¢ hard end of file
c
99 continue
eof = 2
return

€
CRRRARERANAANAAR AR AR R RRNAA RN TR AT EERR TR R T AR AR deddrd

¢ sixelopen( filename, c1, ier ) - open sixel file
c Author: James C. Maida
c Date: 3-FEB-1988 12:39:16.90
¢ Function:
c sixel file in read-only mode.
¢ File is assumed sequential, with variable
¢ length records. File is opened formatted.
¢ Parameters:
¢ filename = c(*). File name of sixel file.(in)
c ¢l = i*4. Channel to open file on.(in)
c er = i*4. Open error code.(out)
c 0 = ok
c >0 = Fortran open error code.
c**iit*tt**tt*t**i****i****tt***********i*i*******t**
subroutine sixelopen( filename, c1, ier )
¢ parameters
character*(*) filename
integer ci
integer ier
¢ common
c functions
¢ locals
character*80 fname
¢ begin

fname = filename

open( unit = c1,
file = fname,
access = 'seguential',
status = ‘old’,
readonly,
form = ‘formatted’,
iostat = ier )

return

VTS NN =

CHRRRERRARANRARANAAAARAANAANARAAAARARIAAAR RN RNANA AR

c
c
c
c

NDOOOODOHDOOO

getbyte( line, now, next, last, char, count, eol )
Author: James C. Maida

Date: 3-FEB-1988 12:39:16.90

Function:

Process sixel line for escape sequences and
duplicate characters.

Parameters:
line = c(*). Sixel input line.(in)
now = i*4., Current character pointer.(in)
next = i*4. Pointer to next character.(out)
last = i*. Length of sixel line.(in)
char = c¢*1, Character from line.(out)

count = i*4. Character count for character returned.(out)

K-Base Final Report
- A3-11 -



eol = i*4. End of line or end of sixel data.(out)
0 = ok

1 = end of line
2 = end of sixel data
NRERXRAARATEERARAAAA AT ERCAAATRATNAAAARER RS d
subroutine getbyte( line, now, next, last, char, count, eol )
c parameters
character*(*) line
integer now, next, last
character*! char
integer count, eol
¢ common
¢ functions
c locals
integer ¢
_character®10 num

00000

[
c end of sixel line ?
[

if( next .?t. last ) then
eol =
return

endif

¢ = ichar(line(now:now))

c
¢ end of sixel line ?
c
if( ¢ .eq. 144 ) then
eol = 2
return
endif

escape sequences to be removed ?

o000

if( ¢ .eq. 27 ) then
end of sixel data

000

if( Line(next:next) .eq. '\’ ) then
eol =2
return

endif

skip to start of sixel data

o0

do 7 i = next, last
if¢ line(¢i:i) .eq. ‘g’ ) then
next = i + 1
return
endif
continue

no sixel data ?

000N

eol = 2
return
endi f

end of line

oo

if( ¢ .eq. 45 ) then
eol =1
endi f

valid sixel data ?

o000

if¢ c .ge. 63 ) then
char = line(now:now)
count = 1
return

endi f

K-Base Final Report
- A312 -



¢ duplicate character count flag ?
c

if( line(now:now) .eq. !’ ) then
c
c extract count as character string
c
do 10 i = next, last
if¢ line(iz1) .lt. /0’ .or. lineCizi) .gt. ‘9’ ) then
num = {ine(next:i-1)
k =i - pext

convert to binary number

read(num, 11) count
format(i<k>)
char = line(i:i)
next = i + 1
return

endi f

10 continue

endi f

return

- 000

—

Poladeietefd A a2 At Lt 22 2 220 2 0 1 22 2 A e U Or

¢ getarg( arg, n ) - get argument from command line

¢ Author: James C. Maida

c Date: 3-FEB-1988 12:39:16.90

¢ Function:

¢ Get arguments from the command line.

¢ The main routine should be executed at

¢ DCL level as follows:

¢ $ progname :== $ diskSuser: [user]progname.exe

¢ then enter

¢ 8 progname argl arg 2 ...

c Parameters:

¢ arg(maxarg) = c*(*) Argument list.(out)

c maxarg i*4. Length of argument list.(in)

c n = i*4. Number of arguments returned. (out)

ctt*t***tt*i*tit*t****kt*t********* AR RAhAr bR R Rl
subroutine getarg( arg, maxarg, n )

c parameters
character*(*) arg(1)

integer maxarg
integer n

c locals
character*132 a
integer

integer status
integer argcount .
_integer |ib$get_foreign

c begin
call libSget_foreign( a, ‘Input file : !, argcount )
L = argcount
c
¢ no arguments ?
c
if¢ L .lt. 1) then
n=0
arg(1) = *
return
if
kk = 0
kkk = 1
do 10i =1, L
if( kkk .eg. 1) then
kkk =
k =i
???if( ! L h
1fC a(izi) .eq.’ ' .or. i .eq. ) then
kk = kk $q1 e
if( kk .gt. maxarg ) then
n=kk -1
return
endi f
ifC i .lt. U ) arg¢kk) = a(k:i-1)
1;£ i ieq. L ) arg(kk) = a(k:i)

K-Base Final Report
- A3-13 -



10

endif
continue
n = kk
return
end

K-Base Final Report
- A3-14 -



HPLIB.FOR
Subroutines to manipulate bitmaps destined for the
LaserJet Il printer

c
c
c
¢ Sam Smith
¢ 29-Jan-87
c

subroutine setbit(x,y)

Parameters

o00

integer*2 x,y

c
c Bitmap Memory
c
byte bi tmap(300,3000)
integer*2 resolution, xmax,ymax
common/BlTMAP/bltmap,resolut1on Xmax, ymax
c
c Locals
c
integer*2 te_num,bit_num
integer*2 ement mask™
byte te(2)
equivalence (one te(1),element)
c
c Begin
c

if((x .lt. 0) .or.

(X .ge. xmax) .or.

(y .lt. 0) .or.

(y .ge. ymax)) return
byte num = x / 8 + 1
bit_num = mod(x,8)
one5yte(1) = b!tmap(byte num, y+1)
mask = 128
mask = ishft(mask,-bit_num)
element= 1or(element mask)
bitmap(byte_num,y+1) = onebyte(1)
return
end

RS Qo Qo

K-Base Final Report
- A3-15 -



OO0000O00

88

subroutine clearmap

Subroutine clears bitmap to zero (all white)
Sam Smith 29-Jan-88

Bitmap Memory

byte bi tmap(300,3000)
integer*2 resolution,xmax,ymax
common/BITMAP/bi tmap, resolut ton, xmax, ymax

do 99 i = 1,300
do 88 j = 1,3000
bitmap(i,j) = 0
continue
continue
return
end

K-Base Final Report
- A3-16 -



subroutine outmap(ich)

c
¢ Subroutine writes bitmap to HP LaserJet Il printer
c
c Sam Smith 29-Jan-88
c
c Parameters
integer*s ich
c
¢ Bitmap Memory
c
byte bi tmap(300,3000)
integer*2 resolution,xmax,ymax
ccnnnn/BlTMAP/b1tmap,resolutlon Xmax, ymax
c
¢ Locals
c
byte esc, ff
integer*2 ymu(t
integer*2 1, j, k
ogical blan
data esc/27/ff/12/
c
¢ Begin
c
c
¢ Calculate y-address multiplier
c

ymult = 4/resolution
Reset printer

on

write(ich,10)esc,esc ,es8C esc,esc
10 format( '+, 1 'Ef a1,7&(86P7 a1, '&1002E",
1 '&lfH' ,a1,&L1X7,a1,$)
c

¢ Init to proper graphic resolution
c
if(resotution .eq. 1)ur1te(lch 11)esc
" format(’+’ al,’/*t75R’,$)
uf(resolutlon .eq. Z)Hrwte(lch 12)esc
12 format(’/+/ al,’/*t150R’,$)
1f(resolutlon .eq. 4)ur1te(|ch 13)esc
13 format(’+/,at1, ' *t300R’,$)

c
¢ Write data to printer
c

do 99 i=1,ymax
c
¢ Check for blank line
c
blank = .true.
c
do 77 g=1,(resolution)*?5
if (bitmap(j,i) .ne. 0) blank = .false.
77 continue
o4
if (.not.blank)then
c
¢ Set cursor address & enter graphic mode
c
write(ich,20)esc,esc,(i- 1)'ymult esc esc,resolution*75
20 format(’*' at, ’*pOX' a1 '*p? 4,
& a1 EISTY a1 '*b' 13 'U' S)
c
¢ Send one line to printer
c
do 88 j=0,((resolution-1)*75),75
write(ich ,30)(bitmap(j+k,i),k=1,75)
30 format('+’ 75a1,$)
88 continue
c

c Leave graphics mode
c

write(ich,40)esc
40 format('+' al,’*rg’,$)
c

K-Base Final Report
- A3-17 -



30

endif

continue
return
end

K-Base Final Report
- A3-18 -



PLAID DISPLAY File Rasterizer for HP Laserjet II.

The following listings form the kernel of the rastenzer utility. They are
compiled as follows:

$FORTRAN/CONT =99/14
Listing: RASTERIZE.FOR

K-Base Final Report
- A3-19 -



noon o000 00000000

o000

o000

o000

program rasterize .
Program intended to accegt PLAID Display file as
input and output to an HP Laserdet II.

Sam Smith
27-Jan-87

Input buffers for header/data records

integer*4  drec(8)
integer*2 dhwrec(16)
equivalence (drec(1),dhwrec(1))

Declarations for header record 1

integer*2 dt

integer*2 dvm
equivalence (dhurec(1),dtype)
equivalence (dhurec(2),dview)

Declarations for header record 2
real*4 dscale
real*$ droll
real*4 dvpt(6)
equivalence (drec(1),dscale)
equivalence (drec(2),droll)
equivalence (drec(3),dvpt(1))

Dectarations for data records

integer*2 dwin

integer:% g;;rl\d

integer y

integer*z dedge

real®4 dvi(3)

real*4 dv2(3)
equivalence (dhwrec(1), dwin)
equivalence (dhwrec(2), dkind)
equivalence (dhwrec(3), dpoly)
equivalence (dhwrec(4), dedge)
equivalence (dhwrec(5), dvi(1))
equivalence (dhwrec(11},dv2(1))

Setup information for record unblocking routine
integer*4 icb(4)
integer*4 ibuff(192)
common/CB001/ibuff
Bitmap Memory
byte bi tmap(300,3000)

integer*2 resolution, xdim,ydim
common/B1TMAP/bi tmap, resolution, xdim,ydim

1/0 Channels

integer*s tinp

integer*s  tout

integer*s finp

integer*s fout

data tinp/1/tout/2/finp/3/fout/4/
Misc.

character*80 input_name
character yesno

real*s xmin,ymin

real*$ xmax, ymax

real*4 xsize, ysize

real*$ x_doffset y_doffset

integer*2 x_poffset,y_ poffset
integer'z xrange, yrange
real™4 scale_#actor
logical portrait

integer*2 ix1,iyl

integer*2 ix2,iy2

K-Base Final Report
- A3-20 -



integer*4 vectors
integer i

c

¢ Initialization

c

data xrange/600/yrange/750/
Begin

open(unit=ti
name=’SYSSINPUT ',
status=‘0LD’,
err=9000)

open(unit=tout,
name=’SYSSQUTPUT /,
status=/0LD’,
err=9010)

open(unit=fout, i
& name=’sys$scratch:$$laser_jet.dat ‘,
& status=/NEW’,
2

o000
R0 Qo o

Ro o 0

form= /FORMATTED’,
err=9020)

Write banner

noon

Write(tout, 10)
0 format(’ * Rasterizer V1.1 *7)

Query for resolution

write(tout,11)
1 format(/’ 1 ->> 75 dpir/
2 -->150 dpi‘/
"3 --> 300 dpi’/
. ! Select resolution: ‘,$)
read(tinp, 12)resolution
12 format(is5)
if((resotution .{t. 1) .or. (resolution .gt. 3)) then
write(tout, 13)
13 format(/ whwew Invalid selection ***ww/
go to 1
end if
resolution = 2**(resolution-1)
xdim = resolution * xrange
ydim = resolution * yrange

-,k () ) -

RO Qo Qo

c
¢ Calculate X & Y offsets to center image
c

x_poffset = xdim/2
y:ggffset = ydim/2

c
¢ Get file name and open input file
c

write(tout,20)

20 fo;zatg/' ggger input file name: /,$)
read(tin i t_name

30 format(ab) ~ PO -

c
open(unit=  finp,

name= input name,

access='SEQUENTIAL’,

form= /UNFORMATTED’,

status='0OLD’,

readonlz

err= 630)

20 R0 R0 RO RO Ro

c
¢ Initialize blocking variables

c
icb(1)
icb(2)
icb(3)
icb(4)

3

Waunae
-]

o

(=)

c
¢ Read header record 1
c

K-Base Final Report
- A3-21 -



call pl8cb(fmg R?, drec icb,ibuff,ierr)
if (ierr .ne § th
urlte(tout&SS)inpu name
35 format(’ ¥**** Ecror reading ’,ab4)

stop

end if
write(tout, IoO)dtype dview
40 format(/’ Type é,', Perspective: /,i1)

c
¢ Read header record 2
call pl8cb(f1nBS'R' ,drec,icb, ibuff, ierr)

if (ierr .ne
write( tout,35)input_name

stop
end if
ur|te(tout 50)dscale droli

50 format(’ Scale: /, f10.4,7, Head Roll: ’,£10.4)
write(tout, 60)dvpt(1) dvgt(Z) ,dvpt(3)

60 fo rma:g' VI%)d;gnZ‘) (5) dvpf1o)" , 1,f10.4)
write(tout t t t(6

70 format(’ View to: de ,f10.4,7, ' ,f10.4)

[
¢ Initialize min/max values
c

xmin = 1e30
xmax = ;1%0
ymin = 1e
ymax = -1e30
vectors = 0
write(tout,80)
80 format(/’ Calculating min/max...")

c
¢ Read data records & check for error/end

c
10000 call pchb(fmg ‘R’ ,drec,icb, ibuff,ierr)
if (ierr .eq § go to 206000
if (ierr .eq. 2) then
write(tout, 35)\nput name

st
end ??
c
¢ Check for invisible edges & penetration points
c
if(dkind.ne.0)go to 10000
if(dedge.eq.1)go to 10000
c
¢ Update min/max values & vector count
c
if(dv1(1) .lt. xmin)xmin = dvi(1)
if(dv2(1) .lt. xmin)amin = dv2(1)
if(dvi(1) .gt. xmax)xmax = dvi(1)
if(dv2(1) .?t xmax)xmax = dv2(1)
if(dvi(2) .[t. ymin)ymin = dvi1(2)
if(dv2(2) .lt. ymin)ymin = dv2(2)
if(dv1(2) .gt. ymax)ymax = dv1(:2!;

if(dv2(2) .gt. ymax)xmax dv2(
vectors = vectors +

go to 10000

c

c
¢ Got min/max, make portrait/landscape decision and calculate scale factor

c
20000 write(tout,90)vectors
90 fonnat('Wectors' ¢+ il27
& ¢ X-min: /,£10. 4,', X-mex: ’,£10.4/
& 'Ymn.'f10-‘o,,Ymax-'f101.)
xsize = xmax - xmin
ysize = ymax - ymin

x_doffset = (xmax + xmin) / 2
y_doffset = (ymax + ymin) / 2

Xxmin, xmax, ymin, ymax

if (ysize .gt. xsize) then
write(tout, 100)
100 format(’ Portrait mode suggested... ')
portrait = .true.

K-Base Final Report
- A3-22 -



else
write(tout, 110)
110 format(’ Landscape mode suggested... ')
enﬁor;ralt .false.

c
¢ See if user wants to override portrait/landscape decision
c
write(tout,120)
120 format(’ Override? (Y or N): /,%)
read(tinp, 130)yesno
130 format(a) .
if((yesno.eq.’Y’).or.(yesno.eq.‘y’))portrait=.not.portrait

c
c Inform user of orientation and calculate scale factor

if(portrait)then
write(tout,140)
140 format(’ Portrait mode selected.’)
scale_factor=min(((1/xsize)*xdim),
((1/ysize)*ydim))
else
write(tout, 150)
150 format(’ Landscape mode selected.’)

scale factor-mln(((1/x51ze)*ydlm),
((1/ysize)*xdim))

endi f
c
c Re-initialize record blocking info
c
rewind (unit=finp)
icb(1) = 184
icb(2) = 8
icb(3) = 0
icb(4) = 0
c
write(tout,160)
160 format(/’ Processnng vectors...’)

c
¢ Skip over header records
c

call pl8cb(f1n8 'R! drec,icb, ibuff, ierr)

f (ierr .ne then
write(tout, 35)!nput name
stop

end if
call pl8cb(finp, 'R?,drec,ich, ibuff,ierr)
if (ierr .ne. 0) then
write(tout,35)input_name
stop
end if

c
c Clear bitmap
c

call clearmap

c
¢ Read data records, scale & rasterize

c
30000 continue
call pl8cb(finp,’R’,drec, ich, ibuff,ierr)
if (ierr .eq. 1) go to 40000
if (ierr .eq. 2) then
write(tout,35)input_name

st

end ??

c

¢ Check for invisible edges & penetration points

c
if(dkind.ne.0)go to 30000
if(dedge.eq.1)go to 30000

c

c Center & scale

c
ix1 = (dv1(1) - x_doffset) * scale_factor
iyl = (dv1(2) - y_doffset) * scale_factor
ix2 = (dv2(1) - x_doffset) * scale_factor
iy2 = (dv2(2) - y_doffset) * scale_factor

K-Base Final Report
- A3-23 -



g Rasterize
¢ if(portrait)then
:;: : ;'é;!;-x ly:ffe;_poffset)
ix2 = 1x2 + x_poffset
elééflsbmznzu‘llﬁy:}x 'g;ggt)

ix1 = ydim - (ix1 + y_poffset)
iyl = 1y1 + x_poffset

ix2 = ydim - {ix2 + y poffset)
iy2 = 1y2 + x_poffset
cg#l bresen(iyl,ix1,iy2, ix2)

i

c
¢ Loop through remaining vectors
c
go to 30000
c
¢ Write bitmap to printer and stop

c
40000 continue

close (unit=finp)

write(tout,170)
170 format(’+Writing to output file... "y

call outmep(fout)

close (unit=fout)

call ib$spawn(

& 'PRINT/PASS/QUE=HPSLASERJET/DEL SYSSSCRATCH:$SLASER_JET.DAT’

& )
write(tout,40020)
40020 format(’ Processing complete. )
c

call exit
c
¢ Error conditions

c

9000 write(*,9001)

9001 format(’ ***** Error opening SYSSINPUT’)
stop

c
9010 write(*,9011)
9011 format(’/ ***** Error opening SYSSOUTPUT’)

stop

c
9020 write( tout‘9021 )
9021 format(’ ***** Error opening $SLASER_JET.DAT’)

stop

c

9030 write( tout‘9031 Yinput_name

9031 format(’ ***** Error opening ’,bab4)
stop

c
9040 Wri te(tout‘90101 )
9041 format(’ ***** Error writing $SLASER_JET.DAT’)

stop

c
9050 wri te(tout‘9051 ) .
9051 format(’/ ***** £rror opening $$LASER_JET.COM')

stop

c
9060 write(tout,9061) L.
9061 format(’/ ***** Error writing $$LASER_JET.COM')

stop
end

c

K-Base Final Report
-A3-24 -



subroutine bresen(x1,y1,x2,y2)
Performs a simple, floating point based substitute for i
Bresenham’s algorithm to rasterize input vectors into a bitmap.
Assumes vectors have been scaled and offset properly.

Sam Smith 29-Jan-88

Parameters

0000000000

integer*2  x1,y1,x2,y2

Locals

000

integer*2 xsize,ysize
integer'Z Xpos, ypos , numdot
real¥*4 Xxincr,yincr
real*4 xaddr, yaddr
integer*2 i

Begin

o000

xsize = jabs(x2 - x1)
ysize = iabs(y2 - yt)

o000

Handle case of zero-length vector

if((xsize .eq. 0) .and. (ysize .eq. 0))then
call setbit(x1,yl)
return

else

Increment by one on x, a fraction on y

o000

if(xsize .gt. ysize)then
numdot = xsize
if(x2 .ge. x1) then
xincr = 1
else
xincr = -1
end if
if(y2 .ge. y1) then
yincr = float(ysize) / float(xsize)

else
yincr = float(-ysize) / float(xsize)
endi f
c
else
c
¢ Increment by one on y, a fraction on x
c
nundot = ysize
if(y2 .ge. y1) then
yincr = 1
else
yincer = -1
end if

if(x2 .ge. x1) then
xincr = float(xsize) / float(ysize)

else
xincr = float(-xsize) / float(ysize)
endif
endi f
c
¢ Increments calculated, set bits as appropriate
c
xaddr = x1
yaddr = y1
c
do 99 i = 1,numdot
Xpos = xaddr
YETT sevbiee
call setbit(xpos,ypos)
xaddr = xaddr + xincr

yaddr = yaddr + yincr

K-Base Final Report
- A3-25 -



38

continue

endif
return
end

K-Base Final Report
26 -



Appendix 4 -- DCRL Browser
Example: The STS-Orbitor Logical Hierarchy

GMS Technology evaluated the DCRL knowledge representation

language for use in the K-Base project. The eva%uation was was

conducted in two parts. The first part o} the evaluation consisted of the

construction of a knowledge-base of the major components of the

space shuttle. We first present the logical shuttle hierarchy, then the
CRL code which represents the hierarchy.

The second part of the evaluation consisted of writing a program

- which would make use of the representation constructed n part 1. For
this exercise we chose to write a graphical browser which provides the
user an interactive interface to the knowledge representation.

The DCRL Browser allows the user to interactively peruse the
knowledge network using the mouse to designate objects of interest.
The entire network may be viewed or just a small portion may be
selected to simplify the disglay. The Browser code runs on the
VAXstation 2000 in the Lucid Common Lisp environment.

K-Base Final Report
- - A4 -



Shuttle OV-103 Discovery
forward Section
Upper Deck
Aft Crew Station
Overhead vieu?orts
Remote-Manipulator Translation Hand Controller
Remote-Manipulator Rotational Hand Controller
orbitor Rotational Hand Controller
Payload Control Panel
Mission Specialist Seat
Payload Specialist Seat
Interdeck Access
Forward Crew Station
Mission Commander’s Seat
Pilot’s Seat
flight Computer and Navigation Console
Navigation Unit
Lower Deck
Galley Space
Airlock
Interdeck access
Telescoping Escape Pole (new)
Extra Payload Specialists’ seats (2)
Waste Management
Stowage Lockers
Avionics/Electronics Bay
Nose Section
Reaction Control System (RCS)
RCS Forward Thrusters
RCS Oxidizer Tank
RCS Helium Tank
RCS Hydrazine Fuel Tank
Phased-array Radar
Nosewheel Landing Gear (improved)
Payload Bay Section
payload Bay Doors (2)
Radiators (2-4?)
Remote Manipulator Arm
Elbow Video Camera (Videocam)
Extravehicular-activity Handhold
Getaway Special Canister
Aluminium Sheathing (Payload Bay linin?)
SLTports i.e. for Tracking and Data Relay Satellite (TDRS)
Below Payload Bay
Ventilator Liquid-Oxygen Tank
. Fuel Cell Liquid-Hydrogen/Liquid-Oxygen Tanks
Wing Section
Main Landing Gear
Reinforced Carbon-Carbon Leading Edge
Elevon (Aluminum Honeycomb Structure)
Tail Section
Space Shuttle Main Engines (3)
High-pressure Fuel Turbopump (improved)
Liquid-Hydrogen S Ly Manifold
Liquid-Oxygen Supply Manifold
Auxiliarr Power Hydrazine/Oxidizer Tanks
Fuel Cel
Reaction Control System (RCS)
RCS Oxidizer Tank
RCS Hydrazine Fuel Tank
RCS Aft Thrusters
RCS Helium Tanks (2)
Orbital Maneuvering System (OMS)
OMS Hydrazine Fuel Tank
OMS Oxidizer Tank
OMS Helium Tank
OMS Thruster
Rudder (Aluminum Honeycomb Structure)
Rudder/Speed Brake Power Unit
Rudder/Speed Brake
Rudder /S| Brake Hydraulics
Tracking and Data Relay Satellite
c-Band Commercial Antenna
4.9 Meter K/S-Band Antenna (2)
2.0 Meter K-Band Ground-Link Antenna
Stowed Solar Array
Inertial Upper Stage

K-Base Final Report
-A42 -



DCRL Representation of the Shuttle Hierarchy

{concept universe .
is a collection of concept
from tout

{concept shuttie-ov-103
is a collection of concept
from universe

{concept people-seats
is a collection of concept
from universe

)

{concept propulsion-system
is a collection of concept
from shuttle-ov-103

{concept guidance-system
1s a collection of concept
from shuttle-ov-103

{concept fuel-system
is a collection of concept
from shuttle-ov-103

b

{concept forward-section
is a collection of concept
from shuttle-ov-103

{concept payload-section
is a collection of concept
from shuttle-ov-103

)

{concept wing-section
is a collection of concept
from shuttle-ov-103

{concept tail-section
is a collection of concept
from shuttle-ov-103

{concept rms-system
is a collection of concept
from shuttle-ov-103

{concept hand-controllers
is a collection of concept
from shuttle-ov-103

{concept upper-deck
is a collection of concept
from forward-section

{concept lower-deck
is a collection of concept
from forward-section

{concept nose-section_
is a collection of concept
from forward-section

{concept main-engines
is a collection of conce?t_
from (tail-section propulsion-system)

K-Base Final Report
- A4-3 -



{concept reaction-control-system
is a collection of concept
from (nose-section tail-section propulsion-system)

{concept orbital-maneuvering-system
is a collection of concept
from (tail-section propulsion-system)

{concept rudder
is a collection of concept
from (tail-section guidance-system)

{concept rcs-oxidizer-tank
is a collection of concept
from (reaction-control-system fuel-system)

{concept rcs-hydrazine-tank
is a collection of concept
from (reaction-control-system fuel-system)

{concept rcs-helium-tank
is a collection of concept
from (reaction-control-system fuel-system)

{concept rcs-aft-thrusters
is a collection of concept
from reaction-control-system

{concept oms-hydrazine-tank
is a collection of concept
from (orbital-maneuvering-system fuel-system)

{concept oms-oxidizer-tank
is a collection of concept
from (orbital-maneuvering-system fuel-system)

{concept oms-helium-tank
is a collection of concept
from (orbital-maneuvering-system fuel-system)

{concept oms-thruster
is a collection of concept
from orbital-maneuvering-system

{concept forward-crew-station
is a collection of concept
from upper-deck

>

{concept aft-crew-station
is a collection of concept
from upper-deck

)

{concept navigation-unit
is a collection of concept
from (forward-crew-station guidance-system)

{concept phased-array-radar

is a collection of concept

from (nose-section guidance-system)
}

{concept extra-mission-spec-seat

K-Base Final Report
-A44 -



{concept

{concept

{concept

{concept

3
{concept

2

{concept

}

{concept

)
{concept

>
{concept

)

{concept

3

{concept

}
{concept

>
{concept

>

{concept

)

{concept

is a collection of concept

rom
(lower-deck people-seats)

mission-spec-seat

is a collection of concept

from .
(aft-crew-station people-seats)

payload-spec-seat
18 a collection of concept
from (aft-crew-station people-seats)

command-seat
is a collection of concept
from (forward-crew-station people-seats)

pilot-seat
is a collection of concept
from (forward-crew-station people-seats)

main-tanding-gear
is a collection of concept
from wing-section

nosewheel - landing-gear
is a collection of concept
from nose-section

fuel-tur T
is a collection of concept
from main-engines

liquid-hydrogen-supply-manifold
is a collection of concept
from main-engines

| iquid-oxygen-supply-mani fold
is a collection of concept
from main-engines

rms-translation-hand-controller
is a collection of concept
from (aft-crew-station rms-system hand-controllers)

rms-rotational-hand-controller
is a collection of concept
from (aft-crew-station rms-system hand-controllers)

orbitor-rotational-hand-control ler
is a collection of concept
from (aft-crew-station hand-controllers)

rms-arm
is a collection of concept
from (payload-section rms-system)

payload-bay-doors
is a collection of concept
from payload-section

waste-management

K-Base Final Report
- A45 -



{concept

{concept

{concept

{concept

{concept

{concept

>

{concept

is a collection of concept
from lower-deck

tdrs A
is a collection of concept
from universe

antennas .
is a collection of concept
from universe

c-band-commericial -antenna
is a collection of concept
from (tdrs antennas)

ks-band-antenna
is a collection of concept
from (tdrs antennas)

K-band-?round- link-antenna
is a collection of concept
from (tdrs antennas)

stowed-solar-array
is a collection of concept
from tdrs

inertial-upper-stage
is a collection of concept
from tdrs

K-Base Final Report
- A4-6 -



"~ Browsing Treet: TOUT.- Date: 10/10/88 Time: MzdoSorteaf NTL

DC-RL Browser Display of Shuttle Example

TCaaas
-TCRTIAL -SPPLR- ST
ST08ED-S0L 00 -Mke Y
AL K-315-L00VN0-L I K- ANTE NS
K3-pash-onriama
RICIML-0aTONN

—AN

|
LR susrvon-sotatione -mans-corranity
F LR e0s-00vat Ionnl -8ru0-CoeTROLL LR
A a0s-tenasiatine. sans-conThaLLss
00 200¢-SEa¥
08-S0 C-3hat

.
NS5 THesTTe
.
- ’ 100~ T

IOT-OTPCTI. SILY-NarT D .
tému—nmm-umv.muu
- tonsrenr

g

Figure A4.1 Shuttle Hierarchy without Boxes

K-Base Final Report
- A47 -



Figure A42 Shuttle Hierarchy with Boxes

K-Base Final Report
- A48 -



The Code of the DCRL Browser

DCRL-Browse.Lisp RAG/10-0Oct-88

This is a prototype of the DC-RL Tree/Net 8rowser for
K-Base.

D A A
LEE T T PR RN
SeminansNens

(defvar *tree-root-node* ’tout) ; the root of the DCRL environment
(defvar *Tree-Display-Root* ’tout) ; the root of the current tree
(defvar *tree-max-levels* 100)

(defvar *tree-structure* nil)

(defvar *tree-node-set* *concepts*)

(defvar *tree-max-level* 0)

(defvar *tree-level-lists*)

(setf *tree-level-lists* (make-array *tree-max-levels*))

(defvar *tree-level-counts*)

(setf *tree-level-counts* (make-array *tree-max-levels*))

(defvar *tree-traversal-queue* (list 'universe))

(defvar *tree-process-queue* ’(universe))

(defvar *tree-current-breadth* 0)

(defvar *tree-current-depth* 0)

(defvar *tree-cell-width* 200) ; the width of a cell of a diagram
(defvar *tree-cell-height* 8) ; cell height of a diagram
(defvar *tree-window-handie* nil) : lfzgohandle for the diagram
; wWindow.
(defvar *Tree-Sort-Order* nil) ; Deter. the sort-order of sub-
trees

(defvar *Tree-Display-Font*
(find-font ‘small-roman))

(defvar *Tree-Diagram-Size* ‘medium)

(defvar *Active-Display-Cells* nil)

(defvar *Cell-MB-Menu* nil) ; The fop-up menu to display

; middle mouse button is depressed.
(defvar *Cell-RB-Menu* nil) ; The pop-up menu to display
; right mouse button pressed.

K-Base Final Report
- A49 -



E}E DCRL-Browse --- Browse a DCRL class hierarchy given the root
- of the hierarchy to be browsed (?).

(defun DCRL-Browse (root)

(setf *tree-display-root* root)
(setf *tree-process- * nil)
(setf *tree-current-g:;gg' 0)
(setf *tree-current-breadth* 0)
(setf *active-display-cells* nil)

;; Add the top of the universe to the process gqueue to begin
:; the breadth-first traversal.

H
H
(queue-add-list (list root))
(tree-clear-levels *concepts*)
(tree-process-node root (get root ‘concept-parent) 00)
{tree-traverse-by-breadth)
(tree-sort-children root)
(tree-clear-level-lists)
(tree-build-level-lists)
(setf *tree-current-breadth* (tree-calculate-width root))
(setf *tree-current-breadth* (Tree-Layout-Diagram root 1))
(delete-diagram-window)
(make-diagram-window)
(make-diagram-menus)
(tree-draw-diagram root)
(tree-draw-links root)
)

(defun delete-viewport-from-tree (vp tree)
(cond ((rull tree) nil)
((equal vp (car tree))(cdr tree)) .
((listp (car tree)) (cons (delete-viewport-from-tree vp (car tree))
, (delete-viewport-from-tree vp (cdr tree))

(T (cons (car tree) (delete-viewport-from-tree vp (cdr tree))))

K-Base Final Report
- A4-10 -



fun Tree-Traverse-Br-Breadth Q)
let ((child-list nil)
(symbol-level nil)
(current-node nil)
)

;77 Get the next node from the front of the queue and process it.
(setf current-node (queue-get-item))

7:: (princ (format nil "Breadth-Trav: processing node -- ~a ~%V
HH (symbol -name current-node))
HH
(cond ((null current-node))
(t (setf child-list (tree-get-children current-node))
(setf symbol-level (get current-node ’tree-level))
(setf *tree-current-depth* (max *tree-current-depth* symbol-level))
(dolist (child child-list)
§Tree-Process-Node child current-node (+ symbol-level 1) 0)
(queue-add-list child-list)
(Tree-Traverse-By-Breadth)
)
)
)

K-Base Final Report
- A4-11 -



; Tree-Clear-Levels -- set the TREE-LEVEL property to NIL
H and the TREE-SERIAL froperty to NIL for all
H concepts in the knowledge-base.

wsmame
wsmamy

(defun Tree-Clear-iLevels (concept-list)
(let ((concept-list concept-list))

7:: (princ (format nil .
i:: "Initializing Concept: ~A ~X* (symbol-name (car concept-
18t))))

(cond ((rnull concept-list) "Finished")

(T (setf (get (car concept-list) ‘tree-level) 0)
(setf (get (car concept-list) ’‘tree-serial) 0)
(setf (get (car concept-list) ’‘region) nil)
(setf (get (car concept-list) ’‘tree-order-value) 0)
(setf (get (car concept-list) ’‘tree-diagram-parent) nil)
(setf (get (car concept-list) ’tree-nd-ievel-span) 0)
§Tree-c ear-Levels (cdr concept-list))

K-Base Final Report
- A412 -



Get-Children -- given a DCRL node symbol, return the list of its children.

YR
wewe

(defun get-children (node)
§get node ’concept-child)

(defun tree-test ()
(setf *tree-structure* ‘(universe))
(setf (car *tree-structure*) (cons (car *tree-structure*)
(list (get (car *tree-

structure*)
;concept-child)
)
)
)
;:: Tree-Get-Children -- Given the name of a concept in the DCRL concept
H network, Return the list of that concept’s
HFH children.

(defun Tree-Get-Children (node)
(get node ’Concept-Child)

)
;77 Tree-Get-Parents -- Given the name of a concept in the DCRL concept
HHH network, return the list of that concept’s
HEE parent concepts.

(defun Tree-Get-Parents (node)
(get node ‘Concept-Parent)
)

;:: Tree-Process-Node -- Process a node during the traversal by setting
HH "tree-level™ and "tree-serial® properties.

(defun Tree-Process-Node (concept parent level serial)
(setf (get concept ’tree-diagram-parent) parent)
(setf (get concept ’tree-level) level)

(setf (get concept ’tree-serial) serial)
)

K-Base Final Report
- A4-13 -



ii% Tree-Calculate-Width
HH Calculate the width of each sub-tree by

HHH performing a depth-first traversal of the DCRL

HHH class hierarchy tree. This program recursively

A defines the width of a tree as the sum of the widths of
H its sub-trees. The width of a tree with no

HH children (a leaf) is defined as 1.

::: Each node has an associated progertyt

HH 'tree-breadth, which contains this width value.

(defun Tree-Calculate-Width (root)
(let ((child-sum 0) R
(child-list nil)
(diagram-parent nil)
(non-diagram-children nil)

)

{cond ((rull root) 0)
(T (setf child-list (get-children root))

;;; calculate the width of each sub-tree of root

(dolist (child child-list)
(setf diagram-parent (get child ’tree-diagram-parent))
(cond ((equal root diagram-parent)
(setf child-sum (+ child-sum
(tree-calculate-
width child)) ,

There is a non-diagram child of this node

so, make note of the fact. Also, calculate the
maximum distance between this root and its deepest
non-diagram child and store this value in the
property ’‘tree-nd-level-count.

LYRTE TR TR TR

YRR
LR YR TR TR ¥

(T (setf non-diagram-children T)
(setf (get root ‘tree-nd-level-span)
(max (get root ’'tree-nd-level-span)
(- (get child ’tree-ievel)
gget root ‘tree-level)

;:: 1f root had one or more non-diagram children that are more
;::; than one level beneath it,

;;: one to its width to leave room for the Link to children
;:: that are more than one level below root.

(cond ({and non-diagram-children
(> (get root ‘tree-nd-level-span) 1)

(setf child-sum (+ child-sum 1))
(setf (get root ’‘non-diagram-children) t)

)

(T (setf (get root 'non-diagram-children) nil))

)
i:: Store the breadth of this tree in the ‘tree-breadth property
1:: of ROOT.

(setf (get root ’tree-breadth)
(max 1 child-sum)

)

K-Base Final Report
- A4-14 -



K-Base Final Report
- A415 -



Tree-Sort-Children .
Sorts the children of root by sub-tree size
('by-size), or by the number of non-diagram
<(:h!l¢;lren ('by-nd-size) or does not sort them
nil).

(defun Tree-Sort-Children (root)

(cond ((equal *tree-sort-order* ‘by-size)
(tree-sort-children-by-size root)

)
((equal *tree-sort-order* ‘by-nd-size)
(tree-sort-children-by-nd-:{ze root)

)
(< | *tree-sort-order* ‘by-alpha)
(:ﬂte‘:-sort-children-by-alpha rog';)

) .
(T nil)

K-Base Final Report
- A4-16 -



Tree-Sort-Children-by-Size
Sort the children of each node by the number
of descendants of that node. This
operation puts the nodes with the largest
number of descendants at the top of diagram.

Nimsnsmsnsmememen
IR TR TR TR T e

SNeNENeNsngms s mg

Each node has an associated propertz,
't{ee-order-value, which contains this count
- value,

(defun Tree-Sort-Children-by-Size (root)
(let ((child-sum 0)
gchild-list nil)

(cond ((null root) 0)
(T (setf child-list (get-children root))

;5: recursively calculate the number of children
;;: of each sub-tree of root.

(dolist (child child-list)

(setf child-sum (+ (+ child-sum
(tree-sort-children-by-size

H

child))

)
)

;; Store the number of descendants for the tree in the
;5 ’'tree-order-value property of the root.

HH (princ (format nit

HH "Chitd-Sort -- Node: ~a has ~a children~%"
i (symbol -name root)

HHH child-sum)

iz )

(setf (get root ’‘tree-order-value) child-sum)
(order-children-by-size root)
(eval child-sum)

)

K-Base Final Report
- A4-17 -



(defun Tree-Order-Subtrees-by-Size (root)
(Order-Chi ldren-by-size root)
(dolist (child (get-children root))
grree-Order-Sthrees-by-size child)

)

K-Base Final Report
- A4-18 -



Order-Children-by-Size

Sort a given list into descending order on the value of a given property.
The current implementation of this routine uses the Lisp SORT function.

(defun Order-Children-by-Size (node)
(let ((temp-list nil)

gorder-list nil)
Get the list of children of the given node and sort it in
descending order into a temporary list.
(setf temp-list (get node ‘concept-child))
(setf temp-list
(stable-sort teﬂ;;list
>
tkey #/(lambda (x)

)

(get x ‘tree-order-value))
)
(setf order-list temp-list)

The following code places the largest sub-trees in the middle
of the list...

H (dotimes (nth-item (list-length temp-list))

ii: (cond ( (evenp nth-item)

H (setf order-list (append order-list

li; (list (nth nth-item temp-
ist)
. )

.
’
.
’
.
’
1
.
’
.
I

1es
T
rrr

Synmpmswsmany
IETE T TR TR T YR

s
s
saa
ves
“es
ree
te e

)
)

)
( (oddp nth-item)
(setf order-list (cons (nth nth-item temp-list)
, order-tist)

)
)
)

(setf (get node ‘concept-child) order-list)

(princ (format nil
W--- Size-Sort -- Child Order for Node: ~a ---~%"
(symbol -name node)
)

)
(dolist (child (get node ‘concept-child))
(princ (format nil
"Child: ~a Sub-tree Size: ~a~%"

(symbol-name child)
(get child ‘tree-order-value)
)

K-Base Final Report
- A4-19 -



Tree-Sort-Children-by-ND-Size
Sort the children of each node by the number
of non-diagram (ND) children of that node. This
operstion puts the nodes with the largest
nurber of ND links in the center of diagram so
that they will hopefully look betteri

Calculate the number of non-diagram children
of each sub-tree by

performing a depth-first traversal of the DCRL

class hierarchy tree.

Each node has an associated property,
'tll-ee-order-value, which contains this count
value.

(defun Tree-Sort-Children-by-ND-Size (root)
(let ((child-sum 0)
(child-list nil)
(diagram-parent nil)
)

(cond ((rull root) 0) . .
(T (setf child-list (get-children root))

calculate the number of non-dia references
of each sub-tree of root. The number of ND
; children of a node is the sum of the ND
children of the root plus the number of

ND children of its sub-trees.

(dolist (child child-list)
(setf diagram-parent (get child /tree-diagram-parent))
;51 1f this child is a ND child, then increment the
77: ND child count (but do NOT traverse that sub-tree).
K %hffu;se, traverse the sub-tree looking for more
in inks.
(cond ((not (equal diagram-parent root))

(setf child-sum (+ child-sum 1))

~ msmsnen
PRI Y
S sssansng

(T
(setf child-sum (+ child-sum
(tree-sort-children-
by-nd-size child))

)
)

)
tore the number of ND children for the tree in the
tree-order-value property of the root.

-swy
-

;C¢princ (format nil

; “ND-Kids -- Node: ~a has ~a ND-Kids~%"
; (symbol -name root)

H child-sum)

; )

rder-children-by-nd-number root)

etf (get root ‘tree-order-value) child-sum)

’
;
i
i
;
<]
S

N AR mImaws

~

K-Base Final Report
- A4-20 -



................................................................................
X}
-

H : Tree-Order-Subtrees-by-ND-Children

(defun Tree-Order-Subtrees-by-ND-Children (root)
(Order-Chi ldren-by-ND-Number root)
(dolist (child (get-children root))
(Tree-Order-Subtrees-by-ND-Children child)
)

7i; Order-Children-by-ND-Number

HH Sort a given list into descending order on the value of a given property.
HH The current implementation of this routine uses a

i bubble-sort atgorithm.

(defun Order-Children-by-ND-Number (node)
(let ((temp-list nil)
(order-list nil)
)

ii; Get the list of children of the given node and sort it in
;s descending order into a temporary list.

(setf temp-list (get node ’concept-child))
(setf temp-list
(stable-so;'t temp-list
>

:key #’(lambda (x) (get x ‘tree-order-value))
)
)
(dotimes (nth-item (list-length temp-list))
(cond ( (everf nth-item)
3

etf order-list (append order-iist
(list (nth nth-item temp-

list)
)
)

, )

( (oddp nth-item)
(setf order-list (cons (nth nth-item temp-list)

, order-list)

)

)

)

(setf (get node ‘concept-child) order-list)

(princ (format nil
"--- Child Order for Node: ~a ---~¥m
;syubol-name node)

)
(dolist (child (get node ’concept-child))

(princ (format nil
“Child: ~a ND-Value: ~a~%"
(symbol -name child)
§get child ‘tree-order-value)

L N
LR T O A A
LR TR PR R T T P PP e

K-Base Final Report
- A4-21 -



“Iree-sort-Children-by-Alpha
sort the children of each node by the string
value of the node’s symbolic name.

Each node has an associated propertz,
't{ee-order-value, which contains this count
value.

“rwsauNememgusn
P O YL Y TY )

(defun Tree-Sort-Children-by-Alpha (root)
(let ((chil)d-list nil)

(cond ({rull root) 0)
(T (order-children-by-alpha root)
(setf child-list (get-children root))

:;; recursively calculate the number of children
;:; of each sub-tree of root.

(dolist (child child-list)
, (tree-sort-children-by-alpha child)

)

:;: Debug 1/0

(princ (format nil
uaAlpha Child-Sort -- Node: ~a has ~a children-X"
(s L-name root)
child-sum)

: Order-Children-by-Alpha_ )
i sort a given list into descending order on the value of a given property.
H The current implementation of this routine uses the Lisp SORT function.

(defun Order-Children-by-Alpha (node)
(let ((temp-list nil)
)

Get the lList of children of the given node and sort it in
descending order into a temporary list.

tf temp-list (get node ‘concept-child))
tf temp-list .
(stable-sort temp-list
#/string<
:key #/(lambda (x)

)

~e
wo
o0

(symbol-name X))
)

(setf (get node ‘concept-child) temp-list)

(princ (format nil
w--- Child Order for Node: ~a ---~%"
gsynbol-name node)

)
(dotist (child (get node ’‘concept-child))
(princ (format nil

uchild: ~a~X"
gswbol-name child)

O YL T TR TR T
O YL TR TR TR L TR 1Y
P N e PR TR TR T YL Y

K-Base Final Report
- A422 -



K-Base Final Report
- A4-23 -



(defun Tree-Clear-Level-Lists () .
(let ((max-levels (length *tree-level-lists*))
)

;:: Initialize the Lists for each level to nil

(dotimes (tree-level max-levels)
(setf (aref *tree-level-lists* tree-level) nil)
)

(dotimes (tree-level max-levels)
(setf (aref *tree-level-counts* tree-level) 0)
)
)
)
Tree-Build-Level-Lists -- construct a list of the nodes at each level
of the concept network. This is accomplished

bz accessing each of the concepts listed in
the List *concepts™.

wamgmawe
Samemene
“smamewse

(defun Tree-Build-Level-Lists ()
(let ((node-level 0)
§level-count 0)

;;: Build a list of nodes at each level by looking at the "tree-level”
::; property of each node listed in *concepts*.

(dolist (current-node *concepts*)
(setf node-level (get current-node /tree-level))
(setf (aref *tree-level-lists* node-level)
(cons current-node (aref *tree-level-lists* node-level))
)

(setf level-count (aref *tree-level-counts®* node-level))
(setf level-count (+ level-count 1))

(setf (aref *tree-level-counts* node-level) level-count)
(setf (get current-node ’tree-serial) level-count)

)

PRECEDING PAGE BLANK NOT FHMED

K-Base Final Report
- A4-24 -



i7; Tree-List-Levels -- List all nodes by level number. This routine uses the
HH level lists generated by Build-Level-Lists and
HHH stored in *tree-level-lists*.

(defun Tree-List-Levels ()

(let ( i
(node-serial 0)
(node-list nil)
(node-parent-list nil)
(node-child-list nil)

)
(dotimes (level (length *tree-level-lists*))
(cond ((null (aref *tree-level-lists* level)) "finished")
((not (null (aref *tree-level-lists* (evel)))
(terpri)
(princ (format nil "Level ~a with nodes:~X" level))
(setf node-list (aref *tree-level-lists* level))
(dolist (node-symbol node-list)
(setf node-serial (get node-symbol ’tree-serial))
(princ (format nil
“Node: ~a Level: ~a Serial# ~a Pos ~a

(symbol -name node-symbol )
level

ND-Kids: ~a~X"

node-serial
(get node-symbol ’tree-diagram-column)
(get node-symbol ’tree-order-value)
)

)
(setf node-parent-list (tree-get-parents node-symbol ))
(setf node-gﬁild-list (tree-get-cﬁ?ldren node-symbol )} )
(princ (format nil v with parents: ~X"))
(dolist (next-link node-parent-list)
(princ (format nil " ~a ~%" next-link))

(princ (format nil " and children: ~X"))
(dolist (next-link node-child-list)
gprinc (format nil v ~a ~%" next-link))

)
)
)

K-Base Final Report
- A4-25 -



;:: Tree-Layout-Diagram -- Determine the positions of tree nodes within
HH each level of the tree so that the tree can
HH be mapped to the display.

i} Return-value: This function returns the incremented starting
F column of the next node of the diagram.

(defun TreejLazout-Diagrm (node starting-column)
(let ¢ (width 0)

(node-column 0)
(mn-dia?run-children nil)
(nd-level-span 0)
(current-start-column starting-column)
(diagram-parent nil)
gchi -width 1)

;:; Position node in the center of an area large enough to contain this
;:: node’s entire tree. . . )
7:: Store the node‘s cotumn position in the property ’tree-diagram-column.

(setf width (get node ’tree-breadth))
(setf node-column
(floor
(+ starting-column
¢/ width 2))

)
(setf (get node ’tree-diagram-column) node-column)

(setf non-diagram-children (get node ’‘non-diagram-children))
(setf nd-level-span (get node ’tree-nd-level-span))

;:: Determine the positions of node’s sub-trees.

(dolist (current-child (get-children node)) '
(setf diagram-parent (get current-child /tree-diagram-parent))
(setf child-width (get current-child ’tree-breadth))

HHH Onlr position diagram-children of this node. Leave non-diagram
;:: children where they are.

(cond ((equal node diagram-parent)

1f this tree has non-diagram children, then Leave the
sgace directly under the root open so that the link to
the non-diagram children will not cross any of the direct
(diagram) children.

wgmsmene
— “ewewmgwms

(if (and non-diagram-children
(> nd-level-span 1)
(and (>= node-column current-start-column)
(<= node-column (+ current-start-column

(- child-width

1
)
)
, )
(setf current-start-column
(+ node-column 1)
)
)
(setf (get current-child ’tree-start-column) current-start-column)
(setf current-start-column
gTree-Layout-Diagram current-child current-start-column)
)
;;; Otherwise, this is a non-diagram child so set its width to one
column. .
(T (setf child-width 1))
)
)
:1; The return value of this invocation is the next available "colum® in the tree
diagram.

K-Base Final Report
- A4-26 - PO



(+ current-start-column 1)
)

)

K-Base Final Report
- A4-27 -



(defun queue-add-list (ist)
(setf *tree-process-queue* (append *tree-process-queue* (st)))

(defun queue-get-item ()
(let ((return-item nil))
(setf return-item (car *tree-process-queue*))
(setf *tree-process-queue* (cdr *tree-process-queue*))
return-item))

Make -Diagram-Window -- Creates a Lucid Lisp window to accomodate a
DCRL Tree which is "breadth" cells wide and
“depth" cells (levels) deep.

(DEFUN Make-Diagram-Window ()
(let ¢ (diagram-width 0)
gdiagrun-height 0)

(setf diagram-width (* *Tree-Cell-Width* (+ *tree-current-depth* 2)))
(setf diagram-height (* *tree-cell-height* (+ *tree-current-breadth* 10)))

CINITIALIZE-WINDOWS :HEIGHT

~emee
wemama

800
:WIDTH
1010

:LABEL
W* DCRL Browser Window *")

"Make a window in root window"

(SETF *tree-window-handle*
(let ((time-list (nultlple value-list (get-decoded-time))))
(MAKE-WINDOW :

Y
0

:VIEWPORT-WIDTH

(min 950 diagram-width)
:VIEWPORT-HEIGHT
(min 750 diagram-height)
:WIDTH

diagram-width
(HEIGHT
diagram-height
:SCROLL

T

:TITLE

(format nil

sorted . " Browsing Tree: ~a Date: ~a/~a/~a Time:
~a:~a:~a Sorted: ~a

(symbol-name *tree-display-root*)
(nth 4 time-list)
(nth 3 time-list)
(mod (nth 5 time-list) 100)
(nth 2 time-list)
(nth 1 time-list)
(nth 0 time-list)
gsynbol-name *tree-sort-order*)

K-Base Final Report
- A4-28 -



......................................................................
e
«e

; ,,: Delete-Diagram-window

(defun Delete-Diagram-Window ()
(when (viewportp *tree-window-handle*)
(deactivate-viewport *tree-window-handle*)
(clear-bitmap-active-regions (vieu?ort-bitmap *tree-window-handle*))
(delete-viewport *tree-window-handle*)

HHH TROUBLESOME STUFF???
(setf (vi rt-children (root-viewport))
delete-viewport-from-tree *tree-window-handle*
(viewport-children (root-

viewport))
)
)
(setf *tree-window-handle* nil)
)
)

:-:; Make-Diagram-Menus
H Generate the pop-up menus that are needed to manipulate the
HH tree diagram.

(defun Make-Diagram-Menus ()
;:: Define the Middle-Button (-MB-) menu

(if (null *cell-mb-menu*)
(setf *cell-mb-menu*
(make-pop-up-menu / (("Draw Small Display" small )

("Draw Medium Disglay" medium )
("Draw Large Display" large )
("Sort by Sizen by-size )
("Sort by ND-Child" by-nd-size)
("Sort by Alpha» by-atpha)
("No Sort" nil-sort)
(rQuitn quit )
)

)
)
;7; Define the Right-Button (-RB-) menu

(if (nutl *cetl-rb-menu*)
(setf *cell-rb-menu*
{make-pop-up-menu ’(("Draw Sub-Tree" sub-tree)
("“Draw from Root" root
§"show Concept show

s

K-Base Final Report
- A4-29 -



fun Tree-Draw-Node (node)
let ((node-tevel (get node ’tree-level))
(node-column (get node ’tree-diagram-column))
(node-x 0)
(node-y 0)
(cetl-origin nil)
(cell-corner nil)
(cell-width (truncate (/ *tree-cell-width* 2)))
(cell-height (truncate (* *tree-cell-height* 0.666)))
gboote-op boole-1)

~8

(setf node-x (* node-level *tree-cell-width*))
(setf node-y (* node-column *tree-cell-height*))

(stringblt *tree-window-handle*
(make-position (+ node-x 1)
(- node-y 2))
*Tree-Display-font*
(symbol -name node)
;operatvon boole-op

(cond { (not (equal _*Tree-Diagr_am-Size* ‘small))
(draw- line *tree-window-handle*
(make-position node-x
node-y)

(- node-y cell-height))

(make-position node-x
:operation boole-op

)
(draw-line *tree-window-handle*
(setf cell-origin (make-position node-x

(- node-y cell-
height))) - :
(make-position (+ node-x cell-width)
. (- node-y cell-height))
soperation boole-op
(draw- line *tree-window-handle*
(make-position (+ node-x cell-width)
L. (- node-y cell-height))
(make-position (+ node-x cell-width)
. node-y)
:operation boole-op
(draw-line *tree-window-handie*
(setf cell-corner (make-position (+ node-x cell-width)
s node-y))
(make-position node-x
. node-y)
soperation boole-op
)
)
(T
(setf cell-origin (make-position node-x
(- node-y cell-
height)))
(setf cell-corner (make-position (+ node-x cell-width)
node-y))
)
)

(Make-Node-Mousey node cell-origin cell-corner)

K-Base Final Report
- A4-30 -



EE; Make-Node-Mousey -- makes the diagram box an active region
775 SLS - 3-0ct-88

(defun Make-Node-Mousey (node cell-origin cell-corner)
(setf (get node ‘region) (make-the-region cell-origin cell-corner))
(setf *active-display-cells* (cons node *active-display-cells*))
)

i:: Actually make the region here

“ae
“re

(defun make-the-region (cell-origin cell-corner)
(make-active-region

(make-region :origin cell-origin
:corner cell-corner

:bitmap (viewport-bitmap *tree-window-handle*)

7+ Invert region on entry
e
imouse-enter-region
#'(lambda (viewport active-region mouse-event x y)
(declare (ignore mouse-event x y))
(bitblt-region (viewport-bitmap viewport) active-region
g;ifupo:t-bitmap viewport) active-region
e-c

)

;: Invert region back to normal on exit

s

:mouse-exit-region

#’(lambda (viewport active-region mouse-event x y)

(declare (ignore mouse-event x y))

(bitblt-region (viewport-bitmap viewport) active-region
(viewport-bitmap viewport) active-region
boole-c1
)

)

imouse-middle-down
#'(lambda (viewport active-region mouse-event x y)
(declare (ignore viewport mouse-event x y))
(let ((choice nil)
)
(uith-asznchronous-method-invocation-alloued
(setf choice (car (pop-up-menu-choose *cell-mb-menu*)))
(cond ((equal choice ’small)
(tree-set-display-size ’small)
(dcri-browse *tree-display-root*))
((equal choice ’‘medium)
(tree-set-display-size ‘medium)
(dcrl-browse *tree-display-root*))
((equal choice ’large)
(tree-set-display-size ‘large)
(derl-browse *tree-display-root*))
((equal choice ’by-size)
(setf *tree-sort-order* ’by-size)
(derl-browse *tree-display-root*))
((equal choice ’by-nd-size)
(setf *tree-sort-order* ‘by-nd-size)
(derl-browse *tree-display-root*))
((equal choice ‘by-alpha)
(setf *tree-sort-order* ’by-alpha)
(dcrl-browse *tree-display-root*))
((equal choice ’nil-sort)
(setf *tree-sort-order* ’nil-sort)
(derl-browse *tree-display-root*))
((equal choice 'quit)
(delete-diagram-window)

)
(T nil)
)

K-Base Final Report
- A4-31 -



)
)

:mouse-right-down .

#'(lambda (viewport active-region mouse-event x y)
(declare (ignore viewport mouse-event x y))
(let ((choice nil) iy

( ni

(setf node (get-region-name active-region *active-display-cells*))
(wi th-asynchronous-method- invocation-all
(setf choice (cer (pop-up-menu-choose *cell-rb-menu*)))
(cond ((equal choice ’‘sub-tree)(dcrl-browse ))
((equal choice ’'root) (dcrl-browse ’tout))
((equal choice 'show) (show-concept node))
§T nit)

K-Base Final Report
- A432 -



7::; Get-Region-Name -- Returns the name of an active region

.
s

(defun get-region-name (r L)
(cond ((rull L) nil)
((equal (get (car L) ‘region) r) (car 1))
(T (get-region-name r (cdr 1)))
)

~

w—ewmy

;; Tree-Leaf-p -- Returns T if the given node is a leaf of the
FH DCRL tree and nil otherwise.

(defun Tree-Leaf-p (node)
(let ((child-list (get-children node))

§null child-list)

(defun Tree-Draw-Diagram (root)
(let ((child-list nil)
)

(tree-draw-node root)

(setf child-list (get-children root))

;:: calculate the width of each sub-tree of root
(dolist (child child-list)

(if (equal root (get child ’tree-diagram-parent))
§tree-drau-diagram child)

K-Base Final Report
- A433 -



(defun Tree-Draw-Links (root)
(let ((parent-ievel 0)

(parent-column 0)

(child-level 0)
(child-column 0)
eudo- level 0)

op boole-1)

Epseudo L 0)
-column
ggole-

(cond ((null root) nil)

(T (setf parent-level (get root ’tree-level))
(setf parent-colum (get root ’tree-diagram-column))
(dolist (child (get-children root))
(setf child-level (get child ’tree-level))
(setf child-colum (get child ’tree-diagram-column))

(cond (
::: 1f the parent node is more than one level above the child

if the

connections to

of
child.

parent-column)

pseudo-column)

pseudo-column)

chitd-column)

level parent-column)

child-colum)

;:: then draw a line down to where a parent tail would be
;:; parent were at child-level + 1 and disperse the
i:: the children from that point.

(> (- child-level parent-level) 1)
;i: Draw a tine from the tail of the parent to the tail

1:; a non-existant (pseudo-) node at one level above the

(setf pseudo-level (- child-level 1))

(setf ?seudo-colmn parent-column)

(draw-line *tree-window-handle*
(tree-calc-node-tail parent-level
(tree-calc-node-tail pseudo-level
:operation boole-op

(draw-line *tree-window-handle*
(tree-calc-node-tail pseudo-level

(tree-calc-node-head child-level
;operation boole-op
)
;:; Otherwise, draw the connecting links directly from the
1. tail of the parent to the head of the child.

(T (draw-line *tree-window-handle*
(tree-calc-node-tail parent-

(tree-calc-node-head child-level
;operation boole-op
)

)
gtree-drau- links child)

K-Base Final Report
-A434 -



ii; Tree-Calc-Node-Tail -- Compute the position of the tail of a node and
HH return it as a Lucid Lisp Position structure
HHH suitable for the drewing routines.

(defun Tree-Calc-Node-Tail (node-level node-column)
(let ((node-tail-x 0)
(node-tail-y 0)
)

(setf node-tail-x (- (* (+ node-level 1)
*tree-cell-width*)
gtruncate (/ *tree-cell-width* 2))

)
(setf node-tail-y (- (* node-column
*tree-cell-height*)
§truncate (/ *tree-cell-height* 2))

)
(make-position node-tail-x node-tail-y)
)
)
(defun Tree-Calc-Node-Head (node-level node-column)
(let ((node-head-x 0)
gnode-head-y 0)

(setf node-head-x (* node-level
, *tree-cell-width*)
(setf node-head-y (- (* node-column

*tree-cell-height*)
(truncate (/ *tree;gell-height*
)

)
)
(make-position node-head-x node-head-y)
)
)
;7: Draw-Part -- Draws the nodes and the lLinks for any sub-tree of the network
(DEFUN DRAW-PART
(NODE)
(CLEAR-BITMAP *TREE-WINDOW-HANDLE*)

(TREE-DRAW-DIAGRAM NODE)
(TREE-DRAW-LINKS NODE))

K-Base Final Report
- A4-35 -



Loads & DCRL description file after clearing the contents of the
currently-defined universe.

(defun DCRL-Load (filename)
(DCRL-Clear-Universe)
(load filename)
(DCRL-Browse *tree-root-node*}

DCRL-Clear-Universe
Remove all concepts from the current DCRL Universe

(defun DCRL-Clear-Universe ()
(let ((node nil))
(dolist (node *concepts*)
(destroy-concept node)
)

(defun CLS ()
( leave-Window-system)
(setf *tree-window-handle* nil)
)

(defun Tree-Set-Display-Size (size)
(cond ( (equal size ’small)
(setf *Tree-Diagram-Size* ’‘small)
(setf *Tree-Cell-Height* 8)
(setf *Tree-Cell-Width* 100)
(setf *Tree-Display-Font* (find-font ’small-roman))
)

( (equal size ‘medium)
(setf *Tree-Diagram-Size* ’‘medium)
(setf *Tree-Cell-Height* 15)
(setf *Tree-Cell-Width* 200)
§setf *Tree-Display-Font* (find-font ’small-roman))

( (equal size ’large)
(setf *Tree-Diagram-Size* ’large)
(setf *Tree-Cell-Height* 22)
(setf *Tree-Cell-Width* 300)
gsetf *Tree-Display-Font* (find-font ’‘bold-roman))

)
)

(Tree-Set-Display-Size ‘small) ;;; Initialize the display to small.

K-Base Final Report
- A4-36 -



Appendix 5 - Scoops Evaluation

A brief evaluation of SCOOPS, the PC-SCHEME OOPS package was
conducted on personal computers before the VAXStation system was in
place in order to evaluate the feasibility of an object-oriented approach to
programming for K-Base. Implementation of a problem familiar to
computer science students, the "Towers of Hanoi" problem, was
undertaken in order to provide a familiar basis for review of the
programming platform. eaders not familiar with this programmin
examg;le may refer to almost any computer science textbook whic
introduces the concept of recursion.

The familiar "Towers of Hanoi" problem can be solved using an Object-
Oriented paradigm in the following fashion:

The problem can be decomposed into a series of interactions between
objects representing Disks, Pegs, and the Game. Multiple instances of
Disks and Pegs are required; multiple instances of the game may
optionally co-exist (in different screen windows, for example).

Game play operates as follows: A game is instantiated and a PLAY-GAME
message (for a specified number of disks) is sent to it re&uesting it to
b:ﬁin play. For purposes of discussion, this instance of Game will be
called myGame.

MyGame will then create instances of the three required pegs and as many
disks as required. (The environment contains default names for the first 12
disks and the Source, Intermediate, and Destination pegs.) INITIALIZE
messages are sent to the three pegs requesting that they initialize and
draw themselves. RESERVATION messages are then sent to the source
?e% requesting that it send an INVITATION to each disk from the largest
o the smallest in succession in order to initialize object data structures and
the screen display.

Implementation of the requisite game moves is as follows: When myGame
wishes to cause a move of a disk to a garticular peg, a MOVE message is
sent to that disk with the name of the destination Se . The disk, knowing
its current pe:ﬁ.,l undraws itself and sends a GOODBYE message to that
peg, causinﬁ e e% to adjust its data structure and redraw its vacated
portion. The disk then sends an RESERVATION message to the target
peg, informing it of the disk’s pending arrival. The peg then computes
the destination address of the top of its pile and sends an INVITATION
message containing those coordinates to the disk. Upon receipt of the
INVITATION, the disk adjusts its data structure and draws itself at the
proper location. This process continues until myGame completes.

K-Base Final Report
- A5-1 -



Implementation

Imglementation of this approach requires the following class definitions
an

methods:
Class GAME:
Instances: myGame
Instance Variables: Num-Disks
Methods: Play-Game(Num-Disks)
Class DISK:
Instances: Diskl1..Disk12
Class Variables: Height
Instance Variables: Width
X-Pos
Y-Pos
Color
On-Peg
Methods: Move(peg-name)
Invitation(X-Pos,Y-Pos)
Class PEG:
Instances: Source, Intermediate, Destination
Class Variables: Height
Width
Instance Vairables: Base-X
Base-Y
Color
Top-Level
Methods: Initialize
Reservation(Disk-ID)
Goodbye

K-Base Final Report
- A5-2 -



;:: Load the SCOOPS environment
(fast-load “scoops.fsi")
:7; Define names for objects to be used

(define pegl 7())
(define peg2 ’())
(define peg3 ’())

(define diskl ’())
(define disk2 ’())
(define disk3 ’())
(define disk4 ’())
(define disk5 7())
(define diské ’())
(define disk? ’())
(define disk8 ’())
(define disk9 ’())
(define disk10 7())
(define disk11 7())
(define disk12 ’())

;:; Define the GAME class

(define-class Game
(instvars (Num-Disks 0)
)

)

::: Methods for class Game

Method Game Play-Game is used to start play of a game.
It instantiates three pegs and n disks. The pegs are
;i: initialized, and the disks are moved to peg 1. Function
i7; PLAY-HANOI is then calied to imptement the game logic
i7; and send appropriate messages to the disks.

.o
IEx]
e
20
.

(define-method (game play-game) (n)
(eval(list ‘set! (make-peg-name 1) (make-instance peg)
(eval(list ’'set! (make-peg-name 2) (make-instance peg)
(eval(list ’set! (make-peg-name 3) (make-instance peg)
(set! Num-Disks n)
(make-disks n)
(set-video-mode! 4)
(clear-graphics)
(set-palette! 1 1)
(draw-box -159 -89 159 -81 3)
(send (eval (make-peg-name 1)) initialize 1)
(send (eval (make-peg-name 2)) initialize 2)
(send (eval (make-peg-name 3)) initialize 3)
(init-disks n)
(gc T)
(play-hanoi n 1 2 3)
(gc T)

K-Base Final Report
- A5-3 -



(set-video-mode! 3)

Utitity function MAKE-DISKS is called to instantiate n
disks.

(define make-disks
(lambda (n)
(cond
((zero? n) ())
(else (eval (list ‘setl
{make-
disk-name n)
(make-
instance disk 'width n

tcolor (1+ (remainder n
»nn
)

)
(make-disks (-1+ n))

::; Utility function INIT-DISKS is called to move disks to
1:4 Peg one.

(define init-disks

(lambda (n)
(cond
((zero? n) ‘())
(else
(send (eval (make-peg-name 1)) reservation n)
(init-disks (-1+ n))
)
)
)

;3; Utility function PLAY-HANOI implements the game logic.

(define play-hanoi
(lambda (n's i d)

(cond
((zero? n) ‘())
(else
(play-hanoi (-1+ n) s d i)
(send (eval (make-disk-name n)) move d)
(play-hanoi (-1+ n) i s d)
)
)

K-Base Final Report
- A54 -



(compile-class Game)
;:: Define class Disk

(define-class Disk

(classvars (height 10))
(instvars width

X-pos

Y-pos

(color ’'white)

(On-Peg 1))
(options

(inittable-variables width color)
)

;:: Methods for class Disk

Method Disk Move is invoked by the Game when it is
desired to move a disk to a new location. The disk
erases itself from its current location, says goodbye to
its current peg and makes & reservation on the target

peg.

ws me we wg =
we we we wy wy
“e ® wmo wmy W

(define-method (Disk Move) (peg-num)
(draw-box (- X-Pos (* Width 3) 5) Y-Pos
(+ X-Pos (* Width 3) 5) (+ Y-Pos 9) 0)
(send (eval (make-peg-name On-Peg)) goodbye)
(send (eval (make-peg-name peg-num)) reservation width)
(set! On-Peg peg-num)

; Method Disk Invitation is invoked by a peg when the disk
; is invited to move itself to that peg. The disk sets its
; X,Y position according to the invitation and draws

; itself on the target peg.

- =
e ws we ws

- =

(define-method (Disk Invitation) (x y)
(set! X-pos x)
(set! Y-pos y)
(draw-box (- X-Pos (* Width 3) 5) Y-Pos
(+ X-Pos (* Width 3) 5) (+ Y-Pos 9) color)

77: Utility function MAKE-DISK-NAME constructs a disk name
;;; from its identifying number.
(define make-disk-name
(lambda (n)
{string->symbol
(string-append "DISK" (integer->string n 10))
)

K-Base Final Report
- A55 -



(compile-class Disk)
7:; Define class Peg

(define-class Peg
(classvers (height 130)

(width 10)
)
(instvars Base-X
(Base-Y -80)
(color 3)
(Top-Level 0)
)

;:: Define methods for class Peg

; Method Peg Initialize draws the peg and initializes its
; Top-Level

(define-method (Peg Initialize) (n)
(set! Top-Level 0)
(set! Base-X (- (* (- n 1) 100) 100))

(draw-box (- Base-X (/ width 2)) Base-Y
(+ Base-X (/ width 2)) (+ Base-Y height)
color

)

; Method Peg Goodbye is invoked by the disk when leaving
; the peg. The peg adjusts its Top-Level and re-draws its
; vaceted portion.

(define-method (Peg Goodbye) ()
(set! Top-Level (-1+ Top-Level))

(drauw-box (- Base-X (/ width 2)) (+ Base-Y (* Top-
Level 10))

(+ Base-X (/ width 2)) (+ Base-Y (* Top-
Level 10) 9) color)

)

:::; Method Peg Reservation is invoked by a disk arriving at
;::; the peg. The peg adjusts its top level and sends the
::: disk the location of the top of its pile.

(define-method (Peg Reservation) (d)
(send
(eval (make-disk-name d))
Invitation Base-X (+ Base-Y (* Top-Level 10))
)
(set! Top-Level (1+ Top-Level))

K-Base Final Report
- A5-6 -



Utility function MAKE-PEG-NAME creates a peg name given
its number.

(define meke-peg-name
(lambda (n)
(string->symbol
(string-append "PEG" (integer->string n 10)))

)
(compile-class Peg)

;13 Utility function DRAW-BOX draws a box filled with COLOR
::; from (X1,Y1) to (X2,Y2)
(define draw-box
(lambda (x1 y1 x2 y2 color)
(position-pen x1 y1)
(set-pen-color! color)
(draw-filled-box-to x2 y2)

)

(define myGame (make-instance game))

K-Base Final Report
-A57 -



Appendix 6: Multi-User Files Modified for KB/FMS

This section lists and briefly describes changes to components of the Multi-
User PLAID software system. The filenames listed are in the directory

Directory DONALD$DUAT1:[PLAID.CMSMULTI]
ACCESS_FILE_IN_DOMAIN.FOR

This file contains a routine which allows a PLAID module to open a
file in a specified domain. ACCESS_FILE_IN_DOMAIN opens files for
READ access only.

CONTEXT_COLLECT PARTS.FOR

This file contains a routine which collects the names of all files in the
current context which match a given file specification. The file
specification may include the normal VMS wildcard characters. This
routine will collect the names of files which are not PLAID part files as
well as those that are.

CONTEXT _DISPLAY_PARTS.FOR

A routine used to display the list of files generated by
CONTEXT_COLLECT_PARTS.

CONTEXT_LIST_PARTS.FOR

A routine that collects and displays all filenames in the current context
which match a given file specification. CONTEXT LIST PARTS uses
CONTEXT COLLECT PARTS to generate the [ist of files and
CONTEXT_DISPLAY_PARTS to display the list.

CREATE_FILE.FOR

CREATE_FILE was modified to recognize and create the five new file
types that have been added to the Multi-User PLAID.

The new file-types are:

TRE -- tree files generated by DMC.
PDF -- Primitive description files.
CDF -- COG description files.

TDF  -- Target description files.
DDF -- Display description files.

CREATE_PARTS_LIST FILE.FOR

Creates an indexed file for collecting a list of filenames. This is one of
a suite of routines which include:

K-Base Final Report
A6-1



- FIND PARTS LIST ENTRY.FOR

- READ_ PARTS LIST ENTRY.FOR

- REWRITE_PARTS LIST ENTRY.FOR
- WRITE_PARTS_LIST ENTRY.FOR

DIR_MANIP_FAST.FOR

A new implementation of DIR MANIP which uses direct calls to
s%stem services to collect file names rather than spawning a DCL
"DIRECTORY" command. This implementation is a little faster than the
original one.

DOMAIN_IN_CONTEXT.FOR

A function which determines whether or not a given domain is in the
current context. This is essentially an adaptation of the "List Context
Structure" (LCSF) command.

FIND_PARTS_LIST ENTRY.FOR

A function which, given a part name, performs a lookup in the current
Earts-list file to retrieve information on that file. See
REATE_PARTS_LIST_FILE for names of related routines.

FORTRAN_REGX.FOR

A collection of routines to provide convenient FORTRAN access to C
rm}tixﬁes "fsearch”, "fselect", "regcomp” and "regexp". These routines are
as follows:

MATCH FILE -- Called by KBASE DESC_CONTEXT and
KBASE DESC_GLOBAL to provide an interface to C routine
"fsearch”. Provides information for K-Base description reports.

SELECT FILE - Called by KBASE DESC_CONTEXT and
KBASE DESC_GLOBAL to provide an Tinterface to C routine
"fselect™. Selects files for processing by MATCH_FILE.

GET FIELD -- Access routine to return the contents of a named
field from a K-Base description file.

APPEND_FIELD -- Appends a new attribute field to an extant K-
Base description file.

REPLACE_FIELD -- Changes the value of an attribute in an extant
K-Base description file.

CHAR_TO ASCIZ -- Converts a FORTRAN character string to a C
style ASCIZ character string.

LINE_TO ASCIZ -- Converts a FORTRAN character string to a C
style ASCIZ character string terminated by a newline.

K-Base Final Report
A6-2



GET_TEXT_STRING -- Reads a record from a K-Base description file
and returns the information as a C-style ASCIZ character string.

PUT_TEXT_STRING -- Writes a C-style ASCIZ character string to a
K_Base description file.

FMATCH.C

A function which searches a K-Base description file for aN attribute
name matching a UNIX-style regular expression. The function return
value is the number of matches encountered.

FSEARCH.C

A function which searches a K-Base description file for a attribute
name matching a UNIX-style regular expression. Attribute/value pairs
V\}rlhich 1mu.eet matching criteria are written to the specified output
channel.

GET_ASSOC_FILENAME.FOR

A function which, given a PLAID filename returns the logical value
.TRUE. if there is an associated filename and false if there is not. If
.TRUE. is returned, the associated filename is also returned via the
second parameter. This function is used to perform the mapping from
part names to description file names AND description file names to
part names; a bidirectional association.

NOTE: this function does NOT check to see if the associated part file
exists. It djust determines whether or not the given part type has an
associated file type by performing a table lookup.

GET_DESC_FILENAME.FOR

A function which, given a PLAID filename returns the logical value
.TRUE. if there is an associated filename and false if there is not. If
.TRUE. is returned, the associated filename is also returned via the
second parameter. This function is used to perform the mapping from
part names to description file names AND description file names to
part names; a bidirectional association.

NOTE: this function does NOT check to see if the associated part file
exists. It just determines whether or not the given part type has an
associated file type by performing a table lookup.

GET_FILE_DATES.FOR

A routine which returns the creation date, backup date, and last
revision date for the last file opened by ACCESS_FILE or PM9CM.

K-Base Final Report
A6-3



NOTE: this routine should be called immediately after the file open
operation because subsequent open operations will over- write the
information stored in the 3RMS FILE_ID/ common block.

GET_FILE_IFS.FOR

A routine which returns the VMS Internal File Specifier/ID of the last
file opened by ACCESS_FILE or PM9CM. The IFS is used by the
routine IFS_REOPEN to perform a very fast file open operation.

NOTE: this routine should be called immediately after the file open
operation because subsequent on:n operations will over- write the
information stored in the S_FILE_ID/ common block.

GET_FILE_PROT.FOR

A routine which returns the VMS file protection attributes for the last
file opened by ACCESS FILE or PMI9CM. See the "VAX Record
Management Services Manual" section on XABPRO for the specifics of
the returned protection vector.

NOTE: this routine should be called immediately after the file open
operation because subsequent Oﬁen operations will over- write the
information stored in the S_FILE_ID/ common block.

GET_NEXT_FIELD_NAME.FOR

A function which, given a comma-delimited list of Kbase field names,
sequentially returns both the first element of the list (the LISP "(CAR
list)") and the list minus the first element (the LISP "(CDR list")). The
return value of the function is STS_CONTINUE if the get was
successful or STS_SUCCESS if the list has been exhausted.

GET_NEXT_FILE_SPEC.FOR

A function which, given a comma-delimited list of file names, returns
the first file name in the list (the LISP "(CAR list)") and the list minus
the first file name (the LISP "(CDR list)"). The return value of the
function is STS_CONTINUE if the get was successful or STS SUCCESS
if the list has been exhausted. GLOBAL_COLLECT PARTS.FOR

A routine used to construct a list of all files in a given subtree of the
Multi-User system which match a specified file name expression (usin
DCL wildcards). This routine is used by GLOBAL_LIST_PARTS an
KBASE_DESC_PARTS to collect file names for further processing.

GLOBAL_DET LEVEL.FOR

A function which determines the part "occurrence level" of each file
listed in a parts-list file generated by GLOBAL_COLLECT PARTS. The
occurrence level is essen%ial to the correct determination of which files
hide other files in the Multi-User environment.

K-Base Final Report
A6-4



GLOBAL_DISPLAY_PARTS.FOR

A routine which simply displays the list of files generated by
GLOBAL_LIST_PARTS.

GLOBAL_LIST PARTS.FOR

The routine which implements the Multi-User "FIND/GLOBAL .."
command. This routine collects all occurrences of a given file
specification in an entire subtree of the Multi-User context structure by
performing a top-down (pre-order) traversal of the subtree.

KBASE_DESCRIBE_PARTS.FOR

A routine which, given a parts-list file, a list of field-names, and a list
of content strings, determines which description files contain a field-
name and content string match. This is the rReﬁaort eneration program
for the Multi-User commands "DESCRIBE/GLOBAL .." “and
"DESCRIBE/CONTEXT ...".

KBASE_DESC_CONTEXT.FOR

The routine which implements the Multi-User "DESCRIBE/GLOBAL ..."
command. This program creates a parts-list file, collects all the files
which match a given file specification, and generates a report for each
file Khose description file contains a given field-name/field-content
matc

KBASE_DESC_GLOBAL.FOR

The routine which implements the Multi-User "DESCRIBE/CONTEXT
..." command. This program creates a parts-list file, collects all the files
which match a given file specification, and generates a report for each
file ;v.hose description file contains a given field-name/field-content
matc

KBASE_FIND CONTEXT.FOR

The routine which implements the Multi-User "FIND/CONTEXT .."
command. This program uses CONTEXT_LIST_PARTS to collect and
display the file names which match a given file specification within a
given Multi-User context.

KBASE_FIND_GLOBAL.FOR

The routine which implements the Multi-User "FIND/global .."
command. This program uses GLOBAL_LIST PARTS to collect and
display the file names which match a given file specification within a
given subtree of the Multi-User environment.

K-Base Final Report
A6-5



KBASE_FORMAT CLOSE.FOR

The routine which implements the Multi-User "FORMAT/CLOSE ..."
command. This procedure sirg%l closes the report file used by the
"DESCRIBE/GLOBAL ..." and " ECRIBE'/CONTE T .." commands.

KBASE_FORMAT_OPEN.FOR

The routine which implements the Multi-User "FORMAT/OPEN ..."
command. This procedure opens the specified report files and stores
information about the fields desired in the report. The list of field-
names is maintained for use by KBASE_DESCRIBE_PARTS to
determine which field contents are written to the report.

KBASE_FORMAT _SHOW.FOR

The routine which implements the Multi-User "FORM/SHOW .."
command which simply shows the user the name of the report file and
the field-names which ‘will be reported upon.

KBASE_INIT.FOR

A routine which simply initializes the Kbase report generation
environment.

MU9INQ.FOR

A suite of subroutines for obtaining information about the current
process from the Multi-User system. The subroutines in this suite are:

Mu9Inquire

A routine which acr%[uires information about the current process
from the Multi-User Monitor process and stores

Mu9AskMulti

A routine which performs an inter-process communication with the
Multi-User Monitor (a detached process) to collect all relevant
information about the calling process.

Mu9GetAccess

A routine which returns the Multi-User priviledge list. The
priviledge for a given user determines which Multi-User commands
tﬁft user may perform. Note: always call Mu9lnquire before calling
this routine.

K-Base Final Report
A6-6



Mu9GetAccount
A routine which returns the Multi-User account name for the

invoking process. Note: always call Mu9lnquire before calling this
routine.

Mu9GetProject
A routine which returns the current Multi-User project for the

invoking user. Note: always call Mu9lnquire before calling this
routine.

Mu9GetUic

A routine which returns the VMS UIC of the invoking user. Note:
always call Mu9lnquire before calling this routine.

PUT_FRT TO_DIR_FAST.FOR

A routine which adds foreiﬁn references to the parts-list file so that
they will appear in the search listings.

READ PARTS LIST ENTRY.FOR

A function which reads the next sequential entry from a specified
parts-list (indexed) file.

REGERROR.C

Routine called to handle errors in regular expression compilation.

REGEXP.C

Contains routines used to match UNIX-style regular expressions against
character strings. Contains routines "regcomp” and "regexec", and
routines which they reference.

regcomp Compiles a character string containing a regular expression
into an internal representation of that regular expression.

regexec Matches a compiled regular expression from "regcomp" against
a text string.

REGSUB.C

Used to Berform substitution of strings based on regular expression
searches. Provided for future use.

K-Base Final Report
A6-7



REWRITE_PARTS_LIST ENTRY.FOR

ﬁ fuﬁrllction which modifies the contents of a specified record in a parts-
ist file.

WRITE_PARTS_LIST_ENTRY.FOR
A function which writes an entry into a parts-list file.
NEW COMMON BLOCKS

KBASE.H
REGEXP.H
REGMAGIC.H

MODIFIED COMMON BLOCKS

ACCACTION_INLH
ACCEXTEN.H
ACCEXTEN INLH
ACCPARMSH
ACCPARMS INLH
ACCSEARCH_INLH

MODIFIED PROGRAMS

COMMAND_PROC.FOR
GET PARM.FOR
INITTALIZE USER.FOR
LIST CSF.FOR
PARSEDR FOR

PUT FILE_IFS.FOR
REOPEN FILEFOR
IFS_REOPEN.MAR
WAIT M.FOR

MODIFIED COMMAND PROCEDURES

MULTIUTIL.CMP
MULTIUTIL.LIB

K-Base Final Report
A6-8



Bibliography for K-Base

Bobrow, Daniel G., and Allan Collins, sentati and erstanding, New York:
Academic Press, 1975 [UTSA lib: BF311.R388]

Bobrow, Daniel G., Ronald M. Kaplan, Martin Kay, Donald A. Norman, He Thompson,
and T9e7r;y Winograd, "GUS, A Frame-Driven Dialog System", Artificial Intelligence
8(2), 1977 [UTSA: Q335.A785]

Brachman, Ronald J., "On the Epistemological Status of Semantic Networks", in Associative

Networks - Representation and Use of Knowledge by COEFputels, edited by Nicholas
V. Findler, New York: Academic Press, 1979 [see also: Findler 1979}

Brachman, Ronald J., and James G. Schmolze, "An Overview of the KL-ONE Knowledge
Representation System”, Cognitive Science 9, pp 171-216, 1985

Brooks, Rodney A., "Symbolic Reasoning among 3-D Models and 2-D Images", Artificial

Intelligence 17, August 1981. Also in Computer Vision, edited by ]J. Michael Brady,
NoFtE-ﬁoﬂand, Amsterdam, 1981

Bundy, Alan, "Will it Reach the Top? Prediction in the Mechanics World", Artificial
Intelligence 10, 1978, pp 129-146

Cox, Brad j.,, "Message/Object Programming: An Evolutionary Change in Programming
Technology”, IEEE Software, En 1984, pp 50-61

Date, C. J., An Introduction to Database Systems, Second Edition, pub. Addison-Wesley
1977

Findler, Nicholas V. (editor), Associative Networks - Representation and Use of Knowledge
by Computers, New York: Academic Press, 1979 ﬁTSA: Q360.A87]

Funt, V.sgx)-ian, "Problem-Solving with Diagrammatic Representations”, Artificial Intelligence
13(3), 1980

Goldberg, Adele and David Robson, Smalltalk-80: The Langgage and Its Implementation,
opyright 1983 Xerox Corp., Pub. Addision-Wesley 198

Hailpern, Brent, "Multiparadigm Languages", IEEE Software, January 1986, pp. 6-9

Hewitt, Carl E., P, Bishop, & R. Steiger, "A Universal Modular ACTOR Formalism for
Artificial Intelligence”, IJCAI 3, 1973, pp 235-245 [UTSA: N/A]

Hewitt, Carl E. "Viewing Control Structures as Patterns of Passing Messages", Artificial
Intelligence 8(3), 1977

Kahn, Kenneth, and Anthony G. Gorry, "Mechanizing Temporal Knowledge", Artificial
Intelligence 9(1), 1977

Jorgensen, Charles, William Hamel, and Charles Weisbin, "Autonomous Robot Navigation",
Byte Magazine, Jan. 1986, pp 223-235

Bibliography for K-base
it



Kuipers, Benjamin, "A Frame for frames: Representing Knowledge for Recognition”, in
Representation and Unde;gtandinﬁ, edited by Daniel G. Bobrow and Allan Collins,
New York: Academic Press, 1975 [UTSA: BF311.R388]

Lee, Kunwoo, and David C. Gossard, "A Hierarchical Data Structure for Representing
Assemblies: Part 1", Computer-Aided Design 17(1), pp 15-19, 1985

Lee, Kunwoo, and Guy Andrews, "Inference of the Positions of Components in an Assembly:
Part 2°, Computer-Aided Design 17(1), pp 15-19, 1985

Levesque, Hector and John Mylopoulos, "A Procedural Semantics for Semantic Networks", in
Associative Networks - Representation and Use of Knowledge by Computers, edited
Ey Nicholas V. Findler, New York: Academic Press, 1979, pp 53-119

Mackworth, Alan K, "Interpreting Pictures of Polyhedral Scenes", Artificial Intelligence 4(2),
1973

Pascoe, Geoffref A., "Elements of Object-Oriented Programming", Byte Magazine, Aug. 1989,
pp 139

Schubert Lenhart K, Randolph G. Goebel, and Nicholas ]. Cercone, "The Structure and
Or%avnization of a Semantic Net for Comprehension and Inference", Associative
Networks, 1979, New York: Academic Press, pp 121 ff

Stefik, Mark J., Daniel G. Bobrow, and Kenneth M. Kahn, "Inte ating Access-Oriented Pro-
§ramming into a Multiparadigm Environment", [EEE Software, January 1986, pages
-18

Stroustrup, Bjarne, The C++ Programming Language, Addison-Wesley, 1986

Winograd, Terry, "Frame Representations and the Declarative/Procedural Controversy”, in
Representation and Understanding, edited by Daniel G. Bobrow and Allan Collins,
New York: Academic Press, 1975

Winston, Morton E., Roger Chaffin, and Douglas Herrmann, "A Taxonomy of Part-Whole
Relations", Cognitive Science 11, pp 417-444, 1987 [UTSA]

Winston, Patrick, "Learning by Creating and Justifying Transfer Frames", Artificial
Intelligence 10(2), 1

Winston, Patrick, Artificial Intelligence, 2nd Ed., Reading MA: Addison-Wesley, 1984

Woods, William A., "What's in a Link: Foundations for Semantic Networks", in

Representation and Understanding, edited by Daniel G. Bobrow and Allan Collins,
New York: Academic Press, 1975

Bibliography for K-base
gr _PB_)é :












