
NASA-CR-194241

' /d
/

,/

P

K-Base: A Hybrid Analogical/Semantic Modeler
for Computer-Aided Design

FINAL REPORT
NAS 9-178O8

GMS Technology
24 November, 1989

(_;AS A-CA- I')4241 ) K-SASE: A

At,_AL_;G[F.,AL/S_-HA'NTIC M3DELER

Cr_c, UTc. R-AID6!) DESIGN Fin_|

(C;'_ T,_chnoloqy) I.O2 i._

HYBRID

FOR

Report

N94-70380

Unclas

Z9/61 0183159





K-Base: A Hybrid Analo_cal/Semantic Modeler
for Computer-/rfided Design

FINAL REPORT
NAS 9-17808

GMS Technology
24 November, 1989



ii



Table of Contents

1. Project Summary ......................................................................................................................... I-1
2. Background ............................................................................... 2 1

2.1 PLAID Environment ........................ "................................................... 2-1
2.2 DECnet/VAX Environment ............ iiiiiiiiiii ................................................................... 2-2

3. Programming Paradigm Research ....................... 11111111111111111111111111111111111111111111111111111111111111111113-1
3.1 Procedure-oriented Programming .............................................................................. 3-1
3.2 Object-oriented Programming .................................................................................... 3-2
3.3 Access-oriented Programming ..................................................................................... 3-4
3.4 Rule-based Programming ........................................... _ ,,

3.5 Multiple Paradigm Programming Systems ............ 111111111111111111111111111111111111111111111111113]5
3.6 Conclusions ............................................... 3-6

4. Development Environment Search ............... i..1111.1111111111111111111111111111111111111111111111111111111111111111114_1
4.1 Criteria ............................................. 4 1
4.2 Product Evaluations .................. _...______4_3

4.2.I C++ ........................... 4 3
4.7.2 Common Lisp .......... ::::::::i:::i:::i:::i:i:::i:: ............................................................. 4_

4.2.3 CLIPS-C Language Production System'v'e_ion'4101"iiiiiiiiiiiiiiiiiiiiiiiiiii4_5
4.2.4 DC-Representation Language (DC-RL) ...................................................... 4-8

4.2.5 Flavors ............................................................................................................... 4-18
4.2.6 Knowledge Engineering Environment (KEE) ......................................... 4-18
4.2.7 LOOPS/XAIE .................................................................................................... 4-19
4.7.8 New Flavors ..................................................................................................... 4-20
4.2.9 Nexpert Object ................................................................................................ 4-20
4.2.10 PC-Scheme / Scoops ..................................................................................... 4-21
4.2.11 Peabody .......................................................................................................... 4-21
4.2.12 SmallTalk-80 ........................................................................... 4-23

4.3 Selected System Configuration ........................................................ ii.iiiiiiiiiiiiiiiiiiiii14-24
4.3.1 MicroVAX II Boot Node ......................... 4-24
4.3.2 VAXstation 2000 Workstations ............. iii.iiii[iiiiiiiiiiiiiii[i[iiiii[[iiiii[iiiiiiiiiiiiii14_24
4.3.3 Local-Area VAXcluster (LAVC) ................................................................... 4-24
4.3.4 Common LISP (Lucid) .................................................................................. 4-25
4.3.5 C Compiler ....................................................................................................... 4-25
4.3.6 FORTRAN Compiler ...................................................................................... 4-25

5. Work Performed .......................................................................................................................... 5-1
5.1 K-Base Symbol Management System (KB/SMS) Specification ............................ 5-1

5.1.1 Purpose of KB/SMS .......................................................................................... 5-1
5.1.2 Approach ............................................................................................................ 5-1
5.1.3 Description of a Description File ................................................................. 5-2
5.1.4 Data Entry ............................................................... 5-3
5.1.5 Query Commands ................................. " .......................................... 5 3
5.1.6 Report Generation ................................. iiiiiiii:iiiiiiiiiiii:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii15_5
5.1.7 Global Report Algorithm ................................................................................ 5-6
5.1.8 Example of a Global Search .......................................................................... 5-8

iii _N(;; .PAGE BLANK NOT FILMED



5.1.9 Notes on Report Format: ............................................................................. 5-11
5.2 Geometric Knowledge Enhancements .................................................................... 5-12

5.2.1 SITES ................................................................................................................. 5-12
5.Z2 CONNECT command ................................................................................... 5-12
5.2.3 ATTACH / DETACH commands ............................................................... 5-12
5.2.4 IRIS interface ................................................................................................... 5-12
5.2.5 DESCRIPTION command .......................................................................... 5-12
5.2.6 DISPLAY file review .................................................................................... 5-13

5.2.7 RMS additions and improvements ........................................................... 5-13
5.2.8 VIEW command improvements ................................................................. 5-13
5.2.9 ROTATION of parts ...................................................................................... 5-14

5.2.10 JOINT command .......................................................................................... 5-14
5.2.11 SCALE command ......................................................................................... 5-14

6. Conclusions .................................................................................................................................. 6-1

Appendix 1 -- Updated Multi-User Documentation ........................................................... A1-1
Appendix 2 -- Updated DMC Documentation ..................................................................... A2-1

1. Updated DMC Routine Documentation. ................................................................ A2-1
2. Transformation Operations ...................................................................................... A2-21
3. New and Updated User Commands for DMC ................................................... A2-25

Appendix 3 -- Rasterizer Software ........................................................................................... A3-1
Appendix 4 -- DCRL Browser ................................................................................................... A4-1
Appendix 5 -- Scoops Evaluation ............................................................................................. A5-1
Appendix 6: Multi-User Files Modified for KB/SMS ........................................................... A6-1
Bibliography .................................................................................................................................... B-1

iv
__'_ _



1. Project Summary

The K-Base project was an investigation of methods for improving the
analytical anal descriptive capabilities of Computer Aided Design ('CAD)
systems. The approach involved merging knowledge representation
concep.ts, from,contempora_ ..Artificial _Intelligence (AI) research with the
geomemc moaeling capabilities ot the PUAID computer.aide d design
_'CAD 1 system to provide a system capable of reDresentin¢ dee,, ¢.... a,,-_

r,nowleage ot a system of o6jects as well as its _eometri_'appe_ran_'ce."_F'_e
set ot enhancements generated by the K-Base effort have 1Seen applied to
_e. PLAID sz.stem which is currently in use by the Manned Systems
u_wslon at j_u.

In support of these objectives, GMS Technology conducted surveys of new
programming paradigms which offer improved productivity and
knowledge-representation schemes currently in use in AI research.
Evaluations o_ available knowledge representation systems were conducted.
These evaluations included the DC-RZepresentation Language (a KL-ONE
derivative) and Peabody.

A system of hardware and software was selected for use in the
development of the K-Base software system. The selected development
system consists of a loosely-coup!ed network of Digital Equipment
_orporation (DEC) VAXstation 2003 s and a DEC Micro'VAX II with C,
FORTRAN, and CommonLisp compilers.

Enhancements were made to the PLMD system which substantially extend
its ability to model objects. The improvements fall into two categories: the
association of symbolic information with each PLAID part and the addition

oJ£ ongeCa ee  coes  : The of newsymbo c nforma on
• . u oy me aaaluon ot Mtnu-user commands which allow the
location of PLAID models based upon symbolic information queries.

The PLAID software system is currently available through Cosmic. We
envision the K-Base additions to PLAID being made available through theCosmic distribution channel.

K-Base Final Report
1-1





_,- Background

The PLAID system was written for NASA by the principals of GMS
Technology beginning in 1976, and has been continually efihanced since

_ma_lem_eme_atioASn io_ _/CD_ of__nven_onal CAD systems, the current
imr.i ...... ,___ __ _._ ,,=,. V_uvm,¢s a powerrtu working environment for

FA_utcX|ti_UUII OI slmulauon ana anmysls rusks.

The PLAID system relies almost exclusively upon _eometric representations

to provide descriptions of modeled objects. This limited" knowledge
representation produces a system which is able to provide users with a
pictorial basis for analysis, but is largely manual in operation and is
unable to store or analyze non-geometric information. The system is
therefore unable to aid the user in analysis of the advisability or possible
consequences of his actions. For example, a traditional CAD-system
contains no information which can differentiate a water pipe froin an
electrical conduit, and will gladly allow the user to connect them to;Iether.
The result provides no warning of the disastrous results which could'result
from performing such an action in the real world.

Traditional AI research has, on the other hand, emphasized
semanti.c/s.yn!bolic .information to the almost complete excltision of
geometric 1,.mormation. Any, geometric information provided to the user has
oeen rwo-atmensmnm aria intended for illustrative purposes only. No
attempt has been made to include analyses of the _[eometry for purposes
such as collision detection during object motion, reference of "ma_s or
moment of ine.m,'a from the volum.e of an irregularly shaped object, etc. AI
SnYStuemS.must..tner_ore - nave sucn.:,.rttormation manually calculated and

t, uL _,y ut_ u_¢r uetore lI can De utmzea oy me reasoning process.

2.1 PLAID Environment

2.1.1. History.

PLAID is the name of a graphics analysis system used at the NASA
JSC Manned Systems Diwsion. Development of the system began in
197_e¢_ the Universi_ of Texas at San Antonio as a NASA funded

_9 _.n¢ ongqnai system was developed on a Data General
t:cupse nuni-computer using Tektronix display devices for graphic
input and output. In 1978, the software wasported to a SEE mini-
computer for on site utilization at NASA JSC. In 1980, the system
was moved to a VAX 11/780.

2.1.2. Applications.

Since the time of its initial installation, PLAID has been used for
many graphics analysis applications, such as vision analysis, reach
an.al_sis, and clearance analysis. In the case of the Challenger
acciaent, PLAID images were used for image processing:
enhancements to identify fuel leaks. These images were als5
included in the Rogers Commission report.

K-Base Hn_ Report
2-1



2.1.3. Graphic Modules.

Currently, the PLAID system resides mai_. y on a V AX BI_I/IL_
running under VMS. It consists o.t t.hre, e mm.n moames, lne.D .-
module is used to construct pnnutive objects which denne me
geometry of a part. The DMC module (previously the COG
module) is used to construct high level assemblies and sub-
assemblies, called COG files, using the .primitive objects
constructed by BUILD. The COG files de,scribe the_anstorma,tions
used to properly place primi_tiv_, anq, omer t_uL., rues _SUD;
assemblies) into an assemD_, l ne Ul_t'L_. moame ,use. s compietea
assemblies output by DMC. These com.pletea assem.Dnes are stoma
in TARGET flies and used for generaung perspecuve views wire
hidden lines removed.

2.1.4. File Management Module.

In addition to these three functional modules, there is file
management system underlying each, which is used to partition the
PLAID database into projects and user .work areas. Lne. system,
known as MULTIUS.ER, permits the dellmuo.n.o.[,..new projects ana
user work areas with varying aegrees 9t.vlsmmt_ ror each. user.
However, due to the complex nature ot the possm!e or_aruzauon
schemes and the high degree of integration ot the other three
modules, MULTIUSER must depend on specific features of the VMS
operating system which is the primary environment for PLAID.

2.2 DECnet/VAX Environment

The PLAID system exists within a multi-processor VAXcluster computer
system whicti allows numerous PLAID users to share a large datat_ase
of PLAID models.

K-Base Final Report
2-2



3. Programming Paradigm Research

GaMaSdiTo_echn_°egYfol_Ov_ucted a _s_urvey of .state-of-the a_ programming

_tu_,ey7 .... ""'s _c_.-uons summarize wnat was learned in that

3.1 Procedure-oriented Programming

3.1.1 Description

Procedure-oriented p.rogrammi.ng is the classical paradigm of
computer programnung using one of the conventional
programming languages (e.g. assembly language, FORTRAN, C).
Procedure-on.ented pro.gramming is characterized by its focus upon
me sequenuat, atgonthmic component rather than the data-
structure component of the program.

There are many. procedure-oriented languages from which to
choose. The fonowing discussion attempts to characterize the
attributes of the mainstream languages as a group.

3.1.2 Strengths

Procedu]'e-on.'ented .programming is.well understood and widely
use a.. AU or me major progTammlng languages are implementations
ot me proceaure-oriented paradigm. The huge majority of
production quality software in use today was written in one of the
following languages:

• Ada
• C
• COBOL
• BASIC
• FORTRAN

• Lisp
• Modula-2
• Pascal
• PL/I

Procedur.e.-oriented ]_rogramming systems are Wpicallv very efficient
at execuuon nine. _.tfici.ency results from the-fact that it is a key
aeslgn, goat. or. al.most all p.rocedure-oriented languages. The notable
excepnons to trus rme are me _.isp and BASIC languages.

3.1.3 Limitations

The _fice paid for execution-time efficiency is execution-time
inflexmility which manifests itself in the areas of both data-
structures and procedures.

In the data-structure area, procedure-oriented languages require
that all data-types be known at compile-time. A new data-type can

K-Base Final Report
3-1



be introduced only. by editing the program source code, re-
compiling it, and liriking it.

Procedure-oriented languages lack the inheritance of attributes

found in object-onented langu..ages. The .p.rogramm.er. _t
implement a new data-tyl?.e and au ot me operauons on mat a -
tvve from scratch. The advent of user-defined types w._yh allows
th_ programmer to define new types m terms, ot existing tyl_es
helps alIeviate this weakness but Is rat from Demg as powentu a
construct as inheritance. (See Section 3.2)

Most procedure-oriented languages lack po!ym.orphism.., The
designers ot the Ada language aid address this issue wim me
concept of generic procedures and operator over-loading. Generic
procedures allow the programmer to .write a single proceff.ure which
can be called with several different data-types. Even so, the type ot

a given object must be known at comlSfle-time which lirm't_ the
run-time flexibility ot the program.

3.2 Object-oriented Programming

3.2.1 Description

The obiect-oriented programming paradigm focuses upon data
rather than procedures. This approach is a complete inversion of
the algorithniic focus of procedure-oriented languages.

Object-oriented programming systems have the following attributes
[Pascoe 1986]:

• information hiding
• data abstraction

• dy-namic binding (polymorphism)
• inheritance

Object-oriented languages bundle both data-structures and
procedures into modules called objects. The internal structure, of
one t_e of object is completely hid.den from objects ot another
type. The only access provifled to an object_is determined by. the.set
dfmessaKes which the object will accept:. The message,spe_ncauon
is part ot the object definition, lhis structure provides mr ootn
information hiding and data abstraction.

A new obiect type may be defined as a refinement or specialization
of an existing object type. This mechanism, called inheritance
lessens the programming-bur.den of creating new type.because the
programmer need only mod!fy, the ,data;stru .ctures and .proceci..ures
of the new (child) object wmcn airrer from those ot the exisung
(parent) object.

Inheritance is also the basis of t?olymorphism in object-oriented
systems. Because of restrictio.ns placed upon the way in which
c[escendants may differ from their ancestor objects, the programmer

K-Base Final Report
3-2



may develop generic procedures which can operate on any object
type m any given sub-tree of the object type hierarchy.

3.2.2 Strengths

_The strength, s of.objects, riented p r_gra.mmi'ng languages are simply
ttneLat_l_ Dute.s .CllSCUSSe(1 above, lne .touted implication of these
l_aumes .is, mat.progra,mnung, projects may be completed much
more qmcray ana mat tne resulting program will be more modular
and maintainable.

Certain.. kinds of programming problems seem to fit very naturally
into the object-oriented paradigm. Two of these are th_
implementation of windowed, graphical user interfaces and
distributed applications.

W!ndowe d interfaces may be structured such that each _:ravhical
iect that appears on tile display_ is represented internalrg by an

object. The process of manipulating the graphical object is
accomplished by sending the internal object a message specifying
what it should do. For example, the user may wish to select aft
icon, then move it to anotlher location on the screen. This is
accomplished by the window manager sending messages to the
object which say "select yourself", then "move yofirself".

Another major advantage of object-oriented systems is that most of

them provide for incremental modification. When a change is to be
made to.a component of the software system (i.e. an olSject), only
me moalfiea component must be compiled and there is no link ste_at all.

3.2.3 Weaknesses

The dynamic nature of object-oriented systems results in programs
which are slower than comparable procedure-oriented programs on
comparable processors. The primary reason for this is the overhead
of message clispatching. Since there is no link step to resolve the
absolute addresses of procedures. Their locations must be computed
each time a message is received by an object.

Obje.ct-oriented pro.gramming languages are difficult or impossible
Interface to exisung programs written in procedural languages.

The only effective solution to this problem is to completely rew_rite
the program in the context of the object-oriented environment For
the p_u_oses of this project, it is simply not feasible to rewritePLAID.

The !nheritance of attributes through the class hierarchy creates the
problem ot extreme dependency between objects in an
ancestor/descendant relationship. The problem arises when
significant changes must be made to the ancestor. The programmer
must be aware of the implications of the modification f'6r every
descendant of the modified object definition. This obstacle may bb

K-Base Final Report
3-3



overcome by creating a new.object hierarchy, but can be a very
cumbersome and laborious task.

P rogramme_ wh.o are s.ldUed in. the p.rocedure-oriented parafligm
often find the shift to the ooject-_orienrea paraaigm very ailficulr.
This problem has several roots. First, the structure of an object-
oriented progr__am is dramatically d.ifferent from a procedure-
oriented one. The idea of telling a data item to do something to
itself seems very strange.

3.3 Access-oriented Programming

3.3.1 Description

The access-oriented programming paradigm is actually an adjunct
to procedure-oriented programming. The key diffe_nce between.an
access-oriented language and its procedural host language is that
data items may be made to execute procedures, when they. are
accessed. For example, a procedure may be attached to a variable in
such a way that the procedure is invoked each time the value of
the variable is modified. In general, an access-oriented declaration
consists of

• a variable definition
• an access procedure
• an access mode

3.3.2 Strengths

Access-oriented programming provides a. mechanism for assuring
that certain procedures are executed whenever designated data-
items are accessed. This facility can be very. useful in instances such
as placing probes on data-items so that a display can be
automatically updated when the item is modified.

3.4 Rule-based Programming

3.4.1 Description

The rule-based.programming paradigrn, codifies expert knowledge
into a set of if-then structures called/'u/es. Each rule consists of tl_e
left-side or antecedent and a right-side or consequent. The left side
is a boolean expression which evaluates to either TRUE or FALSE.
If the left-side evaluates to TRUE, then the right-side is said to be
triggered.

The inference engine of the rule-based system determines which
rules are currently triggered and uses a /ule selection strategy to
determine which hale or rules to execute or fire. When a rule fires,

the inference engine performs the actions specified by the right-side
of the rule.

K-Base Final Report
3-4



Rule-based systems are said to embody a shallow knowledge-
representation. The rule-based system does not know anything
atiout the domain to which it is applied than is built into the rules.

If the rules do not cover a given situation, the inference engine
must simply halt. There is no deep knowledge about the
application domain from which to make Inferences or to extend the
rule set to include the exception.

3.4.2 Strengths

The rule-based paradigm offers a relatively simple method for
COld_b_nng expert knowledge into an automated, computer-based

3.4.3 Weaknesses

The n:d.e-based programming paradigm is a radical departure from
Pr_tCemdUre_fien_dpmgram__ ng. In a rule-based programming
_r' , u,_:_ o,_ ,Lu pm?:_uures ana no now or control as in the

other paradigms. While this structure lends itself to the construction
of expert-systems for problem diagnosis, it is totally inappropriate
for .many p.roblems which are commonly solved with procedure-
onentea systems.

3.5 Multiple Paradigm Programming Systems

3.5.1 Description

Multiple p.aradigm programming systems incorporate two or more
programnung paradigms into a single environment. This is a
pragmatic way of getting the best of-several worlds. The user of
SUCh a system may utilize the capabilities of several paradigms in
the solution of one problem, applying the best paradigm for
approaching each problem fragment.

Ma__y multi-paradigm prog.ranurfing systems.currently exist. These
1r.oin proceaure-onentea programming languages with object-

_onoen_edc_x+ten_l_o(_g. Common Lisp with Flavors, Common
y , rascal _.5, etc.) to complete programming

environments which employ all of the paradigms within
_ra_hical. u._er, interface en_ronment (e.g. the Knowledee

_.ngmeenng t:nvlronmenr from lntelliCorp) [Hailpem 1986] [Stetti'k1986].

3.5.2 Strengths

The principal strength of multi-paradigm systems is that the most

appropriate paradigm may be brought to bear on any given aspectof a problem.

The procedural language with extensions approach has the strength
that it provides a growth path for systems written in the l'/ost
language. These systems are almost always strict super-sets of the

K-Base Final Report
3-5



host languages. As a result, programs written in the procedure-
oriented subset may be easily ported to the multi-paradigm
extension.

3.5.3 Weaknesses

Most multi-paradigm systerns are a conglomeration, of a procedure-
oriented lanl_uage with oOject-oriented anti ruie-oasea constructs
tacked on. These systems are often syntactically obs.cure and
confusing. Each such system represents a pragmatic solution to
adding "_apabilities to the programming environment without
throwing away a huge body of existing software.

3.6 Conclusions

There is no best programming paradigm. Each paradigm matches well
with some types of problems and poorly with others.

Multi-paradigm program .mi.'ng systems are the wave of the future, but
they Have not yet arrived. I ne comprehensive multi-paradigm systems
are either closed or based upon the Lisp language. Both solutions
require that programs which are written in languages such as
FORTRAN be scrapped or rewritten. For better or worse, there is no
object-oriented (heaven help us) FORTRAN.

K-Base Final Report
3-6



4. Development Environment Search

The implementation of K-Base would be facilitated by. a development
environment which supports several key features. The i_ieal develoi_ment
en_.rortr_en,.t wo_d. provide.,.al.l., of tl_,e programming paradigms listed
•,vov_, _aunevv_ compauvmty, ana an integrated, windowed user-interface.

GMS Technology reviewed numerous products in search of an ideal
programming environment. I ne criteria used to judge the best
environment are enumerated in the following sections.

The development of an analogical/semantic modeler for CAD imposes
certain unique requirements on the host software development
environment. Simultaneous requirements exist for intensive numerical
computation, data storage and retrieval, extensive graphics capabilities,
.transparent networking and ngn-numerical (or symbolic) processing. Also,
iatc_Ssm_tdesiambleltt_atrn_thse" seleqed deve!opment environment be portable

F m oraer to take actvantage of future advances
in computer hardware. In addition, cost of acquisition was taken into
account to insure, compliance with budget limitations. These requirements
are not aaequateJy addressed by any single software developmentenvironment.

GMS Technology has evaluated several popular software development
_nV_e_..ven_ ah-d where^necessa_ their reo_fiired hardware plaffor[as for
.r to" . uo,.., u_*¢lupmCnt or l¢.-t_ase. Jne systems reviewpcl i,_,i,,Ao
rwo.Vaslc .types: software systems which can resiae in multi_ii,-hd_,_;,_'_
environments, and integrated hardware/software environments r.............

4.1 Criteria

4.1.1 Multiple-paradigm Programming Environment

The av _ail_ability of.multiple progra ..mming paradigms would provide
greatest capaolmy ana nexioili_ in the development system.

The appropriate programming paradigm can significantly reduce
me effort reqmrecl to produce specific i_atures in the target system.

4.1.2 Strong Link to DECneffVAX

A strong linl.<, to DECnet/VAX. is refluired to integrate the developed
v_.ttwa_ syst, e m_ into me existing PLAI D environment- This lirtkhge

_,L,w me r,,-tsase system to take advantage of the very
substantial hardware and software resources whicl'/ already exist in
the Manned Systems Division computer system.

The DECnet/VAX linkage must include the following features:

K-Base Final Report
4-1



4.1.2.1 File Transfer Capability

The development enviromn, ent must provide for transferring
(copying) files into and out of the VAX/VMS system
environment. This feature will all.ow files containing both
source code (programs) and data to be transported between the
two environments.

4.1.2.2 Remote File Open

The development environm.ent must .provide the ability to
directly open files across the network so that .larvae PL_.D
database files may be accessed without duplicating their
contents. This is relevant to reducing.hardware resources in the
K-Base development envi.ronment and maintaining the integrity
of the PLAID/K-Base databases.

4.1.2.3 Inter-process Communication

The development environment must provide the ab.ility qf
processes in the K-Base system to communicate directl, y with
processes in the PLAID environment via DECnet task-to-task
communication facilities. This is crucial to providing a seamless
integration between new and existing software systems.

4.1.3 Inter-language Call Facility

The development environment must provide the capability to call
procedures written in other langgages (e.g. FORTRAN and C). as
well as the capability to be called By procedures written in other
languages. This feature is vital to the K-Base effort because of the
large .quantity of software available for processing the geometric
data that exists in the PLAID environment. Thus, PLAID modules
must be capable of accessing software developed under K-Base and
K-Base modules must be capable of accessing PLAID modules.

4.1.4 Graphical User Interface (GUI)

The graphical user interface of the development environment must
provicle a uniform presentation of the software development tools
and the software developed under the environment. THe goal is to
secure a SmallTalk-80 style of user intertace environment which
provides for the following features:

• Multiple Windows
• Bit-mapped Graphics
• Menu System
• Mouse Locator Device

• Applications Interface Library

K-Base Final Report
4-2



4.2 Product Evaluations

The following sections summarize the information gathered during the
product survey conducted by GMS Technology.

4.2.1 C++

C++ is an object-oriented extension to the ANSI Standard C
programming language.

C++ (pronounced "see plus vlus"_ is a oortablo k..k--'._ _,_. _
........ . r _ --z llyullUr ooject-

one.ntecl/pm.ceclure-onente.d pro.gramrmng tool. The C++ language
Is mtenaecl to aaa ooject-onented features to the existifi_:-C
prog!"amnung language as a strict superset. The goal is to mal_e it
posgible to tak_ advantage of object-oriented programming
techniques while maintaining all the proven assets of the C
language, incmaing the large body of software written in C.

Several. !mp.ortant compromises had to be made to achieve the
sratea lment or me language. These include the static definition of
obje.ct types ,(classes), oSf .uscatio n of the message-passing paradigm,
ana me weaknesses in automatic storage management.

The benefits gained from the compromises are good run-time
efficiency, portability, and upward compatibility w_th existing C
_ro£mms. While these are major achievements, the fact thatVthe
r utuw sol tware, system ,.is .wntten in. FORTRAN rather than C
snar0ty reouces me oenetits mat might be gained by using C+ + as
the basis for new development.

Imp.lementations of C++ are available for the VAX/VMS
envtronment which make all of the features of the VMS
environment available from C+ +. Programs written in C++ may
make use of all of the DECnet/VAX network facilities by simply
calling the appropriate VMS system services.

The definition of a standard set of classes and methods which
_t,_dtaserve_a. san application progr_an_er interface (API) to the

• ,.o,,.uluo. wutuowmg system, or DE,windows or Y wi..a .....
WOU] • • " . ' " "'- • •'ti_Uw_
• d have given C+ + a distinct advantage m the realm of user-
rater,ace programming. Unfortunately, C'++ has no standard
support ,or any. graphical user interface. The application
programmer will therefore be forced to invent and implement the
classes and methods required to utilize one of the most complex
parts of the user-interface in addition to solving his/her cefitral
programming task.

Another major problem with C++ is that the definition of the
language is not yet either complete or stable. Each implementor of
C++ interprets the s3mtax and semantics of the language slightly
differently. The result is that C++ code written under-one
implementation will not port to another imp_lementation without
significant change• Such compatibility prroblems are typical of

K-Base Final Report
4-3



emerging technologies. C++ is not yet a mature software
development tool.

4.2.2 Common Lisp

Common LISP was evaluated for use as a platform for K-Base in
view of its wide acceptance by the afdfidal intelligence community,
and because it is a portable, platform independent language which
conforms to a vendor-independent standard.

The Common LISP environment chosen for serious evaluation was
Lucid LISP, from Lucid, Inc. Lucid LISP was chosen because its
environment is relatively consistent . across, m.ultiple
hardware/operating system platforms, 1,t includes, an ob/ect-onentea
programming en-virpnment (t_lavors) aria ..mctuaes a rm.riy,
comprehensive set ot tools tor aealing wire vtt mappea grapmcat
displays, mice, pull-down menu systems, etc.

In the VAX/VMS environment, Lucid LISP operates either in a

_raphic workstation (VAXStation) environment or on character
ased displays. The VMS implementation also includes the ability

to call routines written in conventional languages such as C or
FORTRAN from the LISP environment, as well as the ability to call
LISP routines from other languages.

Common LISP has a number of characteristics which recommend it
for the K-Base project. LISP is a highly dynamic environment, in
which variable bindings are determined at execution time. A single
variable may, during a single execution session, contain a tloating
point number, a character string, a binary tree, an array, or any.
other data type. Memory management is completely automatic and
is transparent to the programmer.

LISP code mac be generated at execution time, and an interpreter is
available so that tKe generated code may be executed immediately.
without any intervening compilation or Iinking steps. This level of
interactivity allows facile implementation of such advanced features
as frame-based systems with active slots, daemons which are
activated automatically upon occurrence of certain conditions, etc.

A number of test programs were written in Lucid LISP to evaluate
performance and mteractivity. Several issues surfaced during this
evaluation which reduced the programming team's perception of
the utility of the Lucid LISP envtronment.

It was hoped that subsystems of K-Base could be implemented in
LISP and subsequently embedded in a more comprehensive
environment The inter-language linkage, however, proved to be

unwieldy: Due to the dynamics of the LISP enwronment, routines
written m LISP require that _nkage to other languages be
performed at run time, thus burdeni.'ng the user with the
performance penalty of a linka, ge editing .step dur_n_ program
execution. Worse yet, the inter-language llnv, age must oe lmuatea
in the LISP run-time environment This complication precluded

K-Base Final Report
4-4



convenient installation of a LISP subsystem into an extant
_annVironment. In addi.tion, parameter passage between the different

guages is _oth cumbersome and limited in fvnc_,.'onality

In addition to the linkage editing penalties, other performance
prpolems sunaced. The Lucid LISP"garbage collection system uses
a trait-space stop-and-copy model. A't any given time, half of the
aUocate/i memory space is in use, while the other half is in reserve.
s_en f_e space becomes exhausted, program execution is

penaea ana tne garbage couection system proceeds to traverse
e a .ssociafion lists andcopy any used storage from the active half-

space to me reserve nalf-svace, discarding in the process any
storage which is unreferenced. This copy operation is performed in
its entirety before program execution can resume, often stopping
operation for several minutes. The garbage .collection process is

eXuse_rmnelwYCOnmmpU_e-mtenslve and will affect other users in a multi-

Compared to the FORTRAN environment to which the PLAID
co mmuni't_ has. become accustomed, .the numeric performance of
.,vuu_un LlaF Is ramer poor. Mlgrauon of substantial portions of
me r..IrAID" tun c_onality would, therefore, result in a perceived
reaucuon m performance.

4.2.3 CLIPS - C Language Production System version 4.01

The Artificial Intelligence Section (AIS) at NASA/JSC has developed
a rule-based expert system tool called CLIPS. This tool is a
com_uter language designed for creating expert system applications.
CLIPS was exarmned as a tool because of its portability and ease of
integration into external systems. However, it was not clear
whehher its methodology could be used in a CAD knowledge base.

4_3.1 Portability

CLIPS is written in C using standard C library functions for its
low level operations. This approach makes it very portability.
CLIPS has been used on several platforms ranging from
pe_onal .microcomputer' s to large muItiuser systems such as a

_D-(31_, __jal_i)_eend _¢Ms.under various operating systems such

4.2.3.2 Ease of integration

The ease of integration is found in the fact that CLIPS can be
both extended and embedded. The authors of CLIPS state that
this was a primary reason for developing CLIPS. CLIPS can
access and be accessed by other modules written in C,
FORTR_, or ADA.. (However, mixing, languages requires
aavancea programming skills because ot the differences in
Implementation of some data structures.)

K-Base Final Report
4-5



4.2.3.2.1Stand alone system

CLIPS can be run as a stand alone system (not embedded)
where it can execute programs written in CLIPS. In this
mode, CLIPS appears as a command line interpreter of
CLIPS language programs.

4.2.3.2.2 User defined routines

CLIPS can be extended by linking, user defined external
functions with it. A routine named 'usrfuncs' is used to
contain all references to user defined routines and is
___dated whenever a new routine is to become visible to

IPS.

4.2.3.2.3 CLIPS as a library

CLIPS can be embedded in another program by linking its
modules as a library to the calling program. This is the most
useful feature when integrating with. another large system
where the impact ot integration must be taken into account.

4_3.3 Applicability to a CAD knowledge base

It is not clear how a rule-base language system such as CLIPS
can be used in the context of a CAD knowledge base. The
following sections discuss issue.

4_3.3.1 CAD Knowledge Base

CAD knowledge bases tend to be object oriented because of
the central occupation with objects. Object definitions and
object relationsl_ips form the knowledge base. Users build
and manipulate objects in a more or less step by step
process. Parallel operations ma!¢ be possible when dealing
_'ith more tl_an one object, but l_ecause of the strong
association ot user interaction with objects and object
interaction with objects, a cause and effect scenario usuaUy
develops.

4.2.3.3.2 CLIPS Knowledge Base

CLIPS represents knowledge as a set of rules (i_ knowledge
base). The rules are matched to a list of facts and actions are
taken as defined by the rule _inference engine). Its
operations are performed in parallel m contrast to the more
standard procedural (sequential) operations usual found in
CAD systems.

K-Base Final Report
4-6



4.2.3.3.3User considerations

CLIPS defines a programming language and a ,)ser r,mst
team rouse .the language, to define th.e_knowiedge base and
_tavra..ms_ _wmcn can De actea on. ,,l t2au system Mll usually

, ._m place some user 1.ntenace (user friendly or not)
wmcn must oe learned m order to use the system.
Integration of another language or user interface such as
CLIPS may introduce a considerable learning curve problemto the user.

4.2.3.3.4 An example

CyO.nsider, for example, the RMS (Remote Manipulator
stem) simulation problem. Currently, the RMS is modeled

vaSaa set of coru_ecte_, part nodes in the form of a tree. Each
p rt aown me length ot. the RMSIs joined to the next part
In a cnmn or parent-child relationships.

The joint angles computed by the RMS inverse kinematic
rou_nes are applied to each ofth.e RM.S parts which defines
a lomt in oraer to properly update the transformations of
each part defining the jolts, thenames of the parts must be
known to me routine applying _ese joint angIes. Currently
a list in prol_'am memory o:f the parts must be defined
(__e_, are default names), by. the user prior to a simulation

run..ir mere zs a change m the names, the user must updatethis list.

What the implication of this mode of operation is that for
each RMS chain (there may be multiple configurations), the
list mus.t.be made consistent by the user. Command files can
De u_ea to ease this task, out it would be helpful if the list
coma ve part ot the root node for each RMS chain of parts.

For example, a node may contain CLIPS language which
can define the list of parts, the joint limits and the actions to
be taken when a limit is reached (the RMS inverse
kinematic routine deals with this, but in a special-purpose
manner). Then the user can execute the node containing the
CLIPS instructions with a set of joint angles as parameters
with the rules of joint angle application embodied as part
_eLdata,us. ed to ' define an RMS model (a command file
emveaaea m me aata aenrung an RMS).

The problem with the use of CLIPS in this example, is the
formiflation of the CLIPS language by the user and
applicability of the CLIPS paradigm to the RMS problem.
l_o clear solution (if any) is evident. It might be easier to
e_mbedthe cur_. nt user interface command "language in the

_laetam.ana use me currenuy language processor to execute

K-Base Final Report
4-7



4.2.3.3.5Future considerations

A solution to the user interface problem may be the
inte_ation of the CUPS language With an existing user
inte/'face. The existing intertace could generate CLIPS
statements in response to appropriate u__r commands.
However, this a non-trivial solu_on and would require some
analysis.

4.2.4 DC-Representation Language (DC-RL)

DC-RL (Dave Cebula Representation Language) is a frame based
knowledge representation lan.guage. It was ,]developed at, the
University of Pennsylvania tor researcn.ap_ncau.ons .relatea .to
check-list processing. DC-RL. is written in LIar^ and atthe time its
review it was operational tor a VA,VVM_ operaung system
environment.

4_4.1 Brief Description of DC-RL.

DC-RL is a derivation of the KL-ONE framed based system
[Brachman 1985]. It is intended to provide a rep.resentati0n
which can permit inferential, opera_ons, a struct._tred semantic
network and an extemal database reterencmg mecnarusrn.

Concepts and roles are the basic elements of DC-RL. These
elements are called objects. A concept object is a collection, class
or thing. A role object is art the attyi.'bute associated v_..th a
concept. Concepts and roles are tyEed in order to extend the
meanm_ a _iven concert or role relative to other concerts or
roles inca gl"ven networ_k or context. Typing is the defini'ng, of
an object's access, semantic and definednessproperties together
a value representing the range of a concept's children or of a
role's value.

For a concept, the access property defnes storage and retrieval.
The semantic property deterinines w_hether the, concept is an
instance, a dass or a collection, l13e 9efineaness property
determines the level of completeness ot values associated with a
concept.

For a role, the access property determines how the role is to be
used. The semantic property determines whether a role is an
instance or a tyl?e of role. The definedness property deterrni'n.es
the relevance of a role to the meaning or definition ot the

concept owning the role.

In addition to typing, DC-RL has a multiple inheritance
paradigm for both concepts and roles. Concepts and roles can
have any_ number of parents and inhe_t properties from these
parents. However, roles are slightly different trom concepts m
that they are owned by a concept. This Eern_.'ts .roles to laav.e a
dual form of inheritance. They may ifihent xaa me owrung

K-Base Final Report
4-8



concept'sfamily treeor they may inherit from their own familytree.

DC-RL also allows use of external database_ :acilities to vir:uaiize
its universe network. It permits the imbedding of external
interface functions to handle data conversion. Tl'iese interfaces

_nay. be .written in other languages (restrlcted to the linkage
acili.'ties ot .,the version of LISPused and the operating system

en__ro_nment) an a may access some commonly used d_ta base
managemem system.

4.2.4.2 Evaluation Procedure.

Inheritance is an important issue with a knowledge base for
CAD becaus, e.of the concern for objects and families of objects.
It al_pearecl ..that the inheritance features of DC-RL were the
most mteresung ana useml; therefore the evaluation of DC-RL
dealt with an example using basic multiple inheritance. For
simplicity, only concepts were used in the example model. No
role oblects were needed as the basic multiple inheritance
scheme works the same with both types of DC-RL objects.

4.2.4.3 Evaluation Results.

The multiple inheritance representation of DC-RL was
satisfactory. The declarations of the parent-child relationships
were straig.htforward although the syMax was not as clear. The
multiple inheritance representation scheme was very powerful
and easily handled the problem. However, The fact that the
platform of DC-RL was LISP was a problem. As a consequence,
the DC-RL declaration and access procedures can not be
imbedded in other non-LISP environments.

4.2.4.4 DC-RL Browser - An Evaluation

See Appendix A-4.

4.2.4.5 Outline of sample data for use with DC-RL.

As a test for DC-RL, an outline describing some of the basic

shuttle components and _]_stems was written. An outline form is
basically hierarchic and :he components and systems can spanmultiple sections.

For example, components such as seats appear in the sub-
sections, aft crew station, forward crew station and airlock. If
v_ewing the shuttle from the context of seating arrangements,
the emphasis of the outline is nus lace in that it is organized"p d
as physical sections of the shuttle.

Another example, is the reaction control system (RCS) which
appears in the nose section and the tail section. The fact that
me nose section and the tail section both contain RCS elements

K-Base Final Report
4-9



is not obvious unless one scansthe entire list of sections and
sub-sections.

DCRL was used as way to organize the information in the
outline such that a more flexible represen_tion rmght prowae
more knowledge about component relationships.

4.2.4.6 Shuttle OV-103 Discovery

The shuttle OV-103 is organized spatially as the forward secti..'on,
the payload bay section, the wing section ana me tail section.
These sections are then further &vided until basic components
are listed.

4.2.4.6.1 Forward Section

The forward section of the shuttle is that region forward of
the payload section. The forward section is where the crew
will spend most of their time.

4.2.4.6.1.1 Upper Deck

4.2.4.6.1.1.1 Aft Crew Station

Overhead viewports
Remote-Manip_ator _Translation Hand Controller
Remote-Manipulator Rotational Hand Controller
Orbitor Rotational Hand Controller

Payload Control Panel
Mission Specialist Seat
Payload Specialist Seat
Interdeck _ccess

4.2.4.6.1.1.2 Forward Crew Station

Mission Commander's Seat
Pilot's Seat

Flight Computer and Navigation Console
Na_gation Unit

4.2.4.6.1.2 Lower Deck

Galley Space

4.2.4.6.1.2.1 Airlock

Interdeck access

Telescoping Escape Pole (new)
Extra Eayload Specialists' seats (2)
Waste Management
Stowage Lockers
Avioru_cs/Electro nics Bay

K-Base Final Report
4-10



4.2.4.6.1.3Nose Section

4.2.4.6.1.3.1Reaction Control System (RCS)

RCS Forward Thrusters
RCS Oxidizer Tank
RCS Helium Tank
RCS Hvdrazine Fuel Tank
Phased-array Radar
Nosewheel Landing Gear (improved)

4.2.4.6.2 Payload Bay Section

The payload bay section is that region between the forward
section and the tail section of the shuttle. It is used for
storing the shuttle payloads, particularly deployable
payloads. It is sometimes xasited by the crew for EVA tasks.

4.2.4.6.2.1 Payload Bay Doors (2)

Radiators (4)

4.2.4.6.2.2 Remote Manipulator Arm

Elbow Video Camera (Videocam)
Extravehicular-activity Handhold
Getaway Special Camster

Alumim'um Sheathing(Payload Bay lining)
_upports i.e. for TracIdng and Data Relay Satellite
(TDRS)

4.2.4.6.2.3 Below Payload Bay

Ventilator Liquid-Oxygen Tank
Fuel Cell Liquid-Hydrogen/Liquid-Oxygen Tanks

4.2.4.6.3 Wing Section

Main Landing Gear
Reinforced Carbon-Carbon Leading Edge
Elevon (Aluminum Honeycomb Structure)

4.2.4.6.4 Tail Section

The tail section contains the bulk of the shuttle's propulsion
systems. There is no crew space in the tail section.

K-Base Final Report
4-11



4Z4.6.4.1 Space Shuttle Main Engines (3)

High-pressure Fuel Turbopump, (improved)
Liquid-Hydrogen Supply Manifold
Liquid-Oxygen Supp'l_, Manifold

4.2.4.6.4.2 Auxiliary Power Hydrazine/Oxidizer Tanks

Fuel Cell

4.2.4.6.4.3 Reaction Control System (RCS)

RCS Oxidizer Tank
RCS Hydrazine Fuel Tank
RCS Aft Thrusters
RCS Helium Tanks (2)

4.2.4.6.4.4 Orbital Maneuvering System (OMS)

OMS Hydrazine Fuel Tank
OMS Oxidizer Tank
OMS Helium Tank
OMS Thruster

4.2.4.6.4.5 Rudder (Aluminum Honeycomb Structure)

Rudder/Speed Brake Power Unit
Rudder/Speed Brake
Rudder/Speed Brake Hydraulics

4.2.4.7 Tracking and Data Relay Satellite

C-Band Commercial Antenna
4.9 Meter K/S-Band Antenna (2)
2.0 Meter K-Band Ground-Link Antenna
Stowed Solar A_q'ay
Inertial Upper Stage

4.2.4.8 A sample of DCRL knowledge representation.

The following DCRL code was used to represent the
information contained in the outline in section 3 above. The
terms un/vem_ and tout are introduced from DCRL to provide a
context for the shuttle-ov-103. The implication is that the
shuttle-ov-103 lives in a universe which is a collection of
universes found in tout (the top of universe tree).

The code given here is basically declarations of concepts (topics,
data, categories, etc) and their relationships with other concepts.
The example does not illustrate all of the capability of DCRL,
but it does show those features of interest for a CAD

knowledge base.

K-Base Final Report
4-12



4.2.4.8.1DCRL declarations.

;;; setting up a universe for shuttle-ov-103 to live in

{ concept universe
is a collection of concept
from tout )

{ concept shuttle-ov-103
is a collection of concept
from universe }

;;; now, set up. a concept (catego_)
;;; called people-seats within sKutile-ov-103

{ concept people-seats
is a collection of concept
from shuttle-ov-103 }

;;; set up other categories within shuttle-ov-103

( concept prop.ulsion-system
_s a collection of concept
from shuttle-ov-103 )

( concept guidance-system

is a collectiofiof concept
from shuttle-ov-103 }

{ concept fuel-system
is a collection of concept
from shuttle-ov-103 }

( concept forward-section
is a collection of concept
from shuttle-or-103 }

( concept payload-section
is a collection of concept
from shuttle-ov-103 }

( concept wing[-section
is a couection of concept
from shuttle-ov-103 )

( concept tail-section
is a collection of concept
from shuttle-ov-103 )

( concept rms-system
is a collection of concept
from shuttle-ov-103 )

K-Base Final Report
4-13



{ concepthand-controUers
ts a collectionof concept
from shuttle-ov-103}

;;; set up categories within previously defined
;;; categones, etc

{ concept upper-deck
is a collection of concept
from forward-section }

{ concept lower-deck
is a collection of concept
from forward-section

( concept nose-section
is a collection of concept
from forward-section }

{ concept main-engines
is a collecffon of concept
from

(taft-section
propulsion-system) }

;;; note, here the .reaction-control-system is
;,; defined such that is within several different
,,; categories at once

{ concel_t reaction-control-system
is a collection of concept
from

(node-section
taft-section

propulsion-system) }

( concept rudder
is a collection of concept
from

(tail-section
guidance-system) }

( concept rcs-oxidizer-tank
is a collection of concept
from

reaction-control-system
uel-system) }

( concept rcs-hydrazine-tank
is a collection of concept
from

reaction-control-system
uel-system) }

K-Base Final Report
4-14



{ concept rcs-helium-tank
is a collection of concept
from

rea.ction-control-system
uel-system) }

{ concept rcs-aft-thrusters
_s a collection of concept
from reaction-control-system }

{ concept oms=.hydrazine-tank
_s a collection of concept
from

orbital-maneuvering-system
uel-system) )

{ concept ores-oxidizer-tank
_s a collection of concept
from

orbital-maneuvering-system
uel-system) )

( concept ores-helium-tank
_s a collection of concept
from

rbital-mancuvering-system
el-system) )

{ concept ores-thruster
_s a collection of concej)t
from orbital-maneuvenng-system )

( concept forward-crew-station
is a collection of concept
from upper-deck )

( concept aft-crew-station
is a collection of concept
from upper-deck )

( concept navi_gation-unit
_s a collection of concept
from

(forward-crew-station
guidance-system) )

( concept phased-array-radar
_s a collection of concept
from

(nose-section
guidance-system) }

K-Base Final Report
4-15



_c°nce_tls___
from

(lower-deck
people-seats) }

{ conceptlsamic_°enc_.SoPneC_eatncept
from

(aft-crew-station
people-seats) }

from
(aft-crew-station
people-seats) }

{ concept command-seat
is a collection of concept
from

(forward-crew-station
people-seats) }

{ concept pilot-seat
is a collection of concept
from

(forward-crew-station
people-seats) }

co_ceP/samc=o_'e__d_no=i=c_rcep_
from wing-section }

{ concept nosewheel-landing-gear
is a collection of concept
from nose-section }

{ c°ncepts fauel_let_b°P oU_Poncept

from main-engines }

{ c° ncep tls atqcomldehclaYodr°og_noSUcPeP_y-manif °Id

from main-engines }

from main-engines }

K-Base F'mal Report
4-16



{ conceptrms-translation-hand-controller
is a collectionof concept
from

(aft-crew-station
rms-systemhand-controllers) }

{ concept rms-rotational-hand-controller
is a collection of concept
from

(aft-crew-station

rms-system hand-controllers) }

{ concept orbitor-rotational-hand-controller
is a collection of concept
from

aft-crew-station
and-controllers) }

{ concept rms-arm
Is a collection of concept
from

(payload-section
rms-system) }

{ concept payload-bay-doors
is a collection of concept
from payload-section }

{ concept waste-management
is a collection of concept
from lower-deck }

{ concept tdrs
is a collection of concept
from universe }

{ concept antennas
is a collection of concept
from universe }

{ concept c-band-commercial-antenna
is a collection of concept
from

(tdrs
antennas) }

{ concept ks-band-antenna
is a collection of concept
from

(tdrs
antennas) }

K-Base Final Report
4-17



{ conceptK-band-ground-link-antenna
Is a collecffon of concept
from

(tdrs .
antennas) }

{ concept stowed-solar-array
is a collection of concept
from tdrs }

( concept inem.'.al-upper:stage
is a couection ot concept
from tdrs }

These declarations form basic knowledge for use by other
features on DCRL which are mairOy access routines.
However, the declarations provide a basis for analysis of
knowledge representation scl_emes.

4.2.5 Flavors

Flavors is an object-oriented programming extension to _e
Common LISP language. As such, Flavors stiares_all the stre. ng .ths
and weaknesses of its parent environment. Frogranmung m
Flavors, as.in Common LISP, .aUows the p mgran_er a gr_at d.ed.,of
flexibility due to the late binding ot vanames, r_avors aaas to this
flexibility the object-oriented concepts of data abstraction, data
encapsulation, multiple inheritance and procedure encapsulation.

The Flavors system offers a very dynamic system of class definition
and object instancing. Class definitions may be altered and new
objects instanced at execution time.

Difficulties with the Flavors system are a superset of those
encountered with Common LISP. Although class definitions may
be changed at execution time, instances of'that class do not reflect
the changes made to the parent class. In order to implement
changes in the instances, ttiey must be destroyed after their data
has l_een copied to a new instance of the parent class.

At the time of the review, there was no standard for the Flavors
system such as that which exists for Common LISP. Programs
implemented with Flavors are, therefore, not completely portable.
A standard definition for the language is said to be fortlScoming,
however, which would allow portable systems to be created.

4.2.6 Knowledge Engineering Environment (KEE)

The Knowledge Engineering Environment (.KEE) sy.stem produced
by InteUiCorp is a Lisp-based multiple-paradigm sottware
development system. KEE incorporates the object-oriented, rule-
based, access-oriented, and frame-based programming paradigms

K-Base Final Report
4-18



into. a. software development environment which sports a
sopmsticatea graphical user-interface.

KEE has been ported to .all the. major computer architectures which
sup_port Common Lisp lncmdmg Sun workstations, VAXstations,
anff Symbolics 3600"s.

The fact that KEE is Lisp-based makes the system susceptible to all
of the problems assoaated with Lisp. foremost among these
p_blems are run-time inefficiency and the dreaded garbage-
collection cycle.

Soft,aare written, un..der the KEE system cannot be embedded
wlt[u, nomer appucauons. KEE provides its own required execution
en_nment T_,hic_h .is constructed ato, p,,. the Lisp run-time
,.,,,uv,-._.L.Hu_ arcm_ecrure makes l_t_ clLtficult to intertace with
existing software systems such as PLAID.

42.7 LOOPS/XAIE

oL_E is an acronym for the Xerox Artificial Intelligence
nvi_mnment.. T.his programming.environment, which includes the

ul-_ o oject-onentea programming system, was evaluated on the
ynamware ptatmrm upon which it is available: the Xerox 1186

AI Workstation. The LOOPS environment is similar to the Flavors
environment described above; similar strengths and weaknesses
apply.

he .X:Al.E .development .en_romnen t has a number of attractive
aractensucs tor u.mlzation In theK-Base project. XAIE has been
uevempment ana use at Aerox Palo Alto Research Center for a

number of yea.rs and is a very mature, well-develoved
pmgra_ng en_ronme.m" ll_e system features excellent on-line
neip tacmues, ana a facility called DWIM, an acronym for Do What
I Mean, .which a.ttempts to analyze typographical * and syntactical
errors, enterea oy me user ana suggest what the correct entry might
nmaaaVvedcea_n_nil_.he_systemcontains a toolbox of "gadgets and gauges",
6:"v ,.m u,pm aria output valuators which allow the user to easily(dew and manipulate program variables.

wX_IeaE_I_OOPSisCommon LISPbased, and shares the stren_:ths and
cagnesses or me Lommon _.l_t" environment as describe_i above.

No languages other than Common LISP/Common LOOPS were
available on the system.

Two major faults made XAIE unusable as a K-Base development
tool: platform dependency and network communications

deefidean_cies. ,._The .Xe.ro_x 11,86 workstation, upon which XAIE
v'-.':_" ,_ _,uu, _o_ in venormance aria h,,,,t,,,_ ; ....... ---

capaOilities. The system hs evaluated could" e%xpan e °' o°'a
m ax!m_configuration ' of 4Mb" of _ and 80 Mb of disk; both
consrralms are exrremeJy restrictive m a LISP environment. In
addition, network communications capabilities with VMS/DECNET
were limited in scope and seemed to be poorly implemented. The

K-Base Final Report
4-19



only networking tac ty ava abl for co.mmumca on
was file transfer. As an example or.implementation .cLitticulties,
networking documentation s,l_ted .that conun.umcations wl.th
DECNET could be achievea omy !t me VMB system was .ru_nnm_
Version 3 DECNET software; at that Brae, the current version ot
VMS was Version 4.6, with Version 5 already announced.

4.2.8 New Flavors

New Flavors is the implementation of the Flavors system which is
available on the Svmbolics line of AI workstation products. New
Flavors is an en_nced implementation of the-Flavors system
described above, and shares the strengths and weaknesses of that

system.

The performance penalties associated .with LISP/Flavors on the
Symbolics hardware are not as great as on .generm .purp. ose
computer systems, as the Symbolics hardware is optimized tor
Conimon LISP and implements a concept known as "ephemeral
garbage collection", wliich reduces (but does not eliminate) the
need _'or the stop and copy garbage collection process as described
above. In addition, Genera, the Symbolics operating and
development environment, is both mature and rich in functionality.
Excellent on-line help facilities are available.

Inter-operability with the VAX VMS environment, however is less
than optimal. "Network operations are limited to file transfers.

4.2.9 Nexpert Object

Nexpert Object is a multiple-paradigm___, object-oriented
vrogramming environment availal_le from Neuron Data.., Inc.
lSlexvert shares a number of features with more expensive AI

development environments, such as KEE, and features sucl_
advanced features as multiple inheritance o_f object classes, a rule-
based reasoning system and an object database complete with an
external representation. The system is available for multiple
hardware platforms, including VAX/ S workstations.

Nexpert initially appeared to be a promising platform for K-Base
development. A demonstration copy was procured and evaluated
on the IBM AT system.

Nexpert has a number of excellent features. The system includes
an excellent user interface, with m_tiple windows and too!s such
as a hierarchy, browser. Functionality of Nexpe_ is good, wi.'th
excellent implementation ot the object-oriented programnung
paradigm. Nexpert can also function as a knowledge base server
For external applications written in high-level languages such as
FORTRAN and C.

Upon careful evaluation, however, Nexpert was found to have a
single flaw which precluded its use as a platform for K-Base.

K-Base Final Report
4-2O



Database access from foreign applications is read-only; only
N._._ert applicationsmay mc_lify t_e knowledge base. Since the
ability to mod_y the knowledge base from external applications
(such as PLAID) was deemed to be critical to the success of K-Base,
the principal advantage of Nexpert Object was nullified and no
furffier evfiluation was undertaken.

4.2.10 PC-Scheme / Scoops

PC-Scheme/SCOOPS is a Texas Instruments, Inc. implementation of
.the _LISP-like programming language Scheme, which was
lntrogucea in 1975 15y Gerald-J. Sussman and Guy L. Steele which
has been extended "by the addition of SCOOPS, a LOOPS-like
object-oriented programming system.. Scheme was the first dialect
of LISP to fully support static scoping, first-class procedures and
continuations, and was a precursor t-o the development of the
Common LISP language. Scheme is relatively small, and derives
most of its power from a small set of concepts. Its size permits it to
be utilized effectively on a microcomputer system with limited
memory.

PC-Scheme .was purchased and evaluated on the IBM AT to assess

the feasibility of employing the object-oriented programming
paradig m for the K-Base project. Appendix 5 documents a familiar
application implemented in Schem_SCOOPS using (or perhaps
abusing) an object-oriented approach.

Due to its dependence on the IBM PC hardware platform, PC-
Scheme was not considered as a candidate for use in
implementation of K-Base, but rather as a teaching and evaluation
tool for use by the research team. It served well in this role, and is
to be recommended for similar exercises in the future.

4.2.11 Peabody

Peabody is representation paradigm developed by University of
Pennsylvania. Peabody is designed to model" objects with
constraints. It attempts to define a joint and constraint network

representing segmented objects whicl_i can then be processed by a
_raph .spanning algorithm, to satisfy joint and constraint definitions
ror vanous scenarios involving object manipulation.

4_,.11.1 Environment

The Peabody environment is a collection of figures, segments,
joints and constraints. It defines a graph in which the nodes are
segments and the edges between the nodes are constraints and
joints. Segments are defined as primitive objects with an
associated geometric definition. Joints are defified as tightly
bound connections between nodes. Their connection definitions
are rigid. Constraints are defined as loosely bound connections
between nodes. Their connection definitions are non-rigid
whenever loops within the graph are to be resolved. Figures are

K-Base Final Report
4-21



defined as sub-graphs of the environment graph and are
connected to the environment only by constraints.

Connection definitions are formulated with the use of sites.
Sites are defined as locations and attitudes relative to the local

coordinate system of a seBmenL A joint or constraint definition
is the binding of two sites on two ditterent segments. Sites,
connections and segments a_ all referenced by xinique names
given by the user to eacrt ot trtem.

Peabody is written in the C language, and i9 user!ev_ s3_n.t,_x
for deffning its representations is _. uge in ro ,n'n.. t.ne .l-ea?oay
representation (segments, connections ana sites) is m me rorm
of a text file which is used like a script _by.the graph resolving
algorithm to build a spa nrung tree. .T_s tre.e pe.r.nuts the
articulation of the objects (segments) wahin the envlronmem
defined by the representation.

4.2.11_, Problems with Peabody

With regard to the K-Base .paradigm, the Peabody
representation, in its form at the time of review, was
problematic.

For example, it could not represent a hierarchy of objects as
groups defined as a subassembly. It is true that a figure defined
as a sub-graph could be viewed as a subassembly, however,
sub-graphg could not be nested in other sub-graphs. In other
worcis, the Peabody environment permitted ofily one level of
assembly. In a complex environment, it is necessa, ry to have
many levels of assembly or sub-graphs, un me abstract leveb
singIe level hierarchies do not perrrut the richness of meaning
denved from the inheritance and class definitions supplied by
multiple level hierarchies. It was concluded that the Peabody
paradigm is an excellent one, but it just did not go far enough
hrith its representation.

In addition to the multiple level hierarchy, problem, the use of
text file formats as scripts was also a prob[en_ The scripts are
not conducive to a high degree of user interaction. If a change
occurs in a definition of a component of the graph, ffie
complete script must edited and then resubmitted to the grapt_

spafining algorithm. This reduces user interaction, greatl}, whent
the graph becomes large. The script itseli, is not me problem; l
is the question of how it is to be edited by. the user m a highly
interactave session which must be addressecl.

4.2.11.3 Peabody Contributions

In its role as a protoWping tool for K-Base, the PLAID sy.stem
incorporated several b_ the features found in the Peabody.
system, because of the similarity in the target problem addressed

K-Base Final Report
4-22



by both Peabody and PLAID: the assembly and articulation of
objects.

Toyad morek owled e to the objectrepresentationin
Ltuu, me reaDoclv teatures of named site definitions and

assignable joint attn_butes were incorporated into the multiple
level hierarchy currently used by PLAID.

In the PLAID system, a site is a named location and attitude
defined relative to the coordinate system local to the level of
assemoly at which the site is placed. In other words, the site is

d_efi_ied relafi.ve to .all the other objects at the same level. The
Is an object wrucn is part of the collection of objects at a

given level of assembly.

Joint attributes can be given to a site, defining its degrees of
freedom and any corresponding limits. However, these sites
wimjoint attributes are not quite like the constraint definitions
found in Peabody. For example, explicit loops or cycles in the
tree graph defined by PLAID are not possible; so the role of
constraints as breaking points for such loops or cycles is not
required. Any potential-loops or cycles, such as a hand grabbing
an object off the floor where thehand and the object are in the
same tree graph, are resolved dynamically at the moment the
object is attached to the hand. However, the explicit
,z_presenta.fi.on of cyclical relationships possible with Peabody
aoes permit a mo_ dynamic redefinition of the root of a given
sparuiing tree graph.

4.2.11.4 Conclusion

The Peabody representation, in its form at the time of review,
could not be used directly by the K-Base paradigm. However,
many of its features were useful in exploring the areas of object
_presentation .and object articulation. X3ome of the features were

o._oratea into the PLAID prototyping tool and made
available to its users.

4.2.12 SmallTalk-80

SmallTalk, the prototyp.ical object-oriented software development
environment, was developed at Xerox Palo Alto Research Center
beginning in the 1970"s. The visionaries who designed SmallTalk
invented many of the key features of the user-friendly graphical
u_r mteff.aces .which now appear in numerous commercial
pr aucts mclualng the Apple Macintosh and the Microsoft
Windows system. The SmfiUTalk vision, however, extends far
beyond the user interface.

SmaUTalk is a complete, self-contained software development
system which is composed of a set of interlocking components. The
l_ey components of the system are an object-oriented programming
language, a standard set of object classes defined in the "language,

K-Base Final Report
4-23



and the virtual SmaUTalkmachine.The predefined classesmake it
FinOSSible for a programmer to perform complex tasks in only a few

es of code written in the SmallTalk language.

The problem with the SmallTalk system is that it is an integrated
prog/amming environment. No p rowslon is made tor mcorporaung
programs wntten in non-SmallT/_lk languages into the environment
short of completely rewriting them.

4.3 Selected System Configuration

The system assembled as a vehicle for K-Base. development consists of a
closely-coupled network of four Digttal Equipment _9rporauon 32-b.it
VAX microcomputers with a .comp_hensiv_e. set ot sottware tools
running under the VMS o_erati.ng system. I ms system was Chosen to
assure complete cqmpatibility .wath the target .opera_n_ en_ronment at
JSC, and to provicte an operating environment tor l'LAlw, me pnmary
client application for K-Base.

The system hardware consists of a MicroVAX II serving as a boot node
and file server for a Local Area VAXcluster (LAVC) which includes
three low-cost VAXStation 2000 workstations.

System software includes the proprietary VMS operating system, .LAVC
software, DECnet software, a DEC FORTRAN language compiler, a
DEC C language compiler, and a Lucid LISP system froni Lucid, Inc.

4.3.1 MicroVAX II Boot Node

The MicroVAX II boot node wasprovided by NASA.as Gore .mment
Furnished Eguipment (GFE). The system, as pro_ct, ect contmnea _,
Mb of RAM, three 71 Mb disx anves, elgnt serial ports, aria an
Ethemet interface. GMS added one 159 Mb disl_ drive and a
DESTA thin-wire Ethemet adapter to complete the configuration.

4.3.2 VAXstation 2000 Workstations

The MicroVAX II system served three identical VAXstation 2000
workstations; one for each member of the research team. Each
VAXstation included a thin-wire Ethemet interface, a bit-mapped
gravhic display, a mouse and workstation sottware as standard
eau_Dment. In addition to the standard equipment, each

_,i_O-(_tation was confi_;ured with 16Mb of RAM" memo_ f(_mv
Clearpoint, Inc. and a 71 Mb local disk dnve to be used pnma y
for paging and swapping storage.

4.3.3 Local-Area VAXcluster (LAVC)

The LAVC software ties the four systems together via Ethemet as a
VAXcluster, and vrovides most ot the advantages ot a VAAcluster
environment wi_out requiring, expensive ha_wa.re interconnects
between systems. VAXcluster advantages mcmae s_mpnnea system
management, elimination of redundant data storage tor system

K-Base Final Report
4-24



software, transparent access to disk drives which physically reside
on remote machines and a close approximation to the target
VAXcluster environment at JSC.

4.3.4 Common LISP (Lucid)

The LISP system chosen is Lucid LISP, from Lucid, Inc. The Lucid
system was chosen over VAX LISP due to its indusion of an

lementation of the Flavo_ object-oriented programming system
a its supenor interface to me graphical user interface _'GUI) ofthe VAXstations.

4.3.5 C Compiler

The VAX C language compiler was chosen as a K-Base
development tool because of its compatibility with the UNIX and
ULTRIX C languages and its efficient code generation.

4.3.6 FORTRAN Compiler

dThe .VAX FOR TI_2q. language compiler was chosen as a K-Base
evelopment tool because oVits efficient code generation and its

compatibility with existing PLAID software.

K-Base Final Report
4-25





5. Work Performed

The implementation of K-Base may be divided into two broad functional
areas; non-geometric (symbolic) kfiowledge enhancements and geometric
..Knowleage enhancements. This section ot the report is divided along those
lines. We first consider the symbolic knowledge enhancements.

5.1 K-Base Symbol Management System (KB/SMS) Specification

5.1.1 Purpose of KtPSMS

The K-Base Symbol Management System (KB/S_MS) is designed to
extend the modeling capa[/ilities of the PLAID system beyond the

purelygeome c modelingwh e reta ng the e s ng
:u_r contextual referencing mechanism. This goal rec.tuires

that graMS be a tightly-coupled, component of the Multi-User

PmLec_aDSyStmse.m,utilizing and extending existing PLAID part access

KB/SMS also embodies features which aid in the maintenance of
the large database of PLAID component files, target files, and
display files by providing facilities for searching and'reporting on
]_artsbased upon attributes ot the parts. This }'acili.ty _ aid" the
rt,_, _ user commuruty in tracing the historical genesis and
evoluuon or each part.

5.1.2 Approach

KB/S.MS. overcomes the .symbolic information shortage by
assocmhn.g., relevanttextual lrfformation with each PLAID part file.
l ne .aa.clitionai into..rr_.tion .tor. a given part is stored in a
aescn.puon .me. assoaatea wi._th the part file. Each description file
contains a basic set ot attribute fieIds which are common to all

description files as well as optional fields which may be arbitrarily
addedby PLAID users.

The description files are managed by the Multi-User Manager
process in conjurlction .with the vanous PLAID modules. The
.lvlanagerj)rocess cletern_mes where the description files are stored
In me rue system. The PLAID modules are responsible for
generating and maintaining these files. Please note that this
distinction (Manager process vs. PLAID module) is invisible to the
PLAID user.

New commands added the PLAID Multi-User Interface program
provide access to a set of new search and report _eneration
[unctions. The new functions allow parts to be searched "for on the
basis of information stored in the description files as well as on the
basis of partname specification. Searches which combine partname
searches With attribute-value searches provide a very powerful tool
for part-file management.

K-Base Final Report
5-1



5.1.3 Description of a Description File

A description file consists of a set of attribute name/value pairs. The
attribute name is a character string which serves the same function
as a field name in a database. The value part ot each pair is a tree-
form block of text which is available for editing with a standard
text editor.

Unlike a traditional database, KB/SMS allows any character string to
be used as an attribute name and an art)itraril_; long string ot text
to be used as its value. This has the benefit that tKe "database" is
not restricted to a fixed set of fields; attributes specific to a
particular item can be added at will. The negative side of this
Feature is that any _ven descrip_on file ma){ cont_,'n errors.in
name spelling or total omission ot data which wou?a cause me
query system to generate incomplete or incorrect reports.

We propose a basic skeleton for the description files which
consntutes a required set of name/value pairs. The symbol
management system requires that these names be defined in each
description file and pro,Hdes facilities for automaucauy maintaining
them. Along with tFte required set of names, the user may define
additional names as needed.

5.1.3.1 Description F'tle Skeleton

::PARTNAME:: (name of the associated PLAID file)
::DOMAIN::(the name of the domain in which the file resides)
::REAL_NAME::(the title of the object, like "Tracking and Data Relay
Satellite (TDRS)")
::DESCRIPTION::(a textual description of the object)
::CREATOR NAME:: (the name of the person who created this object).
::CREATIOI__DATE:: (the date on which this object was created)
::CREATION_FUR:: (the FUR designation under which the object was
created)
MOD LIST: (a sequence of time/date stamped events which have
caused changes to the file)
DATE: (date the change was made)
NAME: (name of person making the change)
REASON: (reason for the change)
FUR: (for the change order)
ENDMODS:

(USER-DEFINED SYMBOLS GO HERE...)

K-Base Final Report
5-2



5.1.4 Data Entry

A description file is created each time a new PLAID Dart file i_
c_e_ed and updated each. time a PLAID part tile is_ modified_
_a_/_ automaticauy maintains the validity ot the symbols which
are members of the skeleton symbol set.

5.1.4.1 Data Entry at File Creation Tune

The symbol management system generates a new description
file which con.rains a description file skeleton whenever a new

PLAID part ill.e,is ,created. The newly created description file
contains me fieias snown in the Skeleton ot a Description File.
Informa.tion that is known by the software will be fiUed-in

__ticall.y_ (e.g. PARTNAME, DOMAIN, CREATOR NAME,
t:AIION_DATE). The user is subsequently given an

.opportunity to edit the description file m or_ier to input
iriformation into the remaining fields of the skeleton, or to add
new fields to the description.

5.1.4_ Data Entry at File Modification Tune

The symbol management system updates each description file
whenever the associated PLAID part file is modified. The
aerault change to the description file is a new entor in the
MODLIST section which indicates the account-name of the user
making the modification along with the date of modification.

5.1.4.3 Data Entry at Description Editing Tune

The symbol management system allows the user to edit all or
part of a description file using a conventional text editor. The
user must be aware that editing the description file can cause
erroneous or incomplete query reports due to erroneous editing
with the text editor.

5.1_5 Query Commands

Query commands provide facilities for generating reports based
upon. intormation in the description "files. Two fundamental
reporting moaes are supported; global reporting and contextual
reporting. Global queries traverse down the hierarchy of projects
(domains), collecting information on each occurrence whiclh meets

the search criteria. Conversely, contextual queries traverse up the
hierarchy of projects (domains).

5.1.5.1 Contextual Queries

Contextual queries are searches that are performed in the
context of a specified project. These searches begin in a
specified project domain and search up the context, locating all
occurrences of the specified part(s). The search order for

K-Base Final Report
5-3



contextualqueries is the same as the search order of the Multi-
User "RESO" (Resolve Partname) command.

5.1.5.1.1 Find All Occurrences of <part-expr>

This command searches the current context for all

occurrences of parts which match the given. <part.-expr>
and displays the filenames that it finds:. The distinctive
teature of this command is that it displays partname
overloading so that if one file hides another in the context,
both filenames are displayed with an annotation that
describes which file hides which.

The syntax of this command is

FIND <part-expr>

where <part-expr> is any valid VMS filename
expression which may include wild-cards.

5.1.5.1_ Find All Occurrences of <part-expr> with <expr-
list>

This command will perform the same file search as the
previous command, then search the description files for
name/value p.airs which satisfy the <expression-list>. For
example, to locate all prinutives and assemblies with
DESCRIPTION containing the string "space-station" one
could enter the command:

FIND *.PRI,*.COG DESCRIPTION="*space-station*"

Note the asterisks in the description search string. An
asterisk in any search string means that any string may
occur in place of the asterisl_. In general, the search strings
may include any Unix-style regular expression.

5.1.5.2 Global Queries

Global queries are searches of an entire sub-tree of the proiect
hierarchy,. These queries begin at a specified root of the proiect
tree and search downward through all project sub-trees. The
order in which projects are searchea is the same as the order of
projects listed by the Multi-User "LCSF" (List Context Structure)
command. Global queries will show how partnames are
overloaded in each context that is scanned.

5.1.5=?,.1 Find <part-expr>

This command searches downward in a project hierarchy to
show all occurrences of a given set of files specified by
<part-expr> as well as any file overloading. For example,

K-Base Final Report
5-4



this command might be used to locate all primitive files
which begin with DfP" as follows:

FIND/GLOBAL XP*.PRI

5.1,5.2,2 Find All Occurrences of <part-expr> with <expr-
list>

This command performs the same hierarchy search as above,
then selects specified files from those located based uvon

<ex.pr-list>..F'o.r. exam.,ple, the command might be used to
loca.te an pnr_u...nvemes__wi_'th names beginr_ng with XP
wnlcn nave IJKLgJI_L.I= IOK_i with a command of the form:

FIND/GLOBAL XP*.PRI PROJECT=TDRS

5.1.6 Report Generation

The .8.enera,tion.of repo..rts is con tTolled by a single command which
s.peaneswnat tmormauon will be gathered and where it will be
storect, l he syntax of the report spectfication command is be:

REPORT <name-list> <destination>

where

<name-list> is a list of the attribute names from which
informations is to be collected, and

<destination> is the name of the file in which the report is to
be placed. If no destination is specified, the report will be
displayed on the terminal.

Once the report format and destination are specified, the required
information Is collected using the query commands described above.

5.1.6.1 Example of a Report Generation Session

Suppose that one wished to generate a report which listed all
PLOD part files which were associated wif.h flight STS-29. The
following Multi-User dialog could be used to collect this
informaffon (assuming tha_ "STS-29" is somewhere in the
description files):

SETP root-pro'ect-name
REPORT P_KR_NAME STS-29.RPT

FIND/GLOBAL *.PRI,*.COG ANY="STS-29"
REPORT CLOSED
SPRINT STS-29.RPT

K-Base Final Report
5-5



5.1.7Global Report Algorithm

This section provides the outline of the algorithms used b_/. the
KB/SMS software to produce a global search report. The algonthms
and data-structures are describedin pidgin Pascal

1. Traverse the Context Structure in pre-order fashion, scanning
each domain for the specified files, and building an indexed file
with records like this:

Record Part Entry is
nmm: - char*20, // Film.

seq...no: char'8. // S_e rluld=er.
doiin: char*6.3, // Where file was found.
t level: integer, // Context tree Level.
o-level: integer // Occurreoce level.

End_R_cord.

where name concatenated with seq...no is the primary key,

t_].eve], is the depth of domain_name in the traversal of the
context, and o ].eve1. is the occurrence level which is initialized
to zero.

2. After all domains have been scanned and the indexed file built,
determine the occurrence level of each file as follows:

Procedure Set Occurrence Level:

Part List: File of Part Entry.
Pmre_t, Child: Pert EntFy.

read-first-record from Part List into: Parent.
do:

read-next-seqential from Part List into: Child.
uhi te (Chi td.neme == Parent.n_le),
do:
if chitd.t_level <= Parent.t_level
then

pop (Parent). /* pops Parent.name==NULL if
stack is emptyl */

elseif Parent.domain is on the path of Chi ld.domain,
then

Child.o level := Parent.o level + 1.
r_rite"Chi Id record.

_x_arh (Psr_t).
ent := Child.

read next seq. record into Child.
else

endi ._x)p (Parent).

enddo
clear the stack.
Parent := Child.

until (EOF encountered on the indexed file).
End Pr_edure.

3. Each file name now has an occurrence level associated with it.
We can use the occurrence level numbers to correctly show the
nested overloading of the names as follows:

K-Base Final Report
5-6



Procedure Oisptay Overtoading:

Part List: Fire of Part Entry.
reset the indexed fire to the beginning.
do:

read the next sequentia[ record into cur *.
tab the output as a function of cur o [eve|.

Mrite the fi{enarlte & domain name to-output.
untt[ EOF on the indexed fire.

End Procedure.

K-Base Final Report
5-7



5.1.8 Example of a Global Search

This section elucidates the algorithms with which KB/SMS traverses a Klobal context and
produces a report. This irrformation is meant tor prog_rammers wno might be msKea wlm
modif_'ng theprocedures. This process is, except for _he output report, completely hidden
from fhe PLAID user.

5.1.8.1 GIVEN: The following domain hierarchy and parts:

X. PRI

X. PRI

Y. PRI

B

[
X. PRI

Y. PRI

C

X.PRI

Y.PRI

D

A

E

X. PRI

Y. PRI

H

X.PRI

F

X. PRI

Y. PRI

G

K-Base Final Report
5-8



5.1.8.2PRODUCE:

A report that shows the overloading of each of the parts in the
global context of the A domain as follows:

Part Domain Level

X. pri A 0

X. pri B 1

X. pri C 2

X. pri D 2

X. pri F 1

X.pri G 1

X.pri H 1

Y. pri B 0

Y.pri C 1

Y.pri D 1

Y.pri G 0

Y.pri H 0

K-Base Final Report
5-9



Step 1:

KB/SMS produces an indexed file which contains the serialized part
names in the global scope of do nnnn_n A. The sequence numpers are
the result ot a running cotmt ot part files located during a pre-
order traversal of the tree of domairis with root A:

Name

X. prx

X. pr_

X. pr_

X. prx

X. prx

X.prl

X.prl

Y. prl

Y. prl

Y. pr_

Y. prl

Y. prl

Domain seq# TLevel O Level
A 1 0 0

B 2 1 0

C 4 2 0

D 6 2 0

F 8 2 0

G 9 2 0

H ii 1 0

B 3 1 0

C 5 2 0

D 7 2 0

G i0 2 0

H 12 1 0

Step 2:

Run procedure Set Occurrence Level on the above fileto
determine the p_-rent/child rel_-tionship which constitutes
overloading to produce:

Name Domain

X. prx A

X.prl B

X.prx C

X. prx D

X. prx F

X. prx G

X. prx H

Y. prl B

Y. prx C

Y.prx D

Y.prx G

Y. prl H

Seq# T Level O Level
1 0 0

2 1 1

4 2 2

6 2 2

8 2 1

9 2 1

ii 1 1

3 1 0

5 2 1

7 2 1

i0 2 0

12 1 0

Step 3:

Run procedure Display_Overloading to produce the desired
report:

K-Base Final Report
5-10



Part Domain Level

X. pri A 0

X. pri B 1

X. pri C 2

X. pri D 2

X. pri F 1

X. pri G 1

X. pri H 1

Y. pri B 0

Y.pri C 1

Y. pri D 1

Y. pri G 0

Y. pri H 0

5.1.9 Notes on Report Format:

_. !ndentation of one parthame under another means "is overloaded

y. m the above example, X.pri in domain A is overloaded by X.p_
in domain B, is ovefloa_ied b_, X.pri in Domain C ( Overloaded 5y'
is an obscure way of saying _is hidden by") "

2. Two occurrences of a given p arthame which are at the same
indentation level are not visiSle to one-another because the
domains which contain them are "cousins" in the hierarchy.

3. A blank, line between two occurrences of the same partname is
emphasis that the cgrrespond,ng parts do not share a common

ancestor even though they have the same name. Look at the
occurrences of Y.pri m the above report The Y.pri s in domains C
and D share Y.pri in domain B as a common ancestor, but the
occurrences ot Y.pri in domains G and H do not share ancestry
with any of the first three occurrences and thus are likely to
contain totally unrelated components.

K-Base Final Report
5-11



5.2 Geometric Knowledge Enhancements

Geometric knowledge has been added to the object assembly process
(DMC - Dynamic Motion COG). This a.dditional knowledge is in the
form of new information to be associated wi_th each pa__., such.as.joint
information; and new classes of objects such as s_tes. This ac[cimonai
knowledge permits a higher, more symbolic level of interaction
between the model and the user.

5.2.,.1 SH'ES

A new COG record type called a SITE has been added. It is the
same as normal COG record but has a reference name 'SITE'.

5_1.1 Use of sites.

These sites can be used as both objects and targets of DMC
commands (see CONNECT, ATTACH, DETACH, RMS, VIEW).
For example, a site can be used as an eye or camera location
and .viewpoint. A site can also be used as a location for
grasping.

5.2.1.2 Viewing sites.

Sitesare displayed as individual coordinate systems (threeaxes).
The displayof sitescan be selectivelyenabled or disabled.

5=7.,2CONNECT command.

Used with sitesto join two parts, this command permits the
symbolic assembling of parts.For example, the user can define a
connection point on a part (using sites)and laterconnect thatp.art
to another part using only the part names and theircorresponamg
connection names.

5.2.3 ATTACH / DETACH commands.

The ATTACH and DETACH commands are now installed to permit
the grasping of objects by the RMS as well as by the man-model.
Using site definitions to specify grasping points, the user can attach
a hand to an object.

5.2.4 IRIS interface.

Many of the additions to DMC mentioned here have been
interfaced to the IRIS via the VAX ethemet.

5.2.5 DES_ON command.

The user can add one line descriptions to COG records. This helps
to better identify a part. More extensive assembly and part
descriptions are forthcorhing.

K-Base Final Report
5-12



5_.6 DISPLAY file review.

The user can display previously _enerated disvlav files (cr_ at,_,_ by
the DISPLAY module of PLAID) for reviewing _pui'poses.

5.2.7RMS additions and improvements.

5.2.7.1RMS joint name list.

A user defined jointlistisa parameter to RMS. The user does

not need to use a command fileto update RMS joints.However,
more work in thisarea isneeded.

5.2.7.2Symbolic articulationof RMS.

RMS can be directed to go to a given sitename. The user does
not need to enter coordinates and attitude information
explicitly,as the siteis used to encapsulate thisinformation as a
name.

5.2.8VIEW command improvements.

5.2.8.1VIEW from a site.

A viewpoint can be specifiedsymbolically using a sitewhich
definesan eye (or camera) locationand directionof view. This
eye or camera sitedefinitionis being extended to "'c , . . Include a

amera or eye field of view (angle o'_ acceptance) which will
be associated with the particular site.

5.2.8.2 VIEW attachment.

The current view point can now be attached to a particular site
(defined as a camera or an eye) such that whenever the site is
moved, the view will automatically change to reflect the new
location of the eye or camera.

5.2.8.3 VIEW tracking.

View point tracking is being examined as a way to permit the
automatic tracking of an object by the currently attached view
point. Whenever the object being looked at moves, the
viewpoint will automatically be updated so that it will follow
the object. For example, the man-model could visually track an
object until the eye joint limits are reached or until the head
joint limits are reached.

K-Base Final Report
5-13



5.2.9 ROTATION of parts.

5.2.9.1 Rotation of parts about an arbitrary axis.

An arbitrary axis of rotation can now be defined as well as the
normal X, Y or Z axes. This permits limit checking for rotations.

5.2.9.2 Limit checking of rotations.

Rotational limits can now be specified (see JOINT command)
and are checked when the limit checking is enabled.

5.2.10 JOINT command.

5.2.10.1 JOINT definitions for parts.

A part can now be defined as a.joint with user defined axes of
rotation, orders of rotation anti rotational limits. The JOINT
definition can be disabled or enabled.

5.2.10.2 Extensions for the JOINT command.

This command is being extended to permit the selective
enabling or disabling (by axis) of limit cKecking. Translational
limit checking is being examined as a new extenfmn to the joint
definitions.

5.2.11 SCALE command.

Differential scaling has been implemented which permits the
parameterized sizing of normalized components. For example, the
normalized man-model components (body segments ) can be
parameterized for various statistically deterrmned body sizes.

K-Base Final Report
5-14



6. Conclusions

The .development of an analogical/semantic modeler for CAD im oses
certmn uruque reqturements on the host software develo PmCent
environment. Simultaneous re ui " • • P• .q rements exast for mtenswe numerical
computation, data storage and retrieval, extensive graphics capabilities,
_qt_nSu_pal_mnnttsnea_°rn_ntg _d.non:numerical _sy_nbolic) processirfg. These
j -x , . ut auctiu/ltcly aQQresseQ DV any single gnft_,°,.o
aevelopmem environment. - ., ---o- ........ ,,-

Asuryey, of s_te-of-the-art p..rogramming paradigms was conducted which
ammea me touowing paradigms:

• The Pro.cedure.O.rien_ted Programming Paradigm
• _ne ut)lect-oriemea iJrogramming Paradigm
• The 6ccess-on.'ented Programming Paradigm
• _ne .Access_onented Programming Paradigm
• _vtmu-raraalgm Programming Environments

There is no best proog_ramming paradigny. Each paradigm matches well
wire some proolem aomains and poorly with others. Multi-aradi
progr, amrmng systems overcome this nroblem b,, i....... "'-'-P -
paraai into a sin le ro ammin e_'aviro - ""-u:r'U'dUUg several• P gr g nmen{, but tliey have not etreache_nSmaturi T_ corn rehe " " "_,_ J . .ty. ... _ , nswe m_ulti-paradlgm systems are either
c_osea or vasea upon me Lasp language, l_oth approaches require that the
large body of programs which are written in languages such _s FORTRAN
be scrapped or rewritten.

GMS Tec.hnology reviewed numerous products in search of an ideal
progranmung environment- The system assembled as a vehicle for K-Base
development consists of a closely-coupled network of four Digital
Equipment Corporation 32-bit VAX microcomputers with a compreher_ive

SwetsOrc_Ofst_Va_^tools r___'ng ,un.der the ..V_l.S.operating. system. This system
• _,,. w. a_ury _comptete compaut)mty with the target overatin

_nL_r_,rupl_nt nta_rva_c_.J_, and to provide an operating enf'ironrhent f_g
r, ry m appucauon Ior r,,-tsase.

The implementation of K-Base may be divided into two broad functional

areas; non-geometric (s.ymbolic) kfiowledge enhancements and geometric
r,nowieage ennancements.

6.1 Non-geometric Knowledge.

The K-Base Sy_nbol Management System (KB/SMS) is designed to
extend the modeling capaFilities of the PLAID system beyond the
realm of purely geometric modeling while retaining the existihg Multi-
User PLAID contextual referencing mechanism. KB/SMS embodies
features which aid in the maintenance of the large database of PLAID
component files, target files, and display files by providing facilities for
searching and reporting on parts based upon ath'l'butes of the parts.

KB/SMS provides facilities for assigning arbitrarily many attribute
name/value pairs to PLAID parts. Queries of the PLAID database may

K-Base Final Report
6-1



then be performedbasedupon the values of specified attributes. Two
Multi-User PLAID search algorithms were implemented; contextual and
global searches. These facilities provide the PLAID user witl3, a
powerful tool for tracking the genesis and evolution ot parts stored in
the database.

6.2 Geometric Knowledge.

Geometric knowledge_ has been added to the object assembly, process
(DMC - Dynamic Motion COG) running on a VAX under VMS
operating system. This module was chosen-because it is currently used
in p rodu_'tion work and provides a good vehicle for moving concept to
application. The added geometric kr/owledge permits the designation ot
new classes of objects and permits a more symbolic utilization ot those
objects.

It became clear duringthe course of our research that added geometric
information should take the form of information that would better
define the role of an object. Besides the normal definition of an object
as a part within an assembly, new classes of obje.cts were a.dded. Joint
information was added to some objects to define how the object could
be articulated, objec_ were designated as sites which are .named
reference points on objects, and camera into.rmation was be embedded
in sites to further designate its tunction or rote.

The classifications provide role. information to better define, the
relationship of objects to the world. When an object is designatea oy
name in an operation, its role information qualifies itsuse. It-an object
designated as a joint is be moved as a joint, its joint limit intormation
controls its behavior. If a site is to be used as an eye point its camera
information can control the view port. Thus the user is using the
embedded information of an object by only using its name in the
correct context. This additional knowledge permits a higher, more
symbolic level of interaction between objects and users and a rich.er
level of knowledge representation for more advanced reasoning tasks.
The user's specifications for object manipulation are easier to describe
and understand when previously defined geometric information is
accessible by name.

For example, the operation of reaching for an object is simplified
whenever the user predefines a named site and then uses that s_te by
name as a goal. Thus., whenever the goal is moved, the specification
for reaching it is unchanged because the encapsulated irrtormafi.on as
to its location is automaticaUy supplied whenever its name is used.

Viewing specifications are similarly simplified when a named site,
which encapsulates the location, di/ection and camera specifications, is
_i'ven the role as an eye point or camera. The eye poin[ may move or
its camera definition may change, but the user's viewing specifications
will remain the same.

It is apparent that the encapsulation of geometric information as
symbols improves the ease of use and the level of understanding for
the user. In addition, itprovides a _ from _e complex, le_ user-
friendly representation ot geometry to the symbolic, more user-triendly,

K-Base Final Report
6-2



level. In addition, this s.ymbolic level is more conducive to both

artificial_an.d hum. an reasoning processes. In the complex world of CADana UAE, the reduction of complexity means less ,,:._ :,_ .r-- _ -teas
better handled by computer and more utilizatio,l of ; ::_et',_ bagner
_eve_ reasoning.

ORIGINAL PAGE iS

OF POOR QUALITY

K-Base Final Report
6-3





Appendix 1 - Updated Multi-User Documentation

The following pages should be added to the MullJ-L;s.'r PLAID U:_er's
Guide at the end ot: Section 2.

K-Base Final Report
AI-1



2,.3. REPORT GENERATION COMMANDS

The report generation commands provide information on PLAID part
files in entire sets of Multi-User domains. These commands provide a
mechanism for listing, files and retrieving information from the
associated description tiles.

The general outline for generating a report is as follows:

1. Use the FORM/OPEN command to open the file which is to
contain the report and optionallyspecify the description file fields
which are to b.e reported upon. NOTE: if you wish for the output
to be presented on your terminal, use a command like

FORM/OPEN TT: list-of-fields.

2. Use one or more FIND and/or DESCRIBE commands to cause

output to be generated into the report file.

3. Use the FORM/CLOSE command to cause the report file to be
released.

4. Use the DCL TYPE or PRINT commands to view the content of

the report

K-Base Final Report
A1-2



2.3.1. FORMAT REPORT Command

FORM/OPEN
FORM/CLOSE
FORM/SHOW

filename [field_name_Ust]

hee"Format Report command (FORM) causes a report destination
to De createa aria also allows the specification o7 the content of

the reoort. The revort filename is s_ecified usin the usu
s " _ , g al VMS filepeatier (e.g. MYgTUFF.RPT).

The content of the report is specified as a list of description filefield names.

NOTE: if a repo_ generation command is issued when there is no
report file open, the report .will be directed to the terminal. Use the
FORM/SHOW command to determine the status of the report file.

2.3.1.1. FORM/OPEN filename [field_name_List]

The FORM/OPEN command is specified BEFORE the report
_eneration cormn ands (i;e. FIND, DESCRIBE) are issued. The
mename parameter speafies the name of the file into whire .. . . ch the

port will be stored. The optional field name list specifies
which fields from the description files selffcted fly the report
generation commands will be copied into the report.

The field name list is an optional parameter which may be
"ALL" (wffl'tout t-he quotes), a single ciescription file field name
(without the enclosing double colons), or a list of field names
with commas separating them from one another.

Parameters:

filename

the VMS filename into which the report will be stored

field_name_list (optional)

"ALL" or a comma-delimited list of field names which
will copied to the output report file. "ALL" specifies that
all fields of the description file will be included in the
output report.

Required Privileges:

ALL (all users)

Possible Errors and Warnings:

none

K-Base Final Report
A1-3



Example 1:

The following example opens
MY REPORT.RPT and selects
desC-ription files:

a rep.ort file named
ALL fields from the

NONITOR:P FOQMIOPEN MY REPORT.RPT ALL

Output Ftl.er_me: MY REII_)RT.RPT

Ft eld__ame_List: all"

Example 2:

The following example opens a
GLOBAL.RPT and selects the creation
and modification list fields:

report file named
date, project name,

MONITOR> FORM/OPEN GLOEAL.RPT
)ULME,PROJECT, 1400

Output_Fi |ename: GLOSAL.RPT
FieLd I_ame List: NAME,PROJECT,MOO
MONIT_R, OESC/GLOBAL J*.PR[ ALL

MON! TOR, FORM/CLOSE
K-Base Format CLose
MONITOR> STYPE GLORAL.RPT

2.3.1.2. FORM/CLOSE

The FORM/CLOSE command closes the current report output
file and releases it. NOTE: Nothing can be done with the
report file at the VM.WDCL level unltI FORM/CLOSE has been
issued. This is a result of the fact that Multi-User keeps the
report file open until the FORM/CLOSE is issued.

Parameters:

none

Required Privileges:

ALL (all users)

See Also:

DESC(ribe) command
FIND command

K-Base Final Report
A1-4



Example:

I MONITOR> FORN/CLOSE I
Kbase Format Close

2.3.1.3. FORM/SHOW

The FORM/SHOW command displays the current state of the
_port file and associated list of fiel_l names to be included in
me report. If no report file is currently open, a message to that
effect is displayed. -

Parameters:

none

Required Privileges:

ALL (all users)

See Also:

FORM/OPEN command
FORM/CLOSE command
DESC(ribe) command
FIND command

Example:

MONITOR> FORM/SHOW

Report in progress:
Output fltename: GLOBAL.RPT

Field name list: NAME,PROJECT,MOO

K-Base Final Report
A1-5



2.3=?,.FIND FILES Commands

The FIND commands are designed to assist in locating files in the
Multi-User environment by performing contextual and global
searches of the context.

2.3=?,.1. FIND/CONTEXT part_spec

The FIND/CONTEXT command is essentially the same as the
Multi-User DIR command in that it searches up the context tree
from the current default domain looking for files which match
the given part spec. The significant differences between
FINDTCONTEXT'and DIR are:

(1) FIND/CONTEXT locates every occurrence of each file
matching the part spec, tagging the hidden occurrences as
"*hiddeff'

(2) FIND/CONTEXT will send its output to the currently open
report file if one is currently open.

The product of the FIND/CONTEXT command is an
alphaiSetical list of all filenames in the current context which
match the given part spec..If more than one occurrence,of a
given filename is fouffd in the context, each occurrence is nstea
m order of occurrence in the context. Each occurrence after the
first is tagged with "*hidden" to emphasize that it is obscured
from view in the current context by another file of the same
name.

2.3.2,2. FIND/GLOBAL part_spec

The FIND/GLOBAL command searches down the context

hierarchy for all files matching part spec. This search begins in
the current default domain and-proceeds to each tree of
domains which is attached to the de-fault domain. The order of
domain searches is identical to the order of the list of domains

provided by a command of the form "LCSF
<current domain>".

I

The product of this command is an al.ph.abetical listing of
occurrences of all files located which match the given part_spec.
If more than one file is located with a given name, then an
indentation scheme is used to show the logical dependencies

between files with that name. There is a l_._ical dependence
between two occurrences of a filename it one file is a
descendant of the other in the context structure tree. The idea
here is that two occurrences of a given part name are really not
related to one another if they do not share a common
contextual ancestor.

K-Base Final Report
A1-6



Parameters:

part_spec

a VMS filename which may include
rd characters (e.g. FIND *.PRI).

Privileges Required:

ALL (all users)

See Also:

FIND command
DESC(ribe) command
FORM command

Example: A Contextual FIND Command

any valid wildca

MONITOR> SETP LEVEL1 2
MONITOR> FIND/CORTEX1' *.PRI

...... LIST OF PART NAMES IJITB OVERLOADING ....

<PART_MANE> <DONAI N_NANE>

X.PRI LEVEL 1 2
X.PRI *h 1-dclen LEVELO

Y.PRI LEVEL1_2

NOTE: @ REPRESENTS FOREIGN REFERENCE

Example: A Global FIND Command

MONITOR> SETP LEVELO
I_:_IITOR> FIND/GLOBAL *.PRI

..... GLOBAL LIST OF PART NAHES WITH OVERLOADING ....

<PART_NAME> <LVL> <DOMAIN_NAME>

X.PRI O: LEVELO
X.PRI

X.PRi
X.PRI

X.PRI
X.PRI
X.PRI

Y.PRI 0:
Y.PR!
Y.PRI

Y.PRI O:
Y.PRI O:

1:LEVEL1 0
2:LEVEE1 0 0
2:LEVELI-O-1

1:LEVEL1 1-1-
1 : LEVELI-I-O
1 : LEVEL1-2-

LEVEL1 0-
1:LEVEIZ1 0 0
1 : LEVELI-O-1

LEVEL1 1-1-
L1 1 0-0-

Y.PRI 0:LEgE[lZ2

NOTE: @ REPRESENTS FOREIGN REFERENCE

K-Base Final Report
A1-7



2.3,3.DESCRIBE FILE

The DESC command allows the user to perform K-Base data
retrievals from PLAID part description files. The u.ser may. quali.fy.
data retrieval by two regular expressions: one w_ch. matches field
names, and one which matches the contents ot a field whose name
has previously been matched.

The listing may be performed either contextually or globally. The
contextual-search follows the normal part-name resolution strategy,
searching from the current domain toward the root ot the
hierarchy, the global search proceeds from the current domain
toward Be leaves of the hierarchy tree.

Modifiers

/CONTEXT- Performs a contextual search. (Default)
/GLOBAL - Performs a global search.

Parameters

PART SPEC
I

Specification(s) for files to be retrieved. May. be either a
single file specification or a comma-delimited list of file
specifications. Each specification should be a standard
VMS file specification, wild-cards are allowed.

FIELD NAME SPEC (optional)

A UNIX-style regular expression matching one or more
description file field names.

CONTENT SPEC (optional)

A UNiX-style reh,ular expression matching the contents
of any of the fields matched by FIELD NAME SPEC.

See Also

FORM command
FIND command

Examples: DESC/CONTEXT

This example generates a contextual report of all fields of all
primitives named X.PRI.

K-Base Final Report
A1-8



NCN|TOR> FORM/OPEN CONTEXT.RPT ALL
K-Base Format Open
NONITOR> DESC/CONTEXT X.PRZ ALL
K-Base Describe Context
Part Spec: X.PR]
Field] Jim Spec: all
Conte_t Sp_c:
HON [ TOR_" FORM/CLOSE
K-Base Format CLose
NONITOR> STYPE CONTEXT.RPT

Domain: LEVELI_O..O Oesc name: X.PDF
.... ........ ............. _. ................

::MANE:: X.PRI

::CREATED:: 17-APR-1989 18:15:37.78 [300,300]
::ACCOUNT::

::PROJECT:: DONALDSDUAI:(GALLAWAY.PLAID.LEVEL1 0 O]
::UlC:: (300,300] --
::DESC::

::CONTENTS:: Rev:E UON: In. Space used: 5.95X
Object Count: 1

Nme code Description Area Volume Ok?
HBOX (52) Milled solid 26.742427.11373 YES

::RANGE::
Cert.: 0.000000.000001.00000
Nin.:-l.00000 -I.000000.00000
Max.: 1.000001.000002.00000

::VOLUNE::7.11373 cu. %n.
::AREA:: 26.74242 so. In.
::ROO::17-APR-1989 18:16:30.72 [300,300]

............................................

Domain: LEVEL1 0 Desc name: X.PDF

::MANE:: X.PR!

::CREATED:: 17-APR-1989 18:15:37.78 [300,300]
::ACCOUNT::

::PROJECT:: DONALD$OUAI:[GALLAWAY.PLA|D.LEVEL1 O]
::UIC:: (300,300]
::DESC::

::CONTENTS:: Rev:E LI_: In. Space used: 5.95X
Object Count: 1

Name codeDescript|on Area Volume Ok?
HBOX (52) Milled solid 26.742427.11373 YES

::RANGE::
Con.: 0.000000.000001.00000

Nin.:-l.00000 -1.000000.00000
Nsx.: 1.000001.000002.00000

::VOLUNE::7.11373 cu. In.

::AREA:: 26.74242 sq. In.

::NGO::17-APR-1989 18:16:05.07 [300,300]
............................................

Domain: LEVELO Desc name: X.PDF
..................... _ ......................

::MANE:: X.PRI

::CREATED:: 17-APR-1989 18:15:37.78 [300,300]
::ACCOUNT::

::PROJECT:: DONALD$DUAI:[GALLAMAY.PLAID.LEVELO]
::UIC:: [300,300]
::DESC::

::CONTENTS:: Rev:E UOfl: in. Space used: 5.95X
Object Count: 1

Name code Description Ares Volume Ok?
HBOX (52) Milled solid 26.742427.11373 YES

::RANGE::
Con.: 0.000000.000001.00000
Nin.:-l.00000 -1.000000.00000
Nax.: 1.000001.000002.00000

::VOLUNE::7.11373 cu. In.

::AREA:: 26.74242 sq. in.

:NOO::17-APR-1989 18:15:51.70 [300,300]

K-Base Final Report
A1-9





Appendix 2 - Updated DMC Documentation

1. Updated DMC Routine Docmnentation.

Appendix two covers the areas of chan_e for DMC. There are new and
moi:lified.roul_nes for accessing the workt_le and part nodes. There are new
and modified commands for tile user.

1.1 DMC Workfile Access Routines.

Tlqe DMC p...rogram uses a workfile to store _e assembly and
suvassembly files (pLAID files with extension COG ) and to store the
primitive object, defir_'tion files (PLAID files with extension PRI ) while
a user .is creating, e.diting or reviewing assemblies and subassemblies.
i nese files are copied into the work file area when they are referenced
by other files or when they are selected directly by the user.

At the program level, access to these work file components is done via
a set. of library routines (in DMC000.OLB). The following is a list of the
routines and des.cription of. their function. The routines are written in

roman so as to t_e compatiable with earlier PLAID modules, but they
could be called from other languages via wrapper' routines.

1.1.1 c7"mit

Function:

Initialize work file access and buffer areas.

Parameters:
none

1.1.2 c71ook( assy, part, ier )

Function:

Inquire in the work file for the existence of the given assembly
or part. If the part name is blank then only the existence of the
assembly is performed.

Parameters:

assy = c*(*). Assembly name.(in)
part c*(*). Part name.(in)
ler i'2. Error code.(out)

0--ok
>0 = not found

1.1.3 cTqpar( assy, part, ier )

Function:

Query the work file for the existence of the given part.

K-Base Final Report
A2-1



Parameters:

assy
part
ler

= c*(*). Assembly name.(in)
c*(*). Part name.0n)
i'2. Error code.(out)

0 = Part found
18 = Part Not found

1.1.4 cTqass( assy, ier )

Function:

Query the work file for the existence of the given assembly.

Parameters:

.assy = c*(*). Assembly name.0n)
ler i'2. Error code.(out)

0=ok

6 = Assembly not found

1.1.5 c7make( assy, part, ier )

Function:
Create an assembly or part. If the assembly does not exist then

the assembly will be created before the part is created (if given).

Parameters:

assy = c*(*). Assembly name.(in)
part c*(*), part name.0n)
ler i'2. Error code.(out)

0=ok
>0 = create error

1.1.6 c7read( assy, part, ier )

Function:
Read the given assembly or part from the work file into the

current record'buffer.

Parameters:

assy = c*(*), assembly name.(in)
part c*(*), part name.(in)
ler i'2. error code.(out)

0=ok
>0 = read error

1.1.7 cTwrit( assy, part, ier )

Function:
Write the current record

name to the work file.
buffer for the given assembly/part

K-Base Final Report
A2-2



Parameters:
assy = c*(*), assembly name.On)
part c*('), part name.(in)
ler i'2. error code.(out)

0 = ok
>0 = write error

1.1.8 c7kill( a_y, part, ier )

Function:

Delete the given assembly/part from the work file. If deleting an
assembly, then all its parts _;ilI also be deleted.

Parameters:

assy = c*(*), assembly name.(in)
part c*(*), part name.(in)
ler i'2. error code.(out)

0 =ok
>0 = delete error

1.1.9 c7maka( assy, ier )

Function:

Create assembly in the work file. The assembly will have no
parts.

Parameters:

assy = c*(*). Assembly name.(in)
ler i'2. Error code.(out)

0=ok
11 = create error

1.1.10 c7puta( assy, ier )

Function:

Write the current record buffer to the named assembly in the
work file.

Parameters:

assy = c*(*), assembly name.(in)
ler i'2. error code.(out)

0=ok
>0 = write error

1.1.11 c7geta( assy, ier )

Function:

Read the given assembly into the current record buffer.

K-Base Final Report
A2-3



Parameters:

assy - c*(*), assembly name.0n)
ler i'2. error code.(out)

0 =ok
>0 = read error

1.1.12 cTdela( assy, ier )

Function:
Delete the named assembly from the work file. The assembly

record is not removed from tlie file but is flagged as deleted. The
parts records, however, are removed from the file.

Parameters:
assy = c*(*), assembly name.On)
ier i'2_ error code.(out)

0=ok
>0 = delete error

1.1.13 cTmakp( assy, part, ier )

Function:
Create the named part in the work file. The record buffer for

this part is assumed to "be properly initialized.

Parameters:
assy = c*(*), assembly name.(in)
part c*(*), part name.0n)
ler i'2. error code.(out)

0=ok
>0 = create error

20 = part already exists

1.1.14 c7getp( assy, part, ier )

Function:
Read the given part record into the current record buffer.

P arameters:

assy = c*(*), assembly name.(in)
part c*(*), part name.(in)
ler i'2. error code.(out)

0=ok
>0 = read error

1.1.15 c7putp( assy, part, ier )

Function:
Write the current record buffer into the name part record in the

work file.

K-Base Final Report
A2-4



Parameters:
assy = c*(*), assembly name.(in)
part c*(*), part name.(in)
ler i'2. eri'or code.(out)

0=ok
>0 = write error

1.1.16 c7delp( assy, part, ier )

Function:

Delete the named part from the work file. The part record in
the work file is removed from the file and not flagged as with the
assembly records.

Parameters:

assy = c*(*), assembly name.(in)
part c*(*), part name.0n)
ler i'2. error code.(out)

0=ok
>0 = delete error

1.1.17 cTnxta( assy, ier )

Function:

Read the next assembly in sequence from the work file.

Parameters:

assy = c*(*), assembly name.0n)
ler i'2. error code.(out)

0=ok
>0 = read error
-1 = end of file

1.1.18 c7nxtp( assy, part, ier )

Function:

Read the next part under the given assembly. Routine re_rns
error conditions for end of assembly, as well as, end of file.

Parameters:
assy = c*(*), assembly name.(in)
part c*(*), part name.(in)
ler i'2. error code.(out)

0 = ok
>0 = read error
-1 = end of file

-2 = end of assembly

1.1.19 c7next( assy, part, ier )

Function:
Read the next assembly or part from the work file.

K-Base Final Report
A2-5



Parameters:
assy = c*(*), assembly name.0n)
part c*(*), part name.0n)
ler i'2. error code.(out)

0=ok
>0 = read error
-1 = end of file

-2 = end of assembly

1.1.20 c7pbuf( record, 1 )

Function:
Store the given record area into the current record buffer for

the work file. If the current record buffer is larger than the specifed
length the input record, the record buffer is zeroed filled. Current
record buffer in 512 bytes (256 words).

P arameters:
record
1

= i*?. Record area to store.0n )
= i'2. Lengfl_ of record area in

words.(in)

1.1.21 c7gbuf( record, 1 )

Function:
Copy the contents of the current record bufferinto the given

record area up. to the given length. If the record buffer is smaller
than the receiving buffer then the receiving buffer is zeroed fiUed.

Parameters:
record(l) = i'2. Receiving record area.(out)
1 = i'2. length of record area in

words.On)

1.1.22 c7stat( istat )

Function:
Returns the current status field in the current record buffer. The

status currently has meaning for assembly header records only.

Parameters:
istat = i*2.Status.(out)

0 = no change
1 = modified-
2 = deleted

1.1.23 c7flag( assy, istat )

Function:
Update the current status of the given assembly.

K-Base Final Report
A2-6



Parameters:

assy = c*(*). Assembly name.(in)
istat i'2. New status.0n)

0 = not modified

= assembly modifiedassembly deleted

1.1.24 c7clea

Function:

Delete all the current assemblies and .parts in the work file.
Only assembly and part records are effective. All the records are
removed from the work file (not flagged).

Parameters:
none

1.1.25 cTfile( name, ier )

Function:

Create an indexed file for storing processed
referenced by the current part structure tree.

Parameters:

name = c*(*). File name.On )
ier i'2. Error code.(ou 0

0 = ok
>0 = Fortran error code

primitives

1.1.26 c7clwf

Function:
Close the current work file.

Parameters:
none

1.1.27 cTkeys( assy, part, key )

Function:

k Given the assembly and part names, construct a valid record
ey tor the work file. Note: extensions on the assembly name, such

as '.COG' are not passed onto the key name.

Parameters:

assy = c* * . assembly name. .(in)

_ea; c*/*/, part name.(m)
= c*(*), record key.(out)

K-Base Final Report
A2-7



1.1.28 cTnoex( assy, name, ext )

Function:
Strip the extension, if any, from the given assembly name and

place r6sults into a new new name.

Parameters:
assy = c*(*), assembly name.(in)
name c*(*). New assembly name.(out)
ext = c*(*). Extension to strip.On)

1.1_9 cTmkex( assy, name, ext )

Function:
Add the extension, if any, to the given assembly name and

place results into a new new name.

Parameters:
assy = c*(*), assembly name.(in)
name c*(*). New assembly name.(out)
ext = c*(*). Extension to add.(in)

1.1.30 c7gcog( name )

Function:
Get the cog file name or assembly name from current record

buffer. The ext_ension '.COG' is implied, so it must be appended
before using as a file name.

Parameters:

name = c*(*). As_mbly or cog file
name.(out)

1.1.31 cTgpar( part )

Function:

Get the current part name from the current record buffer.

Parameters:
part = c*(*). Name of part.(out)

1.1.32 cTppar( part )

Function:

Replace the current part name in the record buffer with the
given part name.

Parameters:

part = c*(*). New part name.(in)

K-Base Final Report
A2-8



1.1.33 cTvref( ref, type, ier )

Function:

Verify the given reference name as a valid reference and return
the type of reference if so.

Parameters:

t_e = c(*). Reference name to check.0n )i'2. type of reference, if
v_ilid.(out)
1 = prirmtive
2 = assembly
3 = site

ier = i'2. Error code.(out)
0--ok
26 = invalid reference

1.1.34 c7gref( ref )

Function:
Get the reference name from the current record buffer. Note:

the extension for the reference is preserved so as to permit type
checking.

Parameters:

ref = c*(*), reference name.(out)

1.1.3s cTpref(ref )

Function:

Replace the current reference name in the record buffer with
the new reference name.

Parameters:

ref = c*(*). New reference name.0n)

1.1.36 c7gmat( m )

Function:
Get the local transformation from the current record buffer. The

matrix is of the form:

m(3,5)

where

m(1,1) thru m(3,3) is rotation matrix,
m(1,4) thru m(3,4) is scaling
m(1,5) thru m(3,5) is translation

Parameters:

m(3,5) = r*4. Transformation matrix.(out)

K-Base Final Report
A2-9



1.1.37 c7pmat( m )

Function:
Replace the local transformation matrix in the current record

buffer with the given matrix, current record buffer. The matrix is of
the form:

m(3,5)

where
m(1,1)
m(1,4)
m(1,5)

Parameters:
m(3,5)

thru m(3,3) is rotation matrix,
thru m(3,4) is scalin.g
thru m(3,5) is translation

= r*4. New transformation
matrix. (in)

1.1.38 c7grot( r )

Function:
Get rotation matrix component of part transformation from the

current record buffer.

Parameters:
r(3,3) = r*4. Rotation matrix. (out)

1.1.39 c7prot( r )

Function:
Put rotation matrix component of part transformation into the

current record buffer.

Parameters:
r(3,3) = r*4. Rotation matrix. (in)

1.1.40 c7gtra( t )

Function:
Get translation component

record buffer.
of transformation from current

Parameters:
t(3) = r*4. Translation vector.(out)

1.1.41 c7ptra( t )

Function:
Put translation component of transformation into current record

buffer.

K-Base Final Report
A2-10



Parameters:
t(3) = r*4. Translation vector.0n )

1.1.42 cTgsca( s )

Function:

Get scaling component of transformation from current record
buffer.

Parameters:

s = r*4. scaling.(out)

1.1.43 cTpsca( s )

Function:
Put scaling component of transformation into

buffer.
current record

Parameters:

s(3) = r*4. Scaling.On)

1.1.44 cTgdsca( s )

Function:

Get differential scaling from current record buffer.

Parameters:

s = r*4. scaling.(out)

1.1.45 c7pdsca( s )

Function:

Put differential scaling into current record buffer.

Parameters:

s(3) = r*4. Scaling.0n )

1.1.46 c7gcol( color )

Function:
Get the color name from the current record buffer. The color

name is assumed to be a valid name taken from the current color
name file in the Plaid system.

Parameters:

color = c*(*). Color name.(out)

1.1.47 c7pcol( color )

Function:
Replace the color name in the current record buffer with the

K-Base Final Report
A2-11



given color name. The color name is assumed to have been
validated.

Parameters:

color = c*('). New color name.On)

1.1.48 c7pdesc( desc )

Function:

Put part description in current record buffer.

Parameters:

desc = c*(*). Description.0n)

1.1.49 cTgdesc( desc )

Function:
Get the part description from the current part record buffer.

Parameters:

desc = c*(*). Description.(out)

1.1.50 c7gtyp( type )

Function:
Get the reference type of the reference

record buffer. Currently-there are valid types.

name in the current

= neitherprimitive

assemblysite point

_ eye pointgeneral reference point

Parameters:

type = i*_ type code.(out)

1.1.51 cTnewp( part )

Function:
Initialize the current record buffer to be new part record. The

record buffer is zeroed out, then updated with the given part
name, a null reference (spaces), the identity transformation and the
color 'white'.

Parameters:

part = c(*). New part name.On )

K-Base Final Report
A2-12



1.1.52cTpad( s,1 )

Function:

Replace all characters below 32 and above 127 ascii with spaces.

Parameters:

sO) = c(*) name to pad.0n/out)
1 = i'2. length of name.(in)

1.1.53 c7sbuf

Function:
Save the current record buffer into an alternate record buffer

area.

Parameters:
none

1.1.54 c7rbuf

Function:
Replace the current record buffer with the record buffer

previous saved into the alternate record buffer area. (see c7sbuf)

Parameters:
none

1.1.55 c7gclr( scolor )

Function:

Get the color name from the color stack. The color name is
assumed to be a valid name taken from the current color name file
in the Plaid system.

Parameters:

scolor= c*(*). Color name.(out)

1.1.56 c7pcam( fov, aspect )

Function:

Update the field of view and aspect ratio of the camera
defirfftion. The field of view of the camera definition is the angle in
degrees between the vertical frame size and the focal point. The
aspect ratio is (horizontal frame size) / (vertical frame size).

Parameters:

fov = r*4. Field of view in degrees.0n )
aspect = r*4. Aspect ratio.0n )

Horz / Vertical

K-Base Final Report
A2-13



1.1.57c7gcatm( fov, aspect )

Function:
Get the current camera definitions. The field of view of the

camera definition is the angle in degrees between the vertical frame
size and the focal point. The aspect ratio is (horizontal frame size) /
(vertical frame size'). If the camera definition was not user defined,
the default values Will be returned.

Default:

fov = 50.0 degrees
aspect = 1.0

Parameters:
fov = r*4. Field of view in degrees.(out)
aspect = r*4. Aspect ratio.(out)

Horz / Vertical

1.2 DMC Assmbly Node Access Routines.

Assemblies and subassemblies are a collection of nodes which describe

objects an.d their relationships with other objects. At the program level,
access to the components in a node is done via a set of h'brary routines
from DMC000.OLB. These routines are written in Fortran to be
compatiable with older PLAID modules, but can be callable from other
langauges via a set of 'wrapper routines'.

The node is stored as 512 byte(fixed length) record. These routines
access this record via a record buffer whicti is assumed to contain the
currently .selected part (see DMC work file access routines). The
routines do not pertorm any input or output to a file, they. change
only the record"buffer. It was intended that the routines hide the
details of the record buffer description.

12.1 j7"mit( type )

Function:
Initialize the joint definition in the part record buffer.

Parameters:

type = i'2. Sets the joint type field.On )
0 = disables joint
1 = joint is enabled

1.2.2 j7iaor 0

Function:
Initializes the axes of rotation to

#1 = <0,0,0> <1,0,0> x axis
#2- <0,0,0> <0,1,0> y axis
#3 = <0,0,0> <0,0,1> z axis

K-Base Final Report
A2-14



in the current part recordbuffer.

Parameters:
none

1.2.3j7pcode( code )

Function:

Put the given ioint type code in current record buffer. The type
code is used" enable/disable joint information. Will be later used to
provided a classification of joint information.

Parameters:

code = i'2. Type code.On )
0 = joint information not

initialized (disabled)
1 = joint is enabled and

joint information is valid.

1.2.4 j7gcode( code )

Function:

Get the joint type code from current record buffer.

Parameters:

code = i'2, Joint type code.(out)
0 = joint info not initialized
1 = has joint information

1.2.5 jTprlc( ano, switch )

Function:

Turn rotation limit checking on or off.

Parameters:
ano
switch

= i'2. Axis id number.(in)
= i'2_ Switch.0n)

0 = limit checking off
1 = limit checking on

1.2.6 jTgrlc( ano, switch )

Function:

Get the rotation limit checking switch.

Parameters:

ano = i'2. Axis id number.(in)
switch = i'2_ Switch.(out)

0 = limit checking off
1 = limit checking on

K-Base Final Report
A2-15



1.2.7 j7pooc( switch )

Function:
Turn order of rotation checking on or off.

Parameters:
switch = i'2. Switch,0n )

0 = order checking off
1 = order checking on

1_8 j7gooc( switch )

Function:
Get the order of rotation checking switch.

Parameters:
switch = i'2. Switch.(out)

0 = order checking off
1 = order checking on

1.2.9 j7ioor0

Function:
Initialize the order of rotation field in the current part buffer.

The order is set to 1, 2 and 3 or x, y and z.

Parameters:
none

1.2.10 j7poor( order )

Function:
Put the order of rotation into the current part record buffer. For

example, the order is specified in the array parameter as

order(l) = 3
order(2) = 1
order(3) = 2

which corresponds to the order of rotation Z, X and Y.

Parameters:
order(3) = i'2. Order array.0n )

1.2.11 jTgoor( order )

Function:
Get the order of rotation from the current part record buffer.

Parameters:
order(3) = i'2. Order of rotation.(out)

K-Base Final Report
A2-16



1.2.12 j7paor( number, vl, v2 )

Function:

Put the axis of rotation in the current part record buffer. The
axis of rotation is identified by an axis id number. The maximum
number of axes is 3.

Parameters:

number = i'2, Axis id number.(in)
1, 2or3

v1(3) = r*4. _Origin of axis.(in)
v2(3) r*4. _ncl point of axis.0n)

1.2.13 jTgaor( number, vl, v2 )

Function:

Get the specified axis of rotation from the current part record
buffer.

Parameters:

number = i'2. Axis id number.On )
1, 2 or 3

v1(3) = r*4. Origin of axis.(out)
v2(3) r*4. End-point of axis.(out)

1_.14 j7purl( limit )

Function:

Put the upper rotation limits for x,y,z or the
rotation into the current part record buffer. The
degrees.

three axes of
limits are in

Parameters:
limit(3) = r*4. Upper rotation limits

(deg).(in)

1.2.15 jZgurl( limit )

Function:

Get the upper rotation limits in degrees from current part record
buffer.

Parameters:
limit(3) = r*4. Upper rotation limits

(deg).(out)

1.2.16 j7plrl( limit )

Function:

Get the lower rotation limits in degrees from the current part
record buffer.

K-Base Final Report
A2-17



Parameters:
limit(3) = r*4. Lower rotation limits

(deg).(in)

1.2.17 j7glrl( limit )

Function:
Get the lower rotation limits in degrees from current part record

buffer.

Parameters:
limit(3) = r*4. Lower rotation limits

(deg).(out)

12,.18 j7prot( angles )

Function:
Put the rotation angle accumulations in degrees into the current

part record buffer.

Parameters:
angles(3) = r*4. Rotation angle

accumulations.0n )

1.2.19 j7grot( angles )

Function:
Get the rotation angle accumulations in degrees from the

current part record buffer.

Parameters:

angles(3) = r*4. Rotation angle
accumulations.(out)

1.2.20 j7aorm( axis, angle, r )

Function:

Compute the rotation matrix using the given axis id number
and the given angle of rotation.

Parameters:
axis = i'2. Axis id number.0n )
angle = r*4. Angle of rotation in

de gTees.(in)
r(3,5) = r*4. Rotation matrix. (out)

1.2.21 j7rlim( ano, angle, diff, ier )

Function:
Check rotation limits.

K-Base Final Report
A2-18



Parameters:
ano = i'2. Id number of axis.(in)
angle = r*4. Angle to check in degrees.(in)
diff r*4_Angle change. (out)

Set to upper or lower limit
when angle exceeds them.

ier i'2. Error code.(out)
0=ok
69 = upper limit exceeded
70 -- lower limit exceeded

12..22 nTpshow( code )

Function:
Switch the "show site" on/off. If switch is off site will not be

displayed. The default is off.

Parameters:
switch = i'2. Switch.(in)

0 = do not display site.
1 = display site.

1.2.23 nTgshow( switch )

Function:
Get the "show site" switch.

Parameters:
switch = i'2. Switch.(out)

0 = do not display site
1 = display site

1.2.24 n7pdiff( code )

Function:
Switch the "show site" on/off. If switch is off site will not be

displayed. The default is off.

Parameters:
switch = i'2. Switch.0n)

0 = disable differential

scaling
1 = enable differential scaling

12.25 n7gdiff( switch )

Function:

Get differential scaling switch.

Parameters:
switch = i'2. Switch.(out)

0 = off
1 =on

K-Base Final Report
A2-19



1.2.26 nTpcam( code )

Function:

Flag node as having a camera or eye definition defined by
user.

the

Parameters:
switch = i'2. Switch.(in)

0 = no user defined camera
definition

1 = user defined camera definition

1.2.27 nTgcam( switch )

Function:
Get camera definition flag. If the flag

definition is user defined.
is set then camera

Parameters:
switch = i'2_ Switch.(out)

0 = no user defined definition
1 = user defined definition

1_.28 n7pmodify( switch )

Function:
Put the value of the modified/created switch into part record

buffer.

Parameters:
switch = i'9. Switch value.On)

0 = not modified/created
1 = modified/created

1.2.29 n7gmodify( switch )

Function:
Get the value of the modified/created switch from part record

buffer.

Parameters:
switch = i'2. Switch value.(out)

0 = not modified/created
1 = modified/created

K-Base Final Report
A2-20



2. Transformation Operations.

The connecting, attachin_ and detaching of objects within DMC requires
the computation of a rigi_i body transformation for one or both the objects
involved (operations are pairwlse). Each part can be located anywhere in
part structure tree and must have a common root.

Given these conditions, each part in the tree has three transformations
associated with i_, a local transformation (stored with the part), a global
transformation, computed from the transformations of parts up the tree
and a composite transtormation, computed from the local and _obal
tra.nsf.ormations. The transformation operations of connecting, attaching
and detaching use these three transtormations.

11 Affine or rigid body transformations.

The components of an affine transformation system are

R = rotation matrix for attitude. (3x3)

t = translation vector for positioning. (lx3)
s = scaling for size. (scalar)

To transform a point

p - [xyz] top'= [x'y' z']

using an affine transformation

p' =p*R*s+t

To concatenate affine transformations, let G and L be affine
transformations such that L is transformed by G

(RL*S, +k) *Ra*sa + ta

Removing parenthesis

FE* P_* SL* Sa+ k* P_* Sa+tQ

then

Rc = RL* Ra

tc = tt* P_* sa+ ta

Sc = SL * SG

form the components of a new composite affine transformation C
which is the concatentation of G and L

K-Base Final Report
A2-21



2.2 Connection operation.

Let site A be defined by the affine transformation

P_*S, +tA

and site B be defined by the affine transformation

P_*S8 + h

To connect site A to site B, a new transformation must be computed
which will transform site A to site B (a three point to three point
transformation).

1. Undo the affine transformation currently defined by site A using its
inverse

R1A = PwA (transpose of RA)

tA =-tA

s-l^ = 1 /s^

The inverse affine transformation of a point p' at site A is

p =(p'-tA)*R%*sl^

2. Apply to site A the transformation currently defined by site B. The
transformation of a point p at site A to site B is

p' = p* P_*sB +h

3. The composite transformation for connecting site A to site B is
derived from

[ (p-k)*R-'^*s'^] *RB*sB + tB

[ p * R1, * s% - t_ * R1^ * s-_^ ] * RB * S6 + tB

p * RI^ * s% * RB * SB - tA * R_^ * s-_^ * R8 * sB + h

where

R = RI^* RB

t = -tA * R% * s-l^ * RB * SB + h

S = S'IA * SB

K-Base Final Report
A2-22



are the elements of the transformation for site A such that site A is
connected to site B.

2.3 Detach Operation.

The detach operation permits removal of part A from its current
assembly sub-tree and aI'tachment to the sub-h-ee of another assembly.
The detach operation is functionally the same as the attach operation,
but the objects of the operation are different The part A is detached to
an assembly B rather than to part within assembly B.

Given

Ra * sA + t, = transformation of part A.

= transformation of assembly B.

Rc = RA*RIB*SA*SlB

t_ = (t, - %) * R'B

Sc =SA*S'IB

are the components of the new affine transformation for part A when
included as a part within the assembly B.

Z4 Attach Operation.

The attach operation permits the joining of part A at site A with part B
at site B. The attach operation requires that the original attitude and
position of part A must be preserved at the moment of attachment to
part B, but the transformation of part A will, however, be defined

relative to theglobal orthe assembly transformation for part B. This is in
contrast to connect operation which permits modification of the

attitude and position to achieve connection of part A at site A to site B.
The attach operation is the more general form of the detach operation.

Given

R_ * SA + _ = global transformation for part
A.

RsA * SsA + tsA = global transformation for

site on part A.

* SB + ta = global transformation for part
B.

K-Base Final Report
A2-23



F_a * s_a + ka = local transformation for

site on part B.

A global transformation is defined in the world coordinate system of
the root assembly, referencing both parts A and B. A local
transformation is _iefined relative to the coordinate system of the
assembly containing the part or site.

Then

Rc = RA*R'IB

tc = -tea * RA * R18 * ssA * SlB + tL.

Sc = SsA* S'IB

are the components of the new affine transformation for part A relative
to the assembly for part B, such that site A is attached to site B.

K-Base Final Report
A2-24



3. New and Updated User Commands for DMC.

User commands,for DMC.haye been updated and several new commands
ave been aaaea to pernut the utilization ot new geometric and sy!nbolic

constructs. The user may find these commands via the online help facility

f. DMC (the HELP command) or by issuing the command followed by a

3.1 AI_I'ACH

The ATTACH command causes the specified part to become a part in
the. assembly at the specified site. The command assumes that bothpart
and site are part of some larger assembly selected with the OPEN
command. After the command l_as successf/JUy executed, the site name
becomes the name of the attached part and the site reference is
replaced with the reference of the attached part The attached art's
ofi_nal position in the assembly tree become_ a site with the onP_nal

paR's name. Both part and Slt'e must already exist. (see DETACH
command)

Form:

ATTACH part sitel site2

part The part to be attached.

sitel Attachment site on part to
mate with site2

site2 The destination site to mate
with site1

3.1.1 Example

Assume the following part tree PLBAY.COG

PLBAY.LOAD with reference LOAD.COG

PLBAY.RMS with reference RMS.COG

LOAD.S1 with reference SITE
(this part is a site definition)

LOAD.S2 with reference LOAD.PRI

within RMS.COG part tree is the part

J7.ENDEFF with reference SITE
(this part is a site definition)

To attach PLBAY.LOAD to the end effector site J7.ENDEFF on the
RMS, enter the command

K-Base Final Report
A2-25



ATTACH PLBAY.LOAD LOAD.S1 J7.ENDEFF

If successful, the part J7.LOAD will be created using_ the part
definition PLBAY.EOAD. The _art PLBAY.LOAD witl_n PLBAY
will become a site definition 0ts reference will be changed from
LOAD.COG to SITE). The partJ7.ENDEFF will remain the same.
Note, if the part J7.LOAD already exists, then it will deleted then
recreated.

3.2 DETACH

The DETACH command permits the removal of a part from its current
assembly and attached to another assembly. If the receiving assembly is
not specified, it will be placed, in currently opened assembly. The
DETACH command is functional the same as the ATTACH command,
except the objects of the operation are different (see ATTACH
command).

Form:

DETACH part [assembly]

part The part to be detached.

assembly The assembly to be attached
to.(optional)

3.2.1 Example

Usage:

DETACH J7.LOAD BASE

Will cause the part named J7.LOAD to be detached from the
assembly J7 and become the part BASE.LOAD in the assembly
BASE. J7.LOAD in the assembly-J7 will be redefined as a site.

3.3 DISPLAY

The DISPLAY command permits the reviewing of display files created
in the DISPLAY module. The command has a set ot options to control
aspects of the display. The valid options are ZOOM, STATU.S, KE.EP,
DASH, NODRAW" and CONFLICT. Up to tour optionscan selected at
the same time.

Form:

DISPLAY file [option1..4] [scale]

K-Base Final Report
A2-26



file The name of a display file.
The implied extension is '.DSP'.

option1..4 One to four of the display
options.

scale Optional scale factor.

3.3.1 options

The options control display file presentation. Up to three options
can be selected at the same time for a given command line.

ZOOM permits the definition of a zoom area prior to drawing a
display file.

KEEP disables the clearing of the screen prior to drawing a display
file.

STATUS permits the output of the status information about the
display fife.

DASH permits the display of hidden lines as dashed lines in hidden
line display files.

CONFLICT enables the displaying of conflict points in hidden line
display files.

NODRAW disables drawing of the display file and outputs status
information only.

3.3.2 Example

Usage:

DISPLAY SWITCH STATUS ZOOM

The display file SWITCH.DSP will be drawn using a zoom area
definition. The status information will also be output.

3.4 CLEAR

The CLEAR command is used to initialize all or portions of the
transformation associated with the named part or with the part
currently being edited. It can also be used" to initialize the joint
information for a part. In addition, the reference and color names
associated with the part can also be cleared.

Form:

CLEAR [part] option

K-Base Final Report
A2-27



part The name of the part to be cleared.

option The keywords ROT, TRA, SCA, ALL, REF
or COL

3.4.1 ALL

The ALL ke.yword causes rotation an_es to be set to zero, the
translation values to be set to zero and _he scale to be set to one.

3.42, ROTATE

The ROT keyword causes the rotation anF,,les for the named part to
be set to zero. All three angles for the tFxree axes are cleared. The
joint angle accumulators are also set to zero (see JOINT command).

3.4.3 TRANSLATE

The TRA keyword causes the translation values for the named part
to be set to zero. All three translation values for the three axes are
cleared.

3.4.4 SCALE

The SCA keyword causes the scale value for the named part to be
set to one.

3.4.5 URL

The URL keyword causes the upper rotation limit values to be set
to zero (see JOINT command).

3.4.6 LRL

The LRL keyword causes the lower rotation limit values to be set to
zero (see JOINT command).

3.4.7 AXIS

The A,XIS keyword causes the user defined axes of rotation to be
set to their initialized state (see JOINT command).

Axis #1 endpoints are set to (0,0,0) and (1,0,0) corresponding to the
X axis.

Axis #2 endpoints are set to (0,0,0) and (0,1,0) corresponding to the
Y axis.

Axis #3 endpoints are set to (0,0,0) and (0,0,1) corresponding to the
Z axis.

K-Base Final Report
A2-28



3.4.8 ORDER

The ORDER kezword causes the order of rotation to set to its
initialized state ot 1, 2 and 3 (see JOINT command).

3.4.9 REFERENCE

The REF keyword causes the reference name for part to set to
spaces.

3.4.10 COLOR

The COL keyword causes the color name for the selected part to be
set to spaces. A color name set to spaces causes the selected part to
use any previously used color name for the part's default color. The
global default color for all parts is WHITE.

3.5 CONNECT

The CONNECT command isused to mate the specifiedpart and siteto
another part and site.The translationand rotation components to
accomplish mating are computed using the sitedefinitions(see SITE
command). Note that only the transformation of the firstnamed part
isupdated. The second partisassumed to be the fixed part.

Form:

CONNECT part-a site-a part-b site-b

part-a

site-a

part-b

site-b

The name of the part to be attached.

The name of the site on part-a.

The name of the part to be attached to.

The name of the site on part-b.

K-Base Final Report
A2,-29



3.5.1Example

The following sequenceof commandsareexamplesession using the
CONNECT command.

* define assembly, al with two parts P1 and P2
DEFINE A1.P1 A2.COG
DEFINE A1.P2 A3.COG

* define assembly a2
DEFINE A2.P1 P_hRT2_PRI

* define site on assembly a2
SITE A2.P2
* orient site
TRANSLATE AZP2 -1 0 0
ROTATE A2.P2 Z 45
* define assembly a3
DEFINE A3.P1 PA_RT3.PRI
* define site on assembly a3
SITE A3.P2
* orient site
TRANSLATE A3.P2 10 3 12
ROTATE A3.P2 Y -90

* mate part p2 to pl in assembly al
PARTA=A1.P2
SITEA=A3.P2
PARTB=A1.P1
SITEB =A2.P2
CONNECT PARTA SITEA PARTB SITEB

* parta now has a new transformation mating it
to partb

3.6 DESCRIPTION

The DESCRIPTION command has two forms. The first is used to add a

description to the given part The second form is used to add a
description to the descripffon file corresponding the given Plaid data
file; or to edit all fields of the description file by spawhing a VAX edit
session if the description argument is not given.

Form 1:

DES [part_name] ["description"]

part_name The name of the part to be described.

description The new description in double
quotes for the named part.
Max 78 char.

Form 2:

DES option file ["description"]

K-Base Final Report
A2-30



option The keywords PRIMITIVE, COG, TARGET
or DISPLAY to indicate the Plaid data
file type.

file The name of a Plaid data file.

description Optional description of Plaid
data file in double quotes.
Max 78 char.

If not given a VAX edit session will be spawned to edit the description
file.

3.6.1 Example

Form 1:

DES PANEL.SWITCH "Panel light control switch"

EDIT PANEL.SWITCH

DES "Panel light control switch"

Form 2:

DES TARGET XYZ "This is my target file"

This command will replace or add the given description to the
description file XYZ.TDF which is assoaated with the target file
XYZ.TAR.

DES TARGET XYZ

This command will cause a VAX edit session to be spawned which
will allow editing of the description file XYZ.TDF which is
associated with the target file XYZ.TAR.

3.7 JOINT

The JOINT command is used to set the joint information for the
specified part. The joint information consists of upper and lower
rotation limits, order of rotation specification, joint angles accumulators
and user defined axes of rotation.

Form:

JOINT part option [arguments]

partName of the part to receive joint
information.

K-Base Final Report
A2-31



option A ke_,word specifying which joint .
intormation fields are to updated.

argsVariable length list of values to use for
updating depending on the option.

3.7.1 INIT

The INIT keyword causes the named part's joint information to be
initialized.

Example:

JOINT assy.part INIT

3.7.2 ENABLE

The ENABLE keyword causes joint rotation limit checking to be
turned on. If no axis number is g_ven then all axes will be enabled.

Example:

JOINT assy.part ENABLE axis_no

3.7.3 DISABLE

The DISABLE keyword causes joint rotation limit checking to be
turned off. If no axis number is given then all axes will be disabled.

Example:

JOINT assy.part DISABLE axisno

3.7.4 STATUS

he STATUS keyword causes the named parrs joint information to
e typed on the console.

3.7.5 URL

The keyword URL causes the upper rotation limits of the named
part to be set to the given angles. The angles are assumed to be in
degrees.

Example:

JOINT assy.part URL xangle y_angle zangle

K-Base Final Report
A2-32



3.7.6 LRL

The keyword LRL causes the lower rotation limits of the named
part to be set to the given angles. The angles are assumed to be in
_iegrees.

Example:

JOINT assy.part LRL xangle y angle zangle

3.7.7 ORDER

The keyword ORDER is used to define the order in which rotations
are to be applied. The default order is 123. This order information
does not currently affect the rotations perform with the ROT
command as these operations can be performed in any order.
Definingan order of rotation causes the rotational order flag to be
set (see DISABLE and ENABLE)

Example:

JOINT assy.part ORDER XYZ

or

JOINT assy.part ORDER 1 2 3

3.7.8 DISABLE

The DISABLE keyword causes the rotational order flag to be
turned off (set to zero). The order of rotation is unchanged, but
order of rotation is not imposed.

3.7.9 ENABLE

The ENABLE keyword causes the rotational order flag to be set
(set to one). The order of rotation currently defined is in effect.

3.7.10 ROTATE

The ROTATE key)vord is used to set the joint angle accumulators
to the given set of angles. The angles are assumed to be in degrees.
These accumulators are used for comparisons to the joint angle
limits. These joint angle accumulators are updated whenever a
rotation about a user _iefined axis occurs (see JOINT name AXIS
command form ).

Example:

JOINT assy.part ROT x_angle y_angle z_angle

K-Base Final Report
A2-33



x,y,z

xtytz

3.8 RMS

3.7.11 AXIS

The AXIS keyword is used to define an axis of rotation (arbitrarily
placed in space). There can be up to three axes defined. The angles
applied to these axes are accumulated in the joint angle
accumulators for joint limit comparison if enabled.

Example:

JOINT assy.part AXIS number x,y,z x,y,z

number The id number of the axis.

The first endpoint or origin of axis.

The second endpoint of axis.

The RMS command provides an interface to the RMS joint angle
computation routines. If the user has components currently defined in
the DMC work file which are also currently defined in the ILMS joint
definition list (see RMS. DEFINE), those parts can be optionally
updated with joint angles computed by RMS. (see ILMS module
documents for details on RMS and joint angles). The command
hasseveral options and forms depending on the keyword used. The
IRIS interface can take a slightly different form of the RMS command.
(see IRIS-form)

3.8.1 IRIS-form

The IRIS interfaces with the RMS in a different manner to permit
utilization of hardware features available on it

Form:

RaMS al a2 a3 a4 a5 a6 [step]

al..a6 The joint angles in degrees.

step The number of steps for each joint
angle to re.ach the given location
and attitude.

3.8.1.1 Example

The IRIS form of the RMS command makes the following
assumptions

o DMC is in IRIS direct mode.

K-Base Final Report
A2-34



o The parts of the arm and their respective
axes are named

J1.R4 on y

J2.R6 on x

J3.R8 on x

J4.R10 on x

JS.R12 on y

J6.R14 on z

The command has optional step argument to provide movement
in small increments.

To get a series of RMS actions, a command file of the form

RMS ITF x y z x y z

RMS SHY SHP ELP WRP WRY WRR 100

RMS ITF x y z x y z

RMS SHY SHP ELP WRP WRY WRR 100

..o

can be run.

3.8.2 ATF

The A TF keyword executes the RMS auto-trajectory function. The
auto-trajectory function generates a series of joint angles over a
_me period required to move the end effector oF the RMS arm from
the current location and attitude to a new location and attitude.

Form:

RMS ATF part steps [sub-steps][file]

part The name of the part to reach
with RMS.

steps The number of calls to ATF to reach
part.

K-Base Final Report
A2-35



sub-steps The number of steps to use for
positioning between each call
to ATF
(optional, default is 1.0).

file The name of a command file ('.CMD")
to receive output of ATF (optional,
no default).

3.8.3 KDG

The KDG keyword is used to output a location and attitude for a
given set of _oint angles. The command is for information only and
does not update any parts or disturb the current RMS end effector
location and attitude or RMS joint angles.

Form:

RMS KDG anglel ... angle6

anglel..angle6 The six joint angles in degrees
of RMS arm.

3.8.4 INrr

The key2word INIT clears all accumulated RMS joint angle values
and updates all parts specified in thejoint definition list.(see RMS
DEFINE)

Form:

RMS INIT

3.8,5 DEFINE

The DEFINE keyword is used to review and/or modify the current
joint definition list. A joint definition list is a list ot the names and
axes tor the ioints in RMS. This list is used to select and update
parts if in tile work area. If no ar_ments follow the keyword
DEFINE then the current joint definitio_ ns are listed.

Form:

RMS DEFINE [DEFAULT]

DEFAULT The optional keyword causes the
current joint.definition list to be
initialize with the default list.

or

RMS DEFINE joint_number joint_name joint_axis

K-Base Final Report
A2-36



joint_number The sequence number of the joint.

joint_name The assembly and part name of
joint. Must be in the form
assembly.part

jointaxisThe axis of rotation for joint.

3.8.5.1 Example

To change the third entry in the current joint definition list

RMS DEF 3 J3.R8 X

To review current list

RMS DEFINE

To set list to default

RMS DEFAULT

The default list is

RMS DEF 1 J1.R4 Y

RMS DEF 2 J2.R6 X

RMS DEF 3 J3.R8 X

RMS DEF 4 J4.R10 X

RMS DEF 5 J5.R12 Y

RMS DEF 6 J6.R14 Z

3.8.6 rrF

The kevword ITF invokes the RMS joint angle routine. The
keyword is followed by the destination location and attitude. A part
name may be.used inplace of numeric values; in which case, the
location and the attitude of the part will be used. An oj_tional site
name defined within the given p art's sub-assembly definition, can
be used for determining the location and attitude reformation send
to RMS. The optional F,e .)_word UPDATE causes immediate update
or. the parts specified in the joint definition list.(see RMS DEFINE)
The optional steps size value is used to increment the the Joint

angles with positioning the end effector. This useful for smoothing
the motion for animation.

K-Base Final Report
A2-37



3.8.6.1 Explicit_values

This form of the RMS ITF command is used to input explicit
location and attitude information for positiomng the end
effector.

RMS ITF x y z x y z [UPDATE][steps]

x y z The location to be reached by
the RMS.

x y z The attitude, in degrees, of the
location.

UPDATE Optional keyw.ord causing the
immediate update ot the parts
specified in the joint
definition list.
(see RMS DEFINE)

steps Optional step size to use in moving
RMS end effector.

3.8.6.2 Symbolic_values

This form of the RMS ITF command permits the selection of
location and attitude information to be done symbolically with
the use of part names and site names.

RMS ITF part [site] [UPDATE][steps]

part The name of a part to reach with RMS.

site Optional name of a site within in the
given part's sub-assembly. The site.

used to determine position and
attitude of end effector of RMS.

UPDATE Optional keyw.ord causing the
immediate update ot the parts
specified in the joint defiftition
l_st.(see RMS DEFINE)

steps Optional step size to use in
moving I_tS end effector.

3 Examples

The following are. some examples of the use of the RMS ITF
command. Note, that when the UP argument is specified it is
assumed that the user has input an RMS assembly into the

K-Base Final Report
A2-38



work file and the part names of the arm components have been
defined with the KIWISDEFINE command.

1. Using explicit input

RMS ITF 9 628 -1090 0 0 0 up 10

This command will cause the RMS end effector to be positioned
at x=9, y=628 and z=-1090 with attitude x=0, y=0 and z=0.
The 'UP' argbtment will cause the RMS arm components
defined with hhe RMS DEFINE command will be updated with
the appropriate joint angle information. The step size 10 will
used to update the joint angle information in 10 steps.

Z Using symbolic input

RMS group1 blk.p2 up 5

This command will cause the RMS end effector to be positioned
at the location and with the attitude of the site BLK_P2 in the
sub-assembly named GROUP1. The 'up' argument specifies that
the RMS arm components are to be upctated in 10 steps.

3.8.6.3 Command files

The RMS module routine returns the results in variables
defined in the DMC language processor. These variables contain
the joint angle changes from the previous RMS ITF command.
The variables are named

SHY=shoulder yaw

SHP =shoulder pitch

ELP =elbow pitch

WRP =wrist pitch

WRY=wrist yaw

WRR=wrist roll

A command file (call it MOVE.CMD) of the form

ROT J1.R4 Y SHY

ROT J2.R6 X SHP

ROT J3.R8 X ELP

ROT J4.R10 X WRP

K-Base Final Report
A2-39



ROT J5.R12 Y WRY

ROT J6.R14 Z WRR

can be executed to position the RMS to the new position (from
its previous position). For a series of RMS actions, a command
file can be run with the following contents

RMS ITF x y z x y z

RUN MOVE.CMD

RMS ITF x y z x y z

RUN MOVE.CMD

°°

where MOVE.CMD is the command file described above.

3.8.7 PLAID

The keyword PLAID sets the RMS system to interpret input values
and output values in the coordinate system used by Plaid.

Form:

RMS PLAID

3.8.80RBITOR

The keyword ORBITOR set the RMS system to interpret input
values and output values in the coordinate system used for the
orbitor.

Form:

RMS ORBITOR

3.8.9 STATUS

The keyword STATUS displays the current RMS joint angles.

Form:

RMS STATUS

3.8.10 UPDATE

he keyword UPDATE caus.es the update of the parts selected from
e current joint definition list (see RMS DEFINEJ.

K-Base Final Report
A2-40



Form-

RMS UPDATE

3.9 SET

The SET command is used to change various control values for the
DMC program. Currently some of SET options are applicable only to
the IRIS or IMI.

3.9.1 PERSPECTIVE

The PERSPECTIVE ke _yword is used to set the viewing mode to
perspective projection. View point definitions of eye point and view
_iirection are used to control viewing. (See VIEW command)

Form:

SET PER switch

switchThe keywords ON or OFF.

3.9.2 SPEED

Form:

SET SPEED sl s2 s3

sl Rotation speed.( 0 to 1 )

s2 Translation speed.( 0 to .01 )

s3 Scale speed.(0 to .01)

3.10 SHOW

The SHOW command permits the display of information about features
of DMC and Plaid depending on the options and arguments given to
the command. The information is displayed on the command console.

3.10.1 DESCRIPTION

The DESCRIPTION option is used to display the contents of the
description file corresponding to a given Plaid data file. The valid
Plaid data files have the extensions ".PRI', '.COG', '.TAR' or '.DSP",
the default extension is '.COG'.

Form:

SHOW DESCRIPTION data file

K-Base Final Report
A2-41



data file The name of a Plaid data file.
- The default extension is '.COG'.

3.10.2 PROJECT

The PROJECT option is used to display the current multiuser
project name and account name.

Form:

SHOW PROJECT

3.10.3 USER

The USER option is used to display the current multiuser account
information, such as priviledges, etc.

Form:

SHOW USER

3.11 SITE

The SITE command " the definition of a part as a site. The
the permitscommand denotes part as a site by setting the part reference to the

name 'SITE'.

A site is a location.in space with a given attitude. Sites can be
translated and rotatecljust like a normal-part. For example, sites are
used by the CONNECT command to mate two parts. A site can be
optionally visible (default is invisible).

Form:

SITE site [visibility]

site The name of the site. The site name
follows the same rules as a part name.

visibility The option_ keywords ON or OFF to
control whether the site is shown.

3.11.1 Example

SITE site-x

The command creates a part defined as a site with name site-x. The
reference name will be the name SITE.

K-Base Final Report
A2-42



3.12 STATUS

The STATUS command is used to display the current environment of
the DMC program. It will show the name of the current default
assembly and current default part (if any).

Form:

STATUS

3.13 TARGET

The TARGET command is used to traverse the named assembly and
generate the named target file. The target file is used by the display
processor in the PLAID system to generate hidden line and hidden
surface views from various viewpoints. The target file contains all the
transformed primitives referenced by the given root assembly.

Form:

TARGET assembly target

assembly The name of an existing assembly.

target The name of a target file to
receive the output of the
traversal process. If thefile
already exists, the user will
be asl_ed to continue.

3.14 VERSION

Output to the console the current version number of the DMC
program.

Form:

VERSION

3.15 VIEW

The VIEW command is used to modify the parameters for viewin_ an
object and/or to actually execute the drawing process for an object.
There are two ways of viewing an object, wewing with perspective
projection and viewing with orthograhic projection. When viewing in
perspective mode, the defining of an eye point and view direction are
usecl to establish a viewpoint. When viewing in orthographic mode,
preaefinea (i.e. FRONT, RIGHT, etc.) and user defined-(i.e. ROTATE,
TRANSLATE, ZOOM, etc.) viewing specifications and directives are
u_d to establish a view point. ( Note, that the DRAW command is a
subset ot the VIEW command in that it is not used to define eye points
and eye directions for perspective viewing, see DRAW).

K-Base Final Report
A2-43



3.15.1 Explicit-viewpoints.

The eye point location and the view direction can be explicitly.
entered as a single command. See also VIEW FROM, VIEW TO and
VIEW HEAD.

Form:

VIEW from x from_y from_z
to x To_y to z
[a_gle] -

fromx,from_y,fromz The eye point location.

to x, to_.y, to z The 'to' point for view
- - direction.

angle The head roll angle in
deg.

3.15.2 Predefined-views.

There are predefined views to provide for standard views.

Form:

VIEW view-name

view-name One of the eight predefined views.

FR (front)

RI (right)

LE (left)

TO (top)

BO (bottom)

RE (rear)

IS (isometric)

DI (dimetric)

3.15.3 FROM

The FROM keyword is used to select a site for determining eye
point location, View direction and field of view. If the view point is
currently attached (see VIEW ATTACH), then the view point will

K-Base Final Report
A2-44



become attached to the given site. An explicit x, y or z location may
be given in place of a site.

Form:

VIEW FROM site

site The name of a site to view from.

or

VIEW FROM x y z

x,y,z The location of the eye point.

3.15.4 SITE

See VIEW FROM.

3.15,5 EYE

See VIEW FROM

3.15.6 TO

The TO keyword is used to select a site for determining the view
irection tot the view point computation. If the view point is

.currently tracked (see VIEW TRACK), then the view point ,dill track
tile.given site. An explicit x,y and z location may be given in place
ot the site name.

Form:

VIEW TO site

or

VIEW TO x y z

x,y,z The explicit location to view 'to'.

3.15.7 HEAD

The HEAD keyword is used update the head roll angle of the
current viewpoint. However, this value will be overridden if the
view point is attached or tracked.

Form:

VIEW HEAD angle

K-Base Final Report
A2-45



angle The head angle in degrees.

3.15.8 ROLL

See VIEW HEAD.

3.15.9 ATrACH

The ATTACH keyword is used to specify the part or site name to
be attached to the view point calculation routine. If any part within
me currently selected.assembly is moved, the position and attitude
ot the current selected site to view from (see VIEW FROM) will be
used to compute new view point information.

Form:

VIEW ATTACH [site]

site The optional name of a site to used as
the location of the eye point, the
direction of view and fi%ld of view.

3.15.9.1 Example

The following command will attach the view point to a given
site.

VIEW ATTACH PLBAY. EYE

The site plbay.eye will used to compute the view point
formation with the location and attitude of plbay.eye
determining the location the eye point and the direction ot
view. The camera definition of plbay.eye will be used to
determine field of view.

The following set of commands are equivalent to the above
example.

VIEW FROM PLBAY. EYE

3.15.10 VIEW ATFACH

3.15.11 DETACH

The DETACH kevword is used to release the currently attached
site. The view poln" t information will not be automatically updated
whenever a part is moved within the currently selected assembly.
However, the DETACH command will not claange the current state
of the view point.

Form:

K-Base Final Report
A2-46



VIEW DETACH

3.15.12 TRACK

The TRACK kezword is used to attach a site to the view point
calculation for determining the direction of the view point. This
operation is analogous to flae ATTACH key_. ord in that, whenever
a part wi'thin the currently selected assembly, is moved; the view
point _ automatically be recomputed using the currently attached
and track sites. Selecting a site to be tracked- will override the any
previously determined direction of view.

Form:

VIEW TRACK [site]

site The optional name of a site to be used
for computing the view point direction.

3.15.12.1 Example

The following command is used to track a site.

VIEW TRACK J7.EYE

The site J7 .EYE will be tracked by recomputing the view
point direction whenever a part is moved within Me currently
selected assembly

3.15.13 UNTRACK

The UNTRACK keyword is used reverse the effects of the VIEW

TRACK command. The view point direction will be not be changed
by this command, but it will not longer automatically computed.

Form:

VIEW UNTRACK

3.15.14 STATUS

The STATUS keyword will output the current values and state of
the view point parameters.

Form:

VIEW STATUS

K-Base Final Report
A2-47



3.15.15 ROTATE

Rotation of the scene using an explicit argument or the joystick is
accomplished with ROT argument.

form:

VIEW ROT [x y z] [step]

x, y, z Rotation angles in degrees.

step Number of steps to rotate.

3.15.16 TRANSLATE

The TRA keyword permits the scene to be moved in x and y and
optionally in z. WHen in perspective mode translation in z has the
effect of scaling the scene.. When the amount is not given the
joystick can be used to supply translation values.

form:

VIEW TRA [axis] [amount] [step]

axis Axis specification; X, Y or Z.

amount The amount of translation.

step Number of steps to translate.

3.15.17 SCALE

The SCA keTword permits the scene to be scaled relative to the
view center. The scale value is absolute (not accumulative) when it
is entered explicitly. When scaling is not explicitly entered then the
joystick can be used to provide values for scaling.

Form:

VIEW SCA [scale]

scale A positive scale value.
(not accumulative)

3.15.18 RESET

The RESET kevword will cause the current viewing transformation
to be initializea to a front view with scale of 1.0. THe view center is
not affected.

Form:

K-Base Final Report
A2-48



VIEW RESET

3.15.19CENTER

Form:

VIEW CENTER [x y z]

x,y,z The new center of the view.

K-Base Final Report
A2,-49





Appendix 3 - Rasterizer Software.

During the course of research, experimentation and development, it became
necessary to generate hardcopies of bitmapped and graphic images. The graphics
display aevice was the VaxStation 2000 monitor and the available hardcopy device
was an HP LaserJet II laser printer. To get hardcop_y images from the VaxStation
to the laser printer, a sixel formatted bltmap (the DEC standard bit-map format)
had to be converted to the bitmap format of the HP LaserJet II. The tollowing
description is the system developedand used by GMS for this function.

n addition, software was developed to output PLAID DISPLAY files to the HP
ase.rje.t II printer. This program is capable of plotting DISPLAY files in either

portrait analanascape mocle and at any level of resolution of which the printer is
capable. The program prompts for user input, and should be fatrly self-
explanatory as its functionality is rather limited. Printer outvut is directed to the
printer queue HP$LASERJET.

Functional Description.

The program "SIXELDUMP.EXE" is the utility which reads a file containing a
slxel to rmatted bitmap, converts it to an HP LaserJet II bitmap and dumps it
to me LaserJ_ I!_ prifiter. The "Sixel D .ttmping. Monitor" is the Vax command
file named SIXELHP.COM" which is submitted to the batch queue to execute
this program whenever a file appears in the directory

"DISK$USERI: [SIXELDUMPS]".

This directory is named by the command file and may be changed. It is
assumed that this file is a sixel formatted bitmap; unpredictable results may
occur if the file is not. The "Sixel Dumping Monitor" executes repeatedly (fn
this implementation, it executes every ten seconds) looking for fries to dump
to the printer. It will terminate when it finds a file nameff'STOP.NOW'.

User Interface Description.

Workstation Setup.

The user of a VaxStafion 2000 workstation can perform screen dumps to
the HP Lase.r_.et printer using the Vax Windowing System (VWS) screen
aumping mdlity built into tl_e workstation. However, in order to perform
these screen dumps to the laser printer, the user must set up the
workstation. The procedure is

"Move the mousecursor to a blank area of the screen (._ray) and click the
tt mouse button. The menu tiffed Workstation Options will appear.

Z Move the mouse to the option labeled "Set up the Workstation" and
click the left mouse button. The menu tiffed "Workstation Setup" will
appear.

3. Move the mouse to the option labeled "Printer Set Up" and click the left
mouse button. The menu title "Printer Setup" will appear.

K-Base Final Report
- A3-1 -



4. Move the mouse to the option labeled "Aspect Ratio" and click the left
mouse button. A menu displaying the aspect ratio options will appear.
Select the aspect ratio 1 to 1 using the left mouse button.

5. Move the mouse to the option labeled "Enter new printer destination"
on the "Printer Setu p" menu and click the left mouse"button. A window
will appear showing the current name of the device to receive the sixel
bitmaps. Enter the name

"DISK$USERI: [SIXELDUMPS]MYPIC.R75A1"

Entering the name will not overwrite the current name until the carriage
return is pressed. Also, the file name can be permanently _ved as part ffie
general workstation setup using the "Save current settihgs" option on the
"Workstation Options" menu.

Performing a Screen Dump.

To perform a screen dum_, select the "Print (porlji'on of) screen" .label on
the "WorkStation Optiorm menu. An arrowhead will appear (clittere.nt
from the normal arrow cursor of mouse). Move the arrowhead to the
up.per left comer of the portion of the screen to dump. Press and hold the
letfmouse button and move the arrowhead to the lower right comer ot
the portion of the screen to dump. Releasethe left mouse button, and wait
until the normal mouse cursor returns. Atter several minutes, the screen
dump will be output to the laser printer (this may take some time
depending on the size of screen area dumped and on the resolution
selected).

Aspect Ratio and Resolution.

The user can select various combinations of aspect ratios and resolutions.
This is done by. using a naming convention for the file extenstion of the
file named by hhe user to receive the sixel formatted bitmaps. For example,
the extension "R75Al" will be dumped to. laser printer at the resolution of
75 dots per inch with an aspect ratio of I to I. The I to 1 aspect ratio
option in the "Printer Setup" menu must match the file extension selction.
The valid extentions are

R75A1 - 75 dpi with I to I aspect
R75A2 - 75 dpi with 2 to I aspect
RI50A1 - 150 dpi with 1 to I aspect
RI50A2 150 dpi with 2 to I aspect
R3OOA1 300 dpi with I to 1 aspect
R300A2 300 dpi with 2 to 1 aspect

For example, the file named "MYFILE.R150A2" will be dumped to the laser
printer at a resolution of 150 dots per inch with an aspect ratio of 2 to 1.

K-Base Final Report
- A3-2 -



Vax command file'SixelDumping Monitor'.

This command fileshould be exe.cutedby the system startup file.Itwillplace
the SixelDumping Monitor" in the system batch queue and willmonitor the
directory DISI($USE.RI:[SIXELDUMPS]. It will execute every ten seconds,
looking for filesto dump to the laserprinter.

SIXELI--IP.COM

$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

$ ! How to Submit Sixel Dumping Monitor

$ ! submit/nolog/noprint/notify -
$ ! sysSspec_fic: [sysmgr]sixelhp.com
$ ! write sys$output "Sixel Dump Monitor (SDM) running"
$!!!!!!!!!!!!!!!!!!!!!!!!.".!!!!!!!!!!!!!!!!!!!!!!!!!!!!
$ Start:
$ set noon
$ define hp$1aserjet sysSprint
$ sixeldump :== Sdisk$userl:[plaid.exe]sixeldump.exe
$ •
$ T_ai't 00:00:10

$ Middle:

$ name = f$search( "Disk$userl :[SixelDumps] *. *; *" )
$ if name .eqs. "" then goto top
$ if name .eqs. "DISK$USERI:[SIXELDUMPS]STOP.NOW;I"
$ open/read/err=Middle ch &name
$ close ch
$ sixeldump 'name
$ delete &name/nolog
$ goto Middle
$ Done:
$ delete/nolog &name
$ exit

then goto Done

K-Base Final Report
- A3-3 -



Sixel Dumping Program and Support Routines.

The following listings form the kernel of the dumping utility. They are
compiled as follows:

$FORTRAN/CONT = 99/I4

Listing:

SIXELDUMP.FOR

K-Base Final Report
- A3-4 -



program sixetdump

c Program intended to accept a DEC SIXEL graphics file as input
C and output to an HP LaserJet If.
c
c Sam Smith
c 3- Feb-88
c

c Bitmep Memory
c

byte bitmep(300,3000) .
integer*2 resotution,xdim, yaim
common/BITMAP/bitmep, resolut;on,xdim, ydim

c
c II0 Channels
c

integer*4 tinp
integer*4 tout

integer*4 fi_
integer*4 fout
data tinp/1/tout/2/finp/3/fout/4/

c
c Misc.
c

character*80 input_name(I)
character*80 ext

integer*2 line
c

c jcmO5-feb-1988 changed dimension from 1500 to 3000
c to handle extra resolution
c

byte sixets(3000)
integer*2 scount
integer*2 i
integer n
integer ierr,eof
integer xunit
integer yunit
integer sixetmax
integer aspect

c
c Initialization
c

data xdim/1200/ydim/1500/resolution/2/
c
c jcmOSfeb-1988 added these constants to deal with
c multi-resolution situation
c

data xunit / 600 /
data yunit / 750 /
data sixelmax / 3000 /

c

c Begin
c

&
&
&

c

&
&
&

c

&
&
&
&

c

open(unit=tir_o,
name=*SYS$INPUT ',

status='OLO',
err=9000)

open(unit=tout,
name='SYSIOUTPUT ',
status='OLD',
err=9010)

open(unit=four,

name='sysSscratch:$$laser_jet.dat ,
status='NEW,
form 'FORMATTED',
err=9020)

c Write banner

c

c write(tout,10)

10 format(' * Sixetdclnp VI.0 *')
c

c Get file name and open input file
c

call getarg(input_na_,1,n)

K-Base Final Report
- A3-5 -



c
c check fitename extension for resolution specification
c
c defauLt resoLution is 150 dots per inch
c

call fberse( input name(l), ext )
aspect = 2
resolution :" 2
if( index( ext, _R75n ) .gt. 0 ) resolution = 1
if( index( ext, _R150a ) .gt. 0 ) resolution - 2
if( index( ext, tR300 a ) .gt. 0 ) resolution = 4
if( index( ext, _A1_ ) .gt. 0 ) aspect = 1
if( index( ext, 'A2 _ ) .gt. 0 ) aspect = 2

c
c compute dimensio._., for bitmp beset)_ on
c file extension _ich is a request for
c laser jet resolution
c

xdim = resolution * xunit
ydim = resolution * yunit

c
c open sixet file
c

cart sixetot:_=n(input _,finp, ierr)
if(ierr.ne.O)go to 9030

c
c CLear bitmap
c

cart c tearmp
Line = 0

c
c Read data records & convert
c
30000 continue

call sixetread( finp, sixets, sixelmax, scount, eof )
if (eof.ne.O)io to 40000

c
do 30099 i=O,scount-1

catt sxtohp( i, Line, sixeLs(i+l), aspect )
30099 continue

Line = line + 1
c
c Loop through remaining vectors
c

go to 30000
c
c Write bitmap to printer and stop
c
40000 cant i hue

close (unit=find)
c wri te(tout, 170)
170 format('+Writing to output file... ')

call outmap(fout)
cLose (uni t=fout)
call I ibSspeun(

& IPR%NT/PASS/OUE=HPSLASERJET/DEL SYS$SCRATCH:$$LASERJET.DAT*
&

c
40020
c

c
c Error
c
9000
9001

c
9010
9011

c
9020
9021

c
9030

)
write(tout,40020)
format(' Processing complete. ')

call exit

conditions

urite(*,9001)
format( e ***** Error opening SYS$|NPUT e)
stop

write(*,9011)
forl,at( _ ***** Error opening SYSSOUTPUT')
stop

_rite(tout.9021)
format(' ***** Error opening $$LASER_JET.DAT')
stop

write(tout,9031)input_name

K-Base Final Report
- A3.-6 -



9031

¢
9O4O
9041

¢
9O5O
9051

¢

9O60
9061

format(, ***** Error opening ',a64)
stop

write(tout.9041)
format(, _**** Error _riting $$LASERJET.DAT')
stop

_rite(tout.9051)
format(' ****t Error opening $$LASER_JET.CON,)
stop

write(tout.9061)
format(' ***** Error writing $$LASER_JET.CON_)
stop

end

K-Base Final Report
- A3..7 -



subroutine sxtohp( sixx, sixy, sixdat, aspect )
c
c Parameters
c

integer*2 sixx,sixy
byt • s i xda t

integer*2 aspect
c
c Locets
c

integer*2 hpx,hpy
i nteger*2 I
integer*2 mask
integer*2 etement
byte onebyte(2)
equivatence (etemant,onebyte(1))

c
c Begin
c

99

onebyte(1) = sixdat-63
if(one.re(I) .eq. O)return
hpx = slxx
mask : 1
do99i =0, 5

if(iand(etement,ishft(mask,i)) .he. 0 )then
if( aspect .eq. 1 ) then

hw = sixy* 6 + i
cart setbit( hpx, hpy )

endif

if( aspect .eq. 2 ) then
hpy = sixy* 12 + i * 2
cart setbit( hpx, hpy )
h =h--'+ 1
cal_t se_'_it( hpx, hpy )

endif
endif

continue
return

K-Base Final Report
-A3_-



10

subroutine fparse( name, ext )

character*(*) name
character*(*) ext

n = index( name, ,;, )
if( n .eq.O ) n = ten(name)
do lu i = n, 1= -1

if(name(|:1) .eq. t., ) then
ext = name(i+l:n-1)
return

ondif
continue
return

K-Base Final Report
- K_..9 -



SXXEL]B. FOR
***************************************************
C sixetread( cl, out, test, count, eof )
c Author: James C. Ha|da
c Date: 3-FEB-1988 12:39:16.90
c Function:
c Read a Line of data from sixe[ file and

c return a byte array of the sixet data.
c Line from sixet fire is processed to remove
c compression and escape characters.
c
c S|xet Line Format:
c esc P 1 q .... sixet data .... esc \
C ......... " ....

c start end of data
c (decimat 144 can be stternate
c end of data)

C

c Compression Format:
c ! nnnnC
c where
c 01, indicates start of dupticate character
c count
c nnnn is the count (1 to 5) in ascii numbers
c (one byte per number)
c C is the character to duplicate.
c
c Raster format:
c Art sixet data has ascii byte vatue of 63 to 127.

c To map to pixets, etc.
c 1. subtract 63 from sixet byte
c 2. each sixet byte represents a column of six
c scan tines.(low order bit is 1st scan line of the six)
c
c Parameters:
c cl : i'6. Input channel for sixet fite.(in)
c out(count) = b*l. Byte array.(out)
c count i'4. Mumber of bytes in array.(out)
c eof i'4. End fire indicator.(out)
c O=ok
c 1 - end of file

subroutine sixetread( cl, out, tast, count, eof )
implicit integer (a-z)

c parameters
integer cl
byte out(1)
integer tast
integer count
integer eof

c common
c functions
c LocaLs

character*2048 t ine
character*l chr

integer eot
c begin

count = O
eof=O

C

c read a fine from sixet fite
C

read( cl, 2, end = 99 ) fine
2 format( a )
c
c process Line for starting escape sequences
c and duplicate character counts
c

r,_d = 1
do 5 i = 1, ten(tine)

c
c get characters
C

cart getbyte( tine, now, next, ten(tine), chr, nc, eot )
c
c end of tins or end of sixet data ?

C

K-Base Final Report
- A3-10 -



if( eot .ne. 0 ) then
if( eot .eq. 2 ) eof = I
return

_if

C

c character count and character are processed into
c byte array.
c

if( _ ;_t 0 ) then
•v ] =1, nc
c_t = count + I

c

c exceeded length of byte array ?
c

if( count .gt. last ) return

out(c_t) = ichar(chr)
10 continue

endif
now = next

5 continue
return

c
c hard end of file
c
99 continue

eof=2
return
end

*****************************************************

c sixelopen( fitename c cl ier ) - open sixet file
c Author: James C. Matda '
c Date: 3-FEB-1988 12:39:16.90
c Function:
c Open sixet file in read-only mode.
c File is assumed sequential, with variable
c Length records. File is opened formatted.
c Parameters:
c fiterm_e = c(*). File name of sixel file.(in)
c ci = i'4. Channel to open file on.(in)

c ier = i'4. oOp_n== :rror code.(out)
C 0

c >0 = Fortran open error code.

subroutine sixelopen( filename, cl, ien )
c parameters

character*(*) filename
integer cl
integer ier

c common
c functions
c locals

character*80 fname

c begin
fnama = fitename

1open( unit = cl,
file fnama,

2 access : 'sequential',
3 status 'old _ ,
4 readonty,
5 form : 'formatted',
6 iostat : ier )
return

c getbyte( line, now, next, last, char, coullt, eol )
c Author: James C. Maida

c Date: 3-FEB-19_ 12:39:16.90
c Function:

c Process sixel Line for escape sequences and
c duplicate characters.
c Parameters:

c Line = c(*). Sixet input tine.(in)
c now i'4. Current character pointer.(in)
c next i'4. Pointer to next character.(out)
c Last = i'4. Length of sixet line.(in)
c char = c'1. Character from tine.(out)
c count = i'4. Character count for character returned. Cout)

K-Base Final Report
- A3-11 -



c eat = i'4. End of Line or end of sixeL data.(out)
c O=ok
c 1 - end of Line
c 2 = end of sixet data
***************************************************

subroutine getbyte( Line, now, next, Last, char, count, eat )

c parameters
character*(*) t ire
integer now, next, Last
character*l char
integer count, eat

c COleman
c functions
c locals

integer c
character*lO rum

c begin
eoL-O
char = _ '
count = 0
next = now + 1

c
c end of s|xeL Line ?
c

if( next .gt. Last ) then
eoL = 1
return

c = ichar(Line(now:now))

c
c end of sixet Line ?

c

it( )then
return

endif

c

c escape sequences to be removed ?
c

if( c .9- 27 ) then
c
c end of sixel data
c

if(Line(next:next) .9- '\' ) then
_t=2

return
endif

c

c skip to start of sixeL data
c

7 i = next, Last
if(line(i:i) .eq. 'q' ) then

next = i + I

return
endif

7 continue
c
c no sixet data ?
c

eot=2
return

endif
c
c end of Line
c

if( c .eq. 45 ) then
eot=l

endif
c
c valid sixet data ?
c

if( c .ge. 63 ) then
char = Line(now:now)
count = 1
return

endif
c

K-Base Final Report
- A3-12 -



c duplicate character count flag ?
c

if(Line(now:now) .eq. ,!, ) then
c

c extract count as character string
c

do 10 i = next c last
if(line(i:1) .it. '0' .or. line(i:i) .gt. '9' ) then

num= line(next:i-I)
k = i - next

c

c convert to binary number
c

read(num, 11 ) count
11 format(i <k>)

char = line(i:i)
next= i + 1
return

£_ndif
10 continue

endif
return
end

c******************t***t**tllft ***************_f**l_f_***

c getarg( arg, n ) - _let argument from command line
c Author: James C. Malda
c Date: 3-FEB-1988 12:39:16.90
c Function:

c Get ar_luments from the command line.
c The matn routine should be executed at
c DCL level as follows:

c $ progname :== $ disk$user: [user]progname.exe
c then enter

c $ progname argl arg 2 ...
c Parameters:

c arg(maxarg) = c*(*) Argument tist.(out)
c maxarg = i'4. Length of argument tist.(in)

= ° • •

subroutine getarg( arg, maxarg, n )
c perameters

character*(*) arg(1)
integer maxarg
integer n

c locals
character*132 a
integer l
integer status
integer argcount
integer t ibSget_foreign

c begin

call tibSget_foreign( a, 'Input file : ', argcount )
1 = argcount

c
c no arguments ?
c

if( t .lt. 1 ) then
n=O
arg(1) = ' '
return

endif

kk=O
kkk = I

do 10 i = 1, l
if( kkk 1 ) then

kkk _.e_.

k=i

endif

if(a(i:i) ._., , .or. i .eq. I ) then
kk = kk + I

if( kk .gt. mxarg ) then
n=kk- 1
return

endi f

if( i .It. I ) arg(kk) = a(k:i-1)

if( i .eq. I ) arg(kk) = a(k:i)
kkk = I

K-Base Final Report
- A3-13 -



er_if
10 continue

n=kk
return

K-Base Final Report
- A3-14 -



HPL ! B. FOR

c Subroutines to manipulate bitmal_ destined for the
c LaserJet [! printer
c
c Sam Smith
c 29- Jan-87
c

subroutine setbit(x,y)
c
c Parameters
c

integer*2 x,y
c

c gitmap Nemory
c

byte bJ tmap(300,3000 )

integer*2 reso lut ion, xmax,_ax
common/g %TMAP/bi tmap, reso tut 1on, xlllax, ylTISX

C
C Locats
c

integer*2 byte hum,bit run
integer*2 etement, mask-
byte onebyte(2)
equivalence (onebyte(1),element)

c
c Begin

c

&
&
&

if((x .[t. O) .or.
(x xmax)
(y :_: .or.O) .or.
(y .ge. _nmax)) return

.byte _ = x / 8 + 1
bit _ mod(x,8)
one_te(1) = bitmap(byte_num, y+l)
mask = 128
mask = ishft(mask,-bit hum)
etenlent= ior(element,n_sk)
bitmap(bytenum,y+l) = onebyte(1)
return
end

K-Base Final Report
- A3-15 -



subroutine ct earrmp
C

c Subroutine cteers bitmap to zero (art white)
C
c Sam Smith 29-Jan-88
c
c Bitmap Nemory
C

byt • bi tmap( 300,3000 )
integer*2 resotut ion, xnmx,ymax
common/B! THAP/bi tmap, reso tut i on, xmax, ymax

C

do 99 i = 1,300
do 88 j ffi 1¢3000

bit_mp(i,J) ffi 0
88 continue
99 continue

return

K-Base Final Report
- A3-16 -



subroutine outmap(ich)
c

c Subroutine writes bitmp to HP LaserJet II printer
c
c Sam Smith 29-Jan-88
c
c Parameters

integer*4 ich
c

c Bitmap Nemory
c

byte bitmp(300,3000)

integer*2 resotution,xanax,_ax
comnon/B ! TRAP/bi tmap, reso l ut t on, xmax, ymax

c
c Locals
c

jbyte esc,ff
nteger*2 y_..lt

integer*2 I,j,k
logical blank
data esc/27/ff/12/

c
c Begin
c
c

c Calculate y-address multiplier
c

ymult = 4/resolution
c Reset printer
c

urite(ich,lO)esc,esc,esc, esc,esc
10 format('+',a1,'E',a1,'&t66P,,al,,&lOo2E,

& al,'&llH_,al,'&tlX,,a1,$) '
c

c Init to proper graphic resotution
c

if(resolution .eq. 1)write(ich,11)esc
11 format('+'¢a1,,*t75R,,$)

if(resolutlon .eq. 2)write(ich,12)esc
12 fonnBt('+',at,_*t150R,,$)

if(resolutlon .eq. 4)urite(ich,13)esc
13 for_t(,+_ a1,,*t3OOR,,$)
c

c Write data to printer
c

do 99 i=l,ymax
c
c Check for blank line
c

blank = .true.
c

do 77 j=1,(resotution)*75
if (bitraap(j,i) .ne. O) blank = .false.

77 continue
c

if (.not.blank)then
c

c Set cursor address & enter graphic mode
c

write(ich,20)esc,esc,(i-1)*ymutt,esc,esc.resolution,7_
20 fomat(l+,.al,l*pOXl,al,l.p,,i4,,y, ' " '-

& a1,1*rIAi,al I*bl,i3,,W,,$ )
c

c Send one line to printer
c

do 88 j=O,((resolution-1)*75),75
write(ich,30)(bitmp(j+k,i),k=l,75)

30 format('+_,75a1,$)
88 continue
c

c Leave graphics mode
c

write(ich,40)esc
40 format(,+_,al,_*rB_0$)
c

K-Base Final Report
- A3-17 -



c
99

L,¢_i f

continue
return
end

K-Base Final Report
- A3-18 -



PLAID DISPLAY File Rasterizer for HP Laserjet H.

The following listings form the kernel of the rastenzer utility.
compiled as follows:

$FORTRAN/CONT = 99/I4

Listing: RASTERIZE.FOR

They are

K-Base Final Report
- A3-19 -



program rasteri ze
c Progrm intended to accept PLA%D Disptay fire as
c input and output to an HP LaserJet II.
c
c Sam Smith
c 27-Jan-87
c

c Input buffers for header/data records
c

integer*4 drec(8)
integer*2 dhwrec(16)

equivatence (drec(1) ,dhwrec(1 ))
c
c Dectaretions for header record 1
c

i nteger*2 dt_De
integer*2 dvleu
equivalence (dhwrec(1) ,dt_0e)
_iva tL_ce (dhwrec(Z) ,clvl e_)

c
c Declarations for header record 2
c ree 1"4 dsca t e

rea t*4 drot t
rear*4 ch_pt(6)
equivalence (drec(1),dscate)
equivalence (drec(2),drot t)
equivalence (drec(3),dvpt (1))

c
c Declarations for data records
c

i nteger*Z
integer*2
integer*2
integer*2
real*4
reel*4

equivat ence
equi vat ence
equivatence
equivat ence
equivat ence
equivat ence

c
c Setup information
c

d_in
dkind

clv1(3)
clv2(3)

(clhwrec(1)
(dhwrec(2)
(dhwrec(3)
(clhwrec(4)
(dhwrec(5)
(clhwrec(11

d_in)
dkind)

dpoLy)
dedgej
_I(I))

dv2(1))

for record _tocking routine

integer*4 icb(4)
integer*4 ibuff(192)
c_/CBOOl/ibuff

c
c Bitmap Nemory
c

byte bitmap(300,3000)
integer 2 resotution,xdim,_dim
common/BITNAP/bitmap, reso[ut+on,xdim, ydim

c
c I/0 Channels
c

integer*4 tinp
integer*4 tout
integer*4 finp

integer*4 fout
data tinp/1/tout/2/finp/3/fout/4/

character*80 inputname
character yesno
teat*4 x_in,ymin
reaL*4 xmax,ymax
reaL*4 xsize,ysize
reaL*4 x cloffset,y doffset
integer*2 x_poffset,y_poffset
integer*2 xrange,yrange
reaL*4 scare factor
togicat portrait
integer*2 ixl,iyl
integer*2 ixZ,iy2

c
c Nisc.
c

K-Base Final Report
- A3-20 -



integer*4 vectors
integer i

c

c Initialization
c

data xrsr_e/600/yrange/750/
c
c Begin
c

open(uni t=t inp,
& nar_=e SY$$i NPUT I,
& status=eOLD , ,
& err=9000)

c

open(uni t=tout,
& nallle= ' SYSSOUTPUT ,,
& status=oOLD _ ,
& err=O010)

c

ol:)en(unit:f_t,

& name='sys$scratch:$$laser jet.dat +
& status='NEW', - '
& form= 'FORNATTED',
& err--9020)

c

c Write banner
c

write(tout,lO)
10 fomat(, * Rasterizer V1.1 *,)
c
c Query for resolution
c

1 write(tout.11)
11 format(/, I --> 75 dDi'/

& ' 2 --> 150 dpi'l
& ' 3 "'> 300 ck)i'/

& ' Select resolution: ,,$)
read(tinp,12)reso[ution

12 format(i5)

if((resolution .lt. 1) .or. (resolution .gt. 3)) then
write(tout,13)

13 format(, ***** Invalid selection *****')
go to 1

end if

resolution = 2**(resolution-I)
xdim = resolution * xrange
ydim = resolution * yrange

c

c Calculate X & Y offsets to center image
c

x_poffset = xdim/2
y_pof fset ydi_2

c

c Get file name and open input file
c

write(tout,20)

20 format(/' Enter input file name: ',$)

c

+(unit= finp,
& nallle= Input name,
& access=_SEQUEMTIAL , '
& form= 'UMFORHATTED',
& status=,OLD t ,
& readonly.
& err= 9630)

c

c Initialize blocking variables
c

icb(1) = 184
icb(2) = 8
icb(3) = 0
icb(4) = 0

c
c Read header record 1
c

K-Base Final Report
- A3-21 -



cat t plScb(finp,'R' ,dre¢, icb, ibuf f, ierr)
if (ierr .he.O) then

wri te(tout.35)tnput name
35 format( 0 ***** ErroF reading °,a64)

wri te(tout,40)dtype,dvte_
40 formmt(/_ Type: _,a2, _, Perspective: _,il)

c
c Reed header record 2

c cal I ptScb(finp,_R _ ,drec0 i cb, ibuff, ierr)
if (ierr .ne.O) then

wr i te(tout, 35) i nput_name

stop
end if
ar i te(tout, 50)dsca i e.drot l

50 format( _ Scala: _,f10.4, _, Head Roll: #,f10.4)

0 , .,. ,,
60 format( _ Vtetd Troul: ",TIU-U*z" , #]lu.._, , ,.,v.ws

write(tout,70)dvpt(4!,dvpt(5), tdypt(6) , , _ ....
70 format( m Weu to: ,f10.4, , ,f10.4, , ,tlu.4)

c
c Initia|ize minimax values
c

xmin = le30
xmax = - le30

ymin = le30
ymax = - le30
vectors = 0
write(tout,80)

80 format(/_ Calculating min/max... _)

c
c Read data records & check for error/end
c
10000 call ptScb(finp,'Ro,drec.icb, ibuff, ierr)

if (ierr .eq.1) go to 20000
if (ierr .eq. 2) then

wr i te( tout, 35 ) i nput_name

stop
end if

c
c Check for invisible edges & penetration points

c
if(dkind.ne.0)go to 10000
if(dedge.eq.1)go to 10000

c
c Update rain/max values & vector count
c

if(clvl(1) .[t. xmin)xmin = dr1(1)
if(dv2(1) .It, xmin)xmin = dr2(1)

if(_1(1) .gt. _x)_x : _I(I)
if(dr2(1) . t. x_x)_x : dr2(1)
if(dr1(2) ._t. _in)_in dr1(2)

if(dr2(2) .it. _in)ymin dr2(2)

if(_1(2) .gt. _x)y1_x : dr1(2)

if(dr2(2) .gt. _x)ynmx : dr2(2)
vectors = vectors + 1

c
go to 10000

c
c Got min/max, make portrait/landscape decision and calculate scale factor

c
20000 wr i te(tout ,90)vectors, xnti n, xmax, Ymi n, ymax
90 format('+Vectors: _, i 12/

& , X-Bin: ',f10.4, _, X-max: ',f10.4/
& , Y-min: _,f10.4, _, Y-max: ',f10.4)

xsize = XlltaX - Xltlin

ysize = ymax - yntin
c

x doffset = (xerox + xmin) / 2

y-doffset = (ymax + ymin) / 2
c

if (ysize .gt. xsize) then
_rlte(tout, 100)

100 format(' Portrait mode suggested... _)
portrait = .true.

K-Base Final Report
- A3-22 -



else

write(tout,110)
110 format( I Landscape mode suggested... ')

portrait = .false.
endif

c

c See if user wants to override portrait�Landscape decision
c

write(tout,120)
120 format( I Override? (Y or N): I,$)

read(tinp,130)yesno
130 format(e)

if((yesno.eq._Y_).or.(yesno.eq.ly*))portrait=.not.portrait
c
c Inform user of orientation and calculate scale factor
c

if(portrait)then
write(tout,140)

140 format( I Portrait mode selected. _)
scalefactor=min(((1/xsize)*xdim),

& ((1/ysize)*ydim))
else

write(tout,150)
150 format( _ Landscape mode selected.')

scate_factor=min(((1/xsize)*ydim),
& ((1/ysize)*xdim))

endif
c

c Re-initialize record blocking info
c

rewind (uni t=finp)
icb(1) = 18/,
icb(2) = 8
icb(3) = 0
icb(4) = 0

c

write(tout,lO0)
160 format(/' Processing vectors...')
c
c Skip over header records
c

call ptScb(fir_,'R',drec,icb, ibuff,ierr)
if (ierr .he.O) then

write(tout,35)input_name
stop

end if

call pl8cb(finp,'R_,drec, icb, ibuff,ierr)
if (ierr .he. O) then

write(tout,35)input_name
stop

end if

c
c Clear bitmap
c

call clearmap
c
c Reed data records, scale & rasterize
c
30000 continue

call ptecb(finp,'R',drec.icb, ibuff,ierr)
if (ierr .eq. 1) go to 40000
if (ierr .eq. 2) then

write(tout,35)input_name
stop

end if
c
c Check for invisible edges & penetration points
c

if(dkind.ne.O)go to 30000
if(dedge.eq.1)go to 30000

c
c Center & scale
c

ix1 = (dr1(1) - x doffset) * scale factor

iyl = (dr1(2) - y_doffset) : scale-factor
ix2 (dv2(1) x-doffset) scale-factor

iy2 = (dv2(2) - yZdoffset) * scaleZfactor

K-Base Final Report
- A3-23 -



c
c Rasterize
C

i f(l=¢rtrsit)then
ix1 = ix1 + x_tx)ffset
iyl = ydim - _riyl + y_poffset)
ix2 = !x2 + x_poffset

iy2 = yd|nt - _iy2 ÷ y_Doffset)
colt bresen( ix1, iyl, I x-2, iy2)

else

ix1 = ydim - (ix1 + y_poffset)
iyl = lyl + x I:offset
ix2 = ydim - _r]x2 + y..poffset)
iy2 = W2 ÷ xjaoffset
call bresen( iy-1, ix1, iy2, ix2)

endif
c
c Loop through remaining vectors
c

go to 30000
c
c Write bitmap to printer end stop
c
40000 continue

close (uni t=finp)
wni te(tout, 170)

170 fo_t('+Writing to output file...

cat I outmap(fout)
close (uni t=fout)

40020
c

c
c Error
c
9000
9001

,)

caLL tibSspaun(
& ,PRINT/PASS/OUE=HP$LASERJET/DEL SYSSSCRATCH:$$LASER_JET.DAT,
& )

write(tout,40020)
format(' Processing complete. ')

caLL exit

conditions

write(*,9001)

format(' ***** Error opening SYSSINPUT')

stop
c

9010 write(*,9011)

9011 format(' ***** Error opening SYSETPUT')

stop
c

9020 write(tout.9021)

9021 format(' ***** Error opening $$LASER_JET.DAT')
stop

c

9030 _rite(tout.9031)input name
9031 format(' ***** Error 3pening ',a64)

stop
c
90/,0 urite(tout.9041)
9041 format(' ***** Error writing $$LASER_JET.DAT')

stop
c
9050 write(tout.9051)
9051 far.mr(' ***** Error opening $$LASER_JET.CON')

stop
c
9060 _rite(tout.9061)
9061 forltlat(' ***** Error writing $$LASER_JET.CON')

stop

end

K-Base Final Report
- A3-24 -



subroutine bresen(xl ,yl ,x2,y2)
c

c Performs • simple( floating point based substitute for

c Sresenhmas algorithm to rssterize input vectors into s bitmap.
c Assumes vectors have been scaled and offset property.
c
c Sam Smith 29-Jan-88
c
c
c Parameters
c

integer*2 xl,yl,x2,y2
c
c Locals
c

integer*2 xsize,ysi ze
integer*2 x .pos, yp?s, numdot
real*/+ XlnCr,ylncr

reel*/, xaddr,y_r
integer*2 !

c
c Begin
c

xsize = iabs(x2 - xl)
ysize = iabs(y2 - yl)

c

c Handle case of zero-Length vector
c

if((xsize .eq. O) .and. (ysize .eq. O))then
call setbit(xl,yl)
return

else
c

c Increment by one on x, a fraction on y
c

if(xsize .gt..ysize)thon
numdot = xslze
if(x2 .ge. xl) then

xincr = I
else

xincr : -1
end if

if(y2 .ge. y1) then
ylncr = fLost(ysize) / fLoat(xsize)

else

yincr = float(-ysize) / ftoat(xsize)
endif

c
else

c

c Increment by one on y, a fraction on x
c

numdot = ysize
if(y2 .ge. yl) then

y+ncr = 1
else

yincr : -I
if

if(x2 .ge. xl) then

xincr = ftoat(xsize) / fLoat(ysize)
else

xincr : ftoat(-xsize) / ftoat(ysize)
endif

£_ndif

c

c Incr£m_ents calculated, set bits as aRoropriate
c

xeddr:xl

y_r:yl
c

clo 99 i = 1,numdot
xpos = xaddr
ypos = yaddr
call setbit(xpos,ypos)
xeddr = xaddr + xincr

yaddr = yaddr + yincr

K-Base Final Report
- A3-25 -



99
C

continue

endif
return
end

K-Base Final Report
- A3-26 -



Appendix 4 - DCRL Browser

Example: The STS-Orbitor Logical Hierarchy

GMS Technology evaluated the DCRL knowledge representation
lan .Kuage for use in the K-Base proiect. The ev_uation was was
conducted in two parts. The first part of the evaluation consisted of the
constru.ction of a knowledge-base of the major components of the
space shuttle. We first present the logical shuttle hierarchy, then the
DCRL code which represents the hierarchy.

The second part of the evaluation consisted of writing a program
which would make use of the representation constructed m part 1. For
this exercise we chose to write a graphical browser which provides the
user an interactive interface to the kfiowledge representation.

The DCRL Browser allows the user to interactively peruse the
knowledge network using the mouse to designate objects of interest.
The entire network may be viewed or just a small portion may be
selected to simplify_ the display. The Browser code runs on the
VAXstation 2000 in the Lucid Common Lisp environment.

K-Base Final Report
- A4-1 -



Shuttle 0V-103 Discovery
Forward Section

Upper Deck
Aft Crew Station

Overhead viet_orts
Remote-Manipulator Translation Hand Controller
Remote-Naniputator Rotational Hand Controller
Orbitor Rotational Hand Controller
Payload Contro.t .Panel A
Ntssion Speciattst Seat
Payload Specialist Seat
%nterdeck Access

Forward Crew Station
Nission Commnder*s Seat
Pi lot's Seat

FtiQht Computer and Navigation Console
Nsvt gstion Unit

Lower Deck
Gattey Space
Airtock

Interdeck access

Telescoping Escape Pole (new)
Extra Payload Specialists' seats (2)
Waste Nanagefaent
Stowage Lockers
Aviomcs/E tact ronics Bay

Nose Section
Reaction Control System (RCS)

RCS Forward Thrusters
RCS Oxidizer Tank
RCS Helium Tank
RCS Hydrazine Fuel Tank

Phased-array Radar
Nose_l Landing Gear (improved)

Payload Bay Section
Payload Bay Doors (2)

Radiators (2-6?)

Remote NaniPutator Arm
Elbow Video Camera (Videocm)

Extravehicular-act ivi ty Handhold

Getaway Special Canister
Alumimum Sheathing (Payload Bay tining)
Supports i.e. for Tracking and Data Relay Satellite (TDRS)

Below Pay!Dad Bay ....
Ventt tatar Ltquio-uxygan lank
Fuel Cell Liquid-Hydrogen/Liquid-Oxygen Tanks

Wing Section
Nain Landing Gear
Reinforced Carbon-Carbon Leading Edge
Etevon (Atuminum Honeycomb Structure)

Tail Section
Space Shuttle Main Engines (3)

High-pressure Fuel Tur_. (improved)
Liquid-Hydrogen Suppty Manifold
Liquid-Oxygen Supply Hanifold

Auxiliary Po_er Hydrszine/Oxidizer Tanks
Fuel Cett
Reaction Control System (RCS)

RCS Oxidizer Tank
RCS Hydrszine Fuel Tank
RCS Aft Thrusters
RCS Helium Tanks (2)

Orbital Naneuveriog System (ONS)
ONS Hydrazine Fuel Tank
ONS Oxidizer Tank
ONS Helium Tank
ONS Thruster

Rudder (Aluminum Honeycomb Structure)
Rudder/Spee d Brake Power Unit
Rudder/apes d Brake ,.
Rudder/SPeed Brake Hyclraut ! cs

Tracking and Data Relay Satellite
C-Band Commercial Antenna
4.9 Neter K/S-Band Antenna (2)
2.0 Neter K-Band Ground-Link Antenna

Stowed Sotar Array
inertial Upper Stage

K-Base Final Report
- A4-2-



D_

(concept .universe
Is a cottection of concept
from tout

}

(concept shuttte-ov-103
is a collect|on of concept
from universe

)
{concept _pte-seets

+s a collection of concept
from universe

)
(concept _roput sion-systom

is a coLLection of concept
from shuttte-ov-103

)
(concept +uidance-system

is a correction of concept
from shuttte-ov-103

}

(concept fuet-system
is a correction of concept
from shuttte-ov-103

}

(concept forward-section
is a correction of concept
from shuttte-ov-103

}

(concept payt oad-sect ion
is a correction of concept
from shuttte-ov-103

)

(concept wing-section
is a correction of concept
from shuttte-ov-103

}

(concept tait-section
is a correction of concept
from shuttte-ov-103

)
(concept rms-system

is a correction of concept
from shuttte-ov-103

)

(concept hand-controtters
is a correction of concept
from shuttte-ov-103

)
(concept upper-deck

is a correction of concept
from forward-section

}

(concept t ower-deck
is a correction of concept
from forward-section

}

(concept nose-section
is a correction of concept
from forward-section

}

{concept

}

Representation of the Shuttle Hierarchy

main-engines
is a collection of concept.
from (tail-section proputslon-systom)

K-Base Final Report
- A4-3 -



Cconcept

)

{concept

}

(concept

}

(concept

}

(concept

}

(concept

}

(concept

)

(concept

}

(concept

}

(concept

)

(concept

)

(concept

}

(concept

}

(concept

}

{concept

}

{concept

react i on- cont rot - system
is a correction of concept
from (nose-section tail-section propuLsion-system)

orbi tat -maneuvering-system
is • correction of concept
from (tai t-section proputsion-system)

rudder
is a collection of concept
from (tait-section guidance-system)

rcs-oxi d| zer- tank
is • collection of concept
from (reaction-controt-system fuel-system)

rcs- hydraz i ne - tank
is a collection of concept
from (reection-controt-system fuel-system)

rcs-hetium-tank
is • cottection of concept
from (reaction-control-system fuel-system)

rcs-aft-thrusters
is a correction of concept
from react ion-cont rot- system

oms-hydrazi ne- tank
is a correction of concept
from (orbi tat-maneuvering-system fuet-system)

oms-oxidizer-tank
is a collection of concept
from (orbital-maneuvering-system fuet-system)

ocns-hetium-tank
is a collection of concept
from (orbital-maneuvering-system fuel-system)

oms-thruster
is a coLLection of concept
from orbital-faaneuvering-system

forward-crew-station
is a collection of concept
from upper-deck

aft-crew-station
is a collection of concept
from_r-_k

navigation-unit
+s m cot|ection of concept
from (forward-crew-station guidance-system)

phased-array-radar
is a collection of concept
from (nose-section guidance-system)

extra-mission-spec-seat

K-Base Final Report
- A4.4 -



)

(concept

}

(concept

}

(concept

)

(concept

}

(concept

}

(concept

)

(concept

}

(cormept

}

(concept

}

(concept

}

(corcept

}

(concept

}

(concept

}

(concept

}

(concept

is a coltection of concept
from

(lower-deck people-seats)

mission-six, c-seat
is a collection of concept
from

(eft-crew-station people-seats)

paytoad-spec-seat
is a collection of concept
frm (aft-creu-station people-seats)

commnd-seat

is a cottecti.on of concept
from _TorMara-crew-station people-seats)

pilot-seat
:s a collection of concept
from (foruard-creu-station people-seats)

.rnain-tanding-gear
is a collection of concept
from wing-section

nose_$heet-landing-gear
is a collection of concept
fnomnose-section

fuel-tur.bopu.mp
is a collection of concept
from main-engines

tiquid-hydrocjen-suppty-manifotd
is a collection of concept
from main-engines

!icpJid-oxygen-supply-manifotd
Is a collection of concept
from main-engines

.rms-translation-hand-controller
is a collection of concept
from (eft-crew-station rms-system hand-controllers)

rma-rotational-hand-controller

is a collection of concept
from (aft-crew-station rma-system hand-controllers)

orbitor-rotationat-hand-controtler
is a collection of concept
from (aft-crew-station hand-controllers)

r_-arm

is a collection of concept
from (payload-section rma-system)

payload-bay-doors
is a collection of concept
from payload-section

waste-management

KoBase Hnal Report
- A4-5-



}

(concept

)

(concept

)

(concept

)

{concept

)

(concept

}

(concept

}

(concept

is a correction of concept
from tower-deck

tdrs
is a collection of concept
from universe

antennas
is a correction of concept
from universe

c-band-cormericiat-antenna
is s correction of concept
from (tdrs antennas)

ks-band-antenna
is a correction of concept
fro_ (tdrs antennas)

K-band-ground-link-antenna
is a co[lection of concept
from (tdrs antennas)

stowed-sotar-array
is a collection of concept
from tdrs

inertial-upper-stage
is a collection of concept
from tdrs

K-Base Final Report
- A4-6 -



DC-RL Browser Display of Shuttle Example

Figure A4.1 Shuttle Hierarchy without Boxes

K-Base Final Report
- A4-7 -



Figure A4.2 Shuttle Hierarchy with Boxes

K-Base Final Report
- A4-8 -



The Code of the DCRL Browser

(defvar
(defvar

(defver
(defvar

(defvar
(defvar

(defvar

trees
(delver

(defvar
(defvar

(defvar

(delver

;;; DCRL-Browse.Lisp RAG/10-Oct-88
;;;

;;; This is a prototype of the DC-RL Tree/Net Browser for
;;; K-Base.
;;;
;;;
-o. .................. . .....

...............................
the root of the DCRL environment(defvar *Tree-Display-Root* ttout) ; the root o the current tree

(defvar *tree-Ix-Levels* 100)
(defvar *tree-structure* nit)
(delver *tree-node-set* *concepts*)
(defver *tree-max-Level* O)
(defvar *tree-Level-Lists*)

(setf *tree-Level-lists* (make-array *tree-max-Levels*))
(delver *tree-Level-counts*)

(self *tree-level-counts* (make-array *tree-max-levels*))
(delver *tree-traverser-queue* (List tuniverse))

tree-process-queue* _(universe))
tree-current-breadth* O)

*tree-current-depth* O)

*tree-cell-width* 200) ; the width of a cell of a diagram
*tree-celt-height* 8)
*tree-windou-handLe* nit)

*Tree-Sort-Order* nil)

*Tree-Display-Font*
(find-font _smalt-roman))
*Tree-Diagram-Size* 0medium)
*Active-Display-Celts* nit)

*Celt-MS-Menu* nil)

*CeLl-RB-Menu* nit)

; celt height of a diagram
; Lisp handle for the diagram
• window.

; Deter. the sort-order of sub-

; The pop-up menu to display
, middle mouse button is depressed.
, The pop-upmenu to display
, right mouse button pressed.

K-Base Final Report
- A4-9-



oo° .................................................................

,,, DCRL-Browse --- Browse a DCRL class hierarchy given the root
;;; of the hierarchy to be browsed (?).
o.. .................................................................

###

(defunDCRL-Browse (root)

(setf *tree-display-root* root)
(setf *tree-process-queue* nil)
(setf *tree-current-depth* O)
(setf *tree-current-breadth* O)
(setf *active-display-cells* nil)

;;; Add the top of the universe to the process queue to begin
,,, the breadth-first traversal.

(queue-add-list (list root))
(tree-clear-levels *concepts*)
(tree-process-node root (get root tcorcept-parent) 0 O)
(tree-traverse-by-breadth)
(tree-sort-children root)
(tree-clear-level-lists)
(tree-build-level-lists)
(setf *tree-current-breadth* (tree-calculate-width root))
(setf *tree-current-breadth* (Tree-Layout-Diagram root 1))
(delete-diagram-window)
(make-diagram-window)
(make-diagram-menus)
(tree-draw-diagram root)
(tree-draw-Links root)

)

(defun delete-vie_loort-from-tree (vp tree)
(cond ((null tree) nil)

((.ecjuat vp (car tree))(cdr tree))
((llstp (car tree)) (cons (delete-vie_port-from-tree vp (car tree))

(delete-viewport-from-tree vp (cdr tree))
)

)
(T (cons (car tree) (delete-viewport-from-tree vp (cdr tree))))

)
)

K-Base Final Report
- A4-10 -



;;; Try-Traverse-By-Breath -- Recursive traverser
..o ...............................................................

i_fun Tree-Traverse-By-Breath ()

(let ((child-list nit)

(s_l-level nil)
(current-_ nil)

)

;;; Get the next node from the front of the queue and process it.

(self ¢urr_t-_ (u_-get-iten))

;;; (princ (format nit "Breath-Tray: processing node-- -a-_"

;;; (s_|-_ current-_))
;;; )

(c_ ((null current-node))

(t (setf child-list (tree-get-children current-node))
(setf s_l-tevel (get current-nO _tree-level))

(setf *tree-current-depth* (max *tree-current-depth* s_l-level))
(dolist (ch(td child-list)

(Tree-Process-Node child current-node (+ symbol-level I) 0)
)

(queue-add-list child-list)
(Tree-Traverse-By-Breadth)
)

K-Base Final Report
- A4-11 -



;;; Tree-Clemr-Levels -- set the TREE-LEVEL property to NIL
;;; and the TREE-SERIAL property to NIL for all
;;; concepts |n the knowledge-base.

(defun Tree-CLear-Levels (conc et?t- list)
(let ((concept-L|st concept-list))

;;; (princ (forMmt nil
"Initializing Concept: -A -%" (symbol-name (car concept-...

¢e
|1st))))

(cord ((null concept-list) "Finished")
(T (self (get (car concept-list) _tree-Level) O)

(self (get (car concept-list) _tree-serJal) O)
(setf (get (car concept-list) _regJon) niL)
(self (get (car concept-List) 'tree-order-value) O)
(self (get (car concept-List) _tree-dJagram-parent) nil)
(self (get (car concept-list) ttree-nd-Levet-span) O)
(Tree-CLear-Levels (cdr corK:ept- t Jst))
)

)
)

)

K-Base Final Report
- A4-12 -



;;; Get-Children -- given a DCRL node symbol, return the List of its children.
...

ace

(deft_ get-children (node)

(get node _co_ept-chitd)
)

(defun tree-test ()

(self *tree-str_ture* _(_iverse))
(self (car *tree-str_ture*) (cons (car *tree-str_ture*)

structure*) (list (get (car *tree-

_concept-chitd)
)

)
)

)

;;; Tree-Get-Children -- Given the name of a concept in the DCRL concept
;;; network, Return the list of that c_eptes
;;; children.

(defL_ Tree-Get-Children (node)

(get node 'C_ept-Child)
)

;;; Tree-Get-Parents -- Given the name of a concept in the OCRL concept
;;; network, return the list of that concept,s
;;; parent concepts.

(defun Tree-Get-Parents (node)
(get node _Coccept-Parent)
)

;;; Tree-Process-Node -- Process a node during the traversal by setting
;;; "tree-level" and "tree-serial" properties.

(defun Tree-Process-Node (concept parent level serial)
(self (get concept _tree-diagram-parent) parent)
(self (get concept _tree-level) tevel)
(setf (get concept _tree-serial) serial)
)

K-Base Final Report
- A4-13 -



o. .................................................................
eee

,;; Tree-Calculate-Width
•- CaLcuLate the width of each sub-tree by

,,,':: Performing a depth-first traversat of the DCRL
,;; class hierarchy tree. This program recursiveLy
,;; defines the width of a tree as the sum of the widths of
,;; its sub-trees. The width of a tree with no
,;; children (a Leaf) is defined as 1.
ate

• - Each node has an associated property.
_ 'tree-breadth, which contains this w_dth value.
...................................................................

le

(defun Tree-Calculate-Width (root)
(Let ((child-sum O)

(child-list nil)
(diagram-parent ni L)
(non-diogram-chi ldren ni L)

)

(cond ((null root) O)
(T (setf child-list (get-children root))

;;; calculate the width of each sub-tree of root

(dotist (child child-list)
(self diagram-parent (get child 'tree-diagram-parent))
(cond ((equal root diagram-parent)

(setf child-sum (+ child-sum
(tree-calculate-

width child))
)

)
• -- There is a non-diagram child of this node
_I so, make note of the fact. Also, calculate the
;;; maximum distance between this root and its deepest
;;; non-diagram child and store this value in the
;;; property 'tree-nd-Level-count.

(T (self non-diagram-children T)
(self (get root 'tree-nd-teveL-span)

(max (get root 'tree-nd-Levet-span)
(- (get child _tree-levet)

(get root 'tree-level)
)

)
)

)

;;; If root had one or more non-diagram children that are more
;;; than one Level beneath it, add
;;; one to its width to leave room for the link to children
;;; that are more than one level below root.

(cond ((and non-diagram-chiLdren
(> (get root 'tree-nd-teveL-span) 1)
)

(self child-sum (+ chiLd-sum 1))
(self (get root 'non-diagram-chiLdren) t)
)

(T (self (get root 'non-diagram-chiLdren) nil))
)

;;; Store the breadth of this tree in the 'tree-breadth property
;;; of ROOT.

(self (get root 'tree-breadth)
(max 1 child-sum)
)

)

K-Base Final Report
- A4-14 -



K-Base Final Report
- A4-15 -



; ; ; Tree-Sort-Chi tdren
• .. Sorts the children of root by sub-tree size
'" (_by-s|ze), or by the raJmber of non-diagrm
;.;.;. children (,by-rid-size) or does not sort them
"'.: (nit).
m e • .................................
,.. ..............................

eem

(defun Tree-Sort-Oh| tdren (root)

(cord ((equal *tree-sort-order* _by-.size)
(tree-sort-chi tdren-by-slze root)
)

((mt *tree-sort-order* eby-nd-sJze)
(tl:ee-sort-chi tdren-by-nd-size root)
)

((equal *tree-sort-order* tby-atpha)
(tree-sort-chi tdren-by-atpho rc_)t)
)

(T nit)
)

K-Base Final Report
- A4-16 -



_i o .................................................................

;; Tree-Sort-Children-by-Size

1; Sort the children of each node by the number
;1, of descendants of that node. This

;1, operation puts the nodes with the largest
;1, number of descendants at the top of diagram.
1;,

;;, Each node has an associated property(
;;, wtree-order-vatue, which contains this count
;;_ value.
_r .................................................................

(defun Tree-Sort-Children-by-Size (root)
(let ((child-sum O)

(chitd-tist nil)
)

(cond ((null root) O)
(T (setf child-list (get-children root))

1;1 recursively calculate the number of children
,;; of each sub-tree of root.

child))

;;;
;;;
;;;
;;;
;1;

(dolist (child child-list)

(setf child-sum (+ (+ child-sum

(tree-sort-children-by-size

I)
)

)

)
)

;;1 Store the number of descendants for the tree in the
;;; 'tree-order-value property of the root.

(princ (format nit
"Child-Sort -- Node: -a has -a chitdren-_,,
(p_t-na_ne root)
cnltd-sum)

)

(setf (get root 'tree-order-value) child-sum)
(order-children-by-size root)
(eval child-sum)

K-Base Final Report
- A4-17 -



• o, ..................................................................

#it

;;; Tree-Order - Subt rees- by- Size
.,i ..................................................................
III

(def_ Tr_-Order-S_tr_s-b_t-Size (root)
(Order-Ch| Ldrt_n-W-size root)
(dolist (chiLd (get-chiLdren root))

(Tr_-Or_r-S_trees-by-Size chiLd)
)

)

K-Base Final Report
- A4-18-



_:st)
;;;
;;;
;;;
;;;
;;;

;;;

;;;

;;;

;;; Order-Children-by-Size
;;; Sort a given list into descendi.r_ order on the vatue of a given property.
;;; The current implementation of this routine uses the Lisp SORT function.
_;; .................................................................

(defun Order-Children-by-Size (node)
(let ((temp-list nit)

(order-tist nil)
)

;;; Get the list of children of the given node and sort it in
;;; descending order into a temporary list.

(setf temp-tist (get node 'concept-child))
(setf temp-tist

(stable-sort temp-list
#,>
:key #'(lambda (x)

(get x 'tree-order-value))
)

)

(setf order-list temp-list)

The following code places the largest sub-trees in the middle
of the list...

(dotimes (nth-item (list-length temp-list))
(cond ( (evenp nth-item)

(setf order-list (append order-list

;;;

;;;
;;;
;;;
;;;
;;;
;;;
;;;
;;;
;;;

(list (nth nth-item temp-

)
)

)
)

( (oddp nth-item)
(setf order-list (co_s (nth nth-item temp-tist)

order-list)
)

)
)

)

(setf (get node 'concept-child) order-list)

(princ (format nit
"--- Size-Sort -- Child Order for Node: ~a .... X"
(symbol - name node)
)

)
(dolist (child (get node 'concept-child))

(princ (format nit
"Child: -a Sub-tree Size: -a-X"
(symbol-name child)
(get child 'tree-order-value)
)

)
)

K-Base Final Report
- A4-19 -



ea,

,;; Tree-Sort-Children-by-ND-Size
,;; Sort the children of each node by the number
,;; of non-diagram (NO) children of that node. This
,;; operation puts the nodes with the largest
,;; number of HO Links in the center of diagram so
,;; that they will hopefully look better!
,;;
,;; Calculate the number of non-diagram children
,;; of each sub-tree by
,;; performing a depth-first traversat of the OCRL
,;; class hierarchy tree.
,;;
,;; Each node has an associated property t
,;; _tree-order-vatue, which contains this count
,;; value.

• • .................................................................
###

(defun Tree-Sort-Chitdren-by-ND-Size (root)
(let ((chiLd-sum O)

(chiLd-List nit)
(diagram-parent ni l)
)

(c_ ((null root) O)

(T (setf child-List (get-children root))

;;; calculate the number of r_-dia references
;;; of each sub-tree of root. The number of NO
;;; children of a node is the sum of the ND
;;; children of the rootplus the nudoer of
;;; ND children of its sub-trees.

(dolist (child child-list)

(self diaQram-parent (get child _tree-diagram-parent))
;;; if this child is a NO child, then increment the
;;; ND child count (but do NOT traverse that sub-tree).
;;; Otherwise, traverse the sub-tree looking for more
;;; ND links.
(cord ((not (equal diagram-parent root))

(self child-sum (+ child-sum I))
)

(T
(self child-sum (+ child-sum

by-nd-size child))

)
)

)

)
)

)

(tree-sort-children-

;;; Store the number of NO chitdron for the tree in the

;;; _tree-or_r-val_ property of the root.

;;;(princ (fomat nit
;;; "ND-Kids -- Node: ~a has -a ND-Kids-_"

;;; (p ._0o. t-nme root)
;;; cnlta-sum)
;;; )
(or_r-chitdren-by-_-_r root)

(setf (get root 'tree-order-vat_) child-sum)

K-Base Final Report
- A4-20-



• .. ...........
woo ..................................................................

•"" Tree-Order-S_tr_s by ND (;hildrenooe - - -

;;; .............................................................................

(defun Tree-Order-S_trees-bg,-ND_(;hiLdren (root)
(Order-(;hiLdren-_-NO-N_r root)
(doList (child (get-children root))
(Tree-Order-S_trees-b_l-ND-(;hiLdren child)
)

)

o## ...................................................................

;;; Order-(;hiLdren-lo?-ND-Nurdoer

;;; Sort a given List into descendin_l order on the value of a given property.
;;; The current implementation of this routine uses a
;;; bubble-sort algorithm.
• '' .............................................................................e#t

(defun Order-Chitdren-by-ND-Number (node)
(Let ((temp-tist nit)

(order-List nil)
)

;;; Get the list of children of the given node and sort it in
;;; descending order into a temporary list.

(self temp-List (get node _concept-chitd))
(self temp- List

(stable-sort temp- I ist
##>

:key #'(tambda (x) (get × 'tree-order-value))
)

)

(dotimes (nth-item (List-Length temp-tist))
(cord ( (evenp nth-item)

(setf order-list (append order-list

List)

;;;
;;;
;;;
;;;
;;;
;;;
;;;
..°
#eo

ewo
°°.

two

;;;
;;;
;;;

(List (nth nth-item temp-

)
) )

)
( (oddp nth-itern)

(setf order-list (cons (nth nth-item temp-tist)
order-list)

)
)

)
)

(setf (get node _concept-chiLd) order-list)

(print (format nil
"--- Child Order for Node: ~a .... _-
(symbol-name node)
)

)
(dolist (child (get node _concept-child))

(print (format nil
"Child: -a NO-Value: ~a-_"
(symboL-name child)
(get child _tree-order-value)
)

)
)

K-Base Final Report
- A4-21 -



•-• Tree-Sort-Chi Idren-l:_/-Alphm
::: Sort the children of each node by the string
;;; value of the node's symbolic nail.

'.:: Each node has an associated property(
".'.: ,tree-order-value, which contains this count
lee•. • value.
##e
• o o .................................................................

0w0

(defun Tree-Sort-Children-by-Alpha (root)
(let ((child-list nit)

)

(cond ((null root) O)
(T (order-chitdren-by-atpha root)

(self chi td- tist (get-chi tdren root))

;;; recursivety calculate the number of children
,,, of each sub-tree of root.

(clotist (child child-list)
(tree-sort-chi tdren-by-atpha chi td)

)
)

;;; Deb_ IlO

;;; (princ (fomat nil

.°o
ffe

;;; )

)
)

.Alpha Child-Sort -- Node: -a has -a childrer_"
(p ,_bo, L-name root)
chits-sum)

°° ..............................................................................
J0e

• -- Order-Children-by-Alpha
'" Sort a given list into descer)clip_ order on the value of a given property.
##w

;,, The current implementation of this routine uses the Lisp SORT function.
.............................................................................

#oe

(defun Order-Children-by-Alpha (node)
(let ((temp-list nil)

)

--- Get the list of children of the given node and sort it in
_ descending order into a temporary list.

(self tamp-list (get node _concept-chitd))
(self temp-list

(stable-sort t_-tist
#_string<
:key #1(lambda (x)

(symbol-name x))
)

)

(self (get node ,concept-child) temp-tist)

;;; (princ (format nil
... ,,---Child Order for Node: -a ...._"
0J#

;;; (syntx)t-name node)
;;; )
;;; )
;;; (dotist (child (get node _concept-chitd))
00w

!!! (princ (format nil "Child: -a-_"

tic (symbol-nanle child)

ew#

;;; )
;;; )

K-Base Final Report
- A4-22-



)

K-Base Final Report
- A4-23-



ooo ....................................................................

p##

;;; Tree-Cteer-Levet-Lists -- CLear the Lists of the nodes at each Level
;;; of the concept network.
oo, ....................................................................

lOW

(defun Tree-CLear-Level-Lists ()
(Let ((max-levels (length *tree-level-lists*))

)

;;; Initialize the Lists for each level to nil

(dotimes (tree-Level max- Levels)
(self (aref *tree-Level-lists* tree-level) nil)
)

(dotimas (tree-Level max-Levels)
(setf (aref *tree-Level-counts* tree-Level) O)

)
)

)

;; Tree-Build-Level-Lists -- construct a list of the nodes at each level
;; of the concept network. This is accomplished
;; by accessing each of the concepts Listed in
;; the List *concepts*.

(defun Tree-Build-Level-Lists ()
(Let ((node-Level O)

(leveL-count O)
)

;;; BuiLd a list of nodes at each level by [_king at the .tree-level"

;;; property of each node Listed in *concepts*.

(dotist (current-node *concepts*)
(self node-level (get current-node _tree-Levet))
(setf (aref *tree-level-lists* node-level)

(cells current-node (aref *tree-Level-lists* node-level))

)

(self Level-count (aref *tree-level-counts* node-Level))
(setf Level-count (+ level-count 1))
(self (aref *tree-level-counts* node-Level) level-count)
(setf (get current-node _tree-seriat) level-count)
)

)

PIItllf_iO_G PAGE Bt.Ai',iK NUT FILMED

K-Base Rna] Report
- A4--2,4-



;;; Tree-List-Levels -- List all nodes by level number. This routine uses the
;;; level lists generated by Build-Level-Lists and
;;; stored in *tree-level-lists*.

(defun Tree-List-Levels ()
(let (

(node-serial O)
(node-tist nit)
(node-parent-list nit)
(node-child-list nit)
)

(dotimes (tevel (length *tree-level-lists*))
(cord ((null (sref *tree-level-lists* level)) "finished,,)

((not (null (aref *tree-level-lists* level)))
(terpri)
(princ (format nil "Level -a with nodes:-_, level))
(self node-list (aref *tree-level-lists* level))
(dotist (node-symbol node-list)

(self node-serial (get node-symbol 'tree-serial))
(prir¢ (format nil

NO-Kids: -a-X" "Node: ~s Level: -s Serial# -a

)
)

)

POS ~a

(symbol-name node-symbol)
level

node-serial
(get node-symbol 'tree-diagram-column)
(get node-symbol 'tree-order-value)
)

)
(self node-parent-list (tree-get-parents node-symbol))
(setf node-child-list (tree-get-children node-symbol))
(princ (format nil " with parents: -_,,))
(dolist (next-link node-parent-list)

(princ (format nil " -e -_" next-link))
)

(princ (format nil " and children: ~_,,))
(dolist (next-link node-child-list)

(princ (format nil " -a -X" next-link))
)

)

K-Base Final Report
- A4-2,5-



;;; Tree-Layout-Diagram -- Determine the Positions of tree nodes within
;;; each Level of the tree so that the tree can
;;; be mapped to the display.
;;;
;;; Return-Value: This function returns the incremented starting
;;; column of the next node of the diagram.
,°o .........................................................................

met

(defun Tree-Layout-Oisgrm (node starting-column)
(let ( (width O)

(node-cotumO)
(non-diagram-children nit)
(nd-tevet-spenO)
(current-start-column starting-coturm)
(dingram-parent nil)
(child-width 1)
)

;;; Position node in the center of an area Large enough to contain this
;;; node's entire tree.
;;; Store the node*s column position in the property _tree-diagram-cotumn.

(self width (get node _tree-breadth))
(setf node-cotulm

(floor
(+ starting-cotulm

(/ width 2))
)

)
(setf (get node ,tree-diagram-column) node-column)

(self non-diegrm-chitdren (get node 'non-diagram-children))
(setf nd-levet-spen (get node 'tree-nd-tevet-span))

;;; Determine the positions of node's sub-trees.

(dotist (current-child (get-children node))
(self diagram-parent (get current-child _tree-diagram-parent))
(self child-width (get current-child #tree-breadth))

;;; Only position diagram-chitdren of this node. Leave non-diagram
,,, children where they are.

(cond ((equal node diagram-parent)

;;; If this tree has non-diagram chitdren, then Leave the
;;; space directtyunder the root open so that the link to
;;; the non-diagram children wilt not cross any of the direct
;;; (diagram) children.

(if (and non-diagram-children
(> _-tevet-span I)
(and (>: _-cotumn current-start-column)

(<: _-colknn (+ current-start-column
(- child-width

I)

)
)

)
(self current-start-column

(+ node-column I)
)

)
(self (get current-child 'tree-start-column) current-start-column)
(self current-start-column

(Tree-Layout-Diagram current-child current-start-column)
)

)
;;; Otherwise, this is a non-diagram child so set its width to one

column.
(T (setf child-width 1))
)

)
_;; The return value of this invocation is the next available "column" in the tree

lagram.

K-Base Final Relmrt
- A4-26 -



(+ current-start-column I)
)

K-Base Final Report
- A4-27 -



(defun queue-add-list (tst)
(self *tree-process-queue* (append *tree-process-queue* lst)))

(defunqueue-get-item ()
(let ((return-itemnil))

(self return-item (car *tree-process-queue*))
(self *tree-process-queue* (cdr *tree-process-queue*))
return-item))

;;; Make-Diagram-Window -- Creates a Lucid Lisp window to sccomodate a
;;; DCRL Tree which is ,'breadth. cells wide and
;;; "depth'* cells (Levels) deep.

(DEFUN Make-Diagram-Window ()
(let ( (diagram-width O)

(diagram-height O)
)

(self diagrm-width (* *Tree-Celt-Width* (+ *tree-current-depth* 2)))
(setf diagram-height (* *tree-cell-height* (+ *tree-current-breadth* 10)))

(IMITIALIZE-WINDOW'S :HEIGHT
800
:WIDTH
1010
:LABEL

"* DCRL Browser Window *")

"Make a window in root window"

(SETF *tree-window-handle*
(let ((time-list (multiple-value-list (get-decoded-time))))

(HAKE-WINDOW :X
0
:Y
0
:VIEMPORT-WIDTH
(min 950 diagrem-width)
:V%EWPORT-HEIGHT
(min 750 diagram-height)
:WIDTH
diagram-width
:HEIGHT
diagram-height
:SCROLL
T
:TITLE
(format nil

" Browsing Tree: ~a Date: -s/~a/-a
-a:-s:-a Sorted: -a m*

)
)

Time:

(symbol-name *tree-display-root*)
(nth 4 time-list)
(nth ] time-list)
(mod (nth 5 time-list) 100)
(nth 2 time-list)
(nth 1 time-list)
(nth 0 time-list)
(symbol-name *tree-sort-order*)
)

K-Base Final Report
- A4-28-



; ; ; Delete-I) iagram-Windou
_ ...................................................................

(defun Delete-l)iagram-Window ()
(when (vieuportp *tree-windou-handte*)

(deact i rate- v i etq:or t *t tee- wi ndo_- h_,nd I e* 1
(c lear-bi tmap-act ire- regior_s (viet_0ort-bi tman
(cletete-viewport *tree-window-hand_e*) _ *tree-window-handle*))

;;; TROUBLESONE STUFF???

(serf (view_x?r.t-chi t.dren (ropt-vieMpont))
_oe mete-v1 ewpor t - from- t tee *t ree-window-hand [ e*

viewport)) (vJet<port-chi [dren (root-

) )

(serf *tree-window-handLe* nit)
)

)

_ .....................................................................

;;; flake-D i agram-Menus

;;; Generate the pop-up menus that are needed to manipulate the
;;; tree diagram.
o., .....................................................................a##

(defun Make-l)iagram-Nenus ()

;;; Define the flicldte-Button (-MB-) mer_J

(if (null *ceLt-mb-menu*)
(setf *cel L-IdO-IT_*

(make-pop-up-menu '(("Draw SmaLL DispLay" small )

("l)raw Medium Display" medium

("Draw Large Display,, large
("Sort by Size". by-size )
("Sort by ND-Chl td" by-nd-size)
("Sort by ALpha" by-aLpha)
("NO Sort" nl L-sort)
("QUIT" quit )
)

) )

)

;;; Define the Right-Button (-RB-)

(if (nuLL *ceLL-rb-n_nu*)
(setf *ceLL-rb-_*

(meke-pop-up-menu 1((,,Draw Sub-Tree" sulo-tree)

("Draw from Root" root )
("$hou Corcept" show )
)

K-Base Final Report
-A4-29-



°.° .....................................................................

_ Tree-Draw-Nocle -- Draw a node of the tree in the tree diagrm wi_
°Do .....................................................................

wle

(defLm Tree-Oraw-N_ (node)
(let ((node-level (get node ttree-level))

(node-col_ (get node ,tree-diagrm-column))
(_-x O)
(r_0de-yO)

cet l-origin nil)
(cel t-corner nit)

(cell-width (truncate (/ *tree-cell-width* 2)))
(celt-height (truncate (* *tree-celt-height* 0.666)))
(boote-op boole-1)
)

(setf node-x (* node-Level *tree-cell-width*))
(self node-y (* rlode-coturm *tree-cell-height*))

(stringbtt *tree-window-handle*
(make-position (+ node-x 1)

(- node-y 2))
*Tree-O i splay- Font*
(symbol-nine node)
:operation boole-op
)

(cond ( (not (equal *Tree-Diagram-Size* ,small))
(draw- line *tree-window-handle*

(make-position node-x
node-y)

(make-posi t ion node- x
(- node-y celt-height))

:operation boole-op
)

(draw- line *tree-winclow-handle*
(self celt-origin (make-position node-x

(- node-y cell-

height)))
(make-position (+ node-x celt-width)

(- nocle-y cell-height))
:operation boole-op
)

(draw- Iine *tree-window-handle*
(make-position (+ node-x cell-width)

(- node-y cell-height))
(make-position (+ node-x celt-width)

node-y)
:operation boole-op
)

(draw- i ine *tree-window-handle*
(self cell-corner (make-position (+ node-x cell-width)

node-y))
(make-position node- x

node-y)
:operation boole-op
)

)

(T
(self cell-origin (make-position node-x

(- node-y cell-

height)))
(setf celt-corner (make-position (+ node-x cell-width)

node-y))
)

)

(Make-Node-Mousey node cell-origin celt-corner)
)

)

K-Base Final Report
- A4-30 -



;;; Nake-Node-Nousey -- makes the diagram box an active region
;;; SLS - 3-0ct-88

(defun Neke-Node-Nousey (node celt-origin cell-corner)
(setf (get node 'region) (make-the-region cell-origin cell-corner))
(setf *active-display-cells* (cons node *active-display-cells*))
)

;;; Actually make the region here
;;;

(defun make-the-region (cell-origin cell-corner)
(make-act ire- region

(make-region :origin cell-origin
:corner cel l-corner
)

:bitmap (viekl)ort-bitma p *tree-window-handle*)

;; Invert region on entry

:mo_se-enter-region

#'(ta_a (vie_rt active-region mouse-event x y)

(declare (ignore _se-event x y))
(bitblt-reglon (viewport-bitmp vie_rt) active-region

(viewport-bitmap viewport) active-region
_le-cl

)
)

;; Invert region back to normal on exit

:mouse-exit-region

#'(t_ (viewport active-region mouse-event x y)

(declare (iQnere mouse-event x y))

(bitbtt-reglon (viewport-bitmap viewloort) active-region

(viewport-bitmap viewport) active-region
kx)ote-cl

)
)

:mouse-middle-down

#'(l_ (vie_rt active-region _se-event x y)

(declare (ignore vi_rt mouse-event x y))
(let ((choice nit)

)

(with-as_chronous-meth_-invocation-altou_

(setf choice (car (_-up-_nu-choose *cell-_-_*)))
(cond ((equal choice 'small)

(tree-set-display-size 'small)
(dcrl-browse *tree-display-root*))

((equal choice 'medium)
(tree-set-display-size 'medium)
(dcrl-brouse *tree-display-root*))

((equal choice 'large)
(tree-set-display-size 'large)
(dcrl-browse *tree-display-root*))

((equal choice 'by-size)
(self *tree-sort-order* _by-size)
(dcrl-browse *tree-display-root*))

((equal choice _by-nd-size)
(setf *tree-sort-order* 'by-nd-size)
(dcrl-browse *tree-display-root*))

((equal choice 'by-alpha)
(setf *tree-sort-order* _by-alpha)
(dcrt-browse *tree-display-root*))

((equal choice _nit-sort)
(self *tree-sort-order* 'nil-sort)
(dcrl-browse *tree-display-root*))

((equal choice 'quit)
(delete-diagram-window)
)

(T nil)
)

K-Base Final Report
- A4-31 -



)
)

:mouse- r ight-down
#'(tambda (vie_q)ort active-region mouse-event x y)

(dectare (ignore vietq)ort mouse-event x y))
(tet ((choice nit)

(node nit)
)

(serf node (get-region-name active-region *active-disptay-cetts*))
(with- asynchronous-method- i nvocet i on- a t Lowed

(serf choice (car. (pop-up-mecu-choose *cet t -rb-men_)))
(cond ((equal choice asub-tree)(dcrt-browse node))

((equal choice 'root) (dcrt-brol4se _tout))
((equal choice 'show) (shou-concept node))
(T nit)
)

)
)

)
)

)

K-Base Final Report
- A4-32 -



;;; Get-Region-Name -- Returns the name of an active region
°°.

###

(_fun get-r_ion-_ (r l)
(cc:_'_:l((_ll L) nil)

((equal (get (car l) 'region) r) (car l))
(T (get-r_ion-name r (cdr t)))
)

)

;;; Tree-leef-p -- Returns T if the given node is a leaf of the
;;; DCRL tree and nil otherwise.

(defun Tree-Leof-p (node)
(let ((child-list (get-children node))

)
(null child-list)
)

)

;;;.................................................................
;;; Tree-Draw-Diagram

(defun Tree-Draw-Diagram (root)
(let ((child-list nit)

)

(tree-draw-_ root)
(self child-list (get-children root))

;;; calculate the width of each sc_o-treeof root

(dotist (child child-list)
(if (equal root (get child 'tree-diagram-parent))

(tree-draw-diagram child)
)

)

)
)

K-Base Final Report
- A4-33 -



;;; Tree-Draw-Links
_ ................................................................

(defun Tree-Drew-Links (root)
(let ((parent-level O)

(parent-column O)
(chi td- level O)
(chi td-cotumn O)
(paeudo- tevet O)
(pseudo- cot urm O)
(boote-op boote- 1)
)

(cond ((null root) nit)
(T (self parent-level (get root _tree-l.evel.))

(self parent-column (get root 'tree-diagrm-col.unrl))
(dolist (child (get-children root))

(setf child-level (get child _tree-tevet))
(setf child-column (get child rtree-diagram-cotumn))

(cond (
;;; If the parent node is more then one tevet above the child

node I

i f the

connections to

of

child.

parent-column)

pseudo-column)

pseudo-column)

child-column)

level parent-column)

child-column)

)
)

;;; then draw a line down to where • parent tail would be

;;; parent were at child-level + 1 and disperse the

;;; the children from that point.

(> (- child-level parent-level) 1)
;;; Draw a line from the tail of the parent to the tail

;;; a non-existent (pseudo-) node at one level above the

(self pseudo-level (- child-level 1))
(setf pseudo-column parent-column)
(draw-line *tnee-windou-handte*

(tree-catc-node-tail parent-level

(tree-calc-node-tait pseudo-level

:operation boole-op
)

(draw-line *tree-_indow-handte*
(tree-calc-node-tail pseudo-level

(tree-catc-node-head child-level

:operation boote-op
)

)
;;; Otheruisep draw the connecting links directly from the
;,, tail of the parent to the head of the child.

(T (draw-line *tree-window-handle*
(tree-calc-node-tsit parent-

(tree-calc-node-head child-level

:operation l_te-op
)

)
)

(tree-draw- t inks chitd)
)

K-Base Final Report
- A4-34-



;;; Tree-Calc-Node-Tait -- Compute the position of the tail of a node and
;;; return it as a Lucid Lisp Position structure
;;; suitable for the drawing routines.

(defun Tree-talc-Node-Tail (node-level n<x_e-colurm)
(tel ((node-tait-x O)

(node-tait-y O)
)

(self node-tait-x (- (* (+ node-Level 1)
*tree-cell-width*)

(truncate (/ *tree-cell-width* 2))
)

)
(self node-tait-y (- (* node-column

*tree-cell-height*)
(truncate (/ *tree-cell-height* 2))
)

)
(make-position node-tait-x node-tail-y)
)

(defm Tree-CaLc-Node-Head (n_-level node-col_)
(let ((_-he_-x O)

(node-head-y O)
)

(self node-head-x (* node-level

)
(self node-head-y (- (* node-column

*tree-cell-width*)

*tree-cell-height*)
(truncate (/ *tree-cell-height*

2))
)

(make-position node-head-x node-head-y)
)

)

;;; Draw-Part -- Draws the nodes and the links for any sub-tree of the network

(DEFUN DRAW-PART
(NOOE)
(CLEAR-BITMAP *TREE-WINDOW-HANDLE*)
(TREE-DRAW-DIAGRAM NODE)
(TREE'DRAW-LINKS NODE))

K-Base Final Report
- A4-35 -



o°. .............................................................................
e##

;;; DCRL-L_
;;; Loads • DCRL description file after clearing the contents of the
;;; currently-defined universe.

_ NOTE: THiS FUNCITON DELETES THE ENTIRE CONTENTOF THE EXISTING DCRL UNIVERSE!
oo ...............................................................................

0ee

(defun DCRL-Load (film)
(DCRL-Ctear-Universe)
(load filename)
(DCRL-Browse *t tee- root-node*)

)

.o. .............................................................................

ee#

--- DCRL-CLear-Universe
#ee

;;; Remove all concepts from the current DCRL Universe
°o° .............................................................................

e#m

(defun OCRL-Ctear-Universe ()
(let ((node nil))

(dolist (node*concepts*)
(destroy-concept node)
)

)
)

;;; ............................................................................
;;; CLS
;;; Clear the Diagram window and *tree-window-handle*

°l ............................................................................

#e#

(defun CLS ()
(leave-window-system)
(setf *tree-window-handle* nil)
)

oo ..............................................................................
eam

;;; Tree-Set-Display-Size
°.° .............................................................................

tee

(defun Tree-Set-Display-Size (size)
(cond ( (equal size ,samtt)

(setf *Tree-Diagram-Size* *small)
(self *Tree-Cell-Height* 8)
(setf *Tree-Cell-Width* 100)
(self *Tree-Display-Font* (find-font ,small-roman))
)

( (equal size ,medium)
(self *Tree-Diagram-Size* _medium)
(self *Tree-Cell-Height* 15)
(setf *Tree-Cell-Width* 200)
(self *Tree-Display-Font* (find-font ,small-roman))
)

( (equal size _targe)
(self *Tree-Diagram-Size* _large)
(self *Tree-Cell-Height* 22)
(setf *Tree-Cell-Width* 300)
(setf *Tree-Display-Font* (find-font ,bold-roman))
)

)
)

(Tree-Set-Display-Size 'small) ;;; Initialize the display to smart.

K-Base Final Report
- A4-36 -



Appendix 5 - Scoops Evaluation

A brief evaluation of SCOOPS, the PC-SCHEME OOPS package was
conducted on personal computers before the VAXStation system was in
place in order to evaluate the feasibility of an object-oriented approach to
programming for K-Base. Implementation of a problem familiar to
computer science students, the 'Towers of Hanoi" problem, was
undertaken in order to provide a familiar basis for review of the
programming platform. .Readers not familiar with this p_rogramming
example may refer to almost any computer science textbook whicl5
introduces the concept ot recursion.

The familiar "Towers of Hanoi" problem can be solved using an Object-
Oriented paradigm in the following fashion:

The problem can be decomposed into a series of interactions between
objects representing Disks, Pegs, and the Game. Multiple instances of
Disks and Pegs are required'; multiple instances of the game may
optionally co-exist (in different screen Windows, for example).

Game play operates as follows: A game is instantiated and a PLAY-GAME
message (for a specified number of disks) is sent to it requesting it to
begin play. For purposes of discussion, this instance of Game _ be
calIed myGame.

My.Game will then create instances of the three required pegs and as many
disks as required. (The environment contains default names for the first 12
disks and the Source, Intermediate, and Destination pegs.) INITIALIZE
messages are sent to the three pegs requesting that they initialize and
draw themselves. RESERVATION messages are then sent to the source
peg requesting that it send an INVITATION to each disk from the largest
to-the smalles}" in succession in order to initialize object data structures and
the screen display.

Implementation of the requisite game moves is as follows: When myGame
wishes to cause a move of a disk to a particular peg, a MOVE message is
sent to that disk with the name of the destinationpeg. The disk, kno_,ing

its current peg, undraws itself and sends a GOODBYE messase to tha_
peg, causing the peg to adjust its data structure and redraw its vacated
portion. Tr_e dis_ then sends an RESERVATION message to the target
peg, informing it of the disk's pending arrival. The peg then computes
the destination address of the top of its pile and sends an INVITATION
message containing those coordinates to the disk. Upon receipt of the
INVITATION, the disk adjusts its data structure and draws itself at the
proper location. This process continues until myGame completes.

K-Base Final Report
- A5-1 -



Implementation

Implementation of this
an/i methods:

Class GAME:

Instances:

Instance Variables:

Methods:

Class DISK:

Instances:

Class Variables:

Instance Variables:

Methods:

Class PEG:

Instances:

Class Variables:

Instance Vairables:

Methods:

approach requires the following class definitions

myGame

Num-Disks

Play-Game(Num-Disks)

Disk1..Disk12

Height

Width
X-Pos
Y-Pos
Color

On-Peg

Move(peg-name)
Invitation(X-Pos,Y-Pos)

Source, Intermediate, Destination

Height
Width

Base-X
Base-Y
Color

Top-Level

Initialize
Reservation(Disk-ID)
Goodbye

K-Base Final Report
- A5-2 -



;;; Load the SCOOPS environment

(fast- Load "scoope. fst,,)

;;; Define names for objects to be used

(define peg1 '())

(define peg2 ,())

(define peg3 '())

(define d|skl '())

(deffne disk2 '())

(define disk] _())

(define disk6 '())

(define disk5 '())

(define disk8 ,())

(define disk7 '())

(define disk8 '())

(define disk9 ,())

(define disklO '())

(define disk11 ,())

(define disk12 ,())

;;; Define the GANE class

(define-ctass Game

(instvars (Num-Disks O)

)

;;; Hethods for class Game

;;; Nethod Game Play-Game is used to start play of a game.

;;; It instantiates three pegs and n disks. The pegs are

;;; initialized, and the disks are moved to peg 1. Function

;;; PLAY-HANOI is then called to implement the game logic

;;; and send appropriate messages to the disks.

(define-method (game play-game) (n)

(evat(tist 'setl (make-peg-name 1) (make-instance peg)

(evat(tist 'sell (make-peg-name 2) (make-instance peg)

(eval(tist 'sell (make-peg-name 3) (make-instance peg)
(sell Num-Disks n)

(make-disks n)

(set-video-model 4)

(clear-graphics)

(set-petettet 1 1)

(drau-box -159 -89 159 -81 3)

(send (evst (meke-peg-na4ne 1)) initialize 1)

(send (evat (make-peg-name 2)) initialize 2)

(send (evat (make-peg-name 3)) initialize 3)

(init-disks n)

(gc T)

(pray-hanoi n 1 2 3)

(gc T)

K-Base Final Report
- A5-3 -



(set-video-model 3)

)

;;; Utility function NAKE-DISKS is catted to instantiate n

;;; disks.

(define make-disks

(tambde (n)
(cond

((zero? n) '())

(etse (ever (list 'set!

disk-neme n)

instance disk 'width n

3)))

(make-

(make-

)

)

)
)

'color (1+ (remainder n

)

)
(make-disks (-1+ n))

;;; UtiLity function INIT-D]SKS is caLLed to move disks to

;;; peg one.

(define init-disks

(tambde (n)
(cond

((zero? n) '())

(else
(send Level (make-peg-name 1)) reservation n)

(init-disks (-1+ n))

)

)
)

)

;;; Utility function PLAY-HANOi implements the game Logic.

(define play-hanoi
(lambde (n s i d)

(cond
((zero? n) '())
(else

(play-hanoi (-1+ n) s d i)
(send Level (make-disk-name n)) move d)

(play-hanoi (-1+ n) i s d)

)
)

)

K-Base Final Report
-AS_-



(compi te-ctass Gme)

;;; Define class Disk

(define-class Disk

(ctassvars

(instvars

(options

)

(height 10))
width

X-pos

Y-pos
(color 'vhite)

(On-Peg 1))

(inittabte-variables width color)

;;; Nethods for class Disk

;;; Method Disk Nove is invoked by the Game when it is

;;; desired to move a disk to s new location. The disk
;;; erases itself from its current location, says g_e to

;;; its current l>eg and makes a reservation on the target

;;; peg.

(define-mothod (Disk Move) (peg-num)
(draw-box (- X-Pos (* Width 3) 5) Y-Pos

(+ X-Pos (* Width 3) 5) (+ Y-Pos 9) O)

(send (eval (make-peg-name On-Peg)) goodbye)
(ser¢l (evaL (make-peg-name peg-num)) reservation width)

(setl On-Peg peg-num)
)

;;; Method Disk Invitation is invokod by a peg when the disk

;;; is invited to move itself to that peg. The disk sets its

;;; X,Y position according to the invitation and draws
;;; itself on the target peg.

(define-method (Disk Invitation) (x y)

(setl X-pos x)
(sell Y-pos y)
(draw-box (- X-Pos (* Width 3) 5) Y-Pos

(+ X-Pos (* Width 3) 5) (+ Y-Pos 9) color)
)

;;; Utility functio_ MAKE-DISK-NAME constructs a disk name
;;; from its identifying nunt_r.

(define make-disk-name

(land)de (n)

(string->syvloot

(string-append "DISK" (integer->string n 10))
)

)
)

K-Base Final Report
- A5-5 -



(compile-class Disk)

;;; Define class Peg

(define-class Peg
(ctassvars

)

( instvars

)

)

(height 130)
(width 10)

Base-X

(Base-Y -80)

(color 3)

(Top-Level O)

;;; Define methods for class Peg
;;;

;;; Method Peg Initialize draws the peg and initializes its

;;; Top-Level

(define-method (Peg Initialize) (n)
(set! Top-Level O)
(sell Sase-X (- (* (- n 1) 100) 100))

(draw-box (- Base-X 4/ width 2)) Sase-Y

(+ Base-X (/ width 2)) ( + Sase-Y height)
color

)
)

;;; Method Peg Goodbye is invoked by the disk when Leaving

;;; the peg. The peg adjusts its Top-Level and re-draws its
;;; vacated portion.

(define-method (Peg Goodbye) ()

(set! Top-Level (-1+ Top-Level))

(draw-box (- Base-X (/ width 2)) (+ Base-Y (* Top-
Level 10))

(+ Base-X (/ width 2)) ( + Base-Y 4" Top-

Level 10) 9) color)
)

;;; Method Peg Reservation is invoked by a disk arriving at

;;; the peg. The peg adjusts its top Level and sends the
;;; disk the location of the top of its pile.

(define-method (Peg Reservation) (d)
(send

(evat (make-disk-name d))

Invitation Base-X (+ Base-Y 4" Top-Level 10))
)

(sell Top-Level (1+ Top-Level))
)

K-Base Final Report



;;; Utility function NAKE-PEG-NAHE creates a peg name given
;;; its number.

(define make-peg-nama
( tambda (n)

(string->symbo[

(string-append "PEG" (integer->string n 10)))
)

)

(con_)iLe-ctass Peg)

;;; Utility function DRAW-BOXdraws a box filled with COLOR
;;; from (X1,Y1) to (X2,Y2)

(definedraw-box

(tmbda (xl yl x2 y2 color)
(position-pen xl yl)

(set-pen-color! color)
(draw-fitted-box-to x2 y2)

)

)

(define myGame (make-instance game))

K-Base Final Report
- A5-7 -



Appendix 6: Multi-User Files Modified for KB/FMS

This section lists and briefly describes changes to components of the Multi-
User PLAID software system. The filenames listed are in the directory

Directory DONALD$DUAI: [PLAID.CMSMULTI]

ACCESS FILE IN DOMAIN.FOR
m

This file contains a routine which allows a PLAID module to open a
file in a specified domain. ACCESS FILE IN DOMAIN opens files for
READ access only.

CONTEXT COLLECT PARTS.FOR

This file contains a routine which collects the names of all files in the
current context which match a given file specification. The file
specification may include the normal VMS wildcard characters.. This
routine will collect the names of files which are not PLAID part files as
well as those that are.

CONTEXT DISPLAY PARTS.FOR

A routine used to display the list of files generated by
CONTEXT COLLECT PARTS.

CONTEXT LIST PARTS.FOR

A routine that collects and displays all filenames in the current context
which match a given file specification. CONTEXT LIST PARTS uses
CONTEXT COLLECT PARTS to generate the fist o-f files and
CONTEXT_-DISPLAY_PARTS to display the list.

CREATE FILE.FOR

CREATE FILE was modified to recognize and create the five new file
types tha_ have been added to the Multi-User PLAID.

The new file-types are:

TRE -- tree files generated by. DMC.
PDF Primitive _iescriptign files.
CDF COG description files.
TDF Target description files.
DDF Display description files.

CREATE PARTS LIST FILE.FOR

Creates an indexed file for collecting a list of filenames.
a suite of routines which include:

This is one of

K-Base Final Report
A6-1



-FIND PARTSLIST ENTRY.FOR
- READ- PARTS- LIST" ENTRY.FOR
-REWRITE PARTS LIST ENTRY.FOR
-WRITE PFtRTS LIST ENTRY.FOR

DIR MANIP FAST.FOR

A new imp.lementation of DIR MANIP which uses direct calls to
system services to collect file n_mes rather than spawning a DCL
"DIRECTORY _ command. This implementation is a little faster than the
original one.

DOMAIN IN CONTEXT.FOR

A function which determines whether or not a given domain is in the
current context This is essentially an adaptatio/_ of the "List Context
Structure" (LCSF) command.

FIND PARTS LIST ENTRY.FOR

A function which, given a part name, performs a lookup in the current
parts-fist file to retrieve information on that file. See
CREATE PARTS LIST FILE for names of related routines.

FORTRAN REGX.FOR

A collection of routines to _rovide convenient FORTRAN access to C
routines "fsearch', "fselect", regcomp" and "regexp". These routines are
as follows:

MATCH FILE -- Called by KBASE DESC CONTEXT and
KBASE DESC GLOBAL to provide an "interfaEe to C routine
"fsearcl_". Pro,_des information for K-Base description reports.

SELECT FILE - Called by KBASE DESC CONTEXT and
KBASE DESC GLOBAL to provide an "interfaCe to C routine
"fselect 'r. SelecFs files for processing by MATCH_FILE.

GET FIELD -- Access routine to return the contents of a named
field-from a K-Base description file.

APPEND FIELD - Appends a new attribute field to an extant K-
Base descT'iption file.

REPLACE FIELD - Changes the value of an attribute in an extant
K-Base des'cription file.

CHAR TO ASCIZ - Converts a FORTRAN character string to a C
style A-SCIZ character string.

LINE TO ASCIZ -- Converts a FORTRAN character string to a C
style _SCI'Z character string terminated by a newline.

K-Base Final Report
A6-2



GET TEXT STRING - Reads a record from a K-Base description file
and _turr_-the information as a C-style ASCIZ character string.

PUT TEXT STRING -- Writes a C-style ASCIZ character string to a
K_Bgse des_'-ription file.

FMATCH.C

A function which searches a K-Base description file for aN attribute
name matching a UNIX-sty!e regular exp_ssion. The function return
value is the number of matches encountered.

FSEARCH.C

A function which searches a K-Base descrip.tion file for a attribute
name matching a UNIX-style regular expression. Attribute/value pairs
which meet matching crfteria are written to the specified output
channel.

GET ASSOC F1LENAME.FOR

A function which, given a PLAID filename returns the logical value
.TRUE. if there is an associated filename and false if there is not. It
.TRUE. is returned, the associated filename is also returned via the
second parameter. This function is used to perform the mapping from
part names to description file names AND description file names to
part names; a bidirectional association.

NOTE: this function does NOT check to see if the associated part file
exists. Itjust determines whether or not the given part type has an
associated file type by performing a table lookup.

GET DESC FILENAME.FOR
m

A function which, given a PLAID filename returns the logical value
.TRUE. if there is an associated filename and false if there is not. If
.TRUE. is returned, the associated filename is also returned via the
second parameter. This function is used to perform the mapping from
part names to description file names AND description file names to
part names; a bidirectional association.

NOTE: this function does NOT check to see if the associated part file
exists. It just determines whether or not the given part type has an
associated file type by performing a table lookup.

GET FILE DATES.FOR

A routine which returns the creation date, backup date, and last
revision date for the last file opened by ACCESS_FILE or PM9CI_

K-Base Final Report
A6-3



NOTE: this routine should be called immediately after the file open
operation because subsequent open operations will over- write the
intormation stored in the ]RMS_FILE_ID7 common block.

GET FILE IFS.FOR

A routine which returns the VMS Internal File Specifier/ID of the last
file opened by ACCESS FILE or PM9CM. The IFS is used by the
routine IFS_REOPEN to _'ertorm a very fast file open operation.

NOTE: this routine should be called immediately after the file open
operation because subsequent open operations Will over- write the
intormation stored in the ]RMS_FILE_ID7 common block.

GET FILE PROT.FOR
m

A routine which returns the VMS file protection attributes for the last

file opened by ACCESS FILE or PM9CM. See the 'WAX Record
Management Services MarFual section on XABPRO for the specifics of
the rei-urned protection vector.

NOTE: this routine should be called immediately after the file open
operation because subsequent open operations will over- write the
intormation stored in the 7RMS_FILE_ID7 common block.

GET NEXT FIELD NAME.FOR

A function which, _ven a comma-delimited list of Kbase feld names,
sequentially returns both the first element of the list (the LISP "(CAR
list)") and the list minus the first element(the LISP "(CDR list")). The
return value of the function is STS CONTINUE if the get was
successful or STS SUCCESS if the list h_ been exhausted.

GET NEXT FILE SPEC.FOR

A function which, given a comma-delimited list of file names, returns
the first file name m the list (the LISP "(CAR list)") and the list minus
the first file name(the LISP ".(CDR list)"). The return value of the
tunction is STS CONTINUE if the get was successful or STS SUCCESS
if the list has b_en exhausted. GLOBAL COLLECT PARTS.FOR

A routine used to construct a list of all files in a given subtree of the
Multi-User system which match a specified file name expression (using
DCL wildcards). This routine is used by GLOBAL LIST PARTS and
KBASE_DESC_PARTS to collect file names for further-procffssing.

GLOBAL DET LEVEL.FOR
m

A function which determines the part "occurrence level" of each file
listed in a parts-list file generated by GLOBAL COLLECT PARTS. The
occurrence"level is essential to the correct deteFmination o-f which files
hide other files in the Multi-User environment.

K-Base Final Report
A6-4



GLOBAL DISPLAY PARTS.FOR
m

A routine which simply displays the list of files generated by
GLOBAL LIST PARTS.

GLOBAL LIST PARTS.FOR

The routine which implements the Multi-User "FIND�GLOBAL ..."
command. This routine collects all occurrences of a given file
specification in an entire subtree of the Multi-User context structure by
performing a top-down (pre-order) traversal of the subtree.

KBASE DESCRIBE PARTS.FOR

A routine which, given a parts-list file, a list of field-names, and a list
of content strings, determines which description files contain a field-
name and content string match. This is the report generation program
for the Multi-User commands "DESCRIBE/GLOBAL ..." and
"DESCRIBE/CONTEXT "• °* *

KBASE DESC CONTEXT.FOR

The routine which implements the Multi-User "DESCRIBE/GLOBAL ..."
command. This program creates a parts-h.'st file, collects all the files
which match a given file specification, and generates a report for each
file whose descYiption file contains a given field-name)field-content
match.

KBASE DESC GLOBAL.FOR

The routine which implements the Multi-User "DESCRIBE/CONTEXT
..." command. This program creates a parts.list file, collects all the files
which match a given file specification, and generates a report for each
file whose des6ription file contains a given field-name)field-content
match.

KBASE FIND CONTEXT.FOR

The routine which implements the Multi-User "FIND/CONTEXT ..."
command. This program uses CONTEXT LIST PARTS to collect and
display_ the _ffi_enames which match a given file-specification within a
given Multi-User context.

KBASE FIND GLOBAL.FOR

The routine which implements the Multi-User "FIND/global ..._
command. This program uses GLOBAL LIST PARTS to collect and
display the file names whic.h match a gi_;'en _ specification within a
given subtree ot the Multi-User environment.

K-Base Final Report
A6-5



KBASE FORMAT CLOSE.FOR
m

The routine which implements the Multi:User "FORMAT/CLOSE ..."
command. This procedure simply doses the report file used by the
"DESCRIBE/GLOBAL ..." and NDESCRIBE/CONTEXT ..." commands.

KBASE FORMAT OPEN.FOR
m

The routine which implements the Multi-User "FORMAT/OPEN ..."
command. T_s procedure opens the specified report files and stores
irttormation about the fields desired in the report. The list of field-
names is maintained for use by KBASE DESCRIBE PARTS to
determine which field contents are written to th_ report. -

KBASE FORMAT SHOW.FOR

The routine which implements the Multi-User "FORM/SHOW "
command which simply shows the user the name of the report file an_l
the field-names which will be reported upon.

KBASE INIT.FOR

A routine which simply initializes the Kbase report generation
environment

MU9INQ.FOR

A suite of subroutines for obtaining information about the current
process from the Multi-User system. The subroutines in this suite are:

Muglnquire

A routine which acquires information about the current process
from the Multi-User Monitor process and stores

Mu9AskMulti

A routine which performs an inter-process communication with the
Multi-User Monitor (a detached process) to collect all relevant
information about the calling process.

Mu9GetAccess

A routine which returns the Multi-User priviledge list. The
p.riviledge for a given user determines which Multi-User commands
that user may pei'form. Note: always call Mu9Inquire before calling
this routine.

K-Base Final Report
A6-6



Mu9GetAccount

A routine which returns the Multi-User account name for the

invoking process. Note: always call Mu9lnquire before calling this
routine.

Mu9GetProject

A routine which returns the current Multi-User project for the
invoking user. Note: always call Mu9Inquire before calling this
routine.

MugGetUic

A routine which returns the VMS UIC of the invoking user. Note:
always call Mu9Inquire before calling this routine.

PUT FRT TO DIP. FAST.FOR

A routine which adds foreign references to the parts-list file so that
they will appear in the search listings.

READ PARTS LIST ENTRY.FOR

A function which reads the next sequential entry from a specified
parts-list (indexed) file.

REGERROR.C

Routine called to handle errors in regular expression compilation.

REGEXP.C

Contains routines used to match UNIX-style reg, u!ar expressions against
character strings. Contains routines "regcomp" and "regexec", and
routines which they reference.

regcomp Compiles a character string containing a regular expression
into an internal representation of that regular expression.

regexec Matches a compiled regular expression from "regcomp" against
a text string.

REGSUB.C

Used to perform substitution of strings based on regular expression
searches. Provided for future use.

K-Base Final Report
A6-7



REWRITE PARTS LIST ENTRY.FOR

A function which modifies the contents of a specified record in a parts-
list file.

WRITE PARTS LIST ENTRY.FOR
m n

A function which writes an entry into a parts-list file.

NEW COMMON BLOCKS

KBASE.H
REGEXP.H
REGMAGIC.H

MODIFIED COMMON BLOCKS

ACCACTION INI.H
ACCEXTEN.I-T
ACCEXTEN INI.H
ACCPARMSTH
ACCPARMS INI.H
ACCSEARCFI INI.H

MODIFIED PROGRAMS

COMMAND PROC.FOR
GET PARM.FOR
INIT]'ALIZE USER.FOR
LIST CSF.FOR
PARSEDR.FOR
PUT FILE IFS.FOR
REOPEN FILE.FOR
IFS REOPEN.MAR
WAIT M.FOR

I

MODIFIED COMMAND PROCEDURES

MULTIUTIL.CMP
MULTIUTIL.LIB

K-Base Final Report
A6-8



Bibliography for K-Base

Bobrow, Daniel G., and Allan Collins, Representation and Understanding, New York:
Academic Press, 1975 [UTSA lib: BF311.R388]

Bobrow, Daniel G., Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thompson,
and Terry Winograd, "GUS, A Frame-Driven Dialog System", Artificial Intelligence
8(2), 1977 [UTSA: Q335.A785]

Brachman, Ronald _., "On the Epistemological Status of Semantic Network", in Associative
Networks - Representation and Use of Knowledge by Comvuters. edited by Nicholas
V. Findler, New York: Academic Press, 1979 [see-also- Findl_r 1979]

Brachman, Ronald J., and James G. Schmolze, "An Overview of the KL-ONE Knowledge
Representation System", Cognitive Science 9, pp 171-216, 1985

Brooks, Rodney A., "Symbolic Reasoning among 3-D Models and 2-D Images", Artificial
Intelligence 17, August 1981. Also in Computer Vision, edited by J. Michael Brady,
North--Holland, Amsterdam, 1981

Bundy, Alan, "Will it Reach the Top? Prediction in the Mechanics World", Artificial
Intelligence 10, 1978, pp 129-146

Cox, Brad j., "Message/Object Programming: An Evolutionary Change in Programming
Technology", IEEE Software. }'an 1984, pp 50-61

Date, C. J., An Introduction to Database Systems, Second Edition, pub. Addison-Wesley
1977

Findler, Nicholas V. (editor), Associative Networks - Representation and Use of Knowledge
by Computers, New York: Academic Press, 1979 [UTSA: Q360.A87]

Funt, V. Brian, "Problem-Solving with Diagrammatic Representations", Artificial Intelligence
13(3), 1980

Goldberg, Adele and David Robson, Smallta|k-80: The Lan_,ua_e and Its Imvlementafion,
Copyright 1983 Xerox Corp., Pub. Addision-Wesley 1983 -

Hailpern, Brent, "Multiparadigm Languages", IEEE Software, January 1986, pp. 6-9

Hewitt, Carl E., P, Bishop, & R. Steiger, "A Universal Modular ACTOR Formalism for
Artificial Intelligence", IICAI 3, 1973, pp 235-245 [UTSA: N/A]

Hewitt, Carl E. "Viewing Control Structures as Patterns of Passing Messages", Artificial
Intelligence 8(3), 1977

Kahn, Kenneth, and Anthony G. Gorry, "Mechanizing Temporal Knowledge", Artificial
Intelligence 9(1), 1977

Jorgensen, Charles, William Hamel, and Charles Weisbin, "Autonomous Robot Navigation",
Byte Magazine. Jan. 1986, pp 223-235

Bibliogra.PhB_Y1 for K-base



Kuipers, Benjamin, "A Frame for frames • Reoresentin_ Knowledge for Recoo_ition" in
• ° ° , ]F (_ ° •

Revresentation and Understanding, edited by Darnel G. Bogrow and _an Collins,
New York: Academic Press, 1975 [UTSA: BF311.R388]

Lee, Kunwoo, and David C. Gossard, "A Hierarchical Data Structure for Representing
Assemblies: Part 1", Computer-Aided Design 17(1), pp 15-19, 1985

Lee, Ktmwoo, and Guy Andrews, "Inference of the Positions of Components in an Assembly:
Part 2", Computer-Aided Design 17(1), pp 15-19, 1985

Levesque, Hector and John Mylot)oulos, "A Procedural Semantics for Semantic Networks" in
Associative Networks - Re'presentation and Use of Knowledge by Computers, edi'ted
by Nicholas V. Findler, New York: Academic Press• 1979, pp 93-119

Mackworth, Alan K., "Interpreting Pictures of Polyhedral Scenes", Artificial Intelligence 4(2),
1973

Pascoe, Geoffrey A., "Elements of Object-Oriented Programming", Byte Magazine, Aug. 1989,
pp 139 ff

Schubert Lenhart K., Randolph G. Goebel, and Nicholas J. Cercone, "The Structure and
Organization of a Semantic Net for Comprehension and Inference", Associative
Neb_vorks, 1979, New York: Academic Press, pp 121 ff

Stefik, Mark J.: Daniel G. Bobrow, and Kenneth M. Kahn, "Integrating Access-Oriented Pro-

_all_ng into a Multiparadigm Environment", IEEE Software, January 1986, pages

Stroustrup, Bjarne, The C++ Pro_amming Lan_age, Addison-Wesley, 1986

Winograd, Terry, "Frame Representations and the Declarative/Procedural Controversy", in
Representation and Understanding, edited by Daniel G. Bobrow and Allan Collins,
New York: Academic Press, 1975

Winston, Morton E., Roger Chaffin, and Douglas Herrmann, "A Taxonomy of Part-Whole
Relations", Cognitive Science 11, pp 417-444, 1987 [UTSA]

Winston• Patrick, "Learning by Creating and Justifying Transfer Frames"• Artificial
Intelligence 10(2), 1978

Winston• Patrick, Artificial Intelligence, 2nd Ed., Reading MA: Addison-Wesley• 1984

Woods• William A., "What's in a Link: Foundations for Semantic Networks", in
Representation and Understanding, edited by Daniel G. Bobrow and Allan Collins,
New York: Academic Press, 1975

Bibliogra_PhB_Y2 for K-base








