
z/OS

UNIX System Services

File System Interface Reference

SA22-7808-07

���

z/OS

UNIX System Services

File System Interface Reference

SA22-7808-07

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

561.

Eigth Edition, April 2006

This edition applies to Version 1 Release 7 of z/OS (5694-A01), to Version 1 Release 7 of z/OS.e™ (5655-G52), and

to all subsequent releases and modifications until otherwise indicated in new editions.

This is a major revision of SA22-7808-06.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you

may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . ix

Tables . xi

About this document . xiii

Who should use this document? xiii

Where to find more information xiii

Softcopy publications . xiv

IBM Systems Center publications xiv

z/OS UNIX porting information xiv

z/OS UNIX courses . xiv

z/OS UNIX home page . xiv

z/OS UNIX customization wizard xv

Discussion list . xv

Using LookAt to look up message explanations xv

Using IBM Health Checker for z/OS xvi

Finding more information about sockets xvi

Finding more information about timer units xvi

Summary of changes . xvii

Chapter 1. General overview . 1

System structure . 1

Chapter 2. Physical file systems 3

Installing a PFS . 3

Activating and deactivating the PFS 4

Activation flow for the PFS_Init module 4

PFS_Init entry interface . 5

Recycling a PFS externally . 9

Termination considerations 11

Cross-memory considerations 12

Considerations for writing a PFS in C 12

Security responsibilities and considerations 12

Running a PFS in a colony address space 14

Overview of the PFS interface 14

Operations summary . 15

LFS/PFS control block structure 16

Sharing files . 18

LFS-PFS control block integrity 19

The OSI structure . 19

Waiting and posting . 21

LFS-PFS control block serialization 23

Recovery considerations . 24

PFS interface: File PFS protocols 27

Mounting file systems . 27

Resolving pathnames . 29

Unmounting file systems . 29

Creating, referring to, and inactivating file vnodes 31

Creating files . 32

Deleting files . 33

Opening and closing files and first references to files 34

Reading from and writing to files 36

© Copyright IBM Corp. 1996, 2006 iii

Reading directories . 37

Getting and setting attributes 39

File tags . 41

Using daemon tasks within a PFS 41

Exporting files to a VFS server 42

Select . 43

PFS interface: Socket PFS protocols 43

Activating a domain . 43

Creating, referring to, and closing socket vnodes 44

Reading and writing . 45

Getting and setting attributes 45

Select/poll processing . 45

Common INET sockets . 48

SRB-mode callers . 54

Asynchronous I/O processing 55

Related services . 55

Impact on initialization . 55

Waits that are avoided . 55

Related OSI fields . 56

Canceling an operation . 56

Responsibilities for the semantics 56

Asynchronous I/O flow diagram 57

Asynchronous I/O flow details 58

Colony PFS PC . 61

Considerations for Internet Protocol Version 6 (IPv6) 62

Activating IPv6 on a system 62

Common INET transport driver index 62

ioctl used by the C/C++ Run-Time Library 62

ioctls used by the prerouter 63

ioctls used by the resolver . 63

PFS support for multilevel security 64

PFS support for 64-bit virtual addressing 66

Levels of support for 64-bit virtual addressing 66

Indicating support for 64-bit virtual addressing 66

Minimum 64-bit support . 67

Specific considerations for vnode operations 67

Expanded 64-bit time values 68

Chapter 3. PFS operations descriptions 71

Environment for PFS operations 71

C header files . 72

vfs_batsel — Select/poll on a batch of vnodes 73

vfs_gethost — Get the socket host ID or name 78

vfs_inactive — Batch inactivate vnodes 81

vfs_mount — Mount a file system 84

vfs_network — Define a socket domain to the PFS 88

vfs_pfsctl — PFS control . 91

vfs_recovery — Recover resources at end-of-memory 94

vfs_socket — Create a socket or a socket pair 97

vfs_statfs — Get the file system status 100

vfs_sync — Harden all file data for a file system 103

vfs_unmount — Unmount a file system 106

vfs_vget — Convert a file identifier to a vnode Token 109

vn_accept — Accept a socket connection request 112

vn_access — Check access to a file or directory 115

vn_anr — Accept a socket connection and read the first block of data 118

iv z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_audit — Audit an action . 123

vn_bind — Bind a name to a socket 125

vn_cancel — Cancel an asynchronous operation 128

vn_close — Close a file or socket 132

vn_connect — Connect to a socket 135

vn_create — Create a new file 138

vn_fsync — Harden file data 142

vn_getattr — Get the attributes of a file 145

vn_getname — Get the peer or socket name 148

vn_inactive — Inactivate a vnode 151

vn_ioctl — I/O control . 154

vn_link — Create a link to a file 157

vn_listen — Listen on a socket 160

vn_lookup — Look up a file or directory 163

vn_mkdir — Create a directory 166

vn_open — Open a file . 170

vn_pathconf — Determine configurable pathname values 173

vn_rdwr — Read or write a file 176

vn_readdir — Read directory entries 180

vn_readlink — Read a symbolic link 183

vn_readwritev — Read or write using a set of buffers for data 186

vn_recovery — Recover resources after an abend 190

vn_remove — Remove a link to a file 194

vn_rename — Rename a file or directory 197

vn_rmdir — Remove a directory 201

vn_select — Select or poll on a vnode 204

vn_sendtorcvfm — Send to or receive from a socket 209

vn_setattr — Set the attributes of a file 213

vn_setpeer — Set a socket’s peer address 219

vn_shutdown — Shut down a socket 222

vn_sndrcv — Send to or receive from a socket 225

vn_sockopt — Get or set socket options 228

vn_srmsg — Send messages to or receive messages from a socket 231

vn_srx — Send or receive CSM buffers 235

vn_symlink — Create a symbolic link 238

vn_trunc — Truncate a file . 242

Chapter 4. VFS servers . 245

Installation . 245

Activation and deactivation . 245

Termination considerations 246

Security responsibilities and considerations 246

VFS server considerations for 64-bit addressing 247

Using the VFS callable services application programming interface 247

Operations summary . 248

VFS server – LFS control block structure 248

Registration . 249

Mounting and unmounting 249

Overview of NFS processing 250

NFS file handles . 254

DFS-style file exporters . 255

Reading and writing . 257

Reading directories . 257

Getting and setting attributes 259

Comparing the VFS server and PFS interfaces 259

Contents v

Chapter 5. VFS callable services application programming interface 261

Syntax conventions for the VFS callable services 261

Elements of callable services syntax 261

Other subjects related to callable services 262

Considerations for servers written in C 263

v_access (BPX1VAC, BPX4VAC) — Check file accessibility 264

v_close (BPX1VCL, BPX4VCL) — Close a file 267

v_create (BPX1VCR, BPX4VCR) — Create a file 270

v_export (BPX1VEX, BPX4VEX) — Export a file system 274

v_fstatfs (BPX1VSF, BPX4VSF) — Return file system status 279

v_get (BPX1VGT, BPX4VGT) — Convert an FID to a vnode Token 282

v_getattr (BPX1VGA, BPX4VGA) — Get the attributes of a file 285

v_link (BPX1VLN, BPX4VLN) — Create a link to a file 288

v_lockctl (BPX1VLO, BPX4VLO) — Lock a file 292

v_lookup (BPX1VLK, BPX4VLK) — Look up a file or directory 303

v_mkdir (BPX1VMK, BPX4VMK) — Create a directory 307

v_open (BPX1VOP, BPX4VOP) — Open or create a file 311

v_pathconf (BPX1VPC, BPX4VPC) — Get pathconf information for a directory

or file . 319

v_rdwr (BPX1VRW, BPX4VRW) — Read from and write to a file 322

v_readdir (BPX1VRD, BPX4VRD) — Read entries from a directory 326

v_readlink (BPX1VRA, BPX4VRA) — Read a symbolic link 330

v_reg (BPX1VRG, BPX4VRG) — Register a process as a server 333

v_rel (BPX1VRL, BPX4VRL) — Release a vnode token 337

v_remove (BPX1VRM, BPX4VRM) — Remove a link to a file 339

v_rename (BPX1VRN, BPX4VRN) — Rename a file or directory 343

v_rmdir (BPX1VRE, BPX4VRE) — Remove a directory 347

v_rpn (BPX1VRP, BPX4VRP)) — Resolve a pathname 350

v_setattr (BPX1VSA, BPX4VSA) — Set the attributes of a file 354

v_symlink (BPX1VSY, BPX4VSY) — Create a symbolic link 361

Chapter 6. OSI services . 367

Using OSI services from a non-kernel address space 368

osi_copyin — Move data from a user buffer to a PFS buffer 370

osi_copyout — Move data from a PFS buffer to a user buffer 373

osi_copy64 — Move data between user and PFS buffers with 64-bit addresses 376

osi_ctl — Pass control information to the kernel 379

osi_getcred — Obtain SAF UIDs, GIDs and supplementary GIDs 382

osi_getvnode — Get or return a vnode 385

osi_kipcget — Query interprocess communications 388

osi_kmsgctl — Perform message queue control operations 391

osi_kmsgget — Create or find a message queue 395

osi_kmsgrcv — Receive from a message queue 398

osi_kmsgsnd — Send a message to a message queue 402

osi_mountstatus — Report file system status to LFS 406

osi_post — Post an OSI waiter 408

osi_sched — Schedule async I/O completion 410

osi_selpost — Post a process waiting for select 413

osi_signal — Generate the requested signal event 415

osi_sleep — Sleep until a resource is available 417

osi_thread — Fetch and call a module from a colony thread 420

osi_uiomove — Move data between PFS buffers and buffers defined by a UIO

structure . 426

osi_upda — Update async I/O request 429

osi_wait — Wait for an event to occur 431

osi_wakeup — Wake up OSI sleepers 435

vi z/OS V1R7.0 UNIX System Services File System Interface Reference

||

||

Appendix A. System control offsets to callable services 437

Example . 437

List of offsets . 437

Appendix B. Mapping macros 443

Macros mapping parameter options 444

BPXYATTR — Map file attributes for v_ system calls 445

BPXYBRLK — Map the byte range lock request for fcntl 448

BPXYDIRE — Map directory entries for readdir 449

BPXYFDUM — Logical file system dump parameter list 450

BPXYFTYP — File type definitions 451

BPXYFUIO — Map file system user I/O block 452

BPXYIOC6 — ioctl network mapping information for IPV6 454

BPXYIPCP — Map interprocess communication permissions 459

BPXYIPCQ — Map w_getipc structure 460

BPXYMSG — Map interprocess communication message queues 462

BPXYMNTE — Map response and element structure of w_getmnte 463

BPXYMODE — Map the mode constants of the file services 466

BPXYNREG — Map interface block to vnode registration 467

BPXYOPNF — Map flag values for open 468

BPXYOSS — Map operating system specific information 469

BPXYPCF — Map pathconf values 470

BPXYSSTF — Map the response structure for file system status 471

BPXYSTAT — Map the response structure for stat 473

BPXYVLOK — Map the interface block for v_lockctl 474

BPXYVOPN — Map the open parameters structure for v_open 476

Appendix C. Callable services examples 477

Reentrant entry linkage . 478

BPX1VCR, BPX4VCR (v_create) example 479

BPX1VSF, BPX4VSF (v_fstatfs) example 480

BPX1VGT, BPX4VGT (v_get) example 481

BPX1VGA, BPX4VGA (v_getattr) example 482

BPX1VLN, BPX4VLN (v_link) example 483

BPX1VLO, BPX4VLO (v_lockctl) example 484

BPX1VLK, BPX4VLK (v_lookup) example 485

BPX1VMK, BPX4VMK (v_mkdir) example 486

BPX1VPC, BPX4VPC (v_pathconf) example 487

BPX1VRW, BPX4VRW (v_rdwr) example 488

BPX1VRD, BPX4VRD (v_readdir) example 489

BPX1VRA, BPX4VRA (v_readlink) example 490

BPX1VRG, BPX4VRG (v_reg) example 491

BPX1VRL, BPX4VRL (v_rel) example 492

BPX1VRM, BPX4VRM (v_remove) example 493

BPX1VRN, BPX4VRN (v_rename) example 494

BPX1VRE, BPX4VRE (v_rmdir) example 495

BPX1VRP, BPX4VRP (v_rpn) example 496

BPX1VSA, BPX4VSA (v_setattr) example 497

BPX1VSY, BPX4VSY (v_symlink) example 498

Reentrant return linkage . 499

Appendix D. Interface structures for C language servers and clients 503

BPXYVFSI—VFS interface definitions 503

BPXYPFSI—PFS interface definitions 521

Appendix E. Assembler and C-language facilities for writing a PFS in C 553

Contents vii

Assembler replacements for @@XGET and @@XFREE 553

BPXT4KGT—Get a page of storage 555

C function . 555

Assembler routine . 555

BPXT4KFR—free a page of storage 555

C function . 555

Assembler routine . 556

BPXTWAIT—wait on an ECB list 556

C function . 556

Assembler routine . 556

BPXTPOST—post an ECB . 556

C function . 557

Assembler routine . 557

BPXTEPOC—convert time-of-day to epoch time 557

C function . 557

Assembler routine . 557

Appendix F. Accessibility . 559

Using assistive technologies 559

Keyboard navigation of the user interface 559

z/OS information . 559

Notices . 561

Programming Interface Information 562

Trademarks . 562

Acknowledgments . 562

Index . 563

viii z/OS V1R7.0 UNIX System Services File System Interface Reference

Figures

1. VFS server and PFS structure . 2

2. PFS_Init entry parameter list . 5

3. The LFS/PFS control block structure . 18

4. Format of BPXYFDUM . 26

5. Common INET sockets PFS structure . 49

6. Async operation flow . 58

7. Input to module and exit using a parameter structure 424

8. Input to module and exit without using a parameter structure 424

© Copyright IBM Corp. 1996, 2006 ix

x z/OS V1R7.0 UNIX System Services File System Interface Reference

Tables

1. PFS operations by PFS type and category . 15

2. TOD and SSE fields with the EXTENDED keyword 69

3. vn_select subfunctions . 205

4. attribute_structure input fields . 215

5. VFS callable sevices API functions . 248

6. Summary of v_open parameters that vary by open type 317

7. Attributes fields . 357

8. OSI services . 367

9. System control offsets to callable services . 437

© Copyright IBM Corp. 1996, 2006 xi

||

xii z/OS V1R7.0 UNIX System Services File System Interface Reference

About this document

This document describes the interfaces that are used to create physical file systems

(PFSs) and virtual file system (VFS) servers that can operate with z/OS UNIX

System Services (z/OS UNIX). PFSs and VFS servers might be written to extend

the services provided by z/OS UNIX in the areas of device support for a file system

or network access to file systems. This document also describes how to use these

interfaces.

Chapter 1 is a general overview that shows how the physical file system, logical file

system, and virtual file system server interact. Chapters 2 and 3 describe the

physical file system interface. Chapters 4 and 5 describe the virtual file system

server interface. Chapter 6 describes the Operating System Interface (OSI) callable

services.

In the appendixes, you will find information about:

v System control offsets to callable services

v Mapping macros

v Callable services examples

v Interface structures for C language servers and clients

v Assembler and C-language facilities for writing a PFS in C

v Accessibility features

v Notices

v An index

Who should use this document?

This document is intended for a specialized audience: system programmers using C

or assembler language to create a physical file system (PFS) or a virtual file system

(VFS) server, or to port a PFS or a VFS server to z/OS UNIX. Knowledge of POSIX

or UNIX® is assumed.

Depending on the complexity of the PFS or VFS server involved, a considerable

amount of MVS™ system programming knowledge might be required. Detailed

information on MVS services that might be needed can be found in:

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference ENF-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

v z/OS MVS Programming: Extended Addressability Guide

v z/OS MVS Programming: Authorized Assembler Services Guide

This document should be used in conjunction with z/OS UNIX System Services

Programming: Assembler Callable Services Reference, and supplements

information that is contained in IEEE Std 1003.1-1990 and IEEE Std 1003.1a.

Where to find more information

Where necessary, this document references information in other documents about

the elements and features of z/OS™. For complete titles and order numbers for all

z/OS documents, see z/OS Information Roadmap.

Direct your request for copies of any IBM publication to your IBM representative or

to the IBM branch office serving your locality.

© Copyright IBM Corp. 1996, 2006 xiii

There is also a toll-free customer support number (1-800-879-2755) available

Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can

use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

v Activate the program reorder form to provide faster and more convenient ordering

of software updates

Softcopy publications

The z/OS UNIX library is available on the z/OS Collection Kit, SK2T-6700. This

softcopy collection contains a set of z/OS and related unlicensed product

documents. The CD-ROM collection includes the IBM® Library Reader™, a program

that enables customers to read the softcopy documents.

Softcopy z/OS publications are also available for web-browsing and PDF versions

of the z/OS publications for viewing or printing using Adobe Acrobat Reader. Visit

the z/OS library at www.ibm.com/servers/eserver/zseries/zos/bkserv/.

IBM Systems Center publications

IBM Systems Centers produce Redbooks that can be helpful in setting up and using

z/OS UNIX System Services. You can order these publications through normal

channels, or you can view them with a Web browser. See the IBM Redbooks site at

www.ibm.com/redbooks.

These documents have not been subjected to any formal review nor have they

been checked for technical accuracy, but they represent current product

understanding (at the time of their publication) and provide valuable information on

a wide range of z/OS UNIX topics. You must order them separately. A selected list

of these documents is on the z/OS UNIX web site at

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1pub.html/.

z/OS UNIX porting information

There is a Porting Guide on the z/OS UNIX porting page at

www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html.You can read the

Porting Guide from the web or download it as a PDF file that you can view or print

using Adobe Acrobat Reader. The Porting Guide covers a range of useful topics,

including: sizing a port, setting up a porting environment, ASCII-EBCDIC issues,

performance, and much more.

The porting page also features a variety of porting tips, and lists porting resources

that will help you in your port.

z/OS UNIX courses

For a current list of courses that you can take, go to

www.ibm.com/services/learning/.

You can also see your IBM representative or call 1-800-IBM-TEACH

(1-800-426-8322).

z/OS UNIX home page

The z/OS UNIX home page on the World Wide Web contains technical news,

customer stories, and information about tools. You can visit it at

www.ibm.com/servers/eserver/zseries/zos/unix/.

xiv z/OS V1R7.0 UNIX System Services File System Interface Reference

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/redbooks
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1pub.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.ibm.com/services/learning/
http://www.ibm.com/servers/eserver/zseries/zos/unix/

Some of the tools available from the web site are ported tools, and some are

home-grown tools designed for z/OS UNIX. The code works in our environment at

the time we make it available, but is not officially supported. Each tool has a

README file that describes the tool and lists any restrictions.

The simplest way to reach these tools is through the z/OS UNIX home page. From

the home page, click on Tools and Toys.

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through

anonymous ftp.

Restrictions

Because the tools are not officially supported, APARs cannot be accepted.

z/OS UNIX customization wizard

For help with customizing z/OS UNIX, check out our Web-based wizard at

www.ibm.com/servers/eserver/zseries/zos/wizards/.

This wizard builds two BPXPRMxx parmlib members; one with system processing

parameters and one with file system statements. It also builds a batch job that does

the initial RACF® security setup for z/OS UNIX. Whether you are installing z/OS

UNIX for the first time or are a current user who wishes to verify settings, you can

use this wizard.

The wizard also allows sysplex users to build a single BPXPRMxx parmlib member

to define all the file systems used by sysplex members participating in a z/OS UNIX

shared file system.

Discussion list

Customers and IBM participants also discuss z/OS UNIX on the mvs-oe

discussion list. This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion, send a note to:

listserv@vm.marist.edu

Include the following line in the body of the note, substituting your first name and

last name as indicated:

subscribe mvs-oe first_name last_name

After you are subscribed, you will receive further instructions on how to use the

mailing list.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

About this document xv

http://www.ibm.com/servers/eserver/zseries/zos/wizards/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations using LookAt from a TSO/E

command line (for example: TSO/E prompt, ISPF, or z/OS UNIX System

Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in the

LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book

refers to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. z/OS V1R4, V1R5, and V1R6

users can obtain the IBM Health Checker for z/OS from the z/OS Downloads page

at http://www.ibm.com/servers/eserver/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

Finding more information about sockets

You can find more detailed information on sockets and their operations in various

publications, including the following:

v 4.3BSD UNIX Operating System, by S. J. Leffler et al.

v z/OS XL C/C++ Programming Guide

v z/OS XL C/C++ Run-Time Library Reference

v AIX Version 4.3 Communications Programming Concepts, SC23-4124

Finding more information about timer units

You can find detailed information about timer units in z/Architecture Principles of

Operation, SA22-7832.

xvi z/OS V1R7.0 UNIX System Services File System Interface Reference

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html
http://www.ibm.com/servers/eserver/zseries/zos/downloads/

Summary of changes

Summary of changes

for SA22-7808-07

z/OS Version 1 Release 7

This document contains information previously presented in z/OS UNIX System

Services File System Interface Reference, SA22-7808-06, which supports z/OS

Version 1 Release 7.

Changed information

v Minor changes have been made to the following callable services:

– “osi_copyin — Move data from a user buffer to a PFS buffer” on page 370

– “osi_copyout — Move data from a PFS buffer to a user buffer” on page 373

– “osi_copy64 — Move data between user and PFS buffers with 64-bit

addresses” on page 376

– “osi_kipcget — Query interprocess communications” on page 388

– “osi_kmsgctl — Perform message queue control operations” on page 391

– “osi_kmsgget — Create or find a message queue” on page 395

– “osi_kmsgrcv — Receive from a message queue” on page 398

– “osi_kmsgsnd — Send a message to a message queue” on page 402

– “osi_uiomove — Move data between PFS buffers and buffers defined by a

UIO structure” on page 426

– “vn_bind — Bind a name to a socket” on page 125

– “vn_setattr — Set the attributes of a file” on page 213

This document has been enabled for the following types of advanced searches in

the online z/OS LibraryCenter: examples.

You may notice changes in the style and structure of some content in this

document—for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22-7808-06

z/OS Version 1 Release 7

The document contains information previously presented in z/OS UNIX System

Services File System Interface Reference, SA22-7808-05, which supports z/OS

Version 1 Release 6.

New information

v Support has been added for the dynamic service activation capability, including a

new flag, pfsi_modind, in the PFS initialization structure (BPXYPFSI).

v The BPX1VLO/BPX4VLO (v_lockctl) callable service has been enhanced and

several new fields have been added to the Vlok structure (mapped by

BPXYVLOK) to support the implementation of the version 4 NFS server

protocols.

© Copyright IBM Corp. 1996, 2006 xvii

v The following callable services have been added to support the implementation

of the version 4 NFS server protocols:

– BPX1VCL/BPX4VCL (v_close)

– BPX1VOP/BPX4VOP (v_open)

A new macro, BPXYVOPN, maps the open parameters for the v_open

service.

Changed information

v Information about waiting and posting has been clarified to indicate that LFS

serialization will not be dropped for writes to the stream sockets using the default

socket option of exclusive write.

v Minor changes have been made to the following callable services:

– BPX1VRD/BPX4VRD (v_readdir)

– BPX1VRG/BPX4VRG (v_reg)

– BPX1VRM/BPX4VRM (v_remove)

– BPX1VRN/BPX4VRN (v_rename)

– BPX1VRW/BPX4VRW (v_rdwr)

– BPX1VSA/BPX4VSA (v_setattr)

v Throughout this document, the phrase ’shared HFS’ has been changed to

’shared file system’.

Deleted information

v The BPXTTOD sample assembler routine that was listed in the appendix is no

longer accurate. The routine is not needed for writing PFSs and has been

removed from this document.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22-7808-05

z/OS Version 1 Release 6

The document contains information previously presented in z/OS UNIX System

Services File System Interface Reference, SA22-7808-04, which supports z/OS

Version 1 Release 5.

For a list of new and changed callable services, see z/OS UNIX summary of

interface changes in z/OS Summary of Message and Interface Changes.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22-7808-04

z/OS Version 1 Release 5

The document contains information previously presented in z/OS UNIX System

Services File System Interface Reference, SA22-7808-03, which supports z/OS

Version 1 Release 4.

Changed information

xviii z/OS V1R7.0 UNIX System Services File System Interface Reference

v The v_setattr (BPX1VSA) callable service has been modified to support the use

of security labels.

v An Osi field is added for improved Async I/O performance (see “Related OSI

fields” on page 56).

v Chapter 2, “Physical file systems,” on page 3 has been updated for MLS support.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes

for SA22-7808-03

z/OS Version 1 Release 4

The document contains information previously presented in z/OS UNIX System

Services File System Interface Reference, SA22-7808-02, which supports z/OS

Version 1 Release 3.

New information

A new section, “Considerations for Internet Protocol Version 6 (IPv6)” on page 62, is

added to Chapter 2, “Physical File Systems”.

Changed information

Minor changes have been made to the vfs_mount callable service.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to

the left of the change.

Summary of changes xix

xx z/OS V1R7.0 UNIX System Services File System Interface Reference

Chapter 1. General overview

z/OS UNIX System Services (z/OS UNIX) allows you to install virtual file system

servers (VFS servers) and physical file systems (PFSs).

v A VFS server makes requests for file system services on behalf of a client. A

VFS server is similar to a POSIX program that reads and writes files, except that

it uses the lower-level VFS callable services API instead of the POSIX

C-language API.

An example of a VFS server is the Network File System.

v A physical file system (PFS) controls access to data.

PFSs receive and act upon requests to read and write files that they control. The

format of these requests is defined by the PFS interface.

PFSs include pipes, sockets, the Network File System client, and the following

UNIX file systems: HFS, zFS, and TFS.

Another name for a PFS is an installable file system.

User-written programs use the POSIX API to issue file requests. VFS servers use

the VFS callable services API to issue file requests. These requests are routed by

the logical file system (LFS) to the appropriate PFS through the PFS interface. See

Figure 1 on page 2 for a view of this structure.

This document describes these two interfaces and discusses the things you need to

know to write a VFS server or a PFS, or to port one to the z/OS UNIX environment.

In order to do this, you should be a system programmer who is familiar with POSIX

or UNIX.

Porting note

This document uses notes like this one to highlight certain points of the

implementation that are particularly important to readers who are considering

porting an existing UNIX-based program to z/OS UNIX.

 z/OS UNIX supports the following types of files:

v Regular files

v Directories

v Symbolic links

v Character special files (for example, terminals)

v Pipes (both FIFOs and unnamed)

v Sockets

Note: Character special and unnamed pipe physical file systems cannot be

implemented with this interface. Unnamed pipes and socket files cannot be

exported by a VFS server.

System structure

The position of the VFS server and the PFS in the structure of z/OS UNIX and the

interfaces they use are illustrated in Figure 1 on page 2.

© Copyright IBM Corp. 1996, 2006 1

(1) The VFS callable services API is used by VFS servers to call the logical file

system.

(2) The logical file system calls the PFSs through the PFS interface.

File
System

Users

Logical
File

System

Physical
File

System

Physical
File

System

Char
Spec
PFS

HFS PFS

z/OS UNIX Programs
S e r v e r

Logical File System

VFS/Vnode Layer

POSIX-API
C RTL

U s e r s

D a t a

(1)

(2)

Callable Services Interfaces

z/OS UNIX-PFS Interface

POSIX Services VFS/Vnode Services

Pipes
PFS

Figure 1. VFS server and PFS structure

2 z/OS V1R7.0 UNIX System Services File System Interface Reference

Chapter 2. Physical file systems

This chapter describes:

v How to install a physical file system (PFS)

v How a PFS is activated and deactivated

v The functions that must be provided by a PFS

v The functions that are provided for it

v Cross-memory considerations

v Considerations for writing a PFS in C

v Security considerations

v Running a PFS in a colony address space

v Considerations for Internet Protocol Version 6 (IPv6)

v PFS support for multilevel security

v PFS support for 64-bit virtual addressing

Installing a PFS

A physical file system (PFS) is packaged as one or more MVS load modules. These

load modules must be installed in an APF-authorized MVS load library. The

hierarchical file system is not available when a PFS is loaded, so it cannot be

installed in the file system.

The PFS must have an initialization routine whose entry point, called PFS_Init

below, is externally known through the system link list or the STEPLIB of the OMVS

cataloged procedure. If the PFS runs in a colony address space (see “Running a

PFS in a colony address space” on page 14), it must be found through the system

link list or a STEPLIB of the colony address space’s procedure.

A physical file system is defined to z/OS UNIX through the BPXPRMxx parmlib

member you specify when you start the kernel address space (OMVS=xx). The

FILESYSTYPE statement defines a single instance of a PFS.

Additional MOUNT, ROOT, SUBFILESYSTYPE, or NETWORK statements activate

file system or socket support in the PFS.

 FILESYSTYPE TYPE(file_system_type)

 ENTRYPOINT(PFS_Init)

 PARM(parameter_string)

 ASNAME(procname)

where:

v TYPE specifies a 1-to-8-character name that uniquely identifies this PFS. This

name is used to route subsequent MOUNT, ROOT, SUBFILESYSTYPE, or

NETWORK statements (as well as later MOUNT and PFSCTL syscalls) to the

correct PFS.

v ENTRYPOINT specifies the name of the PFS’s initialization module. The LFS

attaches the PFS_Init entry point as an MVS task. This task remains active for as

long as the PFS is active. See “Activating and deactivating the PFS” on page 4

for a description of initialization processing requirements for this routine.

v PARM specifies a PFS-defined parameter text string that can contain any value

and be up to 1024 bytes long. The meaning of this string is defined by the

individual PFS. The string is passed to the PFS when the PFS_Init routine is

attached.

v ASNAME specifies that the PFS is to run outside the kernel in a separate

address space.

© Copyright IBM Corp. 1996, 2006 3

procname is the name of the procedure to be used when starting this address

space, and a logical name for the address space. Each procname generates a

different address space when it is first encountered, and each PFS with the same

procname shares that address space. These address spaces are logical

extensions of the kernel. They are referred to as colony address spaces.

All PFSs are activated automatically when z/OS UNIX is started, based on the

FILESYSTYPE and SUBFILESYSTYPE statements in the parmlib member. This is

the only way a PFS can be started.

Mounts may also be issued dynamically at a later time through a TSO/E command

or a program function call. A mount is not strictly necessary, but it is required if the

files that are managed by the PFS are to be visible in the file hierarchy (that is, if

they are to be represented by standard pathnames). Support for mount generally

implies support for the lookup operation, which is used to resolve a pathname to a

file. Pipes and sockets are examples of files that are not in the hierarchy; these

PFSs do not use mount.

For a discussion of mount processing, refer to “Mounting file systems” on page 27.

The ROOT statement is a special case of MOUNT. It can be issued only from

parmlib, and it defines the system’s root file system.

The NETWORK statement does for a sockets PFS what MOUNT does for a data

file type of PFS: It activates an address family, or domain, so that subsequent

socket() calls are routed to that PFS to service.

For a discussion of network processing, refer to “Activating a domain” on page 43.

Activating and deactivating the PFS

A PFS is started for each FILESYSTYPE statement in the BPXPRMxx parmlib

member whenever z/OS UNIX is started. The LFS and PFS exchange information

during this initialization phase. Usually the PFS does not terminate.

The same ENTRYPOINT name may be specified on two or more FILESYSTYPE

statements with different TYPE operands. This causes the same PFS to be started

more than once. It is up to the PFS to allow this or to detect and reject it.

Activation flow for the PFS_Init module

The LFS builds a general file system table (GFS) for each PFS and attaches the

PFS’s initialization entry point. This creates an independent MVS task, which is

expected to follow these general steps:

1. Perform any PFS initialization that is necessary.

2. Load its VFS and vnode operation service routines and build their respective

vector tables.

These are the PFS routines that the LFS calls to get such services as mount,

open, read, and write. The VFS and vnode operations vector tables make up

the major part of the PFS interface.

This loading may be done by link-editing the operational routines with the

PFS_Init routine.

3. Save the OSI operations vector table (OSIT) address.

The OSI operations vector table contains the addresses of LFS routines that the

PFS uses to get certain services, such as those used to create vnodes.

4 z/OS V1R7.0 UNIX System Services File System Interface Reference

4. Pass back to the LFS an 8-byte token that is saved by the LFS and used on all

subsequent VFS and vnode operations. This token typically contains the

address of the PFS’s main anchor block. Its use is optional.

5. Exchange miscellaneous items of information between the LFS and PFS. Refer

to “The PFSI structure” on page 6 and the PFSI structure in Appendix D for

details on the specific information that is exchanged.

6. Notify the LFS that initialization has finished, by posting the

initialization-complete ECB that was supplied.

7. Wait on the termination ECB, which is also supplied by the LFS. This ECB is

posted by the LFS when it is time to terminate the PFS.

Each PFS is initialized synchronously and serially during z/OS UNIX initialization, so

that no PFS may go into an extended wait during initialization.

Note: The file system is not available this early in z/OS UNIX initialization. If the

PFS_Init routine needs configuration or other information from a file, it must

use an MVS data set.

PFS_Init entry interface

The PFS_Init routine receives control as the result of an MVS ATTACH in the

following environment:

Authorization Supervisor state, PSW key 0

Dispatchable unit mode Task

Cross memory mode PASN = HASN

AMODE 31 bit

ASC mode Primary mode

Interrupt status Enabled for interrupts

Locks Unlocked

Control parameters All parameters are addressable in the primary

address space

 On entry, register 1 points to a variable-length list of parameter addresses. The

high-order bit of the last parameter address is turned on. For information about

other entry registers, see z/OS MVS Programming: Authorized Assembler Services

Reference ALE-DYN for a description of ATTACH.

 The addresses in the parameter list point to the following parameters, each of which

is described in Appendix D.

Parameter Description

R1 PFS Initialization Structure

PFS Name

PFS Parm Parameter

(reserved)

OSIT Service Routines

Figure 2. PFS_Init entry parameter list

Chapter 2. Physical file systems 5

PFSI The PFS initialization structure. This contains information that is

being passed to the PFS and fields that are to be filled in by the

PFS during its initialization. See “The PFSI structure” for a

description of these fields.

PFSNAME An 8-byte field that contains the name of the PFS. This name was

specified in either the TYPE parameter of a FILESYSTYPE parmlib

statement or the NAME parameter of a SUBFILESYSTYPE parmlib

statement. This name is used to identify the PFS for the pfsctl()

function and, when applicable, for the v_reg() function.

PFSPARM A variable-length field that contains the text string that is specified

in the PARM parameter of the FILESYSTYPE statement. This is a

2-byte field that contains the length of the text string, followed by

the string. If this parameter is absent, the length field is zero.

OSIT The OSI service routine vector table, which provides the PFS with

the addresses of the LFS service routines it needs to perform some

basic functions.

 See Chapter 6 for a description of the interfaces to, and functions

of, each of these OSI routines.

The PFSI structure

The PFS initialization structure (BPXYPFSI, referred to in this document as the

PFSI) contains the following fields (each name is prefixed with the characters

pfsi_):

Field Description

 Supplied Fields

ver The version number of this PFSI.

ook An indication that this PFS is running outside the

kernel.

alone An indication that this PFS is the only PFS running

in the address space.

new An indication that this is the first time this PFS has

been initialized in the address space.

romntclient Set on to indicate that the PFS does not support

simultaneous R/O mounts from multiple systems;

the LFS is responsible for making R/O file systems

available for sharing in a sysplex system.

 The default value is off. This indicates that the PFS

supports sharing of R/O file systems in a sysplex.

rwmntsysplex Set on to indicate that the PFS does not support

simultaneous R/W mounts from multiple systems;

the LFS is responsible for making R/W file systems

available for sharing in a sysplex system.

 The default value is off. This indicates that the PFS

supports sharing of R/W file systems in a sysplex.

initcompecb The ECB that the PFS posts when its initialization

is complete.

pfsecb The ECB that the LFS posts when z/OS UNIX is

stopped. The PFS must be waiting on this ECB.

6 z/OS V1R7.0 UNIX System Services File System Interface Reference

restart The address of the restart option byte. The PFS

sets this byte any time during its processing, to

control if and how it is to be restarted if it should

terminate.

dumpptr The address of dump information. This information

is used by the PFS to add significant LFS areas to

the dumps that are taken by the PFS.

pfsid The PFS identifier that is used with osi_sleep and

osi_wakeup.

asname The value of the ASNAME parameter of the

FILESYSTYPE statement.

ep The value of the ENTRYPOINT parameter of the

FILESYSTYPE statement.

 Returned Fields

pfsanchor The PFS initialization token. This token value is

passed back to the PFS on every subsequent call

from the LFS as part of the token_structure, which

is the first parameter of every call. This field

typically contains the address of the PFS’s main

anchor block.

vfso The address of the PFS’s VFS operation vector

table.

vnop The address of the PFS’s vnode operation vector

table.

srb An indication that SRB mode is supported.

asyio An indication that asynchronous I/O is supported.

usethreads An indication that the PFS is requesting support for

the osi_thread service. This field can be set only by

PFSs that are running outside the kernel.

disableLLA An indication that the LFS should not provide

lookup lookaside function for this PFS. If there is

not a strict one-to-one correspondence between the

spelling of a file name in a directory and the

vnode-inode pair that represents the file, the PFS

should set this bit. For example, if

'/usr/dl/fl,attr=fb' and '/usr/dl/fl' represent

the same file in the /usr/d1 directory, you must

disable the LFS lookup lookaside function. If

directories are remote and files may be removed

from them remotely, the LFS’s LLA cache should

also be disabled.

stayalone An indication that the LFS should not initialize any

other PFSs in this address space. This field can be

set only by PFSs that are running outside the

kernel.

immeddel An indication that the PFS supports deleting a

removed file’s data when its open count becomes

zero, rather than waiting for vn_inactive to free the

space.

Chapter 2. Physical file systems 7

cpfs An indication that the PFS is written in C, and is

requesting that the LFS invoke it with pre-initialized

C environments.

datoffmove An indication that the PFS supports DATOFF move

for page read operations. For more information, see

“Reading from and writing to files” on page 36.

pfstype The type of the PFS. This identifies the PFS as a

local file PFS, a remote file PFS, or a socket PFS.

pipebuf pathconf() _PC_PIPE_BUF value, if applicable

maxcanon pathconf() _PC_MAX_CANON value, if applicable

maxinput pathconf() _PC_MAX_INPUT value, if applicable

chownrstd pathconf() _PC_CHOWN_RESTRICTED value, if

applicable

vdisable pathconf() _PC_VDISABLE value, if applicable.

 Pathconf() values that are not constant for all files

supported by the PFS may be reported through the

vn_pathconf operation.

compon The PFS’s three-letter component (or module)

prefix.

compid The PFS’s five-letter component (or product) ID.

 The component prefix and ID are used in dump

titles for dumps that are taken by the LFS when

there is an abnormal end in the PFS from which it

does not recover.

modind An indication that the PFS is supplying indirect

addresses in the VFS and vnode operations vector

tables for the various VFS and vnode operations

routines.

VFS and vnode operations vector tables

VFS and vnode operations vector tables are allocated and built by the PFS, and

their addresses are returned in the PFSI. These tables may not be altered after the

PFS posts the initialization-complete ECB.

Vnode operations, such as vn_open and vn_readdir, deal with file system objects.

VFS operations, such as vfs_mount and vfs_statfs, deal with whole file systems or

with the PFS itself.

The routine that supports each particular operation is loaded into storage by the

PFS_Init routine, and the entry-point address is placed into the corresponding

vector table entry. If the PFS supports the dynamic service activation capability, it

must instead supply indirect addresses (that point to the actual entry-point

addresses for each operation routine) in the vector table entries and set the

pfsi_modind flag in the PFSI. When the LFS processes a VFS or vnode operation

request, it will recognize the flag and use the address supplied in the vector table

as an indirect address to locate the target operation routine.

If the PFS does not support a particular operation, the corresponding operation’s

vector must contain 0. The number of operations that are placed in the table by the

PFS, as determined by the returned table’s length, may be less than or equal to the

8 z/OS V1R7.0 UNIX System Services File System Interface Reference

||
|
|
|

|
|
|
|
|
|
|
|

number of operations that are supported by the LFS. If this value is less, the LFS

treats all remaining operations as not supported, just as though the PFS had

supplied 0 for those operation vectors. If the table contains more entries than the

LFS expects, it is considered a serious product-level mismatch between the LFS

and PFS, and the PFS is terminated.

For more information, see the description of vnoptab and vfsotab structures in

Appendix D.

Recycling a PFS externally

PFS Recycle can be driven externally by two calls to pfsctl. The caller must be a

superuser. This is supported for kernel-resident PFSs only; for PFSs that are

running in a colony address space, cancel the space to recycle the PFS.

PFS Recycle refreshes the PFS load module after service has been applied. The

kernel space does not terminate; the only way to refresh a kernel-resident PFS load

module is for the PFS_Init task to exit. The PFS may have its own technique to

accomplish this and the PFS_Init task can exit on its own at any time. PFS Recycle

restarts the PFS, or the LFS issues a WTOR and waits for a reply before restarting

the PFS. Refer to “Termination considerations” on page 11 for details. These pfsctl

commands coordinate the PFS’s termination with the LFS so that calls into the PFS

can be quiesced before the PFS_Init task exits.

PC#RecyclePFS X'8000000C'

PC#RecyclePFS X'8000000C' initiates a PFS recycle by posting the PFS’s

termination ECB.

v If no argument is passed, or if the argument value is not 1, the LFS returns to

the caller immediately after calls to the PFS have quiesced and the PFS has

been posted to terminate. The caller and the PFS must coordinate any

dependencies that they have on each other after this point, because the PFS

may not have terminated when the caller regained control.

v If a fullword argument value of 1 is passed, the LFS waits for the PFS to

terminate before returning to the caller.

The Return_value is 0 if the PFS is found.

Before this call the caller or PFS must ensure that:

v All current osi_waiters have been osi_posted.

If the v_reg service has been used to register that the PFS is dependent on the

caller’s process for osi_post, the LFS osi_posts the osi_waiters, just as it would if

the caller’s process had terminated.

v All outstanding asyncio has been osi_scheduled.

v All internal waiters have been posted.

v No new vnode ops will be accepted by the PFS, or that no new ops will be

allowed to wait or for asyncio to cue.

Before posting the PFS termination ECB, the LFS ensures that there are no more

threads executing code in the PFS layer and it will permit no more VFS or vnode

ops to branch into the PFS. The LFS waits for any threads that are still in the PFS

layer at the time of the pfsctl call. These could include, for example, threads that

were just osi_posted, but whose address space had not been swapped in yet, or

that were otherwise not dispatched, so they have not had a chance to return back

up to the LFS layer.

Chapter 2. Physical file systems 9

A race condition exists between this call and user threads that are branching into

the PFS layer at about the same time. The PFS begins to reject these calls and the

LFS waits for those rejected threads to exit from the PFS layer.

When the termination ECB is posted, the PFS cleans up and exits the PFS_Init

module. This decrements the load module’s use count; when that count goes to

zero the load module is deleted. This assumes a PFS that was not packaged to

reside in LPA.

If the second pfsctl, PC#Restart PFS, is going to be used, the PFS must have left

the Restart Option Byte (pfsi_restart) at its default value or reset it to

RESTART_WTOR before exiting. In this case, the normal WTOR message is not

issued when the PFS terminates, and the second pfsctl takes the place of the

operator reply to restart the PFS. Alternatively, the second pfsctl does not have to

be used if the PFS sets the Restart Option Byte to RESTART_AUTO.

The second pfsctl can also be used without the first if the PFS exits with the Restart

Option Byte set to RESTART_PFSCTL(7). This suppresses the WTOR message

and causes the LFS to wait for the second pfsctl before restarting the PFS.

PC#RestartPFS X'8000000D'

PC#RestartPFS X'8000000D' restarts the PFS by reattaching the PFS_Init module.

v If no argument is passed, or if the argument value is not 1, the LFS waits for the

PFS initialization to complete before returning to the caller.

v If a fullword argument value of 1 is passed, the LFS returns to the caller

immediately after posting the internal thread that does the reattach. The caller

and the PFS must coordinate between themselves for the restart. This is similar

to a startup during IPL.

The Return_value is 0 if the PFS was found and was awaiting this restart. The

Return_value is 1 if the PFS was found but was not waiting to be restarted. This

would be a normal situation immediately after an IPL, or if the caller did not recycle

the PFS. If the PFS is not found the call fails.

This call can be made before the PFS has finished terminating, in which case the

LFS proceeds directly to the PFS restart when it does finally terminate.

If all copies of the PFS have been recycled and the PFS load module does not

reside in the LPA, the first reattach of the load module brings a fresh copy into

storage.

The PFS should run through a more or less normal PFS initialization sequence with

respect to the LFS. The regular sequence of returning VFS and vnode operation

vectors, posting the LFS ECB, and waiting for the PFS termination ECB must be

followed.

On each restart of a PFS, the previously returned value of pfsi_pfsanchor is passed

into the new instance of the PFS. The PFS may use a design in which this anchor

points to persistent storage so that it can reuse or reclaim resources from a prior

instance.

For Socket PFSs:

v After the PFS completes its reinitialization, the LFS reissues any vfs_network

calls that were originally made to set up for the address family domains that this

PFS supports.

10 z/OS V1R7.0 UNIX System Services File System Interface Reference

v The master socket opens with the normal sequence of events.

For File System PFSs, prior active mounts are reissued.

The PFS does not have to remember anything from one instance to the next with

respect to the LFS and the LFS/PFS interfaces.

Termination considerations

Because no “normal” termination is defined for a physical file system, there is no

operator command or other interface supplied by z/OS UNIX to terminate an

individual PFS. A PFS can define its own interface for this, although it cannot use

the operator STOP or MODIFY commands unless it is running outside the kernel.

Usually a PFS does not stop.

There is nothing to prevent a PFS from terminating, either normally in a manner

defined by the PFS, or abnormally. A PFS that is running in an address space

outside the kernel terminates if that address space is terminated. If the PFS_Init

program task terminates for any reason before the LFS posts the termination ECB,

the LFS takes the following actions:

1. All activity to this PFS is halted. Users receive EIO or EMVSERR errors for any

reference to a file that is owned by this PFS.

2. Every file system that is mounted for this PFS is logically unmounted. The

PFS’s vfs_umount is not called, because all activity is halted; but otherwise the

file system is unmounted as it would be for an UNMOUNT FORCE command.

File systems that are owned by other PFSs that are mounted on directories that

are owned by the terminating PFS are also unmounted. These PFSs receive

vfs_umount force.

3. The PFS is restarted or not depending on the setting of the restart option byte.

The address of this byte is passed to the PFS in the PFSI during initialization.

Its value may be adjusted by the PFS any time before it terminates.

4. If the PFS was running in an address space outside the kernel, that address

space may be stopped and restarted, depending on the setting of the restart

option byte.

The restart options available are:

 RESTART_NONE Do not restart.

RESTART_AUTO Automatic restart.

RESTART_WTOR Prompt the operator before restarting.

RESTART_RCNONE Stop the address space and do not restart the PFS.

RESTART_RCAUTO Stop the address space and automatically restart the

address space and the PFS.

RESTART_RCWTOR Stop the address space and prompt the operator before

restarting the address space and the PFS.

The default restart option is RESTART_WTOR.

Notes:

1. If the PFS is restarted, file systems that were mounted at the time of failure are

not automatically remounted, and network statements are not reprocessed.

Socket file systems should specify that the PFS is not to be restarted, because

NETWORK statements cannot be issued dynamically.

Chapter 2. Physical file systems 11

2. If the PFS requests that the colony address space in which it runs be stopped,

the ASID for that address spaced is marked unusable.

Cross-memory considerations

Because all of the VFS and vnode operations can be called in cross-memory mode,

a PFS that must invoke MVS functions that cannot run in this mode must attach a

worker task, or tasks, to accomplish these functions. A worker task is a subtask that

performs non-cross memory work for PFS operations.

See “Using daemon tasks within a PFS” on page 41 for information about some

services that make this task easier.

Although the PFS_Init task can be used as a worker task, if this task terminates,

the PFS also terminates.

Considerations for writing a PFS in C

A PFS can be written in System Programmer’s C. The BPXYPFSI and BPXYVFSI

headers define the structures and parameters that are needed for PFSs that are

written in C. A PFS that is written in C can avoid the cost of establishing a C

environment each time it is invoked for a vnode or VFS function, by requesting that

the LFS invoke the PFS with pre-initialized C environments. The PFS requests this

at initialization by setting the pfsi_cpfs flag in the PFSI.

The PFS must not do anything that would sever addressability to the stack.

Because the PFS is running in a cross-memory environment, Language

Environment® and C/C++ run-time library functions are not available. A PFS that

needs to invoke these functions must attach a worker task, or tasks, to accomplish

these functions.

See “Using daemon tasks within a PFS” on page 41 for information about services

that make creating these worker tasks easier.

Some assembler services that may be useful are provided in Appendix E,

“Assembler and C-language facilities for writing a PFS in C,” on page 553. In

particular, BPXFASM must be assembled and link-edited with the PFS modules, to

provide the correct @@XGET/@@XFREE routines for their C environment.

Security responsibilities and considerations

z/OS UNIX maintains system security by verifying user identities and file access

control information. A PFS is primarily concerned with file access control.

For those functions where POSIX .1 (IEEE Standard 1003.1-1990) specifies that

“appropriate privilege” is required, the PFS refers to a bit that is set by the LFS to

determine whether the function has appropriate privileges. For more information,

see “Appropriate Privileges” in the POSIX standards.

Access control checks are based on information that is stored with each individual

file, and are generally carried out on the system where the data resides.

Access control is integrated with the SAF interface to call RACF, or whichever

security product is used at a particular installation.

12 z/OS V1R7.0 UNIX System Services File System Interface Reference

The basic flow of file security is as follows:

1. Security information, such as the owner’s UID-GID and the permission bits for a

file, is kept in a 64-byte area called the file security packet (FSP), which is

mapped by IRRPIFSP. The FSP is the security-related section of a file’s

attributes.

2. The FSP is created by a SAF call from the PFS when a file is created. Some of

the information is taken from the current security environment, and some of it is

passed as parameters.

3. The PFS stores the FSP with the attributes of the file.

4. When an access check is to be done, the PFS calls SAF with the type of check

that is being requested, the audit_structure from the current call, and the file’s

FSP. SAF passes these to the security product, which extracts user information

from the current security environment and compares it against the access

control that is stored within the FSP. The audit_structure is used primarily for

any auditing that may be necessary.

There are many access and privilege checks defined by the POSIX standards.

The detailed description of each vnode operation in Chapter 3 discusses the

access checks that are expected.

5. When a file’s access control information is changed, such as by chmod(), the

PFS calls SAF with the type of change, the new values, the audit_structure from

the current call, and the file’s current FSP. A new version of the FSP is returned

to the PFS, which then replaces the file’s old FSP with the new one.

6. When a file is deleted, the PFS discards the FSP.

In the flow described above, the PFS provides some private space within the file

attributes for the security product’s use, ensures common access checking across

all PFSs, allows for the installation of different security products, and lets the

security product perform auditing or other non-POSIX processing.

The PFS is ultimately responsible for the following access checks:

v If the PFS controls the storage of its own files, it follows the flow outlined above

to create, maintain, and use security information.

v If the PFS is a client getting its data from some remote repository, it sends the

request to the remote system, where the access checks are performed using the

osi_getcred service.

v If access is not controlled for the type of data that is supported by a particular

PFS, the PFS may choose to skip these security procedures.

Some events that occur in the LFS are audited for security purposes by the

vn_audit operation. For example, because relative pathnames may be audited

during an access check, it is important to audit the working directory so that a full

pathname can be constructed if necessary. When a user calls chdir() or fchdir(),

the LFS invokes vn_audit to record the new working directory. chroot(), which

changes the current root, is another call that causes an audit record to be created.

Refer to z/OS Security Server RACF Callable Services for more information about

these interfaces.

“PFS support for multilevel security” on page 64 discusses PFS responsibilities and

considerations for multilevel security.

Chapter 2. Physical file systems 13

Running a PFS in a colony address space

By default, PFSs are initialized in the kernel address space. An installation may

choose to run a PFS in a separate colony address space by specifying an ASNAME

parameter on its FILESYSTYPE statement. You may want to have a PFS run in a

colony address space if:

v The PFS is constrained by kernel address space resources, such as:

– Storage

– Data set allocations

– Lock contention

v The PFS needs to request callable services itself, in order to:

– Use sockets

– Make remote procedure calls

– Obtain POSIX file I/O

When a PFS runs in a colony address space, an extra address space is created,

and each PFS operation has a slightly longer path length.

Any PFS can run in a colony address space unchanged. PFSs that are running in

colony address spaces can use the osi_thread service, which is not available to

PFSs that are running in the kernel address space. Any PFS that uses this service

must document to its users that the PFS must be initialized in a colony address

space. See “Using daemon tasks within a PFS” on page 41 for more information

about the osi_thread service.

The writer of a PFS cannot assume that the PFS will run in the kernel, nor that it

will run under the task that calls it.

Overview of the PFS interface

The PFS interface is a set of protocols and calling interfaces between the logical file

system (LFS) and the PFSs that are installed on z/OS UNIX. PFSs mount and

unmount file systems and perform other file operations.

This section describes the services provided by the PFS routines that are called by

the LFS. The services are described in terms of the requirements the PFS must

meet and the expectations of the LFS. Also included are descriptions of the design

that are intended to clarify the implementation of a physical file system on z/OS

UNIX.

There are two types of PFSs, those that manage files and those that manage

sockets:

1. File management PFSs deal with objects that have pathnames and that

generally follow the semantics of POSIX files.

2. Socket PFSs deal with objects that are created by the socket() and accept()

functions and that follow socket semantics.

As described in Chapter 1, the LFS is called by POSIX programs, non-POSIX z/OS

UNIX programs, and VFS servers. In this document, “the caller” refers to the LFS or

any of the programs that call the LFS. When the LFS is mentioned specifically, it is

usually to clarify a point of the design.

14 z/OS V1R7.0 UNIX System Services File System Interface Reference

This interface is a modification of the architecture that is outlined by S. R. Kleiman

in the paper “Vnodes: An Architecture for Multiple File System Types in Sun UNIX”,

which was published in Proceedings: Summer Usenix Technical Conference &

Exhibition (June 1986).

Porting note

Some operations that are found on some UNIX systems are not called by the

z/OS UNIX logical file system, and are not shown in the list in Table 1. Table 1

includes some functions that are unique to the logical file system.

Operations summary

The following PFS operations are grouped by category and by applicability to file or

socket PFSs.

 Table 1. PFS operations by PFS type and category

File PFS - File System

Services

VFS_MOUNT Mount a file system

VFS_UMOUNT Unmount a file system

VFS_SYNC Synchronize a file system

(synchronize all files)

VFS_STATFS Get general file system attributes

VFS_VGET Get a vnode from a file ID (FID)

File PFS - Directory Services VN_LOOKUP Look up a filename in a directory

VN_READDIR Read a directory

VN_CREATE Create a regular, FIFO, or

character special file

VN_MKDIR Create a directory

VN_SYMLINK Create a symbolic or external link

VN_LINK Create a hard link to a file

VN_RMDIR Remove a directory

VN_REMOVE Remove a file

VN_RENAME Rename a file or directory

File PFS - File Services VN_OPEN Open a file

VN_CLOSE Close a file

VN_READLINK Read a symbolic link file or

external link file

VN_ACCESS Perform access check

VN_TRUNC Truncate a file

VN_FSYNC Synchronize a file (save data to

disk)

Chapter 2. Physical file systems 15

Table 1. PFS operations by PFS type and category (continued)

Any PFS - File Services VN_RDWR Read or write

VN_READWRITEV Read or write with multiple

buffers

VN_GETATTR Get attributes for a file

VN_SETATTR Set attributes of a file

VN_IOCTL Control I/O

VN_AUDIT Perform security auditing

VN_SELECT Select on a vnode

VN_INACTIVE Inactivate a vnode-inode

VN_PATHCONF Return configurable limits

VN_RECOVERY Recover from an abend for an

operation in progress

VFS_RECOVERY Recover from an EOM condition

for an operation in progress

VFS_PFSCTL PFS Control

VFS_BATSEL Select on a set of files/sockets

Sockets PFS - Address

Family, or Domain, Services

VFS_NETWORK Activate a domain

VFS_SOCKET Create socket or socketpair in a

domain

VFS_GETHOST Get host ID or name

Sockets PFS - Socket

Services

VN_ACCEPT Accept a connection request

VN_BIND Bind a socket

VN_CONNECT Establish a connection

VN_GETNAME Get the name of the peer or

socket

VN_SOCKOPT Get or set socket options

VN_LISTEN Get ready to accept connection

requests

VN_SNDRCV Send or receive

VN_SNDTORCVFM Send to or receive from

VN_SRMSG Send a message or receive a

message

VN_SETPEER Set a peer

VN_SHUTDOWN Shut down a socket

The VFS-vnode vector tables returned by the PFS after its initialization contain

either the direct or indirect addresses (depending on the value of the pfsi_modind

flag in the PFSI) of the routines that implement the operations in the preceding list.

LFS/PFS control block structure

In the LFS/PFS model that is used in z/OS UNIX, each active file system object is

represented in the LFS and PFS by its own control blocks or structures. These are

called the vnode and inode, respectively. There is a one-to-one relationship

between the LFS’s vnode and the PFS’s inode. They effectively point to each other

across the interface, although neither ever directly refers to the other’s fields.

16 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|

Porting note

Such terms as “build the inode”, as used in this document, mean “construct

the in-storage representation of a file”. This does not imply anything about the

file representation as it is stored on disk.

 There is only one vnode-inode pair for each data object in the system, no matter

how many links there are to the object (for file objects), or how many users may be

accessing the object. Users who access a vnode through the LFS must be

accessing the same data object through the PFS.

Token_structure:

A difference between the z/OS UNIX PFS interface and other implementations is

that the vnode is not directly addressable by the PFS during a vnode operation. A

Token_structure is presented on all calls as a vnode surrogate.

The Token_structure contains the following 8-byte PFS tokens:

v Initialization token, returned from the PFS_Init routine during PFS activation.

This token usually contains the address of the PFS anchor block.

v Mount token, returned from the vfs_mount or vfs_network operation for the file

system that is related to the current call. This token usually contains the address

of the PFS mount block.

v File token, originally passed by the PFS to osi_getvnode when the file’s

vnode-inode pair was created. This token usually contains the address of the

PFS file block—that is, the inode.

For a vnode operation, Token_structure contains all three tokens; for a VFS

operation, it contains only the initialization and mount tokens.

See the TOKSTR typedef in Appendix D for the mapping of Token_structure.

Porting note

The file token within Token_structure is a copy of the “private data” area in the

vnode. If a PFS expects a vnode structure as an input parameter, but does not

refer to any vnode fields other than the PFS’s private data pointer, the

subfields within the program’s vnode structure can be rearranged so that the

pointer’s offset matches that used in Token_structure. In this way, the PFS

code that refers to this field will pick up the correct value when it is

recompiled, and does not have to be changed.

 Token_structure is transient; it lives only for the duration of a single call.

Chapter 2. Physical file systems 17

The control block relationships described so far are illustrated in Figure 3. Reading

from left to right, in the order they are created:

v The GFS-PFS_anchor pair is created at PFS initialization time and exists as long

as the PFS does. Pfsa@ represents the PFS token saved by the LFS.

v The VFS-MNT pair is created during a file system mount or socket network

activation, and exists until the file system is unmounted, or forever, respectively.

Mnt@ represents the PFS token saved by the LFS from that operation.

v The vnode-inode pair is created during lookup and creation operations, which are

explained in “Creating, referring to, and inactivating file vnodes” on page 31 and

“Creating, referring to, and closing socket vnodes” on page 44.

Each of these control blocks contains the other’s token for the file object. The

vnode’s Inod@ token is placed in Token_structure as input for a call to the PFS,

and an inode’s Vnod@ token is returned by the PFS from any call that has a

vnode as output.

v Token_structure contains all three PFS tokens, and spans the LFS-PFS interface

as the first parameter of each call.

Sharing files

The LFS manages user access to the vnodes. For programs that use the open() or

socket() function, the LFS allocates file descriptors and manages sharing between

processes and threads within a process. For VFS server programs, the LFS

allocates vnode tokens, which behave somewhat like file descriptors. All programs,

of any type, share the same file hierarchy.

GFS

Pfsa@

PFSA

PFS Anchor

VFS

Mnt@

MNT

Mount
Block

Pfsa@
Mnt@
Inod@

CALL VN_OP (, ,)

Logical
File

System

Physical
File

System

Vnode

Inod@

Inode

Vnod@

File
Block

Figure 3. The LFS/PFS control block structure

18 z/OS V1R7.0 UNIX System Services File System Interface Reference

The PFS is not aware of who is using a file or how it is being shared. To the PFS,

there is only a vnode-inode pairing, and all file references come through that

structure. In effect, the PFS has only one user: the LFS.

The PFS does not generally maintain any state information that would associate a

sequence of calls. Successive calls to the PFS may relate to different end users, so

every call is self-contained and does not depend on any information saved by the

PFS from a previous call.

Files become shared when different end users open the same file, and when

additional references to descriptors are created through the fork() and dup()

functions.

Because the LFS maintains reference counts in its structures, it knows how many

references to a given vnode are active and how many threads are currently making

a call to the PFS with each reference. The PFS does not, therefore, have to be

aware of how many users are accessing a given vnode-inode pair. The LFS

ensures that all activity has ended and that the vnode-inode pair is no longer in use

before it invokes vn_inactive to disassociate the vnode and inode.

LFS-PFS control block integrity

To preserve the vnode-inode relationship, the LFS guarantees the following:

v On every operation, the inode, represented by the PFS’s token in

Token_structure, has not been inactivated.

v When the PFS is called to break the relationship (via vn_inactive at the time that

a vnode is being freed), the LFS ensures that there are no other operations in

progress against this vnode and, by extension, against the inode.

There are, in fact, no operations in progress against any file that is in the same

mounted file system as the file that is being inactivated. This is so that no other

operation may be attempting to find or recreate the inode while it is being

deleted.

v After a vn_inactive, the PFS does not receive any additional vn_ calls for that

inode until the PFS creates a new vnode-inode binding for this same object as a

result of a vn_lookup or vfs_vget call.

The OSI structure

The second parameter of every call from the LFS to the PFS is the address of the

operating system interface (OSI) structure. This structure contains information that

is used by the OSI_operations and MVS-specific information that needs to be

passed between the LFS and the PFS. It is mapped by the OSI typedef in

Appendix D. The fields are described as follows:

Field Description

 Wait-post fields

token Wait-post token. Set by osi_wait when it is called to set up for a

wait. This token is the input to osi_post when it is called to wake up

the current thread.

ecb Address of an event control block (ECB). Set by osi_wait when it is

called to set up for a wait. This is the ECB that is used by osi_wait

when it is called to suspend. A program that cannot call osi_post

can use this ECB with an MVS cross-memory post to wake up the

current thread. However, using the MVS cross-memory post for this

ECB can result in a system integrity problem.

Chapter 2. Physical file systems 19

ascb Address of the address space control block (ASCB). Set by

osi_wait when it is called to set up for a wait. This ASCB address is

used, along with the ECB, for an MVS cross-memory post.

 SMF accounting fields

diribc Directory I/O block count that occurred on this operation.

readibc Read I/O block count that occurred on this operation.

writeibc Write I/O block count that occurred on this operation.

bytesrd The number of bytes that were read on this operation.

byteswr The number of bytes that were written on this operation.

 Miscellaneous fields

rtokptr Address of the recovery token area. The recovery token area is set

and cleared by the PFS on each operation, to provide for abnormal

end and end-of-memory recovery. Refer to “Recovery

considerations” on page 24 for details.

workarea Address of a work area for use by the PFS. This area can be used

for the dynamic, or automatic, storage necessary to run the current

operation. This can save the PFS the overhead of obtaining and

freeing stack storage on every call. The workarea is on a

doubleword boundary.

workarealen Length of the workarea. The workarea length is 3KB. This allows

2KB for routines that call the SAF Chk_Owner_Two_Files routine or

the osi_uiomove service, each of which requires that a 2-KB work

area be passed. The other SAF security routines require a 1-KB

work area.

pid The current thread’s process ID (PID). This is the input to osi_signal

if it is called to send a signal to the current thread’s process.

pfsid A PFS identifier that is used with osi_sleep and osi_wakeup.

attr Address of an output file attribute buffer. Whenever this field is

nonzero, the PFS should build and return a standard attribute

structure for the file operated on at the end of the current operation.

This is the same attribute structure that would be returned by

vn_getattr.

 The buffer is preset with an attribute structure header that contains

the available length of the buffer.

 Because this buffer may be the same area as an input attribute

structure, it should not be modified until the very end of the current

operation.

 If the PFS does not return the file’s attributes when asked, the LFS

invokes vn_getattr to get them. This results in poorer performance

for files that are supported by this PFS.

fsp Address of an output File Security Packet (FSP). Whenever this

field is nonzero, the PFS should return an fsp structure for the file

operated on. This is the same fsp structure that would be returned

by vn_getattr.

 If the PFS does not return the file’s FSP when asked, the LFS

builds one. For a description of the FSP, refer to “Security

responsibilities and considerations” on page 12.

20 z/OS V1R7.0 UNIX System Services File System Interface Reference

remount A flag that indicates that the current operation is running during a

remount (that is, during UNMOUNT with the REMOUNT option).

NotSigReg Indicates that the calling process is not registered for signals and

so should not be sent any.

Waiting and posting

OSI_Operations are provided to the PFS to wait for internal events and to post the

waiting thread when the event occurs.

Three important reasons for using the OSI wait and post services rather than native

MVS WAIT and POST are:

v The OSI services allow signals to interrupt a wait.

v Users are not left hanging if z/OS UNIX or the PFS is stopped.

v The PFS is protected from any system integrity exposures that might result from

the cross-memory post operation.

There are two kinds of wait, distinguished by whether or not signals are enabled

during the wait:

v Not signal-enabled: Used to wait for internal serialization or other activities that

are independent of external forces likely to take a long time. These waits should

generally not be used with human interactions. Examples are: waiting for data to

be read from disk, or waiting for an available output buffer from a pool that is

shared by all users.

v Signal-enabled: Usually correspond to the blocking situations that are defined by

POSIX, and often involve waiting for an end user to do something. Examples are:

waiting for data to be read or written by another independent program, such as a

socket session, or reading input from a terminal.

Signals should be enabled when the end user may need to break out of an

indefinite wait.

When a signal-enabled wait is entered, all serialization that was obtained by the

LFS is dropped before the wait and re-obtained after it. This means that other

operations may intrude on an otherwise exclusive operation. The PFS must take

this into account if it uses signal-enabled waits. This does not mean that two

exclusive operations will actually be running in the PFS for the same vnode-inode at

the same time, but that a second operation may run while the first is blocked. When

the first is resumed there may have been state changes made by the second. For

writes on stream sockets, the default socket option of exclusive write will prevent

the dropping of LFS serialization during single-enabled waits.

The WAITX option also allows LFS serialization to be dropped around the wait,

independent of whether signals are enabled. See the next section for details on

LFS serialization.

As a consequence of dropping LFS serialization, it is possible for a file system to be

unmounted, with the IMMEDIATE or FORCE operands, while a task is waiting. If

this happens, the wait service returns with an OSI_UNMOUNTED return code when

it is posted, and the PFS must cancel the rest of the operation and return to the

LFS with some care. Because it is expected that vfs_umount will have cleaned up

all file-system-related resources, the current operation may have to avoid

references to internal file system structures that are freed by vfs_umount.

Chapter 2. Physical file systems 21

||
|

|
|
|
|
|
|
|
|
|

Waits that are signal-enabled or that request the LFS to drop its serialization cannot

be used on some vnode and VFS operations. The implementation notes for those

operations state this.

The OSI sleep and wakeup functions are similar to wait and post, with these

advantages:

v Osi_sleep

– Does not require a separate setup call

– Associates a Resource_id and Pfs_id with the sleeping thread

v Osi_wakeup

– Wakes up all threads that match Resource_id and Pfs_id

Implementation details: The PFS implementation for waiting and posting involves

the steps described here. There are two threads involved: the waiting thread and

the posting thread.

1. The waiting thread is running on behalf of some VFS or vnode operation when it

must wait for an event to occur. It calls osi_wait to set up for the wait, performs

internal coordination to schedule the eventual wakeup, and calls osi_wait again

to actually suspend the thread.

2. The posting thread may be an independent PFS task, or it may be running on

behalf of some other user’s VFS or vnode operation. It determines that a thread

is waiting for the resource it is dealing with, and calls osi_post to wake that

thread up.

3. When the waiting thread wakes up, it checks the return code from osi_wait and

reacts accordingly.

 Waiting Thread Posting Thread

v Determine that a wait is necessary.

osi_wait(OSI_SETUPSIG, OSI, RC)

v Create an internal wait structure that is used

by the posting thread to recognize that the

waiting thread is waiting.

v Save the osi_token in this structure.

v Chain the wait structure where the posting

thread will find it.

osi_wait(OSI_SUSPEND, OSI, RC)

(None)

(None) When an event occurs, scan the wait

structures to see if anyone is waiting for

this event. Unchain and free the wait

structure.

osi_post(saved_token, RC)

 If the return code is not zero, the

waiting thread did not get this post and

you may need to go on to the next

waiting thread.

22 z/OS V1R7.0 UNIX System Services File System Interface Reference

Waiting Thread Posting Thread

 Select on return code:

 When (OSI_POSTED): proceed with

what you were going to do.

 When (OSI_SIGNALRCV): a signal has

arrived (when using SETUPSIG rather

than SETUP). Back out of this

operation and return EINTR.

 Otherwise: an abnormal end or

unexpected error occurred. Back out of

this operation and return EMVSERR.

 End

(None)

Notes:

1. This example assumes that the PFS has its own serialization around the chaining and

unchaining of the wait structure.

2. A variation of the steps in this table would be to unchain and free the wait structure on

the waiting thread. In this case, the posting thread marks the structure as “posted” so

that another event occurrence cannot result in the same structure’s being used again.

Recovery is more complicated with this approach, though.

3. One also has to consider abnormal ends while waiting—for instance, the user might be

canceled. In that case, control does not return to the code after the osi_wait. If the PFS

supports vn_recovery, or has an ESTAE or FRR active, it gets control there and the

situation can be handled as when a signal is received.

4. For abnormal ends and any return code other than OSI_POSTED, additional

serialization between the waiting thread and the posting thread is necessary. In these

cases the waiting thread is ending before, or even while, the posting thread is trying to

wake it up.

This is why it is important to save a copy of the osi_token from the waiting thread’s OSI,

rather than just the address of the waiting thread’s OSI. The waiting thread’s OSI

storage could be gone by the time the posting thread tries to refer to it.

5. Another consideration is user address space end-of-memory, which abnormally

terminates the waiting thread without activating any ESTAE or FRR. In this case, the

LFS uses the OSI recovery token to invoke vfs_recovery, which gives the PFS a chance

to clean up.

LFS-PFS control block serialization

The LFS serializes use of the vnode-inode pair for each vnode operation. Writing of

file data is done under an exclusive latch. Reading of file data is also done under

an exclusive latch, unless shared read support has been indicated by the PFS for

the file, and the read is via vn_rdwr or vn_readwritev. Shared read can be indicated

in the OSI by the PFS upon return from vn_open, vn_close, vn_rdwr, vn_readwritev,

vn_setattr, and vn_trunc.

Other read operations, such as vn_readdir, are done under a shared latch.

In particular, to optimize the performance of pathname resolution, only a shared

latch is held on the directory that is involved in a vn_lookup operation.

Recommendation: Read operations that are done under a shared latch may

require the PFS to update some structures; for example, to

mark the access time of a file for update. The PFS is

responsible for any additional serialization that is required to

maintain integrity of its structures when functions are called

with a shared or an exclusive latch. Often the compare and

Chapter 2. Physical file systems 23

swap instruction is sufficient for this additional serialization. In

order to avoid contention problems, the cross-memory local

lock (CML) should not be used.

For the operations that refer to more than one vnode (vn_remove, vn_rmdir, vn_link,

and vn_rename), exclusive latches are held on all the vnodes that are involved in

the operation. This includes vnodes that are not explicitly passed on the interface,

such as the file that is being unlinked on vn_remove.

When the PFS enters a signal-enabled wait, as described in the previous section,

or when the WAITX option has been used to drop serialization around the wait, all

vnode and file system latches are released before the wait and re-obtained after it.

This means that other operations may be invoked from another thread for a given

vnode during an exclusive operation that enters a signal-enabled wait, although

there would not be two operations running at the same time, because the blocked

thread re-obtains exclusive access when it wakes up.

Note: While any operation is active, the PFS never receives a vn_inactive call for

that vnode, even if the latches are released. In cases of vn_open or

vn_close processing, the LFS does not allow a close against the last active

file descriptor while another thread has any operation in progress against it.

Refer to the individual operations for the level of serialization that is provided for

each call.

The serialization that is provided can be changed by the PFS when the

osi_getvnode service is called to create a vnode. The PFS can specify that no LFS

latching be performed. If no LFS latching is specified, all discussions in this chapter

about latches held on vnodes do not apply. Other LFS latches are unaffected;

sigwait and waitx should still be used to drop other latches, where necessary.

Recovery considerations

There are several recovery situations that must be handled by the PFS.

PFS task or address space termination

As discussed in “Termination considerations” on page 11, if the PFS_Init task

terminates for any reason, the LFS terminates the PFS and restarts it based on the

current setting of the restart option byte. If the PFS is started in a colony address

space and that address space terminates, the PFS_Init task is also terminated by

MVS.

User process and thread termination

Two possible situations are discussed here: when the process or thread is between

calls to the PFS, and when it is actually running in the PFS code during a PFS

interface operation.

In general, when a user process terminates normally or abnormally, the LFS closes

all active file descriptors. There is nothing special about these close operations. The

PFS receives a normal vn_close if all file descriptors for an open file reference

happen to be closed. If forked children have not closed their inherited file

descriptors, the PFS does not receive a vn_close and may never know that the

user process terminated.

Individual user requests are run on dubbed tasks, but POSIX semantics assign file

resources to the process. Consequently, if a user task terminates between calls to

the PFS, and its process does not also terminate, the PFS is not notified.

24 z/OS V1R7.0 UNIX System Services File System Interface Reference

When a VFS server address space terminates, all of its vnode tokens are released

and files that were opened for the server are closed. If a vnode’s reference count

goes to zero, that vnode is inactivated. If this happens to remove all references to a

vnode, that vnode is inactivated after a delay interval. The PFS does not receive

any special notification.

PFS abnormal ends

If the user address space or task terminates while actually running in the PFS code

for a PFS interface operation, or if the PFS code itself fails, an MVS abnormal end

is generated for each affected task. The MVS system then usually runs the FRR

and ESTAE recovery exits.

v If the PFS does not have recovery established, the vn_recovery operation is

available to allow the PFS to run its recovery processing as an exit from the

LFS’s ESTAE. See the description of vn_recovery and vfs_recovery that follows

this list.

v If the PFS needs its own special recovery, it must establish an FRR or ESTAE on

each entry from the LFS.

v If task-level recovery is bypassed by MVS, the end-of-memory (EOM) resource

manager established by z/OS UNIX is run. It ensures that the PFS has a last

chance to clean up by calling vfs_recovery. See the next section on vn_recovery

and vfs_recovery.

vn_recovery and vfs_recovery are called to permit a PFS to recover resources

when a user request ends abnormally, or when the user’s address space enters

EOM processing while a request to that PFS is active. This works as follows:

1. On every VFS and vnode operation, the LFS makes an 8-byte recovery area

available to the PFS. This field is in the PFS’s primary address space, not in the

user’s address space. Its address is in the OSI.

2. The PFS should set this field soon after entry, or when it has resources that

need protection. The field is used for recovery information, or for the address of

a recovery structure that is not in the user’s address space.

3. The PFS clears the field on exit. The LFS also clears the field as soon as the

PFS returns, as it has meaning only during a call, and presumably the area it

points to is no longer valid. The PFS should clear the field so that it cannot be

invoked with bad data if the user is canceled after the PFS has returned, but

before the LFS can zero out the field.

4. If an abnormal end occurs and the LFS ESTAE routine finds this area to be

nonzero, the area is passed to the PFS with a call to vn_recovery and cleared

after this call.

See “vn_recovery — Recover resources after an abend” on page 190 for more

details.

5. If the EOM resource manager for a user address space finds this area to be

nonzero, the area is passed to the PFS with a call to vfs_recovery. This can

happen only for an abnormal end that bypasses normal ESTAE processing, or

when an address space is canceled during ESTAE processing.

See “vfs_recovery — Recover resources at end-of-memory” on page 94 for

more details.

6. The PFS uses the information that is stored in the area during vn_recovery or

vfs_recovery to clean up whatever was in progress at the time of the

interruption.

The PFS can establish its own MVS dynamic resource managers if it must perform

special recovery for a user or z/OS UNIX task or address space termination. This is

Chapter 2. Physical file systems 25

not recommended, however, because severe performance degradation occurs if

these resource managers have to be set up and removed on every operation.

Terminating a PFS’s associated separate address space

If a PFS communicates with a separate address space, that is, one unknown to

z/OS UNIX, and waits for replies from that address space, users could be left

waiting forever if that address space abnormally terminates while it has outstanding

responsibilities to post user threads. Usually, the PFS has to remember all users

that are waiting in this situation and post them from a recovery resource manager of

the separate address space. This can involve extra serialization and overhead

during mainline operations.

If, however, the separate address space registers with the v_reg() function,

specifying the PFS that is dependent on it, and uses osi_wait and osi_post, the

system remembers this information in a task-related area that does not require

additional serialization or overhead during mainline operations. When the separate

address space terminates, the system scans through all users looking for those in a

potential wait for this address space and posts them. Thus the extra overhead is

incurred only when the separate address space terminates.

Dumping LFS data

Information that can be used by the PFS to add LFS data areas to dumps taken by

the PFS is passed at initialization. Pfsi_dumpptr contains the address of an array of

elements, mapped by BPXYFDUM, shown pictorially in Figure 4. These may be

used to construct entries in a LISTD-type list passed to SDUMPX.

PfsiDumpPtr Number of entries in DumpData array

Eye catcher - ’FDUM’ (4 bytes)

Reserved area (8 bytes)

First Dump Info element (24 bytes)

SToken for this area (8 bytes)

Reserved (8 bytes)

Start of area to dump (4 bytes)

Last byte to dump (4 bytes)

Second Dump Info element (24 bytes)

.

.

.

.

Last Dump Info element (24 bytes)

Figure 4. Format of BPXYFDUM

26 z/OS V1R7.0 UNIX System Services File System Interface Reference

PFS interface: File PFS protocols

Mounting file systems

Mountable file systems are subsets of the file hierarchy that are added and deleted

by mount and unmount. Each has its own root and hierarchical directory structure.

One such file system serves as the root of the whole file hierarchy, and mounts are

done upon the directories of other mounted file systems.

A mount may be issued from the BPXPRMxx parmlib member that is used with the

start of z/OS UNIX, by a user through ISHELL, by the TSO/E MOUNT command, by

automount, or by a program using the mount() function. The latter function is

restricted to users with appropriate privileges.

Here is the syntax of a MOUNT statement, showing the parameters that are

important to this discussion:

MOUNT FILESYSTEM(file_system_name) or DDNAME(ddname)

 TYPE(file_system_type)

 MOUNTPOINT(pathname)

 MODE(READ | RDWR)

 PARM(parameter_string)

 SETUID | NOSETUID

where:

v FILESYSTEM specifies a 1-to-44-character name, blank padded, by which this

file system is to be known. It must be unique among previously mounted file

systems. This is also used by some PFSs as an MVS data set name.

v DDNAME specifies the ddname on an ALLOCATE that is issued from the OMVS

cataloged procedure. This is an alternative to the FILESYSTEM parameter for

mounts that are issued from the parmlib member only. The real data set name

becomes the mounted file system’s name.

v TYPE identifies the PFS that supports this mounted file system. This operand

must match the TYPE operand used on the FILESYSTYPE statement that

defined the PFS.

v MOUNTPOINT specifies the pathname of the mount point directory within the file

hierarchy where this file system is to be mounted. This item is passed to the

PFS, but only for informational purposes.

v MODE specifies the type of access that the issuer of MOUNT has to this file

system. READ is specified for read-only access, and RDWR is specified for

read/write access.

The LFS enforces this parameter to prohibit operations such as writing and

creating files. The PFS must ensure that it does not update access times for read

operations, or otherwise change file systems that are mounted read-only.

v PARM specifies a PFS-defined parameter text string. It may contain any value

and be up to 1024 bytes long. The meaning of this text string is defined by the

individual PFS, and the text is passed to the PFS for it to interpret and process.

v SETUID | NOSETUID specifies whether the SETUID and SETGID mode bits on

executables in this file system are to be respected. This is enforced by z/OS

UNIX; the information is passed to the PFS for informational purposes only.

See the MOUNT command description in z/OS UNIX System Services Command

Reference for more information about the MOUNT command.

Chapter 2. Physical file systems 27

The parameters that are described above are passed to the PFS on the vfs_mount

operation. The FILESYSTEM or PARM values are used by the PFS to identify the

file system object that is being mounted.

During vfs_mount the PFS is expected to:

1. Ready the file system for all later processing.

2. Save the device number that has been assigned to this file system so that it can

be output on vn_getattr for any file within this file system. This number

corresponds to the st_dev value of POSIX.

3. Set output fields, as appropriate, in the MTAB.

4. Create an inode that represents the root of the file system.

5. Call osi_getvnode to create a vnode. The returned vnode token is saved in the

inode.

6. Return the vnode token of the root to the LFS.

7. Return an 8-byte token that will be saved by the LFS and used on all

subsequent VFS and vnode operations for this file system. This token is

typically the address of the PFS’s mount block. Its use is optional.

Porting note

This differs from some implementations in that vfs_root is not used to extract

the vnode of the root of a just-mounted file system.

 The root vnode is never explicitly inactivated. If this file system is unmounted, the

vfs_umount operation implies vn_inactive for the root vnode-inode pair.

The PFS cannot use a signal-enabled wait or WAITX during MOUNT.

The LFS does not permit two mounts on a single MVS image with the same file

system name. If the PFS identifies its mounted objects through the PARM

parameter or by some other means, the PFS must permit or reject attempts to

mount the same object more than once. If the mounted file system is on DASD,

DASD file sharing must be taken into account. If the file system object is on or is

using a resource that is shared by multiple systems, the PFS is responsible for

managing or denying shared access.

The ROOT statement defines the system root. It is valid only from the parmlib

member, and it has the same parameters as MOUNT, except that a MOUNTPOINT

is not specified.

Asynchronous mounting

The PFS may choose to complete mounting the file system asynchronously.

Because latches are held by the LFS during execution of vfs_mount, it is desirable

to perform the mount asynchronously if it cannot be completed immediately

(perhaps because of the need to communicate with another system).

Asynchronous mount processing follows this sequence:

1. The vfs_mount service is called by the LFS as part of the mount processing

described in “Mounting file systems” on page 27.

v If the PFS decides to complete the mount asynchronously, it must indicate

this to the LFS with the AsynchMount flag in the MTAB before returning to the

LFS.

28 z/OS V1R7.0 UNIX System Services File System Interface Reference

v If the SynchOnly flag in the MTAB is set on, the mount must be completed

synchronously. The PFS must either complete it synchronously or reject it,

returning EINVAL.

2. When the PFS has completed its asynchronous processing, it calls

osi_mountstatus to indicate to the LFS that the mount can now be completed.

3. The LFS then calls vfs_mount a second time, from within the OMVS address

space. On the second call, AsynchMount in the MTAB is turned on so that the

PFS can identify this as the second mount.

The PFS completes the mount actions described above.

After the PFS returns to the LFS from the first call to vfs_mount, the LFS may call

any vfs_ operation. In particular, the PFS must be prepared to process vfs_unmount

and vfs_statfs. If the PFS can determine the file attributes on the first call, it can

create and return the root vnode on that call. Otherwise, it defers this until the

second call. If a vnode is returned on the first call and also on the second call, it

must be the same vnode each time. If the mount operation fails during the

asynchronous phase, the PFS calls osi_mountstatus and reports the failure on the

second vfs_mount call.

Serialization: During each vfs_mount, the PFS has exclusive access to the file

system that is being mounted, and no access is allowed until the second vfs_mount

has completed.

Resolving pathnames

LFS processing

Pathname resolution starts from the user’s root or working directory. The LFS looks

up the first component of the pathname in that directory. This often yields another

directory, and the LFS looks up the second component of the name in this new

directory. The LFS looks up each successive component of the name in the

directory that was returned from the previous lookup, until the end of the pathname

is reached.

When the LFS encounters a directory that is a mount point, it switches to the root

directory of the file system that was mounted there. The next lookup is done in the

mounted file system’s root directory, rather than in the directory that was returned

from the previous lookup. This is called crossing mount points; it is because of

these mount points that pathname resolution has to be done one component at a

time.

PFS processing

Resolving pathnames and identifying mount points is a function of the LFS. Except

for the individual vn_lookup operations that are invoked, the PFS is not involved.

Unmounting file systems

A user can issue an unmount through ISHELL, the TSO/E UNMOUNT command,

automount, or a program that is written to use the unmount() function. This function

is restricted to users with appropriate privileges.

Here is the syntax of the TSO/E UNMOUNT command, showing the parameters

that are important to this discussion:

UNMOUNT FILESYSTEM(file_system_name)

 NORMAL | DRAIN | RESET | IMMEDIATE | FORCE | REMOUNT(RDWR | READ)

where:

Chapter 2. Physical file systems 29

v FILESYSTEM specifies the name that was used when the file system was

mounted.

v NORMAL | DRAIN | RESET | IMMEDIATE | FORCE | REMOUNT(RDWR |

READ) specifies the type of unmount to perform.

LFS processing

v NORMAL. The LFS checks to make sure no user is using any of the files in the

file system that is to be unmounted, and passes the request to the PFS via

vfs_umount. If files in this file system are being accessed, the LFS rejects the

unmount request.

v DRAIN. The LFS checks to make sure that no user is accessing any of the files

in the file system that is to be unmounted, and passes the request to the PFS via

vfs_umount. If files in this file system are being accessed, the LFS waits until all

activity has ceased, and then passes the request to the PFS.

v RESET. The LFS cancels a previous unmount drain request. The file system

goes back to the normal mounted state.

v IMMEDIATE. The LFS stops further user access to the file system that is being

unmounted. Any attempt to access files in this file system receives an error

return code. The LFS then passes the request to the PFS via vfs_umount.

UNMOUNT with IMMEDIATE can be used to override a previous UNMOUNT

DRAIN request for a file system.

v FORCE. The LFS stops further user access to the file system that is being

unmounted. Any attempt to access files in this file system receives an error

return code. The LFS passes the request to the PFS via vfs_umount.

UNMOUNT with FORCE can be used to unmount a file system even if I/O errors

are being received from the underlying device.

An IMMEDIATE unmount request must be issued before a FORCE unmount can

be requested.

v REMOUNT. The LFS handles this like an IMMEDIATE unmount followed by a

mount. User access is suspended while the operations are in progress. vfs_vget

is used to establish the vnode/inode bindings so that the remount is not

disruptive to the users.

PFS processing

1. The PFS processes requests for UNMOUNT with the NORMAL, IMMEDIATE,

and FORCE options as follows:

v NORMAL. Synchronizes all data buffers to disk (if appropriate for this PFS).

This saves all data changes to files in the file system that is being

unmounted. If an I/O error occurs during this activity, the unmount request

fails.

v IMMEDIATE. Synchronizes all data buffers to disk (if appropriate for this

PFS). If an I/O error occurs during this activity, the unmount request fails.

v FORCE. Synchronizes all data buffers to disk (if appropriate for this PFS). If

an I/O error occurs during this activity, the unmount proceeds anyway and

data is lost.

The difference between NORMAL and IMMEDIATE is whether the PFS is likely

to find itself with any active inodes other than the one belonging to the root. The

difference between IMMEDIATE and FORCE is whether the PFS continues if it

encounters an I/O error while trying to synchronize data during the unmount.

2. The PFS frees any inodes that are still active, including the root inode, which is

never explicitly inactivated.

3. The PFS reverses the vfs_mount and returns the file system to unready status.

30 z/OS V1R7.0 UNIX System Services File System Interface Reference

Serialization: The whole file system is serialized under an exclusive latch at the

time vfs_umount is called. No other vnode or VFS operations are running, although

some may be in the PFS in a blocked state. See “LFS-PFS control block

serialization” on page 23 for more about serialization and blocking.

Creating, referring to, and inactivating file vnodes

The PFS creates vnodes by calling osi_getvnode, which is one of the OSI services

in the OSIT vector table that is passed to the PFS during its initialization. The

output of osi_getvnode is actually an 8-byte vnode token, but for the purposes of

this discussion the vnode and the vnode token are the same, and the term vnode is

used for both.

The first vnode for a mounted file system is created during vfs_mount processing.

At this time, the PFS must create a vnode-inode pair to represent the root of the

mounted file system and return the vnode token of the root. The LFS never

inactivates this first vnode; it is cleaned up as part of vfs_umount processing.

Subsequent vnodes within a mounted file system are created by calls to vn_lookup,

vn_create, vn_mkdir, or vfs_vget. The first three of these routines are passed a

previously obtained directory vnode, represented by a token structure, and the

name of a file within that directory to find or create.

The vfs_vget operation also generates vnodes directly from the file identifier (FID)

of a file within a given file system. See “Exporting files to a VFS server” on page

42.

During vn_lookup the PFS must:

1. Look up the filename in the directory. If the name is not found, vn_lookup fails.

2. Find or create an inode that represents the named file. This may involve reading

the file’s control information from a disk when the file has not been referred to

for a while.

3. For a new inode or one without a vnode (depending on PFS design), call

osi_getvnode to create a vnode. The PFS’s file token is passed to osi_getvnode

to be saved in the vnode, and the returned vnode token is saved by the PFS in

the inode.

4. Return the vnode token from the inode that represents the named file in the

specified directory. The file may itself be another directory.

The creation operations of vn_create and vn_mkdir follow a similar flow. See

“Creating files” on page 32 for more information. They are also invoked with a

directory vnode and a name, but in these cases the file itself is created if it does not

exist. vn_lookup may create an inode, but it does not create the file.

The vnode is generally used in subsequent operations, such as vn_rdwr for a file or

vn_lookup and vn_create for a directory. A directory vnode may become a mount

point, the current root, or the working directory of POSIX processes. None of these

references to the vnode involve any processing by the PFS.

Eventually the vnode falls out of use. After all opens have been closed and all other

references to the vnode have been released, the LFS marks the vnode for

inactivation. If the vnode is not referred to again for some time after it is marked for

inactivation, the LFS invokes vn_inactive, or vfs_inactive if the PFS supports batch

inactive and actually frees the vnode. The same functions are performed by

Chapter 2. Physical file systems 31

vfs_inactive and vn_inactive; vfs _inactive requires only one call to the PFS to

performs these functions for multiple vnodes.

During vn_inactive the PFS must:

1. Disassociate the inode from the vnode.

2. Perform any inode cleanup desired.

If the inode’s link count is zero, it must be deleted; otherwise it is just

deactivated and can be reactivated with vn_lookup.

After the call to vn_inactive, or vfs_inactive for multiple vnodes, LFS frees the

vnode, unless the PFS reports a problem via a bad return code from the operation.

Porting note

The PFS does not free the vnode. This is a change from some

implementations.

 In cases in which a file is repeatedly opened and closed by a single process, the

deactivation delay helps to avoid the cost of reconstructing the vnode-inode

relationship, and whatever other overhead is incurred by a PFS in reactivating a file.

In these cases, file caching is done by the LFS and need not be done by the PFS.

Serialization: The vn_lookup service is called with a shared latch held on the

directory being searched. The vn_inactive service is called with an exclusive latch

on the whole file system that the object belongs to.

The serialization of vn_inactive ensures that no operations are running that could

possibly find, or attempt to create, the inode that is being processed by vn_inactive.

This is because an exclusive latch is held on the inode’s file system during

vn_inactive and the LFS does not allow links across file systems, therefore no

parent directory of the object that is being inactivated can be referred to while the

PFS is trying to inactivate the object.

The PFS must serialize the creation of its own inodes, to ensure that a single file

does not have two or more inodes. This is because the same file object may be

looked up or created by more than one process concurrently. The PFS must

atomically create the vnode-inode pair and associate the inode with the file object,

either through a global latch or with a Compare and Swap algorithm.

To help with a Compare and Swap algorithm, a Return an Unused Vnode option is

provided on osi_getvnode so that the Compare and Swap loser can free the vnode

it had acquired. The vnode obtained from osi_getvnode does not represent anything

until the PFS returns it to the LFS from this or another concurrent operation. The

instant that the PFS associates a vnode-inode pair with an object, any vn_lookup

for the same object that is running on another process must find this same

vnode-inode pair.

Creating files

File hierarchy objects are created with the vn_create, vn_mkdir, and vn_symlink

calls.

The interface for all these operations includes:

v The object’s parent directory vnode, as a token structure

v The object’s name, as a character string

32 z/OS V1R7.0 UNIX System Services File System Interface Reference

v An ATTR structure

Serialization: An exclusive latch is held on the parent directory vnode.

PFS processing

During these operations the PFS must:

1. Fail the operation if the object already exists—that is, if the name is already in

the directory.

2. Otherwise, create the object and add an entry to the parent directory.

A unique nonzero inode number that corresponds to the st_ino value of POSIX

must be assigned to this object. This value only has to be unique within this file

system and at this time. It may be reused after the object is deleted. For

additional information about reusing file identifiers, see “Exporting files to a VFS

server” on page 42.

A directory object should be initialized by the PFS with the “.” and “..” entries.

For a root, “..” refers to itself, but for any other directory “..” refers to its parent

directory. These entries are not strictly required by POSIX.

3. Store at least the file’s type, major number, and minor number from the passed

ATTR structure with the stored attributes of the file. Whenever osi_getvnode is

called, the PFS must construct and pass an ATTR structure, as would be

returned by vn_getattr, so that the vnode can be built properly.

4. Call SAF to create the FSP. The user credentials and ATTR mode bits from the

interface and the FSP of the parent directory are passed to SAF, so that it can

construct the FSP and do any auditing that is necessary. See “Security

responsibilities and considerations” on page 12.

5. Store the FSP with the rest of the attributes of the file.

6. For vn_create and vn_mkdir, build an inode-vnode pair, as it would for a

vn_lookup of this object, and return the corresponding vnode token.

The PFS is responsible for link counts, which must be initialized here. The link

count of an object is the number of directory entries within the file system that point

to the object. It is reported to a caller via vn_getattr, and changed by vn_link,

vn_remove, vn_rmdir, and vn_rename.

Special consideration must be made for the “.” and “..” entries when creating

directories. “.” implies that a directory’s initial link count would be two. “..” implies

that a directory’s parent directory’s link count has to be incremented when the child

directory is created and decremented when it is deleted.

vn_link creates a new node in the file hierarchy, but it does not create a new object.

The LFS does not allow the creation of links (vn_link) to a directory.

Deleting files

File hierarchy objects are deleted with the vn_remove, vn_rmdir, and vn_rename

calls. The vn_rename function causes the deletion of the new_name file when it

exists.

The interface for all these operations includes the object’s:

v Parent directory vnode, as a token structure

v Name, as a character string

v PFS file token

Chapter 2. Physical file systems 33

Serialization: An exclusive latch is obtained for the parent directory vnode and the

object’s vnode. For vn_rename, an exclusive latch is held on both parent

directories, the old object vnode, and the new object vnode, if it exists.

PFS processing

During these operations the PFS must:

1. Call SAF’s Check Access service to verify that the caller has write permission to

the parent directory. If the sticky bit (S_ISVTX) is on in the parent directory’s

mode, the PFS must call SAF’s Check2Owners service to verify that the caller

is allowed to delete or rename the object.

2. Remove the directory entry for the named object, and update the Change and

Modification times for the directory.

3. Decrement the link count in the object whose name was removed.

If a directory is being removed, it must be empty except for the “.” and “..”

entries. The parent’s link count is also decremented to account for the “..” entry

in the removed directory.

4. If the object’s link count goes to zero, the object itself is deleted later during

vn_inactive, but the deletion is recorded for audit purposes now.

If the object is a regular file that is not open, the space used by its data must be

released now. If a regular file is still open, its data is deleted on the last

vn_close. This behavior is required by POSIX.

A POSIX-conforming PFS should set the immeddel flag in the PFSI during

initialization to let the LFS know that this requirement is in force. Otherwise, the

LFS must issue vn_getattr and vn_trunc during unlink() and close() in order to

check the link count and free regular file data.

5. While an inode’s link count and open count both are zero, the PFS may reject

subsequent operations, except for vn_readdir, which would return no entries,

and vn_inactive.

Opening and closing files and first references to files

POSIX programs read and write files or read directories within an open-close

bracket, whereas VFS servers do this directly from the vnodes that they have

looked up or created.

The LFS inserts a single open-close bracket around the operations that are issued

by a VFS server against regular files. Operations that affect a file’s attributes or

read a directory may or may not be preceded by an open, and a PFS has to be

prepared for either case. In particular, a file’s size may be changed with the

truncate() function, which results in a call to vn_setattr without a preceding

vn_open.

The PFS must perform two main functions to support reading and writing, both of

which tend to be done only once:

1. Physically prepare to do the I/O. This may involve getting buffers ready or using

lower-layer protocols for a device or access method.

2. Perform access checking.

Note that for performance reasons, the fewest number of access checks

possible should be done when a particular end user accesses a particular file.

Serialization: Both vn_open and vn_close are invoked under an exclusive vnode

latch.

The PFS is expected to do the following:

34 z/OS V1R7.0 UNIX System Services File System Interface Reference

v During vn_open:

1. Perform access checks. This must be done here for POSIX users.

2. Prepare for I/O, if necessary.

3. Increment an open counter in the inode for regular files.

v During reading or writing:

Perform access checks, if the Check Access bit is on in the UIO.

v During vn_close:

1. Perform any I/O that is necessary, instead of deferring it to the vn_inactive

call. Examples include saving the contents of data buffers to disk and

updating access times. This allows I/O to be charged back to the end user,

whereas I/O that is done during vn_inactive is charged to z/OS UNIX.

2. Decrement the inode’s open counter for regular files. If this goes to zero and

the file’s link count is zero, the file’s data blocks are deleted and their space

is reclaimed before the return from vn_close.

A PFS that reclaims space on the last vn_close of a deleted file should set

the immeddel bit in the PFSI during initialization, for best performance.

Otherwise, the LFS issues vn_trunc unnecessarily.

3. Perform the minimum amount of other cleanup. It is better to defer cleanup to

vn_inactive processing. Even if no one is still referring to a file, which would

not be apparent to the PFS, performance is better if the PFS allows LFS file

caching to reuse a closed file with minimal overhead.

v During vn_inactive, or vfs_inactive if the PFS supports batch inactive:

Perform final cleanup for the file or directory inode. This operation runs on a

z/OS UNIX system task with the containing file system locked, so the PFS should

accomplish this cleanup as quickly as possible. Avoid waits and I/O during this

cleanup processing.

If this process is followed, the access credentials of POSIX users are checked only

during their open() call. A VFS server that maintains state information requests

access checking for the first reference by a particular end user to a particular file,

but not for subsequent references. A VFS server without this state knowledge must

pay the price of access checks on every reference.

The LFS builds and manages the file descriptors that are used by POSIX programs.

The vn_open-vn_close pair has the following characteristics:

v There may be many vn_opens issued for the same file or directory, and any

number may be outstanding at a given time.

v The LFS may share a single vn_open with many users, because of forking or

VFS server usage. This sharing is not apparent, nor is it of concern, to the PFS.

v For any vn_open that is seen by the PFS, there is a corresponding vn_close.

Because there may be many vn_opens active, getting a vn_close does not mean

that the file is in any sense no longer in use. The PFS does not get any

indication that a particular vn_close is the “last close”, so it needs to maintain an

“open counter” to control the deletion of data blocks for removed regular files.

v There is no “open token” in this protocol, such as the traditional MVS DCB

structure or the POSIX file descriptor. The PFS does not know for which vn_open

a particular read, write, or close operation is being performed.

Chapter 2. Physical file systems 35

Reading from and writing to files

The PFS is responsible for actually moving data that is to be read or written, and

for implementing the semantics that are required by the standards supported by

z/OS UNIX.

See also “Opening and closing files and first references to files” on page 34.

vn_rdwr and vn_readwritev are UIO operations, which means that:

v The UIO structure is part of the interface.

v The UIO contains the address, ALET, storage key, and address space ID of the

user’s buffer or buffers. It has a read/write flag to distinguish direction. For reads,

it contains the length of the user’s buffer or buffers. For writes, it contains the

number of bytes that are to be written.

v The UIO contains the process file size limit for the file. On a write or writev

request it is the responsibility of the PFS to determine when this limit has been

reached or exceeded. When a write or writev request is unable to write any data

without exceeding the file size limit, the PFS must set the bit in the UIO that

indicates that the limit was exceeded, and set the errno to EFBIG. The PFS must

also be aware of one other special value for the file size limit: If both

UIO.u_fssizelimithw and UIO.u_fssizelimitlw are equal to 0, there is no file size

limit set for the process.

v It is the responsibility of the PFS to maintain system integrity while moving data

between the address spaces. This means that the Move With Source Key and

Move With Destination Key machine instructions or the osi_copyin, osi_copyout,

and osi_uiomove services must be used.

v The caller maintains file positioning for the PFS, and the current file cursor is in

the UIO for every operation. This indicates the position from which the read or

write is to start.

When the O_APPEND flag is set on in the open flags parameter for a write

operation, the UIO cursor is ignored by the PFS. Writing begins at the end of the

file, as it is known by the PFS at the time of the write.

The UIO cursor may reflect the last read/write operation that was seen by the

PFS; it may be from a different instance of vn_open; or it may have been

changed through seek operations that were issued by the user and that are not

seen by the PFS.

The PFS modifies the UIO cursor to reflect the file position after the operation.

The UIO cursor area is 8 bytes long, to support large files. It is the responsibility

of the PFS to handle file offsets greater than 231 or to reject them. The 8-byte

cursor is a doubleword signed binary integer.

During vn_rdwr and vn_readwritev the PFS must:

1. Do access checking, if the UIO check-access bit is on.

2. Move the data. During vn_rdwr, if the UIO real-page bit is on, use the DATOFF

services of MVS to move the data. The ability to refer to real pages is indicated

by the PFS during its initialization. If this cannot be supported, the LFS supplies

an intermediate virtual page buffer.

3. Synchronize the data, if the UIO sync-on-write bit is on, and turn on the

sync-done bit to notify the LFS that it was done. Otherwise, the LFS issues

vn_fsync explicitly and the whole operation takes a little longer.

4. Ensure that the operation does not write beyond the process file size limit. If the

starting position is already at or beyond the limit, the PFS must set the

36 z/OS V1R7.0 UNIX System Services File System Interface Reference

limit-exceeded bit in the UIO and return with EFBIG. This check is done in the

PFS because of the O_APPEND case, in which it is much more efficient for the

PFS to verify the starting position.

5. Return the number of bytes that were transferred.

6. Modify the UIO cursor to reflect the file position after the operation.

Serialization: The vn_rdwr and vn_readwritev services are invoked with an

exclusive latch for both reads and writes. This is to help the PFS implement the

POSIX semantics that require atomic operations and immediate visibility to all other

processes.

Reading directories

To optimize directory reading, vn_readdir is designed to return as many entries as

possible on each call. The C run-time library deblocks the entries for POSIX

programs, to provide the sequencing that they expect.

Like vn_rdwr and vn_readwritev, vn_readdir is a UIO operation, but the

interpretation of the cursor is different. Cursor technique is described in the next

section. See also “Opening and closing files and first references to files” on page

34.

Serialization: Because the LFS obtains a shared latch for the vn_readdir operation,

there may be many users reading the same directory at the same time.

The vn_readdir output buffer is mapped by the DIRENT structure, and its format is

defined as follows:

v The buffer contains a variable number of variable-length directory entries. Only

full entries are placed in the buffer, up to the buffer size specified, and the

number of entries is returned on the interface.

v Each directory entry that is returned in the buffer has the following format:

1. 2-byte Entry_length. This length field includes itself.

2. 2-byte Name_length. This is the length of the following Member_name

subfield.

3. Member_name. A character field of length Name_length. This name is not

null-terminated.

4. File-system-specific data. If Entry_length equals Name_length plus 4 bytes,

this subfield is not present. Whenever this field is present, it must start with

the file’s inode number, st_ino, in 4 bytes.

To be XPG-conforming, the PFS must include the file’s inode number.

This subfield is not part of POSIX, but it is passed through to all programs to

use or ignore as they wish. A non-standards-conforming program may take

advantage of additional information provided by a specific PFS that it knows

about.

v The entries should be packed together. The length fields are not aligned on any

particular boundary.

An example of an entry for the name abc and inode number X'1234' is X'000B 0003

818283 00001234'.

Many applications expect entries for “.” and “..” to be returned. This is not strictly

required for standards conformance.

Chapter 2. Physical file systems 37

Successive calls to vn_readdir for a particular end user must proceed through the

directory from the point at which the last one left off. A call does not have to

account for activity that occurred “behind” its position in the directory, nor worry

about items that may be deleted from “in front” of the current position before it was

reached.

The PFS does not directly maintain positioning over successive calls to vn_readdir.

The 8-byte UIO cursor is used to specify the positioning within the directory.

Not all directories are implemented as simple linear files that hold an array of name

entries. Two continuation techniques may be used, and these must both be

supported by a PFS. These techniques are:

v Cursor technique. The cursor that is returned by the PFS in the UIO contains

PFS-specific information that locates the next directory entry. The caller is

required to preserve the UIO cursor and the entire output buffer from the last

vn_readdir, and present both of these on the next vn_readdir.

The PFS may use the cursor as an offset into a simple linear directory file,

ignoring the buffer; or it may use it as an offset into the output buffer of the last

entry that was returned. The latter approach can be used by a PFS with a

tree-structured directory, where the previous entry name is used as a key to

search for the next entry. That is, the last returned name, a 1-to-255-byte-long

text string, is really the cursor for the caller’s position in the directory. To ensure

data integrity, you have to use the Move With Source Key instruction or

osi_copyin for the entry header, and then again for the name length.

The cursor technique is used by the [for POSIX-conforming functions.

v Index technique. The index that is set in the UIO by the caller determines which

entry to start reading from. To read through the directory, the caller starts at 1

and maintains the index by adding the number of entries returned to the previous

index. The caller may jump around in the directory, and there is no requirement

that the next index be related to the last vn_readdir.

This technique views the directory as a one-based array, where the first entry

has an index of 1, the second entry has an index of 2, and so on.

The index technique is used by the Network File System and by the C/C++

run-time library for XPG-conforming functions.

The UIO contains both the cursor and index fields that are used with these

continuation techniques. The interpretation of these two fields is summarized in the

following table:

 Index Cursor Action

0 0 Start reading from the first entry.

0 M Use the cursor value to resume reading.

N 0 Start reading from entry N.

N M Start reading from entry N.

Note: 0=zero; N and M are nonzero values.

A nonzero index overrides the cursor. When both are zero or the index is 1, reading

starts from the front of the directory.

The general flow for reading a directory is:

38 z/OS V1R7.0 UNIX System Services File System Interface Reference

1. On the first vn_readdir of a sequence, both fields are zero and the PFS starts at

the front of the directory. The normal cursor value of the PFS and the number of

entries that were placed in the buffer are returned.

2. On the next vn_readdir, the caller specifies whether the cursor technique or

index technique is being used to proceed through the directory. The PFS

positions itself in the directory based on the technique used, reads more entries,

and returns its normal updated cursor value and the number of entries that were

placed in the buffer.

The PFS must always return an updated cursor value, even if the index

technique is being used. Some callers may switch between techniques, as the

C/C++ run-time library does for the seekdir() function.

3. In most cases, the caller continues in this way until the directory is exhausted.

4. The application can reset the directory stream to the beginning, but this action is

not passed through to the PFS. The next vn_readdir simply has both cursor and

index values of zero. The application can also begin reading from any desired

entry.

The Move With Destination Key machine instruction or the osi_copyout or

osi_uiomove services must be used to write to the user’s buffer.

The end of the directory stream is indicated by the PFS in two different ways:

v A Return_value of 0 entries is returned. This must be supported by the PFS for

cases in which a vn_readdir is issued and the position is already at the end of

the directory.

v A null name entry is returned in the output buffer. A null name entry has an

Entry_length of 4 and a Name_length of 0—for example, X'00040000'.

This would be the last entry in the buffer, when the directory end has been

encountered on a call and there are at least 4 bytes left in the buffer.

A PFS that supports this indicator helps the caller to run faster. A small directory

may be read in only one operation, because the caller can detect that a second

call is unnecessary.

Note: POSIX allows open() and read() from a directory, but it only specifies that

these operations do not fail with an error. The PFS cannot tell whether a

vn_open is from an open() or from an opendir(), but read() results in a

vn_rdwr while readdir() results in a vn_readdir. The PFS is free to support

vn_rdwr as a traditional UNIX system would, or to just return zero bytes on

every operation. The X/Open Portability Guide, Version 4, Issue 2 allows the

EISDIR error to be returned for read(). The LFS ensures that only reading is

allowed.

Getting and setting attributes

The PFS is responsible for storing file attributes with its files. POSIX users can read

these attributes with such functions as stat(), and set various attributes through

such functions as chmod(). A VFS server does the same things with v_getattr()

and v_setattr().

All of this is passed through to the PFS when the LFS calls the vn_getattr or

vn_setattr service with the ATTR structure (BPXYATTR). The ATTR structure is the

file attribute interface between the LFS and the PFS. It contains all the fields of the

POSIX STAT structure, plus z/OS UNIX extensions that the PFS may support if it

can.

Chapter 2. Physical file systems 39

A file’s attributes are logically split between the security-related and

non-security-related attributes. The security-related attributes are kept in the file

security packet, IRRPIFSP, or FSP for short. The FSP is stored with the attributes

of the file by the PFS, but it is created and changed only through SAF-defined

routines. The FSP contains the file’s mode bits, UID, and GID; it may also contain

other information that is defined by the security product.

The FSP is the file attribute interface between the PFS and SAF. Refer to “Security

responsibilities and considerations” on page 12 and “Creating files” on page 32 for

more details on SAF and the FSP.

Serialization: The vn_getattr service is invoked with a shared vnode latch, and the

vn_setattr service with an exclusive latch.

vn_getattr and vn_setattr do not require vn_open, although the file may be open for

read or write at the time of these calls. Reads and writes would not be in progress

at the time of the get or set.

All times in the ATTR structure are specified in POSIX format, which is “Seconds

Since the Epoch” (00:00:00 January 1, 1970, Coordinated Universal Time). The

PFS may keep time values internally in any format, but they must be in POSIX

format across the LFS-PFS interface.

The ATTR structure’s header is initialized with the ATTR’s length before any get or

set call.

The vn_getattr protocol is as follows:

1. All ATTR fields that are supported by the PFS are returned.

2. To account for different release levels, the PFS should zero out the area and set

fields it understands only up to the minimum of the input area’s length (from the

ATTR length subfield) and the PFS’s native ATTR length (the one it was

compiled with). The input area’s ATTR length subfield should be updated to

reflect the amount of data that is returned or zeroed out.

A simple way to do this is to construct a local ATTR structure and copy this,

truncating it if necessary, to the input ATTR.

The vn_setattr protocol is as follows:

1. More than one attribute may be changed on a single vn_setattr call, and each

settable field in the ATTR structure is conditionally and individually set. Bit flags

are set by the LFS in an ATTR flag area to indicate which fields from the ATTR

structure are being set.

v In general, if a change bit is on, the PFS updates the corresponding file

attribute from the value that is passed in the corresponding ATTR field.

v Security fields. For each security-related field, such as mode, owner, or

audit, that is being changed, there is a corresponding SAF routine that the

PFS calls to actually make the changes in the FSP. This allows the security

product to do permission checks and security auditing, or other necessary

security-related processing.

v Time fields. Two bits are defined for each time field. The first bit indicates

that a change is to be made, and the second bit indicates whether to use the

corresponding ATTR time field’s value, or if the current time of day is to be

generated and stored by the PFS.

40 z/OS V1R7.0 UNIX System Services File System Interface Reference

Non-security fields may still have access control defined for them. This means

that SAF is called to see if the user has permission to make the change, but the

PFS does the change.

2. The PFS should ensure that either all changes or no changes are permanently

recorded for a single vn_setattr call.

3. To account for different release levels, the PFS must not refer to fields beyond

the input ATTR’s length, as specified in its length subfield.

Note: To optimize performance for VFS servers, several of the vnode operations,

such as vn_lookup and vn_rdwr, pass an ATTR structure pointer in the OSI

structure and expect an implicit vn_getattr to be performed at the end of the

current operation. If the PFS cannot support this, the LFS calls vn_getattr

after the operation in question. This flow has poorer performance when

accessing files owned by this PFS.

File tags

The file tag is a file attribute that identifies the character set of the text data within a

file.

It is not expected that the PFS will use file tags, but if the PFS supports its own

conversion capability, it may have to take file tags into consideration now that the

LFS is also doing conversions. For example, NFS Client will fail vfs_mount if both

the LFS TAG() parameter and the NFS PARM(XLATE()) parameter are specified.

The following headers are used by both the PFS interface and the VFS Server

functions v_getattr() and v_setattr().

In C header BPXYVFSI:

 The following ’SetAttr Change Flag’ is added:

 BIT at_charsetidchg :1; /* File Info Set */

The following is added to the _BPX_MNTE2 form of the s_mnt struct:

 char me_filetag[4] /* file tag */

In C header BPXYPFSI:

 The following is added to the s_mtab structure:

 char mt_tag[4]; /* TAG() Parameter */

Using daemon tasks within a PFS

If the PFS needs to invoke functions that cannot be performed in a cross-memory

environment, it must make use of other tasks to perform these functions. To use

these daemon tasks the PFS must, at a minimum:

1. Attach these tasks and

2. Communicate with them

Several services are provided to make this easier. They are:

v osi_kmsgctl

v osi_kmsgget

v osi_kmsgrcv

v osi_kmsgsnd

v osi_thread

The osi_thread service is available only to PFSs that are running in a colony

address space.

Chapter 2. Physical file systems 41

The PFS can attach these tasks via the MVS ATTACH service from its initialization

task, or it can use the osi_thread service. The osi_thread service attaches a task in

the PFS’s address space that runs in primary mode. The initial module on this task

is a C Main function that fetches the module that is specified by the invoker using

the C/C++ fetch() function, and then calls it. When called on this task, or thread,

the specified module can perform a single function and return; or it can service

work requests by the PFS until the PFS terminates. In the latter case, the

osi_thread service is used to attach a PFS daemon task.

When attached, these tasks need to communicate with the PFS functions that are

invoked by the LFS. One way these processes can communicate is through

message queue functions that are provided by the osi_kmsg services in the list

above. For descriptions of these services, see Chapter 6.

Exporting files to a VFS server

For a VFS server to access files that are owned by a PFS on the same system, the

following support is necessary in the PFS:

v Its file objects must be visible in the file hierarchy. This is the same as saying

that the PFS supports vfs_mount and vn_lookup, as described earlier in this

chapter.

v Each file must have a unique and persistent file identifier (FID). This is 8 bytes

long, and is usually made up from the file’s 4-byte st_ino value and a 4-byte

uniquifier. The uniquifier must be constructed by the PFS if it reuses file st_ino

values, so that the full 8-byte FID is unique and never reused.

The FID must persist over PFS restarts and even full-system IPLs. A VFS

server’s client may access a file days after it has obtained the FID.

v The FID must be returned in all ATTR structures that are returned.

v The PFS must be able to look up a file by its FID reasonably efficiently. The

vfs_vget operation must be supported to convert a FID value to a vnode-inode

pairing. This is similar to vn_lookup, except that a FID within a file system is

looked up, rather than a name within a directory.

v Access checking on read/write must be supported, as discussed in “Opening and

closing files and first references to files” on page 34.

v vn_readdir must not require vn_open and vn_close.

v For better performance, the PFS should support:

– Implicit vn_getattr on any operation that passes a nonzero ATTR pointer in the

OSI structure.

– Sync-on-write, when that bit is on in the UIO. (This eliminates the need for a

separate call to fsync.)

– Real-page support with DATOFF moves for memory-mapped files.

Porting note

The vn_fid operation is not used to convert a vnode to a FID. The combination

of returning the FID in the ATTR structure and implicit vn_getattr on many

operations is much faster for VFS servers.

When a VFS server’s client mounts part of the file hierarchy, it really only

obtains tokens to a directory and the directory’s file system. It is not a mount

like that performed for the MOUNT command, and the PFS does not receive a

vfs_mount or any indication that it occurred. The first call from a VFS server

that the PFS would see is likely to be a vfs_vget, vn_lookup, or vn_readdir.

42 z/OS V1R7.0 UNIX System Services File System Interface Reference

Select

A PFS should consider supporting the vn_select operation if data for a read-type

operation may arrive asynchronously when no read has been issued; or if buffers

for a write-type operation are rationed and are therefore sometimes not immediately

available (require a WAIT).

The LFS answers READY for any select status requested from a PFS that does not

support vn_select.

See “Select/poll processing” on page 45 for more details.

PFS interface: Socket PFS protocols

Activating a domain

NETWORK statements in the BPXPRMxx parmlib member that is used to start

z/OS UNIX assign socket domains, or address families, to the socket PFSs.

The NETWORK syntax is:

NETWORK TYPE(file_system_type)

 DOMAINNAME(domain_name)

 DOMAINNUMBER(domain_number)

 MAXSOCKETS(number)

where:

v TYPE identifies the PFS that supports this domain. This operand must match the

TYPE operand that is used on the FILESYSTYPE statement that defined the

PFS.

v DOMAINNAME specifies the domain, or address family, name. The AF_UNIX

and AF_INET domains are supported by IBM-supplied socket PFSs.

v DOMAINNUMBER specifies the numeric value of the domain that is passed by

programs that call socket(). The values that are supported for this field are

defined in socket.h.

v MAXSOCKETS specifies the maximum number of currently active sockets that

are to be supported.

The parameters just described are passed to the PFS on the vfs_network operation.

During vfs_network the PFS is expected to:

1. Activate support for this domain.

2. Optionally return an 8-byte token that is saved by the LFS and used on all

subsequent VFS and vnode operations. This token is typically the address of

the PFS’s domain block.

When a user calls socket(), the first parameter is a domain number. The LFS

routes this request to the appropriate PFS with a call to vfs_socket.

The NETWORK statement is analogous to the MOUNT statement that is used by

file-oriented PFSs.

See z/OS MVS Initialization and Tuning Reference and the description of the

NETWORK statement of BPXPRMxx in z/OS UNIX System Services Planning for

more information.

Chapter 2. Physical file systems 43

Creating, referring to, and closing socket vnodes

The PFS creates vnodes by calling osi_getvnode, which is one of the OSI services

in the OSIT vector table that is passed to the PFS during its initialization.

Sockets are created by user calls to socket() and accept(). The corresponding

vnodes are created during vfs_socket and vn_accept, respectively. vfs_socket

creates a socket, and if that socket is connected, a stream session is established to

another socket that is created by vn_accept. socketpair() generates a special case

of the vfs_socket call that creates two connected sockets. This is similar to the

pipe() function.

During vfs_socket and vn_accept, the PFS is expected to:

1. Set up its socket support and build an inode.

2. Call osi_getvnode to create a vnode.

3. Return the vnode token that was returned by osi_getvnode.

The LFS builds the file descriptor, which is also called a socket descriptor, that is

the output of the socket() and accept() functions.

Sockets do not have a name in the file hierarchy; consequently, they cannot be

opened by POSIX users or exported by VFS servers.

The user program makes socket calls on the file descriptor, and the calling

parameters are generally passed straight through to the PFS by the LFS.

Socket descriptors can be inherited over fork(), and they can be duplicated with

dup(). The LFS manages this sharing; the PFS is not aware of how many active

references to a socket there are.

Eventually the program calls close() for its socket descriptors. After all active

references to the socket vnode-inode are closed, the LFS calls vn_close. Because

sockets cannot be opened like files, the PFS receives only a single vn_close for

any socket.

During vn_close, the PFS severs the user’s socket session.

After the vn_close, the LFS calls vn_inactive for the final cleanup of the

vnode-inode relationship.

During vn_inactive, the PFS is expected to:

1. Disassociate the inode from the vnode.

2. Perform any inode cleanup that is desired.

After the call to vn_inactive, the LFS frees the vnode unless the PFS reports a

problem through a bad return code.

Porting note

Because sockets cannot be reused after vn_close, the PFS can combine its

close and inactive processing in vn_close, and choose not to support

vn_inactive. Nonsupport is not considered a failure of vn_inactive.

44 z/OS V1R7.0 UNIX System Services File System Interface Reference

Reading and writing

The five variations on read/write—vn_rdwr, vn_readwritev, vn_sndrcv,

vn_sndtorcvfm, and vn_srmsg—are all UIO operations, and are described in

“Reading from and writing to files” on page 36.

The UIO contains additional fields for the socket-specific buffers that are used on

some of these calls.

During these read/write calls, the PFS must:

1. Move the data using Move With Source Key or Move With Destination Key, as

appropriate. The osi_copyin and osi_copyout services can be used to move

data areas between the user and kernel address spaces. The osi_uiomove

service can be used to move data areas based on the UIO structure for vn_rdwr

and vn_readwritev.

2. Return the number of bytes that were transferred.

Serialization: All five operations are called with an exclusive latch for writing. All

five operations are called with an exclusive latch for reading, with the exception of

vn_rdwr and vn_readwritev, which may be called with a shared latch for reading if

the PFS has specified shared read support for the file being read. The LFS defaults

to exclusive latching for both reading and writing, to help the PFS implement the

POSIX semantics of atomic operations and immediate visibility to all other

processes. This latching can be turned off if it is not needed by the PFS. Refer to

“LFS-PFS control block serialization” on page 23 for more details.

Getting and setting attributes

Socket descriptors are eligible for fstat(), so sockets can be called for vn_getattr.

The PFS should consider supporting this operation and returning some information

in the ATTR structure. At a minimum, you could return: the file type, permission bits

of 777, the current time for the time values, the devno as passed by vfs_network,

and an inode number for the socket that is unique for this socket at this point in

time.

Note: Some programs use fdopen() with a socket descriptor, and this function does

an fstat() under the covers.

Generally, a program cannot set any attributes of a socket, so the PFS does not

have to support the vn_setattr operation.

Select/poll processing

An application program calls select() or poll() with a list of file descriptors and the

events that are to be waited for. The file descriptors can represent files, sockets,

pipes, or terminals; they are all referred to as “files” in this discussion. The events

that can be waited for are: ready for reading, ready for writing, and exceptional

conditions. Because a poll() is converted into a select() call by the time the request

reaches the PFS, for this discussion only select will be discussed.

There are two operations that can be called to handle the select request: vfs_batsel

and vn_select. The vfs_batsel operation is useful for a performance boost; it does

not have to be supported. If a PFS supports the vfs_batsel operation, a single call

is made to that PFS with an array of information about its files. If a single descriptor

is requested, or the PFS does not support vfs_batsel, the vn_select operation is

called for the owning PFS for each file specified.

Chapter 2. Physical file systems 45

The LFS converts the file descriptors into vnodes. If the user has multiple file

descriptors in the list that refer to the same file, such as after a dup(), or if a

particular PFS owns more than one file that is present in the list, it receives a

separate call for each file if the vfs_batsel operation is not supported. Otherwise, a

single call is made with multiple array entries for the same file. While one user is

waiting in select() for some files, another user may issue select() for some of the

same files. The LFS manages the lists and the associations of users to requests.

The PFS should just treat each vn_select or vfs_batsel array entry as a completely

separate and independent action against the file, and be prepared for more than

one select() to be active at a time for a file.

Select processing consists of two phases, called Query and Cancel, which are

identified by a parameter on the select call. Each file may be called for both phases

or just for Cancel. When a user specifies a timeout value of 0, the LFS skips the

Query phase and goes right into the Cancel phase.

The LFS passes a select token to the PFS with each vn_select or vfs_batsel array

element call. The select token uniquely identifies a request for both phases, and

thus can be used by the PFS to correlate Queries and Cancels. This token is

unique to this single instance of vn_select(Query) being called, and is not used

again until after the corresponding call to vn_select(Cancel).

There is also a PFS_work_token available on vn_select and in each array element

of vfs_batsel that can be set by the PFS to correlate Queries and Cancels.

Note: To simplify the discussion, only vn_select is mentioned in the next section.

The only difference between vn_select and vfs_batsel is that similar

processing must occur within a loop for the array elements of the vfs_batsel

request.

Query phase

In the Query phase of select processing, the LFS queries the PFSs by calling

vn_select(Query) with the vnode that is represented by each file descriptor.

During vn_select(Query), the PFS must:

1. Return status information without taking any other action, if any requested event

is immediately available.

2. Otherwise, save the select token (16 bytes) and the Select_Options in a

select-pending structure that is chained from its inode.

The Query phase ends as soon as any PFS reports immediate status. The

remaining PFSs are contacted during the Cancel phase, so the user can receive

the most information available at this time.

The LFS may omit recalling the PFS for the Cancel phase if:

1. The PFS does not set any of the PFS_work_tokens, and

2. For vfs_batsel, status is returned in the array entries.

If the PFS is dependent on being recalled for Cancel whenever it has been recalled

for Query, it must set a PFS_work_token to some nonzero value. For optimal

performance, the PFS should not have this dependence when it is able to report

immediate status to the Query request.

If no PFS reports immediate status, the LFS waits for one of the PFSs to call

osi_selpost, or for the time limit to expire.

46 z/OS V1R7.0 UNIX System Services File System Interface Reference

Event occurrence: Eventually an event occurs asynchronously within a PFS for a

given file. The PFS process or thread that handles these events notices that the file

has selects pending for it. Examples of such events are: data arriving for a read,

buffers freeing up for a write, or sessions terminating for an exceptional condition.

When such an event occurs, the PFS is expected to do the following:

1. Scan through the select-pending structures that are chained from the inode for

those that are waiting for this type of status.

The PFS must serialize this with its own processing for Cancel; see “Cancel

phase.”

2. For each pending select that is satisfied:

a. The PFS removes the select-pending structure, or marks it as “posted”. The

PFS must ensure that it never calls osi_selpost more than once for a

particular vn_select(Query) request or select token.

b. The osi_selpost routine is called with the select token saved during the

Query phase.

The osi_selpost routine uses the select token to find the waiting process and thread

and post it.

Note: The identity of the event that occurred is not passed to osi_selpost. This

information is picked up by the LFS during the Cancel phase.

Cancel phase

The LFS goes through the Cancel phase by invoking vn_select(Cancel) for each file

descriptor when:

v One of the PFS events has occurred and osi_selpost is called

v Any PFS reported status during the Query phase

v The timeout value expires

Note that if a PFS reported status during the Query phase, the loop that was doing

the queries is terminated; therefore, a cancel request may be received by a PFS

even though no query was done.

During vn_select(Cancel), the PFS is expected to do the following:

1. Scan the pending-select structures that are chained from the inode for one with

a matching select token. If one is found, it is removed so that osi_selpost is not

invoked for that select token after the PFS returns from this vn_select(Cancel)

call.

Note: It is the PFS’s responsibility to serialize the cancellation of a pending

select with its asynchronous event handler, which may be attempting to

call osi_selpost. It is critical that osi_selpost never be called for a

particular select token after the PFS returns to the LFS from a call to

vn_select(Cancel) for that same select token.

It is not unusual for the PFS not to find a pending select to be canceled, as it

could have been already removed by the event handler, or this PFS may not

have been queried in the first place.

2. After the PFS ensures that the select is no longer pending, it checks for the

requested status and returns this information to the LFS.

The LFS collects status from all of the files and reports it back to the program that

called select().

Chapter 2. Physical file systems 47

Note: Although it is rare in practice, there is nothing to stop a user from selecting

and reading on the same socket from two different processes or threads.

Consequently, it is technically possible that an event that is reported by

select may no longer be true when the selecting program finally acts on the

information. A selecting program may not act on the information, but pass it

off to another process to handle. Therefore, reporting back on select does

not reserve the data or buffers for the caller; it merely reports the status of

the file at that time.

Common INET sockets

Common INET sockets PFS structure

The Common INET layer (CINET) is inserted between the LFS and a sockets PFS

to allow multiple AF_INET transports to be used by a single application socket. A

sockets PFS may be attached directly to the LFS when it is the only AF_INET

transport on the system, or attached through the CINET layer when it is one of

several. To be attached to CINET, the PFS must implement the “master socket” and

support several additional ioctl command types, as described in this section. The

interface to the PFS is the same in both cases. Once the additional support for

CINET is written, the PFS does not have to distinguish between the two cases.

When Common INET is used, the sockets file system is initialized by the

SUBFILESYSTYPE statement in the parmlib member, instead of by the

FILESYSTYPE statement, which initializes the Common INET support. The

operands of the SUBFILESYSTYPE statement are similar to those for the

FILESYSTYPE statement.

The general model is that of a sockets PFS that is split into two pieces: a PFS layer

that runs in the kernel address space, and additional programming that runs in a

separate address space and that actually controls the transport interface to the

network. For the purposes of this discussion, the PFS layer piece will be called the

transport driver (TD) and the separate address space piece will be called the

transport provider (TP).

The transport driver is started by z/OS UNIX, as a PFS, and communicates with the

transport provider through its own internal mechanisms, usually by a space

switching program call (PC).

The transport provider (such as TCP/IP) is started independently, and

communicates with the transport driver through the master socket.

48 z/OS V1R7.0 UNIX System Services File System Interface Reference

A TD/TP that is structured entirely within the PFS in the kernel address space still

has to establish the master socket and pass the minimum ioctl commands to run

under the CINET layer.

The master socket

The master socket is used to communicate between the transport provider and both

the Common INET layer and its own transport driver. It is used mostly for

initialization and, potentially, for later dynamic route updates. If the TP ever has to

initiate a message to the TD (for instance, due to an asynchronous configuration

update), it can do so over the master socket.

v The master socket is created by the transport provider with the standard socket()

C function or the BPX1SOC/BPX4SOC callable service, by specifying AF_INET

for the Domain and -1 for the Protocol parameters.

This builds a session from the TP to the CINET layer.

The TP address space must be defined to RACF as a z/OS UNIX user with a

UID of 0.

v The only functions that are used with the master socket are ioctl and close.

Most of the ioctl command codes that are used with z/OS UNIX are nonstandard,

so these ioctls must be issued with the w_ioctl() C function or the

BPX1IOC/BPX4IOC callable service.

Application

PreRouter

Master Socket

Logical File System

Common INET Layer

.

.

.

.

.

.

.

.

.

TD1 TD3TD2

TP1 TP3TP2

Figure 5. Common INET sockets PFS structure

Chapter 2. Physical file systems 49

The socket can be closed with either close() or BPX1CLS/BPX4CLS.

v The first thing that flows on the master socket must be an SIOCSETRTTD ioctl to

connect the socket to a specific transport driver. This ioctl is also known as the

left bookend, signifying the start of TD–TP initialization. On the call, the

Argument_length should be specified as 8, and Argument should refer to an

8-byte area in which the TD name is filled in. For more information about the

interface to ioctl, refer to “vn_ioctl — I/O control” on page 154.

The vfs_socket request is issued at this point to the specified TD, which builds

the normal socket support between the LFS and PFS, but does not propagate

this session to the TP.

The SIOCSETRTTD command is then passed on to the TD with an ioctl call.

Note: The TP must know the name of its own TD in order to select it with

SIOCSETRTTD. This name was specified with the NAME parameter of

the SUBFILESYSTYPE statement that started the TD, and is passed to

the TD when it is initialized. There are several ways to make this name

known to the TP. It could be a product-specified constant value; the value

could be configured into the TP through its externals; the TD could pass

the name to the TP if it starts the PC session first; or the TD could store

the name with the MVS Named Token Services, where the TP would

retrieve it.

v Subsequent ioctls are then sent from the TP to the TD to perform

product-specific initialization, as necessary. For instance, these could drive the

TD to establish the PC session to the TP. These ioctl calls can specify

application-defined commands, or use existing command definitions. The ioctl

command values that are used must not conflict with any of the commands that

are discussed here, or any that are used by the prerouter.

These commands pass through z/OS UNIX without any interpretation.

Note: If the PFS is designed to run directly attached to the LFS, it has already

solved the problems of initialization between the TD and TP. This does not

have to change when it is attached through CINET. Only the first and last

ioctl commands discussed here are required on the master socket.

v After any product-specific initialization is finished, an IOCC#TCCE ioctl command

is sent by the TP to notify CINET that this file system is ready for business. This

ioctl command is also known as the right bookend, signifying the end of TD–TP

initialization. For this command, no other specific data is required, so the

Argument_length can be zero.

This command is also passed on to the TD.

At this time, the transport is considered to be active. The prerouter gathers

configuration information from the transport and applications that had used the

SO_EioIfNewTP socket option receive notification that a new transport is

available for use. This notification is performed by failing any socket accept or

receive type calls with a return code of EIO, after which the application closes

that socket and opens a new socket to pick up the new transport.

If the transport is not yet ready to accept new socket requests, the notification

phase can be delayed. If the argument length for IOCC#TCCE is four bytes and

the argument contains a value of one, this signifies a delay and the

SO_EioIfNewTP notification phase will be skipped. The transport must later send

another IOCC#TCCE ioctl command with a value of two to perform just the

notification phase.

v At this point the prerouter will start its conversation with the TD–TP on a separate

socket session, see “Common INET prerouting function” on page 51.

50 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|
|
|

|
|
|
|
|
|

Ioctls that flow on the master socket to the TD are never passed through to the TP,

because that is where they came from. Some of the ioctl commands are intended

only for the Common INET layer, and these are not even passed on to the TD.

However, the TD should be coded to ignore the ioctl commands that are intended

for the Common INET layer, because when it is connected directly to the LFS it will

receive these requests. The TP could also be configured to know how the TD is set

up within z/OS UNIX and process accordingly, but this is usually not worth the extra

effort and externals.

The master socket is left open for the duration of the transport provider. If this

socket is closed, the prerouter assumes that the transport provider has terminated.

This socket may also be needed later for dynamic route updates, and it can be

used within the TD/TP recovery design. If the TP abnormally terminates, the master

socket for it is closed. The TD sees this as a vn_close, at which point it can take

whatever recovery actions may be necessary. Thus, a resource manager for the TP

and the code to notify the TD are not necessary solely for the purpose of letting the

TD know when the TP crashes.

The constants for the various ioctl commands that are used during initialization are

defined in BPXYPFSI.

Common INET prerouting function

The Common INET support allows an installation to connect up to 32 different

instances of TCP/IP or other AF_INET physical file systems. Application programs

that use sockets do not need to change any code to take advantage of the multiple

AF_INET file systems.

Supporting multiple AF_INET physical file systems and providing a single file

system image to the user means that the Common INET must perform a set of

management and distribution functions that govern how a socket behaves with

multiple file systems. A fundamental requirement for distributing work across

multiple file systems is an understanding of the IP configurations of each file

system. The IP configurations are needed to determine which file system should

handle a bind() to a particular home IP address, a connect(), a sendto(), and so

forth.

When the Common INET processes a socket request that requires it to select only

a particular file system based on an input IP address from a user, the Common

INET uses its copy of each file system’s IP configuration to select the correct file

system to process the user’s request. Copies of the IP configurations are

maintained by the Common INET internally, and are only used for “prerouting” a

socket call to the correct file system. The file system that was selected performs all

of the official file system functions, such as routing, once the socket request

reaches the file system from the Common INET.

Each file system that is connected to the Common INET must provide a copy of its

internal IP routing table. An ioctl is issued to each transport provider (TP) as part of

the PFS initialization. This allows the Common INET function to query the routing

tables for that file system. Once the Common INET prerouter function has

successfully retrieved and stored routing information from a particular file system,

message BPXF206I is issued to the hardcopy log. Message BPXF206I is also

issued whenever a file system refreshes its routing table. For example, IBM’s

TCP/IP may refresh its routing tables as part of the OBEYFILE command. Message

BPXF207I is issued to the hardcopy log whenever the Common INET deletes

Chapter 2. Physical file systems 51

internal routing information for a file system. When the connection with a specific

file system is severed, the Common INET routing information for that file system is

deleted.

Limitations of common INET-attached PFS IP configurations

System programmers and network administrators should be aware of the following

information about the common INET prerouting function:

1. Two or more file systems may contain home IP addresses on the same network

or subnetwork. However, load balancing across file systems is not done. If a

user has not done a bind() to a home address, the same file system is selected

for all subsequent sendto()s, even if there are other transport providers with

routes to the same destination.

2. Two or more file systems may contain a route to the same destination. Again,

load balancing across the file systems is not performed.

3. Metrics for network routes: If two or more transports maintain network routes to

the same destination network, metric information is needed from each transport

in order to correctly select the best route. For IBM’s TCP/IP, this is best

accomplished when each TCP/IP is running with a dynamic routing daemon

(OMPROUTE). Statically defined indirect routes (routes to destinations that do

not reside on a transport’s directly attached links) do not provide adequate

metric information to select the shortest route to a destination network when two

or more transports maintain indirect routes to the network.

In cases in which two or more file systems maintain duplicate destination

network addresses and not all file systems provide metric information, selection

of the file system to process a request is unpredictable. Generally speaking, the

file systems with metric information are selected because of implementation

details.

4. In the event that two or more file systems contain network routes with no metric

information or duplicate metrics, selection of a file system to process the

request is as follows:

a. If one of the file systems with a route to the destination is the default file

system as specified in the BPXPRMxx parmlib member, the default file

system is selected.

b. Otherwise, the file systems are selected in the order in which they were

defined in the BPXPRMxx parmlib member.

5. Host-defined routes are always searched before network routes.

6. If a file system severs its connection, all routing information for the severed file

system is deleted. If the severed file system maintained duplicate home or

network routes, these routes are deleted. Subsequent requests for the duplicate

routes are routed to the remaining file systems.

7. If two transport providers have connections to the same network and two

applications that are running on the same MVS start communicating with each

other, performance may not be optimal. If for some reason the two applications

bind to different transport providers, the external network is used, rather than

the Common INET local INET support. Therefore, it is suggested that

applications use a method analogous to gethostid() to get the IP address of

themselves and bind to the address that is returned from the gethostid(). This

method ensures that the default transport provider is selected. The local INET

support works only with the default transport provider.

Initialization for an AF_INET (IPV4) transport driver

When a transport driver is being initialized, the prerouter is notified of the TD’s

arrival. The prerouter performs the following functions:

52 z/OS V1R7.0 UNIX System Services File System Interface Reference

1. Opens a socket from the kernel address space. This is not the master socket,

but a regular user socket that is initiated through the z/OS UNIX socket

interface.

2. Issues an ioctl SIOCGIFCONF to get the list of home interfaces maintained by

the file system instance and adds them to the home IP table.

3. After all of the home routes have been processed, issues an ioctl with the

SIOCGRTTABLE function code. This gets the file system host and network

routing information in a table format. The mapping for this request is found in

ioctl.h.

4. Places the routes from the SIOCGRTTABLE in the host and network routing

tables managed by the prerouter. Note that the installation can give metrics in

hop counts or millisecond delays by setting the appropriate flag in the header of

the SIOCGRTTABLE structure. All metrics are converted to hop counts.

5. Closes the socket. The prerouter is now initialized for the transport driver.

Initialization for an AF_INET6 (IPV6) transport driver

When the transport driver that is being initialized is IPV6 capable, the prerouter is

notified of the TD’s arrival. The prerouter performs the following functions:

1. Opens a socket from the kernel address space. This is not the master socket,

but a regular user socket that is initiated through the z/OS UNIX socket

interface.

2. Issues an ioctl SIOCGHOMEIF6 to get the list of home IPV6 interfaces

maintained by the file system instance.

3. After all of the IPV6 home routes have been processed, issues an ioctl with the

SIOCGRT6TABLE function code. This gets the file system IPV6 host and

network routing information in a table format.

4. Places the routes from the SIOCGRT6TABLE in the host and network routing

tables managed by the prerouter. Note that IPV6 metrics are in hop counts.

5. Closes the socket. The prerouter is now initialized for the transport driver.

Route changes

The prerouter handles BSD-style route changes for the routeD add (SIOCADDRT)

and delete (SIOCDELRT) functions. When a route is added, the rt_use field is

checked for a nonzero code. If rt_use is nonzero, it is assumed to be a hop count

metric. Metrics can be changed by reissuing the SIOMETRIC1RT ioctl or setting the

rt_use field in the SIOCADDRT to the new metric value.

Route changes can be sent to the prerouter in two ways:

v When using ioctls for add (SIOCADDRT) and delete (SIOCDELRT) functions that

use z/OS UNIX sockets, z/OS UNIX automatically passes the ioctls to the

prerouter and the prerouter makes the needed updates.

Note: IPV6 capable stacks should use the SIOCADDRT6 and SIOCDELRT6

functions for adding and deleting IPV6 addresses.

v If a routing daemon does not use z/OS UNIX sockets, but uses a different

interface to a file system, the ioctls for add (SIOCADDRT) and delete

(SIOCDELRT) functions must be propagated to z/OS UNIX. The file system

needs to use the add (SIOCMSADDRT) and delete (SIOCMSDELRT) functions.

These are issued on the master socket and are denoted with ’MS’. z/OS UNIX

needs the MS, or these functions are propagated back to the file system and

there is an endless loop.

ICMP redirects are handled using the SIOCMSICMPREDIRECT ioctl.

Chapter 2. Physical file systems 53

If the file system encounters a situation where it believes that the routing

information needs to be re-synchronized, the file system can issue the

SIOCMSRBRTTABLE ioctl (or, for IPV6 capable stacks, the SIOCMSRBT6TABLE

ioctl) on the master socket. This causes the prerouter to flush the routing

information for the file system and rebuild it from scratch. If the IPV6 home

information needs to be re-synchronized, SIOCMSRBHOMEIF6 should be used.

Note: If a user does a socket request during a rebuild, the user may or may not be

able to connect with the file system. The routing table is in flux.

SRB-mode callers

z/OS UNIX supports programs that are running on SRB dispatchable units, in

addition to the more standard TCBs. This affects the PFS, as the resulting vnode

operations are also running in SRB mode.

SRB mode is even more restrictive than cross-memory mode. Additional restrictions

on the PFS include the following:

v There are no MVS WAITs; instead you have to use SUSPEND/RESUME. This

can impact some of the internal functions of the PFS that may not be easy to

modify, including task switching, lock managers, and tracing.

Note: The osi_wait/osi_post services transparently support both TCB and

SRB-mode callers.

v No TCB is available (Psatold=0). The TCB address is used by some programs to

build identifiers, or in other algorithms.

v There is no EOT or ESTAE recovery, although you can use an FRR.

Note: vn_recovery support is still available from the LFS.

v Because SRB callers do not receive POSIX signals, they cannot break out of

extended waits, as they can in the EINTR cases.

Signal-enabled osi_waits should still be set up where they are set up now,

because this also indicates that the osi_wait may be interrupted for process

termination.

The following OSI services are enabled for SRB-mode callers:

 osi_copyin

osi_copyout

osi_copy64

osi_getvnode

osi_mountstatus

osi_post

osi_sched

osi_selpost

osi_uiomove

osi_upda

osi_wait

osi_wakeup

The PFS signifies that it supports SRB-mode callers on the pfsi_srb bit that is

returned during PFS initialization. The LFS inhibits SRB-mode calls to PFSs that do

not support them.

All sockets-related vnode operations are potentially callable from an SRB, and in

the future this may be extended to file-related operations. The PFS should therefore

be made completely SRB safe.

Refer to z/OS MVS Programming: Authorized Assembler Services Guide for more

information about SRB-mode programs.

54 z/OS V1R7.0 UNIX System Services File System Interface Reference

||
|
|
|
|
|

|
|
|
|
|
|

|

|

Asynchronous I/O processing

An asynchronous capability is provided by z/OS UNIX for socket calls that may

block. These include accept, connect, select, poll, and the five pairs of read/write

type functions. These services are provided asynchronously to programs through

the asyncio callable service. Refer to z/OS UNIX System Services Programming:

Assembler Callable Services Reference for details.

Asynchronous I/O processing between the LFS and PFS is implemented with a

two-pass technique using the regular vnode operations, such as vn_accept and

vn_rdwr:

v Part 1, which is indicated by a bit in the Osi structure, starts with the beginning of

the normal vnode operation and continues up to the point at which the PFS

would call osi_wait to block. The PFS returns to the LFS instead of waiting.

When the I/O can be completed, the PFS calls the osi_sched service at the point

at which it would call osi_post for a blocked operation.

v Part 2, which is indicated by another bit in the Osi structure, continues from the

point after which osi_wait would have been called through the end of the

operation.

These two stages are covered in detail in the next sections.

Related services

Two special osi services are used in asynchronous I/O processing:

v osi_upda, which is called during Part 1 to pass a PFS token to the LFS. Refer to

“osi_upda — Update async I/O request” on page 429 for specifics.

v osi_sched, which is called to drive Part 2 when the I/O can be completed. Refer

to “osi_sched — Schedule async I/O completion” on page 410 for specifics.

The vn_cancel service is a special vnode operation that is used to cancel an

outstanding request. Refer to “vn_cancel — Cancel an asynchronous operation” on

page 128 for specifics.

The vnode operations that can be run in two passes are:

 vn_accept vn_rdwr vn_sndtorcvfm

 vn_connect vn_readwritev vn_srmsg

 vn_sndrcv

Impact on initialization

The PFS signifies that it supports asynchronous I/O on the pfsi_asyio bit that is

returned during PFS initialization. To support asynchronous I/O, the PFS must also

support SRB-mode callers, because Part 2 runs from an SRB, and it must support

vn_cancel. The LFS inhibits asynchronous calls to PFSs that do not support them.

Waits that are avoided

Asynchronous I/O is intended to avoid long waits only. These are blocking,

indeterminate waits that usually depend on something from the network or an end

user. Long waits also tend to be conditional, based on the current non-blocking

mode. Short internal waits, such as lock waits for serialization, are not avoided. An

example is that of a read: you can wait for a lock to look at the inbound queue, but

if the queue is empty you cannot wait for the data.

Chapter 2. Physical file systems 55

Related OSI fields

The OSI fields that are significant to this discussion are:

v osi_asy1, which signifies Part 1

v osi_asy2, which signifies Part 2

v osi_asytok, which holds the LFS’s token on entry to Part 1 and the PFS’s token

on entry to Part 2.

v osi_ok2compimd, which indicates that the PFS may complete the operation

immediately, if possible. See “Asynchronous I/O flow details” on page 58 for

details.

v osi_compimd, which is returned by the PFS to indicate that it has completed the

operation immediately. This is valid only if osi_ok2compimd is on.

v osi_commbuff, which indicates that Part 2 of Async I/O must not occur. Within the

PFS, the changes from normal Async I/O flow are:

1. Received data can be copied directly to the user’s buffers from the PFS’s

inbound data handler.

2. osi_sched is called after the data has been copied.

3. The amount of data being returned must be supplied to osi_sched.

4. There must be no dependence on Part 2 being called.

Note: The last four fields are meaningful only when osi_asy1 or osi_asy2 are on;

they should not be referred to otherwise.

These fields are covered in more detail in Figure 6 on page 58.

Canceling an operation

The LFS attempts to cancel an outstanding operation with vn_cancel. There are two

types of vn_cancel: normal and forced.

v A normal vn_cancel only flows to the PFS between Part 1 and Part 2, and is

used to get requests off the waiting, or blocking, queues in the PFS. If the

request is not currently on a waiting queue, nothing is done. If the request is

found, it is removed from the queue and failed with ECANCELED.

v A forced vn_cancel is used during process termination of the original requestor. It

can be sent logically at any time, but the PFS will already have abnormally

ended and gone through recovery if the request was in Part 1 or Part 2 at the

time the process terminated. There is no Part 2 after a vn_cancel force, so the

PFS must do any necessary cleanup during the vn_cancel.

Refer to “vn_cancel — Cancel an asynchronous operation” on page 128 for more

information.

Responsibilities for the semantics

The semantics for the asyncio function are split between the PFS and the LFS.

Some of the features whose support might be ambiguous are discussed here. Refer

to aio_suspend (BPX1ASP, BPX4ASP) — Wait for an asynchronous I/O request in

z/OS UNIX System Services Programming: Assembler Callable Services Reference

while reading this section.

The LFS must handle the following:

v The aiocb structure. The interface to the PFS is through the regular vnode

operations, such as vn_rdwr and vn_sndrcv.

56 z/OS V1R7.0 UNIX System Services File System Interface Reference

v The returned information. The PFS should return 0 for a successful Part 1, and

the normal functional values from Part 2. In particular, the LFS handles the

EINPROGRESS return_code.

v Scheduling the SRB and calling the I/O completion notification. This includes

calling the user exit, posting an ECB, and sending a signal.

v AioSync. This appears to the PFS as a normal synchronous operation

(osi_asy1=osi_asy2=OFF).

v AioOk2CompImd, for accept and connect. The osi_ok2compimd bit is always on

in the PFS for vn_accept and vn_connect, so the PFS can always complete

these operations immediately without calling osi_upda or osi_sched.

osi_compimd should be turned on if the PFS does happen to complete these

operations immediately.

v The select and poll functions, which are already asynchronous with respect to the

PFS. The PFS continues to call osi_selpost for the vfs_batsel and vn_select

operations.

The PFS must handle or contribute to the support of:

v AioOk2CompImd, for reads and writes, through support for osi_ok2compimd.

Even when the PFS is able to complete a read or write type of operation

immediately, it must still call osi_sched whenever osi_ok2compimd=off. See

“Asynchronous I/O flow details” on page 58 for details.

v AioCallB4 and deferred buffer allocation, by not requiring the presence of the

user’s data buffers during Part 1, unless osi_ok2compimd=on; and by passing

the length of data that is available to be received to osi_sched.

v The ECANCELED Return_code, by failing a request with that return code when

the request has been removed from a waiting queue because of vn_cancel. The

race condition between vn_cancel and data arrival can only be resolved by the

PFS.

Asynchronous I/O flow diagram

This diagram describes the general flow of an asynchronous operation, noting those

parts of the interface that are specific to its asynchronicity, and the significant

design points within the PFS that the LFS is dependent on. As it is based on a

somewhat generic PFS model, it may not match any specific implementation, and a

PFS may have to do some work to accommodate it. PFSs that have an associated

separate address space should be able to fit this model. These design points can

be met either in the kernel address space or in the associated address space.

Chapter 2. Physical file systems 57

Asynchronous I/O flow details

This flow is discussed as an addition to an existing PFS design that already

handles synchronous blocking and non-blocking socket operations.

 1. BPX1AIO/BPX4AIO (asyncio) is called with an Aiocb structure. The Aiocb

contains all the information that is needed to do the specific function.

 2. The LFS builds an Async I/O Request Block (RqBlk). The PFS has signified

support via the Pfsi_Asyio PFSinit output bit. The regular vnode operation for

the function is invoked in the PFS with:

v + The osi_asy1 bit turned on to indicate Async I/O Part 1.

v + The osi_asytok field holding the LFS_AsyTok token.

 3. Part 1 in the PFS:

v The PFS builds its own Request Block. The LFS_AsyTok is saved for later

use with osi_sched(). The PFS’s PFS_AsyTok is passed back to the LFS via

USER z/OS UNIX

(1)
BPX1AIO (Aiocb)

(5)
Continue

:
:
:
:
:
:
:
:
:
:
:
:
:
:

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

(2)
Alloc RqBlk

vn_op (osi_asy1)
w/LFS_AsyTok

(4)

If failed CompImd
Clean Up

Ret (RRR)

| *** DATA
*
*
v

(6)

Event Hdlr
:
:
:

(3)
Alloc RqBlk
Save LFS_AsyTok
osi_upda (LFS_AsyTok, PFS_AsyTok)
Queue RqBlk on waiting Q *

*
If Sync

osi_wait
Else

Ret (RRR)

If Sync
osi_post

Else
osi_sched (LFS_AsyTok, RRR)

(7)
Schedule SRB
Ret If failing

Clean Up
Ret

:
:
:
:

LFS PFS

(8)
SRB

ReCall (9)
vn_op (osi_asy2)
w/PFS_AsyTok

(10)
Find RqBlk
Get Info *

*
Copy Data

From/To User
Free RqBlk
Ret (RRR)

(12)
Call Exit (Aiocb)

- Process data
- Can free buffer
- Can free AioCb

Free RqBlk

(11)
Ret (RRR)

Figure 6. Async operation flow

58 z/OS V1R7.0 UNIX System Services File System Interface Reference

osi_upda(). This identifies the request to the PFS in Part 2 and to

vn_cancel. Basic preliminary parameter and state checking can be done

here.

v The user’s read buffers are not referenced during Part 1 unless

osi_ok2compimd=ON; see the variations below. This allows the user to defer

read buffer allocation to just before Part 2. The requested length for reads is

available, even if the buffers are not.

v The PFS queues the request to await the desired event. This is essentially

the same thing that is normally done for blocking requests. Instead of calling

osi_wait(), as it would at this point for a blocking request, the PFS returns to

the LFS with the Return_value, Return_code, and Reason_code (RRR) from

queueing the asynchronous I/O. For a successfully queued request, the

Return_value is 0, and any output from the operation is deferred until Part 2.

Important PFS structures are preserved as necessary over this return and

the subsequent reentry to the PFS for Part 2.

Variations:

v If the operation fails during Part 1, the normal path is taken and, instead of

the request being queued, the failure is returned. This includes both

queueing failures and failures of the function that is being requested.

v If the operation can be completed immediately and osi_ok2compimd=ON,

the PFS can proceed as it would normally and complete the operation

synchronously. osi_compimd is turned ON to tell the LFS that this has

happened.

v If osi_ok2compimd=OFF, the PFS must make the call to osi_sched from

within this vnode operation, and proceed from Part 2 as if the data were not

immediately available. This bit is only OFF for read/write type operations. If

the PFS does not need to be recalled for Part 2 (for instance, with a short

write), it can skip the call to osi_upda. It is all right to transfer the

responsibility for calling osi_sched to some other thread, making the call

asynchronously and returning to the LFS, as long as you do not wait for

network input.

 4. The LFS returns to the caller with AioRC=EINPROGRESS; or, if it has failed or

completed immediately, cleans up and returns the operation’s results.

 5. The original caller continues. All structures and data buffers must persist

throughout the operation.

 6. Event occurrence in the PFS:

v At some point data arrives for the socket, or buffers become available, and

the request can be completed.

v The PFS notices, or responds to, this condition as it normally does. Instead

of calling osi_post(), as it would at this point for a blocked request, it calls

osi_sched() with the saved LFS_AsyTok to drive Part 2.

v For read type operations, the passed Return_Value contains the length of

the data that is available to be read in Part 2. This is an optional

performance enhancement that some applications may take advantage of. If

the length is not easily known, 0 should be passed.

v The rest of the action happens on the SRB, because user data cannot

generally be moved while it is on the thread that calls osi_post/osi_sched.

Variations:

v If the request fails asynchronously, the PFS can report this on the call to

osi_sched() by passing the failing three R’s. There will be no Part 2 if the

passed Return_value is -1, so the PFS has to clean everything up from

here.

Chapter 2. Physical file systems 59

v Alternatively, the PFS can save the results, pass success to osi_sched(),

and report the failure from Part 2. This is sometimes more convenient when

the event handler is in a separate address space and the PFS has

resources to clean up in the kernel address space. The only time

osi_sched() fails is if the passed LFS_AsyTok is no longer valid, which may

represent a logic error in the PFS. osi_sched() succeeds even after the user

has terminated, but the PFS sees vn_cancel instead of Part 2.

 7. The LFS schedules an SRB into the user’s address space and returns to the

PFS. The SRB runs asynchronously to the caller of osi_sched().

 8. The SRB runs in the user’s address space, so that the user’s data buffers can

be referenced from “home” while in cross-memory mode. This also gets the

user’s address space swapped in if necessary. The LFS is recalled to get into

the kernel address space.

 9. The LFS reconstructs the original vnode request structures. The same vnode

operation is invoked in the PFS as for Part 1, with:

v + The osi_asy2 bit turned on to indicate Async I/O Part 2.

v + The osi_asytok field holding the PFS_AsyTok value from osi_upda()

Variations:

If osi_upda was not called during Part 1, the PFS is not called for Part 2.

10. Part 2 in the PFS:

v This is running on an SRB instead of the more usual TCB, and the PFS has

to be able to handle this mode.

v From the PFS_AsyTok, the PFS is able to pick up from where it left off at

the end of Part 1 (3), when it returned to the LFS instead of waiting.

Necessary information that is related to the completing operation is obtained

in a manner similar to that in which it is obtained after coming back from

osi_wait().

v Data is moved between the user’s and the PFS’s buffers for read/write types

of operations; or the operation is completed as appropriate.

v The normal cross-memory environment has been recreated, with the user’s

buffers in home and the PFS’s buffers in primary; or it is otherwise

addressable as arranged by the PFS.

v The normal move-with-key instructions are used to protect against

unauthorized access to storage. The osi copy services are available.

v For unauthorized callers in a TSO address space, the LFS has stopped the

user from running authorized TSO commands while async I/O is

outstanding. This avoids an obscure integrity problem, with user key storage

being modified from a system SRB.

v The PFS returns to the LFS with the results of the operation and the normal

output for this particular vnode operation, such as the vnode_token from

vn_accept. The operation is over at this point, as far as the PFS is

concerned.

Variations:

v If the operation fails during Part 2, this is reported back. An earlier failure

may have been deferred to Part 2 by the PFS.

v For very large writes, the PFS may not want to commit all of its buffers to

one caller. It may instead loop, sending smaller segments and waiting in

between for more buffers. If this is the case, the PFS remains in control and

does not return from Part 2 until the whole operation is complete, that is,

until the remainder of the operation is synchronous and the PFS blocks as

necessary, as it normally does in this loop. osi_wait is convenient here, as it

accommodates SRB callers. Essentially, osi_sched() is only called when the

60 z/OS V1R7.0 UNIX System Services File System Interface Reference

first set of buffers become available and the effect is to offload the work

from the user’s task or SRB to a system SRB. The operation is still

asynchronous to the user. This ties up the SRB, but it is considered to be a

situation of relatively small frequency.

v Because SRBs are not interrupted with signals, osi_waits during Part 2

normally do not return as they do in the EINTR cases. If the user’s process

terminates, signal-enabled osi_waits return as if they have been signaled.

11. On return to the LFS, signals are sent and unauthorized exits are queued to

the user’s TCB (not shown).

12. The LFS returns to the SRB.

13. On return to the SRB, authorized exits are called and ECBs are posted. When

the user program is notified that the I/O has completed, either on the SRB or

user’s TCB, it can free the Aiocb and buffers. The operation is over, as far as

the LFS is concerned, either at the end of the SRB or after an unauthorized

exit has run on the user’s TCB.

Colony PFS PC

A PC number is established in colony address spaces that can be used from code

running in the kernel to PC into the colony. This could be used by a related PFS

that runs in the kernel or by a related file exporter’s glue exit.

The PC number is passed to the PFS in the pfsi_pfspc field during initialization.

Using this PC involves the following:

v The colony PFS must have a PC routine that will be the target of the PCs. This

routine must reside in the colony or in common storage.

v The colony PFS passes the pfsi_pfspc PC number and the address of its PC

routine to the cooperating code that runs in the kernel or otherwise makes these

values known to the kernel code that will use them.

v The kernel PC caller must place the colony PC routine address in Register 15

and invoke the PC instruction with the pfsi_pfspc value.

v In the colony, the real PC routine that was established by the LFS branches to

the address that is in Register 15.

v The PFS’s PC routine is responsible for anything that it may need, and its entry

is not much different from that of a real PC routine.

The PC is defined to be entered in the following state:

 PSW key: 0

Authorization: Supervisor state

AR: ASC mode

AMODE: 31–bit

Registers on entry:

Register Contents

0-13 As they were in the PC caller

14 A return address that can be used by the PC routine

15 The routine address as set by the PC caller

The routine does not have to save or restore any registers or state information.

This is a stacking PC.

The routine must acquire any working storage that it may need in the primary,

colony, address space.

Chapter 2. Physical file systems 61

The routine must set up an FRR or ESTAE if it needs any recovery to be run in

the colony address space. It will be officially running under an ARR (associated

recovery routine), but there will be no recovery done by that ARR.

When it has completed, the routine may either issue a PR instruction to return

back to the PC caller, or return to the address that was in Register 14 on entry;

that is, issue BR 14.

v The PC caller must beware of the colony address space terminating while it is

using the PC. If the colony address space terminates before the PC or during the

PC routine’s execution, the PC caller will abend.

Considerations for Internet Protocol Version 6 (IPv6)

Activating IPv6 on a system

IPv6 is activated on a system with a second NETWORK statement for

DOMAINNAME(AF_INET6) with DOMAINNUMBER(19), which arrives at the PFS

as a second vfs_network call. If a PFS supports IPv6, it must support both AF_INET

and AF_INET6; there are no IPv6-only stacks.

To indicate support for IPv6, a PFS must:

1. Set PfsiIpv6 on during initialization, to indicate that it can receive

vfs_network(AF_INET6).

2. Return successfully from that call.

An administrator can add the second NETWORK statement for AF_INET6

dynamically with SETOMVS RESET=. The stack is free to reject the vfs_network if

it arrives after initialization. Generally, both vfs_network calls are passed to the PFS

during OMVS startup or after a PFS recycles. The vfs_network calls for AF_INET

and AF_INET6 may be in any order.

If PfsiIpv6 has not been set, or if the vfs_network for AF_INET6 is not accepted,

IPv6 sockets are not opened to that stack. When an application opens an

AF_INET6 socket across a Common INET configuration of both IPv6-capable and

IPv4-only stacks, an AF_INET socket is opened to the IPv4-only stacks, and a

certain amount of address conversion and emulation is performed by CINET for the

IPv4-only stack. An IPv6-capable stack must do its own conversions and emulations

for any IPv4 partners that it permits on an IPv6 socket.

Common INET transport driver index

In a multi-stack configuration there can be duplication of interface indices. CINET

inserts its transport driver index, TdIndex, into the upper halfword of all output

interface indices to identify the interfaces uniquely. On input interface indices, the

upper halfword is used to select a stack, and is cleared before the information is

passed on to the stack. Each stack’s TdIndex value is passed to it in PfsiTdIndex,

but the stack does not have to do anything with the value.

For more information about the transport driver index, see the discussion of the

SIOCGIFNAMEINDEX ioctl command in w_ioctl (BPX1IOC, BPX4IOC) — Control

I/O in z/OS UNIX System Services Programming: Assembler Callable Services

Reference.

ioctl used by the C/C++ Run-Time Library

The if_nameindex(), if_nametoindex(), and if_indextoname() functions use the

SIOCGIFNAMEINDEX (Get Interface Name/Index Table) ioctl, which returns the

62 z/OS V1R7.0 UNIX System Services File System Interface Reference

Interface Name/Index Table for a PFS. The command and output arguments are

defined in the BPXYIOCC macro, and are described in the discussion of the

SIOCGIFNAMEINDEX ioctl command inw_ioctl (BPX1IOC, BPX4IOC) — Control

I/O in z/OS UNIX System Services Programming: Assembler Callable Services

Reference.

ioctls used by the prerouter

The dialog between a stack and the Common INET prerouter for IPv6 is basically

the same as the one for IPv4. The prerouter uses these ioctl commands, which are

defined in the BPXYIOCC macro:

SIOCMSADDRT6 Constant(’8044F604’x), /* Add IPV6 Route */

SIOCMSDELRT6 Constant(’8044F605’x), /* Delete IPV6 Route */

SIOCGRT6TABLE Constant(’C014F606’x), /* Get IPV6 Rte Table */

SIOCMSRBRT6TABLE Constant(’8000F607’x), /* Rebuild Rte & Home */

SIOCGHOMEIF6 Constant(’C014F608’x), /* Get IPV6 HomeIf */

SIOCMSRBHOMEIF6 Constant(’8000F609’x) /* Rebuild IPV6 HomeIf */

The associated argument structures are defined in the BPXYIOC6 macro.

ioctls used by the resolver

The resolver uses two ioctl commands to get specific information from a stack.

These command codes are defined in BPXYIOCC, and the associated argument

structures are described as follows:

SIOCGSRCIPADDR (obtain source IP addresses for an array of

IPv6 and IPv4 destination addresses)

SIOCGSRCIPADDR obtains the associated source address (by Source Address

Selection algorithm, which is part of the Default Address Selection IETF draft) for

each of the IPv6 addresses passed in an array. This information is ultimately used

to sort the IPv6 and IPv4 destination addresses, using the algorithm described in

the Default Address Selection IETF draft for destination addresses.

Argument: An array of IPv6 and IPv4 destination addresses, with a total count of

the addresses being passed. Upon return from the IOCTL invocation, the array

structure is to include a source IP address (determined by the use of the IETF draft

for Default Address Selection) for each of the array elements associated with the

destination address that is being passed. This source address is determined by the

stack, using the IETF draft for Default Address Selection. If a source address

cannot be determined for a specific destination IP address (for example, if there is

no route to the destination), a null value is placed in the array element’s IP source

address field (SisSrcIPaddr).

DCL 1 SrcIpSelect Based Bdy(Word),

 2 SisHeader,

 3 SisVersion Fixed(8), /* Version of the IOCTL interface

 */

 3 * Char(3), /* Available */

 3 SisNumEntries Fixed(32), /* Number of destination

 addresses for which a source

 address must be selected */

 2 SisIpAddrs(*),

 3 SisDestIPaddr Char(16), /* Destination IP address. Can

 contain a native IPv6 address,

 mapped IPv4 address, or an

 IPv4 compatible address */

 5 SisIpV4prefix Char(12), /* IP address prefix */

 7 SisIpV4nulls Char(10), /* Always nulls for IPv4

 compatible or IPv6 mapped

 addresses */

Chapter 2. Physical file systems 63

7 SisIpV4mapped Char(2), /* IPv6 mapped prefix */

 5 SisV4DestIPaddr Char(4), /* IPv4 address */

 3 SisSrcIPaddr Char(16), /* Associated Source IP address

 (output from IOCTL) */

 3 SisRetcode Fixed(32), /* Return code from attempt to

 obtain an interface */

 3 SisSrcAddrFlags Bit(8), /* Source IP address flags

 (output from IOCTL */

 5 SisSrcDeprecated Bit(1), /* B’1’ indicates address is

 deprecated (only applicable for

 native IPv6 addresses */

 5 * Bit(7),

 3 * Char(3); /* Available */

 DCL SrcIpSelect_Version Fixed(8) Constant(1);

SIOCGIFVERSION (determine if an IPv4 or IPv6 interface has

been configured on a TCP/IP stack)

SIOCGIFVERSION determines if a TCP/IP stack in an INET environment has a

configured IPv6 or IPv4 source address. (In this case, the loopback address is not

considered to be valid as a configured interface.) This information is needed so that

appropriate DNS queries can be made (IPv6 address records (AAAA) vs. IPv4

address records (AA)).

Argument: A four-byte area containing flags that provide the following information:

DCL 1 IfVersionInfo Based, /* SIOCGIFVERSION structure */

 2 IfVerFlags Bit(16), /* Stack flags */

 3 IfVerIPv6Interfaces Bit(1), /* Are there any IPv6

 interfaces active other than

 loopback */

 3 IfVerIPv4Interfaces Bit(1), /* Are there any IPv4

 interfaces active other than

 loopback */

 3 IfVerIPv6Supported Bit(1), /* Is IPv6 supported by this

 stack */

 3 * Bit(13), /* Available */

 2 * Char(2); /* Available */

PFS support for multilevel security

To support multilevel security, a PFS must provide the following capabilities:

v vn_link:

If a link is attempted to a character special file, and there is a security label on

the file or on the directory for the new link, the vn_link call will fail with EPERM. If

the ZCredSeclablActive flag is on, the following checks should be done:

1. If zCredSeclablRequired is on and the object has no security label, the

zCredROSeclabel should be used as the object security label for all

subsequent checks.

2. If the directory for the new link has a security label of SYSMULTI, no further

security label checking is necessary.

3. If the directory for the new link has no security label, or has a security label

other than SYSMULTI, a check for equality must be done between the

security label of the directory and the security label of the file. If the values

are equal, no further security label checking is necessary.

4. If the equality check fails, a dominance check must be made to check that

the security label of the directory and the security label of the file are

equivalent. The call to check security label equivalence should look like this:

RACROUTE REQUEST=DIRAUTH,RSECLABEL=(x),TYPE=EQUALMAC,USERSECLABEL=(y)

64 z/OS V1R7.0 UNIX System Services File System Interface Reference

where x and y are registers that contain the addresses for the security labels.

v vn_readdir:

If the ZCredSeclablActive flag is set, the following checks should be done:

1. If zCredSeclablRequired is on and the directory has no security label, the

zCredROSeclabel should be used as the object security label for all

subsequent checks.

2. If the directory has a security label of SYSMULTI, a dominance for read

should be made between the user’s security label and the security label of

each entry in the directory. The user’s security label is passed in the

ZCredSeclabel field. If the security label of the directory entry is SYSMULTI

or SYSLOW, the dominance check can be bypassed. If the dominance check

fails, the directory entry should be excluded from the output buffer. The

dominance check should look like this:

RACROUTE REQUEST=DIRAUTH,RSECLABEL=(x),ACCESS=READ,USERSECLABEL=(y)

where x and y are registers that contain the addresses for the security labels.

Notes:

1. The PFS may cache object security labels to avoid rechecking for labels that

have already passed the dominance check. A good cache is likely to result in

a single check for each unique security label per readdir call.

2. No indication will be returned from the PFS if some names were excluded

from the output buffer.

3. Discrepancy between the apparent number of entries in a directory and the

number that can be read is acceptable.

4. The LFS will not filter names based on security label when it does a readdir2

for a PFS that does not support security labels. Any PFS that supports

security labels must also support readdir2.

5. When the index method is used to read a directory, the meaning of the index

is not the relative name in the directory, but the relative name that the user

can access. For example, if the request is to return entries beginning with

entry 10, the PFS must start at the first entry and verify dominance on each

name until the 10th name that the user is permitted to see is found, and start

returning names that can be seen from that point.

v vn_readlink:

If the zCredSeclablActive flag is set, the following checks should be done:

1. If zCredSeclablRequired is on and the directory has no security label, the

zCredROSeclabel should be used as the object security label for all

subsequent checks. If this flag is on, and the resulting object security label

continues to be null because no value was provided by zCredROSeclabel,

vn_readlink should return with a failure of EACCES.

2. A dominance check should be performed between the user’s security label

and the security label of the symbolic link. The user’s security label is passed

in the zCredSeclabel field. If the security label of the directory entry is

SYSMULTI or SYSLOW, the dominance check can be bypassed. If the

dominance check fails, the vn_readlink should return with a failure of

EPERM. The dominance check should look like this:

RACROUTE REQUEST=DIRAUTH,RSECLABEL=(x),ACCESS=READ,USERSECLABEL=(y)

where x and y are registers that contain the addresses for the security labels.

v vn_setattr:

Chapter 2. Physical file systems 65

If the AttrSeclabelChg flag is set, a call to the SAF callable service IRRSSB00

should be made to set the security label for the file. The new security label is

passed in the zCredSeclabel field, which is passed to SAF. The PFS does not

have to access the new or the old security label.

PFS support for 64-bit virtual addressing

The entry environment and parameters for the vnode and VFS operations are the

same for 31-bit and 64-bit addressing. The PFS is always entered in AMODE 31,

with a 31-bit parameter list address in R1 that points to a parameter list of 31-bit

addresses. All calling parameters are below the 2-gigabyte line, although some of

these parameters may contain 64-bit addresses of areas that are above the

2-gigabyte line.

The main consideration for 64-bit addressing is the user data buffers, which may

require 64-bit addressing in the UIO, IOV, and MSGH structures. In general, the

other user parameters are copied into the kernel below the 2-gigabyte line, and

these copies are passed to the PFS.

The data length parameter for read and write-type operations with 64-bit addressing

remains 31 bits long.

Levels of support for 64-bit virtual addressing

From the point of view of the LFS, there are three levels of PFS support for 64-bit

virtual addressing: None, 64-bit supporting, and 64-bit exploiting.

v None:

The PFS has no understanding of 64-bit addresses. The LFS copies 64-bit

addressable user data to an internal 31-bit addressable buffer before it invokes

the PFS for write-type operations, and vice versa for reads.

v 64-bit supporting:

The PFS can handle 64-bit user virtual addresses, or it makes use of the OSI

services that can. It does not itself use buffers above the 2-gigabyte line or run in

AMODE 64, at least not to the knowledge of the LFS.

v 64-bit exploiting:

The PFS supports 64-bit user virtual addresses. It may run in AMODE 64 and

have its own data buffers, or even autodata, above the 2-gigabyte line. Some

considerations for these PFSs are:

– Unless otherwise specified, the OSI service routines expect to be called in

AMODE 31, with a 31-bit parameter list address and 31-bit parameter

addresses. The calling interface may have to be manually constructed below

the 2-gigabyte line.

– The SAF (RACF) services do not support 64-bit callers or addresses.

– MVS WAIT and POST services do not support ECBs above the 2-gigabyte

line.

Recommendation: A PFS should be at least 64-bit supporting, in order to avoid the

extra LFS data move that is otherwise required for high user buffers.

Indicating support for 64-bit virtual addressing

A PFS indicates support for 64-bit user virtual addressing during initialization with:

pfsi_addr64 Indicates the PFS supports 64-bit user virtual addresses in

 the UIO, IOV, and MSGH structures. PfsiAddr64 in PL/X.

66 z/OS V1R7.0 UNIX System Services File System Interface Reference

A user indicates 64-bit addressing to the PFS with the following fields and

structures:

u_addr64 Indicates that this UIO, and any associated IOV and/or MSGH

 when present, uses 64-bit addresses. FuioAddr64 in PL/X.

u_buff64vaddr A 64-bit field that contains the virtual address of the area

 being passed. FuioBuff64VAddr in PL/X.

The IOV and MSGH structures have corresponding 64-bit formats, IOV64 and

MSGH64.

When an application program in AMODE 64 calls a z/OS UNIX service, 64-bit user

addressing is assumed and is used by the LFS. This does not necessarily mean

that the 64-bit address values are actually greater than 2 gigabytes. Most 64-bit

addresses will come from C programs that have been compiled with LP64, which

makes all longs and pointers 64 bits by default, regardless of whether the program’s

heap is above the 2-gigabyte line.

osi_copy64 routine

The OSI routine osi_copy64 (“osi_copy64 — Move data between user and PFS

buffers with 64-bit addresses” on page 376) helps a PFS deal with 64-bit

addresses. It takes 64-bit virtual addresses and operates in much the same way as

osi_copyin and osi_copyout. osi_copy64 is a high-performance routine that does not

PC into the kernel. It handles 31- or 64-bit user and PFS buffer addresses for

AMODE 31 or AMODE 64 PFS callers.

Minimum 64-bit support

The minimum needed by a PFS to be 64-bit supporting is:

v If the only data moves to or from the user address space are done with

osi_uiomove, the PFS just needs to set pfsi_addr64 during initialization.

v If osi_copyin or osi_copyout are used for user buffers, the PFS must check the

FuioAddr64 flag at each of these calls, and use osi_copy64 or osi_uiomove

whenever this flag is on.

v If the PFS does its own MVCSKs and MVCDKs, it must check the FuioAddr64

flag at each of these locations and handle moves with 64-bit addresses; or call

osi_copy64 or osi_uiomove at these points. Doing your own moves is, of course,

fastest.

Specific considerations for vnode operations

The following vnode operations contain parameters that may contain 64-bit

addresses or point to structures that contain 64-bit addresses. Each of these

operations has Fuio as an input parameter, which may point to a 64-bit user buffer:

v vn_rdwr

v vn_readdir

v vn_readlink

v vn_sndrcv

v vn_sendtorcvfrom

v vn_readwritev—the IO vectors passed may be in an IOV or an IOV64 structure.

v vn_srmsg—the message header passed may be an MSGH or an MSGH64

structure.

Notes:

1. MSGH64 and IOV64 are always used together.

2. Whenever FuioAddr64 is on (and FuioRealPage is off):

v FuioBuff64Vaddr points to a buffer, an IOV64, or an MSGH64.

v A MSGH64 always points to an IOV64.

Chapter 2. Physical file systems 67

|
|
|
|
|
|

|
|

|
|
|
|

Expanded 64-bit time values

As part of the POSIX standards for 64-bit computing, known as LP64 (64-bit Longs

and Pointers), the time_t data type for file times is expanded to 64 bits in z/OS

V1R6. The current signed 31-bit data type will go negative in 2038. Because the

390 system clock will wrap in 2042, there is an issue for PFSs that store time in

STCK format.

The z/Architecture™ has a 128-bit STCKE that adds one byte to the left of the

current 8-byte format; that is, it has five bytes of “seconds”, and goes to about the

year 36765. An 8-byte POSIX time value goes far beyond that. A 9-byte time field,

or the left 8 bytes of the new STCKE, would hold any real times, and an 8-byte

POSIX format field would hold anything that could be set by a user.

C/C++ Run-Time Library support

C/C++ Run-Time Library supports old 31-bit programs and new LP64 programs with

a stat structure that contains 4-byte and 8-byte time fields for all five file time

values: the POSIX atime, mtime, ctime; and the z/OS UNIX reference time and

create time. The old fields could not be expanded in place without changing the

offset of all the following fields; new fields were therefore added to the end. When a

C program is compiled without LP64, the stat structure is generated with the POSIX

names (such as st_atime) on the 4-byte fields; and when it is compiled with LP64,

those names coincide with the new 8-byte fields. The unused fields in each compile

have dummy names that would not be referenced by the average C program.

There are two separate run-time libraries, compiled from the same source with and

without LP64, so that even the RTL will not reference both field types at the same

time.

PFS support

The kernel supports 31-bit and 64-bit programs with the same routines. The PL/X

stat structure, BPXYSTAT, has both fields generated; the new fields have new

names. BPXYATTR (“BPXYATTR — Map file attributes for v_ system calls” on page

445) also has five new 8-byte time fields:

3 AttrEndVer1 Char(0), /* +A0--- End of Version 1 --- @D2C*/

 3 AttrStat4 , /* +A0 Fourth part of the stat @DAA*/

 5 AttrLP64 , /* +A0 LP64 Versions @DAA*/

 7 AttrAtime64 Char(8), /*+A8 Access Time @DAA*/

 7 AttrMtime64 Char(8), /*+B0 Data Mod Time @DAA*/

 7 AttrCtime64 Char(8), /*+B8 Medadata Change Time @DAA*/

 7 AttrCreateTime64 Char(8), /*+C0 File Creation Time @DAA*/

 7 AttrRefTime64 Char(8), /*+C8 Reference Time @DAA*/

 7 * Char(8), /*+A0 May be AttrIno64 @DAA*/

 5 * Char(16), /* +D0 Reserved (1st consider @DAA

 space at +5C,+8D,+94) @DAA*/

 3 AttrEndVer2 Char(0), /* +E0 End of Version 2 @DAA*/

The associated 4- and 8-byte fields will usually contain the same values, until some

time in the year 2038.

The C ATTR structure in BPXYVFSI exactly matches the PL/X Attr:

 /* +A0 --- End Ver 1 --- @P5A*/

 char at_atime64[8]; /* Large Time Fields @P5A*/

 char at_mtime64[8]; /*@P5A*/

 char at_ctime64[8]; /*@P5A*/

 char at_createtime64[8]; /*@P5A*/

 char at_reftime64[8]; /*@P5A*/

68 z/OS V1R7.0 UNIX System Services File System Interface Reference

char at_rsvd4[8]; /*@P5A*/

 char at_rsvd5[16]; /*@P5A*/

 /* +E0 --- End Ver 2 --- @P5A*/

PFSs must return both sets of time fields in all output ATTRs. This includes

vn_getattr, any osi_attrs, and ReadDirPlus (part of “v_readdir (BPX1VRD,

BPX4VRD) — Read entries from a directory” on page 326). The LFS always

passes to the PFSs an ATTR that is large enough to hold the 8-byte times (at least

of length Attr#Ver2Len). The stat() function is performance-sensitive, because it is

called so often by programs in the field, and it is faster for the PFSs to set the five

extra fields than for the LFS to check to see if it has been done, and then copy the

4-byte values to the 8-byte fields.

PFSs that support vn_setattr, or setting times at all, must accept 8-byte time values.

The AttrLP64Times bit in BPXYATTR indicates that the time value is being passed

in the 8-byte fields. Most of these 8-byte time values will still be less than 2

gigaseconds, but they are being passed by LP64 programs. An LP64 program may

try to utime() beyond 2 gigaseconds.

PFSs that use BPXXCTME should use the new syntax for large time values. The

BPXXCTME macro converts to and from the extended STCKE TOD format with the

optional EXTENDED keyword:

?BPXXCTME INPUT(TOD|SSE)

 TOD(8ByteArea|16ByteArea)

 SSE(WordArea|DWordArea)

 MICSEC(WordArea)

 EXTENDED(8<,4>|16<,4>) (optional)

INPUT indicates the input field, and TOD is a doubleword-aligned 8- or 16-

character field containing the input TOD or the converted value. SSE is a

word-aligned 4-byte character field or doubleword-aligned 8-byte character field

containing the input SSE or the converted value. Table 2 shows the TOD and SSE

fields with the EXTENDED keyword:

 Table 2. TOD and SSE fields with the EXTENDED keyword

EXTENDED TOD SSE

Keyword is omitted Bytes 1 through 8 of the

STCK format

A 4-byte character field

EXTENDED(8) Bytes 1 through 8 of the

STCKE format

An 8-byte field

EXTENDED(16) Bytes 1 through 16 of the

STCKE format

An 8-byte field

EXTENDED(16,4) Bytes 1 through 16 of the

STCKE format

A 4-byte field

Chapter 2. Physical file systems 69

|
|
|
|
|
|
|
|

|
|
|
|
|

70 z/OS V1R7.0 UNIX System Services File System Interface Reference

Chapter 3. PFS operations descriptions

This chapter describes each PFS operation, which are arranged in alphabetic order.

The C language prototypes and definitions for these operations can be found in

Appendix D, “Interface structures for C language servers and clients,” on page 503.

Assembler definitions are in Appendix B, “Mapping macros,” on page 443.

Environment for PFS operations

Each PFS operation (vfs_ and vn_ functions) operates in the following environment:

Environment at entry

 Authorization: Supervisor state, PSW key 0

Dispatchable unit mode: Task or SRB, if the PFS has indicated that it supports

SRB-mode callers. You cannot assume that vfs or vn

routines receive control under the same dispatchable unit as

the requestor of the related callable service. For example,

unmount() and sync() do not.

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters are in key 0 storage in the primary address

space. They are not fetch protected.

Registers at entry

The contents of the registers on entry to this operation are:

Register Contents

0 Undefined

1 Parameter list address

2-12 Undefined

13 Save area address, of a 136-byte save area

14 Return address

15 Entry address

AR0-15 Undefined

Environment at exit

Upon return from this operation, the entry environment must be restored.

Registers at exit

Upon return from this operation, the register contents must be:

Register Contents

2-13 Restored from the entry values

0,1,14,15 Undefined

AR0-15 Untouched or restored from the entry values

© Copyright IBM Corp. 1996, 2006 71

||
|
|
|
|

C header files

The C header files that are referred to in this section (such as stat.h) can be found

in z/OS XL C/C++ Run-Time Library Reference.

vfs_batsel

72 z/OS V1R7.0 UNIX System Services File System Interface Reference

vfs_batsel — Select/poll on a batch of vnodes

Function

The vfs_batsel operation monitors activity on a batch of vnodes (multiple vnodes) to

see if they are ready for reading or writing, or if they have an exceptional condition

pending. The vnodes can be for a socket, pipe, regular, or pseudoterminal file.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) being operated on. It

contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information used by the OSI operations that may be

called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vfs_batsel (Token_structure,

 OSI_structure,

 Audit_structure,

 Reserved_1,

 Function,

 Batch-Select_Structure

 Reserved_2,

 Return_value,

 Return_code,

 Reason_code)

vfs_batsel

Chapter 3. PFS operations descriptions 73

The Audit_structure contains information used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Reserved_1

Supplied parameter

Type: Integer

Length: Fullword

The value 0. This parameter is reserved to maintain consistency with the

vn_select operation interface.

Function

Supplied parameter

Type: Integer

Length: Fullword

A fullword that specifies whether this is a batch-select query or a batch-select

cancel request, and whether it is a poll or a select request. The values for this

field are defined in the BPXYPFSI header file (see Appendix D).

 Function specifies the type of select that is being requested:

v Query (SEL_BATSELQ or SEL_BATPOLLQ): The PFS should perform the

following for query:

1. Check each of the files in the Batch-Select_Structure to see if any of the

specified events for a file can be satisfied immediately. If so, the BSIC

Response fields for those files are updated, and the status for any one of

them is returned in the Return_value parameter.

2. If there is no immediate status to report for any file in the

Batch-Select_Structure, the PFS records that a select is pending for each

of the files and sets up to invoke osi_selpost later, when one of the

selected events has occurred. The PFS returns a value of 0 in

Return_value after it has performed its internal processing to set up

select pending for each of the files.

The occurrence of an event and the subsequent invocation of osi_selpost

happen asynchronously on another thread or MVS task.

v Cancel (SEL_BATSELC or SEL_BATPOLLC): The PFS performs the

following for cancel:

1. If there is a pending select recorded for a file with the same SelectToken

that was specified on a previous query, it must be canceled in such a

way that osi_selpost is not invoked.

2. Check each of the files that are specified in the Batch-Select_Structure to

see if any of the specified events can be immediately satisfied. If at least

one file has status, that status is returned in the Return_value parameter,

and the status for each of the selected files is returned in the BSIC

Response fields for those files. If a file does not have status, a 0 is

returned in the BSIC Response field for that file. If none of the files have

status, 0 is returned in the Return_value parameter.

Batch-Select_Structure

Returned parameter

Type: BSIC

Length: Calculated: A BSIC header plus one BSIC entry

for each selected file.

vfs_batsel

74 z/OS V1R7.0 UNIX System Services File System Interface Reference

An area that contains information about the selected files and events. It

specifies which files and events are being selected, a SelectToken for each file,

a response area for status, and work area pointers for use by the PFS. This

area is mapped by the BSIC typedef in the BPXYPFSI header file (see

Appendix D). The events that can be selected for select requests are:

v SEL_READ: A read that is issued against this file will not block.

v SEL_WRITE: A write that is issued against this file will not block.

v SEL_XCEPT: An exceptional condition, as defined by the particular PFS, has

occurred. This could happen when a socket connection becomes inoperative

because of network problems, or when the other end of the socket is closed.

For poll requests, the events that can be selected are documented in other

manuals (for instance, z/OS XL C/C++ Run-Time Library Reference). The

mapping for these fields is defined in the BPXYPFSI header file (see Appendix

D).

 For reading and writing, an error condition that would cause the read or write to

fail means that the operation will not block and therefore the file is ready for that

operation.

 If one or more of the selected events are ready for any of the selected files, the

PFS immediately returns the status for one of the files in the Return_value

parameter, using the same bit mapping that is used in the BSIC Response field.

Reserved_2

Supplied parameter

Type: Integer

Length: Fullword

The value 0. This parameter is reserved, to maintain consistency with the

vn_select operation interface.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the vfs_batsel service returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. This causes

the whole select() or poll() request, as made

by the application program, to fail. The

Return_code and Reason_code values are

passed back to the application program.

0 There is no status for any of the files in the

Batch-Select_Structure, and the operation was

successful.

v For query (SEL_BATSELQ or

SEL_BATPOLLQ): The PFS is set up to

invoke osi_selpost when the requested event

occurs.

v For cancel (SEL_BATSELC or

SEL_BATPOLLC): The PFS has canceled

the request to invoke osi_selpost, or it was

vfs_batsel

Chapter 3. PFS operations descriptions 75

never set up to do so. The PFS will not

invoke osi_selpost after returning from this

call.

Greater than 0 Status is being returned in the

Batch-Select_Structure. The returned status in

this parameter has the same format as the

BSIC Response field.

v For query (SEL_BATSELQ or

SEL_BATPOLLQ): The operation is

complete and the PFS will not invoke

osi_selpost for this request.

v For cancel (SEL_BATSELC or

SEL_BATPOLLC): The PFS has canceled

the request to invoke osi_selpost if it had

been recorded.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_batsel operation stores the return code. The

vfs_batsel operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_batsel operation stores the reason code. The

vfs_batsel operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vfs_batsel processing

The vfs_batsel operation is identical to the vn_select operation, except that a

batch of files (multiple files) are selected using the Batch-Select_Structure,

instead of only one. For information on vn_select, refer to “Select/poll

processing” on page 45.

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications mentioned in “Finding more information about

sockets” on page xvi for the select function.

 Specific processing notes

– On the query request, the PFS should save the BSIC SelectToken for each

file passed in the Batch-Select_Structure. This token is used both during the

cancel request (to delete the request) and when an event occurs that the

LFS should be informed of through the osi_selpost function.

– The PFS can use the BSIC entry workptr field in the Batch-Select_Structure

to save information about each file during a query request. It can also use

the BSIC header workptr field to save information about the entire query

(such as an address where it has stored information about this request) so

that it can be found during a cancel request. The data is used to correlate

vfs_batsel

76 z/OS V1R7.0 UNIX System Services File System Interface Reference

the cancel request with its matching query request. This provides an

alternative to scanning the PFS control blocks for matching SelectToken

values.

 Serialization provided by the LFS: None

 Security calls to be made by the PFS: None.

Related services

v “vn_select — Select or poll on a vnode” on page 204

vfs_batsel

Chapter 3. PFS operations descriptions 77

vfs_gethost — Get the socket host ID or name

Function

The vfs_gethost operation gets the ID or the name of the socket host.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.

It contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_gethost (Token_structure,

 OSI_structure,

 Audit_structure

 Name_length,

 Name,

 Return_value,

 Return_code,

 Reason_code)

vfs_gethost

78 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Name_length

Supplied and returned parameter

Type: Integer

Length: Fullword

A fullword that contains the length of the name. If this value is zero, the request

is for the host ID. Otherwise, this is the length of the buffer to hold the name.

On return, for host name, this field contains the length of the name plus one for

the null.

Name

Returned parameter

Type: String

Length: Specified by Name_length

An area that contains the name on return, if the host name was requested. This

name must be null-terminated by the PFS.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_gethost operation returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful (for getting the

host name).

Greater than 0 The operation was successful (for getting the

host ID) and is the identifier of the current host.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_gethost operation stores the return code. The

vfs_gethost operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_gethost operation stores the reason code. The

vfs_gethost operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

vfs_gethost

Chapter 3. PFS operations descriptions 79

Implementation notes

 Overview of vfs_gethost processing

For more information on the semantics of this operation, refer to the publications

mentioned in “Finding more information about sockets” on page xvi for the

gethostid() and gethostname() functions.

 Specific processing notes

The PFS determines whether to get the host name or host ID depending on

Name_length. A zero length indicates a gethostid() request.

 Serialization provided by the LFS

The vfs_gethost operation is invoked with an exclusive latch held on the domain

of the PFS.

 Security calls to be made by the PFS: None.

vfs_gethost

80 z/OS V1R7.0 UNIX System Services File System Interface Reference

vfs_inactive — Batch inactivate vnodes

Function

The vfs_inactive disassociates multiple vnodes from the PFS’s related inodes.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.

It contains the PFS’s initialization token, and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_inactive (Token_structure,

 OSI_structure,

 Audit_structure,

 InactBuffer_structure,

 InactBuffer_length,

 Return_value,

 Return_code,

 Reason_code)

vfs_inactive

Chapter 3. PFS operations descriptions 81

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

InactBuffer_structure

Supplied and returned parameter

Type: IAB

Length: Calculated: An IAB header plus one IAB entry

for each selected vnode.

The InactBuffer_structure contains information about the vfs and the vnodes

that are to be made inactive. This area is mapped by the IAB typedef in the

BPXYPFSI header file (Appendix D).

 This structure contains the following fields:

Server_devno

A fullword that contains the device number of this vfs.

 Each Server_devno is followed by an array of records containing the

following information:

Vnode_pointer A pointer to the vnode.

Pfs_token An eight-byte area that contains the pfs

token for this vnode.

Server_Vnode A pointer to the server’s vnode.

Return_Value A fullword in which the vfs_inactive

operation returns the results of the

operation for the vnode. A nonzero value

indicates that the operation was not

successful.

InactBuffer_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that supplies the length of the InactBuffer_structure.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the vfs_inactive service returns the results of

the operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

vfs_inactive

82 z/OS V1R7.0 UNIX System Services File System Interface Reference

A fullword in which the vfs_inactive service stores the return code. The

vfs_inactive service returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vfs_inactive service should support the following error value:

 Return_code Explanation

EIO An I/O error occurred while accessing the file.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_inactive service stores the reason code. The

vfs_inactive service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vfs_inactive processing

“Creating, referring to, and inactivating file vnodes” on page 31 provides an

overview of file inactivate processing.

 Specific processing notes

– The Return_value for each vnode that is being made inactive is returned in

the InactBuf_structure while the results of the vfs_inactive service is provided

in the returned parameters.

– If a transient error, such as an I/O error, is encountered, the Return_value

should be set to −1. In this case, the request is retried later.

– If a permanent error that prevents the specified file or directory from being

used is encountered, Return_value should be set to zero. In this case, all

references to the file or directory are removed from the LFS and the request

is not retried. The PFS must not issue a signal-enabled wait during inactivate

processing. “Waiting and posting” on page 21 provides an overview of wait

and post processing.

– If a file’s link count is zero, but its open count is not zero, the PFS should

ignore the open count and delete the file’s data along with the file. This might

happen, for example, when an address space is canceled right after vn_open

finishes in the PFS, but before the LFS regains control.

 Serialization provided by the LFS

The vfs_inactive operation is invoked with an exclusive latch held on the file

system containing the vnode.

 Security calls to be made by the PFS: None.

Related services

v “osi_wait — Wait for an event to occur” on page 431

v “vn_inactive — Inactivate a vnode” on page 151

vfs_inactive

Chapter 3. PFS operations descriptions 83

vfs_mount — Mount a file system

Function

The vfs_mount operation activates a file system and returns the root directory

vnode_token.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.

It contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_mount (Token_structure,

 OSI_structure,

 Audit_structure,

 Mount_table,

 Vnode_token,

 Return_value,

 Return_code,

 Reason_code)

vfs_mount

84 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Mount_table

Supplied and returned parameter

Type: Structure

Length: Specified by the MTAB.mtab_hdr.cblen field

An area that is used to pass the file system name, mount options, and

PFS-specific parameters to the vfs_mount operation. This area is mapped by

the MTAB typedef in the BPXYPFSI header file (see Appendix D).

Vnode_token

Returned parameter

Type: Token

Length: 8 bytes

An area in which the vfs_mount service returns the vnode_token for the root

directory of the mounted file system.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_mount service returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_mount service stores the return code. The

vfs_mount service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of supported

return code values.

 The vfs_mount operation should support at least the following error value:

 Return_code Explanation

EEXIST A file system with the same name has already been

mounted.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

vfs_mount

Chapter 3. PFS operations descriptions 85

A fullword in which the vfs_mount service stores the reason code. The

vfs_mount service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vfs_mount processing

“Mounting file systems” on page 27 provides an overview of file system mount

processing.

 Specific processing notes

– The PFS is responsible for the following fields:

token_structure.ts_mount

The PFS should fill in this field with a token that it can use to locate the

PFS structures that are associated with the mounted file system. On

subsequent calls for files within this file system, the token_structure value

contains the token set here by the PFS.

MTAB.mt_filesys or MTAB.mt_ddname

On entry to the PFS, the field MTAB.mt_filesys contains either the blank

padded file system name or nulls. On a successful return, if this field is

not nulls and it represents an MVS data set name, the field

MTAB.mt_ddname should be filled in by the PFS with the dynamically

allocated ddname.

 If the field MTAB.mt_filesys is nulls on entry to the PFS, the field

MTAB.mt_ddname contains the ddname of an allocated MVS data set for

the file system. On a successful return, the field MTAB.mt_filesys should

be filled in by the PFS with the MVS data set name that is specified on

the DD statement.

If every file in this file system has the same values, the PFS is responsible

for filling in the MTAB with the following pathconf values (see the IEEE

POSIX 1003.1 specification for further details):

MTAB.mt_linkmax LINK_MAX

MTAB.mt_namemax NAME_MAX

MTAB.mt_notrunc POSIX_NO_TRUNC

MTAB.mt_chownrstd POSIX_CHOWN_RESTRICTED

Alternatively, the PFS may meet this responsibility by supporting

vn_pathconf.

– The PFS must not issue a signal-enabled wait under the thread invoking

vfs_mount.

– “Waiting and posting” on page 21 provides an overview of wait and post

processing.

– If the mount is to be completed asynchronously:

- The PFS must set MTAB.mt_asynchmount on before returning to the LFS.

The LFS in turn sets MTAB.mt_asynchmount on before calling the PFS for

the second call to vfs_mount.

- When the mount operation has completed, the PFS indicates this to the

LFS by calling osi_mountstatus.

vfs_mount

86 z/OS V1R7.0 UNIX System Services File System Interface Reference

- The vnode_token must be returned on at least one of the calls to

vfs_mount. However, if the PFS chooses to return a nonzero vnode_token

on each call, it must be the same token.

- If asynchronous mount processing in the PFS fails, the PFS should call

osi_mountstatus to drive the second call to vfs_mount. When called by the

LFS to complete the mount, the PFS should then return the error to the

LFS, which deletes all references to the incompletely mounted file system.

No call to vfs_umount results.

- If MTAB.mt_synchonly is set on in the Mount_table, vfs_mount must either

complete the mount synchronously or reject the request, returning EINVAL.

MTAB.mt_synchonly is always set on for the system root and for mounts

that result from MOUNT statements in BPXPRMxx that specify DDNAME.

- Vfs operations, such as vfs_umount and vfs_statfs, may need to be

handled during an asynchronous mount.

– It is not necessary for the PFS to perform security checking during mount

processing, because the LFS has already performed all necessary checking.

– The PFS returns an aggregate name, if it has one, from the vfs_mount

operation. If mt_aggnameptr is not zero, it points to mt_aggname, which is a

45-byte area where the PFS can put the aggregate name. If the PFS may

run on an earlier release, it should test for mt_hdr.cblen > 0x80 before it tests

mt_aggnameptr. If read-only mounts of file systems with the same aggregate

name should be function shipped to the owning system rather than locally

mounted, mt_aggattachrw should be turned on. If subsequent recovery of this

mount should not attempt to attach the aggregate before issuing the

vfs_mount, mt_agghfscomp should be turned on.

 Serialization provided by the LFS

The vfs_mount operation is invoked with an exclusive latch held on the file

system, to ensure that no other operations are attempted upon the file system

being mounted. In addition, the LFS ensures that all vfs_mount and vfs_umount

calls are serialized.

Note: However, if the mount is asynchronous, there is a time between the start

and the end of the mount in which the latch is not held.

 Security calls to be made by the PFS: None.

Related services

v “vfs_unmount — Unmount a file system” on page 106

v “vn_pathconf — Determine configurable pathname values” on page 173

v “osi_getvnode — Get or return a vnode” on page 385

v “osi_ctl — Pass control information to the kernel” on page 379

v “osi_wait — Wait for an event to occur” on page 431

vfs_mount

Chapter 3. PFS operations descriptions 87

vfs_network — Define a socket domain to the PFS

Function

The vfs_network operation is called as a result of the NETWORK statement in the

BPXBPRMxx parmlib member that is used to start z/OS UNIX. It defines information

about a socket domain to the PFS that is supporting it.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.

It contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_network (Token_structure,

 OSI_structure,

 Audit_structure,

 Network_structure,

 Return_value,

 Return_code,

 Reason_code)

vfs_network

88 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Network_structure

Supplied parameter

Type: NETW

Length: Specified by netw.netw_hdr.cblen

The Network_structure is an area, built during initialization, that contains the

information that is included on the NETWORK statement—the socket domain

name and number and the maximum number of sockets. This area is mapped

by the NETW typedef in the BPXYPFSI header file (see Appendix D).

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_network operation returns the results of the

operation as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_network operations stores the return code. The

vfs_network operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vfs_network operation should support at least the following error values:

 Return_code Explanation

EAFNOSUPPORT The address family that was specified in the

Network_structure is not supported by this PFS.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_network operation stores the reason code. The

vfs_network operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vfs_network processing

For information concerning the vfs_network call, refer to “Activating a domain”

on page 43.

vfs_network

Chapter 3. PFS operations descriptions 89

Specific processing notes

The PFS should ensure that it does not do any blocking waits during its

processing.

The PFS is responsible for returning two fields set so that they can be used for

subsequent processing. These fields are:

NETW.nt_localremote An indication of whether the communication

done by this PFS is local or remote. Turn the bit

on to indicate remote communication.

TOKSTR.ts_mount The 8-byte token that is returned by the PFS

and used on all subsequent calls to this PFS.

This token is used by the PFS to locate the PFS

structures that are associated with this network.

 Serialization provided by the LFS

The logical file system ensures that only one vfs_network statement is

processed at a time. Further, the PFS does not receive any socket requests

specifying this domain until the vfs_network operation completes.

 Security calls to be made by the PFS: None.

vfs_network

90 z/OS V1R7.0 UNIX System Services File System Interface Reference

vfs_pfsctl — PFS control

Function

The vfs_pfsctl operation passes control information to the PFS.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure contains the PFS’s initialization token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_pfsctl (Token_structure,

 OSI_structure,

 Audit_structure,

 Command,

 User_IO_structure,

 Return_value,

 Return_code,

 Reason_code)

vfs_pfsctl

Chapter 3. PFS operations descriptions 91

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Command

Supplied parameter

Type: Integer

Length: Fullword

The command indicates the function that is to be performed by the PFS.

User_IO_structure

Supplied parameter

Type: Structure

Length: Specified by the UIO.u_hdr.cblen field

An area that is to be used by the vfs_pfsctl service to determine the buffer

address, length, storage key, and other attributes of the argument that is

passed by the caller of pfsctl (BPX1PCT). This area is mapped by the UIO

typedef in the BPXYVFSI header file (see Appendix D).

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_pfsctl operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

0 or greater Can be used by the PFS to return the length of

the information that is being returned in a

modified argument buffer.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_pfsctl operation stores the return code. The

vfs_pfsctl operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vfs_pfsctl operation should support at least the following error values when

the situation applies:

 Return_code Explanation

EMVSPARM The command or argument parameters are incorrect.

EFAULT The address of the argument buffer is incorrect, or the user

is not authorized to read or write to that location.

EINTR The service was interrupted by a signal.

EPERM Permission was denied. The calling program does not have

sufficient authority for the service that was requested.

vfs_pfsctl

92 z/OS V1R7.0 UNIX System Services File System Interface Reference

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_pfsctl operation stores the reason code. The

vfs_pfsctl operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS product.

Implementation notes

 Overview of vfs_pfsctl processing

This function is like vn_ioctl, except that the data is directed to the PFS itself

rather than to, or for, a particular file.

A program can communicate with the PFS through the pfsctl (BPX1PCT)

callable service, which is converted by the LFS into vfs_pfsctl. An example of

this would be a program that is provided with a particular PFS product that

displays performance statistics for that PFS.

You should avoid passing addresses with this service, and instead include all

data in the buffer.

Negative command values are reserved for use by the LFS.

Command values of less than 0x40000000 are considered to be authorized

functions, and a privilege check is made. See “Security calls to be made by the

PFS”.

For more information, see z/OS DFSMS Using Data Sets.

 Specific processing notes

The token_structure of this operation contains only the initialization token.

The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI header

file)

UIO.u_hdr.cblen Specifies the length of the user_IO_structure

UIO.u_buffaddr Specifies the address of the argument buffer

UIO.u_buffalet Specifies the ALET of the argument buffer

UIO.u_count Specifies the length of the argument buffer

UIO.u_asid Specifies the ASID of the caller

UIO.u_key Specifies the storage key of the argument buffer

 Serialization provided by the LFS: None.

 Security calls to be made by the PFS

None expected by the LFS.

When the command value is less than 0x40000000, the LFS calls SAF’s Check

Privilege callable service to determine if the caller has appropriate privileges

before it invokes the PFS with vfs_pfsctl. The results of this call are passed to

the PFS using the osi_privileged bit.

If the osi_privileged bit is on, the user has appropriate privileges. If the PFS

wishes to restrict this function or certain command values, it can check this bit.

Related services

None.

vfs_pfsctl

Chapter 3. PFS operations descriptions 93

vfs_recovery — Recover resources at end-of-memory

Function

The vfs_recovery operation permits a PFS to recover resources when a user

address space enters end-of-memory processing while a request to that PFS is

active.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.

It contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_recovery (Token_structure,

 OSI_structure,

 Audit_structure,

 Recovery_area,

 Return_value,

 Return_code,

 Reason_code)

vfs_recovery

94 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Recovery_area

Supplied parameter

Type: String

Length: 8 bytes

A copy of the Recovery_area that was filled in by the PFS during the operation

that was interrupted. This area is mapped by osirtoken in BPXYPFSI (see

Appendix D).

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_recovery operation returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_recovery operation stores the return code. The

vfs_recovery operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_recovery operation stores the reason code. The

vfs_recovery operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vfs_recovery processing

“Recovery considerations” on page 24 provides an overview of recovery

processing, and discusses the flow for vfs_recovery in particular.

 Specific processing notes

When an active request to the PFS is interrupted in a situation where normal

ESTAE processing is bypassed by MVS, the PFS may have resources, such as

storage and locks, that are left in a state that will cause problems for other

users.

vfs_recovery

Chapter 3. PFS operations descriptions 95

To allow the PFS a chance to clean up if this should happen, a Recovery_area

is passed on every operation, through the osi_rtokptr pointer in the

OSI_structure, where the PFS can record its resources or store a pointer to a

recovery block. Any information that is stored in this area by the PFS during an

operation is passed back to the PFS via the Recovery_area parameter of

vfs_recovery if the operation is interrupted by end-of-memory for the user

address space.

The OSI Work Area and the Pre-initialized C Environment Stack, if used, are still

addressable and left as they were at the time of the abend. These areas can be

used to hold a recovery block whose address is placed in the Recovery_area.

The vfs_recovery operation is invoked with its own areas like any other

operation.

Refer also to “vn_recovery — Recover resources after an abend” on page 190,

which is the operation that is invoked during normal ESTAE processing.

There is no EOM recovery for the vfs_recovery operation itself. The operation is

invoked with osi_rtokptr pointing to a new recovery area that can be used for

standard PFS abend recovery; that is, with vn_recovery.

The PFS is not called if the file system has been unmounted between the

original vnode operation and the running of the EOM resource manager. This

can only happen if the user was in a signal-enabled wait at the time the address

space was terminated. It is expected that the PFS has cleaned up all its

file-system-related resources during vfs_umount.

See also the OSI and osirtoken structures in Appendix D.

The state of any file-level objects that may have been involved with the

interrupted operation is unknown at the time vfs_recovery is invoked.

 Serialization provided by the LFS

The vfs_recovery operation is invoked with a shared latch held on the file

system represented by the token_structure.

Any file-level objects that may have been involved with the interrupted operation

are not serialized.

 Security calls to be made by the PFS: None.

vfs_recovery

96 z/OS V1R7.0 UNIX System Services File System Interface Reference

vfs_socket — Create a socket or a socket pair

Function

The vfs_socket operation creates one socket or two related sockets.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.

It contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vfs_socket (Token_structure,

 OSI_structure,

 Audit_structure,

 Domain,

 Type,

 Protocol,

 Array_dimension,

 Vnode_token_array,

 Return_value,

 Return_code,

 Reason_code)

vfs_socket

Chapter 3. PFS operations descriptions 97

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Domain

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains a number that represents the address family the socket

is to be created for. The values defined for this field are mapped by socket.h.

Type

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains a number that represents the socket type. The values

defined for this field are mapped by socket.h.

Protocol

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains a number that represents the protocol to be used with

the socket.

Array_dimension

Supplied parameter

Type: Integer

Length: Fullword

A fullword that specifies the number of Vnode_tokens to get. The allowable

values for this field are 1 (for the socket call) and 2 (for the socketpair call).

Vnode_token_array

Returned parameter

Type: Token

Length: 16 bytes

A two-element array that contains the one or two Vnode_tokens obtained.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_socket operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

vfs_socket

98 z/OS V1R7.0 UNIX System Services File System Interface Reference

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_socket operation stores the return code. The

vfs_socket operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vfs_socket operation should support at least the following error values:

 Return_code Explanation

EAFNOSUPPORT The address family that is specified by Domain is

not supported by this PFS.

EINVAL The socket type that was specified is not supported;

or the Array_dimension that was specified is

incorrect. If the PFS does not support the

socketpair() call, an Array_dimension of 2 is

incorrect.

EPROTONOSUPPORT The protocol that was specified is not supported.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_socket operation stores the reason code. The

vfs_socket operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vfs_socket processing

For more information on the semantics of this operation, refer to the publications

that are mentioned in “Finding more information about sockets” on page xvi for

the socket() and socketpair() functions. Also refer to “Creating, referring to, and

closing socket vnodes” on page 44 for general information on sockets.

 Specific processing notes

If the PFS does not support socketpair(), the LFS simulates this function by

creating and connecting two separate sockets. This is done in response to a

Return_Code of EINVAL when Array_dimension is two.

 Serialization provided by the LFS

The vfs_socket operation is invoked with a shared latch held on the domain of

the PFS.

 Security calls to be made by the PFS: None.

Related services

v “vn_close — Close a file or socket” on page 132

vfs_socket

Chapter 3. PFS operations descriptions 99

vfs_statfs — Get the file system status

Function

The vfs_statfs operation returns status information about a mounted file system.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.

It contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_statfs (Token_structure,

 OSI_structure,

 Audit_structure,

 Fsattr_structure,

 Return_value,

 Return_code,

 Reason_code)

vfs_statfs

100 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Fsattr_structure

Supplied and returned parameter

Type: FSATTR

Length: Specified by FSATTR.fs_hdr.cblen

An area in which the vfs_statfs operation returns the file system status

information. This area is mapped by the FSATTR typedef in the BPXYVFSI

header file (see Appendix D).

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_statfs operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_statfs operation stores the return code. The

vfs_statfs operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_statfs operation stores the reason code. The

vfs_statfs operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vfs_statfs processing

The vfs_statfs operation returns information about the status of the file system.

To account for different release levels, the PFS should zero out the FSATTR

area and set fields it understands only up to the smaller of:

– the input area’s length, from the FSATTR length subfield

– the PFS’s native FSATTR length (the one with which it was compiled)

vfs_statfs

Chapter 3. PFS operations descriptions 101

The input area’s FSATTR length subfield should be updated to reflect the

amount of data that is returned, or zeroed out. The PFS must not refer to fields

beyond the input FSATTR’s length, as specified in its length subfield.

 Specific processing notes

– The value that is returned in FSATTR.fs_hdr.cblen must match the amount of

valid data that is returned in the Fsattr_structure.

– When a Return_Value of 0 is returned, the PFS is responsible for returning

valid data in at least the following fields in the FSATTR:

- FSATTR.fs_blocksize

- FSATTR.fs_totalspace

- FSATTR.fs_usedspace

- FSATTR.fs_freespace

– vfs_statfs may be called before the mount process completes for a file

system that is being mounted asynchronously. If the PFS is unable to provide

valid data, the PFS must return a Return_value of -1, along with a

Return_code of EAGAIN.

 Serialization provided by the LFS

The vfs_statfs operation is invoked with a shared latch held on the mounted file

system.

 Security calls to be made by the PFS: None.

vfs_statfs

102 z/OS V1R7.0 UNIX System Services File System Interface Reference

vfs_sync — Harden all file data for a file system

Function

The vfs_sync operation writes to disk (or otherwise stabilizes) all changed data in a

buffer cache for files in a mounted file system.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) being operated on. It

contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information used by the OSI operations that may be

called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_sync (Token_structure,

 OSI_structure,

 Audit_structure,

 Return_value,

 Return_code,

 Reason_code)

vfs_sync

Chapter 3. PFS operations descriptions 103

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword where the vfs_sync service returns the results of the operation as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_sync service stores the return code. The vfs_sync

service returns Return_code only if Return_value is −1. See z/OS UNIX System

Services Messages and Codes for a complete list of supported return code

values.

 The vfs_sync service should support at least the following error values:

 Return_code Explanation

EROFS The file system is mounted read-only.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_sync service stores the reason code. The vfs_sync

service returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS product.

Implementation notes

 Overview of vfs_sync processing

vfs_sync writes to non-volatile storage (usually disk) all modified data for each

file in the mounted file system that is indicated by the mount token in the input

token_structure. The PFS can use the synch daemon to synchronize modified

data at regular intervals, by specifying the desired interval in the MTAB during

the mount operation.

A PFS could perform vfs_sync processing asynchronously, although this is not

recommended. The osi_usersync flag in the OSI can be set to indicate to the

PFS that the vfs_sync request is the result of a user request, rather than a timer

pop. If this bit is set, the PFS must complete vfs_sync processing before it

returns from the call.

vfs_sync

104 z/OS V1R7.0 UNIX System Services File System Interface Reference

To allow for timer-driven cleanup, vfs_sync is called for readonly file systems

also.

 Specific processing notes

Data should be completely hardened before vfs_sync returns to its caller.

 Serialization provided by the LFS

The vfs_sync operation is invoked with an exclusive latch held on the mounted

file system.

 Security calls to be made by the PFS: None.

Related services

v “vn_fsync — Harden file data” on page 142

vfs_sync

Chapter 3. PFS operations descriptions 105

vfs_unmount — Unmount a file system

Function

The vfs_unmount operation unmounts a file system and inactivates the root vnode.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.

It contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6, “OSI services,” on page 367 for

more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_umount (Token_structure,

 OSI_structure,

 Audit_structure,

 Unmount_options,

 Return_value,

 Return_code,

 Reason_code)

vfs_umount

106 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Unmount_options

Supplied parameter

Type: Integer

Length: Fullword

An area that is used to pass the options that are to be used to unmount the file

system that is specified in Token_structure. The values for this parameter are

defined in the stat.h header. For a description of this header, see z/OS XL

C/C++ Run-Time Library Reference.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_unmount service returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_unmount service stores the return code. The

vfs_unmount service returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vfs_unmount operation should support at least the following error value:

 Return_code Explanation

EIO An I/O error occurred while the file system was

being unmounted.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vfs_unmount service stores the reason code. The

vfs_unmount service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vfs_unmount processing

“Unmounting file systems” on page 29 provides an overview of file system

unmount processing.

vfs_umount

Chapter 3. PFS operations descriptions 107

Specific processing notes

The PFS cannot issue a signal-enabled wait during unmount processing.

“Waiting and posting” on page 21 provides an overview of wait and post

processing.

It is not necessary for the PFS to perform security checking during unmount

processing, because the LFS has already performed all necessary checking.

A file system that is being mounted asynchronously may be unmounted before

the mount process completes. Consequently, if the PFS returns only the

vnode_token on the second call to vfs_mount, vfs_unmount must be capable of

successfully unmounting a file system without reference to its inode token.

If vfs_umount is being invoked for a remount (MT_REMOUNT or

OSI_REMOUNT), the PFS receives a vfs_mount for the same file system as

soon as the vfs_umount completes. This is followed by vfs_vgets to recreate the

vnode-inode pairs that were active at the time of the unmount operation. If a file

was open at the time of the remount, the vnode’s open counter is reestablished

through calls to vn_open.

The PFS does not have to do anything special for remount; however, for

performance reasons, it may want to maintain some resources at vfs_umount in

anticipation of reusing them for the next vfs_mount. Socket or RPC sessions are

examples of resources that might be worth maintaining.

If the PFS cannot support remount, it should reject the vfs_umount request. One

reason for not supporting remount is that the PFS would not complete the

following vfs_mount synchronously.

 Serialization provided by the LFS

The vfs_unmount operation is invoked with an exclusive latch held on the file

system, to ensure that no other operations are attempted upon the file system

that is being unmounted. In addition, the LFS ensures that all mount and

unmount operations are serialized.

 Security calls to be made by the PFS: None.

Related services

v “osi_wait — Wait for an event to occur” on page 431

v “vfs_mount — Mount a file system” on page 84

vfs_umount

108 z/OS V1R7.0 UNIX System Services File System Interface Reference

vfs_vget — Convert a file identifier to a vnode Token

Function

The vfs_vget operation returns a vnode token for the file or directory that is

represented by the input file identifier (FID).

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.

It contains the PFS’s initialization token and mount token. Refer to “LFS/PFS

control block structure” on page 16 for a discussion of this structure, and to the

TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures for C

language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vfs_vget (Token_structure,

 OSI_structure,

 Audit_structure,

 File_identifier,

 Vnode_token,

 Return_value,

 Return_code,

 Reason_code)

vfs_vget

Chapter 3. PFS operations descriptions 109

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

File_identifier

Supplied parameter

Type: FID

Length: 8 bytes

The name of an 8-byte area containing the file identifier of the file or directory

for which a vnode token is to be returned. This area is mapped by the FID

typedef in the BPXYVFSI header file (see Appendix D).

Vnode_token

Returned parameter

Type: Token

Length: 8 bytes

Vnode_token is used to return the vnode token that corresponds to the input

FID.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the vfs_vget service returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. This causes

the vfs_vget request to fail. The Return_code

and Reason_Code are returned to the caller.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the vfs_vget service stores the return code.

The vfs_vget service returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vfs_vget service should support at least the following error values:

 Return_code Explanation

ENOENT The file indicated by the File_identifier does not

exist in the mounted file system that is indicated by

token_structure

EIO An input/output error occurred while attempting to

access data pertaining to the file indicated by the

File_identifier.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

vfs_vget

110 z/OS V1R7.0 UNIX System Services File System Interface Reference

The name of a fullword in which the vfs_vget service stores the reason code.

The vfs_vget service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vfs_vget processing

Given a file identifier as input, vfs_vget returns a vnode token that refers to the

file. The file identifier uniquely identifies a file in a particular mounted file system.

Its validity persists across mounting and unmounting of the file system, as well

as z/OS UNIX re-IPLS. This distinguishes the file identifier from the vnode

token, which relates to a file in active use, and whose validity persists only until

the token is released via vn_inactive. The FID for a file is created by the PFS

and returned in the ATTR structure, which is mapped by typedef ATTR in the

BPXYVFSI header file (see Appendix D) by vn_getattr.

 Specific processing notes

File identifier zero is taken to refer to the root of the mounted file system.

 Serialization provided by the LFS

The vfs_vget operation is invoked with a shared latch held on the mounted file

system.

 Security calls to be made by the PFS: None.

Related services

v “vn_getattr — Get the attributes of a file” on page 145

vfs_vget

Chapter 3. PFS operations descriptions 111

vn_accept — Accept a socket connection request

Function

The vn_accept operation accepts a connection request for a socket server from a

socket client. It returns a new socket descriptor.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_accept (Token_structure,

 OSI_structure,

 Audit_structure,

 Sockaddr_length,

 Sockaddr,

 Open_flags,

 Vnode_token,

 Return_value,

 Return_code,

 Reason_code)

vn_accept

112 z/OS V1R7.0 UNIX System Services File System Interface Reference

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Sockaddr_length

Supplied and returned parameter

Type: Integer

Length: Fullword

A fullword that supplies the length of the Sockaddr buffer and returns the length

of the Sockaddr structure that is returned.

Sockaddr

Supplied and returned parameter

Type: SOCK

Length: Specified by Sockaddr_length

A structure that varies depending on the address family type. On return, it

contains the address that was used for this operation. For an example of this

mapping for AF_INET, see in.h.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that contains the bits that are associated with the socket. The defined

values for this field are mapped by fcntl.h.

Vnode_token

Returned parameter

Type: Token

Length: 8 bytes

An area in which a token that represents the newly created socket is returned.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_accept operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

vn_accept

Chapter 3. PFS operations descriptions 113

A fullword in which the vn_accept operation stores the return code. The

vn_accept operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_accept operation should support at least the following error values:

 Return_code Explanation

EINTR The request was interrupted by a signal.

EINVAL An incorrect request, such as a socket for which a

listen has not been issued (that is, a server), was

received.

EWOULDBLOCK The operation would have required a blocking wait,

and this socket was marked as nonblocking.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword where the vn_accept operation stores the reason code. The

vn_accept operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_accept processing

– For more information on vn_accept, refer to “Creating, referring to, and

closing socket vnodes” on page 44. For more information on the semantics of

this operation for a POSIX-conforming PFS, refer to the publications

mentioned in “Finding more information about sockets” on page xvi for the

accept function.

– The vn_accept service can be used from a multithreaded server, that is, a

server with several threads simultaneously calling accept() on the same

socket. The PFS must handle queuing for vn_accept requests on the same

socket that are waiting to be satisfied. When a connection arrives it is given

to one of the waiting vn_accept requestors. All the server threads are

expected to be equal; their requests may be satisfied in any order.

 Serialization provided by the LFS

The vn_accept operation is invoked with an exclusive latch held on the vnode of

the socket.

 Security calls to be made by the PFS: None.

Related services

v “vn_listen — Listen on a socket” on page 160

vn_accept

114 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_access — Check access to a file or directory

Function

The vn_access operation checks whether the calling process has the requested

access permission to the specified file or directory.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_access (Token_structure,

 OSI_structure,

 Audit_structure,

 Access_intent,

 Return_value,

 Return_code,

 Reason_code)

vn_access

Chapter 3. PFS operations descriptions 115

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Access_intent

Supplied parameter

Type: Integer

Length: Fullword

An input structure passed through to the SAF Check Access callable service by

the vn_access operation. The values for this parameter are defined in unistd.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_access service returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_access service stores the return code. The

vn_access service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of supported

return code values.

 The vn_access operation should support at least the following error value:

 Return_code Explanation

EACCES The caller does not have the requested access to

the specified file or directory.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_access service stores the reason code. The

vn_access service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_access processing

“Security responsibilities and considerations” on page 12 provides an overview

of file access checking.

vn_access

116 z/OS V1R7.0 UNIX System Services File System Interface Reference

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the access() function in the POSIX.1 standard (IEEE Std

1003.1-1990).

 Specific processing notes

The PFS should provide reason codes that distinguish between the SAF reason

codes:

– User is not authorized to access the file.

– Input that is not valid.

 Serialization provided by the LFS

The vn_access operation is invoked with a shared latch held on the vnode.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Check Access callable service to check

that the user has the requested access to the file or directory.

vn_access

Chapter 3. PFS operations descriptions 117

vn_anr — Accept a socket connection and read the first block

of data

Function

The vn_anr operation accepts a connection request for a socket server from a

socket client, and reads the first block of data.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_anr (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 Acp_token,

 User_IO_structure

 Anr_addrs

 Return_value,

 Return_code,

 Reason_code)

vn_anr

118 z/OS V1R7.0 UNIX System Services File System Interface Reference

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that supplies the bits associated with the socket. The defined values

for this field are mapped by fcntl.h.

Acp_token

Supplied and returned parameter

Type: Token

Length: 8 bytes

An area that is used in one of two ways:

v The LFS passes the PFS’s token for a reusable socket.

v The LFS passes a value of 0, and the PFS returns the Vnode token for a

new accepted socket.

User_IO_structure

Supplied and returned parameter

Type: UIO

Length: Specified by UIO.u_hdr.cblen.

An area that contains the buffer parameters for the receive operation that is to

be performed. This area is mapped by the UIO typedef in the BPXYVFSI

header file (see Appendix D). See “Specific processing notes” for details on how

the fields in this structure are processed.

Anr_addrs

Supplied parameter

Type: struct anr_addrs

Length: sizeof(anr_addrs)

A structure that describes the remote and local socket addresses. This structure

contains the following fields:

Field Description

Remote_sockaddr_length A fullword that supplies the length of the

Remote_sockaddr buffer that is pointed to by

Remote_sockaddr_ptr. On return, this

parameter contains the length of the socket

address that was put in the Remote_sockaddr

buffer.

 If the value of Remote_sockaddr_length is 0,

the Remote_sockaddr is not to be returned.

Remote_sockaddr_ptr A pointer to the Remote_sockaddr buffer. On

return, this buffer contains the socket address

of the remote socket that has just connected.

vn_anr

Chapter 3. PFS operations descriptions 119

Local_sockaddr_length A fullword that supplies the length of the

Local_sockaddr buffer that is pointed to by

Local_sockaddr_ptr.

 On return, this parameter contains the length of

the socket address that was put in the

Local_sockaddr buffer.

 If this value is 0, the Local_sockaddr is not to

be returned.

Local_sockaddr_ptr A pointer to the Local_sockaddr buffer. On

return, this buffer contains the socket address

of the new local socket that was just created.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_anr operation returns the results of the operation, as

one of the following:

Return_value Meaning

−1 The operation was either not successful or,

when Return_code is EINTRNODATA, partially

successful. The Return_code and

Reason_Code values must be filled in by the

PFS when Return_value is −1.

0 The operation was successful; the value

represents the number of bytes that were

transferred.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_anr operation stores the return code. The vn_anr

operation returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of supported return

code values.

 The vn_anr operation should support at least the following error values:

 Return_code Explanation

EFAULT The address of one of the buffers is not in addressable

storage.

EINTR A signal arrived before a connection was assigned to this

request.

EINTRNODATA A signal arrived after a connection was assigned to this

request, but before any data had arrived. The connection

has been established. The result of this call is equivalent

to a successful vn_accept.

This condition does not occur in a PFS that does not

assign arrived connections to a vn_anr request until some

data has also arrived.

EINVAL An incorrect parameter was specified.

vn_anr

120 z/OS V1R7.0 UNIX System Services File System Interface Reference

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword where the vn_anr operation stores the reason code. The vn_anr

operation returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_anr processing:

The vn_anr operation is a functional combination of the vn_accept and vn_rdwr

operations, in that an inbound connection is accepted to create a new socket

and the first block of data is read on that socket. The output is the new

connected socket and the data.

The vn_anr operation is generated from an application call to the

accept_and_recv callable service (BPX1ANR). The accept_and_recv callable

service is designed to work with the send_file service (BPX1SF) to provide an

efficient file transfer capability for connection-oriented servers with short

connection times and high connection rates. See accept_and_recv (BPX1ANR,

BPX4ANR) — Accept a connection and receive the first block of data in z/OS

UNIX System Services Programming: Assembler Callable Services Reference

for more information on how this is used.

The vn_anr operation is intended to be used from a multithreaded server, that is,

a server with several threads simultaneously calling accept_and_recv() on the

same socket. The PFS must handle queuing for vn_anr requests on the same

socket that are waiting to be satisfied. When a connection and its first data have

arrived, the connection and data are given to one of the waiting vn_anr

requesters. All of the server threads are expected to be equal, and their

requests may be satisfied in any order. In particular, LIFO order would reduce

the serialization necessary to manage the requester queue.

The PFS does not complete the vn_anr operation until the first data has arrived

on the new connection or a signal arrives for this thread. The listening socket

must be in blocking mode; this requirement is enforced by the LFS.

When socket reuse is supported by the PFS, the Acp_token parameter is used

to pass the PFS’s token for the socket that is being reused. When reuse is not

supported, or when a reusable socket is not supplied by the application, the

Acp_token parameter is used to return the vnode token of the new socket that is

created. In this case, the input Acp_token is 0, and the output Acp_token is

basically the same as the Vnode_token parameter of the vn_accept operation.

A PFS that does not support socket reuse does not have to be coded to reject

vn_anr requests that attempt to reuse a socket. A reusable socket is one that

has been closed by a prior write-type operation that specified the REUSE flag. If

the PFS does not honor the REUSE flag, it is assumed that the PFS does not

support reuse, and the socket is closed in the normal way. Consequently, the

Acp_token parameter would be 0 on a subsequent vn_anr request.

Because the vn_anr operation is a combined operation, it can be interrupted

between the connection arrival and the data arrival. If the PFS irrevocably

associates a new connection to a vn_anr request before any data has arrived

and is subsequently interrupted by a signal, it may return the connection via

Acp_token, and set a Return_value of −1 and a Return_code of EINTRNODATA.

It is strongly recommended that the PFS not assign connections to vn_anr

requests until data has arrived, because doing so ties up a server’s worker

vn_anr

Chapter 3. PFS operations descriptions 121

threads while the PFS is waiting for the data to arrive.If an application uses both

accept() and accept_and_recv() calls on the same socket from several threads

at the same time, the results are allowed to be unpredictable. Depending on

PFS design and timing, the vn_accept and vn_anr calls may be satisfied in any

order. Because it is not recommended that connections be assigned to vn_anr

requests until the first data has arrived, it is possible that vn_accept requests

could consume all arriving connections.

Specific processing notes

The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI header file).

UIO.u_hdr.cblen Specifies the length of the UIO.

UIO.u_buffadr Specifies the address of the user’s buffer.

UIO.u_count Specifies the size of the user’s buffer.If this value is

0, no read is done, and vn_anr is functionally

equivalent to vn_accept. In this case, the rest of the

UIO fields should be ignored.

UIO.u_asid Specifies the ASID of the user.

UIO.u_rw Set to 0, specifying a read request.

UIO.u_key Specifies the storage key of the caller.

The Remote_sockaddr, Local_sockaddr, and data buffer are all optional.

Serialization provided by the LFS

The vn_anr operation is invoked with an exclusive latch held on the listening vnode

if latching is requested by this PFS.

Security calls to be made by the LFS

None.

Related services

v “vn_listen — Listen on a socket” on page 160

vn_anr

122 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_audit — Audit an action

Function

The vn_audit operation audits the action that is indicated by the audit_structure.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length:

Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_audit (Token_structure,

 OSI_structure,

 Audit_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_audit

Chapter 3. PFS operations descriptions 123

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_audit operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_audit operation stores the return code. The vn_audit

operation returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of supported return

code values.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_audit operation stores the reason code. The vn_audit

operation returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_audit processing

– The vn_audit operation calls the SAF Audit interface to write an audit record.

– The Audit_structure contains a code that identifies the function that is being

audited, defined in IRRPAFC.

 Serialization provided by the LFS

The vn_audit operation is invoked with a shared latch held on the vnode of the

file.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Audit callable service to write the audit

record.

vn_audit

124 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_bind — Bind a name to a socket

Function

The vn_bind operation associates a name with a socket.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6, “OSI services,” on page 367 for

more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_bind (Token_structure,

 OSI_structure,

 Audit_structure,

 Sockaddr_length,

 Sockaddr,

 Return_value,

 Return_code,

 Reason_code)

vn_bind

Chapter 3. PFS operations descriptions 125

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Sockaddr_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of sockaddr.

Sockaddr

Supplied parameter

Type: SOCK

Length: Specified by Sockaddr_length

A structure that varies depending on the address family type. It contains the

address that is to be used for this operation. For an example of this mapping for

AF_INET, see in.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_bind operation returns the results of the operation, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_bind operation stores the return code. The vn_bind

operation returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of supported return

code values.

 The vn_bind operation should support at least the following error values:

 Return_code Explanation

EAFNOSUPPORT The address family that was specified is not

supported.

EINVAL The length of the name is either too short or

negative.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

vn_bind

126 z/OS V1R7.0 UNIX System Services File System Interface Reference

A fullword where the vn_bind operation stores the reason code. The vn_bind

operation returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_bind processing

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the bind() function.

 Specific processing notes

An “unbind” flag can be passed in the first word of the system data area of the

Token_structure, ts_sysdl. A value of 1 in this word indicates that the socket

should be reset to an unbound state, if possible, when a bind() has succeeded

on some transports but failed on others. If the socket can be reset to an

unbound state, then a subsequent vn_bind call with a different Sockaddr might

be successful. If the socket cannot be unbound, the call will be rejected. All

other parameters are the same as on a successful vn_bind call. There is no

external application interface for this function; it is used internally by the

Common INET (CINET) layer so that CINET can try to place an application

socket back into a state where another call to bind() may succeed.

 Serialization provided by the LFS

The vn_bind operation is invoked with an exclusive latch held on the vnode of

the socket.

 Security calls to be made by the PFS

When a program specifies a port value less than 1024 decimal, the PFS must

call SAF’s Check Privilege function to verify that the caller has the authority to

do so.

vn_bind

Chapter 3. PFS operations descriptions 127

|

|
|
|
|
|
|
|
|
|
|

vn_cancel — Cancel an asynchronous operation

Function

The vn_cancel operation cancels the wait for an asynchronous operation to

complete, or cancels the remaining portion of an operation after the I/O completion

has been scheduled.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6, “OSI services,” on page 367 for

more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D, “Interface

structures for C language servers and clients,” on page 503.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_cancel (Token_structure,

 OSI_structure,

 Audit_structure,

 VnCan_Flags,

 PFS_AsyTok,

 LFS_AsyTok,

 Return_value,

 Return_code,

 Reason_code)

vn_cancel

128 z/OS V1R7.0 UNIX System Services File System Interface Reference

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

VnCan_Flags

Supplied parameter

Type: String

Length: 4 bytes

Control flags for this cancelation. Refer to the vncanflags structure in

BPXYPFSI.

v vncanforce: This flag specifies whether a normal or forced cancelation is

being requested:

0– Normal Cancel.

 Only the wait for completion is being canceled; otherwise the operation is

to proceed normally.

If the PFS finds the request on a waiting queue, it is to be removed from

the queue and completed with a return code of ECANCELED. That is,

osi_sched should be called, and the normal flow for a failed request

should be followed. Note that if it is the PFS’s custom to handle

asynchronous failures in Part 2, it may call osi_sched with success and

return ECANCELED from the Part 2 call.

If the PFS does not find the request on a waiting queue, it should take no

action whatsoever. The request is completing, or has completed, normally

and should not be interrupted.

1– Forced Cancel and Cleanup.

 Part 2 is not run for this operation, usually because the user’s process is

terminating. The PFS should remove the request from any waiting

queues, and discard all buffers and other resources that were allocated to

this request. Regardless of whether the request was found on the waiting

queues, the PFS must clean up the request if it is still active.

PFS_AsyTok

Supplied parameter

Type: String

Length: 8 bytes

A copy of the PFS’s Asynchronous I/O Request Token, which identifies the

request that is being canceled.

 This is the token that was originally passed by the PFS to the LFS via a call to

osi_upda during Part 1 of the asynchronous operation. This is also the same

token that is passed in osi_asytok on Part 2 of an asynchronous operation to

identify the request to the PFS.

LFS_AsyTok

Supplied parameter

Type: String

Length: 8 bytes

A copy of the LFS’s Asynchronous I/O Request Token, which was originally

passed to the PFS in the osi_asytok field on Part 1 of the request that is being

canceled.

vn_cancel

Chapter 3. PFS operations descriptions 129

This token has presumably been saved by the PFS in its request structure

during Part 1, since it is needed for osi_sched, and can be used to validate the

PFS request structure. The PFS’s original request structure must be validated

on vn_cancel because the original operation might have finished by the time the

vn_cancel reaches the PFS, and therefore its request structure might have

been already freed or reused for another operation. Once cancel is started for a

request, the LFS does not reuse its token until after the cancel has completed.

 The PFS may also, of course, perform this validation on its own and ignore the

LFS_AsyTok if it is so designed. A request structure could be validated, for

instance, with a structure sequence number that is included within the

PFS_AsyTok, or by running a chain of active request blocks.

 See also the notes below.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_cancel operation returns the results of the operation,

as one of the following:

Return_value Meaning

0 The request was found.

−1 The request was not found.

 Generally, vn_cancel is not called after osi_sched has been called, but there is

a race condition between these two acts and so this Return_value is really not

very definitive. See the notes below.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_cancel operation stores the return code. The

vn_cancel operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_cancel operation should support at least the following error value:

 Return_code Explanation

EINVAL The PFS_AsyTok is not valid.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_cancel operation stores the reason code. The

vn_cancel operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_cancel processing

vn_cancel

130 z/OS V1R7.0 UNIX System Services File System Interface Reference

“Asynchronous I/O processing” on page 55 provides an overview of

asynchronous I/O, and discusses the flows that are related to vn_cancel.

 Specific processing notes

– Vn_cancel is for one specific request only.

– Only requests that originally had OsiAsy1=ON are potentially cancelable.

– The normal cancel only “pushes through” the original request, and does not

attempt to abort it if it is not blocked.

– Vn_cancel is not an asynchronous operation in the sense of the OsiAsy1 and

OsiAsy2 bits. It is also not normally a blocking operation. If the original

request is found on a waiting queue it may be removed, and osi_sched()

called, on another thread while vn_cancel returns to the LFS.

– Vn_cancel must contend with situations in which a thread may be calling

osi_sched, or an SRB may be running Part 2 of the original request. This can

be a problem in either case, if the PFS is about to free up the structures that

are related to the original request and the PFS_AsyTok. Hopefully, the

original request structure can be validated or not used directly, in order to

avoid introducing additional serialization points into the main line path just to

deal with a potential cancel. For instance, for a normal cancel, only requests

that are found on a waiting chain need be referenced directly, and for cancel

force some cleanup may be able to be deferred to vn_close.

Technically, though, because of fork() and inherited descriptors,

vn_cancel(Force) might not soon be followed by vn_close. However, it would

be rather rare for an application in this position to carry on. The results of the

application would be unpredictable because of timing; and at a minimum it

would have to expect data loss, since the termination could just as easily

have occurred on entry to its I/O Completion exit.

Vn_cancel(Force) is a result of process termination; therefore, any requests

that were still in the PFS have gone through recovery and generally have

been handled, as they would be for any abnormal end situation.

- Part 1 requests run on the user’s TCB or SRB, and these are abnormally

ended before vn_cancel is issued.

- For process termination in general, new SRBs are not permitted to start

Part 2, but old SRBs are allowed to finish. Osi_wait(), though, returns as if

interrupted with a signal, in an attempt to keep these SRBs from blocking.

If the user address space goes to memterm, nothing is able to run, so Part

2 can be abnormally ended for that reason. If the PFS issues its own MVS

suspend during Part 2, it can also be abnormally ended by the system.

 Serialization provided by the LFS

The vn_cancel operation is invoked with an exclusive vnode latch.

Additional serialization is provided even when the PFS is not using vnode

latching.

1. The vn_cancel operation is not invoked while the request it is canceling is

still in the PFS during Part 1 of the operation.

2. Vn_close is not invoked while vn_cancel is in progress.

3. If a user process terminates before osi_upda is called, vn_cancel is not

called, since the LFS does not have the PFS’s token to pass.

4. The LFS serializes vn_cancel with the potentially simultaneously occurring

end of Part 2 on the SRB, so the PFS does not have to in any sense ″wait″

within vn_cancel for Part 2.

 Security calls to be made by the PFS: None.

vn_cancel

Chapter 3. PFS operations descriptions 131

vn_close — Close a file or socket

Function

The vn_close operation closes a file or socket.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_close (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 Return_value,

 Return_code,

 Reason_code)

vn_close

132 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Bit

Length: Fullword

A fullword containing the open flags that are associated with this file. These

flags are defined by fcntl.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_close operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_close operation stores the return code. The vn_close

operation returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of supported return

code values.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_close operation stores the reason code. The

vn_close operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_close processing

See “Opening and closing files and first references to files” on page 34 for a

discussion of close processing.

See “Creating, referring to, and closing socket vnodes” on page 44 for a

discussion of relevant socket processing.

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the close() function in the POSIX .1 standard (IEEE Std

1003.1-1990).

 Specific processing notes

vn_close

Chapter 3. PFS operations descriptions 133

1. The Return_value parameter is preset to -1 before the PFS is called. If the

PFS program checks or ends abnormally during the vn_close operation and

the abend is percolated back to the LFS, the LFS uses the Return_value to

determine what to do next. If the Return_value is still -1, the PFS is recalled

with vn_close; otherwise it is not. Therefore, just before the PFS reaches a

point at which it would rather not be recalled if it should end abnormally, it

should zero out the Return_value.

2. If the PFS supports vn_recovery, and vn_recovery returns control information

to direct the outcome of the original call, the rule above is overridden. That

is, vn_close is not recalled if it appears that vn_recovery has handled the

problem, regardless of the value of Return_value.

3. Although the Return_value, Return_code, and Reason_code values are

returned to the caller, the operation always succeeds in that the user’s file

descriptor is freed and the vnode’s open counter is decremented, regardless

of the Return_value.

4. If vn_inactive is not supported by the PFS, the LFS will free its vnode after

the vn_close returns. If vn_inactive is supported, the LFS keeps the vnode

for a few minutes and then invokes vn_inactive, at which time the vnode is

freed.

For sockets PFSs, the total number of vnodes in use is used to enforce the

MAXSOCKETS limit. Thus, for sockets PFSs that use vn_inactive, it is

possible for a heavily loaded system to reach its MAXSOCKETS limit—even

though not that many sockets are open—because of closed vnodes that

have not yet been inactivated.

Refer to “Creating, referring to, and closing socket vnodes” on page 44 for

more information on socket close and inactivation.

 Serialization provided by the LFS

The vn_close operation is invoked with an exclusive latch held on the vnode of

the file. Shared read support for the file that is being closed can be modified in

the OSI by the PFS upon returning from the vn_close operation.

 Security calls to be made by the PFS: None.

Related services

v “vn_open — Open a file” on page 170

v “vfs_socket — Create a socket or a socket pair” on page 97

vn_close

134 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_connect — Connect to a socket

Function

The vn_connect operation connects to a socket. The socket can be either a stream

socket or a datagram socket. The connection is done for stream sockets by a client;

a bind and a listen request must have preceded this request at the server.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_connect (Token_structure,

 OSI_structure,

 Audit_structure,

 Sockaddr_length,

 Sockaddr,

 Open_flags,

 Return_value,

 Return_code,

 Reason_code)

vn_connect

Chapter 3. PFS operations descriptions 135

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D, “Interface structures for C language servers and clients,” on page

503 for the mapping of this structure.

Sockaddr_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of sockaddr.

Sockaddr

Supplied parameter

Type: SOCK

Length: Specified by Sockaddr_length

A structure that varies depending on the address family type. It contains the

address that is to be used for this operation. For an example of this mapping for

AF_INET, see in.h.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that contains the bits that are associated with the socket. The defined

values for this field are mapped by fcntl.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_connect operation returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_connect operation stores the return code. The

vn_connect operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

vn_connect

136 z/OS V1R7.0 UNIX System Services File System Interface Reference

The vn_connect operation should support at least the following error values:

 Return_code Explanation

ECONNREFUSED The connection request was rejected.

EINTR The request was interrupted by a signal.

EINVAL The length of the name specified was too short, or

negative.

EISCONN The socket is already connected.

ENOAFSUPPORT The PFS does not support this address family.

EOPNOTSUPP The socket that was specified is a server; a listen

has been done.

EPROTOTYPE The request is for an incorrect socket type.

EWOULDBLOCK The operation would have required a blocking wait,

and this socket was marked as nonblocking.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_connect operation stores the reason code. The

vn_connect operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_connect processing

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the connect function.

 Specific processing notes

The connect() function performs a different action for each of the following

types of initiating sockets:

– If the initiating socket is SOCK_DGRAM, the connect() function establishes

the peer address. The peer address identifies the socket to which all

datagrams are sent on subsequent send() functions. No connections are

made by this connect() function.

– If the initiating socket is SOCK_STREAM, the connect() function attempts to

make a connection to the socket that is specified by the Sockaddr parameter.

 Serialization provided by the LFS

The vn_connect operation is invoked with an exclusive latch held on the vnode

of the socket.

 Security calls to be made by the PFS: None.

Related services

v “vn_listen — Listen on a socket” on page 160

v “vn_accept — Accept a socket connection request” on page 112

v “vn_bind — Bind a name to a socket” on page 125

vn_connect

Chapter 3. PFS operations descriptions 137

vn_create — Create a new file

Function

The vn_create operation creates a new file using the file type and attributes that are

provided by the caller.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D, “Interface

structures for C language servers and clients,” on page 503.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_create (Token_structure,

 OSI_structure,

 Audit_structure,

 Name_length,

 Name,

 Attribute_structure,

 Vnode_token,

 Return_value,

 Return_code,

 Reason_code)

vn_create

138 z/OS V1R7.0 UNIX System Services File System Interface Reference

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Name_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of Name. The name is between 1 and 255

bytes long.

Name

Supplied parameter

Type: String

Length: Specified by Name_length

An area, of length Name_length, that contains the name of the file that is to be

created. This name is not null-terminated.

Attribute_structure

Supplied parameter

Type: ATTR

Length: Specified by ATTR.at_hdr.cblen.

An area that is to be used by the vn_create operation to set the attributes of the

file that is to be created. This area is mapped by typedef ATTR in the

BPXYVFSI header file (see Appendix D).

Vnode_token

Returned parameter

Type: Token

Length: 8 bytes

An area in which the vn_create operation returns the vnode token that is

created.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_create operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

vn_create

Chapter 3. PFS operations descriptions 139

A fullword in which the vn_create operation stores the return code. The

vn_create operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_create operation should support at least the following error values:

 Return_code Explanation

EACCES The caller does not have write permission for the

parent directory.

EEXIST A file with the same name already exists.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_create operation stores the reason code. The

vn_create operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_create processing

“Creating files” on page 32 provides an overview of file creation processing.

 Specific processing notes

– The token structure that is passed on input represents the directory in which

the file is created.

– The following attribute_structure fields are provided by the LFS:

ATTR.at_hdr.cbid Contains Attr_ID (from the BPXYVFSI header

file)

ATTR.at_hdr.cblen Specifies the length of the attribute_structure

ATTR.at_mode Specifies the file type and permission bits.

See the ATTR typedef in Appendix D for the

mapping of this field.

 The user’s file creation mask, umask() value,

has already been applied to the permission

bits.

ATTR.at_major Specifies the major number for

character-special files. This is provided only

when the file type is character-special.

ATTR.at_minor Specifies the minor number for

character-special files. This is provided only

when the file type is character-special.

– If the file that is named in the Name parameter already exists, the vn_create

operation returns a return code of EEXIST, and the output vnode_token is

optional.

 Serialization provided by the LFS

The vn_create operation is invoked with an exclusive latch held on the vnode of

the parent directory.

 Security calls to be made by the PFS

vn_create

140 z/OS V1R7.0 UNIX System Services File System Interface Reference

The PFS is expected to invoke SAF’s Check Access callable service to verify

that the user has write permission to the directory. The PFS is also expected to

invoke SAF’s Make FSP callable service to create a file security packet.

Related services

v “osi_getvnode — Get or return a vnode” on page 385

v “vn_remove — Remove a link to a file” on page 194

vn_create

Chapter 3. PFS operations descriptions 141

vn_fsync — Harden file data

Function

The vn_fsync operation writes to disk (or otherwise stabilizes) all changed data in a

file.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_fsync (Token_structure,

 OSI_structure,

 Audit_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_fsync

142 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_fsync service returns the results of the operation, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_fsync service stores the return code. The vn_fsync

service returns Return_code only if Return_value is −1. See z/OS UNIX System

Services Messages and Codes for a complete list of supported return code

values.

 The vn_fsync service should support at least the following error value:

 Return_code Explanation

EINVAL The operation is not possible for the specified file.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_fsync service stores the reason code. The vn_fsync

service returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_fsync processing

For the file token in the token_structure, vn_fsync must write all modified data

that is not yet placed in nonvolatile storage to such a medium.

 Specific processing notes

– Data should be completely hardened before vn_fsync returns to its caller.

– For more information on the semantics of this operation for a

POSIX-conforming PFS, refer to the fsync() function in the POSIX .1a

standard (IEEE Std 1003.1a), draft 7.

 Serialization provided by the LFS

The vn_fsync operation is invoked with an exclusive latch held on the vnode of

the file.

vn_fsync

Chapter 3. PFS operations descriptions 143

Security calls to be made by the PFS: None.

Related services

v “vfs_sync — Harden all file data for a file system” on page 103

vn_fsync

144 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_getattr — Get the attributes of a file

Function

The vn_getattr operation gets the attributes of a file.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length:

Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token.

 Refer to “LFS/PFS control block structure” on page 16 for a discussion of this

structure, and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface

structures for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_getattr (Token_structure,

 OSI_structure,

 Audit_structure,

 Attribute_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_getattr

Chapter 3. PFS operations descriptions 145

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Attribute_structure

Supplied and returned parameter

Type: ATTR

Length: Specified by ATTR.at_hdr.cblen.

An area used by the vn_getattr operation to return the file attributes for the file

that is specified by the vnode token. Before a call to vn_getattr,

Attribute_structure must be initialized with the ID and length fields set correctly

and the unused fields set to zero. This area is mapped by typedef ATTR in the

BPXYVFSI header file (see Appendix D).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the vn_getattr service returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_getattr service stores the return code. The vn_getattr

service returns Return_code only if Return_value is −1. See z/OS UNIX System

Services Messages and Codes for a complete list of supported return code

values.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_getattr service stores the reason code. The

vn_getattr service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_getattr processing

vn_getattr is used to read file attributes, as described in “Getting and setting

attributes” on page 39.

 Specific processing notes

– The input attribute_structure length may not match the length that is

supported by the PFS. The PFS must return the minimum of:

- Input ATTR.at_hdr.cblen

vn_getattr

146 z/OS V1R7.0 UNIX System Services File System Interface Reference

- The attribute_structure length that is supported by this release of the PFS

The returned value in ATTR.at_hdr.cblen must match the size returned.

– Time-related fields that are marked for update must be updated before the

attributes are returned.

 Serialization provided by the LFS

The vn_getattr operation is invoked with a shared latch held on the vnode of the

directory.

 Security calls to be made by the PFS: None.

Related services

v “vn_setattr — Set the attributes of a file” on page 213

vn_getattr

Chapter 3. PFS operations descriptions 147

vn_getname — Get the peer or socket name

Function

The vn_getname operation gets the peer name or the socket name.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_getname (Token_structure,

 OSI_structure,

 Audit_structure,

 Name_type,

 Sockaddr_length,

 Sockaddr,

 Return_value,

 Return_code,

 Reason_code)

vn_getname

148 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Name_type

Supplied parameter

Type: Integer

Length: Fullword

A fullword that specifies whether to get the peer name or the socket name. The

values for this field are defined in the BPXYPFSI header file (see Appendix D).

Sockaddr_length

Supplied and returned parameter

Type: Integer

Length:

Fullword

A fullword that supplies the length of the Sockaddr buffer, and returns the length

of the Sockaddr structure that is returned.

Sockaddr

Supplied and returned parameter

Type: SOCK

Length:

Specified by Sockaddr_length

A structure that varies depending on the address family type. On return, it

contains the address that was used for this operation. For an example of this

mapping for AF_INET, see in.h.

Return_value

Returned parameter

Type: Integer

Length:

Fullword

A fullword in which the vn_getname operation returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_getname operation stores the return code. The

vn_getname operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

vn_getname

Chapter 3. PFS operations descriptions 149

The vn_getname operation should support at least the following error values:

 Return_code Explanation

EINVAL The length of the name that was specified is too

short.

ENOTCONN The socket is not connected for a getpeername

request.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_getname operation stores the reason code. The

vn_getname operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_getname processing

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the getpeername and getsockname functions.

 Serialization provided by the LFS

The vn_getname operation is invoked with an exclusive latch held on the vnode

of the socket.

 Security calls to be made by the PFS: None.

vn_getname

150 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_inactive — Inactivate a vnode

Function

The vn_inactive disassociates a vnode from the PFS’s related inode.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_inactive (Token_structure,

 OSI_structure,

 Audit_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_inactive

Chapter 3. PFS operations descriptions 151

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the vn_inactive service returns the results of

the operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_inactive service stores the return code. The

vn_inactive service returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_inactive service should support the following error value:

 Return_code Explanation

EIO An I/O error occurred while accessing the file.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_inactive service stores the reason code. The

vn_inactive service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_inactive processing

“Creating, referring to, and inactivating file vnodes” on page 31 provides an

overview of file inactivate processing.

 Specific processing notes

– If a transient error, such as an I/O error, is encountered, the Return_value

should be set to −1. In this case, the request is retried later.

– If a permanent error that prevents the specified file or directory from being

used is encountered, Return_value should be set to zero. In this case, all

references to the file or directory are removed from the LFS and the request

is not retried. The PFS must not issue a signal-enabled wait during inactivate

processing. “Waiting and posting” on page 21 provides an overview of wait

and post processing.

vn_inactive

152 z/OS V1R7.0 UNIX System Services File System Interface Reference

– If a file’s link count is zero, but its open count is not zero, the PFS should

ignore the open count and delete the file’s data along with the file. This might

happen, for example, when an address space is canceled right after vn_open

finishes in the PFS, but before the LFS regains control.

 Serialization provided by the LFS

The vn_inactive operation is invoked with an exclusive latch held on the file

system containing the vnode.

 Security calls to be made by the PFS: None.

Related services

v “osi_wait — Wait for an event to occur” on page 431

v “vfs_inactive — Batch inactivate vnodes” on page 81

vn_inactive

Chapter 3. PFS operations descriptions 153

vn_ioctl — I/O control

Function

The vn_ioctl operation conveys a command for a file or device driver. The specific

commands that are supported are defined by the PFS.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_ioctl (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 Command,

 Argument_length,

 Argument,

 Return_value,

 Return_code,

 Reason_code)

vn_ioctl

154 z/OS V1R7.0 UNIX System Services File System Interface Reference

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

An area that contains the open options that are associated with the file. These

flags are defined in fcntl.h.

Command

Supplied parameter

Type: Integer

Length: Fullword

The command indicates the function that is to be performed by the PFS. The

values that are defined in ioctl.h are for regular calls. The special values for

sockets initialization are defined in BPXYPFSI (see Appendix D).

Argument_length

Supplied and returned parameter

Type: Integer

Length: Fullword

Argument_length contains the length of the argument.

Argument

Supplied and returned parameter

Type: Defined by the PFS or the Device Driver

Length: Specified by Argument_length

Argument is the buffer that is to be processed by the PFS. It may contain input

data to be processed, data placed in it by the PFS or device driver, or both.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_ioctl service returns the results of the operation, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

vn_ioctl

Chapter 3. PFS operations descriptions 155

A fullword in which the vn_ioctl service stores the return code. The vn_ioctl

service returns Return_code only if Return_value is −1. See z/OS UNIX System

Services Messages and Codes for a complete list of supported return code

values.

 The vn_ioctl service should support at least the following error value:

 Return_code Explanation

ENODEV The requested function is not supported by the PFS.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_ioctl service stores the reason code. The vn_ioctl

service returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_ioctl processing

vn_ioctl provides a vehicle by which a PFS may provide functions not described

by the POSIX standard.

 Specific processing notes

– The PFS could use vn_ioctl to support unique file operations.

– vn_ioctl could be used to allow direct access to devices that are controlled by

the PFS. You should avoid passing addresses with this service (using

argument), and instead include all data in the buffer.

– The maximum Argument_length that is supported by the LFS is 1024 bytes.

– Refer to “Common INET sockets” on page 48 for information on the

commands that a PFS must support in order to be an AF_INET socket PFS.

– Open_flags are all zero when vn_ioctl is the result of the w_pioctl (BPX1PIO)

function, since the file being operated on has not been opened. The PFS

may want to include a special access check in this case.

– For those cases in which user data addresses are passed in the argument,

the user’s storage key is passed to the PFS. This key should be used with

MVCSK/MVCDK or osi_copyin/osi_copyout to reference the user data areas.

The key is passed in the first word of the system data area of the

Token_structure, ts_sysd1, with a format of X'PPPP020K', where K is the

four-bit key value. When ts_sysd1 is all zeroes, keys are not passed.

The first two bytes of ts_sysdl, when byte 3 is X'02', are the first and third

bytes of the user’s PSW, which are the bytes that contain the user’s AMODE

and Supervisor State bits.

This information is passed in ts_sysdl for all instances of program ioctl() calls,

but some internal uses of vn_ioctl, mostly for FIONBIO, do not do so. These

cases do not contain addresses in the argument.

 Serialization provided by the LFS

The vn_ioctl operation is invoked with an exclusive latch held on the vnode of

the file.

 Security calls to be made by the PFS

The PFS may choose to invoke SAF’s Check Access callable service to verify

that the user has write permission to the file or device.

vn_ioctl

156 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_link — Create a link to a file

Function

The vn_link operation creates a link to the file that is specified by Token_structure in

the directory that is specified by Directory_token_structure. The link is a new name

that identifies an existing file. The new name does not replace the old one, but

provides an additional way to refer to the file.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_link (Token_structure,

 OSI_structure,

 Audit_structure,

 Link_name_length,

 Link_name,

 Directory_token_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_link

Chapter 3. PFS operations descriptions 157

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 See “Security responsibilities and considerations” on page 12 for a discussion

of security processing, and to the CRED typedef in BPXYPFSI in Appendix D

for the mapping of this structure.

Link_name_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of Link_name. The name can be between 1

and 255 bytes long.

Link_name

Supplied parameter

Type: String

Length: Specified by Link_name_length

An area, of length Link_name_length, that contains the new name by which the

file is to be known. This name contains no nulls.

Directory_token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKStr.ts_hdr.cblen.

The Directory_token_structure represents the vnode of the directory that is to

contain Link_name.

 This area is mapped by the TOKSTR typedef in the BPXYPFSI header file (see

Appendix D) for details.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_link service returns the results of the operation, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_link service stores the return code. The vn_link

service returns Return_code only if Return_value is −1. See z/OS UNIX System

Services Messages and Codes for a complete list of supported return code

values.

vn_link

158 z/OS V1R7.0 UNIX System Services File System Interface Reference

The vn_link service should support at least the following error values:

 Return_code Explanation

EEXIST A file with the same name already exists.

ENAMETOOLONG The length of Link_name exceeds the length that is

supported by this PFS.

EROFS The file system is mounted read-only.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_link service stores the reason code. The vn_link

service returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_link processing

vn_link must create an entry in the directory that is specified by

Directory_token_structure, pointing to the file that is specified by

Token_structure.

 Specific processing notes

– If the link is created successfully, the operation increments the link count of

the file. The link count shows how many links to a file exist. (If the link is not

created successfully, the link count is not incremented.)

– The LFS does not permit links to directories.

– If the link is created successfully, the change time of the linked-to file is

updated, as are the change and modification times of the directory that

contains Link_name, that is, the directory that holds the link.

– For more information on the semantics of this operation for a

POSIX-conforming PFS, refer to the link() function in the POSIX .1 standard

(IEEE Std 1003.1-1990).

 Serialization provided by the LFS

The vn_link operation is invoked with an exclusive latch held on the vnodes of

the directory and the file.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Check Access callable service to verify

that the user has any access to the file, and has write access to the directory.

For a discussion of vn_link processing in a multilevel security environment, see

“PFS support for multilevel security” on page 64.

Related services

v “vn_remove — Remove a link to a file” on page 194

v “vn_rename — Rename a file or directory” on page 197

vn_link

Chapter 3. PFS operations descriptions 159

vn_listen — Listen on a socket

Function

The vn_listen operation identifies the socket as a server and establishes the

maximum number of incoming connection requests that can be queued.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_listen (Token_structure,

 OSI_structure,

 Audit_structure,

 Backlog,

 Return_value,

 Return_code,

 Reason_code)

vn_listen

160 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Backlog

Supplied parameter

Type: Integer

Length: Fullword

A fullword that specifies the maximum number of connection requests that can

be queued.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_listen operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_listen operation stores the return code. The vn_listen

operation returns Return_code only if Return_value is −1. For a complete list of

supported return code values, see z/OS UNIX System Services Messages and

Codes.

 The vn_listen operation should support at least the following error values:

 Return_code Explanation

EINVAL Either a bind has not been issued on this socket; a

listen was already done; or this socket has been

connected.

EOPNOTSUPP Listen is valid only for stream sockets.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_listen operation stores the reason code. The

vn_listen operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_listen processing

vn_listen

Chapter 3. PFS operations descriptions 161

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the listen function.

 Specific processing notes: None.

 Serialization provided by the LFS

The vn_listen operation is invoked with an exclusive latch held on the vnode of

the socket.

 Security calls to be made by the PFS: None.

Related services

v “vn_bind — Bind a name to a socket” on page 125

vn_listen

162 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_lookup — Look up a file or directory

Function

The vn_lookup searches the directory that is represented by token_structure for the

file or directory whose name is supplied.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_lookup (Token_structure,

 OSI_structure,

 Audit_structure,

 Name_length,

 Name,

 Vnode_token,

 Return_value,

 Return_code,

 Reason_code)

vn_lookup

Chapter 3. PFS operations descriptions 163

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Name_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of Name. The name is between 1 and 255

bytes long.

Name

Supplied parameter

Type: String

Length: Specified by Name_length

An area, of length Name_length, that contains the name of the file or directory

that is to be searched for. This name is not null-terminated.

Vnode_token

Returned parameter

Type: Token

Length: 8 bytes

An area in which the vn_lookup operation returns the vnode token of the file or

directory that is supplied in the name parameter.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_lookup operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_lookup operation stores the return code. The

vn_lookup operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_lookup operation should support at least the following error values:

 Return_code Explanation

EACCES The caller does not have search permission for the

parent directory.

ENAMETOOLONG The Name_length that was supplied is greater than

the maximum name length that is supported by this

PFS.

vn_lookup

164 z/OS V1R7.0 UNIX System Services File System Interface Reference

Return_code Explanation

ENOENT The file or directory does not exist in the parent

directory.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_lookup operation stores the reason code. The

vn_lookup operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_lookup processing

Lookup processing is described in “Creating, referring to, and inactivating file

vnodes” on page 31.

 Specific processing notes

– The token structure that is passed on input represents the directory that is

searched for the input name.

– If the file or directory that is named in the Name parameter does not exist in

the parent directory, the vn_lookup operation returns a failing return code,

and no vnode_token is returned.

 Serialization provided by the LFS

The vn_lookup operation is invoked with a shared latch held on the vnode of the

parent directory.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Check Access callable service to verify

that the user has search permission to the directory.

Related services

v “osi_getvnode — Get or return a vnode” on page 385

vn_lookup

Chapter 3. PFS operations descriptions 165

vn_mkdir — Create a directory

Function

The vn_mkdir operation creates a directory using the attributes that are provided by

the caller.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_mkdir (Token_structure,

 OSI_structure,

 Audit_structure,

 Name_length,

 Name,

 File_attribute_structure,

 Vnode_token,

 Return_value,

 Return_code,

 Reason_code)

vn_mkdir

166 z/OS V1R7.0 UNIX System Services File System Interface Reference

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Name_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of the directory name that is to be created.

The name can be between 1 and 255 bytes long.

Name

Supplied parameter

Type: String

Length: Specified by Name_length

An area, of length Name_length, that contains the name of the directory that is

to be created. This name contains no nulls.

File_Attribute_Structure

Supplied parameter

Type: Structure

Length: Specified by the ATTR.attr_hdr.cblen field

An area that contains the attributes of the directory that is to be created. This

area is mapped by the ATTR typedef in the BPXYVFSI header file (see

Appendix D). See “Specific processing notes” for details on how the fields in

this structure are processed.

Vnode_token

Returned parameter

Type: Token

Length: 8 bytes

An area in which the vn_mkdir service returns the vnode_token for the new

directory.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_mkdir service returns the results of the operation, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is −1

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

vn_mkdir

Chapter 3. PFS operations descriptions 167

A fullword in which the vn_mkdir service stores the return code. The vn_mkdir

service returns Return_code only if Return_value is −1. See z/OS UNIX System

Services Messages and Codes for a complete list of supported return code

values.

 The vn_mkdir service should support the following error values:

 Return_code Explanation

EACCES The caller does not have write authority for the

parent directory.

EEXIST A directory with the same name already exists.

ENOENT The parent directory has been marked for deletion.

ENAMETOOLONG The length of the name is greater than the

maximum supported length.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_mkdir service stores the reason code. The vn_mkdir

service returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_mkdir processing

“Creating, referring to, and inactivating file vnodes” on page 31 provides an

overview of directory creation processing.

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the mkdir()function in the POSIX .1 standard (IEEE Std

1003.1-1990).

 Specific processing notes

– The token structure that is passed on input represents the parent directory in

which the new directory is created.

– The following ATTR fields are provided by the LFS:

Attr.at_hdr.cbid Contains Attr_ID (from the BPXYVFSI header

file)

Attr.attr_hdr.cblen Specifies the length of the

File_Attribute_Structure

ATTR.at_mode Specifies the directory permission bits. See

Appendix D for the mapping of this field.

– If the directory that is named in the Name parameter already exists, the

vn_mkdir service returns a return code of EEXIST, and the output

vnode_token is optional.

 Serialization provided by the LFS

The vn_mkdir operation is invoked with an exclusive latch held on the vnode of

the parent directory.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Check Access callable service to verify

that the user has write permission to the directory. The PFS is also expected to

invoke SAF’s Make FSP callable service to create a file security packet.

vn_mkdir

168 z/OS V1R7.0 UNIX System Services File System Interface Reference

Related services

v “osi_getvnode — Get or return a vnode” on page 385

v “vn_remove — Remove a link to a file” on page 194

vn_mkdir

Chapter 3. PFS operations descriptions 169

vn_open — Open a file

Function

The vn_open operation opens a file.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) being operated on. It contains

the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information used by the OSI operations that may be

called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_open (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 Return_value,

 Return_code,

 Reason_code)

vn_open

170 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Bit

Length: Fullword

A fullword containing the binary flags that describe how the file is to be opened.

These flags are defined by fcntl.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword where the vn_open operation returns the results of the operation as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_open operation stores the return code. The vn_open

operation returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of supported return

code values.

 The vn_open operation should support at least the following error values:

 Return_code Explanation

EACCES The caller does not have permission for the

requested (read or write) access.

ENOENT The file does not exist.

EROFS An attempt was made to open a file for write in a

read-only file system.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword where the vn_open operation stores the reason code. The vn_open

operation returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_open processing

vn_open

Chapter 3. PFS operations descriptions 171

See “Opening and closing files and first references to files” on page 34 for a

discussion of open processing.

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the open() function in the POSIX .1 standard (IEEE Std

1003.1-1990).

 Specific processing notes

– The O_RDONLY and O_WRONLY bits in the Open_flags control whether the

SAF Check Access callable service is called for a read, write, or read and

write access check.

– When the O_EXEC flag is ON in the Open_flags, the SAF Check Access call

must be made with a check for execute permission rather than read or write

permission. This bit is an z/OS UNIX extension that is defined in Appendix D.

– When the O_TRUNC flag is ON in the Open_flags the PFS must truncate the

file to zero length.

– The LFS implements the semantics of the O_CREAT and O_EXCL flags.

– The Open_flags will be remembered by the LFS and passed to the PFS on

all read/write type operations that are related to this open. The O_APPEND

and O_NONBLOCK flags, for instance, are processed by the PFS during

those read/write operations from the flags passed to it at that time. The

O_SYNC flag is transferred by the LFS to the UIO.u_sync flag for all

read/write type operations so that this function can be processed by the PFS

the same way for both POSIX and NFS users.

 Serialization provided by the LFS

The vn_open operation is invoked with an exclusive latch held on the vnode of

the file. Shared read support for the file being opened may be modified in the

OSI by the PFS upon returning from the vn_open operation.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Check Access callable service to check

that the user has permission for the requested (read, write, or execute) access.

Related services

v “vn_close — Close a file or socket” on page 132

vn_open

172 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_pathconf — Determine configurable pathname values

Function

The vn_pathconf operation returns the current value of a configurable limit or option

that is associated with a file or directory.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_pathconf (Token_structure,

 OSI_structure,

 Audit_structure,

 Option,

 Return_value,

 Return_code,

 Reason_code)

vn_pathconf

Chapter 3. PFS operations descriptions 173

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Option

Supplied parameter

Type: Integer

Length: Fullword

The option parameter contains a value that indicates which configurable limit or

option is returned in Return_value. These values are defined in unistd.h and

are:

 Variable Returned Description

_PC_CHOWN_RESTRICTED Change ownership function is restricted to a process

with appropriate privileges, and to changing the

group ID (GID) of a file only to the effective group ID

of the process or to one of its supplementary group

IDs.

_PC_LINK_MAX Maximum value of a file’s link count.

_PC_MAX_CANON Maximum number of bytes in a terminal canonical

input line.

_PC_MAX_INPUT Minimum number of bytes for which space is to be

available in a terminal input queue; therefore, the

maximum number of bytes a portable application

may require to be typed as input before it reads

them.

_PC_NAME_MAX Maximum number of bytes in a filename (not a

string length; count excludes a terminating null).

_PC_NO_TRUNC Pathname components longer than 255 bytes

generate an error.

_PC_PATH_MAX Maximum number of bytes in a pathname (not a

string length; count excludes a terminating null).

_PC_PIPE_BUF Maximum number of bytes that can be written

atomically when writing to a pipe.

_PC_VDISABLE Terminal special characters that are maintained by

the system can be disabled using this character

value.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the vn_pathconf operation returns the current

value of the pathname variable that corresponds to Name specified, or −1 if not

successful.

 If the named pathname variable does not have a limit for the specified file,

Return_value is set to −1 and Return_code and Reason_code remain

unchanged.

 If _PC_CHOWN_RESTRICTED is specified for Option, and

_POSIX_CHOWN_RESTRICTED is active, Return_value is set to 1.

 If _PC_CHOWN_RESTRICTED is specified for Option, and

_POSIX_CHOWN_RESTRICTED is not active, Return_value is set to 0.

 If _PC_NO_TRUNC is specified for Option, and _POSIX_NO_TRUNC is active,

Return_value is set to 1.

vn_pathconf

174 z/OS V1R7.0 UNIX System Services File System Interface Reference

If _PC_NO_TRUNC is specified for Option, and _POSIX_NO_TRUNC is not

active, Return_value is set to 0.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_pathconf operation stores the return code. The

vn_pathconf operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_pathconf operation stores the reason code. The

vn_pathconf operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Specific processing notes

– If the PFS does not have a limit for the specified option, Return_value is set

to -1, but Return_code and Reason_code are unchanged. A Return_value of

-1 in this case represents a limit of infinity (or no limit) for the requested

option.

– The vn_pathconf operation is not invoked by the LFS if the PATH_MAX

option is specified. The LFS value for PATH_MAX, 1023, is returned.

– If the PC_NAME_MAX option is specified, the LFS compares its value to the

PFS value, and returns the minimum.

 Serialization provided by the LFS

The vn_pathconf operation is invoked with a shared latch held on the vnode.

 Security calls to be made by the PFS: None.

vn_pathconf

Chapter 3. PFS operations descriptions 175

vn_rdwr — Read or write a file

Function

The vn_rdwr operation reads data from or writes data to a file or a socket.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_rdwr (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 User_IO_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_rdwr

176 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

An area that contains the options that are to be used when reading from or

writing to the file or socket. This area is mapped by fcntl.h. See z/OS XL

C/C++ Run-Time Library Reference for a description of this header.

User_IO_structure

Supplied and returned parameter

Type: Structure

Length: Specified by the UIO.u_hdr.cblen field

An area to be used by the vn_rdwr service to determine the buffer address,

length, storage key, and other attributes of the read or write request. This area

is mapped by the UIO typedef in the BPXYVFSI header file (see Appendix D).

See the description of the vn_readwritev service (“Specific processing notes”)

for details on how the fields in this structure are processed.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_rdwr service returns the results of the operation, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 or greater The operation was successful; the value

represents the number of bytes that were

transferred.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_rdwr service stores the return code. The vn_rdwr

service returns Return_code only if Return_value is −1. For a complete list of

supported return code values, see z/OS UNIX System Services Messages and

Codes.

 The vn_rdwr service should support the following error values:

 Return_code Explanation

EFAULT A buffer address that was not valid was passed.

EINTR The request was interrupted by a signal.

EACCES The caller does not have the requested (read or

write) access to the file.

vn_rdwr

Chapter 3. PFS operations descriptions 177

Return_code Explanation

EFBIG Writing to the specified file would exceed the file

size limit for the process, or the maximum file size

that is supported by the physical file system.

EIO An I/O error occurred while the file was being

accessed.

EWOULDBLOCK The request was made of a non-blocking descriptor,

and a block was needed to satisfy the request.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_rdwr service stores the reason code. The vn_rdwr

service returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_rdwr processing

“Reading from and writing to files” on page 36 provides an overview of file read

and write processing.

 Specific processing notes

– The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI

header file)

UIO.u_hdr.cblen Specifies the length of the user_IO_structure

UIO.u_buffaddr Specifies the address of the caller’s

input/output buffer

UIO.u_buffalet Specifies the ALET of the caller’s input/output

buffer

UIO.u_offseth Specifies the upper word of a doubleword

value that contains the offset into the file.

The updated value for this field is returned by

the PFS as a result of the vn_rdwr operation.

UIO.u_offset Specifies the lower word of a doubleword

value that contains the offset into the file.

The updated value for this field is returned by

the PFS as a result of the vn_rdwr operation.

UIO.u_count Specifies the number of bytes that are to be

read or written

UIO.u_asid Specifies the ASID of the caller

UIO.u_rw Specifies whether the request is a read (0) or

a write (1)

UIO.u_key Specifies the storage key of the caller’s

input/output buffer

UIO.u_fssizelimithw Specifies the high word of the file size limit

for the process

vn_rdwr

178 z/OS V1R7.0 UNIX System Services File System Interface Reference

UIO.u_fssizelimitlw Specifies the low word of the file size limit for

the process

UIO.u_sync Specifies that the file is to be written to disk

before the PFS returns. The PFS sets

UIO.u_syncd to indicate that this has been

done.

UIO.u_chkacc Specifies that access checking is to be

performed

UIO.u_realpage Specifies that a real storage address is being

passed. This flag is used only if the PFS

reported during initialization that it supports

DATOFF moves.

 PFS limit processing

The UIO contains the process file size limit for the file. This is a doubleword

value that is contained in UIO.u_fssizelimithw and UIO.u_fssizelimitlw. When a

write request is unable to write any data before exceeding the file size limit, the

PFS must set the UIO.u_limitex bit on, in addition to setting a Return_code of

EFBIG. This includes detecting the special case in which the

UIO.u_fssizelimithw is equal to UIO_NONEWFILES, which prohibits the

expansion of existing files.

(Note that for vn_setattr, the LFS handles file size limit checking.)

The PFS must also be aware of one other special value for the file size limit. If

both UIO.u_fssizelimithw and UIO.u_fssizelimitlw are equal to 0, there is no file

size limit set for the process.

 Serialization provided by the LFS

The vn_rdwr operation is invoked with an exclusive latch held on the vnode,

unless the VnodSharedRead flag indicates that shared read is supported, in

which case a shared latch is held on the vnode.

Shared read support for the file that is being read from or written to may be

modified in the OSI by the PFS upon returning from the vn_rdwr operation.

 Security calls to be made by the PFS

If u_chkacc is on in the user_IO_structure, the PFS is expected to invoke SAF’s

Check Access callable service to check that the user has permission to read

from or write to the file. This check should be based on the access intent that is

specified by u_rw.

The PFS is expected to invoke SAF’s Clear Setid callable service whenever a

write is done to a file with the S_GID or S_UID options. System overhead can

be significantly reduced by setting an internal flag in the Inode to indicate that

Clear Setid has been called, so that subsequent calls can be avoided. This flag

would be cleared whenever the file’s mode is changed via vn_setattr. In other

words, Clear Setid should only be called once on the first write after the file’s

mode is changed or its Inode is created in storage.

vn_rdwr

Chapter 3. PFS operations descriptions 179

vn_readdir — Read directory entries

Function

The vn_readdir operation reads entries from the directory that is represented by the

input Token_structure, and returns as many entries as will fit in the caller’s buffer.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_readdir (Token_structure,

 OSI_structure,

 Audit_structure,

 User_IO_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_readdir

180 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

User_IO_structure

Supplied and returned parameter

Type: UIO

Length:

Specified by UIO.u_hdr.cblen.

An area containing the parameters for the I/O that is to be performed. This area

is mapped by the UIO typedef in the BPXYVFSI header file (see Appendix D).

See “Specific processing notes” for details on how the fields in this structure are

processed.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_readdir operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful, and there are no

more directory entries to be read. No entries

are returned.

0 or greater The operation was successful; the value

represents the number of directory entries that

are returned.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_readdir operation stores the return code. The

vn_readdir operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_readdir operation should support at least the following error values:

 Return_code Explanation

EACCES The caller does not have search permission for the

directory.

EFAULT A buffer address that was specified is not in

addressable storage.

EINVAL There was a parameter error, such as an input

buffer that is too small for any entries.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

vn_readdir

Chapter 3. PFS operations descriptions 181

A fullword in which the vn_readdir operation stores the reason code. The

vn_readdir operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS product.

Implementation notes

 Overview of vn_readdir processing

“Reading directories” on page 37 provides an overview of readdir operation.

 Specific processing notes

– The token structure that is passed on input represents the directory that is to

be read.

– The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI

header file)

UIO.u_hdr.cblen Specifies the length of the user_IO_structure

UIO.u_buffaddr Specifies the address of the caller’s buffer

UIO.u_alet Specifies the ALET of the caller’s buffer

UIO.u_offseth Specifies the high-order word of the cursor

UIO.u_offset Specifies the low-order word of the cursor

UIO.u_count Specifies the maximum number of bytes that

can be written to the caller’s buffer

UIO.u_asid Specifies the ASID of the caller

UIO.u_key Specifies the storage key of the caller’s

buffer

UIO.u_rdindex Specifies the readdir index field

– The following UIO fields must be set by the PFS:

- UIO.u_offseth

- UIO.u_offset

– The PFS is expected to write directory entries into the caller’s buffer. These

directory entries are mapped by the DIRENT and DIREXT typedefs in the

BPXYVFSI header file (see Appendix D).

– For more information on the semantics of this operation for a

POSIX-conforming PFS, see readdir (BPX1RDD, BPX4RDD) — Read an

entry from a directory in z/OS UNIX System Services Programming:

Assembler Callable Services Reference.

 Serialization provided by the LFS

The vn_readdir operation is invoked with a shared latch held on the vnode of

the directory.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Check Access callable service to verify

that the user has read permission to the directory.

Related services

v “vn_open — Open a file” on page 170

vn_readdir

182 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_readlink — Read a symbolic link

Function

The vn_readlink operation reads the symbolic link file that is represented by

Token_structure, and returns the contents in the buffer that is described by

User_IO_structure.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_readlink (Token_structure,

 OSI_structure,

 Audit_structure,

 User_IO_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_readlink

Chapter 3. PFS operations descriptions 183

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

User_IO_structure

Supplied and returned parameter

Type: UIO

Length: Specified by UIO.u_hdr.cblen.

An area that contains the parameters for the I/O that is to be performed. This

area is mapped by the UIO typedef in the BPXYVFSI header file (see

Appendix D).

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_readlink service returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 or greater The operation was successful and represents

the number of bytes that were transferred.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_readlink service stores the return code. The

vn_readlink service returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_readlink service should support at least the following error value:

 Return_code Explanation

EFAULT The buffer address that was specified in the input

user_IO_structure is not in addressable storage.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_readlink service stores the reason code. The

vn_readlink service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_readlink processing

“Reading from and writing to files” on page 36 provides an overview of file read

and write processing.

vn_readlink

184 z/OS V1R7.0 UNIX System Services File System Interface Reference

The vn_readlink operation reads a symbolic link file. A symbolic link file contains

the pathname or external name that was specified when the symbolic link was

created.

 Specific processing notes

– The token structure that is passed on input represents the symbolic link that

is to be read.

– The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI

header file)

UIO.u_hdr.cblen Specifies the length of the user_IO_structure

UIO.u_buffaddr Specifies the address of the caller’s buffer

UIO.u_alet Specifies the ALET of the caller’s buffer

UIO.u_count Specifies the maximum number of bytes that

can be written to the caller’s buffer

UIO.u_asid Specifies the ASID of the caller

UIO.u_key Specifies the storage key of the caller’s

buffer

– If the buffer that is supplied to vn_readlink is too small to contain the

contents of the symbolic link, the value should be truncated to the length of

the buffer (UIO.u_count).

– There is no difference in vn_readlink processing for symbolic and external

links.

– Refer to the readlink() function in the POSIX .1a standard (IEEE Std

1003.1a), draft 7, for more information on the semantics of this operation for

a POSIX-conforming PFS.

 Serialization provided by the LFS

The vn_readlink operation is invoked with a shared latch held on the vnode of

the directory.

 Security calls to be made by the PFS: None.

Related services

v “vn_symlink — Create a symbolic link” on page 238

vn_readlink

Chapter 3. PFS operations descriptions 185

vn_readwritev — Read or write using a set of buffers for data

Function

The vn_readwritev operation reads or writes on a file or socket, using a set of

buffers to hold the data that is read or written.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_readwritev (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 User_IO_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_readwritev

186 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that contains the bits that are associated with the socket. The defined

values for this field are mapped by fcntl.h.

User_IO_structure

Supplied and returned parameter

Type: UIO

Length: Specified by UIO.u_hdr.cblen.

An area that contains the parameters for the I/O that is to be performed. This

area is mapped by the UIO typedef in the BPXYVFSI header file (see

Appendix D). See “Specific processing notes” for details on how the fields in

this structure are processed.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_readwritev operation returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 or greater The operation was successful; the value

represents the number of bytes that were

transferred.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_readwritev operation stores the return code. The

vn_readwritev operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_readwritev operation should support at least the following error values:

 Return_code Explanation

EINVAL Either a negative number of bytes was requested,

or this socket has been shut down.

EFAULT A buffer address that was specified is not in

addressable storage.

EFBIG Writing to the specified file would exceed the file

size limit for the process or the maximum file size

that is supported by the physical file system.

vn_readwritev

Chapter 3. PFS operations descriptions 187

Return_code Explanation

EWOULDBLOCK The operation would have required a blocking wait,

and this socket was marked as nonblocking.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_readwritev operation stores the reason code. The

vn_readwritev operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_readwritev processing

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the readv and writev functions.

 Specific processing notes

– The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI

header file)

UIO.u_hdr.cblen Specifies the length of the user_IO_structure

UIO.u_buffaddr Specifies the address of the caller’s iov

structure. The iov structure is mapped in

uio.h.

UIO.u_buffalet Specifies the ALET of the caller’s iov

structure

UIO.u_offseth Specifies the upper word of a doubleword

value that contains the offset into the file.

The updated value for this field is returned by

the PFS as a result of the vn_readwritev

operation.

UIO.u_offset Specifies the lower word of a doubleword

value that contains the offset into the file.

The updated value for this field is returned by

the PFS as a result of the vn_readwritev

operation.

UIO.u_count Specifies the number of elements in the IOV

array

UIO.u_asid Specifies the ASID of the caller

UIO.u_rw Specifies whether the request is a read (0) or

a write (1)

UIO.u_key Specifies the storage key of the caller’s

buffer

UIO.u_iovbufalet Specifies the ALET of the iov’s buffers. All of

the iov buffers must use the same ALET.

vn_readwritev

188 z/OS V1R7.0 UNIX System Services File System Interface Reference

UIO.u_fssizelimithw Specifies the high word of the file size limit

for the process.

UIO.u_fssizelimitlw Specifies the low word of the file size limit for

the process.

Also refer to “Reading from and writing to files” on page 36 for details on how

reads and writes are done by the file system.

 The UIO contains fields that may point to a 64-bit addressable user buffer.

When FuioAddr64 is on (and FuioRealPage is off), FuioBuff64Vaddr points to a

buffer, an IOV64, or an MSGH64.

 PFS Limit Processing

The UIO contains the process file size limit for the file. This is a doubleword

value that is contained in UIO.u_fssizelimithw and UIO.u_fssizelimitlw. When a

write request is unable to write any data before exceeding the file size limit, the

PFS must set the UIO.u_limitex bit on, in addition to setting a Return_code of

EFBIG. This includes detecting the special case in which the

UIO.u_fssizelimithw is equal to UIO_NONEWFILES, which prohibits the

expansion of existing files.

(Note that for vn_setattr, the LFS handles file size limit checking.)

The PFS must also be aware of one other special value for the file size limit. If

both UIO.u_fssizelimithw and UIO.u_fssizelimitlw are equal to 0, there is no file

size limit set for the process.

 Serialization provided by the LFS

The vn_readwritev operation is invoked with an exclusive latch held on the

vnode of the file or socket, unless the VnodSharedRead flag indicates that

shared read is supported, in which case a shared latch is held on the vnode.

Shared read support for the file that is being read from or written to can be

modified in the OSI by the PFS upon returning from the vn_readwritev

operation.

 Security calls to be made by the PFS

If the check access bit is set and this PFS does access checking, the PFS is

expected to invoke SAF’s Check Access callable service to verify that the user

has permission to read from or write to the file.

The PFS is expected to invoke SAF’s Clear Setid callable service whenever a

write is done to a file with the S_GID or S_UID options. System overhead can

be significantly reduced by setting an internal flag in the Inode to indicate that

Clear Setid has been called, so that subsequent calls can be avoided. This flag

would be cleared whenever the file’s mode was changed via vn_setattr. In other

words, Clear Setid should only be called once on the first write after the file’s

mode is changed or its Inode is created in storage.

vn_readwritev

Chapter 3. PFS operations descriptions 189

vn_recovery — Recover resources after an abend

Function

The vn_recovery operation permits a PFS to recover resources when an abnormal

end occurs while a request to that PFS is active.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_recovery (Token_structure,

 OSI_structure,

 Audit_structure,

 Recovery_area,

 Return_value,

 Return_code,

 Reason_code)

vn_recovery

190 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Recovery_area

Supplied parameter

Type: String

Length: 8 bytes

A copy of the Recovery_area that was filled in by the PFS during the operation

that was interrupted. This area is mapped by OSIRTOKEN (see Appendix D,

“Interface structures for C language servers and clients,” on page 503).

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_recovery operation returns control information to

direct the outcome of the recovery processing, as follows:

Return_value Meaning

VNR_NODUMP Suppress the system dump that is normally

taken.

VNR_RETSUCCESS Report success to the user. In this case, the

value in the Return_Code parameter is passed

back to the user as the return value of the

original function.

VNR_RETERRNO Report failure to the user. In this case, the

values in the Return_Code and Reason_Code

parameters are passed back to the user as the

return and reason codes for the original

function. The return value that is passed back

for the original function is −1.

 Dump suppression may be requested with either success or failure reports; that

is, with values of VNR_NODUMP+VNR_RETSUCCESS or

VNR_NODUMP+VNR_RETERRNO, respectively.

 If a Return_value is not returned by the PFS, a system dump is attempted and

the original function fails with generic return and reason codes. The

Return_values listed above are defined in BPXYPFSI (see Appendix D,

“Interface structures for C language servers and clients,” on page 503.)

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_recovery operation stores the return code. The

vn_recovery operation returns Return_code with the Return_value that was

returned, as explained above.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

vn_recovery

Chapter 3. PFS operations descriptions 191

A fullword in which the vn_recovery operation stores the reason code. The

vn_recovery operation returns Reason_code with the Return_value that was

returned, as explained above.

Implementation notes

 Overview of vn_recovery processing

“Recovery considerations” on page 24 provides an overview of recovery

processing, and discusses the flow for vn_recovery in particular.

When an active request to the PFS is interrupted by an abnormal end, the PFS

may have resources, such as storage and locks, that are left in a state that will

cause problems for other users. This operation is defined to give the PFS a

chance to clean up these resources if an abnormal end should occur.

This operation is designed for a PFS that does not have its own ESTAE or FRR

protection. When a PFS has its own recovery, it normally handle abnormal ends

before returning or percolating back to the LFS.

 Specific processing notes

– An 8-byte Recovery_area is passed on every VFS and vnode operation,

through the osi_rtokptr pointer in the OSI_structure, in which the PFS can

record its resources or store a pointer to a recovery block. Any information

that is stored in this area by the PFS during an operation is passed back to

the PFS via the Recovery_area parameter of vn_recovery if the operation is

interrupted by an abnormal end.

The SDWA address is also passed to the PFS, for diagnostic purposes. This

address is stored 16 bytes after the 8-byte Recovery_area. (Refer to the

osirtokenx structure in Appendix D, “Interface structures for C language

servers and clients,” on page 503.) The PFS must test this address for zero

before using it, because the system is not always able to obtain an SDWA

during recovery.

– The OSI work area and the preinitialized C Environment Stack (if used) are

still addressable, and left as they were at the time of the abnormal end.

These areas can be used to hold a recovery block whose address is placed

in the Recovery_area. Vn_recovery is invoked with its own separate areas.

– The PFS is not called if the Recovery_area that is pointed to by osi_rtokptr is

zero at the time of the abnormal end.

– The PFS is not called if the file system has been unmounted. A file system

can be unmounted between the original vnode operation and vn_recovery in

the following scenario:

1. An operation goes into a signal enabled wait.

2. The file system is unmounted with the IMMEDIATE operand.

3. The waiting user is canceled.

The PFS is expected to have cleaned up all its file-system-related resources

during vfs_umount.

– This Recovery_area is the same one that is used by the vfs_recovery

operation for user EOM recovery. The difference between these operations is

that if the LFS’s ESTAE runs, it calls the PFS with vn_recovery from the

same home address space and task that the original operation was invoked

from. If the LFS’s ESTAE is bypassed by MVS, the LFS’s user address

space EOM resource manager calls the PFS with vfs_recovery. This call is

from a different task and home address space than the original call, and the

original home address space no longer exists.

– Vfs_recovery is not called after vn_recovery has been called, unless

vn_recovery is interrupted by a sudden end-of-memory condition for the

vn_recovery

192 z/OS V1R7.0 UNIX System Services File System Interface Reference

user’s address space. An example of this would be a program check in the

PFS that was followed almost immediately by an operator force of the user.

Another example would be if the PFS’s vn_recovery routine were to get into

a deadlock or extended wait, and the operator had to force the user off.

– Special care must be taken with vn_recovery, because the Token_structure

may not always contain a file-level token. This is because vn_recovery is

used for abend recovery of all the VFS and vnode operations. If a VFS

operation is interrupted, the Token_structure on the vn_recovery call does not

contain a file token; and if vfs_pfsctl is interrupted, the Token_structure

contains only the PFS’s initialization token.

– No recovery of any type is supplied for the vn_recovery operation itself. The

operation is invoked with Osi_rtokptr pointing to a new recovery area, but this

is only to allow the PFS to use common entry code that may depend on

having a valid address in this field.

See the OSI and osirtoken structures in Appendix D.

– The state of any file system and file objects that may have been involved

with the interrupted operation is the same as at the time of the interruption.

 Serialization provided by the LFS

The vn_recovery operation is invoked with the same serialization that was held

at the time of the abnormal end.

 Security calls to be made by the PFS: None.

vn_recovery

Chapter 3. PFS operations descriptions 193

vn_remove — Remove a link to a file

Function

The vn_remove service removes a link to a file. The input Name can identify a file,

a link-name of a file, or a symbolic link.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_remove (Token_structure,

 OSI_structure,

 Audit_structure,

 Name_length,

 Name,

 Return_value,

 Return_code,

 Reason_code)

vn_remove

194 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Name_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of Name. The name is between 1 and 255

bytes long.

Name

Supplied parameter

Type: String

Length: Specified by Name_length

An area, of length Name_length, that contains the name of the link that is to be

deleted. This name contains no nulls.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_remove service returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_remove service stores the return code. The

vn_remove service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of supported

return code values.

 The vn_remove service should support at least the following error values:

 Return_code Explanation

ENAMETOOLONG The value of Name_length exceeds the length that

is supported by this PFS.

ENOENT Name is marked for deletion.

EROFS The file system is mounted read-only.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

vn_remove

Chapter 3. PFS operations descriptions 195

A fullword in which the vn_remove service stores the reason code. The

vn_remove service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_remove processing

“Deleting files” on page 33 provides an overview of file deletion processing.

 Specific processing notes

– The system data fields of the Token_structure contain the PFS’s file token for

the file that is being removed.

– If the name that is specified refers to a symbolic link, the symbolic link file

that is named by Name should be deleted.

– If the link name is successfully removed from the directory, and the link count

becomes zero, the deletion of the file is recorded for audit purposes. The

actual deletion of the file object, and the inode, is done when the vnode is

inactivated.

If a regular file is not open when its link count goes to zero, the space that is

occupied by its data should be freed for reuse before the return from

vn_remove.

If a regular file is still open when the link count goes to zero, its contents are

not deleted at this point, but remain accessible until the open count goes to

zero.

– When the vn_remove service is successful in removing a directory entry and

decrementing the link count, even if the link count is not zero, it must return

control to the caller with Return_value set to 0. It must update the change

and modification times for the parent directory, and the change time for the

file itself (unless the file is deleted).

– For more information on the semantics of this operation for a

POSIX-conforming PFS, refer to the unlink() function in the POSIX .1

standard (IEEE Std 1003.1-1990).

 Serialization provided by the LFS

The vn_remove operation is invoked with an exclusive latch held on the vnode

of the file that is to be removed, and on the directory that contains that file

name.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Check Access callable service to verify

that the user has write permission to the directory, and the Audit callable service

to record the deletion of the file.

SAF’s Check2Owners service is called whenever the sticky bit is on in the

parent directory.

Related services

v “vn_create — Create a new file” on page 138

v “vn_link — Create a link to a file” on page 157

v “vn_rmdir — Remove a directory” on page 201

v “vn_symlink — Create a symbolic link” on page 238

vn_remove

196 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_rename — Rename a file or directory

Function

The vn_rename renames a file or directory.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_rename (Token_structure,

 OSI_structure,

 Audit_structure,

 Name_length,

 Name,

 New_name_length,

 New_name,

 New_token_structure

 Return_value,

 Return_code,

 Reason_code)

vn_rename

Chapter 3. PFS operations descriptions 197

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Name_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of Name. The name is between 1 and 255

bytes long.

Name

Supplied parameter

Type: String

Length: Specified by Name_length

An area, of length Name_length, that contains the file or directory name that is

to be renamed. This name is not null-terminated.

New_name_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of New_name. The name is between 1 and

255 bytes long.

New_name

Supplied parameter

Type: String

Length: Specified by New_name_length

An area, of length New_name_length, that contains the file or directory name to

which the file or directory is to be renamed. This name is not null-terminated.

New_token_structure

Supplied parameter

Type: Structure

Length: Specified by the structure’s

TOKSTR.ts_hdr.cblen field.

New_token_structure represents the vnode of the directory that contains

New_name.

 Refer to “LFS/PFS control block structure” on page 16 for a discussion of the

use of this structure, and to the TOKSTR typedef in BPXYPFSI in Appendix D

for its mapping.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_rename operation returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

vn_rename

198 z/OS V1R7.0 UNIX System Services File System Interface Reference

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_rename operation stores the return code. The

vn_rename operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_rename operation should support at least the following error values:

 Return_code Explanation

EACCES The caller does not have write permission for one or

both of the parent directories.

EBUSY The New_name could not be deleted, or the named

file or directory could not be renamed because the

PFS considers it to be in use.

EISDIR An attempt was made to rename a file to a

directory.

ENAMETOOLONG The length of one of the names supplied was

greater than the maximum supported name length

for this PFS.

ENOENT Name was not found.

ENOTEMPTY New_name specified an existing directory that was

not empty.

ENOTDIR Token_structure did not represent a directory, or an

attempt was made to rename a directory to a file.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_rename operation stores the reason code. The

vn_rename operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_rename processing

The PFS renames a file or directory that is specified by Name in the directory

that is represented by Token_structure to the name that is specified by

New_name in the directory that is represented by New_token_structure.

“Deleting files” on page 33 provides an overview of file deletion processing.

 Specific processing notes

– The system data fields of the Token_structure contain the PFS’s file token for

the file that is being renamed. The system data fields of the

New_Token_structure contain the PFS’s file token for the file that is named

by New_name, if it exists.

vn_rename

Chapter 3. PFS operations descriptions 199

– If a directory entry does not already exist for New_name, the PFS creates it.

If a directory entry for New_name already exists, the file or directory that is

represented by this entry is deleted, as described for vn_remove or vn_rmdir,

as appropriate.

If New_name is an existing directory that is not empty, the PFS returns a

Return_value of −1 and an Return Code of ENOTEMPTY.

If the rename is successful, the directory entry for the old name is deleted.

– The names that are passed to the PFS cannot be “.” or “..”.

– For more information on the semantics of this operation for a

POSIX-conforming PFS, refer to the rename() function in the POSIX .1

standard (IEEE Std 1003.1-1990).

 Serialization provided by the LFS

The PFS is invoked with an exclusive latch for all of the vnodes involved in this

operation. These include:

– The old parent directory

– The new parent directory

– The file or directory that is specified by Name

– If it already exists, the file or directory that is specified by New_name

 Security calls to be made by the PFS

The PFS is expected to verify that the calling process has write permission for

the directories that contain Name and New_name by calling SAF’s Check

Access callable service. If Name and New_name are themselves directories, the

caller does not need write permission to these directories, only to the parent

directories.

SAF’s Check2Owners service is called whenever the sticky bit is on in the

parent directory.

If the file that was previously known by New_name is deleted, invoke SAF’s

Audit callable service to record the deletion of the file.

Related services

v “vn_remove — Remove a link to a file” on page 194

v “vn_rmdir — Remove a directory” on page 201

vn_rename

200 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_rmdir — Remove a directory

Function

The vn_rmdir operation removes a directory. The directory must be empty.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_rmdir (Token_structure,

 OSI_structure,

 Audit_structure,

 Directory_name_length,

 Directory_name,

 Return_value,

 Return_code,

 Reason_code)

vn_rmdir

Chapter 3. PFS operations descriptions 201

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Directory_name_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of Directory_name. The name is between 1

and 255 bytes long.

Directory_name

Supplied parameter

Type: String

Length: Specified by Directory_name_length

An area, of length Directory_name_length, that contains the name of the

directory that is to be deleted. This name contains no nulls.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_rmdir service returns the results of the operation, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_rmdir service stores the return code. The vn_rmdir

service returns Return_code only if Return_value is −1. See z/OS UNIX System

Services Messages and Codes for a complete list of supported return code

values.

 The vn_rmdir service should support at least the following error values:

 Return_code Explanation

ENAMETOOLONG The value of Directory_name_length exceeds the

length that is supported by this PFS.

ENOENT The directory name is marked for deletion.

ENOTEMPTY The directory contains entries other than . and ..

EROFS The file system is mounted read-only.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

vn_rmdir

202 z/OS V1R7.0 UNIX System Services File System Interface Reference

A fullword in which the vn_rmdir service stores the reason code. The vn_rmdir

service returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_rmdir processing

“Deleting files” on page 33 provides an overview of file deletion processing.

 Specific processing notes

– The system data fields of the Token_structure contain the PFS’s file token for

the file that is being removed.

– The directory that is specified by Directory_name must be empty except for

the “.” and “..” entries.

– If the directory is successfully removed, the change and modification times

for the parent directory must be updated.

– The deletion of the directory is recorded for audit purposes now, but the

actual deletion of the object and the inode is done when the vnode is

inactivated.

– Vn_readdir of a removed directory returns zero entries.

– New files must not be be created under a directory that is removed.

– For more information on the semantics of this operation for a

POSIX-conforming PFS, refer to the rmdir() function in the POSIX .1

standard (IEEE Std 1003.1-1990).

 Serialization provided by the LFS

The vn_rmdir operation is invoked with an exclusive latch held on the vnode of

the directory name that is to be removed, and on the directory that contains that

directory name.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Check Access callable service to verify

that the user has write permission to the directory, and invoke the audit callable

service to record the deletion of the directory file.

SAF’s Check2Owners service is called whenever the sticky bit is on in the

parent directory.

Related services

v “vn_remove — Remove a link to a file” on page 194

v “vn_mkdir — Create a directory” on page 166

vn_rmdir

Chapter 3. PFS operations descriptions 203

vn_select — Select or poll on a vnode

Function

The vn_select operation monitors activity on a vnode to see if it is ready for reading

or writing, or if it has an exceptional condition pending. The vnode can be for a

socket, a pipe, a regular file, or a pseudoterminal file.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_select (Token_structure,

 OSI_structure,

 Audit_structure,

 Select_token,

 Function,

 Select_option,

 Pfs_work_token,

 Return_value,

 Return_code,

 Reason_code)

vn_select

204 z/OS V1R7.0 UNIX System Services File System Interface Reference

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Select_token

Supplied and returned parameter

Type: Token

Length: 16 Bytes

An area that the PFS copies into its own storage and later uses to tell the LFS

that a selected event has occurred for this vnode.

 This token is unique among all active vn_selects on the system, and can be

used to correlate a query request (SEL_QUERY or SEL_POLLQUERY) with its

corresponding cancel request (SEL_CANCEL or SEL_POLLCANCEL).

Function

Supplied parameter

Type: Integer

Length: Fullword

A fullword that specifies whether this is a query or a cancel request, and

whether the request is for select or poll. The values for this field are defined in

the BPXYPFSI header file (see Appendix D). The Function parameter specifies

the subfunction that is being requested:

 Table 3. vn_select subfunctions

Function Description

SEL_QUERY, SEL_POLLQUERY The PFS should perform the following:

1. Check the events that are specified in

Select_option to see if any of them can

be immediately satisfied. If so, this

status is returned in the Return_Value

parameter.

2. If there is no immediate status to

report, the PFS records that a select is

pending on this file and sets up to

invoke osi_selpost later, when one of

the selected events has occurred. The

PFS returns a value of 0 in

Return_Value after it has performed its

internal processing to set up for select

pending.

The occurrence of the event and the

subsequent invocation of osi_selpost

happen asynchronously on another

thread or MVS task.

vn_select

Chapter 3. PFS operations descriptions 205

Table 3. vn_select subfunctions (continued)

Function Description

SEL_CANCEL, SEL_POLLCANCEL The PFS performs the following:

1. If there is a pending select/poll

recorded for a prior query with the

same Select_token, it must be

canceled in such a way that

osi_selpost is not invoked.

2. Check the events that are specified in

Select_option to see if any of them can

be immediately satisfied. If so, this

status is returned in the Return_Value

parameter.

Select_option

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the bits that describe the options that are requested for

this vnode. The values for this field are defined in the BPXYPFSI header file

(see Appendix D).

 Select_option indicates the conditions or events that are being checked for. If

this is a select request, the conditions are:

Option Description

SEL_READ A read that is issued against this file will not

block.

SEL_WRITE A write that is issued against this file will not

block.

SEL_XCEPT An exceptional condition, as defined by the

particular PFS, has occurred. Typically this

could occur because a socket connection has

become inoperative because of network

problems, or the other end of the socket has

been closed.

 For reading and writing, an error condition that would cause the read or write to

fail means that the operation will not block, and therefore the file is ready for

that operation.

 If one or more of the selected conditions are ready, the PFS returns the

information in the Return_Value parameter immediately, using the same bit

mapping to indicate which conditions are ready.

 The conditions that can be specified for poll are explained in other documents

(for instance, z/OS XL C/C++ Language Reference). The mapping for these

fields is defined in the BPXYPFSI header file (see Appendix D).

Pfs_work_token

Supplied or returned parameter

Type: Token

Length: Fullword

vn_select

206 z/OS V1R7.0 UNIX System Services File System Interface Reference

A fullword that is returned on a query request and passed on a subsequent

cancel request. This allows the LFS to store data that the PFS will need on the

cancel request, if any is needed.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the vn_select service returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. This causes

the whole select() or poll() request, as made

by the application program, to fail. The

Return_code and Reason_Code values are

passed back to the application program.

0 There is no status, and the operation was

successful.

v For query (SEL_QUERY or

SEL_POLLQUERY):

The PFS is set up to invoke osi_selpost

when the requested event occurs.

v For cancel (SEL_CANCEL or

SEL_POLLCANCEL):

The PFS has canceled the request to invoke

osi_selpost, or it has never been set up to do

so. The PFS does not invoke osi_selpost

after returning from this call.

Greater than 0 There is status being returned in this

parameter. The returned status has the same

format as the Select_option parameter.

v For query (SEL_QUERY or

SEL_POLLQUERY):

The operation is complete and the PFS will

not invoke osi_selpost for this request.

v For cancel (SEL_CANCEL or

SEL_POLLCANCEL):

The PFS has canceled the request to invoke

osi_selpost if it had been recorded, or it has

never been set up to do so.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_select operation stores the return code. The

vn_select operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

Reason_code

Returned parameter

vn_select

Chapter 3. PFS operations descriptions 207

Type: Integer

Length: Fullword

A fullword in which the vn_select operation stores the reason code. The

vn_select operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_select processing

For information on vn_select, refer to “Select/poll processing” on page 45.

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the select() function.

 Specific processing notes

– The PFS should save the Select_token that is passed on the query request.

This token is used both during the cancel request (to delete the request), and

when an event occurs that the LFS should be informed of through the

osi_selpost function.

– The PFS can use the Pfs_work_token parameter on a query request to

return data (such as an address where it has stored information about this

request), so that it can be found during a cancel request. The data is used to

correlate the cancel request with its matching query request. This provides

an alternative to scanning the PFS control blocks for a matching

Select_token value.

– If the session being selected becomes inoperative, the PFS must fail the

operation with a Return_code of EIO. For sockets, this is critical to Common

Inet processing so that a stack can be removed from a socket during the

internal vn_select that is done to implement blocking reads and accepts. For

application select() calls, the LFS will convert EIO from vn_select to ready

status for the descriptor so that the application receives the EIO notification

on the specific descriptor to which it applies.

 Serialization provided by the LFS

The vn_select operation is invoked with an exclusive latch held on the vnode of

the file.

 Security calls to be made by the PFS: None.

vn_select

208 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_sendtorcvfm — Send to or receive from a socket

Function

The vn_sendtorcvfm operation sends datagrams to or receives datagrams from a

socket. The socket can be connected or unconnected.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_sendtorcvfm (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 User_IO_structure,

 Flags,

 Sockaddr_length,

 Sockaddr,

 Return_value,

 Return_code,

 Reason_code)

vn_sendtorcvfm

Chapter 3. PFS operations descriptions 209

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that contains the bits that are associated with the socket. The defined

values for this field are mapped by fcntl.h.

User_IO_structure

Supplied and returned parameter

Type: UIO

Length: Specified by UIO.u_hdr.cblen.

An area that contains the parameters for the I/O that is to be performed. This

area is mapped by the UIO typedef in the BPXYVFSI header file (see

Appendix D). See “Specific processing notes” for details on how the fields in

this structure are processed.

Flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that indicates special processing requests. The defined values for this

field are mapped by socket.h.

Sockaddr_length

Supplied and returned parameter

Type: Integer

Length: Fullword

A fullword that supplies the length of the Sockaddr buffer and returns the length

of the Sockaddr structure that is returned.

Sockaddr

Supplied and returned parameter

Type: Structure

Length: Specified by Sockaddr_length

A structure that varies depending on the address family type. It contains the

address that is to be used for this operation. For an example of this mapping for

AF_INET, see in.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_sendtorcvfm operation returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

vn_sendtorcvfm

210 z/OS V1R7.0 UNIX System Services File System Interface Reference

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 or greater The operation was successful. The value

represents the number of bytes that were

transferred.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_sendtorcvfm operation stores the return code. The

vn_sendtorcvfm operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_sendtorcvfm operation should support at least the following error

values:

 Return_code Explanation

EFAULT A buffer address that was specified was not in

addressable storage.

EINVAL The length that was specified was incorrect.

EWOULDBLOCK The operation would have required a blocking wait,

and this socket was marked as nonblocking.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_sendtorcvfm operation stores the reason code. The

vn_sendtorcvfm operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_sendtorcvfm processing

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the recvfrom() and sendto() functions.

 Specific processing notes

– The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI

header file)

UIO.u_hdr.cblen Specifies the length of the user_IO_structure

UIO.u_buffaddr Specifies the address of the caller’s buffer

UIO.u_buffalet Specifies the ALET of the caller’s buffer

UIO.u_count Specifies the maximum number of bytes that

can be written to the caller’s buffer

UIO.u_asid Specifies the ASID of the caller

vn_sendtorcvfm

Chapter 3. PFS operations descriptions 211

UIO.u_rw Specifies whether the request is a read (0) or

a write (1)

UIO.u_key Specifies the storage key of the caller’s

buffer

– The UIO contains fields that may point to a 64-bit addressable user buffer.

When FuioAddr64 is on (and FuioRealPage is off), FuioBuff64Vaddr points to

a buffer, an IOV64, or an MSGH64.

 Serialization provided by the LFS

The vn_sendtorcvfm operation is invoked with an exclusive latch held on the

vnode of the socket.

 Security calls to be made by the PFS: None.

vn_sendtorcvfm

212 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_setattr — Set the attributes of a file

Function

The vn_setattr operation sets the attributes of a file.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_setattr (Token_structure,

 OSI_structure,

 Audit_structure,

 attribute_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_setattr

Chapter 3. PFS operations descriptions 213

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

attribute_structure

Supplied parameter

Type: ATTR

Length: Specified by ATTR.at_hdr.cblen.

An area that contains the file attributes that are to be set for the file that is

specified by the vnode token. This area is mapped by typedef ATTR in the

BPXYVFSI header file (see Appendix D).

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_setattr operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_setattr operation stores the return code. The

vn_setattr operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_setattr operation should support at least the following error values:

 Return_code Explanation

EACCES The caller does not have SAF authority to:

v Set the access time or modification time to

current time

v Truncate the file

EPERM The caller does not have SAF authority to:

v Change the mode

v Change the owner

v Change general attribute bits

v Set a time field to a value (not the current time)

v Set the change time or reference time to the

current time

v Change the auditing flags

v Change the file format

v Set the security label; or there is already a

security label associated with the file

EROFS The file system is mounted read-only.

ENOSPC The file system is out of space.

vn_setattr

214 z/OS V1R7.0 UNIX System Services File System Interface Reference

Return_code Explanation

EINVAL Incorrect input parameter, such as a negative time

value, an incorrect mode field, or an incorrect

UID-GID.

Reason_code

Returned parameter

Type: Integer

Character set:

N/A

Length:

Fullword

A fullword in which the vn_setattr operation stores the reason code. The

vn_setattr operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_setattr processing

vn_setattr is used to set file attributes, as described in “Getting and setting

attributes” on page 39.

 Specific processing notes

 Table 4. attribute_structure input fields

Set Flags Attribute Fields Input Description

at_modechg at_mode Set the mode according to the

value in at_mode

at_ownchg at_uid

at_gid

Set the owner user ID (UID) and

group ID (GID) to the values

specified in at_uid and at_gid

at_setgen at_genvalue

at_genmask

Only the bits corresponding to the

bits set ON in the at_genmask are

set to the value (ON or OFF) in

at_genvalue; other bits are

unchanged

at_trunc at_sizeh

at_size

Truncate the file size to the number

of bytes specified by the

doubleword at_sizeh and at_size

at_atimechg at_atime Set the access time of the file to

the value specified in at_atime

at_atimechg and

at_atimeTOD

None Set the access time of the file to

the current time

at_mtimechg at_mtime Set the modification time of the file

to the value specified in at_mtime

at_mtimechg and

at_mtimeTOD

None Set the modification time of the file

to the current time

at_aauditchg at_aaudit Set the security auditor’s auditing

flags to the value specified in

at_aaudit

at_uauditchg at_uaudit Set the user’s auditing flags to the

value specified in at_uaudit

vn_setattr

Chapter 3. PFS operations descriptions 215

Table 4. attribute_structure input fields (continued)

Set Flags Attribute Fields Input Description

at_ctimechg at_ctime Set the change time of the file to

the value specified in at_ctime

at_ctimechg and

at_ctimeTOD

None Set the change time of the file to

the current time

at_reftimechg at_reftime Set the reference time of the file to

the value specified in at_reftime

at_reftimechg and

at_refTOD

None Set the reference time of the file to

the current time

at_filefmtchg at_filefmt Set the file format of the file to the

value in at_filefmt

at_seclabelchg at_seclabel Set the initial security label of the

file to the value in at_seclabel

 1. In addition to the attribute fields that are specified according to Table 4 on

page 215, the following ATTR header fields are provided by the caller:

ATTR.at_hdr.cbid Contains ATTR

ATTR.at_hdr.cblen Specifies the length of attribute_structure.

 2. Multiple attributes can be changed on a single vn_setattr call. The PFS

should ensure that either all supported changes or no changes are

permanently recorded for a single vn_setattr call.

 3. Changing mode (at_modechg = ON):

– SAF’s Change File Mode callable service is called to perform the

necessary security checks and to actually make the change to the mode

field in the FSP.

– The at_mode field is mapped by modes.h.

Notes:

a. The file type, which is contained within at_mode, is not changed by the

vn_setattr operation.

b. Files that are open when the vn_setattr service is called retain the

access permission they had when the file was opened.

 4. Changing owner (at_ownchg = ON):

– SAF’s Change Owner and Group callable service is called to perform

the necessary security checks and to actually make the change to the

owner and/or group fields in the FSP.

Note: When the UID or GID value is set to -1, the original value remains

unchanged.

 5. Changing general attribute bits (at_setgen = ON):

– SAF’s Check Access callable service is called for Write access before

the PFS changes the file’s general attribute bits.

– For each bit ON in the genmask, the corresponding bit in the file’s

attributes is set to the value (ON or OFF) from the corresponding

genvalue field.

 6. Truncating a file (at_trunc = ON):

– SAF’s Check Access is called for write access before the PFS changes

the file’s size.

vn_setattr

216 z/OS V1R7.0 UNIX System Services File System Interface Reference

– The truncation of a file changes the file size to the doubleword value

that is represented by at_sizeh and at_size, beginning from the first byte

of the file.

- If the file is larger than the specified file size, the data from the

specified size to the original end of the file is removed. Full blocks are

returned to the file system to be used again.

- If the file is shorter than the specified size, bytes between the old and

new lengths are read as zeros.

– When the file size is changed, the PFS calls SAF’s Clear Setid callable

service.

Notes:

a. The LFS handles enforcing file size limits for vn_setattr.

b. The truncate() function requires write permission to the file, whereas

ftruncate() requires that the file be open for writing. The LFS handles

this difference by calling vn_setattr for the former and vn_trunc for the

latter when the file is open for writing.

 7. Changing time fields (atime, mtime, ctime, and reftime):

– All time fields in the ATTR are in POSIX format.

– Each time field is controlled by a pair of bits: the chg bit and the TOD

bit, as listed in Table 4 on page 215.

- The chg bit (for instance, at_atimechg) indicates that the

corresponding time field is to be changed.

- The TOD bit (for instance, at_atimeTOD) indicates whether the

change is to an explicitly specified time (bit is off) or to the current

time of day (bit is on).

– For a time change using an explicit time value, the SAF check file owner

service is called to verify that the caller is the file owner or has

appropriate privileges before the PFS changes the corresponding file

time field.

– For a time change using the current time of day, the SAF check access

service is called to check for write permission. If that fails, the SAF

check file owner service is called. The time change is permitted if the

caller has write permission, is the file owner, or has appropriate

privileges.

 8. Changing auditor audit flags (at_aauditchg = ON) or user audit flags

(at_uauditchg = ON):

– SAF’s Change Audit Options callable service is called to perform the

necessary security checks and to actually make the change to the

corresponding audit field in the FSP.

 9. Changing file format (at_filefmtchg = ON):

– SAF’s Check File Owner is called before the PFS saves the new file

format value.

10. When any attribute field is changed successfully, the file’s change time is

also updated.

11. Changing the security label (ATTSECLABELCHG=ON):

– For the security label to be changed, the user must have RACF

SPECIAL authorization and appropriate privileges (see Authorization in

z/OS UNIX System Services Programming: Assembler Callable Services

Reference), and no security label must currently exist on the file. Only

an initial security label can be set. An existing security label cannot be

changed. The function will successfully set the security label if the

vn_setattr

Chapter 3. PFS operations descriptions 217

|

|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

SECLABEL class is active. If the SECLABEL class is not active, the

request will return successfully, but the security label will not be set.

– You can invoke the SAF IRRSSB00 callable service to set the security

label.

 Serialization provided by the LFS

The vn_setattr operation is invoked with an exclusive latch held on the vnode.

Shared read support can be modified by the PFS in the OSI upon return from

the vn_setattr operation.

 Security calls to be made by the PFS

Refer to the notes above for the security calls that are made for the various file

attributes.

Related services

v “vn_getattr — Get the attributes of a file” on page 145

vn_setattr

218 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_setpeer — Set a socket’s peer address

Function

The vn_setpeer operation presets the peer address that is associated with a socket.

This causes all datagrams that are sent using the specified socket to be sent to the

address that is specified here. Only datagrams that are sent from the specified

address are received.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_setpeer (Token_structure,

 OSI_structure,

 Audit_structure,

 Sockaddr_length,

 Sockaddr,

 Option,

 Return_value,

 Return_code,

 Reason_code)

vn_setpeer

Chapter 3. PFS operations descriptions 219

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Sockaddr_length

Supplied and returned parameter

Type: Integer

Length: Fullword

A fullword that supplies the length of the Sockaddr buffer and returns the length

of the Sockaddr structure that is returned.

Sockaddr

Supplied and returned parameter

Type: Structure

Length: Specified by Sockaddr_length

A structure that varies depending on the address family type. It contains the

address that is to be used for this operation. For an example of this mapping for

AF_INET, see in.h.

Option

Supplied parameter

Type: Integer

Length: Fullword

A fullword that specifies the option of the vn_setpeer operation to use. These

values are mapped by socket.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_setpeer operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_setpeer operation stores the return code. The

vn_setpeer operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

vn_setpeer

220 z/OS V1R7.0 UNIX System Services File System Interface Reference

The vn_setpeer operation should support at least the following error value:

 Return_code Explanation

EINVAL The address length that was specified is not the

size of a valid address for the specified address

family.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_setpeer operation stores the reason code. The

vn_setpeer operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_setpeer processing

The vn_setpeer call is new for POSIX 1003.12, and is not currently supported

by any of the socket PFSs.

 Specific processing notes

– Calling setpeer() with the option set to SO_SET causes all datagrams that

are sent through this socket to be sent to the address that is specified by

sockaddr. Only datagrams that originate from sockaddr are received.

– Calling setpeer() with the option set to SO_SET on the passive end of a

virtual circuit before calling listen() or connect() causes an error. Calling

connect() and specifying a destination address with setpeer causes an error.

Calling setpeer() after a connection is established is an error.

– The result of calling setpeer() with the option set to SO_SET on an endpoint

that has already had the destination address preset causes an error if the

underlying protocol does not support multiple peer addresses for a given

endpoint.

 Serialization provided by the LFS

The vn_setpeer operation is invoked with an exclusive latch held on the vnode

of the socket.

 Security calls to be made by the PFS: None.

Related services

None.

vn_setpeer

Chapter 3. PFS operations descriptions 221

vn_shutdown — Shut down a socket

Function

The vn_shutdown operation shuts down all or part of a duplex socket connection.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_shutdown (Token_structure,

 OSI_structure,

 Audit_structure,

 How,

 Return_value,

 Return_code,

 Reason_code)

vn_shutdown

222 z/OS V1R7.0 UNIX System Services File System Interface Reference

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

How

Supplied parameter

Type: Integer

Length: Fullword

The How parameter explains the condition of the shutdown request. The values

that can be specified are:

Value Condition

SHUT_RD Shutdown reads from this socket.

SHUT_WR Shutdown writes to this socket.

SHUT_RDWR Shutdown reads to and writes from this socket.

These values are defined in socket.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_shutdown operation returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_shutdown operation stores the return code. The

vn_shutdown operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_shutdown operation should support at least the following error value:

 Return_code Explanation

EINVAL The How argument was not valid.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword where the vn_shutdown operation stores the reason code. The

vn_shutdown operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

vn_shutdown

Chapter 3. PFS operations descriptions 223

Implementation notes

 Specific processing notes

The How parameter comes directly from the shutdown() system call. The LFS

does not check this parameter.

 Serialization provided by the LFS

The vn_shutdown operation is invoked with an exclusive latch held on the vnode

of the socket.

 Security calls to be made by the PFS: None.

Related services

v “vfs_socket — Create a socket or a socket pair” on page 97

v “vn_close — Close a file or socket” on page 132

vn_shutdown

224 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_sndrcv — Send to or receive from a socket

Function

The vn_sndrcv operation sends datagrams to or receives datagrams from a socket.

The socket must be connected.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_sndrcv (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 User_IO_structure,

 Flags,

 Return_value,

 Return_code,

 Reason_code)

vn_sndrcv

Chapter 3. PFS operations descriptions 225

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that contains the bits that are associated with the socket. The defined

values for this field are mapped by fcntl.h.

User_IO_structure

Supplied and returned parameter

Type: UIO

Length: Specified by UIO.u_hdr.cblen.

An area that contains the parameters for the I/O that is to be performed. This

area is mapped by the UIO typedef in the BPXYVFSI header file (see

Appendix D). See “Specific processing notes” for details on how the fields in

this structure are processed.

Flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that indicates special processing requests. The defined values for this

field are mapped by socket.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_sndrcv operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 or greater The operation was successful. The value

represents the number of bytes that were

transferred.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_sndrcv operation stores the return code. The

vn_sndrcv operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

vn_sndrcv

226 z/OS V1R7.0 UNIX System Services File System Interface Reference

The vn_sndrcv operation should support at least the following error values:

 Return_code Explanation

EFAULT A buffer address that was specified is not in

addressable storage.

EINVAL An incorrect parameter was specified.

EWOULDBLOCK The operation would have required a blocking wait,

and this socket was marked as nonblocking.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_sndrcv operation stores the reason code. The

vn_sndrcv operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_sndrcv processing

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the recv and send functions.

 Specific processing notes

The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI header

file)

UIO.u_hdr.cblen Specifies the length of the user_IO_structure

UIO.u_buffaddr Specifies the address of the caller’s buffer

UIO.u_buffalet Specifies the ALET of the caller’s buffer

UIO.u_count Specifies the maximum number of bytes that

can be written to or read from the caller’s buffer

UIO.u_asid Specifies the ASID of the caller

UIO.u_rw Specifies whether the request is a read (0) or a

write (1)

UIO.u_key Specifies the storage key of the caller’s buffer

 The UIO contains fields that may point to a 64-bit addressable user buffer.

When FuioAddr64 is on (and FuioRealPage is off), FuioBuff64Vaddr points to a

buffer, an IOV64, or an MSGH64.

 Serialization provided by the LFS

The vn_sndrcv operation is invoked with an exclusive latch held on the vnode of

the socket.

 Security calls to be made by the PFS: None.

vn_sndrcv

Chapter 3. PFS operations descriptions 227

vn_sockopt — Get or set socket options

Function

The vn_sockopt operation gets or sets options that are associated with a socket.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_sockopt (Token_structure,

 OSI_structure,

 Audit_structure,

 Direction,

 Level,

 Option,

 Option_data_length,

 Option_data,

 Return_value,

 Return_code,

 Reason_code)

vn_sockopt

228 z/OS V1R7.0 UNIX System Services File System Interface Reference

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Direction

Supplied parameter

Type: Integer

Length: Fullword

The Direction parameter specifies whether the socket options are to be set or

returned to the requester. The values for this parameter are defined in the

BPXYPFSI header file (see Appendix D) and are as follows:

Value Meaning

GET_SOCKOPT Get the current socket options

SET_SOCKOPT Change the socket options

SET_IBMSOCKOPT Change SetIBMsockopt options

Level

Supplied parameter

Type: Integer

Length: Fullword

A fullword that specifies the protocol level. This area is mapped by socket.h.

Option

Supplied parameter

Type: Integer

Length: Fullword

A fullword that specifies the option that is to be set or retrieved. This area is

mapped by socket.h.

Option_data_length

Supplied parameter

Type: Integer

Length: Fullword

The Option_data_length is a fullword that describes the length of the

Option_data parameter.

Option_data

Supplied parameter

Type: Defined by the Option

Length: Specified by Option_data_length

For most options, this is either a zero or nonzero, depending on whether the

option is disabled or enabled.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_sockopt operation returns the results of the

operation, as one of the following:

Return_value Meaning

vn_sockopt

Chapter 3. PFS operations descriptions 229

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_sockopt operation stores the return code. The

vn_sockopt operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The vn_sockopt operation should support at least the following error value:

 Return_code Explanation

ENOPROTOOPT The level that was specified is an incorrect protocol.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_sockopt operation stores the reason code. The

vn_sockopt operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_sockopt processing

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the getsockopt and setsockopt functions.

 Serialization provided by the LFS

The vn_sockopt operation is invoked with an exclusive latch held on the vnode

of the socket.

 Security calls to be made by the PFS: None.

vn_sockopt

230 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_srmsg — Send messages to or receive messages from a socket

Function

The vn_srmsg operation sends or receives messages on a socket. Message

headers are used for the reading or writing operation. The socket can be either

connected or unconnected.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

vn_srmsg (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 User_IO_structure,

 Flags,

 Return_value,

 Return_code,

 Reason_code)

vn_srmsg

Chapter 3. PFS operations descriptions 231

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that contains the bits that are associated with the socket. The defined

values for this field are mapped by fcntl.h.

User_IO_structure

Supplied and returned parameter

Type: UIO

Length: Specified by UIO.u_hdr.cblen.

An area that contains the parameters for the I/O that is to be performed. This

area is mapped by the UIO typedef in the BPXYVFSI header file (see

Appendix D). See “Specific processing notes” for details on how the fields in

this structure are processed.

Flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that indicates special processing requests. The defined values for this

field are mapped by socket.h.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_srmsg operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 or greater The operation was successful. The value

represents the number of bytes that were

transferred.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_srmsg operation stores the return code. The

vn_srmsg operation returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of supported

return code values.

vn_srmsg

232 z/OS V1R7.0 UNIX System Services File System Interface Reference

The vn_srmsg operation should support at least the following error values:

 Return_code Explanation

EFAULT The address of one of the buffers is not in

addressable storage.

EINVAL An incorrect parameter was specified.

EWOULDBLOCK A socket that has been defined as nonblocking

cannot complete its operation without blocking.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_srmsg operation stores the reason code. The

vn_srmsg operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_srmsg processing

The vn_srmsg call can be used by connected or nonconnected sockets.

For more information on the semantics of this operation for a POSIX-conforming

PFS, refer to the publications that are mentioned in “Finding more information

about sockets” on page xvi for the recvmsg() and sendmsg() functions.

 Specific processing notes

– The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI

header file)

UIO.u_hdr.cblen Specifies the length of the user_IO_structure

UIO.u_buffaddr Specifies the address of the caller’s message

header

UIO.u_buffalet Specifies the ALET of the caller’s message

header

UIO.u_count Specifies the length of the message header

UIO.u_asid Specifies the ASID of the caller

UIO.u_rw Specifies whether the request is a read (0) or

a write (1)

UIO.u_key Specifies the storage key of the caller’s

buffer

UIO.u_iovalet Specifies the ALET of the iov

UIO.u_iovbufalet Specifies the ALET of the iov’s buffers. All

buffers must use the same ALET.

– The UIO contains fields that may point to a 64-bit addressable user buffer.

When FuioAddr64 is on (and FuioRealPage is off), FuioBuff64Vaddr points to

a buffer, an IOV64, or an MSGH64.

– The message header is defined in socket.h.

– The iov structure is defined in uio.h.

 Serialization provided by the LFS

vn_srmsg

Chapter 3. PFS operations descriptions 233

The vn_srmsg operation is invoked with an exclusive latch held on the vnode of

the socket.

 Security calls to be made by the PFS: None.

vn_srmsg

234 z/OS V1R7.0 UNIX System Services File System Interface Reference

vn_srx — Send or receive CSM buffers

Function

The vn_srx operation sends or receives data using CSM (Communications Storage

Manager) buffers.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

vn_srx (Token_structure,

 OSI_structure,

 Audit_structure,

 Open_flags,

 User_IO_structure,

 Return_value,

 Return_code,

 Reason_code)

vn_srx

Chapter 3. PFS operations descriptions 235

Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Open_flags

Supplied parameter

Type: Structure

Length: Fullword

A fullword that contains the bits that are associated with the socket. The defined

values for this field are mapped by fcntl.h.

User_IO_structure

Supplied and returned parameter

Type: UIO

Length: Specified by UIO.u_hdr.cblen.

An area that contains the parameters for the I/O that is to be performed. This

area is mapped by the UIO typedef in the BPXYVFSI header file (see

Appendix D, “Interface structures for C language servers and clients,” on page

503). See “Specific processing notes” for information about how the fields in this

structure are processed.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_srx operation returns the results of the operation, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 or greater The operation was successful. The value

represents the number of bytes that were

transferred.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_srx operation stores the return code. The vn_srx

operation returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of supported return

code values.

 The vn_srx operation should support at least the following error values:

 Return_code Explanation

EFAULT A buffer address that was specified is not in

addressable storage.

EINVAL An incorrect parameter was specified.

EWOULDBLOCK A socket that has been defined as nonblocking

cannot complete its operation without blocking.

vn_srx

236 z/OS V1R7.0 UNIX System Services File System Interface Reference

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_srx operation stores the reason code. The vn_srx

operation returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_srx processing

The Communications Storage Manager (CSM) provides a facility that allows

programs to avoid data moves on a communications sessions by transferring

buffer ownership instead of copying the buffer contents. See z/OS

Communications Server: CSM Guide for more information about CSM.

The controlling parameters of the vn_srx operation are passed in a msghdrx

structure, which is pointed to from the UIO. Included in the msghdrx is a pointer

to an array of structures, each of which points to a data buffer that is obtained

from CSM. For more information about the msghdrx structure and the semantics

of this operation, see srx_np (BPX1SRX, BPX4SRX) — Send or receive CSM

buffers on a socket in z/OS UNIX System Services Programming: Assembler

Callable Services Reference.

The vn_srx call can be used on either connected or unconnected sockets.

 Specific processing notes

– The following UIO fields are provided by the LFS:

UIO.u_hdr.cbid Contains UIO_ID (from the BPXYVFSI

header file)

UIO.u_hdr.cblen Specifies the length of the user_IO_structure

UIO.u_buffaddr Specifies the address of a primary address

space copy of the caller’s msghdrx structure

UIO.u_buffalet Specifies the ALET, 0, of the msghdrx

structure

UIO.u_count Specifies the length of the msghdrx structure

that is being passed

UIO.u_asid Specifies the ASID of the caller

UIO.u_rw Specifies whether the request is a read (0) or

a write (1)

UIO.u_key Specifies the storage key of the caller

– The msghdrx structure is defined in bpxysrxh.h.

– The user’s msghdrx is copied into the kernel by the LFS, and this copy is

passed to the PFS. This kernel msghdrx, with any changes that are made by

the PFS, is copied back to the user after the operation.

– The use of Msghdrx_length=0 in BPX1SRX to determine support for this

operation is handled by the LFS, and not passed down to the PFS.

 Serialization provided by the LFS

The vn_srx operation is invoked with an exclusive latch held on the vnode.

 Security calls to be made by the PFS: None.

vn_srx

Chapter 3. PFS operations descriptions 237

vn_symlink — Create a symbolic link

Function

The vn_symlink operation creates a symbolic link to a pathname or an external

name. A file that is named Link_name, of type “symbolic link”, is created within the

directory that is represented by Token_structure. The content of the symbolic link

file is the pathname or external name that is specified in Pathname.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Input parameter format

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

vn_symlink (Token_structure,

 OSI_structure,

 Audit_structure,

 Pathname_length,

 Pathname,

 attribute_structure,

 Link_name_length,

 Link_name,

 Return_value,

 Return_code,

 Reason_code)

vn_symlink

238 z/OS V1R7.0 UNIX System Services File System Interface Reference

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of Pathname. The Pathname can be up to

1023 bytes long.

Pathname

Supplied parameter

Type: Character string

Length: Specified by the Pathname_length parameter

An area that contains the pathname or external name for which a symbolic link

is to be created.

 A pathname can begin with or without a slash:

v If the pathname begins with a slash, it is an absolute pathname; the slash

refers to the root directory, and the search for the file starts at the root

directory.

v If the pathname does not begin with a slash, it is a relative pathname, and

the search for the file starts at the parent directory of the symbolic link file.

 A pathname contains no nulls.

 An external name is the name of an object outside of the hierarchical file

system. It may contain nulls.

attribute_structure

Supplied parameter

Type: ATTR

Length: Specified by ATTR.at_hdr.cblen.

An area that contains the file attributes that are to be set for the symbolic link

being created. This area is mapped by typedef ATTR in the BPXYVFSI header

file (see Appendix D).

Link_name_length

Supplied parameter

Type: Integer

Length: Fullword

A fullword that contains the length of Link_name. The Link_name can be up to

255 bytes long.

Link_name

Supplied parameter

Type: Character string

Length: Specified by Link_name_length parameter

An area that contains the symbolic link that is being created. Link_name

contains no nulls.

vn_symlink

Chapter 3. PFS operations descriptions 239

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_symlink service returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_symlink service stores the return code. The

vn_symlink service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of supported

return code values.

 The vn_symlink service should support at least the following error values:

 Return_code Explanation

EACCES The calling process does not have permission to

write in the directory that was specified.

EEXIST Link_name already exists.

ENAMETOOLONG Link_name is longer than is supported by the PFS.

ENOENT The parent directory has been marked for deletion.

ENOSPC The file system is out of space.

ENOSYS The PFS does not support storing external links.

EROFS Token_structure specifies a directory on a read-only

file system.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_symlink service stores the reason code. The

vn_symlink service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. These reason codes are

documented by the PFS.

Implementation notes

 Overview of vn_symlink processing

“Creating files” on page 32 provides an overview of symbolic link creation.

 Specific processing notes

– The Token_structure that is passed on input represents the directory in which

the symbolic link is to be created.

– The following attribute_structure fields are provided by the LFS:

vn_symlink

240 z/OS V1R7.0 UNIX System Services File System Interface Reference

ATTR.at_hdr.cbid Contains Attr_ID (from the BPXYVFSI header

file)

ATTR.at_hdr.cbLen Specifies the length of attribute_structure

ATTR.at_genvalue When ((at_genvalue & S_IFEXTL) ==

S_IFEXTL) is true, the pathname is an

external link.

– An external link is a symbolic link with an extra file attribute bit stored by the

PFS. The distinction between a normal symbolic link and an external link is

only apparent in the attribute structures that are returned by the PFS for the

link file. There is no difference in the way vn_readlink is processed, for

example.

If the PFS cannot store this external link bit, it must fail the vn_symlink

request with ENOSYS.

– If the file that is named in the Name parameter already exists, the vn_symlink

operation returns a failing return code.

– Refer to the symlink() function in the POSIX .1a standard (IEEE Std

1003.1a), draft 7, for more information on the semantics of this operation for

a POSIX-conforming PFS.

 Serialization provided by the LFS

The vn_symlink operation is invoked with an exclusive latch held on the vnode

of the directory.

 Security calls to be made by the PFS

The PFS is expected to invoke SAF’s Check Access callable service to check

that the user has write permission to the directory.

Related services

v “vn_readlink — Read a symbolic link” on page 183

v “vn_link — Create a link to a file” on page 157

v “vn_remove — Remove a link to a file” on page 194

vn_symlink

Chapter 3. PFS operations descriptions 241

vn_trunc — Truncate a file

Function

The vn_trunc operation changes the length of an open file.

Environment on entry and exit

See “Environment for PFS operations” on page 71.

Parameters

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file (vnode) that is being operated on. It

contains the PFS’s initialization token, mount token, and the file token. Refer to

“LFS/PFS control block structure” on page 16 for a discussion of this structure,

and to the TOKSTR typedef in BPXYPFSI in Appendix D, “Interface structures

for C language servers and clients,” on page 503 for its mapping.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that

may be called by the PFS. See Chapter 6 for more information.

 It also contains MVS-specific information that needs to be passed to the PFS,

including SMF accounting fields, a work area, a recovery area, and an optional

pointer to an output ATTR structure. For more details on the OSI structure, see

“The OSI structure” on page 19.

 This area is mapped by the OSI typedef in BPXYPFSI in Appendix D.

Audit_structure

Supplied parameter

Type: CRED

Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for

access checks and auditing. It is passed to most SAF routines that are invoked

by the PFS.

 Refer to “Security responsibilities and considerations” on page 12 for a

discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

vn_trunc (Token_structure,

 OSI_structure,

 Audit_structure,

 File_length,

 Return_value,

 Return_code,

 Reason_code)

vn_trunc

242 z/OS V1R7.0 UNIX System Services File System Interface Reference

File_length

Supplied parameter

Type: Integer

Length: Doubleword

A doubleword that contains the number of bytes to which the file size is to be

set. Only positive values are passed by the caller.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_trunc operation returns the results of the operation,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_Code values must

be filled in by the PFS when Return_value is

−1.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_trunc operation stores the return code. The vn_trunc

operation returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of supported return

code values.

 The vn_trunc operation should support at least the following error value:

 Return_code Explanation

EROFS The file is on a read-only file system.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the vn_trunc operation stores the reason code. The vn_trunc

operation returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value. These reason codes are documented by the

PFS.

Implementation notes

 Overview of vn_trunc processing

The vn_trunc changes the file size to File_length bytes.

 Specific processing notes

– The difference between vn_trunc and vn_setattr(truncate) is that vn_trunc is

called for ftruncate(), and therefore does not do a security check.

vn_setattr(truncate) is called for truncate() and must do a security check.

– When a file is truncated, all data from File_length to the original end of the

file must be removed.

vn_trunc

Chapter 3. PFS operations descriptions 243

Full blocks are returned to the file system so that they can be used again,

and the file size must be changed to the lesser of File_length or the current

length of the file.

– When the file is expanded, its length is changed to File_length and unwritten

bytes read between the old end-of-file and the new end-of-file are returned

as zeros.

– The LFS ensures that the file is a regular file, open for writing if necessary,

and that the File_length is not negative.

– When the file size is changed successfully, the PFS calls SAF’s Clear Setid

callable service.

– The LFS enforces any file size limits that may be in effect.

– Refer to the ftruncate() function in the POSIX .1a standard (IEEE Std

1003.1a), draft 7, for more information on the semantics of this operation for

a POSIX-conforming PFS.

 Serialization provided by the LFS

The vn_trunc operation is invoked with an exclusive latch held on the vnode of

the directory.

 Security calls to be made by the PFS

Clear Setid.

Related services

v “vn_open — Open a file” on page 170

vn_trunc

244 z/OS V1R7.0 UNIX System Services File System Interface Reference

Chapter 4. VFS servers

A VFS server is a program that registers as a VFS server with z/OS UNIX by calling

the v_reg() function. There is no special system definition required to become a

VFS server.

VFS servers must have appropriate privileges, which are defined as superuser

authority. For more information on appropriate privileges, see Authorization in z/OS

UNIX System Services Programming: Assembler Callable Services Reference. This

chapter describes:

v How to install a virtual file system (VFS) server

v How a VFS server is activated and deactivated

v The functions that must be provided by a VFS server

v The functions that are provided for it

v Security considerations

In this document, a VFS server is a program that uses the VFS callable services

API to access objects in the z/OS UNIX file hierarchy.

This is not to be confused with DCE or other types of servers. For example,

consider a file transfer program that moves files between z/OS UNIX and a

workstation. If this program uses the open(), read(), and write() functions to access

the files, it is certainly a “file server”, but it is not the subject of this chapter. On the

other hand, if this same program uses the v_get() and v_rdwr() functions, it is the

type of server discussed here. Such a program could be written as a DCE server or

as a set of LU 6.2 transactions, independent of which interface is used to access

the files. So there is no strict relationship between a DCE server and a VFS server.

The VFS callable services API is designed to meet the requirements of an NFS- or

DFS™-style server, but it is not limited to those applications. The main difference

between the POSIX API and the VFS callable services API is that POSIX programs

refer to files by pathnames and VFS servers refer to them by file identifiers (FIDs).

VFS servers do their own pathname resolution to convert a pathname into a FID,

and later use the FID to access the file. The FID is designed to be part of the NFS

file handle that the Network File System returns to its clients. A file handle always

refers to the same file. A pathname, on the other hand, may refer to different files

over time, because of rename, remove/re-create, or symbolic link changes.

Installation

A VFS server may be installed in the hierarchical file system or in standard MVS

load libraries. The choice depends on how the VFS server is activated.

Activation and deactivation

Because any program with appropriate privileges can become a VFS server by

calling the v_reg() function, VFS servers can be activated in all the ways that a

program can be run on MVS. They may be independent address spaces with their

own START catalogued procedure; they can run as batch programs; or they can be

shell processes that are run in the background or started through /etc/init. A VFS

server can even be a command or program that is invoked directly by a user and

run in the foreground of that user’s process.

© Copyright IBM Corp. 1996, 2006 245

Once a program successfully calls v_reg(), it is registered as a VFS server with

z/OS UNIX and dubbed, if it has not already been dubbed. After a server is

registered, appropriate privileges are not needed for subsequent v_ functions.

Server registration is not inherited across fork() or spawn().

A VFS server, like any other program, can use the standard file and socket APIs of

z/OS UNIX, along with other MVS APIs. The VFS server aspects of the program

have to do only with its use of the VFS callable services API.

Termination considerations

There is no service provided to unregister with z/OS UNIX. If and when a VFS

server’s process terminates, z/OS UNIX removes its registration.

A VFS server can, however, release itself from all z/OS UNIX associations by

calling undub (BPX1MPC), which also removes its registration as a VFS server.

When z/OS UNIX removes a VFS server’s registration, all of the z/OS UNIX

resources that are allocated to that VFS server are freed.

Security responsibilities and considerations

The security structure of z/OS UNIX consists of two parts: the user’s identity and

the file’s access control information. A VFS server is primarily concerned with the

user’s identity.

As a z/OS UNIX “superuser,” a VFS server has free access to all z/OS UNIX

resources. Consequently, it is the VFS server’s responsibility to make sure that

everything it does on behalf of a particular end user is done under the authority of

that end user.

For a VFS server that is directly invoked by a local user, such as by a command,

the simplest thing to do is to require that the invoker be a superuser. If the VFS

server runs as a setuid program or is a more traditional client/server type of server,

the rest of this section applies.

It is expected that a VFS server will assume the identity of its end user while

making calls to z/OS UNIX services. This consists of several steps:

1. End users must be defined to both MVS and z/OS UNIX. They will have both an

MVS user ID and a z/OS UNIX UID-GID pair.

2. The VFS server must know the MVS user ID of the end user.

3. The VFS server invokes SAF services to set up a security environment based

on that MVS user ID.

RACROUTE REQUEST=VERIFY,ENVIR=CREATE is used to initialize the MVS part of the

security environment, and Init_USP is used to add the z/OS UNIX information.

For acceptable performance, a VFS server should maintain enough state

information so that it could save this security environment for a given end user

and not have to re-create it on every request.

4. Before calling z/OS UNIX services for an end user, the VFS server updates its

address space or task to assume the security environment that was set up by

RACROUTE and Init_USP, by storing the ACEE from RACROUTE in the

security environment field of the Task Control Block (TCBSENV).

If this is a read or write function, the VFS server must decide whether file

access checking is to be performed by the system. If the VFS server maintains

246 z/OS V1R7.0 UNIX System Services File System Interface Reference

enough state information to recognize the first reference by a particular end

user to a particular file object, it can limit the overhead of access checking to

that first reference. Otherwise, every read or write must be access checked.

Other types of calls are unconditionally access-checked if access control is

defined for the call.

After the call, or sequence of calls, for that end user, the VFS server reverts to

its own security environment or sets up for the next end user.

5. When an end user is finished using the VFS server, the VFS server invokes

RACROUTE REQUEST=VERIFY,ENVIR=DELETE to free the security environment.

Access control checks are performed by the PFSs that own the data. These checks

are based on information that is associated with each individual file. The VFS

server does not control these access checks except for read and write operations.

For more information about these interfaces, refer to z/OS Security Server RACF

Callable Services.

VFS server considerations for 64-bit addressing

For a server that is entirely 31-bit, no changes are required.

For v_op calls in AMODE 31:

v A server may set FuioAddr64 and use 64-bit addressing within the UIO to

address its own buffers for the v_rdwr, v_readdir, and v_readlink operations.

v The UIO itself and all the calling parameters must be 31-bit addressable.

For v_op calls in AMODE 64:

v The server must set FuioAddr64 appropriately to indicate whether a 31-bit or a

64-bit buffer address is being passed.

v Register 1 and the parameter list must all be 64-bit addresses; the parameters

themselves may be above or below 2 gigabytes.

v BPX1 callers must use the BPX4 entry names.

Using the VFS callable services application programming interface

The VFS callable services API separates a VFS server from the logical file system

(LFS) of z/OS UNIX. It is a set of protocols and callable services that deal with

accessing objects in the file hierarchy.

This section describes the services that are provided to a VFS server and the

requirements and responsibilities that are placed on a VFS server.

As described in Chapter 1, a VFS server is just one of many users of the file

system. File requests that are made through the various APIs that are supported by

z/OS UNIX are routed by the LFS to the PFS that owns or controls the file that is

being referred to. The PFS cannot tell what kind of program originated these

requests.

Chapter 4. VFS servers 247

Operations summary

The VFS callable services API contains the following functions:

 Table 5. VFS callable sevices API functions

Function Description

v_access Check access permissions

v_close Close a file

v_create Create a regular, FIFO, or character special file

v_export Export a file system

v_fstatfs Get file system attributes

v_get Get a vnode from a file ID (FID)

v_getattr Get attributes for a file

v_link Create a hard link to a file

v_lockctl Control locks

v_lookup Look up a filename

v_mkdir Create a directory

v_open Open or create a file

v_rdwr Read or write to a file

v_readdir Read a directory

v_readlink Read a symbolic link or external link file

v_reg Register a process with the file system

v_rel Release a vnode

v_remove Remove a file

v_rename Rename a file or directory

v_rmdir Remove a directory

v_rpn Resolve a pathname to a file system and a file

v_setattr Set attributes of a file

v_symlink Create a symbolic or external link

VFS server – LFS control block structure

Files are contained within mounted file systems, and the collection of all the files in

all the mounted file systems forms the z/OS UNIX file hierarchy.

The LFS structures for files and file systems are not directly addressable by a VFS

server. Consequently, files and file systems are abstracted somewhat on the VFS

callable services API.

A file is represented to a VFS server by a vnode token with the following

characteristics:

v A vnode token is similar to a POSIX file descriptor, in that it is the main input to

all calls that refer to the file.

v Vnode tokens are obtained most often from v_get() and v_lookup(), but also

from v_rpn(), v_create(), and v_mkdir()

v Vnode tokens are not inherited across fork().

248 z/OS V1R7.0 UNIX System Services File System Interface Reference

||

||

v Vnode tokens are released with v_rel(). All vnode tokens that are obtained must

eventually be released. After v_rel() is called, any subsequent call with the same

vnode token fails.

v A single vnode token may be cached by the VFS server and shared among

many end users. A single vnode token can be used by several tasks at the same

time, but v_rel() is mutually exclusive with all other operations.

v Many different vnode tokens can be obtained for the same file.

v A vnode token that has not been released is always valid for a call in the sense

that the VFS server program will not abnormally end from using it.

Files that are deleted are still accessible with existing vnode tokens. This is the

same behavior that is expected for POSIX file descriptors that have not been

closed. If the underlying real file system is unmounted with IMMEDIATE or

FORCE, however, calls that are made with vnode tokens for files in that file

system fail with an error code.

A file system is represented to a VFS server by a VFS token with the following

characteristics:

v The VFS token represents a virtual file system (VFS). With NFS, for example,

this corresponds to a client mount. The directory that is mounted becomes the

root of this VFS.

v A VFS is a subset of some real mounted file system. VFS servers do not refer to

the mounted file system directly.

v VFS tokens are obtained from v_rpn(), and they are never released.

v VFS tokens are used only with the v_get() function, which converts a file ID

within a given VFS into a vnode token.

v All VFS tokens for VFSs that are contained within the same real mounted file

system are the same.

v VFS tokens remain valid for as long as the underlying real file system is

mounted.

After the underlying file system is unmounted, v_get() with the prior VFS token

fails with an error code. This remains true even if the real file system is

remounted.

Registration

A VFS server must register with z/OS UNIX by calling the v_reg() service.

v_reg() checks that the VFS server has appropriate privileges (is a superuser), and

sets up support for the VFS callable services API.

The input to v_reg() is contained in the NREG structure and includes the name by

which the VFS server is to be known.

A DFS-style file exporter also includes the name of an exit program that the LFS is

to call before and after every vnode operation for files that are being exported.

Refer to Appendix D for a description of the information that is passed during

registration.

Mounting and unmounting

Servers do not physically mount file systems. NFS-style servers connect to the file

hierarchy at the directory that their client has NFS-mounted, and they access only

Chapter 4. VFS servers 249

those files that are in these NFS-mounted directories or lower in the hierarchy

within the same physically-mounted file system.

DFS-style servers export whole mounted file systems. They connect to the file

hierarchy at the root directory of those file systems.

The Resolve Path Name service, v_rpn(), is called to implement an NFS mount.

The input is the directory pathname, as sent by the client. The primary output is a

VFS token for the file system that the directory belongs to and the file ID (FID) of

the directory. These represent a VFS and its root directory. With this information the

VFS server can access any file in the same file system at or below that directory in

the hierarchy.

The export service, v_export(), is called by file exporters. Its input is a file system

name and its output is the same as it is for v_rpn().

If several directories in the same real file system are mounted by NFS clients, the

VFS server receives the same VFS token for each v_rpn() that is issued during

those NFS mounts. This fact is not significant to the VFS server, which associates

each VFS token that is obtained with the NFS mount that was performed; there

should not be any concern for the physical mount structure that underlies the file

hierarchy.

The pathname that is passed to v_rpn() may be a regular file; in fact, determining

whether it is a file or a directory may be the sole objective of the operation. Usually,

though, the pathname refers to a directory that serves as a base from which other

files are accessed. This access involves pathname resolution, which is explained in

the next section.

When a client NFS unmounts the directory, the VFS server can release whatever

information it is maintaining about the mount. This includes releasing any cached

vnode tokens. The VFS server does not have to inform z/OS UNIX or release the

VFS token in any way.

When a file exporter is finished with a file system it calls v_export() to unexport it.

Overview of NFS processing

To understand how the VFS callable services API is used, you need to understand

the typical sequence of operations for a network file system (NFS) server.

There are three major interactions between an NFS client and its NFS server:

1. Mounting a pathname

2. Resolving the pathname of a file or directory

3. Accessing an individual file or directory

Mounting a pathname

Initially, an end user at an NFS client mounts the pathname of a directory that

resides at the VFS server’s system onto some mount point directory at the client.

These mounts are often done automatically during the initialization of the user’s

workstation. The VFS server object that is mounted may be a regular file, rather

than a directory, in which case information in “Resolving the pathname of a file or

directory” on page 251 does not apply. This section describes only mounting a

directory at the VFS server. This directory is referred to as the “initial directory.”

The flow for an “NFS mount” is as follows:

250 z/OS V1R7.0 UNIX System Services File System Interface Reference

1. The initial directory pathname is sent to the VFS server through the Mount

remote procedure call (RPC).

2. v_rpn() is called by the VFS server to resolve the pathname from the RPC into:

a VFS token for the pathname object’s file system; a vnode token for the object

itself; and the file ID (FID) of the object.

3. The VFS server builds a structure to represent and remember this mount

operation.

A unique “mount key” is constructed and saved in the structure. This may be,

for example, an index number into a mount table array or a time stamp. It is

used later to find the mount structure.

The VFS token is saved in the mount structure.

4. An NFS file handle is constructed from the FID, mount key, and other control

information that is specific to this VFS server.

5. Either the vnode token of the object is cached, or v_rel() is called to release it.

6. The file handle of the object is returned to the client.

After this exchange, the client has a file handle for the initial directory that was

mounted. This file handle is saved and associated with the local mount point. All

end user references to files at or below the local mount point now refer to files in

the VFS server’s file hierarchy that are at or below the initial directory.

Resolving the pathname of a file or directory

Subsequently, the client’s user refers to a specific file by pathname, and the

pathname is resolved locally, component by component, until an NFS mount point is

reached.

The client then continues with the following process:

 1. The lookup RPC is called with the initial directory file handle, which was saved

with the NFS mount point, and the next name component of the pathname,

which is the name after the mount point name.

 2. The VFS server uses the mount key from the file handle to find the related

mount RPC structure where the VFS token from v_rpn() was saved.

 3. v_get() is called with that VFS token and the FID from the file handle. This call

returns the vnode token for the directory that is represented by the file handle.

If the vnode token had been cached, this step could be skipped.

 4. v_lookup() is called with that directory vnode token and the component name

from the RPC. This call returns the named object’s vnode token, FID, and

attributes.

 5. An NFS file handle for the named object is constructed from its FID, the mount

key, and other control information that is specific to this VFS server.

 6. v_rel() is called to release the directory vnode token.

 7. v_rel() is called to release the named object’s vnode token.

 8. The file handle and attributes of the object are returned to the client.

 9. At the client the file handle represents the named object that was just looked

up. The object’s pathname is equal to that part of the original pathname that

has been resolved so far. From the attributes that are returned, the client can

tell what type of file the object is:

v If it is a symbolic link, the readlink RPC is called to retrieve the link’s

contents.

v If it is a directory, and there are more name components of the pathname to

be resolved, the client moves on to the next name component and calls the

lookup RPC with that name and the file handle that was just returned.

Chapter 4. VFS servers 251

10. The VFS server continues with step 2 on page 251, and this loop continues

iteratively through each name component of the remaining pathname string.

Note: This processing does not generally cross real mount points at the server. If a

particular directory encountered during these lookups has been mounted on,

lookups in that directory return files from that directory, not from the directory

that was mounted over it. As a consequence, all files that are obtained from

a given initial directory are in the same real mounted file system. This also

means that an NFS client’s view of the file hierarchy is different from that of

a local user. NFS clients can see “underneath” real mount points that are

reachable from the directories they have NFS-mounted. This is usually of no

consequence, because most mount-point directories are empty. Refer to

“v_lookup (BPX1VLK, BPX4VLK) — Look up a file or directory” on page 303

for a way to override this behavior.

After a pathname has been fully resolved to the file handle of an object in the VFS

server’s file hierarchy, the client can use that handle on later RPC requests to

perform a specific function against that object. For example:

v If the user program does an open() and read() on a file, the client resolves the

open’s pathname and uses the file handle to satisfy the read by issuing a read

RPC.

v For a mkdir(), the pathname is resolved up to the last name component, yielding

the file handle of the parent directory in which the new directory is to be defined.

The make_dir RPC is then called with this file handle and the last name

component of the original pathname.

v For a stat(), the pathname is resolved to its end, and the file handle is used on a

get_attributes RPC.

v The lookups and readlinks that are involved with pathname resolution itself are

also examples of the use of a file handle for specific operations against the

directory that is represented by the handle.

Accessing an individual file or directory

After an object’s file handle is available, the flow for a functional request is as

follows:

1. The functional RPC is called with the object’s file handle and other parameters

that are specific to this function.

2. The VFS server uses the mount key from the file handle to find the related

mount RPC structure in which the VFS token from v_rpn() was saved.

3. v_get() is called with that VFS token and the FID from the file handle. This

returns the vnode token for the object that is represented by the file handle.

4. The appropriate VFS callable services API function is called to perform the

operation that is requested by the RPC. The parameters of the call include the

object’s vnode token, from step 3, and the other parameters that are specific to

this function.

5. v_rel() is called to release the object’s vnode token.

6. The data or results of the function are returned to the client.

So long as the client has cached a file handle, the pathname resolution process

does not have to be repeated, and files and directories can be immediately

accessed by their handle. In particular, this simpler flow would be used for all reads

and writes against an open file, since the client can save the file handle with the

open structures.

252 z/OS V1R7.0 UNIX System Services File System Interface Reference

Notes:

1. If the VFS server keeps enough state information, the v_get()-v_rel() pairs can

be skipped by caching the vnode token that is used on a sequence of inbound

RPC requests. Because NFS clients do not inform their servers when they are

finished with a file handle, a server that is caching vnode tokens must

eventually clean them up by calling v_rel(), after an inactivity timeout or with

some other reclamation algorithm.

2. v_rpn() is the only VFS callable services API function that takes a pathname for

the file it acts upon.

Capabilities and restrictions for Version 4 NFS server processing

in a sysplex environment

Starting with z/OS V1R7, z/OS UNIX supports Version 4 NFS server protocols. This

support includes new v_open() and v_close() callable services, including support

for file sharing semantics (share reservations), and enhanced lock control interfaces

and functionality (provided by the v_lockctl() callable service).

The following capabilities and restrictions apply to Version 4 NFS server processing

in a sysplex environment:

v To open a file with share reservations, the file must be owned by a system at the

z/OS V1R7 level or higher. The following applies to files that are owned by

remote systems:

– If a file is owned by a remote system that supports share reservations, they

will be enforced at the owning system for all open requests within the sysplex.

At the owning system, an open request from a down-level remote system

behaves just like a local open request.

– If a file is owned by a remote system that does not support share

reservations, the v_open() fails with return code EOPNOTSUPP, reason code

JrNoShrsAtOwner. Move the file system to a sysplex member that supports

share reservations.

v A file system that has active share reservations on any of its files can be moved

to another system that supports share reservations and those share reservations

will move with the files and continue to be enforced at the new owning system.

A file system cannot be moved to a down-level system while there are active

share reservations on any file in that file system. Any attempt to do so will fail

with return code EINVAL, reason code JrCantMoveShares. Either move the file

system to a sysplex member that does support share reservations, stop the NFS

client applications that are holding share reservations on the files, or wait for

those applications to complete.

v When share reservations exist on files that are owned by a remote system and

that system crashes, the following occurs:

– If the file system is taken over by another system that supports share

reservations, the reservations will be reestablished and enforced at the new

owning system.

– If the file system is taken over by another system that does not support share

reservations, the share reservations can no longer be enforced. The open

tokens for the affected files will be invalidated and subsequent operations with

those open tokens will be rejected with return code EIO, reason code

JrShrsLost. Move the file system to a sysplex member that supports share

reservations; the files can then be reopened as they were before.

Note: You can use the AUTOMOVE parameter on the MOUNT command to

restrict such takeovers only to systems that support share reservations.

Chapter 4. VFS servers 253

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|

v When a file system is owned by a remote system that does not support the

Version 4 NFS server protocols, the following restrictions apply:

– Enhanced blocker information is not available when a byte range lock request

cannot be granted. In such a case, the output BRLM_Rangelock structure will

contain zeros.

– The new purge locks interfaces are not supported unless the masks map to

the old functionality—that is, all clients and threads or all threads at a client.

TID subsetting cannot be used.

– The UnLoadLocks function is not supported.

NFS file handles

As mentioned before, the VFS callable services API is designed to be used with

NFS, and NFS uses file handles to represent files. Two advantages of NFS file

handles over pathnames are that they are a smaller fixed length (usually 32 bytes

long), and that they always refer to the same file object even if that object is

renamed or if it is deleted and the pathname reused for another object. In the latter

case, references to the file handle fail, but this is the desired result.

An NFS file handle contains two pieces of information that are needed to convert

the handle back to a file. These are the file system in which the file resides and its

identifier (FID) within that file system. The FID values, which are generated by

PFSs that own the data, are unique within a file system, persistent, and never

reused. File systems, however, do not have a persistent and dedicated identifier

that can be used in an NFS file handle.

An NFS client expects file handles to be valid for as long as the corresponding VFS

server object exists. To support their validity over system or VFS server restarts, the

VFS server must maintain a disk file, or database, that retains some information

about the NFS mounts that have been performed. With this database, the VFS

server can create unique and persistent file system identifiers to be placed in the

file handles along with the file’s FID. This file system identifier was called a “mount

key” in the previous section, and the following process makes it unique and

persistent:

1. On each mount RPC, a unique “mount key” is generated. This can be, for

example, an index into a mount table or a time stamp.

The mount key can be reused after the client issues an unmount RPC.

Presumably the client will not be using old file handles from directories that it

has unmounted.

The initial directory pathname from the RPC and the mount key are saved on

disk. The file system name and directory FID are also saved.

A mount structure is built to hold the mount key and VFS token. With the mount

key the VFS server is able to find the mount structure and extract the VFS

token.

2. Each file handle that is constructed contains the file’s FID and the mount key for

the mount RPC under which the file resides.

3. Each time the VFS server is started, it reads the mount file and rebuilds the

corresponding mount structures with their saved mount keys.

v_rpn() is called, with the saved pathname, to get a new VFS token, which is

saved in the new mount structure.

At this point the VFS server has re-created the mount state it had before the

system was restarted, and it can field inbound RPCs and process their file

handles.

254 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|

|
|
|

|
|
|

|

4. With an old file handle the VFS server can find the new mount structure, since

the mount key has not changed and the new VFS token is used on the

subsequent call to v_get().

A mount RPC refers to a specific initial directory, which, when the RPC arrived, was

known by the pathname that is included with the RPC. That specific directory can

be renamed or deleted and the pathname reused for another directory. If this

happens, the v_rpn() that is issued by a VFS server after it restarts yields the VFS

token and FID of a different directory. In this case, the same file handle used by a

client before and after the VFS server restart refers to two different objects!

To help detect this situation, v_rpn() returns additional information about the real

mounted file system that the initial directory belongs to. This includes the

FILESYSTEM name used on the real mount command. By saving this name and

the FID of the initial directory, along with the pathname and mount key, the VFS

server can validate the output of v_rpn() after a restart.

After a restart v_rpn(), the old and new FIDs are compared to catch situations in

which the pathname has been reused within the same real file system. The old and

new FILESYSTEM names are compared in order to catch instances in which the

pathname was reused across real file systems and happens to refer to an object

with the same FID within the new file system. Getting the same FID is not so

uncommon; because FIDs are usually generated sequentially, the local root of every

real file system, for example, tends to have the same FID.

This scheme requires that the FILESYSTEM name not be reused for another file

system, but this is somewhat easier to control. Generally, mount commands are

issued only from the BPXPRMxx parmlib member that was used to start z/OS

UNIX, or by a small set of people with special authorization. For HFS file systems,

also, the FILESYSTEM name is the name of an MVS data set. Controls can be

placed over who is able to rename or delete these data sets, and they cannot be

renamed or deleted by anyone while they are mounted.

DFS-style file exporters

The main difference between a DFS-style server, called a file exporter here, and an

NFS-style server is that a file exporter controls both local and remote access to the

file systems that it exports. It does this through the use of an exit program that is

specified at the time the exporter registers with v_reg().

A file exporter exports entire mounted file systems with the v_export() function.

Usually the exporter is set up with a list of file systems that it is to export, and these

are exported during initialization.

An exported file system is made known to the network in general. End users at

DFS-style clients access all network files through a single “DFS” mount point on

their system. The clients call a name server to find files that they are interested in,

and so they are not affected when the files are moved. This differs from an

NFS-style client, whose user individually mounts directories from each remote

system on particular local mount points. The location of the directory, and thus the

files under it, is specified at mount time, and so cannot be changed without

changing the mount at each client.

For vnode operations that do not originate with the file exporter itself, an exporter

exit program is used to synchronize file changes. The exporter exit program is

invoked before and after every vnode operation that is called for files within an

Chapter 4. VFS servers 255

|
|

|
|

exported file system. The exit program communicates with the file exporter to

coordinate file sharing between local users and remote clients. In effect, the exit

program is serving as a “DFS client” for all the local users of the exported file

system. Only tokens that grant permission to continue with the vnode operation are

transferred via the exit, and not file data. In this way the exit and file exporter

ensure that when a local program reads a file it will see all changes that may have

been made to this file by remote clients.

The general flow is:

1. The exit is loaded and called for initialization when v_reg() is called.

2. V_export() is called by the file exporter to identify the file systems that are

being exported. V_export() has the same output as v_rpn(), and the file

exporter proceeds to access local data in the same way that NFS-style servers

do.

3. The exit program is called before and after every vnode operation for an

exported file system that does not originate from the file exporter.

The exit program can communicate with the file exporter address space through

its own internal mechanisms, if necessary. Significant performance degradation

is possible for exported file systems if the exit and exporter are not designed to

minimize this communication.

The OSI services are available to the exit program.

The exit can cause the vnode operation to be rejected, with return and reason

codes that are passed back to the caller.

4. The osi_ctl() service is available for asynchronous communication from the file

exporter address space to the exit program.

5. The exit program is also called when a file system is unexported and when the

file exporter terminates. In the latter case the exit program is also deleted.

The interface between the LFS and the exporter exit is the GXPL structure. Refer to

Appendix D, “Interface structures for C language servers and clients,” on page 503

for the structure itself and the C prototype of the interface.

The exit program receives control in the kernel address space and in the following

environment:

 Authorization: Supervisor state, PSW key 0

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters are in key 0 storage in the primary address

space. The parameters are not fetch protected.

Registers at Entry

The contents of the registers on entry to the exit are:

Register Contents

0 Undefined

1 Parameter list address. The list contains one item that is the

address of the Gxpl structure.

2-12 Undefined

256 z/OS V1R7.0 UNIX System Services File System Interface Reference

13 Save area address, of a 136-byte save area.

14 Return address

15 Entry address

AR0-15 Undefined

Environment at Exit

Upon return from the exit, the entry environment must be restored.

Registers at Exit

Upon return from the exit, the register contents must be:

Register Contents

2-13 Restored from the entry values

0,1,14,15 Undefined

AR0-15 Untouched or restored from the entry values.

Reading and writing

When reading and writing to files, the VFS server is responsible for maintaining file

position and for having access checks performed.

Each call to v_rdwr() must specify:

v The file offset from which the operation is to start. This differs from the POSIX

API, where the LFS maintains a file cursor.

v Whether security access checks are to be performed. If the VFS server maintains

sufficient state information to associate a sequence of reads and writes from the

same end user, it can limit these access checks to that end user’s first reference,

thus improving performance.

Additionally, the VFS server may request a “sync on write”, which forces the current

write, and all previously written data, to be saved to disk before v_rdwr() returns.

Reading directories

To optimize directory reading, v_readdir() is designed to return as many entries as

possible on each call.

The VFS server must maintain directory positioning if more than one call must be

made to read an entire directory, and this section describes positioning:

The v_readdir() output buffer is mapped by the DIRENT structure, and its format is

defined as follows:

v The buffer contains a variable number of variable-length directory entries. Only

full entries are placed in the buffer, up to the buffer size specified, and the

number of entries is returned on the interface.

v Each directory entry that is returned in the buffer has the following format:

1. 2-byte Entry_length. This length field includes itself.

2. 2-byte Name_length, which is the length of the following Member_name

subfield.

3. Member_name. A character field of length Name_length. This name is not

null-terminated.

4. File-system-specific data. If (Name_length + 4) = Entry_length, this field is not

present. Whenever the field is present, however, it starts with the file’s serial

Chapter 4. VFS servers 257

number, st_ino, in 4 bytes. This field is not part of POSIX, but it is supported

for special-use programs that are dealing with particular file systems that they

know about.

v The entries can be packed together, and the length fields are not aligned on any

particular boundary.

An example of an entry for the name abc would be X'0007 0003 818283' or X'000B

0003 818283 00001234' with a file serial number of X'1234' also returned.

Entries for “.” and “..” may or may not be returned by the PFS that owns the

directory.

In order for successive calls to v_readdir() to proceed through a directory from the

point at which the last one left off, the VFS server must specify the directory

position at which the operation is to start. There are two different ways this can be

done:

v Cursor technique. The cursor that is returned in the UIO contains PFS-specific

information that locates the next directory entry. The VFS server is required to

preserve the UIO cursor and the entire output buffer from the last v_readdir(),

and present both of these on the next v_readdir().

The PFS may use the cursor as an offset into a simple linear directory file,

ignoring the buffer; or it may use it as an offset into the previous output buffer of

the last entry returned. The latter approach is used by a PFS with a

tree-structured directory, where the previous entry name is used as a key to

search for the next entry. That is, the last returned name, a 1-to-255-byte-long

text string, is really the “cursor” for the directory position.

v Index technique. The index that is set in the UIO by the VFS server determines

which entry to start reading from. To read through a directory, the VFS server

starts at one and maintains the index by adding the number of entries that are

returned to the previous index. The directory is treated as a one-based array,

where the first entry has index 1, the second entry has index 2, and so on.

This technique is slower than the cursor technique, but it is useful when a VFS

server does not maintain state information from one call to the next. The index

can be passed back to the client, who must return it with the next request to

continue reading the same directory for a particular end user.

The UIO contains both the cursor and the index fields that are used with these

continuation techniques. The interpretation of these two fields is summarized in the

following table:

 Index Cursor Action

0 0 Start reading from the first entry.

0 M Use the cursor value to resume reading.

N 0 Start reading from entry N.

N M Start reading from entry N.

Note: 0=zero; N and M are nonzero values.

A nonzero index overrides the cursor; when both are zero, reading starts from the

front of the directory.

The end of the directory stream is indicated in two different ways:

258 z/OS V1R7.0 UNIX System Services File System Interface Reference

v A Return_value of 0 entries is returned. This happens when the previous

v_readdir() exhausted the directory.

v A null name entry is returned as the last entry in the output buffer. A null name

entry has an Entry_length of 4 and a Name_length of 0—that is, X'00040000'.

This happens when the current v_readdir() exhausts the directory and there are

at least 4 bytes left in the output buffer.

Getting and setting attributes

A file’s attributes are returned by the v_getattr() function. Many of the other VFS

callable services API functions also return file attributes as a performance

enhancement, since attributes are often requested in conjunction with those

functions.

A file’s attributes are changed with the v_setattr() function. A set of “change bits”

are used on this interface, and the VFS server specifies exactly which attributes are

being updated, along with the new values for those attributes.

Comparing the VFS server and PFS interfaces

Certain traditional VFS or vnode functions are missing from the VFS callable

services API. In particular, the set of functions in the VFS callable services API does

not match the set of file-related operations in the PFS interface.

Some of these missing functions are not generally used by an NFS-style VFS

server, and some of them are implemented in other ways, as explained in the

following list.

truncate A file can be truncated with v_setattr(), specifying

the desired file size.

sync A file can be synchronized, or saved to disk, with

v_rdwr(). Specify write, a length of 0, and

sync-on-write.

open or close NFS-style VFS servers do not use these

operations. To maintain the performance

characteristics of an open-close protocol, the VFS

server can limit access checks to an end user’s first

reference to a particular file.

inactivate v_rel() is functionally equivalent for a VFS server to

the vn_inactive operation for a PFS.

mount or unmount The v_rpn() function implements an NFS-style

mount, and these are not explicitly unmounted.

vfs_fid A file’s FID is part of the ATTR structure, so it can

be obtained with the v_getattr() function. The ATTR

is returned on the operations where a FID would

usually be needed, so a VFS server generally does

not have to explicitly convert vnodes into FIDs.

vfs_root An NFS-style server does not do real mounts, so it

does not need to find the root of a real mounted file

system. v_rpn() returns the root of a VFS server’s

VFS.

check access A VFS server does not explicitly check to see if its

end user has permission to access a file; instead, it

Chapter 4. VFS servers 259

assumes the user’s identity and makes the file

reference under that authority.

260 z/OS V1R7.0 UNIX System Services File System Interface Reference

Chapter 5. VFS callable services application programming

interface

This chapter describes the syntax of each of the VFS callable services. The

services are arranged in alphabetic order. Sample invocations of each service are in

Appendix C.

Syntax conventions for the VFS callable services

A callable service is a programming interface that uses the CALL macro to access

system services. To code a callable service, code the CALL macro followed by the

name of the callable service and a parameter list. A syntax diagram for a callable

service follows.

 This format does not show the assembler column dependence (columns 1, 10, 16,

and 72) or parameter list options (VL and MF). The exact syntax is shown in the

examples in Appendix C.

When you code a callable service:

v You must code all the parameters in the parameter list, because parameters are

positional in a callable service interface. That is, the function of each parameter

is determined by its position with respect to the other parameters in the list.

Omitting a parameter, therefore, assigns the omitted parameter’s function to the

next parameter in the list.

v You must place values explicitly into all supplied parameters, because callable

services do not set defaults.

Elements of callable services syntax

The following paragraphs describe the standard elements that are contained in the

callable services reference pages in this document.

CALL

CALL is the assembler macro that transfers control and passes a parameter list.

Service_name

The name that assembler understands is the name of a module in the form

BPX1xxx, where xxx is a three-character symbol unique to the service. AMODE 64

callers use the form BPX4xxx.

Modules are invoked in one of the following ways:

v A program can load a module first and then branch to the address where it was

loaded.

v When you are link-editing a program, you can link to the linkage stub. The

program can issue a call.

 CALL Service_name,(Parm_1,

 Parm_2,

 .

 .

 Return_value,

 Return_code,

 Reason_code)

© Copyright IBM Corp. 1996, 2006 261

v You can include in the code the system control offset to the callable service. See

Appendix A for information on how to use this linkage.

Parm parameters

Parm_1, Parm_2, and so on are placeholders for variables that may be part of a

service’s syntax.

Return_value

The Return_value parameter is a common parameter for many callable services. It

indicates the success or failure of the service. If the callable service fails, it returns

−1 in Return_value. For most successful calls to z/OS UNIX services, the return

value is set to 0. If the request is not successful, −1 is returned.

Return_code

The Return_code parameter is referred to as the errno in the POSIX C interface.

The Return_code is returned only if the service fails.

In the callable service description, some of the possible return codes are listed for

services that have return codes. The return codes are described in each service if

they help describe its function.

Reason codes are listed with the return codes they describe.

The return codes and their descriptions are found in z/OS UNIX System Services

Messages and Codes.

Some Return_code values may occur for any callable service: the ones that are

unique to z/OS UNIX. They are not always listed under each callable service. See

z/OS UNIX System Services Messages and Codes for a description of these return

codes.

Reason_code

The Reason_code parameter usually accompanies the Return_code value when the

callable service fails. It further defines the return code. Reason codes do not have a

POSIX equivalent.

z/OS UNIX System Services Messages and Codes lists all the reason codes with

their descriptions, both alphabetically by name and numerically by value. The value

is the lower half of the reason code.

Other subjects related to callable services

See Invocation details for callable services in z/OS UNIX System Services

Programming: Assembler Callable Services Referencefor a discussion of other

subjects related to callable services, such as:

v How to invoke them

v Their linkage conventions

v Reentrant versus nonreentrant coding

v Environmental restrictions

v Abnormal end conditions

v Authorization

262 z/OS V1R7.0 UNIX System Services File System Interface Reference

Considerations for servers written in C

The BPXYVFSI header file in Appendix D, “Interface structures for C language

servers and clients,” on page 503 contains prototypes and linkage macros for all the

callable services in this section. With this header, you can call each service using

the v_name that is shown in the title, and you will not have to linkedit your program

with the linkage stubs.

This header also contains definitions for all structures, parameters, and constants

that are used on the interface.

The calling parameters are the same for C and assembler, but the call format

follows C syntax. For example, the call statement for creating a file would look like

this:

v_create(directory_vnode_token, &oss, name_length, name, sizeof(ATTR),

 attribute_structure, &file_vnode_token, &return_value, &return_code,;

 &reason_code);

v_access (BPX1VAC, BPX4VAC)

Chapter 5. VFS callable services application programming interface 263

v_access (BPX1VAC, BPX4VAC) — Check file accessibility

Function

The v_access service verifies that the caller has the requested access permissions

to the object that is represented by Vnode_token.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VAC): 31-bit

AMODE (BPX4VAC): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VAC with the same parameters.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the file

or directory.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Mode

Supplied parameter

Type: Integer

Length: Fullword

CALL BPX1VAC,(Vnode_token,

 OSS,

 Mode,

 Return_value,

 Return_code,

 Reason_code)

v_access (BPX1VAC, BPX4VAC)

264 z/OS V1R7.0 UNIX System Services File System Interface Reference

The name of a fullword that contains the permissions to be checked. This area

is mapped by the BPXYMODE macro (see “BPXYMODE — Map the mode

constants of the file services” on page 466).

 The Read, Write, and Execute permissions that are to be checked are set in the

Owner permission bits of the Mode (the S_IRUSR, S_IWUSR and S_IXUSR

bits).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_access service returns the results of the

access check.

 When the request is successful, the permission bits that correspond to the

caller’s allowed access for each of the input mode bits are returned here. This

is in the same format as the input Mode parameter, and is therefore a subset of

the input Mode bits.

 If the request is not successful, −1 is returned.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_access service stores the return code.

The v_access service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_access service can return the following value in the

Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; something other than the Owner’s

permission bits were set.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_access service stores the reason code.

The v_access service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. This service is similar to the access() function, but the return of information is

handled differently, as follows:

Return_value Meaning

0 Access is denied for all of the bits that were on

in the Mode parameter.

Greater then zero The permissible access is represented by the

non-zero bits that are returned here.

v_access (BPX1VAC, BPX4VAC)

Chapter 5. VFS callable services application programming interface 265

−1 The service has failed for some reason other

then an access failure.

2. The caller’s real UID and real GID are used to check for the access that is

requested.

3. All access is allowed to symbolic link files, regardless of the file’s mode setting.

This does not imply anything about whether access to the file that is pointed to

by the symbolic link would be granted.

4. The setting of the AttrLP64times bit in the BPXYATT structure, and not the

AMODE of the caller, determines whether 4-byte or 8-byte time fields are used.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

Characteristics and restrictions

A process must be registered as a server before it can invoke the v_access service;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

v_access (BPX1VAC, BPX4VAC)

266 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_close (BPX1VCL, BPX4VCL) — Close a file

Function

The v_close service closes a previous open created by v_open. This frees the open

token and removes all state information associated with the v_open.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VCL): 31-bit

AMODE (BPX4VCL): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VCL with the same parameters.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the file

that was previously opened by v_open.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating system specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Open_Token

Supplied parameter

Type: Token

Length: 8 bytes

CALL BPX1VCL,(Vnode_token,

 OSS,

 Open_Token,

 Return_value,

 Return_code,

 Reason_code)

v_close (BPX1VCL, BPX4VCL)

Chapter 5. VFS callable services application programming interface 267

|
|
|
|
|
|
|

|
|

|

|
|

|

|||
||
||
||
||
||
||
||
||
|
|

|

|

|

|

|
|
||
||

|
|

|
|
||
||

|
|
|

|
|
||
||

The name of an 8-byte area that holds the open token returned by a prior call

to v_open.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_close service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_close service stores the return code. The

v_close service returns Return_code only if the Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_open service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, the vnode token has

been released or one of the token parameters does

not contain a valid token value.

ESTALE The open token is stale or already closed.

EAGAIN The open token is currently in use by another

thread in this process.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_close service stores the reason code.

The v_close service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. The v_close service frees the open token represented by Open_Token and

releases all state information associated with it. This includes share reservations

and byte range locks associated with the open instance.

2. Byte range locks are not associated with open tokens that are created with

OPEN_NLM_SHR, so v_close will not release these. They must be explicitly

released with the v_lockctl service.

3. In accordance with POSIX rules, when v_close releases byte range locks on a

file, all locks owned by the open owner are also released—even those obtained

by this open owner using other open tokens. Also, for any lock owner who is not

the open owner but who is specified on a v_lockctl call using this open token, all

of the locks on the file that are owned by that lock owner will be released.

4. When v_close releases pending asynchronous byte range locks, the request

completion signal will be sent and the lock request will complete with an

ECANCELED error.

v_close (BPX1VCL, BPX4VCL)

268 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|

|
|
||
||

|
|

|
|
||
||

|
|
|
|
|

|||
||
|
|
||
||
|
|

|
|
||
||

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

Note: There is a race condition with the lock request completing normally just

before the v_close is issued and, in this case, the lock request will

successfully complete but the lock will have been released. This is

similar to the case where one thread obtains a byte range lock on a file

and another thread closes that file before the first thread has had a

chance to use the lock.

5. If any other thread is currently issuing a call (such as v_rdwr) using the same

open token that v_close is attempting to close, the v_close will fail with an

EAGAIN error.

6. The v_rel service implicitly calls v_close for any open token that is associated

with the vnode token that is being released.

Related services

v “v_open (BPX1VOP, BPX4VOP) — Open or create a file” on page 311

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

Characteristics and restrictions

A process must be registered as a server before the v_open service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

v_close (BPX1VCL, BPX4VCL)

Chapter 5. VFS callable services application programming interface 269

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|

v_create (BPX1VCR, BPX4VCR) — Create a file

Function

The v_create service creates a new file in the directory that is represented by

Directory_vnode_token. The file can be a regular, FIFO, or character special file.

The input Attr is used to define the attributes of the new file. A token that represents

the new file is returned in File_vnode_token.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VCR): 31-bit

AMODE (BPX4VCR): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VCR with the same parameters.

Parameters

Directory_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory in which the v_create service creates the new file that is named in the

Name parameter.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

CALL BPX1VCR,(Directory_vnode_token,

 OSS,

 Name_length,

 Name,

 Attr_length,

 Attr,

 File_vnode_token,

 Return_value,

 Return_code,

 Reason_code)

v_create (BPX1VCR, BPX4VCR)

270 z/OS V1R7.0 UNIX System Services File System Interface Reference

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the filename that is to be

created. The name can be up to 255 bytes long.

Name

Supplied parameter

Type: Character string

Length: Specified by Name_length parameter

The name of an area, of length Name_length, that contains the filename that is

to be created. It must not contain null characters (X'00').

Attr_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area that is passed in the

Attr parameter. To determine the value of Attr_length, use the ATTR structure

(see “BPXYATTR — Map file attributes for v_ system calls” on page 445).

Attr

Supplied and returned parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area, of length Attr_length, that is to be used by the v_create

service to set the attributes of the file that is to be created. The attributes of the

file that is created are also returned in this area. This area is mapped by the

ATTR structure (see “BPXYATTR — Map file attributes for v_ system calls” on

page 445).

File_vnode_token

Returned parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area in which the v_create service returns a

Vnode_token of the file created.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the v_create service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_create service stores the return code.

The v_create service returns Return_code only if Return_value is −1. See z/OS

v_create (BPX1VCR, BPX4VCR)

Chapter 5. VFS callable services application programming interface 271

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_create service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EACCES The calling process does not have permission to

write in the directory that was specified.

EEXIST The named file already exists.

EFBIG The file size limit for the process is set to zero,

which means files cannot be created.

EINVAL Parameter error; for example, a supplied area was

too small.

The following reason codes can accompany the

return code: JRSmallAttr, JRInvalidAttr, JrNoName,

JrNullInPath, JRVTokenFreed, JRWrongPID,

JRStaleVnodeTok, JRInvalidVnodeTok,

JRInvalidOSS.

EMFILE The maximum number of vnode tokens have been

created.

ENAMETOOLONG The name is longer than 255 characters.

ENFILE An error occurred while storage was being obtained

for a vnode token.

ENOTDIR The supplied token did not represent a directory.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

EROFS The Directory_vnode_token is a file on a read-only

file system.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_create service stores the reason code.

The v_create service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. The following ATTR fields are provided by the caller:

Attr.at_hdr.cbid Contains Attr#ID (from the ATTR structure).

AttrLen Specifies the length of the ATTR structure.

AttrMode Specifies the file mode permission bits. See

“BPXYMODE — Map the mode constants of the

file services” on page 466 for the mapping of

this field.

AttrType Specifies the file type: regular, FIFO, or

character special. See “BPXYFTYP — File type

definitions” on page 451 for the mapping of this

field.

AttrMajorNumber Specifies the major number for character

special files.

v_create (BPX1VCR, BPX4VCR)

272 z/OS V1R7.0 UNIX System Services File System Interface Reference

AttrMinorNumber Specifies the minor number for character

special files.

AttrCVerSet Indicates whether the Creation Verifier

(AttrCVer) is present.

AttrCVer Specifies the Creation Verifier for the file. When

the AttrCVerSet bit is on and the create is

successful, the PFS saves the Creation Verifier,

and the server can retrieve it with v_lookup. The

Creation Verifier allows the server to determine

whether a v_create that returns EEXIST should

be considered successful or not. If AttrCVerSet

is on, AttrCVer is returned, and the server can

compare the file’s Creation Verifier with the

input Creation Verifier on the v_create. If they

are the same, it considers the v_create

successful; that is, it is a duplicate of an earlier

successful request.

Other fields in the ATTR area should be set to zeros.

2. If the file that is named in the Name parameter already exists, the v_create

service returns a failing return code, and no File_vnode_token is returned.

3. Vnode tokens that are returned by the v_create service are not inherited across

a fork callable service.

4. The caller is responsible for freeing vnode tokens that are returned by the

v_create service by calling to the v_rel service when they are no longer needed.

5. If the file size limit for the process is set to zero, files cannot be created and file

creation fails with EFBIG.

6. The value set by umask() for the process does not affect the setting of the

mode permission bits.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

Characteristics and restrictions

A process must be registered as a server before the v_create service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VCR, BPX4VCR (v_create)

example” on page 479.

v_create (BPX1VCR, BPX4VCR)

Chapter 5. VFS callable services application programming interface 273

v_export (BPX1VEX, BPX4VEX) — Export a file system

Function

The v_export service controls whether a file system is being exported by the server

that makes this call.

Both local and remote access to this file system are controlled by the server while it

is being exported.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VEX): 31-bit

AMODE (BPX4VEX): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VEX with the same parameters.

Parameters

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Function

Supplied parameter

Type: Integer

CALL BPX1VEX,(OSS,

 Function,

 File_system_name,

 VFS_token,

 Vnode_token,

 Mnte_length,

 Mnte,

 Attr_length,

 Attr,

 Vol_Handle,

 Return_value,

 Return_code,

 Reason_code)

v_export (BPX1VEX, BPX4VEX)

274 z/OS V1R7.0 UNIX System Services File System Interface Reference

Length: Fullword

The name of a fullword that contains the function to perform:

1. Export the file system. This activates the server’s control over the file

system.

2. Unexport the file system. This deactivates the server’s control over the file

system.

File_system_name

Supplied parameter

Type: Character string

Length: 44 bytes

The name of a 44-character field that identifies the file system that is to be

exported or unexported. The name must be left-justified and padded with

blanks.

 This is the name that is specified on the mount of the file system. It is an MVS

data set name in uppercase letters without surrounding quotation marks.

VFS_token

Returned parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area in which the v_export service returns the VFS

token of the file system.

Vnode_token

Returned parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area in which the v_export service returns a vnode

token of the root of the file system.

Mnte_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area that is to be passed

in the Mnte parameter.

 The length of this area must be large enough to contain a mount entry header

(MnteH) and one mount entry (Mnte). These fields are mapped by the

BPXYMNTE macro (see “BPXYMNTE — Map response and element structure

of w_getmnte” on page 463).

Mnte

Returned parameter

Type: Structure

Length: Specified by the Mnte_length parameter

The name of an area, of length Mnte_length, in which the v_export service

returns information about the file system. This area is mapped by the

BPXYMNTE macro (see “BPXYMNTE — Map response and element structure

of w_getmnte” on page 463).

Attr_length

Supplied parameter

Type: Integer

v_export (BPX1VEX, BPX4VEX)

Chapter 5. VFS callable services application programming interface 275

|
|

Length: Fullword

The name of a fullword that contains the length of the area that is to be passed

in the Attr parameter. To determine the value of Attr_length, use the ATTR

structure (see “BPXYATTR — Map file attributes for v_ system calls” on page

445).

Attr

Returned parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area, of length Attr_length, in which the v_export service

returns the file attribute structure for the root. This area is mapped by the ATTR

structure (see “BPXYATTR — Map file attributes for v_ system calls” on page

445).

Vol_Handle

Supplied parameter

Type: Token

Length: 16 bytes

The name of a 16-byte area that is to be associated with the exported file

system and passed to the exporter exit with each call that is related to this file

system.

 This parameter is not interpreted by the LFS.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_export service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_export service stores the return code.

The v_export service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_export service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, the file system that is

to be exported or unexported is not mounted or is a

sysplex client; or one of the supplied areas was too

small. The following reason codes can accompany

the return code: JrFileSysNotThere,

JrBadEntryCode, JrSmallAttr, JrSmallMnte,

JrInvalidOSS, JRCantExpClient.

EBUSY The file system that is to be unexported is not

exported by this server.

EIO The file system is being unmounted (JrQuiescing).

EAGAIN The file system has been quiesced (JrQuiesced), or

is being asynchronously mounted (JrAsynchMount).

v_export (BPX1VEX, BPX4VEX)

276 z/OS V1R7.0 UNIX System Services File System Interface Reference

Return_code Explanation

EALREADY The file system that is to be exported is already

being exported; or the file system that is to be

unexported is not currently exported.

EMFILE The maximum number of vnode tokens have been

created.

ENFILE An error occurred while storage was being obtained

for a vnode token.

EPERM The operation is not permitted. The caller of the

service is not registered as a file exporter.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_export service stores the reason code.

The v_export service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

 1. Vnode tokens that are returned by the v_export service are not inherited

across a fork callable service.

 2. VFS tokens that are returned by the v_export service are inherited across a

fork callable service.

 3. The caller is responsible for freeing the vnode token that is returned by the

v_export service, by calling the v_rel() service when it is no longer needed.

 4. The caller must be registered as a server of type file exporter.

Refer to “DFS-style file exporters” on page 255 for more information on file

exporters.

 5. The v_export service is used to gain access to the file system for the server,

and is similar to v_rpn() in this respect.

V_export(), though, also activates the server’s control over local access

through use of the exporter exit that is specified on v_reg(). V_export() acts

against a whole mounted file system, while v_rpn() acts against the files

underneath arbitrary directories.

 6. The file system is quiesced before it is exported or unexported, and new

requests against the file system are suspended while it is being quiesced. If

there is a lot of activity against this file system, the v_export request may take

some time to complete, and may cause noticeable pauses for the users.

 7. The mount point pathname is not returned in the Mnte structure that is

returned by v_export.

 8. On a call to unexport a file system, the VFS_token, Vnode_token, Mnte, Attr,

and Vol_Handle parameters are not significant, though they are syntactically

required for the call. The Mnte_length and Attr_length fields may be specified

as 0, in this case.

 9. The exporter exit is called during an unexport to notify it about this event.

10. When a file system is shared within a sysplex, it can only be exported from the

sysplex server for that file system. Once a file system has been exported at

the file system’s sysplex server it cannot be moved within the sysplex until it is

unexported. Attempts to v_export a sysplex client file system are rejected with

v_export (BPX1VEX, BPX4VEX)

Chapter 5. VFS callable services application programming interface 277

EINVAL/JrCantExpClient, and attempts to chmount(move) an already exported

file system are rejected with EINVAL/JRIsExported.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

Characteristics and restrictions

A process must be registered as a file exporter before the v_export service is

permitted; see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server”

on page 333.

v_export (BPX1VEX, BPX4VEX)

278 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_fstatfs (BPX1VSF, BPX4VSF) — Return file system status

Function

The v_fstatfs service returns file system status for the file system that contains the

file or directory that is represented by the supplied Vnode_token parameter.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VSF): 31-bit

AMODE (BPX4VSF): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VSF with the same parameters.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents a file

or directory that is contained in the file system for which status is being

requested.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

FsAttr_length

Supplied parameter

Type: Integer

CALL BPX1VSF,(Vnode_token,

 OSS,

 FsAttr_length,

 FsAttr,

 Return_value,

 Return_code,

 Reason_code)

v_fstatfs (BPX1VSF, BPX4VSF)

Chapter 5. VFS callable services application programming interface 279

Length: Fullword

The name of a fullword that contains the length of the area that is passed in the

FsAttr parameter. To determine the value of FsAttr_length, use the BPXYSSTF

macro (see “BPXYSSTF — Map the response structure for file system status”

on page 471).

FsAttr

Returned parameter

Type: Structure

Length: Specified by the FsAttr_length parameter

The name of an area, of length FsAttr_length, in which the v_fstatfs service

returns file system status information. This area is mapped by the BPXYSSTF

macro (see “BPXYSSTF — Map the response structure for file system status”

on page 471).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_fstatfs service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_fstatfs service stores the return code.

The v_fstatfs service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_fstatfs service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, a supplied area was

too small. The following reason codes can

accompany the return code: JRSmallFsAttr ,

JRVTokenFreed, JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_fstatfs service stores the reason code.

The v_fstatfs service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. The supplied FsAttr structure must be at least SSTF#MINLEN (from the

BPXYSSTF macro) bytes in length. The length of the structure is

SSTF#LENGTH.

v_fstatfs (BPX1VSF, BPX4VSF)

280 z/OS V1R7.0 UNIX System Services File System Interface Reference

2. The input FsAttr structure length may not match the length that is supported by

the file system. The file system returns the size that represents the amount of

valid data in SSTFLEN.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

Characteristics and restrictions

A process must be registered as a server before the v_fstatfs service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VSF, BPX4VSF (v_fstatfs)

example” on page 480.

v_fstatfs (BPX1VSF, BPX4VSF)

Chapter 5. VFS callable services application programming interface 281

v_get (BPX1VGT, BPX4VGT) — Convert an FID to a vnode Token

Function

The v_get service returns a vnode token for the file or directory that is represented

by the input FID within the mounted file system that is represented by the input VFS

token.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VGT): 31-bit

AMODE (BPX4VGT): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VGT with the same parameters.

Parameters

VFS_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains the VFS token for the mounted file

system that contains the file or directory that is specified by the FID parameter.

This token is obtained from the v_rpn callable service.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

FID

Supplied parameter

CALL BPX1VGT,(VFS_token,

 OSS,

 FID,

 Vnode_token,

 Return_value,

 Return_code,

 Reason_code)

v_get (BPX1VGT, BPX4VGT)

282 z/OS V1R7.0 UNIX System Services File System Interface Reference

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains the file identifier of the file or directory

for which a vnode token is to be returned. The FID for a file is contained in the

attribute structure for the file in the AttrFid field; the ATTR structure describes

the attribute structure.

Vnode_token

Returned parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area in which the v_get service returns a vnode token of

the file or directory that is supplied in the FID parameter. The token is used to

identify the file or directory to other callable services.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_get service returns 0 if the request

completes successfully (the file or directory exists), or −1 if the request is not

successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_get service stores the return code. The

v_get service returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of possible return

code values. The v_get service can return one of the following values in the

Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, the VFS token

parameter is obsolete.The following reason codes

can accompany the return code: JRStaleVFSTok,

JRInvalidOSS.

EMFILE The maximum number of vnode tokens have been

created.

ENFILE An error occurred obtaining storage for a vnode

token.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_get service stores the reason code. The

v_get service returns Reason_code only if Return_value is −1. Reason_code

further qualifies the Return_code value. See z/OS UNIX System Services

Messages and Codes for the reason codes.

v_get (BPX1VGT, BPX4VGT)

Chapter 5. VFS callable services application programming interface 283

Usage notes

1. The FID (file identifier) uniquely identifies a file in a particular mounted file

system. For files associated with a physical DASD resource, the FID validly

persists across mounting and unmounting of the file system, as well as z/OS

UNIX re-IPLS. This distinguishes the FID from the vnode token, which relates to

a file in active use, and whose validity persists only until the token is released

via the v_rel callable service. Note that automount-managed directories are

virtual, and the FID is unique only as long as the directory is being referenced.

A server application uses v_get to convert a FID to a vnode token when it is

preparing to use a file, because the Vnode token identifies the file to the other

VFS callable services.

2. The FID for a file is returned in the ATTR structure (see “BPXYATTR — Map file

attributes for v_ system calls” on page 445), by such services as v_rpn and

v_lookup.

3. vnode tokens that are returned by the v_get service are not inherited across a

fork callable service.

4. The caller is responsible for freeing vnode tokens that are returned by the v_get

service by calling to the v_rel service when they are no longer needed.

Related services

v “v_create (BPX1VCR, BPX4VCR) — Create a file” on page 270

v “v_getattr (BPX1VGA, BPX4VGA) — Get the attributes of a file” on page 285

v “v_lookup (BPX1VLK, BPX4VLK) — Look up a file or directory” on page 303

v “v_mkdir (BPX1VMK, BPX4VMK) — Create a directory” on page 307

v “v_rdwr (BPX1VRW, BPX4VRW) — Read from and write to a file” on page 322

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

v “v_rpn (BPX1VRP, BPX4VRP)) — Resolve a pathname” on page 350

v “v_setattr (BPX1VSA, BPX4VSA) — Set the attributes of a file” on page 354

Characteristics and restrictions

A process must be registered as a server before the v_get service is permitted; see

“v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333.

Examples

For an example using this callable service, see “BPX1VGT, BPX4VGT (v_get)

example” on page 481.

v_get (BPX1VGT, BPX4VGT)

284 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_getattr (BPX1VGA, BPX4VGA) — Get the attributes of a file

Function

The v_getattr service gets the attributes of the file that is represented by

Vnode_token.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VGA): 31-bit

AMODE (BPX4VGA): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VGA with the same parameters.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

file.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Attr_length

Supplied parameter

Type: Integer

Length: Fullword

CALL BPX1VGA,(Vnode_token,

 OSS,

 Attr_length,

 Attr,

 Return_value,

 Return_code,

 Reason_code)

v_getattr (BPX1VGA, BPX4VGA)

Chapter 5. VFS callable services application programming interface 285

The name of a fullword that contains the length of Attr. To determine the value

of Attr_length, use the BPXYATTR macro (see “BPXYATTR — Map file

attributes for v_ system calls” on page 445).

Attr

Returned parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area, of length Attr_length, in which the v_getattr service

returns the file attribute structure for the file that is specified by the vnode token.

This area is mapped by the BPXYATTR macro (see “BPXYATTR — Map file

attributes for v_ system calls” on page 445).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_getattr service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_getattr service stores the return code.

The v_getattr service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_getattr service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, a supplied area was

too small. The following reason codes can

accompany the return code: JRSmallAttr,

JRVTokenFreed, JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_getattr service stores the reason code.

The v_getattr service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. All time fields in the Attr area are in POSIX format.

2. The setting of the AttrLP64times bit in the BPXYATT structure, and not the

AMODE of the caller, determines whether 4-byte or 8-byte time fields are used.

v_getattr (BPX1VGA, BPX4VGA)

286 z/OS V1R7.0 UNIX System Services File System Interface Reference

3. The File Mode field in the Attr area is mapped by the BPXYMODE macro (see

“BPXYMODE — Map the mode constants of the file services” on page 466). For

information on the values for file type, see “BPXYFTYP — File type definitions”

on page 451.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

Characteristics and restrictions

A process must be registered as a server before the v_getattr service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VGA, BPX4VGA (v_getattr)

example” on page 482.

v_getattr (BPX1VGA, BPX4VGA)

Chapter 5. VFS callable services application programming interface 287

v_link (BPX1VLN, BPX4VLN) — Create a link to a file

Function

The v_link service creates a link (Link_name) to the file that is specified by

File_vnode_token in the directory that is specified by Directory_vnode_token. The

link is a new name that identifies an existing file. The new name does not replace

the old one, but provides an additional way to refer to the file. To rename an

existing file, see “v_rename (BPX1VRN, BPX4VRN) — Rename a file or directory”

on page 343.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VLN): 31-bit

AMODE (BPX4VLN): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VLN with the same parameters.

Parameters

File_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the file

to which a link is to be established.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

CALL BPX1VLN,(File_vnode_token,

 OSS,

 Link_name_length,

 Link_name,

 Directory_vnode_token,

 Return_value,

 Return_code,

 Reason_code)

v_link (BPX1VLN, BPX4VLN)

288 z/OS V1R7.0 UNIX System Services File System Interface Reference

Link_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Link_name. The name can

be up to 255 bytes long.

Link_name

Supplied parameter

Type: Character string

Length: Specified by Link_name_length parameter

The name of an area, of length Link_name_length, that contains the name by

which the file is to be known. It must not contain null characters (X'00').

Directory_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory from which the v_link service is to create the link that is supplied in the

Link_name parameter.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_link service returns 0 if the request

completes successfully, or −1 if the request is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_link service stores the return code. The

v_link service returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of possible return

code values. The v_link service can return one of the following values in the

Return_code parameter:

 Return_code Explanation

EACCES The process did not have appropriate permissions

to create the link. Possible reasons include:

v The process had no write permission for the

directory that is intended to contain the link.

v The process had no permission to access the file

that is specified by File_vnode_token.

EEXIST A file, directory, or symbolic link named Link_name

already exists.

EINVAL Parameter error; for example, one of the vnode

tokens is stale. The following reason codes can

accompany the return code: JRVTokenFreed,

JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS, JRNoName,

JRNullInPath.

v_link (BPX1VLN, BPX4VLN)

Chapter 5. VFS callable services application programming interface 289

Return_code Explanation

EMLINK The file that is specified by File_vnode_token

already has its maximum number of links. The

maximum number is LINK_MAX. The value of

LINK_MAX can be determined through pathconf

(BPX1PCF) or fpathconf (BPX1FPC).

ENAMETOOLONG Link_name_length exceeds 255 characters.

ENOSPC The directory that is intended to contain the link

cannot be extended to contain another entry.

ENOTDIR Directory_vnode_token does not specify a directory.

The following reason code can accompany the

return code: JRTokNotDir.

EPERM The operation is not permitted. The caller of the

service is not registered as a server; or the

File_vnode_token specifies a directory. The

following reason codes can accompany the return

code: JRNotRegisteredServer, JRTokDir.

EROFS Creating the link would require writing on a

read-only file system. The following reason code

can accompany the return code: JRLnkROFileSet.

EXDEV The file that is specified by File_vnode_token and

Directory_vnode_token are on different file systems.

The following reason code can accompany the

return code: JRLnkAcrossFileSets.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_link service stores the reason code. The

v_link service returns Reason_code only if Return_value is −1. Reason_code

further qualifies the Return_code value. See z/OS UNIX System Services

Messages and Codes for the reason codes.

Usage notes

1. BPX1VLN creates a link named Link_name to an existing file that is specified by

File_vnode_name. This provides an alternate pathname for the existing file; the

file may be accessed by the old name or the new name. The link may be stored

under the same directory as the original file, or under a different directory on the

same file system.

2. If the link is created successfully, the service routine increments the link count of

the file. The link count shows how many links to a file exist. (If the link is not

created successfully, the link count is not incremented.)

3. Links are not allowed to directories.

4. If the link is created successfully, the change time of the linked-to file is

updated, as are the change and modification times of the directory that contains

Link_name (that is, the directory that holds the link).

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

v “v_remove (BPX1VRM, BPX4VRM) — Remove a link to a file” on page 339

v “v_rename (BPX1VRN, BPX4VRN) — Rename a file or directory” on page 343

v_link (BPX1VLN, BPX4VLN)

290 z/OS V1R7.0 UNIX System Services File System Interface Reference

Characteristics and restrictions

A process must be registered as a server before the v_link service is permitted, See

“v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333.

Examples

For an example using this callable service, see “BPX1VLN, BPX4VLN (v_link)

example” on page 483.

v_link (BPX1VLN, BPX4VLN)

Chapter 5. VFS callable services application programming interface 291

v_lockctl (BPX1VLO, BPX4VLO) — Lock a file

Function

The v_lockctl service controls advisory byte-range locks on a file.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VLO): 31-bit

AMODE (BPX4VLO): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VLO with the same parameters.

Parameters

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Command

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains one of the integer values that is mapped

in the BPXYVLOK macro and indicates the action that is to be performed. For

the list of commands, see “BPXYVLOK — Map the interface block for v_lockctl”

on page 474.

Vlock_length

Supplied parameter

Type: Integer

CALL BPX1VLO,(OSS,

 Command,

 Vlock_length,

 Vlock,

 Return_value,

 Return_code,

 Reason_code)

v_lockctl (BPX1VLO, BPX4VLO)

292 z/OS V1R7.0 UNIX System Services File System Interface Reference

Length: Fullword

The name of a fullword that contains the length of Vlock. To determine the

value of Vlock_length, use the BPXYVLOK macro (see “BPXYVLOK — Map the

interface block for v_lockctl” on page 474).

Vlock

Supplied and returned parameter

Type: Structure

Length: Specified by the Vlock_length parameter

The name of an area that contains the lock request information. This area is

mapped by the BPXYVLOK macro (see “BPXYVLOK — Map the interface block

for v_lockctl” on page 474).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_lockctl service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_lockctl service stores the return code.

The v_lockctl service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_lockctl service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EAGAIN The Lock command was requested, but the lock

conflicts with a lock on an overlapping part of the

file that is already set by another locker.

EDEADLK The Lockwait command was requested, but the

potential for deadlock was detected. The following

reason codes can accompany the return code:

JRBrlmDeadLockDetected, JRBrlmPromotePending,

JRBrlmAlreadyWaiting, JRBrlmUnlockWhileWait.

EINTR A LockWait request was interrupted by a signal.

EINVAL Parameter error. The following reason codes can

accompany the return code: JRBadEntryCode,

JRInvalidVlok, JRInvalidServerPid,

JRNoLockerToken, JRBrlmLockerNotRegistered,

JRBrlmBadLType, JRBrlmObjectMissing,

JRBrlmInvalidRange, JRBrlmBadL_Whence.

EPERM The operation is not permitted. The caller of the

service is not registered as a lock server.

ENOENT The LockCancel command was requested, but an

exactly matching lock request was not found on the

object’s waiting queue.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

v_lockctl (BPX1VLO, BPX4VLO)

Chapter 5. VFS callable services application programming interface 293

||
|
|

The name of a fullword in which the v_lockctl service stores the reason code.

The v_lockctl service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

 1. The v_lockctl service locks out other cooperating lockers from part of a file, so

that the locker can read or write to that part of the file without interference from

others.

Important note

All locks are advisory only. Client and local processes can use locks to

inform each other that they want to protect parts of a file, but locks do not

prevent I/O on the locked parts. A process that has appropriate

permissions on a file can perform whatever I/O it chooses, regardless of

the locks that are set. Therefore, file locking is only a convention, and it

works only when all processes respect the convention.

 2. Registering as a locker (Vlok#RegLocker): Each locker must be registered

before it issues any lock requests. On a Vlok#RegLocker command, the

following Vlock fields are provided by the caller:

VlokID The Vlok#ID (from the BPXYVLOK macro).

VlokLen The length of the Vlock structure.

VlokServerPID The process ID of the lock server. If 0 is

specified, the caller’s PID is used.

VlokClientPID A server-generated process ID that uniquely

identifies the client within this server PID.

Other fields in the Vlock area should be set to zeros.

The following Vlock field is returned to the caller:

VlokLockerTok A token to identify the locker on subsequent

lock requests.

 3. On a Vlok#Query, Vlok#Lock, Vlok#LockWait, or Vlok#Unlock command,

the following Vlock fields are provided by the caller:

VlokID The Vlok#ID (from the BPXYVLOK macro).

VlokLen The length of the Vlock structure.

VlokLockerTok The locker.

VlokClientTID The client’s thread ID.

VlokObjClass The file object class. The possible classes are

defined in the BPXYVLOK macro; see

“BPXYVLOK — Map the interface block for

v_lockctl” on page 474.

VlokObjID The file object uniquely within the class. For an

HFS file, VlokObjID contains the device

number and FID of the file.

VlokObjTok A token that was returned on the previous lock

v_lockctl (BPX1VLO, BPX4VLO)

294 z/OS V1R7.0 UNIX System Services File System Interface Reference

request for this object. This field is optional,

but will improve performance for multiple lock

requests.

VlokBrlk Lock information describing the byte-range.

This area is mapped by BPXYBRLK (see note

5). The following BPXYBRLK fields must be

provided:

 Command Required fields

Vlok#Query l_type, l_whence, l_start,

l_len

Vlok#Lock l_type, l_whence, l_start,

l_len

Vlok#LockWait l_type, l_whence, l_start,

l_len

Vlok#Unlock l_whence, l_start, l_len

VlokVnToken (Optional) The vnode token for a UNIX file

system object. The use of this optional

parameter can improve the performance of any

operation that specifies a file system object.

Additionally, for the Vlok#UnLoadLocks

function, this also indicates that share

reservations for the file are to be appended to

the unloaded byte range locks (see note 11 for

more information).

Other fields in the Vlock area should be set to zeros.

The following Vlock fields are returned to the caller:

VlokObjTok A token to identify the object on a subsequent

lock request.

VlokBrlk On Query, lock information that describes a

lock that would prevent the proposed lock from

being set.

 4. On a Vlok#Lock, Vlok#LockWait, and Vlok#LockAsy command, the caller

can pass an open token in the OSS by providing the following field:

OssOpenToken Contains an open token with which the byte

range lock should be associated

For open tokens other than those created with OPEN_NLM_SHR, the lock

owner becomes associated with the open token. Thus, when a v_close() is

issued using that open token, all byte range locks on this file that were

obtained by this lock owner will be released.

 5. Locking operations are controlled with a structure that is mapped by

BPXYBRLK. This structure is needed whether the request is for setting a lock,

releasing a lock, or querying a particular byte range for a lock. The following is

a description of the BPXYBRLK structure:

v The l_type field specifies the type of lock that is to be set or queried.

(l_type is not used on Unlock.) Valid values for l_type are as follows

Type Description

F_RDLCK A read lock. Specified as a halfword integer

v_lockctl (BPX1VLO, BPX4VLO)

Chapter 5. VFS callable services application programming interface 295

||
|
|
|
|
|
|
|
|

|
|

||
|

|
|
|
|

value of 1, this is also known as a shared

lock. This type of lock specifies that the

locker can read the locked part of the file,

and other lockers cannot write on that part

of the file in the meantime. A locker can

change a held write lock, or any part of it, to

a read lock, thereby making it available for

other lockers to read. Multiple lockers can

have read locks on the same part of a file

simultaneously.

F_WRLCK A write lock. Specified as a halfword integer

value of 2, this is also known as an

exclusive lock. This type of lock indicates

that the locker can write on the locked part

of the file, without interference from other

lockers. If one locker puts a write lock on

part of a file, no other locker can establish a

read lock or write lock on that same part of

the file. A locker cannot put a write lock on

part of a file if there is already a read lock

on an overlapping part of the file, unless

that locker is the only owner of that

overlapping read lock. In such a case, the

read lock on the overlapping section is

replaced by the write lock that is being

requested.

F_UNLCK Returned on a Query, when there are no

locks that would prevent the proposed lock

operation from completing successfully.

Specified as a halfword integer value of 3.

v The l_whence field specifies how the byte-range offset is to be found within

the file. The only valid value for l_whence is SEEK_SET, which stands for

the start of the file, and is specified as a halfword integer value of 0.

v The l_start field identifies the part of the file that is to be locked, unlocked,

or queried. The part of the file that is affected by the lock begins at this

offset from the start of the file. For example, if l_start is the value 10, a Lock

request attempts to set a lock beginning 10 bytes past the start of the file.

Note: Although you cannot request a byte range that begins or extends

beyond the beginning of the file, you can request a byte range that

starts or extends beyond the end of the file.

v The l_len field gives the size of the locked part of the file, in bytes. The

value that is specified for l_len may be negative. If l_len is positive, the area

that is affected begins at l_start and ends at l_start + l_len-1. If l_len is

negative, the area that is affected starts at l_start+l_len and ends at

l_start-1. If l_len is zero, the locked part of the file begins at the position that

is specified by l_whence and l_start, and extends to the end of the file.

v The l_pid field identifies the ClientProcessID of the locker that holds the

lock found on a Query request, if one was found.

 6. Obtaining locks (Vlok#Lock and Vlok#LockWait): Locks can be set by

specifying a Vlok#Lock as the Command parameter. If the lock cannot be

obtained, a return value of −1 is returned, along with an appropriate return

code and reason code.

v_lockctl (BPX1VLO, BPX4VLO)

296 z/OS V1R7.0 UNIX System Services File System Interface Reference

Locks can also be set by specifying Vlok#LockWait as the Command

parameter. If the lock cannot be obtained because another process has a lock

on all or part of the requested range, the LockWait request waits until the

specified range becomes free and the request can be completed.

If a signal interrupts a call to the v_lockctl service while it is waiting in a

LockWait operation, the function returns with a return value of −1, and a return

code of EINTR.

LockWait operations have the potential for encountering deadlocks. This

happens when locker A is waiting for locker B to unlock a region, and B is

waiting for A to unlock a different region. If the system detects that a LockWait

request might cause a deadlock, the v_lockctl service returns with a return

value of −1 and a return code of EDEADLK.

 7. Asynchronous locking:

v Obtaining an asynchronous lock (Vlok#LockAsy): The Vlok#LockAsy

command parameter is used to request an asynchronous lock. The lock

request is either satisfied immediately or is queued for asynchronous

completion. The v_lockctl call will not block. The caller should expect to

receive the asynchronous lock completion through the sigtimedwait() or

sigwaitinfo() interfaces. These provide an event queue for lock completions

based on queued signals and is the same as that used with asynchronous

I/O completions. The caller can specify the signal number and signal value

to pass back on the asynchronous completion.

The Vlock structure is set up just as it would be for the Vlok#LockWait

function with the addition of a caller-supplied Aiocb structure that specifies

the signal information and holds the results of the completed asynchronous

request. The new fields in the Vlock structure for this function are:

VlokAiocbLen Length of the Aiocb structure

VlokAiocb Address of the Aiocb structure

The Aiocb must remain valid for the life of an asynchronous request and its

use is similar to that for an aio_read call. The following Aiocb fields are

provided by the caller:

aio_sigevent.sigev_signo The signal number

aio_sigevent.sigev_value An application-specific data value to be

passed with the signal

aio_exitdata An application data area (not touched by the

system)

The rest of the Aiocb should be zeroed out.

The following Aiocb fields are returned to the caller:

aio_rv The return value

aio_rc The return code

aio_rsn The reason code

The Return_value from v_lockctl() indicates the outcome of the call, as

follows:

+1 The lock will be granted asynchronously.

 0 The lock was granted immediately.

–1 The lock request failed as indicated by the accompanying return code

and reason code.

When the Return_value from v_lockctl() is +1, the final result of the lock

request is determined when the completion signal is pulled from the signal

v_lockctl (BPX1VLO, BPX4VLO)

Chapter 5. VFS callable services application programming interface 297

|

|
|
|
|
|
|
|
|
|

|
|
|
|

||

||

|
|
|

||

||
|

||
|

|

|

||

||

||

|
|
||
||
||
|

|
|

queue using sigtimedwait() or sigwaitinfo(). At that point, the aio_rv field

will contain 0 if the lock was granted or –1 (with accompanying values in

aio_rc and aio_rsn) if the lock was not granted. Generally, a request will

only fail asynchronously if it is canceled.

When the Return_value from v_lockctl() is 0 or –1, the request has

immediately succeeded or failed, respectively, and no signal is sent.

As with any asynchronous operation, the request may complete before the

v_lockctl() call returns to the caller.

A lock owner may only have one outstanding lock request at a time on any

particular range. This includes pending asynchronous requests and blocked

synchronous requests. In other words, waiting locks for the same owner

cannot intersect. Similarly, unlock requests may not be issued for any range

that intersects with a pending lock request from the same lock owner.

v Canceling an asynchronous lock request (Vlok#LockCancel): To cancel a

specific, outstanding asynchronous lock request, call the v_lockctl service

with a command parameter of Vlok#LockCancel and a Vlock structure that

contains all the information from the original Vlok#LockAsy request: object,

owner, Brlk information, and Aiocb.

You must use the same Aiocb on both the original Vlok#LockAsy request

and theVlok#LockCancel request and the Aiocb must not have been

modified between the two calls. When the Vlok#LockAsy request returns

with a return value of 1, an asynchronous request token is also returned in

the Aiocb and that token must be present on any subsequent call to cancel

the lock request.

An asynchronous lock request can only be canceled if it is still waiting for

the lock to be granted. When a pending request is successfully canceled,

the Return_value from v_lockctl() will be 0 and a lock completion signal will

be sent with an aio_rc of ECANCELED. When an exact match for the

request is not found on the object’s waiting queue, the Return_value from

v_lockctl() will be –1 and the Return_code will be ENOENT.

There is a race condition between a pending lock being canceled and its

being granted, so there is always a chance that the call to cancel the lock

request will fail because the successful lock completion signal has already

been sent. Note, too, that at the time the v_lockctl call to cancel the lock

request returns to the caller, the completion signal (either for the lock being

granted or for its being canceled) may still be on the application’s signal

queue. Therefore, the application must handle the coordination between the

caller of the cancel request and the handler of the completion signal.

v Refer to note 16 for the effects of a purge request on asynchronous locks.

v Effects of changing file system ownership in a sysplex: If the ownership of a

file system is changed within a sysplex environment (for instance, by using

the chmount shell command), pending asynchronous locks will be lost. This

special situation is indicated by a lock failure of the original request with an

aio_rc of EAGAIN and a lower half-word value in aio_rsn of 0x0607 (the

value of the JrOwnerMoved reason code). The v_lockctl call must be issued

again to request the asynchronous lock from the new owner. At such time,

the lock may be immediately granted or it may again enter a pending state.

 8. Determining lock status (Vlok#Query): A process can determine locking

information about a file by using Vlok#Query as the Command parameter. The

VlokBrlk structure should describe a lock operation that the caller would like to

perform. When the v_lockctl service returns, the structure is modified to

describe the first lock found that would prevent the proposed lock operation

from completing successfully.

v_lockctl (BPX1VLO, BPX4VLO)

298 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

If a lock is found that would prevent the proposed lock from being set, the

Query request returns a modified structure whose l_whence value is always

SEEK_SET, whose l_start value gives the offset of the locked portion from the

beginning of the file, whose l_len value is set to the length of the locked

portion of the file, and whose l_pid value is set to the ClientProcessID of the

locker that is holding the lock. If there are no locks that would prevent the

proposed lock operation from completing successfully, the returned structure is

modified to have an l_type of F_UNLCK, but otherwise it remains unchanged.

 9. Multiple lock requests: A locker can have several locks on a file

simultaneously, but can have only one type of lock set on any given byte.

Therefore, if a locker sets a new lock on part of a file that it had previously

locked, the locker has only one lock on that part of the file, and the lock type is

the one that was given by the most recent locking operation.

10. Returning blocker information: A request to the v_lockctl service that cannot

be granted can return information about the lock that is blocking the request

from being granted. The blocking lock shares at least part of the range that

was requested and may be from a granted lock range or a waiting lock

request. The returned information is in the form of a BRLM_RangeLock

structure, defined in IGWLBINT for PL/X and in BPXYVFSI for C.

The caller requests the return of blocker information by specifying in

VlokBlockingLock the address of an area in primary storage where the output

BRLM_RangeLock may be placed. VlokBlkLockLen specifies the length of

this output area. The storage for the output area is assumed to be in the

caller’s key.

Blocker information can be returned in the following cases:

v A Vlok#Lock or Vlok#LockWait request fails with a return code of EAGAIN or

EDEADLK

v A Vlok#Query request finds a blocking lock

v A Vlok#LockAsy request returns with a Return_value of +1

The output BRLM_RangeLock area (or, at a minimum, the server PID in the

first word) should be zeroed out before the call to the v_lockctl service. If the

contents are changed upon completion of the call, then information about a

blocking lock was returned. Note that the blocking lock was blocking this

request when the v_lockctl call was issued but is subject to change at any

time.

11. Query all locks for an object (Vlok#UnLoadLocks): The Vlok#UnLoadLocks

request provides an interface to the BRLM UnloadLocks function and also

obtains the share reservations for file system objects.

The information is returned as a chain of BRLM_UnloadLocksList structures,

each of which contains control information and an array of (Object, Rangelock)

pairs, each of which describe one locked range or share reservation. The

storage for the chain of structures is obtained in the caller’s primary address

space, is in the caller’s key, and is owned by the caller’s TCB. Each structure

in the chain must be freed by the caller using the MVS storage release service.

The unloaded lock list segments may be of different lengths so the ull_length

field must be used when the storage is released. These structures are defined

in IGWLBINT for PL/X and in BPXYVFSI for C.

The following Vlock fields are provided by the caller:

VlokObject The class and ID of the object

VlokUllSubPool An MVS storage subpool number for the areas

to be obtained. For unauthorized callers, this

number must be between 1 and 127.

v_lockctl (BPX1VLO, BPX4VLO)

Chapter 5. VFS callable services application programming interface 299

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

||

||
|
|

VlokUllRetWaiters When set to 1, all locks are returned, including

waiting locks, pending asynchronous locks,

and held locks. When set to 0, only held locks

are returned. Waiting locks are identified by the

RlWaiting flag in the BRLM_Rangelock

structure.

VlokVnToken (Optional) A vnode token for the VlokObject.

Also indicates that the object’s share

reservations should be appended to the byte

range locks that are returned. This must be the

same file as identified by the VlokObject.

The following Vlock field is returned to the caller:

VlokUllOutListPtr The address of the first member of the output

chain of BRLM_UnloadLocksList structures, or

zero.

Zero or more BRLM_UnloadLocksList structures will be produced by BRLM.

For file system objects when a vnode token is supplied, the unloaded locks will

be followed by zero or more BRLM_UnloadLocksList structures for the share

reservations. Share reservations may be placed in the unused slots of the last

BRLM structure. The BRLM_UnloadLocksList structures may have varying

numbers of locks returned in their array section so the ull_count field must be

used to step through the arrays. The Return_value will contain the total number

of locks and share reservations that were returned.

For each byte range lock, the rl_access field will be set to the type of lock:

rl_shared, rl_excl, or rl_shr2excl.

For each share reservation, the rl_access field will be set to rl_openmodes.

The rl_openacc and rl_opendeny fields will be set to the current Shr_Access

and Shr_Deny modes, respectively, for that open. (Refer to “v_open

(BPX1VOP, BPX4VOP) — Open or create a file” on page 311 for more

information about these modes.)

12. Releasing locks (Vlok#Unlock): When an Vlok#Unlock request is made to

unlock a byte region of a file, all locks that are held by that locker within the

specified region are released. In other words, each byte that is specified on an

Unlock request is freed from any lock that is held against it by the requesting

locker.

13. Locks are not inherited by a child process that is created with the fork service.

14. Effects of close and process termination: All locks (those that are owned,

pending, or waiting) for a given lock owner on a specific file will be released if

any of the owner’s open tokens for that file are closed with a v_close call. This

includes any open token that was opened by this lock owner or one that was

opened by a different lock owner but was subsequently used by this lock

owner on a v_lockctl call. Owned locks are unlocked; pending and waiting

locks are canceled. (This does not apply to open tokens created with

OPEN_NLM_SHR.)

If the registered server process terminates, all locks that are associated with

this process are unlocked or canceled. Since the process is terminating, lock

completion signals will not be delivered.

15. If the lock server terminates, all locks are released.

16. Purging locks (Vlok#Purge): The Vlok#Purge command releases all locks on

all files that are held by a locker or a group of lockers. This is primarily a pass

v_lockctl (BPX1VLO, BPX4VLO)

300 z/OS V1R7.0 UNIX System Services File System Interface Reference

||
|
|
|
|
|

||
|
|
|
|

|

||
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|

through to BRLM. It will purge all types of byte range locks: held locks, waiting

locks, or pending asynchronous locks. It does not affect share reservations or

open tokens.

The purge interface is implemented using two bit masks that are logically

ANDed with the object ID and owner ID, respectively, of each lock before they

are compared with the passed arguments. The algorithm is as follows:

if ((PassedObject == (LockObject & PassedObjectMask))

 && (PassedOwner == (LockOwner & PassedOwnerMask)))

 { The lock will be purged. }

This purge function is enhanced and extended from the previously existing

v_lockctl purge function. The following Vlock fields are provided by the caller:

VlokObject The object’s 16-byte identifier

VlokServerPID The process ID of the lock server whose locks

are to be released.

VlokClientPID A server-generated process ID that uniquely

identifies the client whose locks are to be

released. If binary ones are specified, all locks

for all clients of the specified server are

released.

VlokClientTID The client’s thread ID for which locks are to be

released. If binary ones are specified, all locks

for the specified client and server are released.

VlokPgMasks Points to a pair of 16-byte bit masks for the

object and owner, respectively. These are

defined as VlokObjectMask and

VlokOwnerMask.

VlokPgMaskslen Specifies the length of the bit mask pair being

passed, which is 32

The three subfields of the lock owner ID (VlokServerPID, VlokClientPID,

VlokClientTID) are considered to be a single concatenated 16-byte field with

respect to the owner mask. Since VlokServerPID is automatically set to the

server’s PID by the LFS, the first four bytes of the owner mask will be set to all

ones so that the server may only purge locks that it has obtained.

Other fields in the Vlock area should be set to zeros.

v Purging locks held on an object by a server: The following Vlock fields are

provided by the caller:

VlokObject The 16-byte identifier of a specific object

VlokObjectMask All X'FF', for matches on just the specific

object

VlokLocker All zeroes

VlokClientTID All zeroes

VlokLockerMask All zeroes, for matches on any owner with

the same server PID

v Purging locks held by a client user: The following Vlock fields are provided

by the caller:

VlokObject Zero

VlokObjectMask All zeroes, for matches on every object

v_lockctl (BPX1VLO, BPX4VLO)

Chapter 5. VFS callable services application programming interface 301

|
|
|

|
|
|

|
|
|

|
|

||

||
|

||
|
|
|
|

||
|
|

||
|
|
|

||
|

|
|
|
|
|

|

|
|

||

||
|

||

||

||
|

|
|

||

||

VlokClientPID The appropriate client PID

VlokClientTID The appropriate client TID, TID subset

(padded with zeroes), or all zeroes

VlokLockerMask X'FF', left-justified for a length matching the

appropriate subset of the 16-byte owner ID,

and then padded with X'00'. For instance:

– 16 bytes of X'FF' for exactly one lock

owner

– 12 bytes of X'FF' for, perhaps, all

processes for a specific user at a specific

client

– 8 bytes of X'FF' for all client TIDs for a

given client PID

v Effects of purge on asynchronous locks: If a set of locks being purged

includes pending asynchronous locks, those lock requests will be canceled.

If a set of asynchronous lock requests are purged, the application will not be

able to immediately tell which pending requests have been canceled and

which had been granted and then were unlocked. When the call to purge

returns to the caller, the lock completion signals will have all been sent but

they may still be on the signal queue. The application can coordinate the

purge operation with the signal handler after the purge completes by calling

sigqueue() with a special signal number or value to flush the queue of

these lock completion signals. If only a single thread handles the signal

queue, then the appearance of this flush signal will indicate that all of the

successful and ECANCELED signals have arrived and have been

processed.

17. Each locker should be unregistered when it has finished issuing lock requests.

On a Vlok#UnregLocker command, the following Vlock field is provided by the

caller:

VlokID Vlok#ID (from the BPXYVLOK macro)

VlokLen The length of the Vlock structure

VlokLockerTok A token to identify the locker to unregister

Other fields in the Vlock area should be set to zeros.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

Characteristics and restrictions

A process must be registered as a lock server before the v_lockctl service is

permitted; see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server”

on page 333.

Examples

For an example using this callable service, see “BPX1VLO, BPX4VLO (v_lockctl)

example” on page 484.

v_lockctl (BPX1VLO, BPX4VLO)

302 z/OS V1R7.0 UNIX System Services File System Interface Reference

||

||
|

||
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

v_lookup (BPX1VLK, BPX4VLK) — Look up a file or directory

Function

The v_lookup service accepts a vnode token that represents a directory and a

name that identifies a file. The directory is searched for this file, and if it is found, a

vnode token for this file and its file attributes are returned. The file vnode token that

is returned must be supplied by the server on all subsequent VFS callable services

that are related to this file.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VLK): 31-bit

AMODE (BPX4VLK): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VLK with the same parameters.

Parameters

Directory_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory in which the v_lookup service searches for the file that is supplied in

the Name parameter.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

CALL BPX1VLK,(Directory_vnode_token,

 OSS,

 Name_length,

 Name,

 Attr_length,

 Attr,

 File_vnode_token,

 Return_value,

 Return_code,

 Reason_code)

v_lookup (BPX1VLK, BPX4VLK)

Chapter 5. VFS callable services application programming interface 303

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the filename that is to be

searched for. The name can be up to 255 bytes long.

Name

Supplied parameter

Type: Character string

Length: Specified by Name_length parameter

The name of an area, of length Name_length, that contains the filename to be

searched for. It must not contain null characters (X'00').

Attr_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area that is passed in the

Attr parameter. To determine the value of Attr_length, use the ATTR structure

(see “BPXYATTR — Map file attributes for v_ system calls” on page 445).

Attr

Returned parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area, of length Attr_length, in which the v_lookup service

returns the file attribute structure for the file that is supplied in the Name

parameter. This area is mapped by the ATTR structure (see “BPXYATTR —

Map file attributes for v_ system calls” on page 445).

 The file attributes information is returned only if the file is found.

File_vnode_token

Returned parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area in which the v_lookup service returns a vnode

token of the file that is supplied in the Name parameter.

 The token is returned only if the file is found.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_lookup service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

v_lookup (BPX1VLK, BPX4VLK)

304 z/OS V1R7.0 UNIX System Services File System Interface Reference

The name of a fullword in which the v_lookup service stores the return code.

The v_lookup service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_lookup service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, a supplied area was

too small. The following reason codes can

accompany the return code: JRSmallAttr,

JRNoName, JrNullInPath, JRVTokenFreed,

JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS.

EMFILE The maximum number of vnode tokens have been

created.

ENAMETOOLONG The name is longer than 255 characters.

ENFILE An error occurred while storage was being obtained

for a vnode token.

ENOENT Name was not found.

ENOTDIR The supplied token did not represent a directory.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_lookup service stores the reason code.

The v_lookup service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. Vnode tokens that are returned by the v_lookup service are not inherited across

a fork callable service.

2. The caller is responsible for freeing vnode tokens that are returned by the

v_lookup service, by calling to the v_rel service when they are no longer

needed.

3. Local mount points are not crossed unless the OssXmtpt bit is set in the input

OSS structure. When that bit is on and the name looked up turns out to be a

mount point directory, the root directory of the file system that is mounted there

is returned instead of the named directory. This is called “crossing down the

mount point tree”. When the specified name is “..” and the specified directory is

a local root, the parent directory of the underlying mount point is returned

instead of the parent of the specified directory. This is called “crossing up the

mount point tree”.

In these situations, the OssXmtpt bit is left on and the VFS_Token of the

crossed into file system is returned in the AttrCharSetID field of the returned

ATTR structure. If a mount point is not encountered, the OssXmtpt bit is turned

off.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

v_lookup (BPX1VLK, BPX4VLK)

Chapter 5. VFS callable services application programming interface 305

Characteristics and restrictions

A process must be registered as a server before the v_lookup service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VLK, BPX4VLK (v_lookup)

example” on page 485.

v_lookup (BPX1VLK, BPX4VLK)

306 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_mkdir (BPX1VMK, BPX4VMK) — Create a directory

Function

The v_mkdir service creates a new empty directory in the directory that is

represented by Directory_vnode_token. The input Attr is used to define the

attributes of the new directory. A token that represents the new directory is returned

in the New_directory_vnode_token.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VMK): 31-bit

AMODE (BPX4VMK): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VMK with the same parameters.

Parameters

Directory_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory in which the v_mkdir service creates the new directory that is named

in the Name parameter.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

CALL BPX1VMK,(Directory_vnode_token,

 OSS,

 Name_length,

 Name,

 Attr_length,

 Attr,

 New_directory_vnode_token,

 Return_value,

 Return_code,

 Reason_code)

v_mkdir (BPX1VMK, BPX4VMK)

Chapter 5. VFS callable services application programming interface 307

The name of an area that contains operating system specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the directory name that is to

be created. The name can be up to 255 bytes long. It must not contain null

characters (X'00').

Name

Supplied parameter

Type: Character string

Length: Specified by Name_length parameter

The name of an area, of length Name_length, that contains the directory name

that is to be created. It must not contain null characters (X'00').

Attr_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area that is passed in the

Attr parameter. To determine the value of Attr_length, use the ATTR structure

(see “BPXYATTR — Map file attributes for v_ system calls” on page 445).

Attr

Supplied and returned parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area, of length Attr_length, that is to be used by the v_mkdir

service to set the attributes of the directory that is to be created. The attributes

of the directory that is created are also returned in this area. This area is

mapped by the ATTR structure (see “BPXYATTR — Map file attributes for v_

system calls” on page 445).

New_directory_vnode_token

Returned parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area in which the v_mkdir service returns a vnode token

of the directory that is created.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_mkdir service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

v_mkdir (BPX1VMK, BPX4VMK)

308 z/OS V1R7.0 UNIX System Services File System Interface Reference

The name of a fullword in which the v_mkdir service stores the return code. The

v_mkdir service returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of possible return

code values. The v_mkdir service can return one of the following values in the

Return_code parameter:

 Return_code Explanation

EACCES The calling process does not have permission to

update the directory that was specified.

EEXIST The directory named already exists.

EFBIG The file size limit for the process is set to zero,

which means directories cannot be created.

EINVAL Parameter error; for example, a supplied area was

too small. The following reason codes can

accompany the return code: JRSmallAttr,

JRInvalidAttr, JrNoName, JRVTokenFreed,

JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS.

EMFILE The maximum number of vnode tokens have been

created.

ENAMETOOLONG The name is longer than 255 characters.

ENFILE An error occurred while storage was being obtained

for a vnode token.

ENOTDIR The supplied token did not represent a directory.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

EROFS Directory_vnode_token specifies a directory on a

read-only file system.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_mkdir service stores the reason code.

The v_mkdir service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. The following Attr fields are provided by the caller:

AttrID Contains Attr#ID (from the ATTR structure).

AttrLen Specifies the length of the Attr structure.

AttrMode Specifies directory mode permission bits. See

“BPXYMODE — Map the mode constants of the

file services” on page 466 for the mapping of

this field.

Other fields should be initialized to zero.

2. If the directory that is named in the Name parameter already exists, the v_mkdir

service returns a failing return code, and no New_directory_vnode_token is

returned.

3. Vnode tokens that are returned by the v_mkdir service are not inherited across

a fork callable service.

v_mkdir (BPX1VMK, BPX4VMK)

Chapter 5. VFS callable services application programming interface 309

4. The caller is responsible for freeing vnode tokens that are returned by the

v_mkdir service, by calling to the v_rel service when they are no longer needed.

5. If the file size limit for the process is set to zero, directories cannot be created

and directory creation fails with EFBIG.

6. The value set by umask() for the process does not affect the setting of the

mode permission bits.

7. The setting of the AttrLP64times bit in the BPXYATT structure, and not the

AMODE of the caller, determines whether 4-byte or 8-byte time fields are used.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

Characteristics and restrictions

A process must be registered as a server before the v_mkdir service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VMK, BPX4VMK (v_mkdir)

example” on page 486.

v_mkdir (BPX1VMK, BPX4VMK)

310 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_open (BPX1VOP, BPX4VOP) — Open or create a file

Function

The v_open service opens an existing file or creates and opens a new file. To open

an existing file, the file’s vnode token is passed. To create a new file, a directory

vnode token is passed along with the name of the file to be created in that

directory.

The v_open service can also be used to establish share reservations on the file. A

file is opened for a particular type of access (reading, writing, or both) and a share

reservation can be specified to prohibit any other conflicting access while the file is

open. A v_open will fail if an existing share reservation prohibits the desired access

or if the file is already open in an access mode that this v_open is trying to prohibit.

An open token is returned which represents the share reservations established by

the v_open call. The open token is used on subsequent v_rdwr and v_setattr calls

to show that they are being done within a share reservation owned by the caller

and with v_lockctl to associate byte range locks with a particular open.

The share reservations made here can be upgraded or downgraded with another

call to v_open. They are relinquished with v_close, which removes all state

information associated with the v_open.

A file vnode token is returned when a file is opened by name or a new file is

created. This token is used on subsequent VFS callable services that are related to

this file and the token is eventually released with the v_rel service.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VOP): 31-bit

AMODE (BPX4VOP): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

v_open (BPX1VOP, BPX4VOP)

Chapter 5. VFS callable services application programming interface 311

|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|||
||
||
||
||
||
||
||
||
|
|

Format

 AMODE 64 callers use BPX4VOP with the same parameters.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the file

being opened or the directory in which a new file is to be created.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating system specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Open_Parms_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Open_Parms parameter.

Open_Parms

Supplied parameter

Type: Structure

Length: Specified by Open_Parms_length parameter

The name of an area that contains additional parameters for this open request.

Refer to the usage notes for a description of these parameters. This area is

mapped by the BPXYVOPN macro (see “BPXYVOPN — Map the open

parameters structure for v_open” on page 476).

FileName_length

Supplied parameter

Type: Integer

Length: Fullword

CALL BPX1VOP,(Vnode_token,

 OSS,

 Open_Parms_length,

 Open_Parms,

 FileName_length,

 FileName,

 CreateParm_length,

 CreateParm,

 OutputAttr_length,

 OutputAttr,

 Return_value,

 Return_code,

 Reason_code)

v_open (BPX1VOP, BPX4VOP)

312 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
||
||

|
|

|
|
||
||

|
|
|

|
|
||
||

|

|
|
||
||

|
|
|
|

|
|
||
||

The name of a fullword that contains the length of the FileName parameter. The

name can be up to 255 bytes long.

FileName

Supplied parameter

Type: Character string

Length: Specified by FileName_length parameter

The name of an area (of length FileName_length) that contains the name of the

file to be created. The file name must not contain null characters (X'00').

CreateParm_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area that is passed in the

CreateParm parameter.

CreateParm

Supplied parameter

Type: Structure

Length: Specified by the CreateParm_length parameter

The name of an area whose content depends on the type of create request, as

follows:

v For OPEN_CREATE_EXCLUSIVE, an 8-byte creation verifier is passed.

v For OPEN_CREATE_GUARDED and OPEN_CREATE_UNCHECKED, an

attr structure is passed which contains the attributes to be assigned to the

new file. The set of attributes can include any valid, writable attribute for

regular files. Refer to “v_setattr (BPX1VSA, BPX4VSA) — Set the attributes

of a file” on page 354 for the format of this attr structure and for setting file

attributes.

Refer to the usage notes for more information on the three types of file creation.

OutputAttr_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area that is passed in the

OutputAttr parameter, or 0 if no output attributes are desired.

OutputAttr

Supplied and returned parameter

Type: Structure

Length: Specified by the OutputAttr_length parameter

The name of an optional area where the system will return the attributes of the

file to be opened. If no output attributes are desired, specify 0 for the preceding

OutputAttr_length parameter. See “BPXYATTR — Map file attributes for v_

system calls” on page 445 for a mapping of the file attributes structure.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service returns 0 if the request is

successful, or −1 if it is not successful.

v_open (BPX1VOP, BPX4VOP)

Chapter 5. VFS callable services application programming interface 313

|
|

|
|
||
||

|
|

|
|
||
||

|
|

|
|
||
||

|
|

|

|
|
|
|
|
|

|

|
|
||
||

|
|

|
|
||
||

|
|
|
|

|
|
||
||

|
|

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_open service stores the return code. The

v_open service returns Return_code only if the Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_open service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EBUSY The file is currently open in a way that conflicts with

the share reservation that is being requested. The

following reason codes can accompany the return

code:

JrAccessConflict The file is already open with

access that this open is trying to

deny.

JrShrConflict This open conflicts with a share

reservation that has denied the

intended access.

EEXIST The file to be created with the GUARDED or

EXCLUSIVE creation protocols already exists.

EINVAL Parameter error; for example, a supplied area was

too small or the Vnode_token is stale. The following

reason codes can accompany the return code:

JrUpgradeSet The access or share mode of an

OPEN_UPGRADE is not a

superset of the current value.

JrDowngradeSet

The access or share mode of an

OPEN_DOWNGRADE is not a

subset of the current value.

JrInvAccess The access mode is 0 or greater

than 3.

EOPNOTSUPP The socket or file is not a type that supports the

requested function. The following reason code can

accompany the return code:

JrNoShrsAtOwner

Share reservations are requested

but the file is owned by a system

that does not support shares.

ESTALE The open token is not (or is no longer) valid.

EACCES The user is not authorized either to create a file in

this directory or to open the specified existing file.

EROFS The define or open cannot be done on a read-only

file system.

EISDIR An open request is being attempted on a directory.

EFAULT A bad parameter address was specified.

EMFILE The maximum number of vnode tokens or open

tokens has been created. The following reason

codes can accompany the return code:

JRTokenMax The maximum number of vnode

tokens has been allocated for this

process.

JROpenTokMax The maximum number of open

tokens has been allocated for this

process.

v_open (BPX1VOP, BPX4VOP)

314 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
||
||

|
|
|
|
|

|||
||
|
|
|
||
|
|
||
|
|
||
|
||
|
|
||
|
|
|
|
|
|
||
|
||
|
|
|
|
|
|
||
||
|
||
|
||
||
||
|
|
||
|
|
||
|
|

Return_code Explanation

ENAMETOOLONG The name is longer than 255 characters.

ENFILE An error occurred in obtaining storage for a vnode

token.

ENOTDIR The supplied directory token does not represent a

directory.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_open service stores the reason code.

The v_open service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. An output open token returned by v_open is generally freed by calling v_close.

It is also freed if the vnode token with which it is associated is freed by a call to

v_rel or if the process terminates.

2. The v_close service releases the share reservations made by this and

subsequent calls to v_open with this open token. It also releases any byte range

locks associated with this open token by v_lockctl.

3. An output vnode token returned by v_open is generally freed by calling v_rel. It

is also freed if the process terminates.

4. Vnode tokens and open tokens returned by the v_open service are not inherited

across a call to the fork service.

5. All calls to v_open that refer to an existing file may be rejected if the specified

access intent or share reservations conflict with the current state of existing

opens on that file. See the descriptions of the Shr_Access and Shr_Deny

parameters in note 7 for more information.

6. The total number of open tokens that a process can acquire is limited by the

MaxVnTok value that is established when the server registers with v_reg. The

limit applies separately to the number of vnode tokens and the number of open

tokens, not to the sum of the two.

7. The Open_Parms structure contains the following additional parameters:

v Open_type — specifies the type of open being requested. All of the following

open types may establish share reservations on the file.

 OPEN_FILE — Open an existing file. The Vnode_token parameter

specifies the file to open.

 OPEN_CREATE_UNCHECKED — Create a new file with the unchecked

create protocol. The Vnode_token parameter specifies a directory and the

FileName parameter specifies the name of the file to create in that

directory.

 OPEN_CREATE_GUARDED — Create a new file with the guarded create

protocol. The Vnode_token parameter specifies a directory and the

FileName parameter specifies the name of the file to create in that

directory.

v_open (BPX1VOP, BPX4VOP)

Chapter 5. VFS callable services application programming interface 315

||
||
||
|
||
|
||
|
|

|
|
||
||

|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|

OPEN_CREATE_EXCLUSIVE — Create a new file with the exclusive

create protocol. The Vnode_token parameter specifies a directory and the

FileName parameter specifies the name of the file to create in that

directory.

 OPEN_NLM_SHR — Only establish share reservations on a file. The

Vnode_token parameter specifies the file. This open type differs from the

preceding ones in the following ways:

- The file is not actually opened to the PFS that manages the file.

Normal access checking is still performed for the specified Shr_Access

mode. However, because the file is not open to the PFS, file data is not

protected from deletion if the file is removed.

- Byte range locks are not associated with NLM_SHR open tokens and,

thus, are not released by a v_close call for this open token. To

implement an NLM unshare, call v_close with the open token that was

returned by this call to v_open.

- The share reservations that are established here are only advisory with

regard to any read and write operations that are performed without an

open token. See “v_rdwr (BPX1VRW, BPX4VRW) — Read from and

write to a file” on page 322 for details.

 OPEN_UPGRADE — Upgrade the access intent and share reservations

that are associated with a prior open operation. The Vnode_token

parameter specifies the file that was opened and the Open_token

parameter contains the token that was returned by that open. The

Shr_Access and Shr_Deny parameters contain the new settings to be

associated with this open token. The new settings consist of the results of

applying the upgrade settings to the current settings and, thus, must form

a superset of the settings currently in effect for this open token.

 OPEN_DOWNGRADE — Downgrade the access intent and share

reservations that are associated with a prior open operation. The

Vnode_token parameter specifies the file that was opened and the

Open_token parameter contains the open token that was returned by that

open. The Shr_Access and Shr_Deny parameters contain the new

settings to be associated with this open token. The new settings consist of

the results of applying the downgrade settings to the current settings and,

thus, must form a subset of the settings currently in effect for this open

token.

v Open_Owner — specifies a structure that contains the (server PID, client

PID, thread ID) triplet that identifies the individual owner of the share

reservations established here. This structure is mapped by VlokOwner in the

BPXYVLOK macro and by the LOCKOWNER structure in the BPXYVFSI C

header.

Note: The first word is reserved and is set by the system to the server’s PID.

v Shr_Access — specifies the access intent for this open request, as follows:

 ACC_READ — Access intent is read

 ACC_WRITE — Access intent is write

 ACC_BOTH — Access intent is read and write

This v_open will be rejected with return code EBUSY, reason code

JrShrConflict, if the access intent conflicts with an existing share reservation.

A value is required for this parameter (must not be zero).

v Shr_Deny — specifies the share reservations for this open request. Share

reservations specify the type of access intent that will be prohibited on

subsequent open or v_open attempts for this file while this open is in effect.

v_open (BPX1VOP, BPX4VOP)

316 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|
|
|

|
|
|

This will also inhibit conflicting read and write operations that are performed

without an open token. The following share reservations are valid:

 DENY_NONE — No access is denied.

 DENY_READ — Read access is denied. Attempts to open this file for

read will be rejected.

 DENY_WRITE — Write access is denied. Attempts to open this file for

write will be rejected.

 DENY_BOTH — Read and write access is denied. Any attempts to open

this file will be rejected.

This v_open will be rejected with return code EBUSY, reason code

JrShrConflict, if the file is already open for an access intent that this v_open

is trying to deny. Share reservations that attempt to deny reading or writing

for files in a read-only file system will be accepted but will not be enforced.

Note: A file system may not be remounted from read-write mode to read-only

mode or vice-versa while there are active share reservations on any

file in that file system.

v Open_token — specifies an 8-byte token that identifies a particular open

instance.

– For OPEN_UPGRADE and OPEN_DOWNGRADE open types, the open

token of a prior v_open call is passed by the caller.

– For all other open types, if the call is successful, the v_open service

returns an open token that represents this open on subsequent calls to

VFS callable services, in particular v_rdwr and v_lockctl.

The open token is put into the OSS of v_rdwr and v_setattr (size change)

when those operations are performed within an open context. Read and write

operations that are performed within an open context do not need to be

validated against the share reservations of other opens. See “v_rdwr

(BPX1VRW, BPX4VRW) — Read from and write to a file” on page 322 for

details.

v Output_File_vnode_token — specifies an 8-byte token that identifies the

particular file that was just opened by name. The v_open service returns an

output vnode token for successful calls that specify one of the

OPEN_CREATE_xxxxx open types. This is the same token as that which

would be returned by the v_lookup and v_create services.

8. Several v_open parameters are optional or differ in value depending on the

setting of the Open_type parameter. 6 summarizes the parameters that vary by

open type.

 Table 6. Summary of v_open parameters that vary by open type

If Open_type is...

Vnode_token

specifies a...

FileName

required?

CreateParm

specifies a...

An

Open_token

is...

Output_File_vnode_token

returned?

OPEN_FILE file returned

OPEN_CREATE_UNCHECKED directory yes attr structure returned yes

OPEN_CREATE_GUARDED directory yes attr structure returned yes

OPEN_CREATE_EXCLUSIVE directory yes creation

verifier

returned yes

OPEN_NLM_SHR file returned

OPEN_UPGRADE file supplied

OPEN_DOWNGRADE file supplied

v_open (BPX1VOP, BPX4VOP)

Chapter 5. VFS callable services application programming interface 317

|
|

|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

||

|
|
|
|
|
|
|

|
|
|
|
|

||||||

||||||

||||||

||||
|
||

||||||

||||||

||||||
|

9. There are three creation protocols available, as follows:

a. OPEN_CREATE_UNCHECKED — indicates that the file should be created

if a file by that name does not already exist or if encountering an existing

regular file by that name is not to be considered an error. The v_open

service indicates a successful return value in either case. If the name is in

use by something other than a regular file, the v_open call fails with an

EEXIST return code.

For this type of create, the CreateParm parameter specifies the initial set of

attributes for the file. The set of attributes can include any valid, writable

attribute for regular files. Refer to “v_setattr (BPX1VSA, BPX4VSA) — Set

the attributes of a file” on page 354 for the format and protocols for setting

file attributes. When an unchecked create encounters an existing file, the

attributes specified by CreateParm are ignored, except that if a file size of

zero is specified, the existing file will be truncated.

b. OPEN_CREATE_GUARDED — indicates that v_open should fail with an

EEXIST return code if it encounters any existing file by the same name. If

no object with the same name exists, the request proceeds as described for

OPEN_CREATE_UNCHECKED.

c. OPEN_CREATE_EXCLUSIVE — indicates that the CreateParm parameter

contains an 8-byte creation verifier that will be used to ensure the exclusive

creation of the file. If the file does not exist, it will be created and the verifier

will be stored with the file. No attributes are provided on this call since the

PFS may use an attribute of the target object to temporarily store the

verifier. The verifier is reliable until the first time v_setattr is called or the file

is used in any other way. There is no way to tell if an existing attribute is

used (or which one is used) to temporarily store the verifier.

If the file exists, the v_open call fails with an EEXIST return code. The

server reacts to an EEXIST failure by calling v_lookup to fetch the attributes

of the existing file. If those attributes contain a creation verifier that matches

the creation verifier that was passed by the client, then the existing file must

have been created by a prior transmission of this create request, so this

request is deemed successful. Otherwise, the existing object is something

different and the client’s request fails.

Related services

v “v_close (BPX1VCL, BPX4VCL) — Close a file” on page 267

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

Characteristics and restrictions

A process must be registered as a server before the v_open service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

v_open (BPX1VOP, BPX4VOP)

318 z/OS V1R7.0 UNIX System Services File System Interface Reference

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

v_pathconf (BPX1VPC, BPX4VPC) — Get pathconf information for a

directory or file

Function

The v_pathconf service accepts a vnode token that represents a file or a directory

and returns the current values of options that are associated with that file or

directory in the output PCFG.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VPC): 31-bit

AMODE (BPX4VPC): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VPC with the same parameters.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory or file for which to obtain pathconf information.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro; see “BPXYOSS — Map operating

system specific information” on page 469.

CALL BPX1VPC,(Vnode_token,

 OSS,

 PCFG_length,

 PCFG,

 Attr_length,

 Attr,

 Return_value,

 Return_code,

 Reason_code)

v_pathconf (BPX1VPC, BPX4VPC)

Chapter 5. VFS callable services application programming interface 319

PCFG_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the PCFG parameter; see

“BPXYPCF — Map pathconf values” on page 470.

PCFG

Returned parameter

Type: Structure

Length: Specified by the PCFG_length parameter.

The name of an area in which the pathconf information is to be returned. This

area is mapped by the BPXYPCF macro.

Attr_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Attr parameter.

Attr

Returned parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area in which the attributes of the file or directory are to be

returned. This area is mapped by the BPXYATTR macro.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_pathconf service returns the length of the

output PCFG if the request is successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_pathconf service stores the return code.

The v_pathconf service returns Return_code only if Return_value is −1. The

v_pathconf service can return one of the following values in the Return_code

parameter:

 Return_code Explanation

EINVAL Parameter error; for example, a supplied area was too small. The

following reason codes can accompany the return code:

JRSmallAttr, JrInvalidAttr, JRBuffLenInvalid, JrVTokenFreed,

JrWrongPID, JRStaleVnodeTok, JRInvalidVnodeTok,

JRInvalidOSS

EPERM The operation is not permitted. The caller of the service is not

registered as a server.

Reason_code

Returned parameter

Type: Integer

v_pathconf (BPX1VPC, BPX4VPC)

320 z/OS V1R7.0 UNIX System Services File System Interface Reference

Length: Fullword

The name of a fullword in which the v_pathconf service stores the reason code.

The v_pathconf service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value.

Usage notes

The buffer contents that are returned by the v_pathconf service are mapped by the

BPXYPCF macro.

Related services

Characteristics and restrictions

A process must be registered as a server before the v_pathconf service is

permitted.

Examples

For an example using this callable services, see “BPX1VPC, BPX4VPC

(v_pathconf) example” on page 487.

v_pathconf (BPX1VPC, BPX4VPC)

Chapter 5. VFS callable services application programming interface 321

v_rdwr (BPX1VRW, BPX4VRW) — Read from and write to a file

Function

The v_rdwr service accepts a vnode token that represents a file and reads data

from or writes data to the file. The number of bytes that are read or written and the

file attributes are returned upon completion of the operation.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VRW): 31-bit

AMODE (BPX4VRW): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VRW with the same parameters. The FUIO may

contain a 64-bit address.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the file

that is to be read from or written into.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contain operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

CALL BPX1VRW,(Vnode_token,

 OSS,

 UIO,

 Attr_length,

 Attr,

 Return_value,

 Return_code,

 Reason_code)

v_rdwr (BPX1VRW, BPX4VRW)

322 z/OS V1R7.0 UNIX System Services File System Interface Reference

UIO

Supplied and returned parameter

Type: Structure

Length: Fuio#Len (from the BPXYFUIO macro)

The name of an area that contains the user input and output block. This area is

mapped by the BPXYFUIO macro (see “BPXYFUIO — Map file system user I/O

block” on page 452).

Attr_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area that is passed in the

Attr parameter. To determine the value of Attr_length, use the ATTR structure

(see “BPXYATTR — Map file attributes for v_ system calls” on page 445).

Attr

Returned parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area, of length Attr_length, in which the v_rdwr service returns

the file attribute structure for the file that is specified by the vnode token. This

area is mapped by the ATTR structure (see “BPXYATTR — Map file attributes

for v_ system calls” on page 445).

 The file attributes information is returned only if the read or write operation is

successful.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rdwr service returns the number of bytes

read or written if the request is successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rdwr service stores the return code. The

v_rdwr service returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of possible return

code values. The v_rdwr service can return one of the following values in the

Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, a supplied area was

too small. The following reason codes can

accompany the return code: JRSmallAttr,

JRVTokenFreed, JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS,

JRRwNotRegFile, JRInvalidFuio, JRBytes2RWZero.

EFBIG Writing to the specified file would exceed either the

file size limit for the process or the maximum file

size that is supported by the physical file system.

EACCES The caller does not have the requested (read or

write) access to the file.

v_rdwr (BPX1VRW, BPX4VRW)

Chapter 5. VFS callable services application programming interface 323

Return_code Explanation

EIO An I/O error occurred while reading or writing the

file.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

EMVSPFSPERM An internal error occurred in the PFS. Consult

Reason_code to determine the exact reason the

error occurred.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rdwr service stores the reason code. The

v_rdwr service returns a Reason_code only if Return_value is −1. Reason_code

further qualifies the Return_code value. See z/OS UNIX System Services

Messages and Codes for the reason codes.

Usage notes

1. The following UIO fields are provided to specify the details of the read or write

request:

FuioSync Requests that all data that is associated with

the file is to be transferred to the storage device

before completion of this write request.

FuioChkAcc Requests the PFS to perform required access

checking before performing the requested read

or write operation.

FuioBufferAddr Contains the address of a buffer that contains

the data that is to be read or written.

FuioBuff64Vaddr Contains the 64-bit virtual address of a buffer

that contains the data that is to be read or

written.

FuioIBytesRW Specifies the number of bytes to be read or

written.

FuioRWInd Specifies the operation requested; read or write.

FuioCursor Specifies the byte offset in the file where the

read or write operation is to begin.

FuioRealPage Specifies that the buffer is a real-storage page

and the DATOFF services of MVS must be

used to move the data.

FuioInternal Used internally by the LFS during a call; this

field must be zeroed out before each call.

2. The FuioAddr64 setting determines whether the pointer to the user buffer is a

64-bit pointer in FuioBuff64Vaddr or a 31-bit pointer in FuioBufferAddr.

3. An open token from a prior v_open may be passed in the OSS to indicate that

this read or write operation is being done within the open context of that token.

Consequently, the operation does not have to be verified against the share

reservations that may currently be in effect for this file. If an open token is

unavailable to pass on a call, there are three levels of share reservation

checking that can be requested:

v_rdwr (BPX1VRW, BPX4VRW)

324 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|
|
|

Oss#NoTokAdvChk Advisory checking. The operation will only be

validated against non-NLM share reservations.

This corresponds to a read or write from a

version 2 or 3 NFS client. These clients do not

issue an open request and the NLM share

reservations that they make are only advisory

with respect to the reads and writes of other

version 2 or 3 clients.

Oss#NoTokMandChk Mandatory checking. The operation will be

validated against all share reservations. This

corresponds to a version 4 NFS client read or

write with a stateid of 0 or a write with a stateid

of –1.

Oss#NoTokOverride No checking. The operation will be permitted

without any share reservation checking. This is

only allowed for read operations and

corresponds to a version 4 NFS client read with

a stateid of –1.

In general, version 4 share reservations are enforced against all clients; read

and write operations from version 4 clients cannot violate any share

reservations. Read and write operations from version 2 and 3 clients are

allowed to violate version 2 and 3 share reservations.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

Characteristics and restrictions

A process must be registered as a server before the v_rdwr service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VRW, BPX4VRW (v_rdwr)

example” on page 488.

v_rdwr (BPX1VRW, BPX4VRW)

Chapter 5. VFS callable services application programming interface 325

||
|
|
|
|
|
|
|

||
|
|
|
|

||
|
|
|
|

|
|
|
|

v_readdir (BPX1VRD, BPX4VRD) — Read entries from a directory

Function

The v_readdir service accepts a vnode token that represents a directory and returns

as many directory entries from this directory as will fit in the caller’s buffer.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VRD): 31-bit

AMODE (BPX4VRD): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VRD with the same parameters. The FUIO may

contain a 64-bit address.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory to read directory entries from.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

UIO

Supplied and returned parameter

Type: Structure

Length: Fuio#Len (from the BPXYFUIO macro)

CALL BPX1VRD,(Vnode_token,

 OSS,

 UIO,

 Return_value,

 Return_code,

 Reason_code)

v_readdir (BPX1VRD, BPX4VRD)

326 z/OS V1R7.0 UNIX System Services File System Interface Reference

The name of an area that contains the user input and output block. This area is

mapped by the BPXYFUIO macro (see “BPXYFUIO — Map file system user I/O

block” on page 452).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_readdir service returns the number of

directory entries that were returned if the request is successful, or −1 if it is not

successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_readdir service stores the return code.

The v_readdir service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_readdir service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EACCES The calling process does not have permission to

read a specified directory.

EINVAL Parameter error; for example, a supplied area was

too small. The following reason codes can

accompany the return code: JRInvalidFuio,

JrBytes2RWZero, JRVTokenFreed, JRWrongPID,

JRStaleVnodeTok, JRInvalidVnodeTok,

JRInvalidOSS

ENOTDIR The supplied token did not represent a directory.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_readdir service stores the reason code.

The v_readdir service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. For an overview of the process of reading from directories, see “Reading

directories” on page 257.

2. Two protocols are supported for reading through large directories with

successive calls:

v Cursor protocol. The cursor, or offset, that is returned in the UIO by the

v_readdir service contains file-system-specific information that locates the

next directory entry. The cursor and buffer must be preserved by the caller

from one v_readdir call to the next, and reading proceeds based on the

cursor.

v_readdir (BPX1VRD, BPX4VRD)

Chapter 5. VFS callable services application programming interface 327

v Index protocol. The index that is set in the UIO by the caller determines

which entry to start reading from. To read through the directory, the caller

starts at one and increments the index by the number of entries that were

returned on the previous call.

3. The following UIO fields are provided to specify the details of the read directory

request:

FuioID Contains Fuio#ID (from the BPXYFUIO macro).

FuioLen Contains the length of the UIO structure.

FuioChkAcc Requests the PFS to perform required access

checking before performing the requested

readdir operation.

FuioBufferAddr Contains the address of a buffer where the

directory entries are to be returned.

FuioBuff64Vaddr Contains the 64-bit virtual address of a buffer

where the directory entries are to be returned.

FuioIBytesRW Specifies the maximum number of bytes that

can be written to the output buffer.

FuioRDIndex Specifies the first directory entry that is to be

returned when the index protocol is used.

FuioCursor When the cursor protocol is used, this specifies

a value that was returned on the previous

v_readdir call and that indicates the next entry

to be read, or 0 on the first call.

FuioRddPlus Indicates that the request is for the ReaddirPlus

function. The attributes for each entry should be

included in the output.

4. The following UIO fields are returned by the v_readdir service:

FuioPSWKey Is set to the caller’s key.

FuioCursor Is set to the cursor value representing the

directory position. This value is used if the next

call uses the cursor protocol.

FuioCVerRet Indicates that the Cookie Verifier (FuioCVer) is

being returned.

FuioCVer When FuioCVerRet is on, this field is set to the

Cookie Verifier for the directory that is being

read. When a directory is being read with

multiple reads, you can use the FuioCVer that is

returned to compare each Cookie Verifier with

the last one. If the directory has been modified

between reads, you can reject the request

because the results will not be valid.

5. The buffer contents that are returned by the v_readdir service are mapped by

BPXYDIRE macro (see “BPXYDIRE — Map directory entries for readdir” on

page 449).

6. The FuioAddr64 setting determines whether the pointer to the user buffer is a

64-bit pointer in FuioBuff64Vaddr or a 31-bit pointer in FuioBufferAddr.

7. The OssXmtpt flag allows a v_readdir operation to cross mount points when the

FuioRddPlus flag is set. Normally, the attributes that are returned with each

v_readdir (BPX1VRD, BPX4VRD)

328 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|

name are for objects in the same file system as the directory being read.

However, some of the objects may be mount point directories. To have the

attributes of the mounted root directory returned (instead of the attributes of the

mount point), set the OssXmtpt flag in the input OSS structure. When the

directory being read is the root of a mounted file system (but not the system

root), the attributes for the “..” entry will be replaced with the attributes of the

parent of the underlying mount point. In such cases, the device number in the

Attrdev field in that entry’s attributes will differ from the device number of the

directory being read and the VFS_Token of the other file system will be returned

in the AttrCharSetID field.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

Characteristics and restrictions

A process must be registered as a server before the v_readdir service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VRD, BPX4VRD (v_readdir)

example” on page 489.

v_readdir (BPX1VRD, BPX4VRD)

Chapter 5. VFS callable services application programming interface 329

|
|
|
|
|
|
|
|
|
|

v_readlink (BPX1VRA, BPX4VRA) — Read a symbolic link

Function

The v_readlink service reads the symbolic link file that is represented by

Vnode_token, and returns the contents in the buffer that is described by UIO. The

symbolic link file contains the pathname or external name that was specified when

the symbolic link was defined (see “v_symlink (BPX1VSY, BPX4VSY) — Create a

symbolic link” on page 361).

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VRA): 31-bit

AMODE (BPX4VRA): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VRA with the same parameters. The FUIO may

contain a 64-bit address.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

symbolic link file to read.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

CALL BPX1VRA,(Vnode_token,

 OSS,

 UIO,

 Return_value,

 Return_code,

 Reason_code)

v_readlink (BPX1VRA, BPX4VRA)

330 z/OS V1R7.0 UNIX System Services File System Interface Reference

UIO

Supplied and returned parameter

Type: Structure

Length: Fuio#Len (from the BPXYFUIO macro)

The name of an area that contains the user input and output block. This area is

mapped by the BPXYFUIO macro (see “BPXYFUIO — Map file system user I/O

block” on page 452).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_readlink service returns the number of

bytes read into the buffer if the request is successful, or −1 if it is not

successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_readlink service stores the return code.

The v_readlink service returns Return_code only if Return_value is −1. See

z/OS UNIX System Services Messages and Codes for a complete list of

possible return code values. The v_readlink service can return one of the

following values in the Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, a supplied area was

too small. The following reason codes can

accompany the return code: JRInvalidFuio,

JrFileNotSymLink, JRVTokenFreed, JRWrongPID,

JRStaleVnodeTok, JRInvalidVnodeTok,

JRInvalidOSS.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_readlink service stores the reason code.

The v_readlink service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. The following UIO fields are provided by the caller:

FuioID Contains Fuio#ID (from the BPXYFUIO macro).

FuioLen Contains the length of the UIO structure.

FuioBufferAddr Contains the address of a buffer where the link

contents are to be returned.

FuioBuff64Vaddr Contains the 64-bit virtual address of a buffer

where the link contents are to be returned.

v_readlink (BPX1VRA, BPX4VRA)

Chapter 5. VFS callable services application programming interface 331

FuioIBytesRW Specifies the maximum number of bytes that

can be written to the output buffer.

2. The following UIO field is returned by the v_readlink service.:

FuioPSWKey Is set to the caller’s key.

3. If the buffer that is supplied to v_readlink is too small to contain the contents of

the symbolic link, the value is truncated to the length of the buffer

(FuioBytesRW). The length of the symbolic link can be determined from an

ATTR structure that is returned on a call to the VFS callable services API (that

is, to “v_getattr (BPX1VGA, BPX4VGA) — Get the attributes of a file” on page

285). The maximum length is 1023 bytes.

4. The FuioAddr64 setting determines whether the pointer to the user buffer is a

64-bit pointer in FuioBuff64Vaddr or a 31-bit pointer in FuioBufferAddr.

Related services

v “v_getattr (BPX1VGA, BPX4VGA) — Get the attributes of a file” on page 285

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_symlink (BPX1VSY, BPX4VSY) — Create a symbolic link” on page 361

Characteristics and restrictions

A process must be registered as a server before the v_readlink service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VRA, BPX4VRA (v_readlink)

example” on page 490.

v_readlink (BPX1VRA, BPX4VRA)

332 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_reg (BPX1VRG, BPX4VRG) — Register a process as a server

Function

The v_reg service registers a process as a server. A process must be registered

using this service before it may use any other VFS callable services API.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VRG): 31-bit

AMODE (BPX4VRG): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VRG with the same parameters.

Parameters

Nreg_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Nreg parameter list area.

Nreg

Supplied and returned parameter

Type: Structure

Length: Specified by the Nreg_length parameter

The name of an area that contains the registration parameters. The entries in

this area are mapped by BPXYNREG (see “BPXYNREG — Map interface block

to vnode registration” on page 467). The following registration parameters must

be supplied:

Parameter Description

ID Set to Nreg#ID.

Len Set to Nreg#Len.

Ver Set to Nreg#Version.

CALL BPX1VRG,(Nreg_length,

 Nreg,

 Return_value,

 Return_code,

 Reason_code)

v_reg (BPX1VRG, BPX4VRG)

Chapter 5. VFS callable services application programming interface 333

Type Set to server type:

 NRegSType#FILE — for a file server

 NRegSType#LOCK — for a lock server

 NRegSType#FEXP — for a file exporter

NameLen Set to the length of the supplied server name.

Name Up to 32 bytes of character string that is used as the name of

this server. This name appears in DISPLAY OMVS output.

If the process is to be registered as a server-type file exporter, the following

parameters must also be supplied:

ExitName

The name of the program that is to control local access to exported file

systems.

InitParm

A parameter that is to be passed to the ExitName program when it is

initialized.

Hotc Flag

An indication that the ExitName program should be invoked with a

pre-initialized C environment (HOTC).

The following registration parameters may be supplied:

No Wait Flag

An indication that server threads should not be suspended during a request

that is made to a file system that is quiesced, such as for an HSM backup.

The request will fail instead of waiting.

MaxVnTok

An upper bound on the number of vnode tokens and, separately, the

number of open tokens that the server is to be allowed to have active at

one time.

AllocDevno Flag

Requests that a file system device number, as in AttrDev, be allocated for

exclusive use by the server. This number will not be used by the LFS for

any mounted file system so the server can use this number as the device

number for a non-UNIX file system that it is exporting. On a successful

v_reg call, the device number is returned in the Devno field of the Nreg

structure.

If the process is responsible for posting threads that are waiting within a specific

PFS, the process can establish special recovery by specifying the PFS with:

PfsType

The name of the Physical File System that is dependent on this process for

osi_post. This is the name that was specified when the PFS was defined in

the BPXPRMxx parmlib member with either FILESYSTYPE TYPE() or

SUBFILESYSTYPE NAME().

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_reg service returns 0 if the request is

successful, or −1 if it is not successful.

v_reg (BPX1VRG, BPX4VRG)

334 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|

|
|
|
|
|
|
|

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_reg service stores the return code. The

v_reg service returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of possible return

code values. The v_reg service can return one of the following values in the

Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, the server name

length that was supplied in the registration

parameter list was too long; or the server type that

was supplied is not a recognized value. The

following reason codes can accompany this return

code: JRNameTooLong, JRInvalidNReg, and

JRInvalidRegType.

EPERM The operation is not permitted. The caller of the

service is not privileged; or the caller is already

registered.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_reg service stores the reason code. The

v_reg service returns Reason_code only if Return_value is −1. Reason_code

further qualifies the Return_code value. See z/OS UNIX System Services

Messages and Codes for the reason codes.

Usage notes

1. Registration as a server is not inherited across a fork.

2. The MaxVNTokens field in the registration parameter list is an input and output

parameter. If supplied by the caller, it indicates the value that should be used for

this server. If a value of 0 is supplied, or if the value that is supplied exceeds

the maximum allowed value, the maximum allowed value is used and returned.

3. The main difference between the file server and file exporter types is that file

exporters control all access, both local and remote, to the file systems that they

export.

Refer to “DFS-style file exporters” on page 255 for more information on file

exporters and the exit program.

4. If the exit program cannot be loaded, the Nreg abend code and abend reason

code fields are filled in with the corresponding values returned by the system

load service.

If the exit program fails, v_reg also fails, and the exit’s return and reason codes

are returned as the corresponding values from v_reg.

5. If the server’s address space is started before the z/OS UNIX address space, a

v_reg that is issued during initialization fails. To account for this, an Event

Notification Facility (ENF) signal is issued whenever z/OS UNIX is started.

During initialization, a server can set up an ENF Listen for this event and call

v_reg. If the v_reg call fails with EMVSNOTUP, the ENF signal is eventually

issued, and v_reg can be called again after the server’s ENF Listen exit is

v_reg (BPX1VRG, BPX4VRG)

Chapter 5. VFS callable services application programming interface 335

invoked. The ENF Qualifier Constant is defined in macro BPXYENFO. The MVS

ENF service is documented in z/OS MVS Programming: Assembler Services

Guide.

6. When a PFS is dependent on a separate address space calling osi_post to

wake up threads that are in osi_wait within that PFS, recovery can be

established to protect these threads from waiting forever if the separate address

space terminates abnormally.

To do this, the separate address space registers and specifies a PfsType name.

This creates a process, if one did not already exist. When the registered

process terminates, the system scans for and wakes up any users that are in

osi_wait from within the specified PFS. The PFS’s osi_wait call returns with a

return code of OSI_POSTERTRM if it is posted for this reason.

This recovery support is process-related. A process is usually the same as the

address space, but if the registering task is the only task to use z/OS UNIX

services, or if set_dub_default (BPX1SDD/BPX4SDD) has been called to make

each task a separate process, this recovery is invoked when the registering task

terminates.

If this recovery support is the only reason the server is registering, use the

server type for a file server.

7. There is no specific way to unregister. If necessary, the task can call mvsprocclp

(BPX1MPC/BPX4MPC) to terminate the process, which also unregisters the

server.

8. If z/OS UNIX terminates and restarts while the server address space is active,

mvsprocclp (BPX1MPC) must be called on each task that has used z/OS UNIX

services to remove its binding to the old instance of z/OS UNIX before V_reg

can be recalled to reregister as a server.

Characteristics and restrictions

In order to register, the caller must have appropriate privileges.

Examples

For an example using this callable service, see “BPX1VRG, BPX4VRG (v_reg)

example” on page 491.

v_reg (BPX1VRG, BPX4VRG)

336 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_rel (BPX1VRL, BPX4VRL) — Release a vnode token

Function

The v_rel service accepts a Vnode_token value that represents a file or a directory

and releases that token.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VRL): 31-bit

AMODE (BPX4VRL): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VRL with the same parameters.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that is to be released.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rel service returns 0 if the request is

successful, or −1 if it is not successful.

CALL BPX1VRL,(Vnode_token,

 OSS,

 Return_value,

 Return_code,

 Reason_code)

v_rel (BPX1VRL, BPX4VRL)

Chapter 5. VFS callable services application programming interface 337

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rel service stores the return code. The

v_rel service returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of possible return

code values. The v_rel service can return one of the following values in the

Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, Vnode_token has

already been released. The following reason codes

can accompany the return code: JRVTokenFreed,

JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rel service stores the reason code. The

v_rel service returns a Reason_code only if Return_value is −1. Reason_code

further qualifies the Return_code value. See z/OS UNIX System Services

Messages and Codes for the reason codes.

Usage notes

1. The vnode token is no longer valid and cannot be used for subsequent requests

after the v_rel service has successfully processed it.

2. All vnode tokens that are obtained from other operations must be released by

calling this service.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

Characteristics and restrictions

A process must be registered as a server before the v_rel service is permitted; see

“v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333.

Examples

For an example using this callable service, see “BPX1VRL, BPX4VRL (v_rel)

example” on page 492.

v_rel (BPX1VRL, BPX4VRL)

338 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_remove (BPX1VRM, BPX4VRM) — Remove a link to a file

Function

The v_remove service removes a link to a file.

The name of the link is specified as input, along with a Directory_vnode_token

value that identifies the directory that contains the name that is to be removed. The

name can identify a file, a link name to a file, or a symbolic link.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VRM): 31-bit

AMODE (BPX4VRM): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VRM with the same parameters.

Parameters

Directory_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory from which the v_remove service is to remove the entry that is

supplied in the Name parameter.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro, see “BPXYOSS — Map operating

system specific information” on page 469.

CALL BPX1VRM,(Directory_vnode_token,

 OSS,

 Name_length,

 Name,

 Return_value,

 Return_code,

 Reason_code)

v_remove (BPX1VRM, BPX4VRM)

Chapter 5. VFS callable services application programming interface 339

Name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Name. The name can be up

to 255 bytes long.

Name

Supplied parameter

Type: Character string

Length: Specified by Name_length parameter

The name of an area, of length Name_length, that contains the name that is to

be removed. It must not contain null characters (X'00').

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_remove service returns 0 if the request

completes successfully, or −1 if the request is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_remove service stores the return code.

The v_remove service returns Return_code only if Return_value is −1. See

z/OS UNIX System Services Messages and Codes for a complete list of

possible return code values. The v_remove service can return one of the

following values in the Return_code parameter:

 Return_code Explanation

EACCES The process did not have write permission for the

directory that contains the name that is to be

removed.

EAGAIN The name cannot be removed, because it is

temporarily unavailable. The following reason code

can accompany the return code: JRInvalidVnode.

EBUSY The file is open by a remote NFS client with a share

reservation that conflicts with the requested

operation.

EINVAL Parameter error; for example, the vnode token

parameter is stale. The following reason codes can

accompany the return code: JRVTokenFreed,

JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS, JRNoName,

JRNullInPath.

ENAMETOOLONG Name_length exceeds 255 characters.

ENOENT Name was not found.

ENOTDIR The file that was specified by

Directory_vnode_token is not a directory. The

following reason code can accompany the return

code: JRTokNotDir.

v_remove (BPX1VRM, BPX4VRM)

340 z/OS V1R7.0 UNIX System Services File System Interface Reference

||
|
|

Return_code Explanation

EPERM The operation is not permitted. The caller of the

service is not registered as a server; or Name

specifies a directory. The following reason codes

can accompany the return code:

JRNotRegisteredServer, JRNotForDir.

EROFS The name that is to be removed is on a read-only

file system. The following reason code can

accompany the return code: JRReadOnlyFS.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_remove service stores the reason code.

The v_remove service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. If the sticky bit is on in the parent directory, the file cannot be deleted.

2. If the name that is specified refers to a symbolic link, the symbolic link file that

is named by Name is deleted.

3. If the v_remove service request is successful and the link count becomes zero,

the file is deleted. The contents of the file are discarded, and the space it

occupied is freed for reuse. However, if another process (or more than one) has

the file open, or has a valid vnode token, when the last link is removed, the file

contents are not discarded until the last process closes the file or releases the

vnode token.

4. When the v_remove service is successful in removing a directory entry and

decrementing the link count, whether or not the link count becomes zero, it

returns control to the caller with Return_value set to 0. It updates the change

and modification times for the parent directory, and the change time for the file

itself (unless the file is deleted).

5. Directories cannot be removed using v_remove. To remove a directory, refer to

“v_rmdir (BPX1VRE, BPX4VRE) — Remove a directory” on page 347.

6. A file may not be removed if it is currently open by a remote NFS client with a

share reservation that would prevent the file from being opened for write

access.

Related services

v “v_link (BPX1VLN, BPX4VLN) — Create a link to a file” on page 288

v “v_lookup (BPX1VLK, BPX4VLK) — Look up a file or directory” on page 303

v “v_mkdir (BPX1VMK, BPX4VMK) — Create a directory” on page 307

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

v “v_remove (BPX1VRM, BPX4VRM) — Remove a link to a file” on page 339

v “v_rename (BPX1VRN, BPX4VRN) — Rename a file or directory” on page 343

v “v_rmdir (BPX1VRE, BPX4VRE) — Remove a directory” on page 347

v_remove (BPX1VRM, BPX4VRM)

Chapter 5. VFS callable services application programming interface 341

|
|
|

Characteristics and restrictions

A process must be registered as a server before the v_remove service is permitted.

See “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VRM, BPX4VRM (v_remove)

example” on page 493.

v_remove (BPX1VRM, BPX4VRM)

342 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_rename (BPX1VRN, BPX4VRN) — Rename a file or directory

Function

The v_rename service renames a file or a directory that is specified by the

Old_name parameter in the directory that is represented by

Old_directory_vnode_token to the name that is specified by the New_name

parameter in the directory that is represented by New_directory_vnode_token.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VRN): 31-bit

AMODE (BPX4VRN): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VRN with the same parameters.

Parameters

Old_directory_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory in which the file or directory that is to be renamed exists.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating system specific parameters. This

area is mapped by the BPXYOSS macro, see “BPXYOSS — Map operating

system specific information” on page 469.

CALL BPX1VRN,(Old_directory_vnode_token,

 OSS,

 Old_name_length,

 Old_name,

 New_directory_vnode_token,

 New_name_length,

 New_name,

 Return_value,

 Return_code,

 Reason_code)

v_rename (BPX1VRN, BPX4VRN)

Chapter 5. VFS callable services application programming interface 343

Old_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the file or directory name that

is to be renamed. The name can be up to 255 bytes long.

Old_name

Supplied parameter

Type: Character string

Length: Specified by Old_name_length parameter

The name of an area, of length Old_name_length, that contains the file or

directory name that is to be renamed. It must not contain null characters (X'00').

New_directory_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory in which the renamed file or directory is to exist.

New_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the file or directory name to

which the file or directory is to be renamed. The name can be up to 255 bytes

long.

New_name

Supplied parameter

Type: Character string

Length: Specified by New_name_length parameter

The name of an area, of length New_name_length, that contains the file or

directory name to which the file or directory is to be renamed. It must not

contain null characters (X'00').

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rename service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rename service stores the return code.

The v_rename service returns Return_code only if Return_value is −1. See

z/OS UNIX System Services Messages and Codes for a complete list of

possible return code values. The v_rename service can return one of the

following values in the Return_code parameter:

v_rename (BPX1VRN, BPX4VRN)

344 z/OS V1R7.0 UNIX System Services File System Interface Reference

Return_code Explanation

EACCES The calling process does not have permission to

write in a specified directory.

EAGAIN One of the files or directories was temporarily

unavailable. The following reason code can

accompany the return code: JRInvalidVnode.

EBUSY The name that was specified is in use as a mount

point or the file is open by a remote NFS client with

a share reservation that conflicts with the requested

operation. The following reason code can

accompany the return code: JRIsFSRoot.

EINVAL Parameter error—for example, attempting to rename

a file named “..” The following reason codes can

accompany the return code: JRDotorDotDot,

JrOldPartOfNew, JrNoName, JrNullInPath,

JRVTokenFreed, JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS.

EISDIR An attempt was made to rename something other

than a directory to a directory.

ENAMETOOLONG A name is longer than 255 characters.

ENOSPC The directory that is intended to contain New_name

cannot be extended.

ENOTDIR The supplied token did not represent a directory; or

an attempt was made to rename a directory to

something other than a directory.

ENOTEMPTY New_name specified an existing directory that was

not empty.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

EROFS The specified file system is read-only. The following

reason code can accompany the return code:

JRReadOnlyFS.

EXDEV An attempt was made to rename across file

systems.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rename service stores the reason code.

The v_rename service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. If the sticky bit is on in the parent directory, special ownership is required to

rename the file.

2. The v_rename service changes the name of a file or a directory from Old_name

to New_name. When renaming completes successfully, the change and

modification times for the parent directories of Old_name and New_name are

updated.

3. For renaming to succeed, the calling process needs write permission for the

directory that contains Old_name and the directory that contains New_name. If

Old_name and New_name are the names of directories, the caller does not

need write permission for the directories themselves.

v_rename (BPX1VRN, BPX4VRN)

Chapter 5. VFS callable services application programming interface 345

||
|
|
|
|

4. Renaming Files:

v If Old_name and New_name are links that refer to the same file, v_rename

returns successfully and does not perform any other action.

v If Old_name is the name of a file, New_name must also name a file, not a

directory. If New_name is an existing file, it is unlinked. Then the file that is

specified as Old_name is given New_name. The pathname New_name

always stays in existence; at the beginning of the operation, New_name

refers to its original file, and at the end, it refers to the file that used to be

Old_name.

v If Old_name is the name of a file that is currently open by a remote NFS

client with a share reservation that would prevent the file from being opened

for writing, the file cannot be renamed.

5. Renaming Directories:

If Old_name is the name of a directory, New_name must also name a directory,

not a file. If New_name is an existing directory, it must be empty, containing no

files or subdirectories. If empty, it is removed, as described in “v_remove

(BPX1VRM, BPX4VRM) — Remove a link to a file” on page 339.

New_name cannot be a directory under Old_name; that is, the old directory

cannot be part of the pathname prefix of the new one.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

Characteristics and restrictions

A process must be registered as a server before the v_rename service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VRN, BPX4VRN (v_rename)

example” on page 494.

v_rename (BPX1VRN, BPX4VRN)

346 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|

v_rmdir (BPX1VRE, BPX4VRE) — Remove a directory

Function

The v_rmdir service removes a directory. The directory must be empty.

Directory_name is specified as input, along with a Directory_vnode_token value that

identifies the directory that contains the directory that is to be removed.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VRE): 31-bit

AMODE (BPX4VRE): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VRE with the same parameters.

Parameters

Directory_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8 byte area that contains a vnode token that represents the

directory from which the v_rmdir service is to remove the directory that is

supplied in the Directory_name parameter.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

CALL BPX1VRE,(Directory_vnode_token,

 OSS,

 Directory_name_length,

 Directory_name,

 Return_value,

 Return_code,

 Reason_code)

v_rmdir (BPX1VRE, BPX4VRE)

Chapter 5. VFS callable services application programming interface 347

Directory_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Directory_name. The name

can be up to 255 bytes long.

Directory_name

Supplied parameter

Type: Character string

Length: Specified by Directory_name_length parameter

The name of an area, of length Directory_name_length, that contains the name

of the directory that is to be removed. It must not contain null characters (X'00').

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rmdir service returns 0 if the request

completes successfully, or −1 if the request is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rmdir service stores the return code. The

v_rmdir service returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of possible return

code values. The v_rmdir service can return one of the following values in the

Return_code parameter:

 Return_code Explanation

EACCES The process did not have write permission for the

directory that contains the directory that is to be

removed.

EBUSY The directory cannot be removed, because it is

being used as a mount point. The following reason

code can accompany the return code: JRIsFSRoot.

EAGAIN The directory cannot be removed, because it is

temporarily unavailable. The following reason code

can accompany the return code: JRInvalidVnode.

EINVAL Parameter error; for example, the Vnode_token

parameter is obsolete. The following reason codes

can accompany the return code: JRVTokenFreed,

JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS, JRDotOrDotDot,

JRNoName, JRNullInPath.

ENAMETOOLONG Directory_name_length exceeds 255 characters.

ENOENT The directory that was specified by Directory_name

was not found.

ENOTDIR The file that was specified by

Directory_vnode_token is not a directory; or the

name that was specified by Directory_name is not a

directory. The following reason codes can

accompany the return code: JRTokNotDir, JRNotDir.

ENOTEMPTY The directory contains files or subdirectories.

v_rmdir (BPX1VRE, BPX4VRE)

348 z/OS V1R7.0 UNIX System Services File System Interface Reference

Return_code Explanation

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

EROFS The directory that is to be removed is on a

read-only file system. The following reason code

can accompany the return code: JRReadOnlyFS.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rmdir service stores the reason code.

The v_rmdir service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. If the sticky bit is on in the parent directory, the target directory cannot be

removed.

2. The directory that is specified by Directory_name must be empty.

3. If the directory is successfully removed, the change and modification times for

the parent directory are updated.

4. If any process has the directory open when it is removed, the directory itself is

not removed until the last process has closed the directory. New files cannot be

created under a directory that is removed, even if the directory is still open.

Related services

v “v_mkdir (BPX1VMK, BPX4VMK) — Create a directory” on page 307

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

v “v_remove (BPX1VRM, BPX4VRM) — Remove a link to a file” on page 339

Characteristics and restrictions

A process must be registered as a server before the v_rmdir service is permitted.

See “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VRE, BPX4VRE (v_rmdir)

example” on page 495.

v_rmdir (BPX1VRE, BPX4VRE)

Chapter 5. VFS callable services application programming interface 349

v_rpn (BPX1VRP, BPX4VRP)) — Resolve a pathname

Function

The v_rpn service accepts an absolute pathname of a file or a directory and returns

a vnode token that represents this file or directory, and the VFS token that

represents the mounted file system that contains the file or directory. These tokens

must be supplied by the server on any subsequent VFS callable services API that is

related to these files, directories, or file systems. The v_rpn service also returns file

attribute information for the file or directory, and mount information for the file

system.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VRP): 31-bit

AMODE (BPX4VRP): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VRP with the same parameters.

Parameters

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Pathname_length

Supplied parameter

CALL BPX1VRP,(OSS,

 Pathname_length,

 Pathname,

 VFS_token,

 Vnode_token,

 Mnte_length,

 Mnte,

 Attr_length,

 Attr,

 Return_value,

 Return_code,

 Reason_code)

v_rpn (BPX1VRP, BPX4VRP))

350 z/OS V1R7.0 UNIX System Services File System Interface Reference

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the full pathname of the file

or directory that is to be resolved to a token. The name can be up to 1023

bytes long; each component of the name (between delimiters) can be up to 255

bytes long.

Pathname

Supplied parameter

Type: Character string

Length: Specified by Pathname_length parameter

The name of an area, of length Pathname_length, that contains the full name of

the file or directory that is to be resolved.

VFS_token

Returned parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area in which the v_rpn service returns the VFS token

of the file system that contains the file or directory that is supplied in the

Pathname parameter.

Vnode_token

Returned parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area in which the v_rpn service returns a vnode token of

the file or directory that is supplied in the Pathname parameter.

Mnte_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area that is passed in the

Mnte parameter.

 The length of this area must be large enough to contain a mount entry header

(MnteH) and one mount entry (Mnte). These fields are mapped by the

BPXYMNTE macro (see “BPXYMNTE — Map response and element structure

of w_getmnte” on page 463).

Mnte

Returned parameter

Type: Structure

Length: Specified by the Mnte_length parameter

The name of an area, of length Mnte_length, in which the v_rpn service returns

information about the file system that contains the file or directory that is

supplied in the Pathname parameter. This area is mapped by the BPXYMNTE

macro (see “BPXYMNTE — Map response and element structure of

w_getmnte” on page 463).

Attr_length

Supplied parameter

Type: Integer

Length: Fullword

v_rpn (BPX1VRP, BPX4VRP))

Chapter 5. VFS callable services application programming interface 351

The name of a fullword that contains the length of the area that is passed in the

Attr parameter. To determine the value of Attr_length, use the ATTR structure

(see “BPXYATTR — Map file attributes for v_ system calls” on page 445).

Attr

Returned parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area, of length Attr_length, in which the v_rpn service returns

the file attribute structure for the file or directory that is supplied in the

Pathname parameter. This area is mapped by the ATTR structure (see

“BPXYATTR — Map file attributes for v_ system calls” on page 445).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rpn service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_rpn service stores the return code. The

v_rpn service returns Return_code only if Return_value is −1. See z/OS UNIX

System Services Messages and Codes for a complete list of possible return

code values. The v_rpn service can return one of the following values in the

Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, the Pathname

parameter did not contain an absolute pathname; or

one of the supplied areas was too small. The

following reason codes can accompany the return

code: JRNoLeadingSlash, JRSmallAttr,

JRSmallMnte, JRInvalidOSS, JRNullInPath.

ELOOP Too many symbolic links were encountered in the

pathname.

EMFILE The maximum number of vnode tokens have been

created.

ENAMETOOLONG The pathname or a component in the pathname is

too long.

ENFILE An error occurred while storage was being obtained

for a vnode token.

ENOENT A directory or file that was supplied in the Pathname

parameter does not exist; or the Pathname_length

parameter is not greater than 0.

ENOTDIR A node in the pathname is not a directory.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

v_rpn (BPX1VRP, BPX4VRP))

352 z/OS V1R7.0 UNIX System Services File System Interface Reference

The name of a fullword in which the v_rpn service stores the reason code. The

v_rpn service returns a Reason_code only if Return_value is −1. Reason_code

further qualifies the Return_code value. See z/OS UNIX System Services

Messages and Codes for the reason codes.

Usage notes

1. Vnode tokens that are returned by the v_rpn service are not inherited across a

fork callable service.

2. VFS tokens that are returned by the v_rpn service are inherited across a fork

callable service.

3. The mount point pathname is not returned in the Mnte structure that is returned

by v_rpn.

4. The caller is responsible for freeing the vnode token that is returned by the

v_rpn service, by calling to the v_rel service when it is no longer needed.

Related services

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on page 337

Characteristics and restrictions

A process must be registered as a server before the v_rpn service is permitted; see

“v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333.

Examples

For an example using this callable service, see “BPX1VRP, BPX4VRP (v_rpn)

example” on page 496.

v_rpn (BPX1VRP, BPX4VRP))

Chapter 5. VFS callable services application programming interface 353

v_setattr (BPX1VSA, BPX4VSA) — Set the attributes of a file

Function

The v_setattr service sets the attributes that are associated with the file that is

represented by Vnode_token. It can be used to change the mode, owner, access

time, modification time, change time, reference time, audit flags, general attribute

flags, and file size. It can also be used to set the initial security label for a file or

directory.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VSA): 31-bit

AMODE (BPX4VSA): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VSA with the same parameters.

Parameters

Vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

file.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

CALL BPX1VSA,(Vnode_token,

 OSS,

 Attr_length,

 Attr,

 Return_value,

 Return_code,

 Reason_code)

v_setattr (BPX1VSA, BPX4VSA)

354 z/OS V1R7.0 UNIX System Services File System Interface Reference

Attr_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Attr. To determine the value

of Attr_length, use the ATTR structure (see “BPXYATTR — Map file attributes

for v_ system calls” on page 445).

Attr

Supplied and returned parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area, of length Attr_length, that contains the file attributes to be

set for the file that is specified by the vnode token. The attributes of the file are

also returned in this area, overlaying the input values. This area is mapped by

the ATTR structure (see “BPXYATTR — Map file attributes for v_ system calls”

on page 445).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_setattr service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_setattr service stores the return code.

The v_setattr service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of possible

return code values. The v_setattr service can return one of the following values

in the Return_code parameter:

 Return_code Explanation

EINVAL Parameter error; for example, a supplied area was

too small. The following reason codes can

accompany the return code: JRSmallAttr,

JRInvalidAttr, JRNegativeValueInvalid,

JRTrNotRegFile, JRTrNegOffset, JRVTokenFreed,

JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS.

EACCES The calling process did not have appropriate

permissions. Possible reasons include:

v In an attempt to set access time or modification

time to current time, the effective UID of the

calling process does not match the owner of the

file, the process does not have write permission

for the file, and the process does not have

appropriate privileges.

v In an attempt to truncate the file, the calling

process does not have write permission for the

file.

v_setattr (BPX1VSA, BPX4VSA)

Chapter 5. VFS callable services application programming interface 355

Return_code Explanation

EFBIG A process attempted to change the size of a file, but

the new length that was specified is greater than the

maximum file size limit for the process. The

following reason code can accompany the return

code: JRWriteBeyondLimit.

EPERM The operation is not permitted for one of the

following reasons:

v The caller of the service is not registered as a

server.

v In an attempt to change the mode or the file

format, the effective UID of the calling process

does not match the owner of the file, and the

calling process does not have appropriate

privileges.

v In an attempt to change the owner, the calling

process does not have appropriate privileges.

v In an attempt to change the general attribute bits,

the calling process does not have write

permission for the file.

v In an attempt to set a time value (not current

time), the effective user ID of the calling process

does not match the owner of the file, and the

calling process does not have appropriate

privileges.

v In an attempt to set the change time or reference

time to current time, the calling process does not

have write permission for the file.

v In an attempt to change auditing flags, the

effective UID of the calling process does not

match the owner of the file, and the calling

process does not have appropriate privileges.

v In an attempt to change the security auditor’s

auditing flags, the user does not have auditor

authority.

v In an attempt to set the security label, one or

more of the following conditions applies:

– The calling process does not have RACF

SPECIAL authorization and appropriate

privileges.

– The security label that is currently associated

with the file is already set.

EROFS The file is on a read-only file system. The following

reason code can accompany the return code:

JRReadOnlyFS.

ESTALE On input, the AttrGuardTimeChk bit was on, and the

input AttrGuardTime value did not match the Ctime

of the file.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_setattr service stores the reason code.

The v_setattr service returns Reason_code only if Return_value is −1.

v_setattr (BPX1VSA, BPX4VSA)

356 z/OS V1R7.0 UNIX System Services File System Interface Reference

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

 Table 7. Attributes fields

Set Flags Attribute Fields Input Description

ATTRMODECHG ATTRMODE Set the mode according to the

value in ATTRMODE.

ATTRUID

ATTRGID

Set the owner user ID

(UID) and group ID (GID)

to the values specified in

ATTRUID and ATTRGID.

ATTRSETGEN ATTRGENVALUE

ATTRGENMASK

Only the bits corresponding to the

bits set ON in the ATTRGENMASK

are set to the value (ON or OFF) in

ATTRGENVALUE. Other bits will

be unchanged.

ATTRTRUNC ATTRSIZE Truncate the file size to ATTRSIZE

bytes.

ATTRATIMECHG ATTRATIME Set the access time of the file to

the value specified in ATTRATIME.

ATTRATIMECHG and

ATTRATIMETOD

None Set the access time of the file to

the current time.

ATTRMTIMECHG ATTRMTIME Set the modification time of the file

to the value specified in

ATTRMTIME.

ATTRMTIMECHG and

ATTRMTIMETOD

None Set the modification time of the file

to the current time

ATTRMAAUDIT ATTRAUDITORAUDIT Set the security auditor’s auditing

flags to the value specified in

ATTRAUDITORAUDIT.

ATTRMUAUDIT ATTRUSERAUDIT Set the user’s auditing flags to the

value specified in

ATTRUSERAUDIT.

ATTRCTIMECHG ATTRCTIME Set the change time of the file to

the value specified in ATTRCTIME.

ATTRCTIMECHG and

ATTRCTIMETOD

None Set the change time of the file to

the current time.

ATTRREFTIMECHG ATTRREFTIME Set the reference time of the file to

the value specified in

ATTRREFTIME.

ATTRREFTIMECHG and

ATTRREFTIMETOD

None Set the reference time of the file to

the current time.

ATTRFILEFMTCHG ATTRFILEFMT Set the file format of the file to the

value specified in ATTRFILEFMT.

ATTRSECLABELCHG ATTRSECLABEL Set the initial security label for a

file or directory.

v_setattr (BPX1VSA, BPX4VSA)

Chapter 5. VFS callable services application programming interface 357

1. Flags in the attributes parameter are set to indicate which attributes should be

updated. To set an attribute, turn the corresponding Set Flag on, and set the

corresponding attributes field according to Table 7 on page 357. Multiple

attributes may be changed at the same time.

The Set Flag field should be cleared before any bits are turned on. It is

considered an error if any of the reserved bits in the flag field are turned on.

 2. In addition to the attribute fields that are specified according to Table 7 on

page 357, the following ATTR header fields must be provided by the caller:

ATTRID Contains “ATTR”.

ATTRLEN Specifies the length of the ATTR structure.

AttrGuardTimeChk Indicates whether the AttrGuardTime should be

checked.

AttrGuardTime If this bit is on, the PFS checks the Ctime of

the file against the value that is specified in

AttrGuardTime. If they do not match, the

request fails with ESTALE.

Other fields in the ATTR should be set to 0s.

 3. Changing mode (ATTRMODECHG = ON):

v The file mode field in the ATTR area is mapped by the BPXYMODE macro

(see “BPXYMODE — Map the mode constants of the file services” on page

466). For information on the values for file type, see “BPXYFTYP — File

type definitions” on page 451.

v Files that are open when the v_setattr service is called retain the access

permission they had when the file was opened.

v The effective UID of the calling process must match the file’s owner UID, or

the caller must have appropriate privileges.

v Setting the set-group-ID-on-execution permission (in mode) means that

when this file is run, through the exec service, the effective GID of the caller

is set to the file’s owner GID, so that the caller seems to be running under

the GID of the file, rather than that of the actual invoker.

The set-group-ID-on-execution permission is set to zero if both of the

following are true:

– The caller does not have appropriate privileges.

– The GID of the file’s owner does not match the effective GID or one of

the supplementary GIDs of the caller.

v Setting the set-user-ID-on-execution permission (in mode) means that when

this file is run, the process’s effective UID is set to the file’s owner UID, so

that the process seems to be running under the UID of the file’s owner,

rather than that of the actual invoker.

 4. Changing owner (ATTROWNERCHG = ON):

v For changing the owner UID of a file, the caller must have appropriate

privileges.

v For changing the owner GID of a file, the caller must have appropriate

privileges, or meet all of these conditions:

– The effective UID of the caller matches the file’s owner UID.

– The Owner_UID value that is specified in the change request matches

the file’s owner UID.

– The Group_ID value that is specified in the change request is the

effective GID, or one of the supplementary GIDs, of the caller.

v_setattr (BPX1VSA, BPX4VSA)

358 z/OS V1R7.0 UNIX System Services File System Interface Reference

v When owner is changed, the set-user-ID-on-execution and

set-group-ID-on-execution permissions of the file mode are automatically

turned off.

v When owner is changed, both UID and GID must be specified as they are to

be set. If only one of these values is to be changed, the other must be set

to its present value or to -1 in order to remain unchanged.

 5. Changing general attribute bits (ATTRSETGEN = ON):

v For general attribute bits to be changed, the calling process must have write

permission for the file.

 6. Truncating a file (ATTRTRUNC = ON):

v The truncation of a file to ATTRSIZE bytes changes the file size to

ATTRSIZE, beginning from the first byte of the file. If the file was originally

larger than ATTRSIZE bytes, the data from ATTRSIZE to the original end of

file is removed. If the file was originally shorter than ATTRSIZE, bytes

between the old and new lengths are read as zeros.

v Full blocks are returned to the file system so that they can be used again.

The file offset is not changed.

v When a file is truncated successfully, it clears the set-user-ID, the

set-group-ID, and the save-text (sticky bit) attributes of the file unless the

caller has authority to access the root.

v Changing a file’s size is considered to be a write operation and an open

token from a prior v_open may be passed in the OSS to indicate that this

change is being done within the open context of that token. Consequently,

the operation does not have to be verified against the share reservations

that may currently be in effect for the file. If no open token is available to

pass on the call, there are three levels of share reservation checking that

can be requested (see “v_rdwr (BPX1VRW, BPX4VRW) — Read from and

write to a file” on page 322 for details).

 7. Changing times:

v All time fields in the Attr area are in POSIX format.

v For the access time or the modification time to be set explicitly

(ATTRATIMECHG = ON or ATTRMTIMECHG = ON), the effective ID must

match the file’s owner, or the process must have appropriate privileges.

v For the access time or modification time to be set to the current time

(ATTRATIMETOD = ON or ATTRMTIMETOD = ON), the effective ID must

match the file’s owner, the calling process must have write permission for

the file, or the process must have appropriate privileges.

v For the change time or the reference time to be set explicitly

(ATTRCTIMECHG = ON or ATTRREFTIMECHG = ON), the effective ID

must match the file’s owner or the process must have appropriate privileges.

v For the change time or reference time to be set to the current time

(ATTRCTIMETOD = ON or ATTRREFTIMETOD = ON), the calling process

must have write permission for the file.

v When any attribute field is changed successfully, the file’s change time is

updated as well.

v The setting of the AttrLP64times bit in the BPXYATT structure, and not the

AMODE of the caller, determines whether 4-byte or 8-byte time fields are

used.

 8. Changing auditor audit flags (ATTRMAAUDIT = ON):

v_setattr (BPX1VSA, BPX4VSA)

Chapter 5. VFS callable services application programming interface 359

|
|
|
|
|
|
|
|

v For auditor audit flags to be changed, the user must have auditor authority.

Users with auditor authority can set the auditor options for any file, even

those they do not have path access to or authority to use for other

purposes.

You can establish auditor authority by running the TSO/E command

ALTUSER Auditor.

 9. Changing user audit flags (ATTRMUAUDIT = ON):

v For the user audit flags to be changed, the user must have appropriate

privileges (See Authorization in z/OS UNIX System Services Programming:

Assembler Callable Services Reference) or be the owner of the file.

10. Changing file format (ATTRFILEFMTCHG = ON):

v The effective UID of the calling process must match the file’s owner UID or

the caller must have appropriate privileges.

11. Changing the security label (ATTSECLABELCHG=ON):

v For the security label to be changed, the user must have RACF SPECIAL

authorization and appropriate privileges, and no security label must currently

exist on the file. Only an initial security label can be set. An existing security

label cannot be changed. The function will successfully set the security label

if the SECLABEL class is active. If the SECLABEL class is not active, the

request will return successfully, but the security label will not be set.

Related services

v “v_getattr (BPX1VGA, BPX4VGA) — Get the attributes of a file” on page 285

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

Characteristics and restrictions

1. A process must be registered as a server before the v_setattr service is

permitted; see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a

server” on page 333.

2. The ATTREXTLINK flag in the ATTRGENVALUE field of the ATTR cannot be

modified with BPX1VSA.

3. The general attribute fields (set by ATTRSETGEN, ATTRGENMASK, and

ATTRGENVALUE fields) are not intended as a general-use programming

interface on v_setattr.

4. The security label (ATTRSECLABELCHG) flag requires RACF SPECIAL

authorization and appropriate privileges. See Authorization in z/OS UNIX

System Services Programming: Assembler Callable Services Reference for

information about appropriate privileges.

5. The security label (ATTRSECLABELCHG) flag cannot be used to change an

existing security label; it can only be used to set an initial security label on a file.

Examples

For an example using this callable service, see “BPX1VSA, BPX4VSA (v_setattr)

example” on page 497.

v_setattr (BPX1VSA, BPX4VSA)

360 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_symlink (BPX1VSY, BPX4VSY) — Create a symbolic link

Function

The v_symlink service creates a symbolic link to a pathname or external name. A

file whose name is specified in the Link_name parameter, of type “symbolic link”, is

created within the directory that is represented by Directory_vnode_token. The

contents of the symbolic link file is the pathname or external name that is specified

in Pathname.

Requirements

 Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE (BPX1VSY): 31-bit

AMODE (BPX4VSY): 64-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

 AMODE 64 callers use BPX4VSY with the same parameters.

Parameters

Directory_vnode_token

Supplied parameter

Type: Token

Length: 8 bytes

The name of an 8-byte area that contains a vnode token that represents the

directory in which the v_symlink service creates the new symbolic link file that is

named in the Link_name parameter.

OSS

Supplied and returned parameter

Type: Structure

Length: OSS#LENGTH (from the BPXYOSS macro)

CALL BPX1VSY,(Directory_vnode_token,

 OSS,

 Link_name_length,

 Link_name,

 Pathname_length,

 Pathname,

 Attr_length,

 Attr,

 Return_value,

 Return_code,

 Reason_code)

v_symlink (BPX1VSY, BPX4VSY)

Chapter 5. VFS callable services application programming interface 361

The name of an area that contains operating-system-specific parameters. This

area is mapped by the BPXYOSS macro (see “BPXYOSS — Map operating

system specific information” on page 469).

Link_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Link_name. The Link_name

can be up to 255 bytes long.

Link_name

Supplied parameter

Type: Character string

Length: Specified by Link_name_length parameter

The name of a field that contains the symbolic link that is being created. It must

not contain null characters (X'00').

Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Pathname. The Pathname

can be up to 1023 bytes long. If the Pathname is not an external name

(AttrExtLink = 0), each component of the name (between delimiters) can be up

to 255 bytes long.

Pathname

Supplied parameter

Type: Character string

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname or external name for which you

are creating a symbolic link.

 A pathname can begin with or without a slash.

v If the pathname begins with a slash, it is an absolute pathname, the slash

refers to the root directory, and the search for the file starts at the root

directory.

v If the pathname does not begin with a slash, it is a relative pathname, and

the search for the file starts at the parent directory of the symbolic link file.

 A pathname must not contain null characters (X'00').

 An external name is the name of an object that is outside the hierarchical file

system. There are no restrictions on the characters that may be used in an

external name.

Attr_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Attr. To determine the value

of Attr_length, use the ATTR structure (see “BPXYATTR — Map file attributes

for v_ system calls” on page 445).

v_symlink (BPX1VSY, BPX4VSY)

362 z/OS V1R7.0 UNIX System Services File System Interface Reference

Attr

Supplied parameter

Type: Structure

Length: Specified by the Attr_length parameter

The name of an area, of length Attr_length, that is to be used by the v_symlink

service to set the attributes of the file that is to be created. This area is mapped

by the ATTR structure (see “BPXYATTR — Map file attributes for v_ system

calls” on page 445).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_symlink service returns 0 if the request is

successful, or −1 if it is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_symlink service stores the return code.

The v_symlink service returns Return_code only if Return_value is −1. See

z/OS UNIX System Services Messages and Codes for a complete list of

possible return code values. The v_symlink service can return one of the

following values in the Return_code parameter:

 Return_code Explanation

EACCES The calling process does not have permission to

write in the directory specified.

EEXIST Link_name already exists.

EFBIG The file size limit for the process is set to zero,

prohibiting the creation of symbolic links.

EINVAL Parameter error; for example, a supplied area was

too small. The following reason codes can

accompany the return code: JRSmallAttr,

JRInvalidAttr, JRNoName, JRInvalidSymLinkLen,

JRNULLInPath, JRInvalidSymLinkComp,

JRVTokenFreed, JRWrongPID, JRStaleVnodeTok,

JRInvalidVnodeTok, JRInvalidOSS.

ENAMETOOLONG Link_name is longer than 255 characters.

ENOTDIR The supplied token did not represent a directory.

EPERM The operation is not permitted. The caller of the

service is not registered as a server.

EROFS Directory_vnode_token specifies a directory on a

read-only file system.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the v_symlink service stores the reason code.

The v_symlink service returns a Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

v_symlink (BPX1VSY, BPX4VSY)

Chapter 5. VFS callable services application programming interface 363

Usage notes

1. The following Attr fields are provided by the caller:

AttrID Contains Attr#ID (from the ATTR structure)

AttrLen Specifies the length of the ATTR structure.

AttrExtLink Specifies whether the Pathname is an external

name (1) or a pathname in a hierarchical file

system (0).

AttrMode Specifies directory mode permission bits. See

“BPXYMODE — Map the mode constants of the

file services” on page 466 for the mapping of

this field.

Other fields in the ATTR should be set to zeros.

2. Like a hard link (described in “v_link (BPX1VLN, BPX4VLN) — Create a link to

a file” on page 288), a symbolic link allows a file to have more than one name.

The presence of a hard link guarantees the existence of a file, even after the

original name has been removed. A symbolic link, however, provides no such

assurance; in fact, the file identified by Pathname need not exist when the

symbolic link is created. In addition, a symbolic link can cross file system

boundaries, and can refer to objects that are outside a hierarchical file system.

3. When a component of a pathname refers to a symbolic link (but not an external

symbolic link) rather than to a directory, the pathname that is contained in the

symbolic link is resolved. When the VFS callable services API, v_rpn, or other

z/OS UNIX callable services are being used, a symbolic link in a pathname

parameter is resolved as follows:

v If the pathname in the symbolic link begins with / (slash), the symbolic link

pathname is resolved relative to the process root directory.

v If the pathname in the symbolic link does not begin with /, the symbolic link

pathname is resolved relative to the directory that contains the symbolic link.

v If the symbolic link is not the last component of the original pathname,

remaining components of the original pathname are resolved from there.

v When a symbolic link is the last component of a pathname, it may or may not

be resolved. Resolution depends on the function that is using the pathname.

For example, a rename request does not have a symbolic link resolved when

it appears as the final component of either the new or old pathname.

However, an open request does have a symbolic link resolved when it

appears as the last component.

v When a slash is the last component of a pathname, and it is preceded by a

symbolic link, the symbolic link is always resolved.

v The mode of a symbolic link is ignored during the lookup process. Any files

and directories to which a symbolic link refers are checked for access

permission.

4. The external name that is contained in an external symbolic link is not resolved.

Link_name cannot be used as a directory component of a pathname.

5. If the file size limit for the process is set to zero, symbolic link creation is

prohibited and fails with EFBIG.

6. The valuethat is set by umask() for the process does not affect the setting of

the mode permission bits.

v_symlink (BPX1VSY, BPX4VSY)

364 z/OS V1R7.0 UNIX System Services File System Interface Reference

Related services

v “v_getattr (BPX1VGA, BPX4VGA) — Get the attributes of a file” on page 285

v “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page 333

v “v_readlink (BPX1VRA, BPX4VRA) — Read a symbolic link” on page 330

v “v_remove (BPX1VRM, BPX4VRM) — Remove a link to a file” on page 339

v “v_link (BPX1VLN, BPX4VLN) — Create a link to a file” on page 288

Characteristics and restrictions

A process must be registered as a server before the v_symlink service is permitted;

see “v_reg (BPX1VRG, BPX4VRG) — Register a process as a server” on page

333.

Examples

For an example using this callable service, see “BPX1VSY, BPX4VSY (v_symlink)

example” on page 498.

v_symlink (BPX1VSY, BPX4VSY)

Chapter 5. VFS callable services application programming interface 365

v_symlink (BPX1VSY, BPX4VSY)

366 z/OS V1R7.0 UNIX System Services File System Interface Reference

Chapter 6. OSI services

The LFS provides several Operating System Interface (OSI) callable services

specifically for PFSs.

The addresses of these routines are passed to a PFS during initialization in the OSI

operations vector table (OSIT structure). For information about how the OSIT is

passed to the PFS during initialization, see “Activating and deactivating the PFS” on

page 4. See also Appendix D for more information on C language structures that

are referred to in this document.

Table 8 shows the OSI services.

 Table 8. OSI services

Service Description

osi_copyin Copy data to a PFS buffer

osi_copyout Copy data to a user buffer

osi_copy64 Move data between user and PFS buffers with 64-bit

addresses

osi_ctl Pass control information to the kernel

osi_getcred Obtain SAF UIDs, GIDs, and supplementary IDs

osi_getvnode Get a vnode

osi_kipcget Query interprocess communications

osi_kmsgctl Control in-kernel messages

osi_kmsgget Get a message queue ID

osi_kmsgrcv Receive an in-kernel message from the queue

osi_kmsgsnd Send an in-kernel message to the queue

osi_mountstatus Report file system status

osi_post General post

osi_sched Schedule Part 2 of Async I/O

osi_selpost Select post

osi_signal Send a signal

osi_sleep Wait for a resource

osi_thread Fetch a module from a thread

osi_uiomove Move data between buffers

osi_upda Update Async I/O request

osi_wait General wait

osi_wakeup Wake a task waiting for a resource

This chapter describes each of the OSI services, which are arranged in alphabetic

order. The OSI services are callable services that are generally called only from

within a PFS. Some of these services must be called from the same thread that is

making a VFS or vnode call. The information about callable services from Chapter 5

applies here, with a few exceptions:

v The service name that is listed above is a C-language macro that invokes the

particular service based on its address in the OSIT structure.

© Copyright IBM Corp. 1996, 2006 367

v The three ways of invoking a module that are listed in Chapter 5 do not apply to

these services. They must be called with the saved OSIT structure address, by

using the macros listed in Table 8 on page 367.

Assembler language programs must use the OSIT structure offsets for each

service. These offsets can be found in the OSIT typedef in Appendix D.

Note: Any of the output parameters of a call can be modified by the system,

whether the call is successful or not.

Using OSI services from a non-kernel address space

The osi_post, osi_selpost, and osi_wakeup services can be called from a

non-kernel address space to wake up a thread that is waiting for some event to

occur. Osi_ctl can be used from a non-kernel address space to communicate with a

file exporter exit program. The osi_sched service can be called to initiate Part 2 of

an asynchronous I/O.

For example, if a PFS establishes its own communication mechanism to another

separate address space, there may be times when it needs to wait for a reply from

that address space. In these cases the PFS can call osi_wait, while running on the

user’s thread in either the kernel or the other address space, and a program in that

other address space can call osi_post to wake it up. A recovery option is available

through the v_reg() function that will ensure that these waiting processes are posted

if the separate address space should terminate abnormally.

Similarly, if the PFS participates in select() processing and the selected event

occurs in another address space, osi_selpost can be called from that other address

space.

This section does not apply to calls that are made by the PFS while in the kernel or

in a colony address space. For these calls, the OSIT table address that is passed

during initialization should be used.

To use the OSI services from an independent (non-cross-memory) thread in another

address space, or from an end user thread that has PCed from the PFS to another

address space, you must perform the following steps from an authorized program

that is running in non-cross-memory mode in that other address space:

1. Issue an MVS LOAD for the module BPXVOSIT.

2. Branch to the address that is returned by LOAD, passing the standard

return_value, return_code, and reason_code parameters with OS linkage.

The program must be authorized at the time of this branch, so that a PC

(Program Call instruction) can be set up between this address space and the

kernel.

If return_value is not -1, it will be the address of an OSIT in this address space.

3. Save the OSIT address returned from a successful LOAD and branch.

4. Do not DELETE the BPXVOSIT load module. All the addresses of the OSI

services are within this load module.

The constants and prototype related to doing this are included in Appendix D.

From this point on, you can call the OSI services from this address space (via the

saved OSIT address) from C or assembler programs the same way a PFS does.

The calling program does not have to be authorized at the time of an OSI service

call, unless the service specifically requires it.

368 z/OS V1R7.0 UNIX System Services File System Interface Reference

The following restrictions on using the OSI services from an independent task

apply:

v A task in the server process can use the standard IPC message interface to

communicate with a PFS that is using the osi_kmsg interface, so osi_getipc and

the osi_kmsg services are not intended to be used from an independent task.

v A task in the server process can use the standard kill() function to send a signal;

osi_signal should not be used.

v Osi_copyin, osi_copyout, and osi_uiomove should not be used to copy from or to

the user address space buffers that were passed on a PFS operation.

v Osi_getvnode, osi_sleep, and osi_thread may not be used. Osi_wait may be

used after some special setup. Refer to the Usage Notes for osi_wait for details.

The effect of loading and calling BPXVOSIT is tied to the address space.

BPXVOSIT cannot be called twice unless z/OS UNIX has terminated and restarted.

If z/OS UNIX terminates, new OSI service requests fail with an EMVSNOTUP return

code. Calls that are in progress when z/OS UNIX terminates may receive a cross

memory abend. After z/OS UNIX is restarted, BPXVOSIT must be recalled to

reestablish the PC to the new kernel.

If the separate address space is started before the kernel address space, a call to

BPXVOSIT that is issued during initialization fails. Generally, a PFS contacts its

partner address space during z/OS UNIX initialization, and the load and call can be

performed at this time. As an alternative, you can listen for the Event Notification

Facility (ENF) Signal, which is issued whenever z/OS UNIX is started. During

initialization, an address space can set up an ENF Listen for this event and call

BPXVOSIT. If BPXVOSIT fails with EMVSNOTUP, the ENF Signal is eventually

issued and BPXVOSIT can be called again after the server’s ENF Listen exit is

invoked. The ENF Qualifier Constant is defined in macro BPXYENFO.

osi_copyin

Chapter 6. OSI services 369

osi_copyin — Move data from a user buffer to a PFS buffer

Function

The osi_copyin service moves a block of data from a user buffer to a PFS buffer.

Requirements

 Authorization: Supervisor state; any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Destination_buffer

Supplied parameter

Type: Char

Length: Value specified by Move_length.

The name of the buffer in the PFS to which data is copied.

Destination_ALET

Supplied parameter

Type: Integer

Length: Fullword

The ALET for the specified Destination_buffer in the PFS.

Source_buffer

Supplied parameter

Type: Char

Length: Value specified by Move_length.

The name of the buffer in the user address space from which data is copied.

Source_ALET

Supplied parameter

Type: Integer

Length: Fullword

 osi_copyin(Destination_buffer,

 Destination_ALET,

 Source_buffer,

 Source_ALET,

 Source_key,

 Move_length,

 Return_value,

 Return_code,

 Reason_code);

osi_copyin

370 z/OS V1R7.0 UNIX System Services File System Interface Reference

The ALET for the specified Source_buffer in the user address space.

Source_key

Supplied parameter

Type: Integer

Length: Fullword

The storage key for the Source_buffer in the user address space. The specified

key should be in the last 4 bits of the word. The key is typically the same value

as the key stored in the UIO field UIO.u_key.

Move_length

Supplied parameter

Type: Integer

Length: Fullword

The number of bytes to move.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_copyin service returns the results of the request, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_code parameters

contain the values returned by the service.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_copyin service stores the return code. The

osi_copyin service returns Return_code only if Return_value is −1. See z/OS

UNIX System Services Messages and Codes for a complete list of supported

return code values.

 The osi_copyin operation supports the following error value:

 Return_code Explanation

EFAULT A specified buffer address is not in addressable

storage.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_copyin service stores the reason code. The

osi_copyin service returns Return_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. The reason codes are

described in z/OS UNIX System Services Messages and Codes.

osi_copyin

Chapter 6. OSI services 371

Usage notes

1. The address of the osi_copyin routine is passed to the PFS in the OSIT

structure when the PFS is initialized.

2. The storage key for the destination buffer can be any storage key.

Related services

v “osi_uiomove — Move data between PFS buffers and buffers defined by a UIO

structure” on page 426

v “osi_copyout — Move data from a PFS buffer to a user buffer” on page 373

v “osi_copy64 — Move data between user and PFS buffers with 64-bit addresses”

on page 376

Characteristics and restrictions

This routine must be used only on the dispatchable unit (task or SRB) that made

the vnode or VFS call because the service requires the use of the cross-memory

environment of the calling dispatchable unit.

osi_copyin

372 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|

osi_copyout — Move data from a PFS buffer to a user buffer

Function

The osi_copyout service moves a block of data from a PFS buffer to a user buffer.

Requirements

 Authorization: Supervisor state; any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Destination_buffer

Supplied parameter

Type: Char

Length: Value specified by Move_length.

The name of the buffer in the user address space to which data is copied.

Destination_ALET

Supplied parameter

Type: Integer

Length: Fullword

The ALET for the specified Destination_buffer in the user address space.

Source_buffer

Supplied parameter

Type: Char

Length: Value specified by Move_length.

The name of the buffer in the PFS from which data is copied.

Source_ALET

Supplied parameter

Type: Integer

Length: Fullword

 osi_copyout(Destination_buffer,

 Destination_ALET,

 Source_buffer,

 Source_ALET,

 Destination_key,

 Move_length,

 Return_value,

 Return_code,

 Reason_code);

osi_copyout

Chapter 6. OSI services 373

The ALET for the specified Source_buffer in the PFS.

Destination_key

Supplied parameter

Type: Integer

Length: Fullword

The storage key for the Destination_buffer in the user address space. The

specified key should be in the last 4 bits of the word. The key is typically the

same value as the key stored in the UIO field UIO.u_key

Move_length

Supplied parameter

Type: Integer

Length: Fullword

The number of bytes to move.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_copyout service returns the results of the request, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_code parameters

contain the values returned by the service.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_copyout service stores the return code. The

osi_copyout service returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

 The osi_copyout operation supports the following error value:

 Return_code Explanation

EFAULT A buffer address that was specified is not in

addressable storage.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_copyout service stores the reason code. The

osi_copyout service returns Return_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. The reason codes are

described in z/OS UNIX System Services Messages and Codes.

osi_copyout

374 z/OS V1R7.0 UNIX System Services File System Interface Reference

Usage notes

1. The address of the osi_copyout routine is passed to the PFS in the OSIT

structure when the PFS is initialized.

2. The storage key for the source buffer can be any storage key.

Related services

v “osi_uiomove — Move data between PFS buffers and buffers defined by a UIO

structure” on page 426

v “osi_copyin — Move data from a user buffer to a PFS buffer” on page 370

v “osi_copy64 — Move data between user and PFS buffers with 64-bit addresses”

on page 376

Characteristics and restrictions

This routine must be used only on the dispatchable unit (task or SRB) that made

the vnode or VFS call because the service requires the use of the cross-memory

environment of the calling dispatchable unit.

osi_copyout

Chapter 6. OSI services 375

|
|
|

osi_copy64 — Move data between user and PFS buffers with 64-bit

addresses

Function

The osi_copy64 service moves a block of data in either direction between 64-bit

addressed user and PFS buffers.

Requirements

 Authorization: Supervisor state; any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31- or 64-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be 31-bit addressable by the caller and

in the primary address space.

Format

Parameters

copy64_struct

Supplied and returned parameter

Type: Structure

Length: Specified by the 64_length field

The parameters of this service are contained in the copy64_struct. See “Usage

notes” for a description of the fields in this structure.

Workarea

Supplied parameter

Type: Character

Length: 512 bytes

Workarea is a 512-byte buffer that resides below the 2GB line and is aligned

on a doubleword boundary. It can be used by the service for dynamic storage.

Usage notes

1. The osi_copy64 service can be called in AMODE 31 or AMODE 64, and the

buffers may be above or below the 2GB line. In all cases the full 64-bit

addresses must be valid. In releases prior to z/OS V1R5, the osi_copy64

service may be called only in AMODE 31.

2. The size of the R1 address and of the parameter list addresses that it points to

are assumed to correspond to the AMODE of the caller at the time of the call.

3. copy64_struct contains the following fields:

 osi_copy64(copy64_struct,

 Workarea);

osi_copy64

376 z/OS V1R7.0 UNIX System Services File System Interface Reference

c64_sourcebuff The source address for the copy. The source is

always copied to the destination

(c64_destbuff).

c64_destbuff The destination address for the copy.

c64_direction Specifies whether MVCSK (In) or MVCDK (Out)

should be used.

c64_keybits Contains the 4-bit key of the user’s data.

c64_copylen Specifies the length of the data to be copied.

This is a 32-bit field.

c64_dontincrsrc The source address will be incremented by the

c64_copylen to facilitate looping calls, unless

this flag is set.

64_dontincrdest The destination address will be incremented by

the c64_copylen to facilitate looping calls,

unless this flag is set.

c64_gotrecovery If the PFS has its own EFAULT recovery, you

can avoid the overhead involved in the setting

up and taking down of an FRR on each call to

this service by setting this flag.

c64_rc Indicates the success or failure of the operation,

as described below.

c64_rsn Indicates the success or failure of the operation,

as described below.

c64_sourcealet Contains the ALET of the source buffer.

c64_destalet Contains the ALET of the destination buffer.

c64_length Contains the length of the copy64_struct itself.

4. The results of the operation are returned in c64_rc as either:

0 The operation was successful, and c64_copylen bytes were

moved.

Nonzero The operation failed. This is the failing return code, and c64_rsn

contains the failing reason code. The osi_copy64 service may

return the following return code:

 Return_code Explanation

EFAULT A specified buffer address is not in

addressable storage.

5. The osi_copy64 routine is a high-performance routine. It does not issue program

calls (PC) into the kernel.

6. If the PFS has no storage below the 2GB line for the Workarea, the OSI

WorkArea can be used.

Related services

v “osi_uiomove — Move data between PFS buffers and buffers defined by a UIO

structure” on page 426

v “osi_copyout — Move data from a PFS buffer to a user buffer” on page 373

v “osi_copyin — Move data from a user buffer to a PFS buffer” on page 370

osi_copy64

Chapter 6. OSI services 377

Characteristics and restrictions

Whenever it is used to copy user address space areas, this routine must be used

only on the dispatchable unit (task or SRB) that made the original vnode or VFS

call because the service requires the use of the cross-memory environment of the

calling dispatchable unit.

osi_copy64

378 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|

osi_ctl — Pass control information to the kernel

Function

The osi_ctl service passes control information to the kernel or to a file exporter exit

in the kernel.

Requirements

 Authorization: Problem or Supervisor state, any key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Command

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the command code for this operation. The

allowable value is:

 1 — for file exporter exit control

Argument_length

Supplied parameter.

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the argument. The length of

the argument is specified as an integer value in the range 0-256.

Argument

Parameter supplied and returned

Type: Defined by the receiver.

Length: Specified by the Argument_length parameter

Specifies the name of a buffer, of length Argument_Length, that contains the

argument of the operation.

 The buffer may be modified to return information to the caller.

 osi_ctl(Command,

 Argument_length,

 Argument,

 Return_value,

 Return_code,

 Reason_code);

osi_ctl

Chapter 6. OSI services 379

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_ctl service returns 0 if the request is

successful, and −1 if the request is not successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_ctl service stores the return code. The

osi_ctl service returns Return_code only if Return_value is −1. For a complete

list of possible return code values, see z/OS UNIX System Services Messages

and Codes. The return code may come from the exporter exit.

 The osi_ctl service can return one of the following values in the Return_code

parameter:

 Return_code Explanation

EINVAL A supplied parameter is incorrect.

One of the following Reason_codes may

accompany this Return_code:

v JRNotRegisteredServer - The caller is not

registered or is not a file exporter type.

v JRInvIoctlCmd - The Command was not a

supported value.

ENOMEM A C environment cannot be obtained to invoke the

exit.

ESRCH with JrPfsNotDubbed The caller is not on a POSIX thread.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_ctl service stores the reason code. The

osi_ctl service returns Reason_code only if Return_value is −1. Reason_code

further qualifies the Return_code value. For the reason codes, see z/OS UNIX

System Services Messages and Codes.

 The reason code may come from the exporter exit, in which case it would be

documented with that product.

Usage notes

1. This service is provided for general communication between a file exporter and

the exporter exit that was established during v_reg().

The argument buffer may be modified to convey information from the exit to the

caller. The exit must not write in the argument buffer beyond the amount that

was passed in by the caller. The caller and the exit should agree on the size of

the argument, or should use an imbedded length field to limit the amount of

data that is moved to the argument buffer for output.

If the amount of data to be transferred is more than the amount that is allowed

by this service, the caller should use the argument to pass the address of a

osi_ctl

380 z/OS V1R7.0 UNIX System Services File System Interface Reference

buffer that contains the data. The exit can use osi_copyin and osi_copyout to

move data between the caller’s address space and the kernel.

Refer to “DFS-style file exporters” on page 255 for more information on file

exporters.

2. The address of the osi_ctl routine is passed to the PFS in the OSIT structure

when the PFS is initialized.

Characteristics and restrictions

None.

osi_ctl

Chapter 6. OSI services 381

osi_getcred — Obtain SAF UIDs, GIDs and supplementary GIDs

Function

The osi_getcred obtains the real, effective, and saved user IDs; group IDs; and

supplementary group IDs from SAF.

Requirements

 Authorization: Supervisor state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and,

except for the Getcred_Parms and area for the supplemental

GIDs, must be in the primary address space.

Format

Parameters

OSI_structure

Supplied parameter

Type: Structure

Length: Specified by the Osilen field

OSI_structure contains information that is used by the OSI operations. The PFS

receives this structure on each PFS interface operation.

 Refer to Appendix D for a full description of this structure.

Workarea

Supplied parameter

Type: Char

Length: 3072 bytes

Workarea is a buffer of 3072 bytes (3K), aligned on a doubleword boundary,

that is to be used by this OSI operation.

Alet

Supplied parameter

Type: Integer

Length: Fullword

 osi_getcred(OSI_structure,

 Workarea,

 Alet,

 Getcred_Parms,

 Return_value,

 Return_code,

 Reason_code);

osi_getcred

382 z/OS V1R7.0 UNIX System Services File System Interface Reference

The Alet for the Getcred_Parms structure and the supplementary GID list that is

pointed to by Getcred_Parms.

Getcred_parms

Supplied parameter

Type: Structure

Length: Specified by sizeof(OGCDPRM)

An area that contains the osi_getcred parameters. The entries in this area are

mapped by the OGCDPRM typedef, which is defined in the BPXYPFSI header.

 Refer to Appendix D for a full description of this structure. Following is a

description of the parameters in this structure:

oc_hdr A header that contains an eyecatcher and

length. It can be initialized using

OGCDPRM_HDR.

oc_real_uid The real UID, returned by the security product.

oc_effective_uid The effective UID, returned by the security

product.

oc_saved_uid The saved UID, returned by the security

product.

oc_real_gid The real GID, returned by the security product.

oc_effective_gid The effective GID, returned by the security

product.

oc_saved_gid The saved GID, returned by the security

product.

oc_maxsgids Set by the invoker to the maximum number of

supplementary GIDs that will fit in the area that

is pointed to by oc_gid_list. If there is not

enough room for all available GIDs, this

maximum is returned. In this case, this field is

updated, on return to the caller, to indicate the

total number of GIDs which could have been

returned had there been room for all.

oc_numsgids The number of supplementary GIDs returned by

the security product.

oc_gid_list A pointer to an area to contain the array of

supplementary GIDs.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_getcred service returns the results of the service, as

one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_code parameters

contain the values returned by the service.

osi_getcred

Chapter 6. OSI services 383

0 The operation was successful, and there was

room for all supplementary GIDs in the

caller-provided area.

+1 The operation was successful, but there were

more supplementary GIDs than could fit in the

caller-provided area. A partial list of GIDs has

been returned. The oc_maxsgids field has been

updated with the actual number of

supplementary GIDs that are available. The

oc_maxsgids field should be reset to the proper

value, if necessary, before the Getcred_Parms

structure is used again on a subsequent call.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_getcred service stores the return code. The

osi_getcred service returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_getcred service stores the reason code. The

osi_getcred service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. The reason codes are

described in z/OS UNIX System Services Messages and Codes.

 Note that if the Return_code that is returned by osi_getcred is EMVSSAF2ERR,

the low-order two bytes of the Reason_code will be the RACF return and

reason codes.

Usage notes

1. The osi_getcred calls SAF to obtain the UID and GID information.

2. If there is not room in the supplementary GID area, SAF returns as many as will

fit. A return value of 1 indicates that this has occurred. In this case, the

oc_maxsgids field is updated with the number that would have been returned

had there been room for all supplementary GIDs. The caller should not depend

upon those GIDs that are returned when there is not enough room for all

supplementary GIDs. The subset of the available GIDs that is returned may

differ among various security products, or even from call to call for some

security products.

3. The OSI_structure contains an area that is pointed to by osi_workarea, which

may be passed to this service as the Workarea parameter.

Related services

None.

Characteristics and restrictions

None.

osi_getcred

384 z/OS V1R7.0 UNIX System Services File System Interface Reference

osi_getvnode — Get or return a vnode

Function

The osi_getvnode service is used by a PFS to create a vnode or return a vnode

that it created but never used.

Requirements

 Authorization: Supervisor state, PSW key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Entry_code

Supplied parameter

Type: Integer

Length: Fullword

Entry_code specifies the function that is being requested for the osi_getvnode

service.

 Entry_code Explanation

OSI_BUILDVNOD Get a vnode

OSI_BUILDVNODNL Get a vnode that is never locked by the LFS.

OSI_RTNVNOD Return an unused vnode.

OSI_BUILDVNODXL Get a vnode that is always under an exclusive lock.

OSI_PURGELLA Purge LLA entries for a vnode.

OSI_INACTASAP Inactivate a vnode as soon as possible.

OSI_MEMCRITICAL PFS requests memory relief for its file systems.

Token_structure

Supplied parameter

Type: TOKSTR

Length: Specified by TOKSTR.ts_hdr_cblen.

 osi_getvnode(Entry_code,

 Token_structure,

 attribute_structure,

 PFS_token,

 Vnode_token,

 Return_value,

 Return_code,

 Reason_code);

osi_getvnode

Chapter 6. OSI services 385

This token_structure is the one that was passed to the vnode or VFS operation

from which this call is being made. It represents the parent file or file system of

the file for which a vnode is being created. This parameter is 0 for

OSI_PURGELLA and OSI_INACTASAP.

attribute_structure

Supplied parameter

Type: Structure

Length: Specified by the structure’s attr.cbhdr.cblen

field.

The file attributes of the file for which this vnode is being created. This structure

is mapped by typedef ATTR in the BPXYVFSI header file (see Appendix D).

PFS_token

Supplied parameter

Type: Token

Length: 8

The PFS token for the file for which this vnode is being created.

Vnode_token

Returned parameter for entry code OSI_BUILDVNOD, OSI_BUILDVNODXL,

and OSI_BUILDVNODNL; supplied parameter for entry code OSI_RTNVNOD,

OSI_PURGELLA, and OSI_INACTASAP.

Type: Token

Length: 8

The vnode token for the file.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_getvnode service returns the results of

the operation, as one of the following:

Return_value Meaning

−1 The operation was not successful.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_getvnode service stores the return

code. The osi_getvnode service can return one of the following values in the

Return_code parameter only if Return_value is −1. Reason_code further

qualifies the Return_code value.

 Return_code Explanation

0 Successful completion

Osi_BadParm Invalid OSI_structure

Osi_Abend Abend in osi_getvnode

Reason_code

Returned parameter

Type: Integer

osi_getvnode

386 z/OS V1R7.0 UNIX System Services File System Interface Reference

Length: Fullword

A fullword in which the osi_getvnode service stores the reason code. The

osi_getvnode service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value.

Usage notes

1. For additional information, see “Creating, referring to, and inactivating file

vnodes” on page 31.

2. The PFS should use the OSI_RTNVNOD function to return an unused vnode

only when it gets a vnode, but decides it does not need it, before returning the

vnode token to the LFS.

The Token_structure, attribute_structure, and PFS_token parameters are not

referenced for OSI_RTNVNOD, and the PFS may pass a zero for each

parameter.

3. The address of the osi_getvnode routine is passed to the PFS in the OSIT

when the PFS is initialized.

4. OSI_BUILDVNODNL is used when the PFS does not need the vnode

serialization provided by the LFS. A vnode that is obtained in this way is locked

only for vn_open and vn_close.

5. The PFS may pass a minimum File_Attribute_Structure, for performance

reasons. This structure must include:

at_hdr.cbid Set to ATT2 to distinguish this subset ATTR

at_hdr.cblen Set to the correct length

at_mode The file type field, at least

at_ino

at_major

at_minor

at_genvalue The LFS bits, at least

at_fid

6. No Token_structure is required on an OSI_PURGELLA or OSI_INACTASAP

request. This parameter may be 0.

Characteristics and restrictions

1. This routine can be called only for a vnode or VFS operation that returns a

vnode token on the interface—for example, vn_lookup.

2. This routine must be used only on the task that made the vnode or VFS call,

with the exception of the OSI_INACTASAP requests. OSI_INACTASAP requests

can be invoked on a physical file system worker task; no serialization is

necessary for these operations.

3. OSI_MEMCRITICAL is not a vnode-related function. Only the Token_Structure is

used as input. The PFS should first check the PFS initialization block (PFSI) to

see if the OSI_MEMCRITICAL function is supported. If it is, the PFS may use it

to request memory relief by requesting that LFS clean up the vnode cache

quickly. The PFS will also be called to harden its cached data to disk for each of

its mounted file systems, using vfs_sync. To indicate the completion of this LFS

memory-critical function, LFS will set the ts_sysd1 field to OSI_MEMCRITICAL

for the last vfs_sync operation.

osi_getvnode

Chapter 6. OSI services 387

osi_kipcget — Query interprocess communications

Function

The osi_kipcget service queries shared memory, messages and semaphors for the

″next or specified member″.

This is a secondary interface to the w_getipc service. It is provided for use by a

PFS that is running in a colony address space. For information on the w_getipc

service, see w_getipc (BPX1GET, BPX4GET) — Query interprocess

communications in z/OS UNIX System Services Programming: Assembler Callable

Services Reference.

Requirements

 Authorization: Supervisor state or problem state; any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Ipc_Token

Supplied parameter

Type: Integer

Length: Word

Specifies a token that corresponds to a message queue, shared memory

segment, or semaphore member ID. Zero represents the first member ID. The

token that is to be used in the next invocation is passed back in Return_value.

Ipc_Token is ignored when Ipc_OVER is specified.

Ipc_Member_ID

Supplied parameter

Type: Integer

Length: Word

Specifies a message queue ID, semaphore ID, or shared member ID.

CALL osi_kipcget(Ipc_Token | Ipc_Member_ID,

 Buffer_Address,

 Buffer_Length,

 Command,

 Return_value,

 Return_code,

 Reason_code);

osi_kipcget

388 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|
|

Buffer_address

Supplied parameter

Type: Address

Length: Fullword

Address of the buffer structure that is defined by IPCQ. For the structure that

describes this buffer, see “BPXYIPCQ — Map w_getipc structure” on page 460.

Buffer_Length

Supplied parameter

Type: Address

Length: Fullword

Length of the structure that is defined by IPCQ. This parameter is set to

IPCQ#LENGTH. Field IPCQLENGTH differs from IPCQ#LENGTH when the

system call is at a different level than the included IPCQ. An error is returned if

this length is less than 4. The buffer is filled to the lesser of IPCQ#LENGTH or

the value specified here.

Command

Supplied parameter

Type: Integer

Length: Fullword

 Command Description

Ipcq#ALL Retrieve next shared memory, message

and semaphore member.

Ipcq#MSG Retrieve next message member.

Ipcq#SEM Retrieve next semaphore member.

Ipcq#SHM Retrieve next shared memory member.

Ipcq#OVER Overview of system variables. Ignores the

value of the first operand (Ipc_Token).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kipcget service returns the next

Ipc_Token (a negative number), 0, or −1 (error). If Ipc_Token is specified, 0

indicates end of file. If Ipc_Member_ID is specified, 0 indicates success.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kipcget service stores the return code.

The osi_kipcget service returns Return_code only if Return_value is −1. See

z/OS UNIX System Services Messages and Codes for a complete list of

possible return code values. The osi_kipcget service can return one of the

following values in the Return_code parameter:

osi_kipcget

Chapter 6. OSI services 389

Return_code Explanation

EINVAL One of the following errors occurred:

v The Ipc_Member_ID is not valid for the command

that was specified.

v The Command parameter is not a valid

command.

v The buffer pointer was zero; or the buffer length

was less than 4.

The following reason codes can accompany the

return code: JRBuffTooSmall, JRIpcBadID, or

JRBadEntryCode.

EFAULT An input parameter specified an address that

caused the callable service to program check. The

following reason code can accompany the return

code: JRBadAddress.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kipcget service stores the reason code.

The osi_kipcget service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. With Ipc_Token, return_values should be tested for 0 (end of file) or -1 (error).

Other values are negative and will be the next Ipc_Token.

2. With Ipc_Member_ID, return_values should be tested for -1 (error).

3. A member’s accessibility can change if the permissions are changed.

4. A given Ipc_Token may not always retrieve the same member.

5. If a specific member is desired and has been found using Ipc_Token,

subsequent requests may place it at that token or later (never earlier).

6. The address of the osi_kipcget routine is passed to the PFS in the OSIT

structure when the PFS is initialized.

Related services

None.

Characteristics and restrictions

This service may be invoked only from a colony address space.

osi_kipcget

390 z/OS V1R7.0 UNIX System Services File System Interface Reference

osi_kmsgctl — Perform message queue control operations

Function

The osi_kmsgctl service provides a variety of message control operations as

specified by command. These functions include reading and changing message

variables within the MSQID_DS data structure and removing a message queue

from the system.

This is a secondary interface to the msgctl service. It is provided for use by a PFS

running in a colony address space. For information on the msgctl service, see

msgctl (BPX1QCT, BPX4QCT) — Perform message queue control operations in

z/OS UNIX System Services Programming: Assembler Callable Services Reference.

Requirements

 Authorization: Supervisor state or problem state; any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Message_Queue_ID

Supplied parameter

Type: Integer

Length: Fullword

Specifies the message queue identifier.

Command

Supplied parameter

Type: Integer

Character set:

N/A

Length:

Fullword

CALL osi_kmsgctl,(Message_Queue_ID,

 Command,

 Buffer,

 Return_value,

 Return_code,

 Reason_code)

osi_kmsgctl

Chapter 6. OSI services 391

|
|
|
|

|
|
|
|

The name of a fullword field that indicates the message command that is to be

executed. For the structure that contains these constants, see “BPXYIPCP —

Map interprocess communication permissions” on page 459. The values for

Command are:

Ipc_STAT This command obtains status information about

the message queue that is identified by the

Message_Queue_ID parameter, if the current

process has read permission. This information

is stored in the area that is pointed to by

argument Buffer and mapped by area

MSQID_DS data structure. For the data

structure, see “BPXYMSG — Map interprocess

communication message queues” on page 462,

MSQID_DS DSECT.

Ipc_SET Set the value of the IPC_UID, IPC_GID,

IPC_MODE and MSG_QBYTES for associated

Message_queue_ID. The values that are to be

set are taken from the MSQID_DS data

structure that is pointed to by argument Buffer.

Any value for IPC_UID and IPC_GID may be

specified. Only mode bits that are defined by

BPX1QGT under the Message_Flag argument

may be specified in the IPC_MODE field. This

Command can only be executed by a task that

has an effective user ID equal to either that of a

task with appropriate privileges, or the value of

IPC_CUID or IPC_UID in the MSQID_DS data

structure that is associated with

Message_Queue_ID. This information is taken

from the buffer that is pointed to by the Buffer

parameter. For the data structure, see

“BPXYMSG — Map interprocess

communication message queues” on page 462,

MSQID_DS DSECT.

Ipc_RMID Remove the message identifier that is specified

by Message_Queue_ID from the system, and

destroy the message queue and MSQID_DS

data structure that are associated with it. This

Command can only be executed by a process

that has an effective user ID equal to either that

of a process with appropriate privileges, or the

value of IPC_CUID or IPC_UID in the

MSQID_DS data structure that is associated

with Message_Queue_ID.

Buffer

Parameter supplied and returned

Type: Address

Length: Fullword

The name of the fullword that contains the address of the buffer into which or

from which the message queue information is to be copied. This buffer is

mapped by MSQID_DS.

Return_value

Returned parameter

osi_kmsgctl

392 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgctl service returns −1 or 0.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgctl service stores the return code.

The osi_kmsgctl service returns Return_code only if Return_value is −1. See

z/OS UNIX System Services Messages and Codes for a complete list of

possible return code values. The osi_kmsgctl service can return one of the

following values in the Return_code parameter:

 Return_code Explanation

EACCES The command specified was Ipc_STAT, and the

calling process does not have read permission. The

following reason code can accompany the return

code: JRIpcDenied.

EINVAL One of the following errors occurred:

v Message_Queue_ID is not a valid Message

queue identifier

v The Command parameter is not a valid

command.

v The mode bits were not valid (SET).

The following reason codes can accompany the

return code: JRIpcBadFlags, JRMsqQBytes, or

JRIpcBadID.

EPERM The command specified was Ipc_RMID or Ipc_SET,

and the effective user ID of the caller is not that of a

process with appropriate privileges, and is not the

value of IPC_CUID or IPC_UID in the MSQID_DS

data structure that is associated with

Message_Queue_ID.

The command specified was Ipc_SET, and an

attempt is being made to increase MSG_QBYTES.

The effective user ID of the caller does not have

superuser privileges. The following reason codes

can accompany the return code: JRIpcDenied or

JRMsqQBytes.

EFAULT The Buffer parameter specified an address that

caused the syscall to program check. The following

reason code can accompany the return code:

JRBadAddress.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in whic the osi_kmsgctl service stores the reason code.

The osi_kmsgctl service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

osi_kmsgctl

Chapter 6. OSI services 393

Usage notes

1. Changing the access permissions only affects message queue syscall

invocations that occur after msgctl has returned. msgsnd and msgrcv, which are

waiting while the permission bits are changed by msgctl, are not affected.

2. Ipc_SET can change permissions, and may affect the ability of a thread to use

the next message queue syscall.

3. Quiescing a message queue stops additional messages from being added,

while allowing existing messages to be received. A message queue can be

quiesced by clearing (Ipc_SET) write permission bits.

4. A message queue can also be quiesced by reducing MSG_QBYTES (Ipc_SET)

to zero. (Note: it would take superuser authority to re-raise the limit.)

Requesters are told EAGAIN or wait.

5. When a message queue ID is removed (Ipc_RMID) from the system, all waiting

threads regain control with RV=-1, RC=EIDRM, and RC=JRIpcRemoved.

6. If you do not wish to change all the fields, first initialize (Ipc_STAT) the buffer,

change the desired fields, and then make the change (Ipc_SET).

7. For Command Ipc_RMID, the remove is complete by the time control is returned

to the caller.

Related services

v “osi_kmsgget — Create or find a message queue” on page 395

Characteristics and restrictions

This service may be invoked only from a colony address space.

The caller is restricted by ownership, read, and read-write permissions that are

defined by OSI_kmsgget and OSI_kmsgctl Ipc_SET.

osi_kmsgctl

394 z/OS V1R7.0 UNIX System Services File System Interface Reference

osi_kmsgget — Create or find a message queue

Function

The osi_kmsgget service returns a message queue ID.

This is a secondary interface to the msgget service. It is provided for use by a PFS

running in a colony address space. For information on the msgget service, see

msgget (BPX1QGT, BPX4QGT) — Create or find a message queue in z/OS UNIX

System Services Programming: Assembler Callable Services Reference.

Requirements

 Authorization: Supervisor state or problem state; any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Key

Supplied parameter

Type: Integer

Length: Fullword

Identification for this message queue. This is a user-defined value that serves

as a lookup value to determine if this message queue already exists, or the

reserved value Ipc_PRIVATE.

Message_Flag

Supplied parameter

Type: Integer

Length: Fullword

Valid values for this field include any combination of the following (additional

bits cause an EINVAL):

Ipc_CREAT Creates a message queue if the key that is

specified does not already have an associated

ID. Ipc_CREATE is ignored when Ipc_PRIVATE

is specified.

CALL osi_kmsgget,(Key,

 Message_Flag,

 Return_value,

 Return_code,

 Reason_code)

osi_kmsgget

Chapter 6. OSI services 395

|
|
|
|

Ipc_EXCL Causes the msgget function to fail if the key

that is specified has an associated ID.

Ipc_EXCL is ignored when Ipc_CREAT is not

specified, or when Ipc_PRIVATE is specified.

S_IRUSR Permits the process that owns the message

queue to read it.

S_IWUSR Permits the process that owns the message

queue to alter it.

S_IRGRP Permits the group that is associated with the

message queue to read it.

S_IWGRP Permits the group that is associated with the

message queue to alter it.

S_IROTH Permits others to read the message queue.

S_IWOTH Permits others to alter the message queue.

 The values that begin with an ″Ipc_″ prefix are defined in BPXYIPCP, and are

mapped onto S_TYPE, which is in BPXYMODE.

 The values that begin with an ″S_I″ prefix are defined in BPXYMODE, and are

a subset of the access permissions that apply to files.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgget service returns −1 or the

message queue identifier.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgget service stores the return

code. The osi_kmsgget service returns Return_code only if Return_value is −1.

See z/OS UNIX System Services Messages and Codes for a complete list of

possible return code values. The osi_kmsgget service can return one of the

following values in the Return_code parameter:

 Return_code Explanation

EACCES A message queue identifier exists for the Key

parameter, but operation permission, as specified by

the low-order 9-bits of the Message_Flag parameter,

is not granted (the ″S_″ items). The following reason

code can accompany the return code: JRIpcDenied.

EEXIST A message queue identifier exists for the Key

parameter, and both Ipc_CREAT and Ipc_EXCL are

specified. The following reason code can

accompany the return code: JRIpcExists.

EINVAL The Message_Flag operand included bits that are

not supported by this function. The following reason

code can accompany the return code:

JRIpcBadFlags.

osi_kmsgget

396 z/OS V1R7.0 UNIX System Services File System Interface Reference

Return_code Explanation

ENOENT A message queue identifier does not exist for the

Key parameter, and Ipc_CREAT was not set. The

following reason code can accompany the return

code: JRIpcNoExist.

ENOSPC The system limit of the number of message queue

IDs has been reached. The following reason code

can accompany the return code: JRIpcMaxIDs.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgget service stores the reason

code. The osi_kmsgget service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

Usage notes

1. As long as a thread knows the message queue ID, it may issue a msgctl,

msgsnd, or msgrcv (msgget is not needed).

2. This function returns the message queue identifier that is associated with the

Key parameter.

3. This function creates a data structure, which is defined by MSQID_DS, if one of

the following is true:

v The Key parameter is equal to Ipc_PRIVATE.

v The Key parameter does not already have a message queue identifier

associated with it, and Ipc_CREAT is set.
4. Upon creation, the data structure that is associated with the new message

queue identifier is initialized as follows:

v Ipc_CUID and Ipc_UID are set to the effective user ID of the calling task.

v Ipc_CGID and Ipc_GID are set to the effective group ID of the calling task.

v The low-order 9-bits of Ipc_MODE are equal to the low-order 9-bits of the

Message_Flag parameter.

v MSG_QBYTES is set to the system limit that is defined by parmlib.
5. The message queue is removed from the system when BPX1QCT (msgctl) is

called with command Ipc_RMID.

6. Users of message queues are responsible for removing them when they are no

longer needed. Failure to do so ties up system resources.

Related services

v “osi_kmsgctl — Perform message queue control operations” on page 391

Characteristics and restrictions

1. This service may only be invoked from a colony address space.

2. There is a maximum number of message queues that are allowed in the

system.

3. The caller is restricted by ownership, read, and read-write permissions that are

defined by OSI_kmsgget and OSI_kmsgctl Ipc_SET.

osi_kmsgget

Chapter 6. OSI services 397

osi_kmsgrcv — Receive from a message queue

Function

The osi_kmsgrcv service receives a message from a message queue.

This is a secondary interface to the msgrcv service. It is provided for use by a PFS

that is running in a colony address space. For information on the msgrcv service,

see msgrcv (BPX1QRC, BPX4QRC) — Receive from a message queue in z/OS

UNIX System Services Programming: Assembler Callable Services Reference.

Requirements

 Authorization: Supervisor state or problem state; any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Message_Queue_ID

Supplied parameter

Type: Integer

Length: Fullword

Specifies the message queue identifier.

Message_Address

Supplied parameter

Type: Address

Length: Fullword

The name of a field that contains the address of a a buffer that is mapped by

MSGBUF or MSGXBUF (see “BPXYMSG — Map interprocess communication

message queues” on page 462).

Message_Alet

Supplied parameter

Type: Address

CALL osi_kmsgrcv,(Message_Queue_ID,

 Message_Address,

 Message_Alet,

 Message_Length,

 Message_Type,

 Message_Flag,

 Return_value,

 Return_code,

 Reason_code)

osi_kmsgrcv

398 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|

Length: Fullword

The name of the fullword that contains the ALET for Message_Address, which

identifies the address space or data space in which the buffer resides.

 You should specify a Message_Alet of 0 if the buffer resides in the user’s

address space (current primary address space).

 You should specify a Message_Alet of 2 if the buffer resides in the home

address space.

 If a value other than 0 or 2 is specified for the Message_ALET, the value must

represent a valid entry in the dispatchable unit access list (DUAL).

Message_Length

Supplied parameter

Type: Integer

Length: Fullword

Specifies the length of the message text that is to be placed in the buffer that is

pointed to by Message_Address parameter. If Msg_Info is specified, this buffer

is 20 bytes longer than Message_Length; otherwise this buffer is 4 bytes longer

than Message_Length. The message that is received may be truncated (see

MSG_NOERROR of Message_Flag). A value of zero with MSG_NOERROR is

useful for receiving the message type without the message text.

Message_Type

Supplied parameter

Type: Integer

Length: Fullword

Specifies the type of message that is requested, as follows:

v If Message_Type is equal to zero, the first message on the queue is

received.

v If Message_Type is greater than zero, the first message of Message_Type is

received.

v If Message_Type is less than zero, the first message of the lowest type that

is less than or equal to the absolute value of Message_Type is received.

Message_Flag

Supplied parameter

Type: Integer

Length: Fullword

MSG_NOERROR specifies that the received message is to be truncated to

Message_Length (mapped in BPXYMSG). The truncated part of the message is

lost, and no indication of the truncation is given to the caller.

 MSG_INFO specifies that the received message is to be of the MSGXBUF and

not the MSGBUF format mapped in BPXYMSG. MSG_INFO specifies that

extended information is to be received, which is similar to the msgxrcv() C

language function.

 Ipc_NOWAIT specifies the action that is to be taken if a message of the desired

type is not on the queue, as follows:

v If Ipc_NOWAIT is specified, the caller is to return immediately with an error

(ENOMSG).

v If Ipc_NOWAIT is not specified, the calling thread is to suspend execution

until one of the following occurs:

– A message of the desired type is placed on the queue.

osi_kmsgrcv

Chapter 6. OSI services 399

– The message queue is removed from the system (EIDRM).

– The caller receives a signal (EINTR).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgrcv service returns −1, or the

number of MSG_MTEXT bytes returned.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgrcv service stores the return code.

The osi_kmsgrcv service returns Return_code only if Return_value is −1. See

z/OS UNIX System Services Messages and Codes for a complete list of

possible return code values. The osi_kmsgrcv service can return one of the

following values in the Return_code parameter:

 Return_code Explanation

E2BIG MSG_MTEXT is greater than Message_Length, and

MSG_NOERROR is not set. The following reason

code can accompany the return code: JRMsq2Big.

EACCES Operation permission is denied to the calling task.

The following reason code can accompany the

return code: JRIpcDenied.

EIDRM The Message_Queue_ID was removed from the

system while the invoker was waiting. The following

reason code can accompany the return code:

JRIpcRemoved.

EINTR The function was interrupted by a signal. The

following reason code can accompany the return

code: JRIpcSignaled.

EINVAL Message_Queue_ID is not a valid message queue

identifier; or the Message_Length parameter is less

than 0. The following reason codes can accompany

the return code: JRIpcBadID or JRMsqBadSize.

EFAULT The Message_Address parameter specified an

address that caused the syscall to program check.

The following reason code can accompany the

return code: JRBadAddress.

ENOMSG The queue does not contain a message of the

desired type, and Ipc_NOWAIT is set. The following

reason code can accompany the return code:

JRMsqNoMsg.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgrcv service stores the reason

code. The osi_kmsgrcv service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. See z/OS UNIX System

Services Messages and Codes for the reason codes.

osi_kmsgrcv

400 z/OS V1R7.0 UNIX System Services File System Interface Reference

Usage notes

1. Within the type specifications, the longest waiting thread is reactivated first

(FIFO). For example, if there are two threads waiting on message type 3 and

one thread waiting on message type 2, when a message send for type 3

occurs, the oldest waiter for message type 3 receive is posted first.

2. Read access to the specified message queue is required.

Related services

v “osi_kmsgctl — Perform message queue control operations” on page 391

v “osi_kmsgget — Create or find a message queue” on page 395

v “osi_kmsgsnd — Send a message to a message queue” on page 402

Characteristics and restrictions

v This service may only be invoked from a colony address space.

v There is a maximum number of message queues that are allowed in the system.

v The caller is restricted by ownership, read, and read-write permissions that are

defined by OSI_kmsgrcv and OSI_kmsgctl Ipc_SET.

osi_kmsgrcv

Chapter 6. OSI services 401

osi_kmsgsnd — Send a message to a message queue

Function

The osi_kmsgsnd service sends a message to a message queue.

This is a secondary interface to the msgsnd service. It is provided for use by a PFS

that is running in a colony address space. For information on the msgsnd service,

see msgsnd (BPX1QSN, BPX4QSN) — Send to a message queue in z/OS UNIX

System Services Programming: Assembler Callable Services Reference.

Requirements

 Authorization: Supervisor state or problem state; any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Message_Queue_ID

Supplied parameter

Type: Integer

Character set:

N/A

Length:

Fullword

Specifies the message queue identifier.

Message_address

Supplied parameter

Type: Address

Length: Fullword

The name of a field that contains the address of the message that is to be sent.

This area is mapped by MSGBUF. The message type is the first word of the

message, and must be greater than zero.

CALL osi_kmsgsnd,(Message_Queue_ID,

 Message_address,

 Message_Alet,

 Message_Size,

 Message_Flag,

 Return_value,

 Return_code,

 Reason_code)

osi_kmsgsnd

402 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|
|

Message_Alet

Supplied parameter

Type: Address

Length: Fullword

The name of the fullword that contains the ALET for Message_address that

identifies the address space or data space in which the buffer resides.

 You should specify a Message_address of 0 if the buffer resides in the user’s

address space (current primary address space).

 You should specify a Message_address of 2 if the buffer resides in the home

address space.

 If a value other than 0 or 2 is specified for the Message_ALET, the value must

represent a valid entry in the dispatchable unit access list (DUAL).

Message_Size

Supplied parameter

Type: Integer

Length: Fullword

Specifies the length of the message text that is pointed to by the

Message_address parameter. The length does not include the 4-byte type that

precedes the message text. For example, a message with a MSG_TYPE and

no MSG_MTEXT has a Message_Size of zero.

Message_Flag

Supplied parameter

Type: Integer

Length: Fullword

Specifies the action that is to be taken if one or more of the following are true:

v Placing the message on the message queue would cause the current

number of bytes on the message queue (msg_cbytes) to be greater than the

maximum number of bytes that are allowed on the message queue

(msg_qbytes).

v The total number of messages on the message queue (msg_qnum) is equal

to the system-imposed limit.

The actions that are taken are as follows:

v If Ipc_NOWAIT is specified, the caller returns immediately with an error

(EAGAIN).

v If Ipc_NOWAIT is not specified, the calling thread suspends execution until

one of the following occurs:

– The message is sent.

– The message queue is removed from the system (EIDRM).

– The caller receives a signal (EINTR).

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgsnd service returns −1 or 0. The

message was sent unless a −1 is received.

Return_code

Returned parameter

Type: Integer

osi_kmsgsnd

Chapter 6. OSI services 403

Length: Fullword

The name of a fullword in which the osi_kmsgsnd service stores the return

code. The osi_kmsgsnd service returns Return_code only if Return_value is −1.

See z/OS UNIX System Services Messages and Codes for a complete list of

possible return code values. The osi_kmsgsnd service can return one of the

following values in the Return_code parameter:

 Return_code Explanation

EACCES Operation permission is denied to the calling task.

The following reason code can accompany the

return code: JRIpcDenied.

EAGAIN The message cannot be sent, and Message_Flag is

set to Ipc_NOWAIT. The following reason codes can

accompany the return code:

JRMsqQueueFullMessages, JRMsqQueueFullBytes.

EIDRM The Message_Queue_ID was removed from the

system while the invoker was waiting. The following

reason code can accompany the return code:

JRIpcRemoved.

EINTR The function was interrupted by a signal, and the

message was not sent. The following reason code

can accompany the return code: JRIpcSignaled.

EINVAL Message_Queue_ID is not a valid message queue

identifier; the value of MSG _TYPE is less than 1;

or the value of Message_Size is less than zero or

greater than the system-imposed limit. The following

reason codes can accompany the return code:

JRIpcBadID, JRMsqBadSize or JRMsqBadType.

EFAULT The Message_address parameter specified an

address that caused the syscall to program check.

The following reason code can accompany the

return code: JRBadAddress.

ENOMEM There are not enough system storage exits to send

the message; the message was not sent. The

following reason code can accompany the return

code: JrSmNoStorage.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_kmsgsnd service stores the reason

code. The osi_kmsgsnd service returns Reason_code only if Return_value is

−1. Reason_code further qualifies the Return_code value. See z/OS UNIX

System Services Messages and Codes for the reason codes.

Usage notes

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: PASN = HASN

AMODE: 31-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller

and in the primary address space

osi_kmsgsnd

404 z/OS V1R7.0 UNIX System Services File System Interface Reference

Related services

v “osi_kmsgget — Create or find a message queue” on page 395

v “osi_kmsgctl — Perform message queue control operations” on page 391

v “osi_kmsgrcv — Receive from a message queue” on page 398

Characteristics and restrictions

1. This service may only be invoked from a colony address space.

2. The caller is restricted by ownership, read, and read-write permissions that are

defined by OSI_kmsgsnd and OSI_kmsgctl Ipc_SET.

osi_kmsgsnd

Chapter 6. OSI services 405

osi_mountstatus — Report file system status to LFS

Function

The osi_mountstatus service is used by a PFS to indicate to the LFS a change in

the status of a file system, such as completion of an asynchronous mount

operation.

Requirements

 Authorization: Problem or supervisor state; any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Entry_code

Supplied parameter

Type: Integer

Length: Fullword

Entry_code specifies the function that is being requested for the

osi_mountstatus service.

 Entry_code Explanation

OSI_MOUNTCOMPLETE Mount complete

StDev

Supplied parameter

Type: Integer

Length: Fullword

This is a copy of MTAB.mt_stdev that is passed by the LFS on the original

vfs_mount. It identifies the file system for which status is being reported.

Return_value

Returned parameter

Type: Integer

Length: Fullword

 osi_mountstatus(Entry_code,

 StDev,

 Return_value,

 Return_code,

 Reason_code);

osi_mountstatus

406 z/OS V1R7.0 UNIX System Services File System Interface Reference

The name of a fullword in which the osi_mountstatus service returns the results

of the operation, as one of the following:

Return_value Meaning

−1 The operation was not successful.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_mountstatus service stores the return

code. The osi_mountstatus service can return the following value in the

Return_code parameter only if Return_value is −1. Reason_code further

qualifies the Return_code value.

 Return_code Explanation

EINVAL Parameter error. Consult Reason_code to determine

the exact reason the error occurred. The following

reason codes can accompany the return code:

JRIsMounted, JRBadStDev.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_mountstatus service stores the reason code. The

osi_mountstatus service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value.

Usage notes

1. For the OSI_MOUNTCOMPLETE Entry_code:

v The PFS uses this entry code to inform the LFS of the completion of a mount

operation that was previously identified as asynchronous. The LFS calls

vfs_mount again to complete the mount. See “Asynchronous mounting” on

page 28.

v If the PFS has a Return_value, Return_code, and Reason_code to present,

indicating the status of the mount, they must be returned to the LFS at the

time vfs_mount is called again.

2. The address of the osi_mountstatus routine is passed to the PFS in the OSIT

when the PFS is initialized.

osi_mountstatus

Chapter 6. OSI services 407

osi_post — Post an OSI waiter

Function

The osi_post service posts a process that is waiting in osi_wait.

Requirements

 Authorization: Problem or supervisor state, any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

OSI_post_token

Supplied parameter

Type: Token

Length: 24

OSI_post_token is the post token that is saved from the OSI_structure of the

task that is to be posted.

 Refer to Appendix D for a full description of this structure.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_post service stores the return code.

The osi_post service can return one of the following values in the Return_code

parameter:

 Return_code Explanation

0 Successful completion

Osi_BadParm Invalid OSI_structure

Osi_Abend Abend in osi_post

Usage notes

1. For additional information, see “Waiting and posting” on page 21.

2. The task that is posted is the task that is represented by OSI_post_token.

Before a PFS uses OSI_wait, it should copy the OSI_post_token from the OSI

 osi_post(OSI_post_token,

 Return_code);

osi_post

408 z/OS V1R7.0 UNIX System Services File System Interface Reference

structure to a place that is addressable by the task that performs the OSI_post.

The storage for the OSI for the waiting task is freed if the task terminates.

3. The PFS must never call OSI_post for a waiting process more than once, and it

should have sufficient logic and recovery to avoid calling OSI_post for a task

that is no longer waiting.

4. The address of the osi_post routine is passed to the PFS in the OSIT structure

when the PFS is initialized.

Related services

v “osi_wait — Wait for an event to occur” on page 431

osi_post

Chapter 6. OSI services 409

osi_sched — Schedule async I/O completion

Function

The osi_sched service schedules the completion of an asynchronous request.

Requirements

 Authorization: Problem or Supervisor state, any key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Saved_Osi_AsyTok

Supplied parameter

Type: Token

Length: 8 bytes

The name of the field that contains the osi_asytok value that was saved by the

PFS during Part 1 of the asynchronous vnode operation that is now completing.

Return_value

Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the PFS passes the results of Part 1 of the

asynchronous operation, and the LFS returns the results of the scheduling.

 On input to osi_sched:

Return_value Meaning

0 or greater The request is successful.

 The LFS invokes the PFS for Part 2 of the

asynchronous operation.

 If the user has requested a preprocessing exit

call, this value is passed to the exit before Part

2 is invoked.

 osi_sched(Saved_Osi_AsyTok,

 Return_value,

 Return_code,

 Reason_code);

osi_sched

410 z/OS V1R7.0 UNIX System Services File System Interface Reference

On receive-type operations, the PFS should

pass the actual length of the data that is to be

received, if it can do so at this point. This

allows a preprocessing exit to allocate smaller

buffers than the size that was originally

specified at the beginning of the operation. If

this value cannot be passed to osi_sched, a

Return_value of 0 should be used, and the exit

will allocate buffers to accommodate the

amount that was originally requested. See

asyncio (BPX1AIO, BPX4AIO) — Asynchronous

I/O for sockets in z/OS UNIX System Services

Programming: Assembler Callable Services

Reference for more details about these

operations.

−1 The request has failed.

 The LFS does not invoke the PFS for Part 2 of

the asynchronous operation.

 The Return_value, Return_code, and

Reason_code are passed back to the user as

the results of the operation.

 If the PFS has resources to free that cannot be

freed by the caller of osi_sched, or if for any

other reason Part 2 needs to be called, it

should set Return_value to 0 and report the

failure of the user’s operation as output from

Part 2.

 On output from osi_sched:

Return_value Meaning

0 The scheduling was successful.

 The LFS invokes the PFS for Part 2 of the

asynchronous operation based on the input

Return_value, as explained above.

 If Part 2 cannot be run because of process

termination, the PFS gets a vn_cancel instead.

−1 The Saved_Osi_AsyTok value was not

recognized.

 The LFS always accepts valid calls to

osi_sched. Even when the user’s process is

terminating and Part 2 cannot be run, cleanup

for the request is deferred to vn_cancel.

 If the saved LFS token is bad, it is not clear

what the PFS should do about it. This could be

a logic error in the PFS. If the value that was

passed was once an LFS token, and this is not

a late or redundant call, then it is unlikely that

this can happen, because the LFS does not

clean up its request while there is still any valid

chance that osi_sched will be called.

osi_sched

Chapter 6. OSI services 411

Return_code

Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the PFS passes the return code from Part 1,

and the LFS returns the return code from the scheduling.

 The Return_code parameter is meaningful only if Return_value is −1.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the PFS passes the reason code from Part 1

and the LFS returns the reason code from the scheduling. Reason_code further

qualifies the Return_code value.

 The Reason_code parameter is meaningful only if Return_value is −1.

 For the reason codes, see z/OS UNIX System Services Messages and Codes..

Usage notes

1. Refer to “Asynchronous I/O processing” on page 55 for details on asynchronous

operations.

2. osi_sched is called by the PFS when an asynchronous vnode operation is ready

to complete. For instance, data has arrived for receive-type operations or

buffers are available for write-type operations.

3. Osi_asytok on entry to Part 1 of an asynchronous vnode operation contains the

LFS’s request token. This value must be saved by the PFS, and is used here to

identify the operation that is completing.

4. As a result of calling osi_sched, the LFS re-calls the PFS for Part 2 of the

original operation. Part 2 is run from an SRB in the user’s address space.

Characteristics and restrictions

None.

osi_sched

412 z/OS V1R7.0 UNIX System Services File System Interface Reference

osi_selpost — Post a process waiting for select

Function

The osi_selpost service posts a process that is waiting because of a select request.

Requirements

 Authorization: Problem or supervisor state, any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Select_token

Supplied parameter

Type: Token

Length: 16 bytes

Select_token is the token that was saved by the PFS when it was called for the

select query request. The PFS does not need to be aware of the contents of

this field; it just needs to save it on the select request and pass it to this module

when it is time to post.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_selpost operation returns the results of the

operation, as one of the following:

Return_value Meaning

−1 The operation was not successful.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

 osi_selpost(Select_token,

 Return_value,

 Return_code,

 Reason_code);

osi_selpost

Chapter 6. OSI services 413

A fullword in which the osi_selpost operation stores the return code. The

osi_selpost operation returns Return_code only if Return_value is −1. For a

complete list of supported return code values, see z/OS UNIX System Services

Messages and Codes.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_selpost operation stores the reason code. The

osi_selpost operation returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value.

Usage notes

1. For additional information, see “Select/poll processing” on page 45.

2. The task that is posted is the task that is represented by Select_token. Before a

PFS uses osi_selpost, it should copy the Select_token to a place that is

addressable by the task that will perform the osi_selpost.

3. The PFS must never call osi_selpost for a waiting process more than once, and

it should have sufficient logic and recovery to avoid calling osi_selpost for a task

that is no longer waiting.

4. The address of the osi_selpost routine is passed to the PFS in the OSIT

structure when the PFS is initialized.

Related services

v “vn_select — Select or poll on a vnode” on page 204

Characteristics and restrictions

The caller of this service must be on a process thread.

osi_selpost

414 z/OS V1R7.0 UNIX System Services File System Interface Reference

osi_signal — Generate the requested signal event

Function

The osi_signal service generates the requested signal to the target process.

Requirements

 Authorization: Problem or supervisor state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

OSI_structure

Supplied parameter

Type: Structure

Length: Specified by the Osilen field.

OSI_structure contains information that is used by the OSI operations. The PFS

receives this structure on each PFS interface operation.

 Refer to Appendix D for a full description of this structure.

Target_Osipid

Supplied parameter

Type: Integer

Length: Fullword

A copy of the Osipid field from the target process.

Signal_value

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the signal value. See z/OS XL C/C++

Run-Time Library Reference for a description of the signal.h header and the

signal values.

 osi_signal(OSI_structure,

 Target_Osipid,

 Signal_value,

 Signal_options,

 Return_value,

 Return_code,

 Reason_code);

osi_signal

Chapter 6. OSI services 415

Signal_options

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the signal option flags. See kill (BPX1KIL,

BPX4KIL) — Send a signal to a process in z/OS UNIX System Services

Programming: Assembler Callable Services Reference for a description of the

declaration of signal option flags.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_signal service returns the results of the signal

request, as one of the following:

Return_value Meaning

−1 The operation was not successful.

0 The operation was successful.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_signal service stores the return code. The osi_signal

service returns Return_code only if Return_value is −1. See z/OS UNIX System

Services Messages and Codes for a complete list of supported return code

values.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_signal service stores the reason code. The

osi_signal service returns Return_code only if Return_value is −1.

Reason_code further qualifies the Return_code value. The reason codes are

described in z/OS UNIX System Services Messages and Codes.

Usage notes

1. The PFS must have the process ID of the task that is to receive the signal. This

information must be retrieved from the target OSI_structure and placed in a

variable that is visible to the task that will eventually invoke the osi_signal

service.

2. The address of the osi_signal routine is passed to the PFS in the OSIT

structure when the PFS is initialized.

osi_signal

416 z/OS V1R7.0 UNIX System Services File System Interface Reference

osi_sleep — Sleep until a resource is available

Function

The osi_sleep service waits for an osi_wakeup to be called with a matching

Resource_id and Pfs_id.

Requirements

 Authorization: Problem or supervisor state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

OSI_structure

Supplied parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

OSI_structure contains information that is used by the OSI operations. The PFS

receives this structure on each PFS interface operation.

 Refer to Appendix D for a full description of this structure.

Resource_id

Supplied parameter

Type: Token

Length: Fullword

The Resource_id identifies the resource for which the thread is waiting.

Time_interval

Supplied parameter

Type: Integer

Length: Doubleword

The Time_interval is the maximum time for which osi_sleep will sleep. The

value is specified in timer units and is rounded up to approximate seconds (the

value of the high-order word). See z/Architecture Principles of Operation for

more information about timer units. The rounded-up value is added to the

 osi_sleep(OSI_structure,

 Resource_id,

 Time_interval,

 Return_value,

 Return_code,

 Reason_code);

osi_sleep

Chapter 6. OSI services 417

current time; therefore a very large time interval added to the current time could

wrap to a very small number and result in an immediate timeout of osi_sleep. A

value of 0 indicates that there is no time limit.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_sleep service returns the results of the

operation as one of the following:

Return_value Meaning

−1 The operation was not successful.

0 The operation was successful, and the task

was awakened by osi_wakeup.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_sleep service stores the return code.

The osi_sleep service can return one of the following values in the Return_code

parameter only if Return_value is −1. Reason_code further qualifies the

Return_code value.

 Return_code Explanation

EDEADLK An FRR was active when the service was

requested.

EINTR The service was interrupted. Consult Reason_code

to determine the exact reason the error occurred.

The following reason codes can accompany the

return code: JRSIGDURINGWAIT, JRTIMEOUT.

EINVAL Incorrect parameter. Consult Reason_code to

determine the exact reason the error occurred. The

following reason codes can accompany the return

code: JRBADOSI, JRBADPFSID.

EIO The file system was unmounted while LFS

serialization was dropped.

EMVSNOTUP The system is being stopped.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_sleep service stores the reason code. The osi_sleep

service returns Reason_code only if Return_value is −1. Reason_code further

qualifies the Return_code value.

Usage notes

1. For additional information, see “Waiting and posting” on page 21.

2. All LFS serialization is dropped during an osi_sleep and reestablished after the

osi_wakeup.

3. Before calling osi_sleep, the PFS must copy the osi_pfsid value to a location

that is addressable by the task that will call osi_wakeup. It must be passed as

osi_sleep

418 z/OS V1R7.0 UNIX System Services File System Interface Reference

the Pfs_id on osi_wakeup. The osi_pfsid value that is passed to the PFS is the

same for all operations of this PFS. It is also passed as pfsi_pfsid during PFS

initialization. This initialization value may be used on osi_wakeup instead of

saving the OSI value.

4. The osi_wakeup service does not wake up a task that is not currently sleeping.

If osi_wakeup is issued before osi_sleep for the same resource, the task sleeps

until the next osi_wakeup for that resource. Therefore, the PFS must have

sufficient logic and recovery to ensure that sleeping tasks are eventually

awakened.

5. The address of the osi_sleep routine is passed to the PFS in the OSIT structure

when the PFS is initialized.

Related services

v “osi_wakeup — Wake up OSI sleepers” on page 435

Characteristics and restrictions

1. This routine must be used only on the task that made the vnode or VFS call.

2. An osi_sleep is not permitted if an FRR is established.

osi_sleep

Chapter 6. OSI services 419

osi_thread — Fetch and call a module from a colony thread

Function

The osi_thread service is used by a PFS to call a module on an asynchronous

colony thread that is in the same colony address space that the PFS is running on.

For a synchronous request, the caller’s task is put into a wait while the module is

running.

Requirements

 Authorization: Problem or supervisor state, any PSW key

Dispatchable unit mode: Task

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

OSI_structure

Supplied parameter

Type: Structure

Length: Specified by the Osilen field

OSI_structure contains information that is used by the OSI operations. The PFS

receives this structure on each PFS interface operation.

 Refer to Appendix D for a full description of this structure.

OsitThread_Parm_structure

Supplied parameter

Type: Structure

Length: Specified by the Othdlen field

An area that contains the OsitThread parameters. The entries in this area are

mapped by the OTHDPRM typedef.

 Refer to Appendix D for a full description of this structure. The following

OsitThread parameters must be supplied:

ot_modname The name of the module that is to be fetched

and called on the colony thread. The name

must be a null-terminated string that is

acceptable to the C fetch function.

 osi_thread(OSI_structure,

 OsitThread_Parm_structure,

 Return_value,

 Return_code,

 Reason_code);

osi_thread

420 z/OS V1R7.0 UNIX System Services File System Interface Reference

ot_parms The address of the parameters that are to be

passed to the module specified by

ot_modname. This parameter is also passed to

the named exit if it is called. If any parameters

are passed, the first parameter is used by the

LFS to pass a state token to the named module

or exit routine. The area whose address is

passed in ot_parms must reserve the first word

for this purpose.

 The address that is specified in this parameter

points to a structure, or control block, in whose

first word the LFS inserts the address of the

8-byte state token. A pointer containing

ot_parms is the first parameter to the module

and to the exit routine.

ot_exitname The name of the exit routine that may be called

after the module completes. This routine is

called for a request that specifies NOWAIT, or

when the caller’s wait is terminated before the

module completes. The name must be a

null-terminated string that is acceptable to the C

fetch function.

ot_option_flags A field in which the caller can specify:

v OSI_SIGWAIT—the caller’s task is put into a

signal-enabled wait until the module that is

named in ot_modname completes.

v OSI_NOWAIT—the caller’s task is not put

into a wait; the module is run

asynchronously.

If neither OSI_SIGWAIT nor OSI_NOWAIT is

specified, the caller’s task is placed in a wait

that is not signal-enabled.

v OSI_RELEASEMODS—the fetched module

and exit routine, if called, are released when

the request is complete.

When a module is released, any state token

that is associated with this module on the

current osi worker thread is freed.

IF OSI_RELEASEMODS is not specified, the

named module and the exit routine, if called,

remain in storage. The next request that

specifies these routines does not fetch them

before calling them.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_thread service returns the results of the

operation, as one of the following:

Return_value Meaning

osi_thread

Chapter 6. OSI services 421

−1 The operation was not successful. The

resources that are associated with this request

can be safely freed.

0 The operation was successful. The resources

that are associated with this request can be

safely freed.

+1 The named module was scheduled to be called,

but may not have completed. Resources that

are associated with this request should not be

freed. This value is returned if the request

specified OSI_NOWAIT, or if the caller’s wait is

terminated before the request completes.

Note: The return value indicates the results of the osi_thread service. It does

not indicate the results of the named module. Some other mechanism

must be used by the caller to determine these results.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_thread service stores the return code.

The osi_thread service can return one of the following values in the

Return_code parameter only if Return_value is +1 or −1. Reason_code further

qualifies the Return_code value.

 Return_code Explanation

EINTR The service was interrupted by a signal.

EINVAL Parameter error. Consult Reason_code to determine

the exact reason the error occurred. The following

reason codes can accompany the return code:

JROWaitSetupErr, JRNoClnyThreadSuppt.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_thread service stores the reason code. The

osi_thread service returns Reason_code only if Return_value is +1 or −1.

Reason_code further qualifies the Return_code value.

Usage notes

 1. The osi_thread service may be invoked only from a PFS that is running in a

colony address space.

 2. For more information, see “Using daemon tasks within a PFS” on page 41.

 3. The osi_thread service is not available for use until kernel initialization is

complete. The PFS can determine when kernel initialization is complete by

interrogating the ot_available flag whose address is passed in the pfsi_otstatptr

field.

 4. The caller must not free any resources that may be used by the module that is

running on the colony thread unless a return value of 0 or −1 is returned. If a

return value of +1 is returned, the resources must be freed by the exit routine.

osi_thread

422 z/OS V1R7.0 UNIX System Services File System Interface Reference

5. The osi_thread service undoes any Osi_Wait Setup that was done before this

service was called.

 6. The named module and the named exit routine are fetched on the colony

thread using the C/370 fetch() function. The named module must comply with

any requirements of this function. See z/OS XL C/C++ Run-Time Library

Reference, SA22-7821 for more information.

 7. The named module, and the exit routine, if it is called, remain in storage after

the request completes, unless OSI_RELEASEMODS was specified.

 8. The named module and the exit routine may use C/RTL or POSIX services.

The writer of the PFS should remember that this thread could be used to fetch

and call the specified module on another osi_thread call. Therefore, the named

module should not request any services that would affect the process that is

associated with this thread, such as exit or exec. Pthread services should not

be requested either.

 9. The named module and the exit routine must be reentrant.

10. The named module and the exit routine are invoked using OS linkage

conventions.

11. The named module and the exit routine receive control in the following

environment:

 Authorization: Problem state, PSW key 8

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for interrupts

Locks: Unlocked

Signals: All signals are blocked except SIGALRM

12. If any parameters are passed to the named module or exit routine, the first

parameter should be the address of an 8-byte state token. The first time a

named module or exit routine is invoked on a particular osi worker thread, this

token is zeros. The named module or exit routine can modify this token to

preserve some state information from one invocation to the next. For all

subsequent invocations of this module on this particular worker thread, the

token is provided unmodified by the LFS.

When the PFS uses a parameter structure, the first word is used by the LFS to

point to the state token. The input to the module and exit looks like this:

osi_thread

Chapter 6. OSI services 423

When the PFS does not use a parameter structure, the input to the module

and exit looks like this:

13. ESTAE-like recovery is available to the module and exit routines. This saves

the overhead involved in having these routines set up and take down their own

ESTAEs on each entry.

A pointer to a Recovery Block (RcvyBlk above) is passed as the second

parameter to these routines. The pointer is used as follows:

a. On entry, or when recovery protection is needed, the module or exit sets

the RcvyData pointer to the address of its own recovery information.

R1 addr P1

addr P2

PFS Parm Blk

addr tok state token

PFSs

Info

RcvyBlk

RcvyRtn

RcvyData

Reserved

Work
Area

Figure 7. Input to module and exit using a parameter structure

R1 0

RcvyRtn

RcvyData

Work
Area

RcvyBlk
addr P2

Figure 8. Input to module and exit without using a parameter structure

osi_thread

424 z/OS V1R7.0 UNIX System Services File System Interface Reference

Pertinent data can also be placed in the work area. This data will be

available to the recovery routine.

The RcvyRtn pointer is set to the address of a recovery routine.

b. If the module or exit ends abnormally, and RcvyRtn is non-zero, the

RcvyRtn routine is called from the LFS’s ESTAE and passed all the

parameters provided by RTM, including the pointer to RcvyBlk. An

exception is that register 15 contains the address of the recovery routine

(RcvyRtn), rather than the address of the LFS’s permanent ESTAE exit.

When the RcvyRtn routine returns, it returns directly to RTM, rather than to

the LFS’s permanent ESTAE exit.

c. Under normal circumstances, before returning, or when recovery protection

is no longer needed, the module or exit zeros out the RcvyRtn field.

The recovery routine is invoked in the same way as an MVS ESTAE routine,

not a C subroutine. The registers on entry are:

Register Contents

R0 12, if an SDWA is not provided; otherwise, an SDWA address

is provided in R1.

R1 SDWA address, if an SDWA is provided; otherwise, completion

code.

R2 Pointer to RcvyBlk, with or without an SDWA. This value is

also contained in SDWAPARM when an SDWA is provided.

R13 Address of the save area provided by RTM.

R14 Return address, as provided by RTM.

R15 Address of the recovery routine that is being called (RcvyRtn).

14. The recovery block (RcvyBlk) is mapped by OTHDCRCV in bpxypfsi.h.

15. The work area in the recovery block can be used to pass information to the

recovery routine. It can also be used as a work area for the recovery routine to

build dump titles or list forms of assembler macros.

16. The recovery routine is entered in problem program state, key 8.

17. The address of the osi_thread routine is passed to the PFS in the OSIT when

the PFS is initialized.

Characteristics and restrictions

This routine must be used only on the task that made the vnode or VFS call.

osi_thread

Chapter 6. OSI services 425

osi_uiomove — Move data between PFS buffers and buffers defined

by a UIO structure

Function

The osi_uiomove service moves blocks of data between PFS buffers and buffers

that are defined by a UIO structure.

Requirements

 Authorization: Supervisor state, PSW key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

OSI_structure

Supplied parameter

Type: Structure

Length: Specified by the Osilen field

OSI_structure contains information that is used by the OSI operations. The PFS

receives this structure on each PFS interface operation.

 Refer to Appendix D for a full description of this structure.

Workarea

Supplied parameter

Type: Char

Length: 2048 bytes

Workarea is a buffer of 2048 bytes, aligned on a word boundary, that is to be

used by this OSI operation.

PFS_Buffer

Supplied parameter

Type: Char

Length: N/A

 osi_uiomove(OSI_structure,

 Workarea,

 PFS_Buffer,

 PFS_Buffer_Alet,

 Number_of_bytes,

 User_IO_structure,

 Return_value,

 Return_code,

 Reason_code);

osi_uiomove

426 z/OS V1R7.0 UNIX System Services File System Interface Reference

The name of the buffer to or from which data is to be moved.

PFS_Buffer_Alet

Supplied parameter

Type: Integer

Length: Fullword

The Alet for the specified PFS_Buffer.

Number_of_bytes

Supplied parameter

Type: Integer

Length: Fullword

The number of bytes to move.

User_IO_structure

Supplied and returned parameter

Type: UIO

Length: Specified by UIO.u_hdr.cblen.

An area that contains the parameters for the I/O that is to be performed. This

area is mapped by the UIO typedef in the BPXYVFSI header file (see

Appendix D). See “Specific processing notes” on page 428 for details on how

the fields in this structure are processed.

Return_value

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_uiomove service returns the results of the service,

as one of the following:

Return_value Meaning

−1 The operation was not successful. The

Return_code and Reason_code parameters

contain the values that are returned by the

service.

0 or greater The operation was successful. The value

represents the number of bytes that were

transferred.

Return_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_uiomove service stores the return code. The

osi_uiomove service returns Return_code only if Return_value is −1. For a

complete list of return codes, see z/OS UNIX System Services Messages and

Codes.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_uiomove service stores the reason code. The

osi_uiomove service returns Return_code only if Return_value is −1.

osi_uiomove

Chapter 6. OSI services 427

Reason_code further qualifies the Return_code value. The reason codes are

described in z/OS UNIX System Services Messages and Codes.

Usage notes

1. The osi_uiomove service moves the number of bytes of data that is specified by

the Number_of_bytes parameter or the UIO.u_count field, whichever is less. If

either of these parameters is zero, no data is moved, and Return_value field is

set to 0.

2. The u_iovresidualcnt and u_totalbytesrw fields, described below, are not set

until after the first call to osi_uiomove.

3. This service requires the calling program to be in key 0 storage, because it

must update the UIO, and this structure is usually in key 0 storage. Osi_copyin

and osi_copyout do not require the calling program to be in key 0 storage.

4. The address of the osi_uiomove routine is passed to the PFS in the OSIT

structure when the PFS is initialized.

5. The OSI_structure contains an area, pointed to by osi_workarea, that may be

passed to this service as the Workarea parameter.

Specific processing notes

The following UIO fields are provided by the LFS:

UIO.u_count Specifies the number of bytes in the buffer, or the

number of elements in the IOV array.

UIO.u_rw Specifies whether the request is a read (0) or a

write (1). On a read, the contents of PFS_buffer are

moved to Uiouserbuffer. On a write, the contents of

Uiouserbuffer are moved to PFS_buffer.

UIO.u_iovinuio Specifies whether the user_IO_structure points to

an iov structure.

UIO.u_realpage Specifies whether the user_IO_structure contains

addresses of real pages. This flag must be OFF (0),

or the osi_uiomove service fails the request.

UIO.u_key Specifies the storage key of the caller’s buffer.

UIO.u_iovresidualcnt Specifies the number of bytes remaining in the

buffer or iov structure that is pointed to by the

user_IO_structure.

u_totalbytesrw Specifies the total number of bytes that are to be

moved.

Related services

v “osi_copyin — Move data from a user buffer to a PFS buffer” on page 370

v “osi_copyout — Move data from a PFS buffer to a user buffer” on page 373

v “osi_copy64 — Move data between user and PFS buffers with 64-bit addresses”

on page 376

Characteristics and restrictions

1. This routine must be used only on the dispatchable unit (task or SRB) that

made the vnode or VFS call because the service requires the use of the

cross-memory environment of the calling dispatchable unit.

2. The osi_uiomove service does not support DATOFF moves; that is, it fails

requests if the UIO.u_realpage flag is ON.

osi_uiomove

428 z/OS V1R7.0 UNIX System Services File System Interface Reference

|
|
|

osi_upda — Update async I/O request

Function

The osi_upda service updates an asynchronous request with the PFS’s request

token.

Requirements

 Authorization: Supervisor state, key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Osi_AsyTok

Supplied parameter

Type: Token

Length: 8 bytes

The name of the field that contains the osi_asytok value that was passed to the

PFS on this vnode operation.

 The field from the input osi itself may be used on this call.

PFS_AsyTok

Supplied parameter.

Type: Token

Length: 8 bytes

The name of the field containing the PFS’s token for this asynchronous request.

This value is saved by the LFS and passed back to the PFS on the second part

of the asynchronous operation, or on vn_cancel.

Usage notes

1. Refer to “Asynchronous I/O processing” on page 55 for details on asynchronous

operations.

2. osi_upda is called by the PFS early in Part 1 of an asynchronous vnode

operation. It must be called some time before there is any possibility that

osi_sched will be called for an asynchronous completion of this I/O.

 osi_upda(Osi_AsyTok,

 PFS_AsyTok);

osi_upda

Chapter 6. OSI services 429

When an operation can be completed immediately, Osi_upda does not have to

be called if osi_ok2compimd=ON, or if the PFS does not need to participate in

Part 2.

3. On entry to Part 1, Osi_asytok contains the LFS’s request token, and osi_upda

is called so that the LFS can save the PFS’s request token.

Osi_asytok is also saved by the PFS during Part 1, and is used later for

osi_sched.

4. Osi_asytok on entry to Part 2 contains this PFS_AsyTok value.

It is important that osi_upda be called before osi_sched is called, when the PFS

is participating in Part 2, because Part 2 could run anytime after osi_sched is

called, and the LFS might not have the PFS’s request token to pass.

5. This PFS_AsyTok value is also passed on vn_cancel to identify the request that

is being canceled.

Canceled requests do not generate a call to vn_cancel if osi_upda has not been

called.

6. If the Osi_Asytok value is not valid, osi_upda issues an 0xEC6 abnormal end

with a reason code of 0x11450727.

Characteristics and restrictions

None.

osi_upda

430 z/OS V1R7.0 UNIX System Services File System Interface Reference

osi_wait — Wait for an event to occur

Function

The osi_wait service waits for a signal to occur or for osi_post to be called.

Requirements

 Authorization: Problem or supervisor state, any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Entry_code

Supplied parameter

Type: Integer

Length: Fullword

The Entry_code specifies the function that is being requested for the osi_wait

service.

 Entry_code Explanation

OSI_SETUP Set up for a subsequent wait request.

OSI_SETUPSIG Set up for a subsequent wait request with signals

enabled.

OSI_SUSPEND Wait to be posted from osi_post.

OSI_WAITX Wait to be posted from osi_post or for a timer to

expire.

OSI_INIT2 Initialize for use by an independent task. See Usage

Notes.

OSI_structure

Supplied and returned parameter

Type: OSI

Length: Specified by OSI.osi_hdr.cblen.

OSI_structure contains information that is used by the OSI operations. The PFS

receives this structure on each PFS interface operation.

 Refer to Appendix D for a full description of this structure.

 osi_wait(Entry_code,

 OSI_structure,

 Return_code,

 [Wait_Flags,

 Time_interval]);

osi_wait

Chapter 6. OSI services 431

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_wait service stores the return code.

The osi_wait service can return one of the following values in the Return_code

parameter:

 Return_code Explanation

OSI_POSTED Successful completion.

OSI_SIGNALRCV A signal arrived.

OSI_SHUTDOWN The system is being stopped.

OSI_TIMEOUT A specified time interval expired before a post or

signal.

OSI_UNMOUNTED The file system was unmounted while LFS

serialization was dropped.

OSI_POSTERTRM The address space that is responsible for doing the

osi_post has terminated.

OSI_BADPARM Incorrect OSI_structure.

OSI_ESTAEF Unable to establish a recovery environment.

OSI_ABEND Abnormal end in osi_wait.

OSI_SYSTEMERR Unable to release latches before a signal wait.

Wait_Flags

Supplied parameter (only when Entry_code is OSI_WAITX)

Type: Integer

Length: Fullword

Wait_flags contains flags that specify options on the wait request.

 Flag Explanation

osi_wtdroplocks Drop LFS serialization during the wait, and

reestablish it after the wait.

 Refer to Appendix D for a full description of this structure.

Time_interval

Supplied parameter (only when Entry_code is OSI_WAITX)

Type: Integer

Length: Doubleword

The Time_interval is the time for which osi_wait will wait. The value is specified

in timer units. If the high-order word is non-zero, the 8-byte value is rounded to

approximate seconds. See z/Architecture Principles of Operation for more detail

on timer units. The value is added to the current time; therefore a very large

time interval added to the current time could wrap to a very small number and

result in an immediate timeout of osi_wait. A value of 0 indicates there is no

time limit.

Usage notes

 1. For additional information, see “Waiting and posting” on page 21.

 2. The PFS must call osi_wait for setup before making the call to do the wait and

before OSI_post is called to wake up the task. On the setup call, Entry_code

specifies whether the PFS wants the wait to be terminated if the process

receives a signal.

osi_wait

432 z/OS V1R7.0 UNIX System Services File System Interface Reference

The order of the calls to wait and to OSI_post is not important after the setup

call has been made.

 3. If Entry_code is OSI_SUSPEND and a signal-enabled wait was set up, all LFS

serialization is dropped during the wait and reestablished after the wait.

If Entry_code is OSI_WAITX, the Wait_flags specify whether LFS serialization

is dropped during the wait and reestablished after the wait.

For writes on stream sockets, the default socket option of exclusive write will

prevent the dropping of LFS serialization during signal-enabled waits.

 4. Between the calls to setup and suspend, the PFS should make sure that the

OSI token that is returned by setup is addressable to the program that will

eventually call OSI_post. The PFS can copy the OSI token. If only the address

is used, be careful using this OSI, because the storage for a task will be freed

if the task terminates.

 5. The PFS must never call OSI_post for a waiting task more than once, and

should have sufficient logic and recovery to avoid calling OSI_post for a task

that is no longer waiting.

 6. The osi_thread service undoes any osi_wait setup that was done before

osi_thread was called.

 7. Osi_wait issues an MVS WAIT or SUSPEND, respectively, as appropriate for

TCB or SRB mode callers. Osi_post invokes the corresponding MVS service to

wake up osi_waiters.

 8. When osi_wait is called from an SRB, OSI_SETUPSIG may be requested, but

signals are not really enabled. This is because signals are not delivered to

SRBs, therefore the wait is not interrupted by a signal.

Using OSI_SETUPSIG allows z/OS UNIX to interrupt an SRB’s wait if the

associated user process goes into termination. It is awakened as if a signal

had been delivered.

 9. The OSI_INIT2 Entry_code is used to initialize an OSI_Structure for use by an

independent task (TCB) in an address space that is associated with the PFS.

This allows the task to wait with osi_wait and be posted with osi_post. An

independent task is one that was attached in that address space; it is not

running from within a vnode operation.

Note: Generally an independent task would use MVS WAIT, and be posted by

MVS POST. Osi_wait and osi_post take several hundred more

instructions to execute than MVS WAIT/POST.

There are several restrictions on this service:

a. Only tasks (TCBs) are supported, not SRBs.

b. The task must already be dubbed a z/OS UNIX thread. If this is not the

case, the task can get dubbed by calling a z/OS UNIX service such as

getpid() before calling osi_wait for OSI_INIT2.

c. The only osi service that is expected to be used by this task with the

OSI_structure returned is osi_wait.

Osi_wait(OSI_INIT2) needs to be called only once for the life of a TCB.

The storage for the OSI_structure is provided by the caller as input, and

osi_wait(OSI_INIT2) initializes this area for use on subsequent calls for setup

and suspension. This storage belongs to the caller, and is freed by the caller,

usually at task termination. Calls for setup and suspension may be made with

a copy of the structure that is built from this call.

Only the task that made the OSI_INIT2 call can use this OSI_structure.

osi_wait

Chapter 6. OSI services 433

|
|

The OSI_structure must be initialized with the length of the area that is being

passed before osi_wait(OSI_INIT2) is called. For example,

osi.osi_hdr.cblen=sizeof(OSI).

10. The address of the osi_wait routine is passed to the PFS in the OSIT structure

when the PFS is initialized. Calls that are made from independent address

spaces require their own loaded OSIT structure. Refer to “Using OSI services

from a non-kernel address space” on page 368 for details.

Related services

v “osi_post — Post an OSI waiter” on page 408

Characteristics and restrictions

Calls that are made with the OSI_structure that was passed to the PFS on a vnode

or VFS operation must be made only on the task that made the vnode or VFS call.

osi_wait

434 z/OS V1R7.0 UNIX System Services File System Interface Reference

osi_wakeup — Wake up OSI sleepers

Function

The osi_wakeup service wakes up all threads that are sleeping in osi_sleep with a

matching Resource_id and Pfs_id.

Requirements

 Authorization: Problem or supervisor state, any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Any

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Resource_id

Supplied parameter

Type: Token

Length: Fullword

The Resource_id identifies the resource that is available. All osi_sleep services

that are waiting for this Resource_id are to return to their callers.

Pfs_id

Supplied parameter

Type: Token

Length: Fullword

The Pfs_id identifies the calling PFS. The PFS receives its unique identifier

from the LFS in the osi_pfsid field of the OSI structure on each VFS and vnode

operation. This identifier is also passed as pfsi_pfsid during PFS initialization,

and the initialization value may be used instead of the OSI value that is saved

from osi_sleep.

Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_wakeup service returns the results of

the operation, as one of the following:

 osi_wakeup(Resource_id,

 Pfs_id,

 Return_value,

 Return_code,

 Reason_code);

osi_wakeup

Chapter 6. OSI services 435

Return_value Meaning

−1 The operation was not successful.

0 or greater The operation was successful; the value

represents the number of sleeping tasks that

were awakened.

Return_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osi_wakeup service stores the return code.

The osi_wakeup service returns Return_code only if Return_value is −1.

Reason_code further qualifies Return_code.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

A fullword in which the osi_wakeup service stores the reason code. The

osi_wakeup service returns Reason_code only if Return_value is −1.

Reason_code further qualifies the Return_code value.

Usage notes

1. For additional information, see “Waiting and posting” on page 21.

2. Before calling osi_sleep, the PFS must copy the osi_pfsid value to a location

that is addressable by the task that is to call osi_wakeup. It must be passed as

the Pfs_id on osi_wakeup. The osi_pfsid value that is passed to the PFS is the

same for all operations of this PFS. It is also passed as pfsi_pfsid during PFS

initialization. This initialization value may be used on osi_wakeup instead of the

OSI value that is saved from osi_sleep.

3. The osi_wakeup service does not wake up a task that is not currently sleeping.

If osi_wakeup is issued before osi_sleep for the same resource, the task sleeps

until the next osi_wakeup for that resource. Therefore, the PFS must have

sufficient logic and recovery to ensure that sleeping tasks will eventually be

awakened.

4. The address of the osi_wakeup routine is passed to the PFS in the OSIT

structure when the PFS is initialized.

Related services

v “osi_sleep — Sleep until a resource is available” on page 417

Characteristics and restrictions

The caller of this service must be on a process thread.

osi_wakeup

436 z/OS V1R7.0 UNIX System Services File System Interface Reference

Appendix A. System control offsets to callable services

An alternative to loading or link-editing the service stub is to include in the code the

system control offset to the callable service. For example, use decimal 52 for the

offset of access (BPX1ACC).

When using the offsets, set the registers up as follows:

Register 1 To contain the address of your parameter list. Set bit 0 of the last

address in the list on.

Register 14 To contain the return address in the invoking module.

Register 15 To contain the address of the callable service code.

Example

The following is an example of code that specifies the offset. The example assumes

that register 1 is set up with the address of the parameter list. Replace offset with

the appropriate value from the following offset table.

L 15,16 CVT - common vector table

L 15,544(15) CSRTABLE

L 15,24(15) CSR slot

L 15,offset(15) Address of the service

BALR 14,15 Branch and link

List of offsets

 Table 9. System control offsets to callable services

Service Offset Function

BPX1ACC 52 access

BPX1ACK 972 auth_check_rsrc_np

BPX1ACP 508 accept

BPX1AIO 988 asyncio

BPX1ALR 224 alarm

BPX1ANR 1060 accept_and_recv

BPX1ASP 1088 aio_suspend

BPX1ATM 668 attach_execmvs

BPX1ATX 664 attach_exec

BPX1BND 512 bind

BPX1CCA 480 cond_cancel

BPX1CCS 1012 console_np

BPX1CHA 84 chaudit

BPX1CHD 56 chdir

BPX1CHM 60 chmod

BPX1CHO 64 chown

BPX1CHP 764 chpriority

BPX1CHR 500 chattr

BPX1CID 968 convert_id_np

BPX1CLD 68 closedir

BPX1CLO 72 close

BPX1CON 516 connect

BPX1CPL 1132 __cpl

BPX1CPO 484 cond_post

BPX1CRT 872 chroot

BPX1CSE 488 cond_setup

© Copyright IBM Corp. 1996, 2006 437

Table 9. System control offsets to callable services (continued)

Service Offset Function

BPX1CTW 492 cond_timed_wait

BPX1CWA 496 cond_wait

BPX1DEL 888 deletehfs

BPX1DSD 1124 sw_signaldelv

BPX1ENV 960 oe_env_np

BPX1EXC 228 exec

BPX1EXI 232 _exit

BPX1EXM 236 execmvs

BPX1EXT 200 extlink_np

BPX1FAI 1168 FreeAddrInfo

BPX1FCA 140 fchaudit

BPX1FCD 852 fchdir

BPX1FCM 88 fchmod

BPX1FCO 92 fchown

BPX1FCR 504 fchattr

BPX1FCT 96 fcntl

BPX1FPC 100 fpathconf

BPX1FRK 240 fork

BPX1FST 104 fstat

BPX1FSY 108 fsync

BPX1FTR 112 ftruncate

BPX1FTV 848 FstatVfs

BPX1GAI 1164 GetAddrInfo

BPX1GCL 1024 getclientid

BPX1GCW 116 getcwd

BPX1GEG 244 getegid

BPX1GEP 860 getpgid

BPX1GES 864 getsid

BPX1GET 736 w_getipc

BPX1GEU 248 geteuid

BPX1GGE 772 getgrent

BPX1GGI 252 getgrgid

BPX1GGN 256 getgrnam

BPX1GGR 260 getgroups

BPX1GHA 1160 gethostbyaddr

BPX1GHN 1156 gethostbyname

BPX1GID 264 getgid

BPX1GIV 1028 givesocket

BPX1GLG 268 getlogin

BPX1GMN 76 w_getmntent

BPX1GNI 1172 GetNameInfo

BPX1GNM 524 getpeername

BPX1GPE 776 getpwent

BPX1GPG 272 getpgrp

BPX1GPI 276 getpid

BPX1GPN 280 getpwnam

BPX1GPP 284 getppid

BPX1GPS 428 w_getpsent

BPX1GPT 916 grantpt

BPX1GPU 288 getpwuid

BPX1GPY 744 getpriority

BPX1GRL 820 getrlimit

BPX1GRU 824 getrusage

BPX1GTH 1056 __getthent

System control offsets

438 z/OS V1R7.0 UNIX System Services File System Interface Reference

Table 9. System control offsets to callable services (continued)

Service Offset Function

BPX1GTR 752 getitimer

BPX1GUG 292 getugrps

BPX1GUI 296 getuid

BPX1GWD 936 getwd

BPX1HST 520 gethostid

BPX1IOC 120 w_ioctl

BPX1IPT 396 MvsIptAffinity

BPX1ITY 12 isatty

BPX1KIL 308 kill

BPX1LCO 832 lchown

BPX1LCR 1180 lchattr

BPX1LNK 124 link

BPX1LOD 880 loadhfs

BPX1LSK 128 lseek

BPX1LSN 532 listen

BPX1LST 132 lstat

BPX1MAT 720 shmat

BPX1MCT 724 shmctl

BPX1MDT 728 shmdt

BPX1MGT 732 shmget

BPX1MKD 136 mkdir

BPX1MKN 144 mknod

BPX1MMI 1136 __map_init

BPX1MMP 796 mmap

BPX1MMS 1140 __map_service

BPX1MNT 148 mount

BPX1MP 688 MVSpause

BPX1MPC 408 mvsprocclp

BPX1MPI 680 MVSpauseInit

BPX1MPR 800 mprotect

BPX1MSD 336 mvsunsigsetup

BPX1MSS 312 mvssigsetup

BPX1MSY 804 msync

BPX1MUN 808 munmap

BPX1NIC 748 nice

BPX1OPD 152 opendir

BPX1OPN 156 open

BPX1OPT 528 getsockopt

BPX1OSE 1100 __osenv

BPX1PAF 1072 __pid_affinity

BPX1PAS 316 pause

BPX1PCF 160 pathconf

BPX1PCT 768 pfsctl

BPX1PIO 984 w_pioctl

BPX1PIP 164 pipe

BPX1POE 1176 __poe

BPX1POL 932 poll

BPX1PQG 1152 Pthread_quiesce_and_get_np

BPX1PSI 460 pthread_setintr

BPX1PST 472 Pthread_setintrtype

BPX1PTB 448 pthread_cancel

BPX1PTC 432 pthread_create

BPX1PTD 444 pthread_detach

BPX1PTI 476 Pthread_testintr

System control offsets

Appendix A. System control offsets to callable services 439

Table 9. System control offsets to callable services (continued)

Service Offset Function

BPX1PTJ 440 pthread_join

BPX1PTK 464 pthread_kill

BPX1PTQ 412 pthread_quiesc

BPX1PTR 320 ptrace

BPX1PTS 452 pthread_self

BPX1PTT 1016 pthread_tag_np

BPX1PTX 436 pthread_xandg

BPX1PWD 788 password

BPX1QCT 692 msgctl

BPX1QDB 948 querydub

BPX1QGT 696 msgget

BPX1QRC 700 msgrcv

BPX1QSE 388 quiesce

BPX1QSN 704 msgsnd

BPX1RCV 540 recv

BPX1RDD 168 readdir

BPX1RDL 172 readlink

BPX1RDV 536 readv

BPX1RDX 940 read_extlink

BPX1RD2 856 readdir2

BPX1RED 176 read

BPX1REN 180 rename

BPX1RFM 544 recvfrom

BPX1RMD 188 rmdir

BPX1RMG 8 resource

BPX1RMS 548 recvmsg

BPX1RPH 884 realpath

BPX1RW 1108 Pread

BPX1RWD 184 rewinddir

BPX1SA2 1084 __Sigactionset

BPX1SCT 708 semctl

BPX1SDD 300 setdubdefault

BPX1SEC 1044 __security

BPX1SEG 424 setegid

BPX1SEL 552 select

BPX1SEU 420 seteuid

BPX1SF 1064 send_file

BPX1SGE 780 setgrent

BPX1SGI 328 setgid

BPX1SGQ 1104 sigqueue

BPX1SGR 792 setgroups

BPX1SGT 712 semget

BPX1SHT 572 shutdown

BPX1SIA 324 sigaction

BPX1SIN 1004 server_init

BPX1SIP 340 sigpending

BPX1SLK 1068 __shm_lock

BPX1SLP 344 sleep

BPX1SMC 1112 __smc

BPX1SMF 1036 __smf_record

BPX1SMS 560 sendmsg

BPX1SND 556 send

BPX1SOC 576 socket_pair

BPX1SOP 716 semop

System control offsets

440 z/OS V1R7.0 UNIX System Services File System Interface Reference

Table 9. System control offsets to callable services (continued)

Service Offset Function

BPX1SPB 416 sigputback

BPX1SPE 784 setpwent

BPX1SPG 348 setpgid

BPX1SPM 352 sigprocmask

BPX1SPN 760 spawn

BPX1SPR 568 setpeer

BPX1SPW 1008 server_pwu

BPX1SPY 740 setpriority

BPX1SRG 896 setregid

BPX1SRL 816 setrlimit

BPX1SRU 892 setreuid

BPX1SRX 1080 srx_np

BPX1SSI 356 setsid

BPX1SSU 360 sigsuspend

BPX1STA 192 stat

BPX1STE 1076 Set_Timer_Event

BPX1STF 80 w_statfs

BPX1STL 684 Set_limits

BPX1STO 564 sendto

BPX1STQ 1144 server_thread_query

BPX1STR 756 setitimer

BPX1STV 844 StatVfs

BPX1STW 1096 sigtimedwait

BPX1SUI 364 setuid

BPX1SWT 468 sigwait

BPX1SYC 368 sysconf

BPX1SYM 196 symlink

BPX1SYN 868 sync

BPX1TAF 1148 MvsThreadAffinity

BPX1TAK 1032 takesocket

BPX1TDR 24 tcdrain

BPX1TFH 20 tcflush

BPX1TFW 28 tcflow

BPX1TGA 32 tcgetattr

BPX1TGC 900 tcgetcp

BPX1TGP 36 tcgetpgrp

BPX1TGS 912 tcgetsid

BPX1TIM 372 times

BPX1TLS 964 pthread_security_np

BPX1TRU 828 truncate

BPX1TSA 40 tcsetattr

BPX1TSB 44 tcsendbreak

BPX1TSC 904 tcsetcp

BPX1TSP 48 tcsetpgrp

BPX1TST 908 tcsettables

BPX1TYN 16 ttyname

BPX1UMK 204 umask

BPX1UMT 208 umount

BPX1UNA 376 uname

BPX1UNL 212 unlink

BPX1UPT 920 unlockpt

BPX1UQS 392 unquiesce

BPX1UTI 216 utime

BPX1VAC 944 v_access

System control offsets

Appendix A. System control offsets to callable services 441

Table 9. System control offsets to callable services (continued)

Service Offset Function

BPX1VCL 1188 v_close

BPX1VCR 620 v_create

BPX1VEX 876 v_export

BPX1VGA 632 v_getattr

BPX1VGT 596 v_get

BPX1VLK 604 v_lookup

BPX1VLN 640 v_link

BPX1VLO 660 v_lockctl

BPX1VMD 624 v_mkdir

BPX1VOP 1184 v_open

BPX1VPC 1040 v_pathconf

BPX1VRA 616 v_readlink

BPX1VRD 612 v_readdir

BPX1VRE 644 v_rmdir

BPX1VRG 584 v_reg

BPX1VRL 600 v_rel

BPX1VRM 648 v_remove

BPX1VRN 652 v_rename

BPX1VRP 588 v_rpn

BPX1VRW 608 v_rdwr

BPX1VSA 636 v_settatr

BPX1VSF 656 v_fstatfs

BPX1VSY 628 v_symlink

BPX1WAT 380 wait

BPX1WLM 1048 __wlm

BPX1WRT 220 write

BPX1WRV 580 writev

BPX1WTE 840 waitid/wait3

BPX2ITY 928 isatty2

BPX2MNT 1128 __mount

BPX2OPN 1052 openstat

BPX2RMS 976 recvmsg2

BPX2SMS 980 sendmsg2

BPX2TYN 924 ttyname2

System control offsets

442 z/OS V1R7.0 UNIX System Services File System Interface Reference

Appendix B. Mapping macros

Mapping macros map the parameter options in many callable services. The fields

with the comment “Reserved for IBM use” are not programming interfaces. A

complete list of the options for each macro is listed in the macro in “Macros

mapping parameter options” on page 444.

Most of the mapping macros can be expanded with or without a DSECT statement.

The invocation operand DSECT=YES (default) can be used with either reentrant or

nonreentrant programs with the appropriate rules governing the storage backed by

the USING.

Many of the mapping macros exploit the fact that DC expands as a DS in a DSECT

and as a DC with its initialized value in a CSECT. When these fields are expanded

as or within DSECTs, the program is responsible for initializing the necessary fields.

© Copyright IBM Corp. 1996, 2006 443

Macros mapping parameter options

Specifying DSECT=YES (the default for all macros) creates a DSECT.

Addressability requires a USING and a register pointing to storage.

Specifying DSECT=NO (exceptions are listed when this is not allowed) allocates

space in the current DSECT or CSECT. In reentrant programs, programmers can

place these macros in the DSECT with DSECT=NO, and addressability is

accomplished without the individual USING required by DSECT=YES. Nonreentrant

programs can place their macros in the program’s CSECT, and addressability is

obtained through the program base register(s).

Specifying LIST=YES (the default for most macros) causes the expansion of the

macro to appear in the listing. You can override this by using PRINT OFF.

Specifying LIST=NO removes the macro expansion from the listing.

Additional keywords VARLEN and PREFIX are described in the individual sections

where they apply.

Mapping Macros

444 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPXYATTR — Map file attributes for v_ system calls

 ** BPXYATTR: File attributes for callable services 01626000

** Used By: VRP VLK VRW VCR VMD VSY VGA VSA 01627000

 AIF (’&DSECT;’ EQ ’NO’).B411 01628000

ATTR DSECT , 01629000

 AGO .C411 01630000

.B411 ANOP , 01640000

 DS 0D Clear storage 01650000

ATTR DC XL(ATTR#LENGTH)’00’ 01660000

 ORG ATTR 01670000

.C411 ANOP , 01680000

ATTRBEGIN DS 0D 01690000

* 01700000

ATTRHDR DS 0D ATTR Header 01710000

ATTRID DC C’ATTR’ *01720000

 Eye Catcher 01730000

ATTRSP DC AL1(ATTR#SP) *01740000

 Subpool number of this ATTR 01750000

ATTRLEN DC AL3(ATTR#LENGTH) *01760000

 Length of this Attr 01770000

ATTRSTAT DS 0D stat() structure 01780000

ATTRMODE DS 0F File Mode mapped by BPXYMODE 01790000

ATTRTYPE DS AL1 First byte of mode is file type, *01800000

 mapped by BPXYFTYP 01810000

ATTRREMMODE DS AL3 Name to know the last 3 byte 01820000

ATTRINO DS F File Serial Number 01830000

ATTRDEV DS F Device ID of the file 01840000

ATTRLINK DS F Number of links 01850000

ATTRUID DS F User ID of owner of the file 01860000

ATTRGID DS F Group ID of Group of file 01870000

ATTRSIZE DS 0D File Size in bytes, for *01880000

 regular file. This is *01890000

 unspecified for others. 01900000

ATTRSIZE_H DS F First word of size 01910000

ATTRSIZE_L DS F Second word of size 01920000

ATTRATIME DS F Time of last access 01930000

ATTRMTIME DS F Time of last data mod 01940000

ATTRCTIME DS F Time of last file stat chng 01950000

ATTRMAJORNUMBER DS F Major number for this file, *01960000

 if it is a character *01970000

 special file. 01980000

ATTRMINORNUMBER DS F Minor number for this file, *01990000

 if it is a character *02000000

 special file. 02010000

ATTRSTAT2 DS 0F second part of the stat 02020000

ATTRAUDITORAUDIT DS 0F Area for auditor audit info 02030000

ATTRAUDITORAUDIT1 DS XL1 Auditor audit byte 1 02040000

ATTRAUDITORAUDIT2 DS XL1 Auditor audit byte 2 02050000

ATTRAUDITORAUDIT3 DS XL1 Auditor audit byte 3 02060000

ATTRAUDITORAUDIT4 DS XL1 Auditor audit byte 4 02070000

ATTRAAUDIT EQU X’01’ ON = auditor audit info *02080000

 change request *02090000

 (ON when AttrMAAudit = ON) 02100000

ATTRUSERAUDIT DS 0F Area for user audit info 02110000

ATTRUSERAUDIT1 DS XL1 User audit byte 1 02120000

ATTRUSERAUDIT2 DS XL1 User audit byte 2 02130000

ATTRUSERAUDIT3 DS XL1 User audit byte 3 02140000

ATTRUSERAUDIT4 DS XL1 User audit byte 4 02150000

ATTRNOTAAUDIT EQU X’01’ Always OFF to indicate *02160000

 this is NOT auditor audit *02170000

 info 02180000

ATTRBLKSIZE DS F File Block Size 02190000

ATTRCREATETIME DS F File Creation Time 02200000

ATTRAUDITID DS CL16 RACF File ID for auditing 02210000

* 02220000

ATTRGUARDTIME ORG ATTRAUDITID Guard Time @D7A 02230000

BPXYATTR

Appendix B. Mapping macros 445

ATTRGUARDTIMESEC DS F Seconds @D7A 02240000

ATTRGUARDTIMEMSEC DS F Micro_Seconds @D7A 02250000

 ORG ATTRAUDITID @D7A 02260000

ATTRCVER DS CL8 Creation Verifier @D7A 02270000

 DS CL8 Spacer @D7A 02280000

* 02290000

ATTRRES01 DS F Reserved 02300000

ATTRGENMASK DS 0F Mask to indicate which *02310000

 General attributes bit to *02320000

 modify *02330000

 --Masks AttrGenValue 02340000

ATTROPAQUEMASK DS XL3 Opaque attribute flags - *02350000

 Reserved for ADSTAR use 02360000

ATTRVISIBLEMASK DS XL1 Visible attribute flags 02370000

ATTRNODELFILESMASK EQU X’20’ Files should not be deleted @P1A 02380000

ATTRSHARELIBMASK EQU X’10’ Shared Library @D6A 02390000

ATTRNOSHAREASMASK EQU X’08’ No shareas flag @D8A 02400000

ATTRAPFAUTHMASK EQU X’04’ APF authorized flag @D6A 02410000

ATTRPROGCTLMASK EQU X’02’ Program controlled flag @D6A 02420000

ATTREXTLINKMASK EQU X’01’ External Symlink flag *02430000

 Mask bit not used on *02440000

 vn_setattr 02450000

ATTRSETFLAGS DS 0XL4 Flags - which fields to set 02460000

ATTRSETFLAGS1 DS XL1 Flag byte 1 02470000

ATTRMODECHG EQU X’80’ Change to the mode indicated 02480000

ATTROWNERCHG EQU X’40’ Change to Owner indicated 02490000

ATTRSETGEN EQU X’20’ Set General attributes 02500000

ATTRTRUNC EQU X’10’ Truncate size 02510000

ATTRATIMECHG EQU X’08’ Change the Atime 02520000

ATTRATIMETOD EQU X’04’ Change to the Current Time 02530000

ATTRMTIMECHG EQU X’02’ Change the Mtime 02540000

ATTRMTIMETOD EQU X’01’ Change to the Current Time 02550000

ATTRSETFLAGS2 DS XL1 Flag byte 2 02560000

ATTRMAAUDIT EQU X’80’ Modify auditor audit info 02570000

ATTRMUAUDIT EQU X’40’ Modify user audit info 02580000

ATTRCTIMECHG EQU X’20’ Change the Ctime 02590000

ATTRCTIMETOD EQU X’10’ Change Ctime to the Current *02600000

 Time 02610000

ATTRREFTIMECHG EQU X’08’ Change the RefTime 02620000

ATTRREFTIMETOD EQU X’04’ Change RefTime to Current Time 02630000

ATTRFILEFMTCHG EQU X’02’ Change File Format @D5A 02640000

ATTRGUARDTIMECHK EQU X’01’ Guard Time Check Requested @D7A 02650000

ATTRSETFLAGS3 DS XL1 Flag byte 3 - reserved 02660000

ATTRCVERSET EQU X’80’ Creation Verifier Set @D7A 02670000

ATTRCHARSETIDCHG EQU X’40’ CharSetId Change @D9A 02680000

ATTRSETFLAGS4 DS XL1 Flag byte 4 - reserved *02690000

 02700000

ATTRSTAT3 DS 0F Third part of the stat 02710000

ATTRCHARSETID DS CL12 Coded Character set id 02720000

 ORG ATTRCHARSETID @D9A 02730000

ATTRFILETAG DS CL4 File Tag @D9A 02740000

 DS CL8 Reserved @D9A 02750000

ATTRBLOCKS_D DS 0F Double word num blocks 02760000

ATTRBLOCKS_H DS F First word of blocks 02770000

ATTRBLOCKS DS F Number of blocks allocated 02780000

ATTRGENVALUE DS 0F General attribute values *02790000

 --Masked by AttrGenMask 02800000

ATTROPAQUE DS XL3 Opaque attribute flags - *02810000

 Reserved for ADSTAR use 02820000

ATTRVISIBLE DS XL1 Visible attribute flags 02830000

ATTRNODELFILES EQU X’20’ Files should not be deleted @P1A 02840000

ATTRSHARELIB EQU X’10’ Shared Library flag @D8A 02850000

ATTRNOSHAREAS EQU X’08’ No shareas flag @D6A 02860000

ATTRAPFAUTH EQU X’04’ APF authorized flag @D6A 02870000

ATTRPROGCTL EQU X’02’ Program controlled flag @D6A 02880000

ATTREXTLINK EQU X’01’ External Symlink 02890000

ATTRREFTIME DS F Reference Time - *02900000

BPXYATTR

446 z/OS V1R7.0 UNIX System Services File System Interface Reference

Reserved for ADSTAR use 02910000

 DS 0F Align ATTRFID 02920000

ATTRFID DS CL8 File Identifier 02930000

ATTRFILEFMT DS XL1 File Format @D5A 02940000

ATTRFSPFLAG2 DS XL1 IFSP_FLAG2 @DBA 02950000

ATTRACCESSACL EQU X’80’ Access ACL exists @DBA 02960000

ATTRFMODELACL EQU X’40’ File Model ACL exists @DBA 02970000

ATTRDMODELACL EQU X’20’ Directory Model ACL exists @DBA 02980000

ATTRRES02 DS CL2 Reserved for future @DBC 02990000

* 03000000

ATTRCTIMEMSEC DS F Ctime Micro_Seconds @D7A 03010000

ATTRSECLABEL DS CL8 Security Label @DBA 03020000

ATTRRES03 DS CL4 Reserved for future @DBC 03030000

ATTRENDVER1 EQU * End of Version 1 ATTR 03040000

* 03050000

ATTRATIME64 DS D Access Time @DAA 03060000

ATTRMTIME64 DS D Data Mod Time @DAA 03070000

ATTRCTIME64 DS D Medadata Change Time @DAA 03080000

ATTRCREATETIME64 DS D File Creation Time @DAA 03090000

ATTRREFTIME64 DS D Reference Time @DAA 03100000

 DS D @DAA 03110000

 DS CL16 Reserved @DAA 03120000

ATTRENDVER2 EQU * End of Version 2 ATTR @DAA 03130000

* 03140000

* Constants 03150000

* 03160000

ATTR#LEN EQU *-ATTRBEGIN *03170000

 Length of ATTR 03180000

ATTR#LENGTH EQU ATTR#LEN Length of ATTR 03190000

ATTR#MINLEN EQU ATTRENDVER1-ATTRBEGIN *03200000

 Minimum length of valid ATTR 03210000

ATTR#SP EQU 2 Subpool for the ATTR 03220000

** BPXYATTR End 03230000

BPXYATTR

Appendix B. Mapping macros 447

BPXYBRLK — Map the byte range lock request for fcntl

 BPXYBRLK ,

** BPXYBRLK: External Byte Range Locking interface control block

** Used By: FCT

BRLK DSECT ,

L_TYPE DS H Requested lock type:

F_RDLCK EQU 1 Shared or read lock

F_WRLCK EQU 2 Exclusive or write lock

F_UNLCK EQU 3 Unlock

L_WHENCE DS H Flag for starting offset

L_START DS 0CL8 Relative offset in bytes

L_START_H DS F High word of relative offset

L_START_L DS F Low word of relative offset

L_LEN DS 0CL8 Size of lock in bytes

L_LEN_H DS F High word of size of lock in bytes

L_LEN_L DS F Low word of size of lock in bytes

L_PID DS F Process ID of process holding lock

BRLK#LENGTH EQU *-BRLK Length of this area

** BPXYBRLK End

BPXYBRLK

448 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPXYDIRE — Map directory entries for readdir

DSECT=NO is not allowed, the basing for the PFSOTHER data is not known as it

depends on the length of the name.

 BPXYDIRE ,

** BPXYDIRE: Mapping of directory entry

** Used By: RDD

* LA RegOne,buffer RegOne->BPX1RDD buffer and 1st DIRE

* USING DIRE,RegOne Addressability to DIRE

DIRE DSECT ,

DIRENTINFO DS 0X Fixed length information

DIRENTLEN DS H Entry length

DIRENTNAML DS H Name length

DIRENTNAME DS 0C Name

* LR RegTwo,RegOne RegTwo->DIRE

* LA RegTwo,4(RegTwo) RegTwo->start of name

* SLR RegThree,RegThree Clear register

* ICM RegThree,3,DIRENTNAML Load name length

* ALR RegTwo,RegThree RegTwo->end of name+1

* USING DIRENTPFSDATA,RegTwo Addressability to DIRENTPFSDATA

DIRENTPFSDATA DSECT , Physical file system-specific data

DIRENTPFSINO DS CL4 File Serial Number = st_ino

DIRENTPFSOTHER DS 0C Other PFS specific data

* ICM RegThree,3,DIRENTLEN Load entry length

* ALR RegOne,RegThree RegOne->Next DIRE in buffer

* BCT Return_Value,Back_to_process_next_DIRE

** BPXYDIRE End

BPXYDIRE

Appendix B. Mapping macros 449

BPXYFDUM — Logical file system dump parameter list

 BPXYFDUM ,

** BPXYFDUM: FDUM - LFS dump list passed to PFS initialization

FDUM DSECT ,

FDUMBEGIN DS 0D

*

FDUMPHDRINFO DS 0F

FDUMPENTS DS F NUMBER OF ENTRIES

FDUMPID DC C’FDUM’ EYE CATCHER

FDUMPHRES1 DS CL8 SPACE RESERVED FOR EXPANSION

*

FDUM#LENH EQU *-FDUMBEGIN

*

FDUMPDATA DSECT ,

 DS 0F ONE SET FOR EACH AREA TO DUMP

FDUMPSTOKEN DS CL8 STOKEN FOR DUMP

FDUMPRES1 DS CL8 RESERVED

FDUMPSTART DS F FIRST BYTE TO DUMP

FDUMPEND DS F LAST BYTE TO DUMP

*

FDUM#LENENT EQU *-FDUMPDATA

*

* To access the FDUM header (dumpptr must be a copy of pfsi_dumpptr):

* L RegOne,dumpptr RegOne->pfsi_dumpents from BPXYPFSI

* USING FDUM,RegOne Addressability to FDUM

*

* To access the first FDUMPDATA:

* LR RegTwo,RegOne RegTwo->FDUM

* LA RegTwo,FDUM#LENH(RegTwo) RegTwo->FDUMPDATA

* USING FDUMPDATA,RegTwo Addressability to FDUMPDATA fields

*

* To access the next FDUMPDATA:

* LA RegTwo,FDUM#LENENT(RegTwo) RegTwo-> next FDUMPDATA

*

** BPXYFDUM End

BPXYFDUM

450 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPXYFTYP — File type definitions

BPXYFTYP is composed only of EQUates. DSECT= is allowed but ignored.

 BPXYFTYP ,

** BPXYFTYP: File type definitions

** Used By: FST MKD MKN OPN

FT_DIR EQU 1 Directory File

FT_CHARSPEC EQU 2 Character Special File

FT_REGFILE EQU 3 Regular File

FT_FIFO EQU 4 Named Pipe (FIFO) File

FT_SYMLINK EQU 5 Symbolic link

* EQU 6 Reserved for Block Special

FT_SOCKET EQU 7 Socket File

*

** File format definitions (for chattr)

FTFFNA EQU 0 Not specified

FTFFBINARY EQU 1 Binary data

* Text data delimiters:

FTFFNL EQU 2 New Line

FTFFCR EQU 3 Carrage Return

FTFFLF EQU 4 Line Feed

FTFFCRLF EQU 5 CR & LF

FTFFLFCR EQU 6 LF & CR

** BPXYFTYP End

BPXYFTYP

Appendix B. Mapping macros 451

BPXYFUIO — Map file system user I/O block

 BPXYFUIO ,

** BPXYFUIO: User I/O block

** Used By: VRW VRD VRA

FUIO DSECT ,

FUIOBEGIN DS 0D

FUIOHDR DS 0D

*

FUIOID DC C’FUIO’ X

 EBCDIC ID - FUIO

FUIOLEN DC AL4(FUIO#LENGTH) X

 Length of this FUIO

FUIOINFO DS 0D Note: The following fields must X

 map to BPXZDDPL

FUIOBUFFERADDR DS F Buffer address for READ or X

 WRITE, etc. Address of iov X

 for READV and WRITEV

FUIOBUFFALET DS F Alet associated with Buffer

FUIOCURSOR DS 0F Current position in the file

FUIOCUR1 DS F Word 1 of cursor

FUIOCUR2 DS F Word 2 of cursor

FUIOIBYTESRW DS F Num of bytes to read or write X

 (or iovcnt for READV and WRITEV)

FUIOASID DS H Address Space ID

*

*

FUIOFLAGS DS XL1 Flags

*

FUIORWIND EQU FUIOFLAGS X

 Indicates if READ or WRITE X

 0 - Read, 1 - Write

FUIO#RD EQU X’7F’ Read: AND with FUIORWIND

FUIO#WRT EQU X’80’ Write: OR with FUIORWIND

*

FUIOPSWKEY EQU FUIOFLAGS X

 Describes bits 1 through 4 of X

 byte FUIOFLAGS

FUIOPSWKEYMASK EQU X’78’ AND with FUIOPSWKEY to clear X

 non-PSWKEY bits in FUIOFLAGS

*

FUIOSYNC EQU X’04’ Sync on write requested

FUIOSYNCDONE EQU X’02’ Sync on write was done

FUIOCHKACC EQU X’01’ Perform access checking

FUIOFLAG2 DS XL1 More flags

FUIOREALPAGE EQU X’80’ Real page address provided

FUIOLIMITEX EQU X’40’ File size limit exceeded

FUIOIOVINUIO EQU X’20’ uio contains an iov struc

FUIOSOCKINVALID EQU X’10’ Invalid Sockaddr address

FUIOVSPECIFIC DS CL8 Vnop Specific Fields

FUIOFSSIZELIMIT DS 0CL8 Rlimit support

FUIOFSSIZELIMITHW DS F hiword - filesize limit

FUIONONEWFILES EQU X’80’ can’t create new files

FUIOFSSIZELIMITLW DS F loword - filesize limit

FUIOREL2SIZE DS 0F Fuio before Rel 3 expansion

FUIOCURRBUFFPTR DS F Buffer currently being processed

FUIOCURRBUFFLEN DS F Length of current buffer

FUIOCURRBUFFOFFSET DS F Offset into current buffer

FUIOCURRIOVENTRY DS F Iov entry being processed

FUIOIOVRESIDUALCNT DS F Num bytes remaining in iov str

FUIOTOTALBYTESRW DS F Total number of bytes to be moved X

 If FuioIovinUio=on, X

 this is the sum of all bytes X

 in the iov. Otherwise, this is X

 the same as FuioIBytesRW

FUIORES01 DS CL8 Reserved area

FUIOEND DS 0F End of FUIO

BPXYFUIO

452 z/OS V1R7.0 UNIX System Services File System Interface Reference

*--

* ReadDir Specific Information

*--

FUIOREADDIR ORG FUIOVSPECIFIC

FUIORDINDEX DS F Readdir Index

FUIORDRES01 DS F Reserved

*--

* VN_ReadWriteV and VN_SRMsg Specific Information

*--

FUIOSOCKETALETS ORG FUIOVSPECIFIC

FUIOIOVALET DS F SRMsg IOV Alet

FUIOIOVBUFALET DS F All IOV’s Buff’s Alet

 ORG

*

* Constants

*

FUIO#LEN EQU FUIOEND-FUIOBEGIN X

 Length of FUIO

FUIO#LENGTH EQU FUIO#LEN Length of FUIO

FUIO#REL2LEN EQU FUIOREL2SIZE-FUIOBEGIN X

 Length of Release 2 FUIO

FUIO#SP EQU 3 Subpool for the FUIO

** BPXYFUIO End

BPXYFUIO

Appendix B. Mapping macros 453

BPXYIOC6 — ioctl network mapping information for IPV6

* %GOTO IOC6PLX ; /* Bilingual header 04450000

** 04500000

* NetConfHdr Structure * 04550000

** 04600000

* 04650000

.A411 ANOP , 04700000

 AIF (’&DSECT;’ EQ ’NO’).B411 04750000

NETCONFHDR DSECT , 04800000

 AGO .C411 04850000

.B411 ANOP , 04900000

NETCONFHDR DS 0F 04950000

.C411 ANOP , 05000000

NCHEYECATCHER DS CL4 Eye catcher 05050000

NCHIOCTL DS F Ioctl being processed (RAS) 05100000

NCHBUFFERLENGTH DS F Buffer Length 05150000

NCHBUFFERPTR DS F Buffer Pointer 05200000

NCHNUMENTRYRET DS F Number of HomeIF returned via *05250000

 SIOCGHomeIf6 or the number of *05300000

 GRT6RtEntry’s returned via *05350000

 SIOCGRT6TABLE. 05400000

NETCONFHDR#LENGTH EQU *-NETCONFHDR Length of NETCONFHDR 05450000

* 05500000

** 05550000

* HomeIf Structure * 05600000

** 05650000

* 05700000

 AIF (’&DSECT;’ EQ ’NO’).D411 05750000

HOMEIF DSECT , HomeIf structure 05800000

 AGO .E411 05850000

.D411 ANOP , 05900000

HOMEIF DS 0F HomeIf Structure 05950000

.E411 ANOP , 06000000

HomeIfAddress DS CL16 Home Interface Address 06050000

* 06100000

HomeIf#LENGTH EQU *-HOMEIF Length of HOMEIF 06150000

* 06200000

** 06250000

* GRT6RtEntry Structure * 06300000

** 06350000

* 06400000

 AIF (’&DSECT;’ EQ ’NO’).F411 06450000

GRT6RTENTRY DSECT , GRT6RtEntry Structure 06500000

 AGO .G411 06550000

.F411 ANOP , 06600000

GRT6RTENTRY DS 0F GRT6RtEntry Structure 06650000

.G411 ANOP , 06700000

* 06750000

GRT6DESTINATION DS CL16 Destination IP Address 06800000

GRT6GATEWAY DS CL16 First HOP on the trip if going through *06850000

 a gateway 06900000

GRT6DESTPREFIXLEN DS F Destination’s Prefix Length which is a *06950000

 decimal value that specifies how many *07000000

 of the leftmost contiguous bits of the*07050000

 address comprise the prefix 07100000

GRT6RTMETRIC DS F Metric - hop count. Currently Tcp/Ip *07150000

 returns 1 for indirect routes and 0 *07200000

 for direct routes. If route is from *07250000

 routing daemon, metric is whatever *07300000

 routing daemon set it to. 07350000

GRT6RTFLAGS DS F IPV6 Route Flags. 07400000

* 07450000

GRT6RTENTRY#LENGTH EQU *-GRT6RTENTRY Length of GRT6RTENTRY 07500000

* 07550000

** 07600000

* RT6Entry Structure * 07650000

BPXYIOC6

454 z/OS V1R7.0 UNIX System Services File System Interface Reference

** 07700000

* 07750000

 AIF (’&DSECT;’ EQ ’NO’).H411 07800000

RT6ENTRY DSECT , Rt6Entry Structure 07850000

 AGO .I411 07900000

.H411 ANOP , 07950000

RT6ENTRY DS 0F Rt6Entry Structure 08000000

.I411 ANOP , 08050000

* 08100000

RT6DESTINATION DS CL28 Destination IP address (in an IPV6 *08150000

 sockaddr structure) 08200000

RT6GATEWAY DS CL28 First HOP on the trip if going *08250000

 through a gateway (in an IPV6 *08300000

 sockaddr structure) 08350000

RT6DESTPREFIXLEN DS F Destination’s Prefix Length, *08400000

 which is a decimal value *08450000

 that specifies how many of *08500000

 the leftmost contiguous *08550000

 bits of the address *08600000

 comprise the prefix. 08650000

RT6METRIC DS F Metric - hop count *08700000

 Currently Tcp/IP returns *08750000

 1 for indirect route and *08800000

 0 for direct route. *08850000

 If route is from routing *08900000

 daemon, metric is whatever *08950000

 routing daemon set it to. 09000000

RT6FLAGS DS F IPV6 Route Flags. 09050000

* 09100000

RT6ENTRY#LENGTH EQU *-RT6ENTRY Length of RT6ENTRY 09150000

* 09200000

** 09250000

* IPV6RtFlags Structure * 09300000

** 09350000

* 09400000

 AIF (’&DSECT;’ EQ ’NO’).J411 09450000

IPV6RTFLAGS DSECT , IPV6RtFlags Structure 09500000

 AGO .K411 09550000

.J411 ANOP , 09600000

IPV6RTFLAGS DS 0F IPV6RtFlags Structure 09650000

.K411 ANOP , 09700000

* 09750000

IPV6FLGBYTE1 DS XL1 Reserved 09800000

IPV6FLGBYTE2 DS XL1 Reserved 09850000

IPV6FLGBYTE3 DS XL1 Reserved 09900000

IPV6FLGBYTE4 DS XL1 FLAGS: 09950000

* EQU X’80’ Reserved 10000000

* EQU X’40’ Reserved 10050000

* EQU X’20’ Reserved 10100000

* EQU X’10’ Reserved 10150000

IPV6BITHOME EQU X’08’ 1 = Home interface 10200000

IPV6BITHOST EQU X’04’ 1 = Host Route. 0 = Network Route 10250000

IPV6BITGATE EQU X’02’ 1 = Gateway 10300000

IPV6BITRTUP EQU X’01’ 1 = Route is active 10350000

* 10400000

** BPXYIOC6 End 10450000

 SPACE 3 10500000

 AIF (’&LIST;’ EQ ’YES’).Z411 10550000

 POP PRINT 10600000

.Z411 ANOP , 10650000

 MEND 10700000

 Terminating PL/X comment */ 10750000

 %IOC6PLX : ; 10800000

 10850000

 10900000

 /**/ 10950000

 /* The following code was requested by Raleigh */ 10954500

BPXYIOC6

Appendix B. Mapping macros 455

/**/ 10959000

 %dcl bpxyioc6_inc fixed external; 10963500

 %If bpxyioc6_inc = 0 10968000

 %Then 10972500

 %Do; 10977000

 %bpxyioc6_inc=1; 10981500

 10986000

 10990500

 /**/ 10995000

 /* */ 11000000

 /* Internet Protocol address type */ 11050000

 /* */ 11100000

 /**/ 11150000

 Declare 11200000

 IPV6Addr Type Char(16); /* IPV6 IP Address Type */ 11250000

 11300000

 /**/ 11350000

 /* */ 11400000

 /* The network configuration header is used with the SIOCGHomeIf6 */ 11450000

 /* and SIOCGRT6TABLE IOCTLs. */ 11500000

 /* */ 11550000

 /* When the USS Pre-Router issues the SIOCGHomeIf6 IOCTL, it passes */ 11600000

 /* the NetConfHdr filled in with the EyeCatcher, IOCTL, buffer */ 11650000

 /* length and buffer ptr. The stack returns HomeIf records in */ 11700000

 /* the supplied buffer and sets NchNumEntryRet with the number */ 11750000

 /* HomeIf records being returned. */ 11800000

 /* */ 11850000

 /* When the USS Pre-Router issues the SIOCGRT6TABLE IOCTL, it passes*/ 11900000

 /* the NetConfHdr filled in with the EyeCacther, IOCTL, buffer */ 11950000

 /* length and buffer ptr. The stack returns GRT6RtEntry records */ 12000000

 /* in the supplied buffer and sets NchNumEntryRet with the */ 12050000

 /* number of GRT6RtEntry records being returned. */ 12100000

 /* */ 12150000

 /* */ 12200000

 /**/ 12250000

 Declare 12300000

 1 NetConfHdr Bdy(Word) Based, /* Network Configuration Header */ 12350000

 3 NchEyeCatcher Char(4), /* Eye Catcher ’6NCH’ */ 12400000

 3 NchIOCTL Fixed(32), /* The IOCTL being processed 12450000

 with this instance of the 12500000

 NetConfHdr. (RAS item) */ 12550000

 3 NchBufferLength Fixed(31), /* Buffer Length */ 12600000

 3 NchBufferPtr Ptr(31), /* Buffer Pointer */ 12650000

 3 NchNumEntryRet Fixed(31); /* Number of HomeIF returned via 12700000

 SIOCGHomeIf6 or the number of 12750000

 GRT6RtEntry’s returned via 12800000

 SIOCGRT6TABLE. */ 12850000

 /**/ 12900000

 /* */ 12950000

 /*The mapping for the home interface record that is returned via the*/ 13000000

 /*SIOCGHomeIf6 IOCTL. */ 13050000

 /* */ 13100000

 /**/ 13150000

 Declare 13200000

 1 HomeIf Bdy(Word) Based, /* Home Interface Structure */ 13250000

 3 HomeIfAddress(*) Isa(IPV6Addr); /* Home Interface Address */ 13300000

 13350000

 /**/ 13400000

 /* */ 13450000

 /* The mapping for the Pre-Router Route Entry that is returned by */ 13500000

 /* the stack via SIOCGRT6TABLE. */ 13550000

 /* */ 13600000

 /* NOTE: The only difference between this route entry and the */ 13650000

 /* route entry used with the SIOCMSADDRT6 and SIOCMSDELRT6 */ 13700000

 /* IOCTLs is that "destination" and "gateway" are IP addresses*/ 13750000

 /* not SockAddr Structures. The reason for that is because */ 13800000

 /* the Pre-Router only needs the IP address so additional */ 13850000

BPXYIOC6

456 z/OS V1R7.0 UNIX System Services File System Interface Reference

/* buffer storage should not be obtained to hold SockAddr */ 13900000

 /* fields that are not used. */ 13950000

 /* */ 14000000

 /* The reasons why a SockAddr structure was used with the */ 14050000

 /* SIOCMSADDRT6 and SIOCMSDELRT6 route entry is: */ 14100000

 /* (1) This interface may be externalized via SIOCADDRT6 and */ 14150000

 /* SIOCDELRT6 which will use a Sockaddr structure between*/ 14200000

 /* routing daemons and the stack. */ 14250000

 /* (2) If the Pre-Router "intercepts" these IOCTLs, it could */ 14300000

 /* process them thus eliminating the need for the stack */ 14350000

 /* to send a SIOCMSADDRT6/DELRT6 IOCTL to the Pre-Router */ 14400000

 /* for route updates received from a routing daemon. */ 14450000

 /* */ 14500000

 /**/ 14550000

 Declare 14600000

 1 GRT6RtEntry Bdy(Word) Based, /* Route entry used with the 14650000

 SIOCGRT6TABLE IOCTL. */ 14700000

 3 GRT6Destination Isa(IPV6Addr), /* Destination IP address. */ 14750000

 3 GRT6Gateway Isa(IPV6Addr), /* First HOP on the trip if 14800000

 going through a gateway. */ 14850000

 3 GRT6DestPrefixLen Fixed(31), /* Destination’s Prefix Length 14900000

 which is a decimal value 14950000

 that specifies how many of 15000000

 the leftmost contiguous 15050000

 bits of the address 15100000

 comprise the prefix. */ 15150000

 3 GRT6RtMetric Fixed(31), /* Metric - hop count 15200000

 Currently Tcp/IP returns 15250000

 1 for indirect route and 15300000

 0 for direct route. 15350000

 If route is from routing 15400000

 daemon, metric is whatever 15450000

 routing daemon set it to.*/ 15500000

 3 GRT6RtFlags Isa(Ipv6RtFlags); /* IPV6 Route Flags. */ 15550000

 15600000

 /**/ 15650000

 /* */ 15700000

 /* The mapping for the Route Entry that is specified on the */ 15750000

 /* SIOCMSADDRT6 and SIOCMSDELRT6 IOCTLs. */ 15800000

 /* */ 15850000

 /* NOTE: This structure uses SockAddr structures for the */ 15900000

 /* "destination" and "gateway" addresses, the Grt6RtEntry */ 15950000

 /* uses Ip addresses. See the Grt6RtEntry structure for */ 16000000

 /* the reasons. */ 16050000

 /* */ 16100000

 /**/ 16150000

 Declare 16200000

 1 Rt6Entry Bdy(Word) Based, /* Route entry used with the 16250000

 SIOCMSADDRT6/DELRT6 IOCTLs */ 16300000

 16350000

 3 Rt6Destination /* Destination IP address (in a */ 16400000

 Isa(Sock_Inet6_SockAddr),/* sockaddr structure) */ 16450000

 16500000

 3 Rt6Gateway /* First HOP on the trip if */ 16550000

 Isa(Sock_Inet6_SockAddr),/* going through a gateway. */ 16600000

 16650000

 3 Rt6DestPrefixLen Fixed(31),/* Destination’s Prefix Length, 16700000

 which is a decimal value 16750000

 that specifies how many of 16800000

 the leftmost contiguous 16850000

 bits of the address 16900000

 comprise the prefix. */ 16950000

 3 Rt6Metric Fixed(31), /* Metric - hop count 17000000

 Currently Tcp/IP returns 17050000

 1 for indirect route and 17100000

 0 for direct route. 17150000

 If route is from routing 17200000

BPXYIOC6

Appendix B. Mapping macros 457

daemon, metric is whatever 17250000

 routing daemon set it to. */ 17300000

 3 Rt6Flags Isa(Ipv6RtFlags); /* IPV6 Route Flags. */ 17350000

 17400000

 /**/ 17450000

 /* */ 17500000

 /* The mapping for the route flags */ 17550000

 /* */ 17600000

 /**/ 17650000

 Declare 17700000

 1 IPV6RtFlags Type, /* Route Flags */ 17750000

 3 IPV6FlgByte1 Bit(8), /* Reserved */ 17800000

 3 IPV6FlgByte2 Bit(8), /* Reserved */ 17850000

 3 IPV6FlgByte3 Bit(8), /* Reserved */ 17900000

 3 IPV6FlgByte4 Bit(8), /* Reserved */ 17950000

 5 * Bit(4), /* Reserved */ 18000000

 5 IPV6BitHome Bit(1), /* 1 = Home Interface */ 18050000

 5 IPV6BitHost Bit(1), /* 1 = Host Route, 0=Network route*/ 18100000

 5 IPV6BitGate Bit(1), /* 1 = Gateway */ 18150000

 5 IPV6BitRtUp Bit(1); /* 1 = Route is active */ 18200000

 18250000

 /**/ 18300000

 /* */ 18350000

 /* Constants */ 18400000

 /* */ 18450000

 /**/ 18500000

 Declare 18508300

 IOC6_#HomeIfPrefixLen Constant(128); /* The prefix length for a 18516600

 home interface address 18524900

 returned on the 18533200

 SIOCGHomeIf6 IOCTL. */ 18541600

 Declare 18550000

 IOC6_Nch#Eye Char(4) Constant(’6NCH’); /* IPV6 Network Configuration 18600000

 Header EyeCatcher. */ 18650000

 /**/ 18700000

 /* */ 18750000

 /* Maximum hop count for the Metric fields: */ 18800000

 /* GRT6RtMetric */ 18850000

 /* Rt6Metric */ 18900000

 /* */ 18950000

 /**/ 19000000

 Declare 19050000

 IOC6_#MaxHopMetric Fixed(31) constant(16); 19100000

 19150000

 /**/ 19200000

 /* */ 19250000

 /* Constants used for size of control areas */ 19300000

 /* */ 19350000

 /**/ 19400000

 Declare 19450000

 IOC6_#MaxRoutes Fixed(31) Constant(600), 19500000

 IOC6_#Grt6RouteLen Fixed(31) Constant(Length(GRT6RtEntry)), 19550000

 /**/ 19562500

 /* Initial buffer size for SIOCGHomeIf6 and SIOCGRT6TABLE. */ 19575000

 /**/ 19587500

 IOC6_#MAXGRT6Len Fixed(31) Constant(IOC6_#MaxRoutes * 19600000

 Ioc6_#Grt6RouteLen), 19650000

 IOC6_#NetConfHdrLen Fixed(31) Constant(Length(NetConfHdr)); 19700000

 19750000

 19800000

 %End; /* End if bpxyioc6_inc = 1 */ 19850000

BPXYIOC6

458 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPXYIPCP — Map interprocess communication permissions

 BPXYIPCP ,

** BPXYIPCP: Interprocess Communications Permission

** Used By: MCT, MGT, SCT, SGT, QCT, QGT

IPC_PERM DSECT , Interprocess Communications

IPC_UID DS F Owner’s effective user ID

IPC_GID DS F Owner’s effective group ID

IPC_CUID DS F Creator’s effective user ID

IPC_CGID DS F Creator’s effective group ID

IPC_MODE DS XL4 Mode, mapped by BPXYMODE

IPC#LENGTH EQU *-IPC_PERM Length of Interprocess Control block

* Key:

IPC_PRIVATE EQU 0 Private key.

* Mode bits: Map over S_TYPE in BPXYMODE

IPC_CREAT EQU 1 Create entry if key does not exist.

IPC_EXCL EQU 2 Fail if key exists.

* Flag bits - semop, msgrcv, msgsnd:

IPC_NOWAIT EQU 1 Error if request must wait.

* Control Command:

IPC_RMID EQU 1 Remove identifier.

IPC_SET EQU 2 Set options.

IPC_STAT EQU 3 Access status.

* CONSTANTS WHICH MAP OVER BYTE S_TYPE, SEE BPXYMODE

** BPXYIPCP End

BPXYIPCP

Appendix B. Mapping macros 459

BPXYIPCQ — Map w_getipc structure

 BPXYIPCQ ,

** BPXYIPCQ: w_getipc interface mapping

** Used By: GET

IPCQ DSECT , Interprocess Communications - Query

IPCQLENGTH DS F IPCQ#LENGTH used by system call. If not

* equal, check BPXYIPCQ and system levels.

IPCQTYPE DS CL4 "IMSG", "ISEM", "ISHM", "OVER"

IPCQOVER DS 0F OVERVIEW MAPPING STARTS HERE

IPCQMID DS FL4 MEMBER ID

IPCQKEY DS XL4 KEY

IPCQIPCP DS CL20 MAPPED BY BPXYIPCP

IPCQGTIME DS XL4 TIME_T OF LAST ...GET()

IPCQCTIME DS XL4 TIME_T OF LAST ...CTL()

IPCQTTIME DS XL4 TIME_T CHANGED BY TERMINATION

IPCQREST DS 0C IPCQMSG, IPCQSHM, IPCQSEM

 ORG IPCQREST Message Queue unique data

 DS 0F

IPCQBYTES DS F # BYTES OF MESSAGES ON QUEUE

IPCQQBYTES DS F MAX # BYTES OF MESSAGES ALLOWED ON QUEUE

IPCQLSPID DS F PID OF LAST MSGSND()

IPCQLRPID DS F PID OF LAST MSGRCV()

IPCQSTIME DS F TIME_T OF LAST MSGSND()

IPCQRTIME DS F TIME_T OF LAST MSGRCV()

IPCQNUM DS F # OF MESSAGES ON QUEUE

IPCQRCNT DS F COUNT OF WAITING MSGRCV

IPCQSCNT DS F COUNT OF WAITING MSGSND

 DS 0CL16 MSGRCV AND MSGSND WAITERS

 DS 0CL8 MSGRCV - WAIT FOR TYPE

IPCQQRPID DS F PROCESS ID

IPCQQRMSGTYPE DS F MESSAGE TYPE

 DS 0CL8 MSGSND - WAIT FOR ROOM TO SEND

IPCQQSPID DS F PROCESS ID

IPCQQSMSGLEN DS F MESSAGE LENGTH

 DS 9CL16 MSGSND AND MSGRCV WAITERS

 ORG IPCQREST Semaphore Unique data

 DS 0F

IPCQLOPID DS XL4 PID OF LAST SEMOP

IPCQOTIME DS F TIME_T LAST SEMOP

IPCQADJBADCNT DS F TERMINATION BUMPS SEM_VAL LIMITS

IPCQNSEMS DS FL2 NUMBER OF SEMAPHORES IN THIS SET

IPCQADJCNT DS FL2 NUMBER OF UNDO STRUCTURES

IPCQNCNT DS FL2 COUNT OF WAITERS FOR >0

IPCQZCNT DS FL2 COUNT OF WAITERS FOR =0

 DS 0CL16 WAITERS AND ADJUSTERS

 DS 0CL8 WAITER

IPCQSWPID DS F PROCESS ID

IPCQSWNUM DS H SEMAPHORE NUMBER

IPCQSWOP DS H SEMAPHORE OPERATION

 DS 0CL8 ADJUSTER

IPCQSAPID DS F PROCESS ID

IPCQSANUM DS H SEMAPHORE NUMBER

IPCQSAADJ DS H SEMAPHORE OPERATION

 DS 9CL16 WAITERS AND ADJUSTERS

 ORG IPCQREST Shared Memory unique data

 DS 0F

IPCQACNT DS F USE COUNT (#SHMAT - #SHMDT)

IPCQSEGSZ DS F MEMORY SEGMENT SIZE

IPCQDTIME DS F TIME_T OF LAST SHMDT()

IPCQATIME DS F TIME_T OF LAST SHMAT()

IPCQLPID DS F PID OF LAST SHMAT() OR SHMDT()

IPCQCPID DS XL4 PID OF CREATOR

IPCQATPID DS F ATTACHED PROCESS ID

IPCQATADDRESS DS F SEGMENT ADDRESS FOR PROCESS

 DS 18F MORE ATTACHED PROCESS IDS AND

* SEGMENT ADDRESS

BPXYIPCQ

460 z/OS V1R7.0 UNIX System Services File System Interface Reference

ORG IPCQOVER Overview

 DS 0F MESSAGE QUEUES

IPCQOMSGNIDS DS F Maximum number MSQs allowed

IPCQOMSGHIGHH2O DS F Most MSQs at one time

IPCQOMSGFREE DS F Number MSQs available

IPCQOMSGPRIVATE DS F Number MSQs with Ipc_PRIVATE

IPCQOMSGKEYED DS F Number MSQs with KEYs

IPCQOMSGREJECTS DS F TIMES MSGGET DENIED

IPCQOMSGQBYTES DS F MAX BYTES PER QUEUE

IPCQOMSGQMNUM DS F MAX NUMBER MESSAGES PER QUEUE

IPCQOMSGNOALC DS F # MSGSNDS THAT RETURNED ENOMEM

 DS F

 DS 0F SEMAPHORE

IPCQOSEMNIDS DS F Maximum number SEMs allowed

IPCQOSEMHIGHH2O DS F Most SEMs at one time

IPCQOSEMFREE DS F Number SEMs available

IPCQOSEMPRIVATE DS F Number SEMs with Ipc_PRIVATE

IPCQOSEMKEYED DS F Number SEMs with KEYs

IPCQOSEMREJECTS DS F TIMES SEMGET DENIED

IPCQOSEMSNSEMS DS F MAX NUMBER OF SEMAPHORES PER SET

IPCQOSEMSNOPS DS F MAX NUMBER OPERATION IN SEMOP

IPCQOSEMSBYTES DS F STORAGE LIMIT

IPCQOSEMCBYTES DS F STORAGE COUNT

 DS F

 DS 0F SHARED MEMORY

IPCQOSHMNIDS DS F Maximum number SHMs allowed

IPCQOSHMHIGHH2O DS F Most SHMs at one time

IPCQOSHMFREE DS F Number SHMs available

IPCQOSHMPRIVATE DS F Number SHMs with Ipc_PRIVATE

IPCQOSHMKEYED DS F Number SHMs with KEYs

IPCQOSHMREJECTS DS F TIMES SHMGET DENIED

IPCQOSHMSPAGES DS F MAX # PAGES PER SYSTEM LIMIT

IPCQOSHMMPAGES DS F MAX # PAGES PER SEGMENT LIMIT

IPCQOSHMNSEGS DS F MAX # SEGMENTS PER PROCESS LIMIT

IPCQOSHMCPAGES DS F CURRENT # BYTES SYSTEM WIDE

IPCQOSHMBIGGEST DS F LARGEST SEGMENT ALLOCATED

 ORG ,

IPCQ#LENGTH EQU *-IPCQ Storage needed for w_getipc function

* w-getipc Command:

IPCQ#MSG EQU 1 Retrieve next message queue

IPCQ#SHM EQU 2 Retrieve next shared memory segment

IPCQ#SEM EQU 3 Retrieve next semaphore set

IPCQ#ALL EQU 4 Retrieve next member, all mechanisms

IPCQ#OVER EQU 5 Retrieve overview

** BPXYIPCQ End

BPXYIPCQ

Appendix B. Mapping macros 461

BPXYMSG — Map interprocess communication message queues

DSECT (MSGBUF) will be generated with either DSECT=NO or DESECT=YES. If

DSECT=NO is specified, you may need an additional DSECT / CSECT statement to

return to the current DSECT or CSECT.

 BPXYMSG ,

** BPXYMSG: Interprocess Communication Message Queue Structure

** Used By: msgctl

MSQID_DS DSECT , message queue structure

MSG_PERM DS CL(IPC#LENGTH) Mapped by BPXYIPCP

MSG_QNUM DS F # of messages on queue

MSG_QBYTES DS F max bytes allowed on queue

MSG_LSPID DS F process ID of last msgsnd()

MSG_LRPID DS F process ID of last msgrcv()

MSG_STIME DS F time of last msgsnd()

MSG_RTIME DS F time of last msgrcv()

MSG_CTIME DS F time of last change get/ctl

MSQ#LENGTH EQU *-MSQID_DS Length of this DSECT

MSGBUF DSECT , Message buffer - msgsnd, msgrcv

MSG_TYPE DS F Message type

MSG_MTEXT DS CL100 Message text

MSGB#LENGTH EQU *-MSGBUF Length of this DSECT

MSGXBUF DSECT , Message buffer - msgxrcv

MSGX_MTIME DS F time message sent

MSGX_UID DS F sender’s effective UID

MSGX_GID DS F sender’s effective GID

MSGX_PID DS F sender’s PID

MSGX_TYPE DS F Message type

MSGX_MTEXT DS CL100 Message text

MSGX#LENGTH EQU *-MSGXBUF Length of this DSECT

* Flag bits - msgrcv (also IPC_NOWAIT

MSG_NOERROR EQU 4 No error if big message.

MSG_INFO EQU 8 Use MSGXBUF not MSGBUF format

** BPXYMSG End

BPXYMSG

462 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPXYMNTE — Map response and element structure of w_getmnte

DSECT (MNTENTPARMDATA) will be generated with either DSECT=NO or

DESECT=YES. If DSECT=NO is specified, you may need an additional DSECT /

CSECT statement to return to the current DSECT or CSECT.

 BPXYMNTE ,

** BPXYMNTE: OpenMVS w_getmntent response structure and element

** Used By: GMN

MNTEH DSECT ,

MNTEH DS 0F

MNTEHID DC C’MNTE’ Eye catcher

MNTEHID DC C’MNT2’ Eye catcher

MNTEHSIZE DC A(MNTE#LENGTH) Size of area (MNTEH+MNTE)

MNTEHCUR DC XL8’0000000000000000’

* Index of next element to return

* - must be zero (i.e.

* X’0000000000000000’),

* on initial call

* - must be left undisturbed

* for subsequent calls

MNTEHDEVNO DS F’0’ Device number - this value is

* specified if information about only

* one file system is requested

MNTEHRES1 DS A(0) Reserved for future - must be zero

* on entry

MNTEHBLEN DS F Length of mnte body used

MNTEHRES1 DS BL8 Reserved for future - must be zero

* on entry

MNTEH#LENGTH EQU *-MNTEH Length of header structure*

MNTE DSECT ,

*

MNTE DS 0F

MNTENTFSTYPE DS F File system type

MNTENTFSTYPEMVS EQU 1 MVS Local File System

MNTENTFSTYPEREMOTE EQU 2 Remote File System

MNTENTFSTYPEPIPE EQU 3 Pipe file system

MNTENTFSTYPESOCKET EQU 4 Socket file system

MNTENTFSTYPEXPFS EQU 5 Cross System PFS (XPFS)

MNTENTFSTYPECSPS EQU 6 Char special streams

MNTENTFSTYPENFS EQU MNTENTFSTYPEREMOTE

MNTENTFSMODE DS 0F File system mount flags

MNTENTFSMODE1 DS B File system mount method - byte 1

MNTENTFSMODE2 DS B File system mount method - byte 2

MNTENTFSMODE3 DS B File system mount method - byte 3

MNTENTFSMODE4 DS B File system mount method - byte 4

MNTENTFSCLIENT EQU X’20’ File system is a client

MNTENTFSNOAUTOMOVE EQU X’10’ Automove allowed

MNTENTFSMODENOSEC EQU X’08’ No Security checks enforced

MNTENTFSMODEEXPORT EQU X’04’ File system exported by DFS

MNTENTFSMODENOSUID EQU X’02’ SetUID not permitted for

* files in this file system

MNTENTFSMODERDONLY EQU X’01’ File system mounted read only

MNTENTFSMODERDWR EQU X’00’ File system mounted read/write

MNTENTFSDEV DS F st_dev value to be returned by

* the stat system call for all files

* in this file system

MNTENTPARENTDEV DS F st_dev of the parent file system

MNTENTROOTINO DS F ino of the mount point

MNTENTSTATUS DS B Status of the file system

MNTENTFILEACTIVE EQU B’00000000’ File system is active

MNTENTFILEDEAD EQU B’00000001’ File system is dead

MNTENTFILERESET EQU B’00000010’ File system being reset

MNTENTFILEDRAIN EQU B’00000100’ File system being unmounted with

* drain option

MNTENTFILEFORCE EQU B’00001000’ File system being unmounted with

BPXYMNTE

Appendix B. Mapping macros 463

* force option

MNTENTFILEIMMED EQU B’00010000’ File system being unmounted with

* immed option

MNTENTFILENORM EQU B’00100000’ File system being unmounted with

* normal option

MNTENTIMMEDTRIED EQU B’01000000’ File system Umount immed failed

MNTENTQUIESCED EQU B’10000000’ File system is quiesced

MNTENTMNTINPROGRESS EQU B’10000001’ Mount in progress for0

* this file system

MNTENTASYNCHMOUNT EQU B’10000010’ Asynchronous mount in progress

* for this file system

MNTENTFSDDNAME DS CL9 DDNAME specified on mount - null

* terminated

MNTENTFSTNAME DS CL9 File system type name -

* from the FILESYSTYPE parmlib

* statement - null terminated

MNTENTFSNAM44 DS CL44 File system name - as a 44 byte field

 ORG MNTENTFSNAM44

MNTENTFSNAME DS CL45 File system name - for PDSE/X, this

* is the name of the PDSE/X containing

* file system, null terminated

MNTENTPATHLEN DS F length of mount point path name

MNTENTMOUNTPOINT DS CL1024 Name of directory where the file

* system is mounted - (mount point

* path name - null terminated

MNTENTJOBNAME DS CL8 Job name of quiesce requestor

MNTENTPID DS F PID of quiesce requestor

MNTENTPARMOFFSET DS F Offset of MntEntParm from MNTE

* (Zero if none)

MNTENTPARMLEN DS H Length of mount parameter

* (Zero if none)

MNTENTRES01 DS H Reserved for future expansion

MNTENTRES02 DS 13F Reserved for future expansion

MNTENTSYSNAME DS CL8 Name of system to mount on

MNTENTQSYSNAME DS CL8 Name of queisce system name

MNTENTFROMSYS DS CL8 Filesystems to be moved from here

MNTENTRES00 DS 2B Alignment

MNTENTRFLAGS DS 0F Request flags

MNTENTRFLAGS1 DS B Request flags - byte 1

MNTENTRFLAGS2 DS B Request flags - byte 2

MNTENTRFLAGS3 DS B Request flags - byte 3

MNTENTRFLAGS4 DS B Request flags - byte 4

MNTENTCHANGE EQU X’01’ Change f.s. server request

MNTENTNEWAUTO EQU X’02’ Change automove setting

MNTENTSTATUS2 DS 0F Status of filesystem

MNTENTSTATUS2B1 DS B Status of filesystem - byte 1

MNTENTSTATUS2B2 DS B Status of filesystem - byte 2

MNTENTSTATUS2B3 DS B Status of filesystem - byte 3

MNTENTSTATUS2B4 DS B Status of filesystem - byte 4

MNTENTUNOWNED EQU B’00000001’ File system unowned

MNTENTINRECOVERY EQU B’00000010’ File system in recovery

MNTENTSUPERQUIESCED EQU B’00000100’ File system super quiesced

MNTENTSUCCESS DS F Successful moves

MNTENTREADCT DS F Number of reads from filesys

MNTENTWRITECT DS F Number of writes done

MNTENTDIRIBC DS F Number of directory I/O blocks

MNTENTREADIBC DS F Number of read I/O blocks

MNTENTWRITEIBC DS F Number of write I/O blocks

MNTENTBYTESREAD DS BL8 Number of bytes read

MNTENTBYTESWRITTEN DS BL8 Number of bytes written

MNTENTRES01 DS 6F Reserved for future expansion

MNTE#LENGTH EQU *-MNTE Length of this structure

*

MNTENTPARMDATA DSECT , Mount() parameter data dsect

MNTENTPARM DS 0C Parameter specified with mount()

*

* To access MNTEH, MNTE and MNTENTPARM:

BPXYMNTE

464 z/OS V1R7.0 UNIX System Services File System Interface Reference

* LA RegOne,buffer RegOne->BPX1GMN buffer and MNTEH

* USING MNTEH,RegOne Addressability to MNTEH

*

* LR RegTwo,RegOne RegTwo->MNTEH

* LA RegTwo,MNTEH#LENGTH(RegTwo) RegTwo->MNTE

* USING MNTE,RegTwo Addressability to MNTENTPARMLEN

* and MNTENTPARMOFFSET

*

* ICM RegThree,15,MNTENTPARMOFFSET Load offset from start of

* entry (i.e. start of MNTE)

* BZ SkipParm If zero, skip processing parm

* ALR RegThree,RegTwo RegTwo->MNTE,

* RegThree=MNTENTPARMOFFSET

* RegThree->MNTENTPARMDATA (after)

* USING MNTENTPARMDATA,RegThree Addressability to MNTENTPARMDATA

*

** BPXYMNTE End

BPXYMNTE

Appendix B. Mapping macros 465

BPXYMODE — Map the mode constants of the file services

 BPXYMODE ,

** BPXYMODE: Mode constants specified on system calls

** Used By: CHM FCM MKD MKN OPN UMK

S_MODE DSECT ,

 DS 0F

*

S_TYPE DS B File types, mapped by BPXYFTYP

* Flag bytes

S_MODE3B DS 0XL3 All flag bytes

S_RES01 DS 0BL.8 Reserved

S_MODE1 DS B Flag byte 1 - reserved

*

S_RES02 DS 0BL.4 Reserved

S_MODE2 DS B Flag byte 2

* Set ID flags

S_ISUID EQU X’08’ Set user ID on execution

S_ISGID EQU X’04’ Set group ID on execution

S_ISVTX EQU X’02’ Sticky Bit: For executables, look

* first in normal MVS search order

* For directories, deletion rstd

* to owner or superuser.

* Owner flags

S_IRWXU1 EQU X’01’ All permissions for user - part I

S_IRUSR EQU X’01’ Read permission

*

S_MODE3 DS B Flag byte 3

* Owner flags - continued

S_IRWXU2 EQU X’C0’ All permissions for user - Part II

S_IWUSR EQU X’80’ Write permission

S_IXUSR EQU X’40’ Search (if a directory) or

* execute (otherwise) permission

* Group flags

S_IRWXG EQU X’38’ All permissions for group

S_IRGRP EQU X’20’ Read permission

S_IWGRP EQU X’10’ Write permission

S_IXGRP EQU X’08’ Search (if a directory) or

* execute (otherwise) permission

* Other flags

S_IRWXO EQU X’07’ All permissions for other

S_IROTH EQU X’04’ Read permission

S_IWOTH EQU X’02’ Write permission

S_IXOTH EQU X’01’ Search (if a directory) or

* execute (otherwise) permission

S_MODE#LENGTH EQU *-S_MODE Length this structure

** BPXYMODE End

BPXYMODE

466 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPXYNREG — Map interface block to vnode registration

 BPXYNREG ,

** BPXYNREG: NREG - LFS Registration routine parameter list

** Used By: VRG

NREG DSECT ,

NREGBEGIN DS 0D

*

NREGID DC C’NREG’ Eye catcher

NREGLEN DC AL2(NREG#LENGTH) Length of the structure

NREGVER DC AL2(NREG#VERSION) NReg version number

NREGSTYPE DS F Server Type

NREGSNAMELEN DS F Length of Server name

NREGSNAME DS CL32 Server Name

NREGMAXVNTOKENS DS F Max # of VNTokens

NREGFLAGS DS CL1 Flags

NREGFXHOTC EQU X’80’ Exit uses HOTC

NREGNOWAIT EQU X’40’ for Quiesced FS

NREGRES01 DS CL3 Reserved field

NREGENDOFVER1 DS 0F End of Version 1

NREGFXEXITNAME DS CL8 Exit program name

NREGFXINITPARM DS CL8 Init parm for Exit

NREGABENDCODE DS F Abend Code received

NREGABENDRSN DS F Abend Reason Code

NREGPFSTYPE DS CL8 Dependant PFS

*

* Constants

*

NREG#LENGTH EQU *-NREGBEGIN Length of NREG

NREG#LENGTHVER1 EQU NREGENDOFVER1-NREGBEGIN Length of V1 NREG

NREG#VERSION1 EQU 1 NReg Version 1

NREG#VERSION2 EQU 2 NReg Version 2

NREG#VERSION EQU NREG#VERSION2 NReg Current Version

* NRegSType constants

NREGSTYPE#FILE EQU 1 File Server type

NREGSTYPE#LOCK EQU 2 Lock Server type

NREGSTYPE#FEXP EQU 3 File Exporter type

NREGSTYPE#MAX EQU 3 Max allowed srvr type

** BPXYNREG End

BPXYNREG

Appendix B. Mapping macros 467

BPXYOPNF — Map flag values for open

 BPXYOPNF ,

** BPXYOPNF: File status flags

** Used By: FCT OPN

O_FLAGS DSECT ,

O_FLAGS1 DS B Open flags - byte 1

OPNFHIGH EQU X’80’ DO NOT USE THIS BIT!

* O_FLAGS must never be < 0

O_FLAGS2 DS B Open flags - byte 2

OPNFEXEC EQU X’80’ Execute access requested -

* authorization required for use

O_FLAGS3 DS B Open flags - byte 3

O_ASYNCSIG EQU X’02’ An asynchronous signal may occur

O_SYNC EQU X’01’ Force synchronous updates

O_FLAGS4 DS B Open flags - byte 4

O_CREXCL EQU X’C0’ Create file only if non-existent

O_CREAT EQU X’80’ Create file

O_EXCL EQU X’40’ Exclusive flag

O_NOCTTY EQU X’20’ Not a controlling terminal

O_TRUNC EQU X’10’ Truncate flag

O_APPEND EQU X’08’ Set offset to EOF on write

O_NONBLOCK EQU X’04’ Don’t block this file

FNDELAY EQU X’04’ Don’t block this file

O_RDWR EQU X’03’ Open for Read and Write

O_RDONLY EQU X’02’ Open for Read Only

O_WRONLY EQU X’01’ Open for Write Only

O_ACCMODE EQU X’03’ Mask for file access modes

O_GETFL EQU X’0F’ Mask for file access modes and

* file status flags together

OPNF#LENGTH EQU *-O_FLAGS Length of this structure

** BPXYOPNF End

BPXYOPNF

468 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPXYOSS — Map operating system specific information

The numbers of file blocks read and written, along with the number of directory

blocks processed, are returned in the OssReadIBC, OssWriteIBC and OssDirIBC,

fields of the OSS. On return from the VFS Callable Service API, the block counts

present initially in the OSS have been incremented to reflect the counts for this call

to the service. Thus, to obtain the numbers of blocks processed on a particular call

to a VFS Callable Service API, set the block count fields to zero before calling the

service. To accumulate the block counts across a series of calls, pass the same

OSS to each, without modifying the count fields

The following OSS fields must be provided by the caller:

OssId Contains ’OSS ’

OssLen

Specifies the length of the OSS structure, OSS#LENGTH.

OSSReadIBC

Contains number of blocks read.

OSSWriteIBC

Contains number of blocks written.

OSSDirIBC

Contains number of directory blocks processed.
 BPXYOSS ,

** BPXYOSS: OSS - Operating System Specific Information

** Used By: v_ callable services

OSS DSECT ,

OSSBEGIN DS 0D

*

OSSID DC C’OSS ’ Eye catcher

OSSLEN DC AL4(OSS#LENGTH) Length of the structure

OSSDIRIBC DS F Directory I/O block cnt

OSSREADIBC DS F Read I/O block cnt

OSSWRITEIBC DS F Write I/O block cnt

OSSRSVD DS 3F Reserved

*

* Constants

*

OSS#LENGTH EQU *-OSSBEGIN Length of OSS

** BPXYOSS End

BPXYOSS

Appendix B. Mapping macros 469

BPXYPCF — Map pathconf values

BPXYPCF is composed only of EQUates. DSECT= is allowed but ignored.

 BPXYPCF ,

** BPXYPCF: Command values

** Used By: FPC PCF

PC_CHOWN_RESTRICTED EQU 1 _POSIX_CHOWN_RESTRICTED option

PC_LINK_MAX EQU 2 LINK_MAX option

PC_MAX_CANON EQU 3 _POSIX_MAX_CANON option

PC_MAX_INPUT EQU 4 _POSIX_MAX_INPUT option

PC_NAME_MAX EQU 5 NAME_MAX option

PC_NO_TRUNC EQU 6 _POSIX_NO_TRUNC option

PC_PATH_MAX EQU 7 PATH_MAX option

PC_PIPE_BUF EQU 8 PIPE_BUF option

PC_VDISABLE EQU 9 _POSIX_VDISABLE option

** BPXYPCF End

BPXYPCF

470 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPXYSSTF — Map the response structure for file system status

 BPXYSSTF ,

** BPXYSSTF: file system status response structure

** Used By: STF STV FTV VSF

SSTF DSECT ,

SSTFID DC C’SSTF’ EBCDIC ID - SSTF (f_OEcbid)

SSTFLEN DC A(SSTF#LENGTH) Length of SSTF (f_OEcblen)

SSTFBLOCKSIZE DS F Block size (f_bsize)

 DS F Reserved

SSTFDBLTOTSPACE DS 0D Name of dblword field - total

 DS F Reserved

SSTFTOTALSPACE DS F Total space. The total number of X

 blocks on file system in units of X

 f_frsize (f_blocks)

SSTFDBLUSEDSPACE DS 0D Name of dblword field - used

 DS F Reserved

SSTFUSEDSPACE DS F Allocated space in block size units X

 (f_OEusedspace)

SSTFDBLFREESPACE DS 0D Name of dblword field - free

 DS F Reserved

SSTFFREESPACE DS F Space available to unprivileged X

 users in block size units X

 (f_bavail)

SSTFENDVER1 EQU * End of Version 1 SSTF

SSTFFSID DS F File system ID (f_fsid) X

 Set by LFS

SSTFFLAG DS 0BL.32 Bit mask of f_flag vals

SSTFFLAGB1 DS XL1 byte 1

SSTFEXPORTED EQU X’40’ Filesys is exported X

 (ST_OEEXPORTED) X

 Set by LFS

SSTFFLAGB2 DS XL1 byte 2

SSTFFLAGB3 DS XL1 byte 3

SSTFFLAGB4 DS XL1 byte 4

SSTFNOSUID EQU X’02’ SetUID/SetGID not supported X

 (ST_NOSUID) X

 Set by LFS

SSTFRDONLY EQU X’01’ Filesys is read only X

 (ST_RDONLY) X

 Set by LFS

SSTFMAXFILESIZE DS 0D Name of dblword field - maximum X

 file size X

 May be set by LFS

SSTFMAXFILESIZEHW DS F High word of max file size X

 (f_OEmaxfilesizehw)

SSTFMAXFILESIZELW DS F Low word of max file size X

 (f_OEmaxfilesizelw)

 DS CL16 Reserved

SSTFENDLFSINFO EQU * End of LFS information

SSTFFRSIZE DS F Fundamental filesystem block size X

 (f_frsize)

 DS F Reserved

SSTFDBLBFREE DS 0D Name of dblword field - X

 total number of free blocks

 DS F Reserved

SSTFBFREE DS F Total number of free blocks X

 (f_bfree)

SSTFFILENODES DS 0CL12 File nodes

SSTFFILES DS F Total number of file nodes X

 in the file system (f_files)

SSTFFFREE DS F Total number of free file nodes X

 (f_ffree)

SSTFFAVAIL DS F Number of free file nodes available X

 to unprivileged users (f_favail)

SSTFNAMEMAX DS F Maximum file name len (f_namemax)

SSTFINVARSEC DS F Number of seconds file system X

BPXYSSTF

Appendix B. Mapping macros 471

will remain unchanged X

 (f_OEinvarsec)

 DS CL20 Reserved

SSTF#LENGTH EQU *-SSTF Length of this structure

SSTF#MINLEN EQU SSTFENDVER1-SSTF

SSTF#LFSLEN EQU SSTFENDLFSINFO-SSTF

** BPXYSSTF End

BPXYSSTF

472 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPXYSTAT — Map the response structure for stat

 BPXYSTAT ,

** BPXYSTAT: stat system call structure

** Used By: FST LST STA

STAT DSECT ,

ST_BEGIN DS 0D

*

ST_EYE DC C’STAT’ Eye catcher

ST_LENGTH DC AL2(STAT#LENGTH) X

 Length of this structure

ST_VERSION DC AL2(ST#VER) X

 Version of this structure

ST_MODE DS F File Mode, mapped by BPXYMODE

ST_INO DS F File Serial Number

ST_DEV DS F Device ID of the file

ST_NLINK DS F Number of links

ST_UID DS F User ID of the owner of the file

ST_GID DS F Group ID of the Group of the file

ST_SIZE DS 0D File Size in bytes, for regular

* files. Unspecified, for others

ST_SIZE_H DS F First word of size

ST_SIZE_L DS F Second word of size

ST_ATIME DS F Time of last access

ST_MTIME DS F Time of last data modification

ST_CTIME DS F Time of last file status change

* Time is in seconds since

* 00:00:00 GMT, Jan. 1, 1970

ST_RDEV DS 0F Device Information

ST_MAJORNUMBER DS H Major number for this file, if it

* is a character special file.

ST_MINORNUMBER DS H Minor number for this file, if it

* is a character special file.

ST_AUDITORAUDIT DS F Area for auditor audit info

ST_USERAUDIT DS F Area for user audit info

ST_BLKSIZE DS F File Block size

ST_CREATETIME DS F File Creation Time

ST_AUDITID DS 4F RACF File ID for auditing

ST_RES01 DS F

ST_CHARSETID DS 3F Coded Character Set ID

ST_BLOCKS_D DS 0D Double word number - blocks allocated

ST_RES02 DS F

ST_BLOCKS DS F Number of blocks allocated

ST_GENVALUE DS F General attribute values

ST_REFTIME DS F Reference time

ST_FID DS 2F File identifier

ST_FILEFMT DS XL1 File Format

ST_RES03 DS CL19 Reserved for future

*

* Constants

*

ST#VER EQU ST#VER01 Current version

ST#VER01 EQU 1 Version 1 of this structure

STAT#LENGTH EQU *-STAT Length of STAT

ST#LEN EQU STAT#LENGTH Length of STAT

** BPXYSTAT End

BPXYSTAT

Appendix B. Mapping macros 473

BPXYVLOK — Map the interface block for v_lockctl

The BPXYVLOK macro maps the interface block to pass locking information via the

v_lockctl service.

 BPXYVLOK ,

** BPXYVLOK: VLOK - Vnode Service Byte Range Locking structure

VLOK DSECT ,

VLOKBEGIN DS 0D

*

VLOKID DC C’VLOK’ Eye catcher

VLOKLEN DC AL4(VLOK#LENGTH) Length of the structure

VLOKLOCKER DS 0F Locker

VLOKSERVERPID DS F Server’s Process ID

VLOKCLIENTPID DS F Server’s Client’s PID

VLOKLOCKERTOK DS CL8 Locker Token

VLOKCLIENTTID DS CL8 Client’s Thread ID

VLOKOBJECT DS 0F Object - a locked file

VLOKOBJCLASS DS F Object Class

VLOKOBJID DS 0CL12 Object ID @D1C

VLOKOBJDEV DS CL4 Object Device ID

VLOKOBJFID DS CL8 Object File ID

VLOKOBJTOK DS CL8 Object token

VLOKDOS DS 0F DOS file sharing fields

VLOKDOSMODE DS CL1 DOS client mode

VLOKDOSACCESS DS CL1 DOS client access

VLOKBLKLOCKLEN DS CL1 VlokBlockingLock length

VLOKSUBFUNCTION DS CL1 Internal SubFunction

VLOKRSVD DS CL4 Reserved

VLOKVNTOKEN DS CL8 Vnode Token

VLOKBRLK DS CL24 Lock Information mapped

* by BPXYBRLK

VLOKENDVER1 DS 0F --- END OF VERSION 1 -------

 DS F

VLOKBLOCKINGLOCK DS A Ptr to Ret Blocking Lock

VLOKUNION DS 0CL12

VLOKAIOEXT ORG VLOKUNION Async Extension

 DS F Reserved

VLOKAIOCB DS A Async Locking Aiocb

VLOKAIOCBLEN DS F Async Aiocb Length

*

VLOKUNLOADLOCKSEXT ORG VLOKUNION Unload Locks Extension

 DS F Reserved

VLOKULLOUTLISTPTR DS A Output List Ptr

VLOKULLSUBPOOL DS CL1 Storage Subpool

 DS CL1

VLOKULLRETWAITERS DS CL1 Return Waiters too

*

VLOKPURGEEXT ORG VLOKUNION Purge Locks Mask Ext

 DS F Reserved

VLOKPGMASKS DS A VlokObjOwnMasks

VLOKPGMASKSLEN DS F Length of the two masks

*

 DS CL12

VLOKENDVER2 DS 0F --- End of Version 2 -------

*

* Constants

*

VLOK#LENGTH EQU *-VLOKBEGIN Length of VLOK

VLOK#HFS EQU 0 HFS Object Class

VLOK#MVS EQU 1 MVS Object Class

BPXYVLOK

474 z/OS V1R7.0 UNIX System Services File System Interface Reference

VLOK#LFSESA EQU 2 LFS/ESA Object Class

*

* Constants for V_lockctl commands

*

VLOK#REGLOCKER EQU 1 Register Locker

VLOK#UNREGLOCKER EQU 2 Unregister Locker

VLOK#LOCK EQU 3 Lock object’s byte range

VLOK#LOCKWAIT EQU 4 Lock object’s byte range +

 - wait if blocked

VLOK#UNLOCK EQU 5 UnLock object’s byte range

VLOK#QUERY EQU 6 Query byte range for locks

VLOK#PURGE EQU 7 Purge all locks for a locker

VLOK#LOCKASY EQU 8 Lock Asynchronously

VLOK#LOCKCANCEL EQU 9 Cancel Async Lock

VLOK#UNLOADLOCKS EQU 10 Unload BRLM Locks

*

* Constants for UnLoadLocks

*

VLOK#RETWAITERS EQU 1 Ret Held & Waiters

VLOK#RETALLOBJ EQU 3 Total UnLoad

*

* Mask structure for Purge Locks

*

VLOKOBJOWNMASKS DSECT ,

VLOKOBJECTMASK DS 0CL16 Object Id Mask

VLOKOBJCLASSMASK DS CL4 Object Class

VLOKOBJDEVMASK DS CL4 Object Devno (HFS)

VLOKOBJFIDMASK DS CL8 Object Fid (HFS)

VLOKOWNERMASK DS 0CL16 Owner Id Mask

VLOKLOCKERMASK DS 0CL8 Locker Mask

VLOKSPIDMASK DS CL4 Server PID Mask

VLOKCPIDMASK DS CL4 Client PID Mask

VLOKTIDMASK DS CL8 Thread Id Mask

*

** BPXYVLOK END

BPXYVLOK

Appendix B. Mapping macros 475

BPXYVOPN — Map the open parameters structure for v_open

The BPXYVOPN macro maps the structure of the Open_Parms parameter of the

v_open service.

 BPXYVOPN ,

** BPXYVOPN: V_open Parameters

VOPN DSECT ,

VOPNOPENTYPE DS F Type of v_open

VOPNOPENOWNER DS CL16 Owner identification

VOPNSHRACCESS DS F Read, Write, or Both

VOPNSHRDENY DS F None, Read, Write, Both

VOPNOPENTOKEN DS CL8 Output/Input Open Token

VOPNVNTOKEN DS CL8 Output Vnode Token

VOPNFLAGS DS F Open Flags @D1A

 DS CL12 @D1C

*

VOPN#LENGTH EQU *-VOPN Length of this structure

*

** VopnOpenType Values:

*

OPEN_CREATE_UNCHECKED EQU 1

OPEN_CREATE_GUARDED EQU 2

OPEN_CREATE_EXCLUSIVE EQU 3

OPEN_FILE EQU 4

OPEN_NLM_SHR EQU 5

OPEN_UPGRADE EQU 6

OPEN_DOWNGRADE EQU 7

*

** VopnShrAccess Values:

*

SHRACC_WRITE EQU 1

SHRACC_READ EQU 2

SHRACC_BOTH EQU 3

*

** VopnShrDeny Values: @D1C

*

SHRDENY_NONE EQU 0

SHRDENY_WRITE EQU 1

SHRDENY_READ EQU 2

SHRDENY_BOTH EQU 3

*

** VopnFlags Values:

*

SHRMOD_NONE EQU 0

SHRMOD_DENY EQU 1

SHRMOD_ACC EQU 2

SHRMOD_BOTH EQU 3

*

** BPXYVOPN End

BPXYVOPN

476 z/OS V1R7.0 UNIX System Services File System Interface Reference

Appendix C. Callable services examples

These examples follow the rules of reentrancy. They use DSECT=NO and place the

variables in the program’s dynamic storage DSECT, which is allocated upon entry.

The examples are arranged alphabetically and have references to the mapping

macros they use. The declaration for all local variables used in the examples

follows the examples.

© Copyright IBM Corp. 1996, 2006 477

Reentrant entry linkage

This entry linkage is reentrant and saves the caller’s registers, allocates a save

area and dynamic storage, and establishes program and dynamic storage base

registers. This entry linkage is paired with the return linkage that is located at the

end of the executable program; see “Reentrant return linkage” on page 499.

 TITLE ’Alphabetical Invocation of OpenMVS Callable Services’

BPXB5SM6 CSECT , Reentrant entry linkage

BPXB5SM6 AMODE 31

BPXB5SM6 RMODE ANY

 USING *,R15 Program addressability

@ENTRY0 B @ENTRY1 Branch around program header

 DROP R15 R15 not needed for addressability

 DC C’BPXB5SM6 - Reentrant callable service examples’

 DS 0H Ensure half word boundary

@ENTRY1 STM R14,R12,12(R13) Save caller’s registers

 LR R2,R13 Hold address of caller’s area

 LR R3,R1 Hold parameter register

 LR R12,R15 R12 program base register

 LA R11,2048(,R12) Second program base register

 LA R11,2048(,R11) Second program base register

 LA R9,2048(,R11) Third program base register

 LA R9,2048(,R9) Third program base register

 USING @ENTRY0,R12,R11,R9 Program addressability

 L R0,@SIZEDAT Size this program’s getmain area

 GETMAIN RU,LV=(0) Getmain storage

 LR R13,R1 R13 -> this program’s save area

 LA R10,2048(,R13) Second getmain base register

 LA R10,2048(,R10) Second getmain base register

 USING @STORE,R13,R10 Getmain addressability

 ST R2,@BACK Save caller’s save area pointer

 ST R13,8(,R2) Give caller our save area

 LR R1,R3 Restore parameter register

@ENTRY2 EQU * * * * * * * End of the entry linkage code

 SPACE ,

PSEUDO EQU * Dummy label used throughout

478 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VCR, BPX4VCR (v_create) example

The following code creates a new and empty regular file named fnewprots in a

previously looked-up directory whose vnode token is in DIRVNODETOK with user

read-execute, group write, other read-execute permissions. For the callable service,

see “v_create (BPX1VCR, BPX4VCR) — Create a file” on page 270. For the data

structures, see “BPXYATTR — Map file attributes for v_ system calls” on page 445,

“BPXYFTYP — File type definitions” on page 451, “BPXYMODE — Map the mode

constants of the file services” on page 466 and “BPXYOSS — Map operating

system specific information” on page 469.

 MVC BUFFERA(9),=CL9’fnewprots’

 MVC BUFLENA,=F’9’

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC ATTRSTOR,ATTR Initialize BPXYATTR area

 XC S_MODE,S_MODE Clear mode

 MVI S_TYPE,FT_REGFILE Set regular file type

 MVI S_MODE2,S_IRUSR Read-execute/write/read-execute

 MVI S_MODE3,S_IXUSR+S_IWGRP+S_IROTH+S_IXOTH

 LA R5,ATTRSTOR Address and

 USING ATTR,R5 map BPXYATTR area

 MVC ATTRMODE,S_MODE Move mode data to attribute +

 structure

 DROP R5

 SPACE ,

 CALL BPX1VCR, Create a file +

 (DIRVNODETOK, Input: Directory vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 BUFLENA, Input: New file name length +

 BUFFERA, Input: New file name +

 =A(ATTR#LENGTH), Input: BPXYATTR length +

 ATTRSTOR, Input/output: BPXYATTR +

 VNODETOK, Output: New file Vnode token +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VCR, BPX4VCR (v_create) Example

Appendix C. Callable services examples 479

BPX1VSF, BPX4VSF (v_fstatfs) example

The following code obtains the status of the file system containing the previously

looked-up file whose vnode token is in VNODETOK. For the callable service, see

“v_fstatfs (BPX1VSF, BPX4VSF) — Return file system status” on page 279. For the

data structures, see “BPXYSSTF — Map the response structure for file system

status” on page 471, and “BPXYOSS — Map operating system specific information”

on page 469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 SPACE ,

 CALL BPX1VSF, Obtain file system status +

 (VNODETOK, Input: Vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 =A(SSTF#LENGTH), Input: BPXYSSTF length +

 SSTF, Output: BPXYSSTF +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VSF, BPX4VSF (v_fstatfs) Example

480 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VGT, BPX4VGT (v_get) example

The following code obtains a vnode token for the file or directory specified via the

input FID, residing within the mounted file system represented by the input VFS

token. Previously, the FID might have been obtained from an attribute structure

returned by v_lookup, and the VFS token via v_rpn. For the callable service, see

“v_get (BPX1VGT, BPX4VGT) — Convert an FID to a vnode Token” on page 282.

For the data structure, see “BPXYOSS — Map operating system specific

information” on page 469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 SPACE ,

 CALL BPX1VGT, Obtain a Vnode token +

 (VFSTOK, Input: VFS token +

 OSSSTOR, Input/output: BPXYOSS +

 FID, Input: File identifier +

 VNODETOK, Output: Vnode token for file +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VGT, BPX4VGT (v_get) Example

Appendix C. Callable services examples 481

BPX1VGA, BPX4VGA (v_getattr) example

The following code obtains the status of a file whose previously looked-up vnode

token is in VNODETOK. For the callable service, see “v_getattr (BPX1VGA,

BPX4VGA) — Get the attributes of a file” on page 285. For the data structures, see

“BPXYATTR — Map file attributes for v_ system calls” on page 445 and “BPXYOSS

— Map operating system specific information” on page 469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 SPACE ,

 CALL BPX1VGA, Obtain file status +

 (VNODETOK, Input: Vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 =A(ATTR#LENGTH), Input: BPXYATTR length +

 ATTRSTOR, Output: BPXYATTR +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VGA, BPX4VGA (v_getattr) Example

482 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VLN, BPX4VLN (v_link) example

The following code creates a new name, dataproc.next, for a previously looked-up

file whose vnode token is in VNODETOK in a previously looked-up directory whose

vnode token is in DIRVNODETOK. For the callable service, see “v_link (BPX1VLN,

BPX4VLN) — Create a link to a file” on page 288. For the data structure, see

“BPXYOSS — Map operating system specific information” on page 469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC BUFLENA,=F’13’

 MVC BUFFERA(13),=CL13’dataproc.next’

 SPACE ,

 CALL BPX1VLN, Create a link to a file +

 (VNODETOK, Input: File vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 BUFLENA, Input: Name length: new name +

 BUFFERA, Input: New file name +

 DIRVNODETOK, Input: Vnode for directory +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VLN, BPX4VLN (v_link) Example

Appendix C. Callable services examples 483

BPX1VLO, BPX4VLO (v_lockctl) example

The following code requests a read lock on the file with the input DEVNO and FID.

The locker has been previously registered as LOCKERTOK, and the request is for

client thread CTID. The byte-range to lock is from the start of the file to byte 10. For

the callable service, see “v_lockctl (BPX1VLO, BPX4VLO) — Lock a file” on page

292. For the data structures, see “BPXYOSS — Map operating system specific

information” on page 469, “BPXYVLOK — Map the interface block for v_lockctl” on

page 474, and “BPXYBRLK — Map the byte range lock request for fcntl” on page

448.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC VLOKSTOR,VLOK Initialize BPXYVLOK area

 XC BRLK(BRLK#LENGTH),BRLK Initialize BPXYBRLK

 MVI L_TYPE,F_RDLCK Lock type = read

 MVI L_WHENCE,SEEK_SET Whence = start of file

 MVC L_LEN,=F’10’ Len = 10 bytes

 LA R5,VLOKSTOR Address and

 USING VLOK,R5 map BPXYVLOK area

 MVC VLOKLOCKERTOK,LOCKERTOK Move Locker Token to VLOK

 MVC VLOKCLIENTTID,CTID Move Thread ID to VLOK

 MVI VLOKOBJCLASS,VLOK#HFS Object Class = HFS

 MVC VLOKOBJDEV,DEVNO Move Device ID

 MVC VLOKOBJFID,FID Move File ID

 MVC VLOKBRLK,BRLK Move Lock info to VLOK

 DROP R5

 SPACE ,

 CALL BPX1VLO, Create a link to a file +

 (OSSSTOR, Input/output: BPXYOSS +

 =A(VLOK#LOCK), Input: Command = Lock +

 =A(VLOK#LENGTH), Input: BPXYVLOK length +

 VLOKSTOR, Input/output: BPXYVLOK +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VLO, BPX4VLO (v_lockctl) Example

484 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VLK, BPX4VLK (v_lookup) example

The following code looks up a file named fnewprots in a previously looked-up

directory whose vnode token is in DIRVNODETOK. In the returned attribute

structure, ATTRFID contains the file identifier (FID) which can be used to obtain a

vnode token for the file, subsequent to freeing the vnode token returned by

v_lookup via v_rel. For the callable service, see “v_lookup (BPX1VLK, BPX4VLK)

— Look up a file or directory” on page 303. For the data structures, see

“BPXYATTR — Map file attributes for v_ system calls” on page 445 and “BPXYOSS

— Map operating system specific information” on page 469.

 MVC BUFFERA(9),=CL9’fnewprots’

 MVC BUFLENA,=F’9’

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 SPACE ,

 CALL BPX1VLK, Lookup a file +

 (DIRVNODETOK, Input: Directory Vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 BUFLENA, Input: File name length +

 BUFFERA, Input: File name +

 =A(ATTR#LENGTH), Input: BPXYATTR length +

 ATTRSTOR, Output: BPXYATTR +

 VNODETOK, Output: File Vnode token +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VLK, BPX4VLK (v_lookup) Example

Appendix C. Callable services examples 485

BPX1VMK, BPX4VMK (v_mkdir) example

The following code creates a new and empty directory named newprots in a

previously looked-up directory whose vnode token is in DIRVNODETOK with user

read-execute, group write, other read-execute permissions. For the callable service,

see “v_mkdir (BPX1VMK, BPX4VMK) — Create a directory” on page 307. For the

data structures, see “BPXYATTR — Map file attributes for v_ system calls” on page

445, “BPXYFTYP — File type definitions” on page 451, “BPXYMODE — Map the

mode constants of the file services” on page 466 and “BPXYOSS — Map operating

system specific information” on page 469.

 MVC BUFFERA(8),=CL8’newprots’

 MVC BUFLENA,=F’8’

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC ATTRSTOR,ATTR Initialize BPXYATTR area

 XC S_MODE,S_MODE Clear mode

 MVI S_TYPE,FT_DIR Set directory file type

 MVI S_MODE2,S_IRUSR Read-execute/write/read-execute

 MVI S_MODE3,S_IXUSR+S_IWGRP+S_IROTH+S_IXOTH

 LA R5,ATTRSTOR Address and

 USING ATTR,R5 map BPXYATTR area

 MVC ATTRMODE,S_MODE Move mode data to attribute +

 structure

 DROP R5

 SPACE ,

 CALL BPX1VMK, Make a directory +

 (DIRVNODETOK, Input: Directory vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 BUFLENA, Input: New directory name length +

 BUFFERA, Input: New directory name +

 =A(ATTR#LENGTH), Input: BPXYATTR length +

 ATTRSTOR, Input/output: BPXYATTR +

 DIRVNODETOK2, Output: New directory Vnode token +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VMK, BPX4VMK (v_mkdir) Example

486 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VPC, BPX4VPC (v_pathconf) example

The following code obtains current values of configurable options of a file or

directory whose vnode token is in VNODETOK. For the callable service, see

“v_pathconf (BPX1VPC, BPX4VPC) — Get pathconf information for a directory or

file” on page 319. For the data structures, see “BPXYATTR — Map file attributes for

v_ system calls” on page 445, “BPXYPCF — Map pathconf values” on page 470,

and “BPXYOSS — Map operating system specific information” on page 469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC ATTRSTOR,ATTR Initialize BPXYATTR area

 CALL BPX1VPC, +

 (VNODETOK, Input: File Vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 =A(PCFG#LEN), Input: PCFG length +

 BUFFERA, Output: PCFG buffer area +

 =A(ATTR#LENGTH), Input: BPXYATTR length +

 ATTRSTOR, Output: BPXYATTR +

 RETVAL, Return value: PCFG len or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

Note: PCFG#LEN is defined as follows. It is not constant in the BPXYPCF macro.

 BPXYPCF pathconf

 PCFG#LEN EQU *-PCFG

BPX1VPC, BPX4VPC (v_pathconf) Example

Appendix C. Callable services examples 487

BPX1VRW, BPX4VRW (v_rdwr) example

The following code writes data to a previously looked-up file whose vnode token is

in VNODETOK, from the buffer provided. Control is not to be returned to the calling

program until the data have been written, and authorization to write to the file is to

be verified. For the callable service, see “v_rdwr (BPX1VRW, BPX4VRW) — Read

from and write to a file” on page 322. For the data structures, see “BPXYFUIO —

Map file system user I/O block” on page 452, and “BPXYOSS — Map operating

system specific information” on page 469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC FUIOSTOR,FUIO Initialize BPXYFUIO area

 LA R5,FUIOSTOR Address and

 USING FUIO,R5 map BPXYFUIO area

 LA R15,BUFFERA Set address of buffer

 ST R15,FUIOBUFFERADDR to be written in FUIO

 OI FUIOFLAGS,FUIO#WRT+FUIOSYNC+FUIOCHKACC +

 Indicate write action, write +

 to medium before return, +

 and check authorization

 MVC FUIOCURSOR,=F’100’ Set offset to begin writing

 MVC FUIOIBYTESRW,=F’80’ Max number of bytes to write

 DROP R5

 SPACE ,

 CALL BPX1VRW, Read or write data to or from file+

 (VNODETOK, Input: Vnode token for file +

 OSSSTOR, Input/output: BPXYOSS +

 FUIOSTOR, Input/output: BPXYFUIO +

 =A(ATTR#LENGTH), Input: BPXYATTR length +

 ATTRSTOR, Output: BPXYATTR +

 RETVAL, Return value: 0, -1 or char count +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VRW, BPX4VRW (v_rdwr) Example

488 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VRD, BPX4VRD (v_readdir) example

The following code reads the multiple entries from a directory, whose previously

looked-up vnode token is in DIRVNODETOK, into the buffer provided.

FUIOCURSOR, set to zero by the BPXYFUIO macro, indicates that the system is to

begin reading with the first entry in the directory. Presuming that this is the first time

the directory is read, FUIOCHKACC is set, in order to verify access authority. For

the callable service, see “v_readdir (BPX1VRD, BPX4VRD) — Read entries from a

directory” on page 326. For the data structures, see “BPXYDIRE — Map directory

entries for readdir” on page 449, “BPXYFUIO — Map file system user I/O block” on

page 452, and “BPXYOSS — Map operating system specific information” on page

469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC FUIOSTOR,FUIO Initialize BPXYFUIO area

 LA R5,FUIOSTOR Address and

 USING FUIO,R5 map BPXYFUIO area

 LA R15,BUFFERA Set address of buffer

 ST R15,FUIOBUFFERADDR for directory data in FUIO

 MVC FUIOIBYTESRW,=F’1023’ Max number of bytes to read

 OI FUIOFLAGS,FUIOCHKACC Check authorization

 DROP R5

 SPACE ,

 CALL BPX1VRD, Read directory entries +

 (DIRVNODETOK, Input: Vnode token for directory +

 OSSSTOR, Input/output: BPXYOSS +

 FUIOSTOR, Input/output: BPXYFUIO +

 RETVAL, Return value: 0, -1 or char count +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VRD, BPX4VRD (v_readdir) Example

Appendix C. Callable services examples 489

BPX1VRA, BPX4VRA (v_readlink) example

The following code reads the contents of a previously looked up symbolic link file

whose vnode token is in VNODETOK, into the buffer provided. This will be the

pathname that was specified when the symbolic link was defined. For the callable

service, see “v_readlink (BPX1VRA, BPX4VRA) — Read a symbolic link” on page

330. For the data structures, see “BPXYFUIO — Map file system user I/O block” on

page 452, and “BPXYOSS — Map operating system specific information” on page

469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC FUIOSTOR,FUIO Initialize BPXYFUIO area

 LA R5,FUIOSTOR Address and

 USING FUIO,R5 map BPXYFUIO area

 LA R15,BUFFERA Set address of buffer

 ST R15,FUIOBUFFERADDR for symlink in FUIO

 MVC FUIOIBYTESRW,=F’1023’ Max number of bytes to read

 DROP R5

 SPACE ,

 CALL BPX1VRA, Read the value of a symbolic link +

 (VNODETOK, Input: Vnode token for file +

 OSSSTOR, Input/output: BPXYOSS +

 FUIOSTOR, Input/output: BPXYFUIO +

 RETVAL, Return value: 0, -1 or char count +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VRA, BPX4VRA (v_readlink) Example

490 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VRG, BPX4VRG (v_reg) example

The following code registers a file server named File server, and accepts the

default maximum number of vnode tokens by allowing NREGMAXVNTOKENS to

remain zero. For the callable service, see “v_reg (BPX1VRG, BPX4VRG) —

Register a process as a server” on page 333. For the data structure, see

“BPXYNREG — Map interface block to vnode registration” on page 467.

 MVC NREGSTOR,NREG Initialize BPXYNREG area

 LA R5,NREGSTOR Address and

 USING NREG,R5 map BPXYNREG area

 MVC NREGSTYPE,=A(NREGSTYPE#FILE) Set server type

 MVC NREGSNAME(11),=CL11’File server’ Set server name

 MVC NREGSNAMELEN,=F’11’

 DROP R5

 SPACE ,

 CALL BPX1VRG, Register server +

 (=A(NREG#LENGTH), Input: BPXYNREG length +

 NREGSTOR, Input/output: BPXYNREG +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VRG, BPX4VRG (v_reg) Example

Appendix C. Callable services examples 491

BPX1VRL, BPX4VRL (v_rel) example

The following code releases a vnode token, specified in VNODETOK. For the

callable service, see “v_rel (BPX1VRL, BPX4VRL) — Release a vnode token” on

page 337. For the data structure, see “BPXYOSS — Map operating system specific

information” on page 469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 SPACE ,

 CALL BPX1VRL, Release Vnode token +

 (VNODETOK, Input: Vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VRL, BPX4VRL (v_rel) Example

492 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VRM, BPX4VRM (v_remove) example

The following code deletes the file named newprots located in a previously

looked-up directory whose vnode token is in DIRVNODETOK. For the callable

service, see “v_remove (BPX1VRM, BPX4VRM) — Remove a link to a file” on page

339. For the data structure, see “BPXYOSS — Map operating system specific

information” on page 469.

 MVC BUFFERA(8),=CL8’newprots’

 MVC BUFLENA,=F’8’

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 SPACE ,

 CALL BPX1VRM, Remove a file +

 (DIRVNODETOK, Input: Directory vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 BUFLENA, Input: File name length +

 BUFFERA, Input: File name +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VRM, BPX4VRM (v_remove) Example

Appendix C. Callable services examples 493

BPX1VRN, BPX4VRN (v_rename) example

The following code changes the name of a file from samantha in a previously

looked-up directory whose vnode token is in DIRVNODETOK to sam in a previously

looked-up directory whose vnode token is in DIRVNODETOK2. For the callable

service, see “v_rename (BPX1VRN, BPX4VRN) — Rename a file or directory” on

page 343. For the data structure, see and “BPXYOSS — Map operating system

specific information” on page 469.

 MVC BUFFERA(08),=CL08’samantha’ Old name

 MVC BUFLENA,=F’08’

 MVC BUFFERB(03),=CL03’sam’ New name

 MVC BUFLENB,=F’03’

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 SPACE ,

 CALL BPX1VRN, Rename a file +

 (DIRVNODETOK, Input: Old directory vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 BUFLENA, Input: Old name length +

 BUFFERA, Input: Old name +

 DIRVNODETOK2, Input: New directory Vnode token +

 BUFLENB, Input: New name length +

 BUFFERB, Input: New name +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VRN, BPX4VRN (v_rename) Example

494 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VRE, BPX4VRE (v_rmdir) example

The following code deletes the directory named newprots located in a previously

looked-up directory whose vnode token is in DIRVNODETOK. For the callable

service, see “v_rmdir (BPX1VRE, BPX4VRE) — Remove a directory” on page 347.

For the data structure, see “BPXYOSS — Map operating system specific

information” on page 469.

 MVC BUFFERA(8),=CL8’newprots’

 MVC BUFLENA,=F’8’

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 SPACE ,

 CALL BPX1VRE, Remove a directory +

 (DIRVNODETOK, Input: Directory vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 BUFLENA, Input: Directory name length +

 BUFFERA, Input: Directory name +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VRE, BPX4VRE (v_rmdir) Example

Appendix C. Callable services examples 495

BPX1VRP, BPX4VRP (v_rpn) example

The following code resolves (i.e. looks up) the fully qualified path named

/usr/fnewprots. For the callable service, see “v_rpn (BPX1VRP, BPX4VRP)) —

Resolve a pathname” on page 350. For the data structures, see “BPXYATTR —

Map file attributes for v_ system calls” on page 445, “BPXYMNTE — Map response

and element structure of w_getmnte” on page 463, and “BPXYOSS — Map

operating system specific information” on page 469.

 MVC BUFFERA(14),=CL14’/usr/fnewprots’

 MVC BUFLENA,=F’14’

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 SPACE ,

 CALL BPX1VRP, Resolve a pathname +

 (OSSSTOR, Input/output: BPXYOSS +

 BUFLENA, Input: Path name length +

 BUFFERA, Input: Path name +

 VFSTOK, Output: VFS token +

 VNODETOK, Output: Vnode token +

 =A(MNTEH#LENGTH+MNTE#LENGTH), Input: MNTE length +

 MNTE, Output: BPXYMNTE +

 =A(ATTR#LENGTH), Input: BPXYATTR length +

 ATTRSTOR, Output: BPXYATTR +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VRP, BPX4VRP (v_rpn) Example

496 z/OS V1R7.0 UNIX System Services File System Interface Reference

BPX1VSA, BPX4VSA (v_setattr) example

The following code sets attributes for a previously looked-up file whose vnode token

is in VNODETOK. The owning user and group ids are changed, the file change time

is set to the current time and the user read-execute, group write, other read-execute

permissions are set. For the callable service, see “v_setattr (BPX1VSA, BPX4VSA)

— Set the attributes of a file” on page 354. For the data structures, see

“BPXYATTR — Map file attributes for v_ system calls” on page 445, “BPXYMODE

— Map the mode constants of the file services” on page 466 and “BPXYOSS —

Map operating system specific information” on page 469.

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC ATTRSTOR,ATTR Initialize BPXYATTR area

 XC S_MODE,S_MODE Clear mode

 MVI S_MODE2,S_IRUSR Read-execute/write/read-execute

 MVI S_MODE3,S_IXUSR+S_IWGRP+S_IROTH+S_IXOTH

 LA R5,ATTRSTOR Address and

 USING ATTR,R5 map BPXYATTR area

 MVC ATTRMODE,S_MODE Move mode data to attribute +

 structure

 MVC ATTRUID,=F’7’ Specify new UID

 MVC ATTRGID,=F’77’ Specify new GID

 OI ATTRSETFLAGS1,ATTRMODECHG+ATTROWNERCHG +

 Flag UID and GID changes

 OI ATTRSETFLAGS2,ATTRCTIMECHG+ATTRCTIMETOD +

 Set change time to current time

 DROP R5

 SPACE ,

 CALL BPX1VSA, Set file attributes +

 (VNODETOK, Input: File vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 =A(ATTR#LENGTH), Input: BPXYATTR length +

 ATTRSTOR, Input/output: BPXYATTR +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VSA, BPX4VSA (v_setattr) Example

Appendix C. Callable services examples 497

BPX1VSY, BPX4VSY (v_symlink) example

The following code creates an external symbolic link to data set MY.DATASET, the

″pathname″, for link name mydataset, the ″link name″, which is contained in a

previously looked-up directory whose vnode token is in DIRVNODETOK. For the

callable service, see “v_symlink (BPX1VSY, BPX4VSY) — Create a symbolic link”

on page 361. For the data structures, see “BPXYATTR — Map file attributes for v_

system calls” on page 445, “BPXYFTYP — File type definitions” on page 451,

“BPXYMODE — Map the mode constants of the file services” on page 466 and

“BPXYOSS — Map operating system specific information” on page 469.

 MVC BUFFERA(09),=CL09’mydataset’ Name of link

 MVC BUFLENA,=F’09’

 MVC BUFFERB(10),=CL10’MY.DATASET’ Contents of link

 MVC BUFLENB,=F’10’

 MVC OSSSTOR,OSS Initialize BPXYOSS area

 MVC ATTRSTOR,ATTR Initialize BPXYATTR area

 LA R5,ATTRSTOR Address and

 USING ATTR,R5 map BPXYATTR area

 OI ATTRVISIBLE,ATTREXTLINK +

 Flag as external link

 DROP R5

 SPACE ,

 CALL BPX1VSY, Create a symbolic link +

 (DIRVNODETOK, Input: Directory vnode token +

 OSSSTOR, Input/output: BPXYOSS +

 BUFLENA, Input: Link name length +

 BUFFERA, Input: Link name +

 BUFLENB, Input: Pathname length +

 BUFFERB, Input: Path name +

 =A(ATTR#LENGTH), Input: BPXYATTR length +

 ATTRSTOR, Input/output: BPXYATTR +

 RETVAL, Return value: 0 or -1 +

 RETCODE, Return code +

 RSNCODE), Reason code +

 VL,MF=(E,PLIST) ----------------------------------

BPX1VSY, BPX4VSY (v_symlink) Example

498 z/OS V1R7.0 UNIX System Services File System Interface Reference

Reentrant return linkage

 XR R15,R15 Zero return code

 L R0,@SIZEDAT Size this program’s getmain area

 LR R1,R13 R1 -> this program’s getmain area

 L R13,@BACK R2 -> caller’s save area

 DROP R13

 FREEMAIN RU,LV=(0),A=(1)

 L R14,12(,R13) Restore caller’s R14

 LM R0,R12,20(R13) Restore caller’s R0-R12

 BSM 0,R14 Branch back to caller

 SPACE , * * * * * * * * * *.* Program constants * * * * * * *

@SIZEDAT DC A(@ENDSTOR-@STORE) Size of this getmain storage

MNTEL DC A(MNTE#LENGTH+MNTEH#LENGTH)

* Length of MNTEH and 1 MNTE area

 SPACE ,

PRIMARYALET DC A(0) Primary ALET

Reentrant Return Linkage

Appendix C. Callable services examples 499

* * * * * * * * * * * * * * * * * * *.* OpenMvs EQUates * * * * * * * *

* With EQUate only macros, DSECT= is allowed but is ignored

 BPXYCONS LIST=NO OpenMVS constants

 BPXYERNO LIST=NO Errno, Errnojr constants

 BPXYFTYP , File type constants

 BPXYSEEK , lseek constants

* * * * * * * * * * * * * * * * * * *.* Structures requiring a USING *

* * * * * * * * * * * * * * * * * * *.* Standard linkage save area * *

@STORE DSECT ,

@SAVE00 DS 0D Standard 72-byte save area

 DS A

@BACK DS A Back to caller’s save area

@FORWARD DS A Forwards to callee’s save area

 DS 15A Regs 14,15,0-12

* * * * * * * * * * * * * * * * * * *.* Structures initializing storage

 BPXYATTR DSECT=NO Attributes for Vnode services

 BPXYFUIO DSECT=NO User I/O block

 BPXYNREG DSECT=NO Registration structure for +

 for Vnode services

 BPXYOSS DSECT=NO Operating system info for Vnode +

 services

 BPXYVLOK DSECT=NO Lock request info for v_lockctl

 SPACE 2 * * * * * * * * * *.* Getmain for mappings * * * * *

ATTRSTOR DS CL(ATTR#LENGTH) BPXYATTR storage

BRLKA DS A ->BPXYBRLK

 BPXYBRLK DSECT=NO Byte range locking for v_lockctl

FUIOSTOR DS CL(FUIO#LENGTH) BPXYFUIO storage

 BPXYMODE DSECT=NO Mode constants

 BPXYMNTE DSECT=NO Get mount entries for v_rpn

@STORE DSECT , because MNTE has DSECT in it

NREGSTOR DS CL(NREG#LENGTH) BPXYNREG storage

OSSSTOR DS CL(OSS#LENGTH) BPXYOSS storage

VLOKSTOR DS CL(VLOK#LENGTH) BPXYVLOK storage

 BPXYSSTF DSECT=NO Response data for v_fstatfs

* * * * * * * * * * * * * * * * * * *.* Program getmain variables * * *

 DS 0D

ARGCNT DS F Argument count

ARGLLST DS 3A Argument lengths list

ARGSLST DS 3A Arguments list

BUFA DS F ->buffer

BUFFERA DS CL1024 Utility buffer A, length 1024

BUFLENA DS F Number of bytes used in buffer A

BUFFERB DS CL1024 Utility buffer B, length 1024

BUFLENB DS F Number of bytes used in buffer B

BUFW DS F Number of words used in BUF

COMMAND DS F User defined command

CTID DS CL8 Client Thread ID

DEVNO DS F Device ID

DIRECTDES DS F Directory descriptor

DIRVNODETOK DS 2F Directory Vnode token

DIRVNODETOK2 DS 2F Directory Vnode token

ENVCNT DS F Number of environment variables

ENVLENS DS F Length of environment variables

ENVPARMS DS F Environment variables

EVENTLIST DS A Event list for thread posting

EXITRTNA DS A Exit routine address

EXITPLA DS A Exit Parm list address

FID DS 2F File identifier (FID)

FILEDESC DS F File descriptor

FILEDES2 DS F File descriptor

FSNAME DS CL44 File system name

FSTYPE DS CL8 File system type

GRNAMELN DS F Group name length

GROUP DS F Group

GROUPCNT DS F Group count

GROUPID DS F Group ID (PID of group leader)

Reentrant Return Linkage

500 z/OS V1R7.0 UNIX System Services File System Interface Reference

GRPGMNAME DS CL8 Group program name

INTMASK DS XL8 Signal mask

INITRTNA DS A ->Initialization routine

INTRSTATE DS A Interrupt state

INTRTYPE DS A Interrupt type

LOCKERTOK DS CL8 Locker Token

NANOSECONDS DS F Count of nanoseconds

NCATCHER DS A New catcher

NEWFLAGS DS F New flags

NEWHANDL DS F New Handler

NEWLEN DS XL8 Length file

NEWMASK DS XL8 New mask for signals

NEWMASKA DS A ->New mask

NEWTIMES DS D New access/modification time

OCATCHER DS A Old catcher

OFFSET DS CL8 File offset

OLDHANDL DS F Old handler

OLDFLAGS DS F Old flags

OLDMASK DS CL8 Old signal mask

OLDMASKA DS A ->Old mask

OPTIONS DS F Options

PGMNAME DS CL8 Program name

PGMNAMEL DS F Length PGMNAME

PLIST DS 13A Max number of parms

PROCID DS F Process ID

PROCTOK DS F Relative process number

READFD DS F File descriptor - input file

REFPT DS F File reference point

RETCODE DS F Return code (ERRNO)

RETVAL DS F Return value (0, -1 or other)

RSNCODE DS F Reason code (ERRNOJR)

SECONDS DS F Time in seconds

SIGNAL DS A Signal

SIGNALREG DS A Signal registration, user data

SIGNALOPTIONS DS A Signal options

SIGRET DS CL8 Signal return mask

SIRTNA DS A Signal interrupt routine

STATFLD DS A Status field

STATUS DS F Status

STATUSA DS A ->STATUS

TERMMASK DS XL8 Signal termination mask

THID DS XL8 Thread ID

USERID DS F User ID

USERNAME DS CL8 User name

USERNLEN DS F Length USERNAME

USERWORD DS F User data

WAITMASK DS F Mast for signal waits

WRITEFD DS F File descriptor - output file

VFSTOK DS 2F VFS token

VNODETOK DS 2F Vnode token

 SPACE ,

@ENDSTOR EQU * End of getmain storage

 SPACE 3 * * * * * * * * * *.* Register equates * * * * * * *

 SPACE ,

R0 EQU 0

R1 EQU 1 Parameter list pointer

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9 Third program base register

R10 EQU 10 Second getmain storage register

R11 EQU 11 Second program base register

R12 EQU 12 Program base register

Reentrant Return Linkage

Appendix C. Callable services examples 501

R13 EQU 13 Savearea & getmain storage base

R14 EQU 14 Return address

R15 EQU 15 Branch location

 END

Reentrant Return Linkage

502 z/OS V1R7.0 UNIX System Services File System Interface Reference

Appendix D. Interface structures for C language servers and

clients

Two header files are described in this appendix. The first header file is for the VFS

callable services API (v_); the second is for the PFS interface (vfs_ and vn_).

These headers are placed in sys1.SFOMHDRS when z/OS UNIX is installed.

BPXYVFSI—VFS interface definitions

 /*****START OF SPECIFICATIONS**

*

* $MAC (BPXYVFSI) COMP(SCPX4) PROD(FOM):

*

01 MACRO NAME: BPXYVFSI

*

01 DSECT NAME: N/A

*

01 DESCRIPTIVE NAME: Virtual File System Interface Definition for C

*

02 ACRONYM: N/A

* */

 /*01* PROPRIETARY STATEMENT= */

 /***PROPRIETARY_STATEMENT**/

 /* */

 /* */

 /* LICENSED MATERIALS - PROPERTY OF IBM */

 /* THIS MACRO IS "RESTRICTED MATERIALS OF IBM" */

 /* 5694-A01 (C) COPYRIGHT IBM CORP. 1993, 2003 */

 /* */

 /* STATUS= HOT7709 */

 /* */

 /***END_OF_PROPRIETARY_STATEMENT*************************************/

 /*

01 EXTERNAL CLASSIFICATION: GUPI

01 END OF EXTERNAL CLASSIFICATION:

*

01 FUNCTION: Provide a C language header file for the VFS Callable

* Services Interface.

*

* Defines C structures for the control blocks and tokens that

* are used with the v_ (BPX1V) Callable Services.

*

* Defines C prototypes and macros for the Callable Services.

* The macros make use of the callable services vector tables

* so that the caller does not have to be statically bound

* to the services or to their stubs.

* The callable services may be invoked by either their official

* names or by C-friendly names, i.e. as bpx1vgt() or v_get().

*

* The following structures are defined here:

*

* Common structures used on both the VFS and PFS interfaces.

* --

* GTOK - General Eight Byte Token

* FID - File Identifier

* CBHDR - General Control Block Header

* ATTR - File Attribute Structure

* UIO - User I/O Structure

* DIRENT - Directory Entries for v_readdir/vn_readdir.

* FSATTR - File System Attributes of v_fstatfs/vfs_statfs

*

* Structures specific to the VFS interface.

© Copyright IBM Corp. 1996, 2006 503

* ---

* VFSTOK & VNTOK - Opaque Tokens for file systems and files.

* OSS - Operating System Specific Information Structure

* RPNMNTE - Mount Entry Structures returned by v_rpn.

* NREG - Registration Parameter Block used with v_reg

* VLOCK - Byte Range Locking Structure for v_lockctl.

*

*

* Conditional Processing is controlled by the following symbols:

*

* _NOFCNTL - suppresses the inclusion of fcntl.h

*

* To suppress the inclusion of fcntl.h #define _NOFCNTL

* and do one of the following before you include this header:

*

* (1) If you are not going to call v_lockctl:

*

* #define FLOCK char - to provide a dummy type for vl_flock

* or

*

* (2) If you will call v_lockctl

*

* #define or typedef FLOCK to your program’s flock struct

*

*

* _BPX_MNTE2 - Produces Version 2 of the Mount Entry @P5A

*

*

* _BPXLL - converts the following fields from (Highword,LowWord)

* pairs into a single 8-byte long long data type: @P5A

*

* at_size

* at_blocks

* u_offset

* u_fssizelimit

* fs_maxfilesize

* me_bytesread

* me_byteswritten

*

*

* _BPXRTL_VFSI - Makes adjustments necessary for the RTL. @P7A

*

* _LP64 - Makes the UIO and ATTR compatable with LP64 @P7A

*

* __XPLINK__ - Makes the V_XXXX Linkages OS_UPSTACK @P7A

*

* __BPXYVFSI_INT - Changes existing fields to unsigned @01A

*

*

* Structures that are input to the services must be initialized

* prior to being passed on the calls.

* This means that the id and length fields are set correctly

* and that unused fields are zero.

*

* Macros are provided for initializing these structures

* in two ways:

*

* (1) For each potential input structure, XXX, there is an XXX_HDR

* macro defined that can be used to initialize the header and

* zero out the rest of the structure when the local copy

* is declared. For example:

*

* ATTR attr2 = { ATTR_HDR };

*

*

* (2) The CBINIT macro can be used to initialize an area after

* it has been declared. For example:

504 z/OS V1R7.0 UNIX System Services File System Interface Reference

*

* struct { int abc;

* UIO uio2;

* ATTR attr2;

* int def;

* } area2;

* ...

*

* CBINIT(area2.uio2,UIO);

*

*

*

01 METHOD OF ACCESS:

*

02 C/370:

*

* #include <bpxyvfsi.h>

*

01 NOTES:

*

* This header file is consistent with the following mappings:

*

* BPXYATTR

* BPXYDIRE

* BPXYFUIO

* BPXYMNTE

* BPXYNREG

* BPXYOSS

* BPXYSSTF

* BPXYVLOK

*

01 COMPONENT: OpenMVS (SCPX4)

*

01 DISTRIBUTION LIBRARY: AFOMHDR1

*

****END OF SPECIFICATIONS***/

 #ifndef __BPXYVFSI_Common

 #define __BPXYVFSI_Common

 #ifdef __BPXYVFSI_INT /* 7@01A*/

 typedef unsigned int bpx_int;

 typedef unsigned long long bpx_longlong;

 #else

 typedef int bpx_int;

 typedef long long bpx_longlong;

 #endif

 /**/

 /**/

 /** **/

 /** Common structures used on both the VFS and PFS interfaces. **/

 /** **/

 /**/

 /**/

 /*--*/

 /* Opaque Tokens */

 /*--*/

 typedef struct s_gtok { /* General Eight Byte Token */

 void *gtok[2];

 } GTOK ;

 typedef struct s_fid { /* File Identifier */

 int fid[2]; /* PFS Specific values */

 } FID ;

Appendix D. Interface structures for C language servers and clients 505

/*--*/

 /* General Control Block Header and Typedef for BIT */

 /*--*/

 typedef struct s_cbhdr {

 char cbid[4]; /* Eye catcher */

 int cblen; /* Length */

 } CBHDR;

 typedef unsigned int BIT;

 /*--*/

 /* ATTR - File Attribute Structure (BPXYATTR)*/

 /* */

 /* File types and permissions of at_mode are defined in modes.h. */

 /* Audit bits of at_aaudit & at_uaudit are defined in stat.h. */

 /*--*/

#ifdef _BPXLL

 typedef _Packed struct s_attr {

#else

 typedef struct s_attr {

#endif

 CBHDR at_hdr;

 /* POSIX fields */

 int at_mode; /* Type & Permissions st_mode */

 int at_ino; /* inode number st_ino */

 int at_dev; /* device number st_dev */

 int at_nlink; /* link count st_nlink*/

 int at_uid; /* uid of owner st_uid */

 int at_gid; /* group id of owner st_gid */

#ifdef _BPXLL

 long long at_size;

#else

 int at_sizeh; /* file size (high word) */

 bpx_int at_size; /* file size st_size @01C*/

#endif

 int at_atime; /* last access time st_atime*/

 int at_mtime; /* last modified time st_mtime*/

 int at_ctime; /* status change time st_ctime*/

 /* OE Extensions */

 int at_major; /* Major number for char spec */

 int at_minor; /* Minor number for char spec */

 int at_aaudit; /* auditor audit info */

 int at_uaudit; /* user audit info */

 int at_blksize; /* File block size */

 int at_createtime; /* File Creation time */

 union { /*@DFA*/

 char AT_auditid[16]; /* SAF Audit ID */

 struct { /* Guard Time Value: @DFA*/

 int sec; /* Seconds @DFA*/

 int msec; /* Micro-seconds @DFA*/

 } AT_guardtime; /*@DFA*/

 char AT_cver[8]; /* Creation Verifier @DFA*/

 /* See below for non-union names @DFA*/

 } at_u1; /*@DFA*/

 char rsvd1[4];

 int at_genmask; /* Setgen Mask */

 /* SetAttr Change Flags: */

 BIT at_modechg :1; /* to mode indicated */

 BIT at_ownchg :1; /* to UID indicated */

 BIT at_setgen :1; /* to General Attr flags */

 BIT at_trunc :1; /* truncate size */

 BIT at_atimechg :1; /* the Atime */

 BIT at_atimeTOD :1; /* Atime to TOD */

506 z/OS V1R7.0 UNIX System Services File System Interface Reference

BIT at_mtimechg :1; /* the Mtime */

 BIT at_mtimeTOD :1; /* Mtime to TOD */

 BIT at_aauditchg :1; /* auditor audit info */

 BIT at_uauditchg :1; /* user audit info */

 BIT at_ctimechg :1; /* the Ctime */

 BIT at_ctimeTOD :1; /* Ctime to TOD */

 BIT at_reftimechg :1; /* Reference time change */

 BIT at_refTOD :1; /* Reference time to TOD */

 BIT at_filefmtchg :1; /* File format change @DAA*/

 BIT at_guardtimechk :1; /* Guard Time Check @DFA*/

 BIT at_cverset :1; /* Creation Ver Set @DFA*/

 BIT at_charsetidchg :1; /* Change File Info @DNA*/

 BIT at_lp64times :1; /* 64-bit fields used @P7A*/

 BIT at_seclabelchg :1; /* change seclabel @DQA*/

 BIT :12;

#ifdef _BPXRTL_VFSI /*@P7A*/

 struct file_tag at_filetag; /* Ccsid and TxtFlag @P7A*/

 char at_charsetid[8]; /* (Not used) @P7C*/

#else /*@P7A*/

 char at_charsetid[12]; /* CharSetId */

 /* First 4 bytes of CharSetId is the FileTag */

#endif /*@P7A*/

#ifdef _BPXLL

 long long at_blocks;

#else

 int at_blocksh; /* blocks allocated (high word)*/

 bpx_int at_blocks; /* blocks allocated @01C*/ /

#endif

 int at_genvalue; /* General Attribute Flags */

 int at_reftime; /* Reference Time */

 FID at_fid; /* File FID */

 char at_filefmt; /* File format @DAA*/

 char at_fspflag2; /* Fsp flag2 w/acl flags @DOA*/

 char rsvd2[02]; /* @DOC*/

 int at_ctimemsec; /* Micro-seconds of Ctime @DFA*/

 char at_seclabel[8]; /* security label @DOA*/

 char rsvd3[4]; /* @DOC*/

 /* +A0 --- End Ver 1 --- @P5A*/

 char at_atime64[8]; /* Large Time Fields @P5A*/

 char at_mtime64[8]; /*@P5A*/

 char at_ctime64[8]; /*@P5A*/

 char at_createtime64[8]; /*@P5A*/

 char at_reftime64[8]; /*@P5A*/

 char at_rsvd4[8]; /*@P5A*/

 char at_rsvd5[16]; /*@P5A*/

 /* +E0 --- End Ver 2 --- @P5A*/

 } ATTR ;

 #define ATTR_ID "ATTR"

 #define ATTR_HDR {{ATTR_ID}, sizeof(ATTR)}

 /* Field names without the union qualifiers @DFA*/

 #define at_auditid at_u1.AT_auditid /*@DFA*/

 #define at_guardtime at_u1.AT_guardtime /*@DFA*/

 #define at_cver at_u1.AT_cver /*@DFA*/

 /*--*/

 /* FSP Flag2 (ACL) constants */

 /*--@DOA*/

 #define ATTR_ACCESS_ACL 128 /* access acl exists @DOA*/

 #define ATTR_FMODEL_ACL 64 /* file model acl exists @DOA*/

 #define ATTR_DMODEL_ACL 32 /* dir model acl exists @DOA*/

 /*--*/

 /* File Format Type Constants */

 /*--@DAA*/

Appendix D. Interface structures for C language servers and clients 507

#define ATTR_FFNA 0 /* Not specified */

 #define ATTR_FFBinary 1 /* Binary data */

 /* Text data delimiters: */

 #define ATTR_FFNL 2 /* New Line */

 #define ATTR_FFCR 3 /* Carrage Return */

 #define ATTR_FFLF 4 /* Line Feed */

 #define ATTR_FFCRLF 5 /* CR & LF */

 #define ATTR_FFLFCR 6 /* LF & CR */

 #define ATTR_FFCRNL 7 /* CR & NL */

 /*-- 7@DGA*/

 /* genvalue Constants -- use for ATTR or any other */

 /* structures with genvalue */

 /*--*/

 #define GENVAL_PROGCTL 2 /* file can be program controlled */

 #define GENVAL_APF 4 /* file can be APF authorized */

 #define GENVAL_NOSHRAS 8 /* file cannot run in a shared AS */

 #define GENVAL_NODELFILES 32 /* files are not to be deleted from

 this directory @P4A*/

 /*--*/

 /* The macro below tests the at_mode and at_genvalue fields */

 /* to see if the file is an External Symbolic Link. */

 /*--*/

 #ifndef S_IFEXTL

 #define S_IFEXTL 0x00000001 /* External Link in at_genvalue */

 #define S_ISEXTL(m,gv) (S_ISLNK(m) && ((gv) & S_IFEXTL))

 #endif

 /*--*/

 /* UIO - User I/O Structure (BPXYFUIO)*/

 /* */

 /* For 31-Bit addresses: u_buffaddr points to the buffer */

 /* */

 /* For 64-Bit addresses: u_addr64 is on and */

 /* u_buff64vaddr points to the buffer */

 /* */

 /*--*/

 typedef struct s_uio {

 CBHDR u_hdr;

 /* u_buffaddr64 (Real) @DMA*/

#ifndef _LP64 /*@P7A*/

 char *u_buffaddr; /* Buffer 31-bit address */

 #else /*@P7A*/

 char u_buffaddr[4]; /*@P7A*/

 #endif /*@P7A*/

 int u_buffalet; /* Alet for Buffer Address */

#ifdef _BPXLL

 bpx_longlong u_offset; /* @01C*/

#else

 #ifndef _LP64 /*@P7A*/

 bpx_int u_offseth; /* Cursor (high word) @01C*/

 bpx_int u_offset; /* Cursor @01C*/

 #else /*@P7A*/

 off_t u_offset; /*@P7A*/

 #endif /*@P7A*/

#endif

 int u_count; /* Number of bytes */

 short u_asid; /* Addr Space ID: set by LFS */

 BIT u_rw :1; /* 0=Read, 1=Write */

 BIT u_key :4; /* Storage Key: set by LFS */

 BIT u_sync :1; /* Sync data on write */

 BIT u_syncd :1; /* Sync was done: LFS/PFS only*/

 BIT u_chkacc :1; /* Perform Access check */

508 z/OS V1R7.0 UNIX System Services File System Interface Reference

BIT u_realpage :1; /* u_buffaddr -> real page @D4A*/

 BIT u_limitex :1; /* File size limit exceeded

 @D6A*/

 BIT u_iovinuio :1; /* uio buff is an iov @D9A*/

 BIT u_shutd :1; /* do shutdown after send @DMA*/

 BIT u_addr64 :1; /* 64-Bit Addressing @DMA*/

 BIT u_seekcur :1; /* For pread/pwrite @P5A*/

 BIT :2; /* Reserved @D6C*/

 union { /* Vnop Specific Fields: */

 int u_rdindex; /* Readdir Index */

 int u_iovalet; /* Sendmsg/Recvmsg IOV’s ALET */

 } u_vs; /* */

 union { /* Vnop Specific Fields2: @DFA*/

 int U_rddflags; /* Readdir Flags @DFA*/

 int U_iovbufalet; /* IOV’s Buffer’s ALET @DFC*/

 /* See below for non-union names @DFA*/

 } u_vs2; /*@DFA*/

#ifndef _BPXLL

 int u_fssizelimithw; /* filesize limit hiword @D6A*/

 bpx_int u_fssizelimitlw; /* filesize limit loword @01C*/

#else

 long long u_fssizelimit;

#endif

 union { /* Vnop Specific Fields3: @DFA*/

 char U_cver[8]; /* Readdir Cookie Verifier@DFA*/

 char u_internal[16]; /* Internal fields @D9A*/

 /* See below for non-union names @DFA*/

 } u_vs3; /*@DFA*/

 int u_iovresidualcnt; /* remaining bytes to be moved

 @D9A*/

 bpx_int u_totalbytesrw; /* total number of bytes to be

 moved @01C*/

#ifndef _LP64 /*@P7A*/

 char u_buff64vaddr[8]; /* 64-Bit Virtual Addr @P5A*/

 #else /*@P7A*/

 char *u_buff64vaddr; /*@P7A*/

 #endif /*@P7A*/

 } UIO ;

 /* Field names w/o the union qualifier @DFA*/

 #define u_iovbufalet u_vs2.U_iovbufalet /*@DFA*/

 #define u_rddflags u_vs2.U_rddflags /*@DFA*/

 #define u_cver u_vs3.U_cver /*@DFA*/

 /* u_rddflags - Readdir/ReaddirPlus Flags @DFA*/

 #define FUIOCVERRET 2 /* Cookie Ver being Returned @DFA*/

 #define FUIORDDPLUS 1 /* ReaddirPlus requested @DFA*/

 #define UIO_ID "FUIO"

 #define UIO_HDR {{UIO_ID}, sizeof(UIO)}

#ifdef _BPXLL

 #define UIO_NONEWFILES 0x8000000000000000LL

#else

 #define UIO_NONEWFILES 0x80000000 /* No new files

 can be created @D6A*/

#endif

 /*--*/

 /* DIRENT - Directory Entries for v_readdir/vn_readdir. (BPXYDIRE)*/

 /* */

 /* Entry Extension */

 /* ---- ---- ------//-------- -------- ------- */

 /* | TL | NL | name | Ino | | */

Appendix D. Interface structures for C language servers and clients 509

/* ---- ---- ------//-------- -------- ------- */

 /* 0 2 4 4+NL 8+NL TL */

 /* */

 /* The Extension may not be returned by all PFSes. */

 /* */

 /* When (u_rddflags & FUIORDDPLUS) == FUIORDDPLUS @DFA*/

 /* the directory entries look like: @DFA*/

 /* @DFA*/

 /* ---- ---- ------//-------- ------------------------- @DFA*/

 /* | TL | NL | name | Attributes | @DFA*/

 /* ---- ---- ------//-------- ------------------------- @DFA*/

 /* 0 2 4 4+NL TL @DFA*/

 /* */

 /*--*/

 typedef struct s_dirent { /* Directory Entry */

 short dir_len; /* Total entry length */

 short dir_namelen; /* Name length */

 char dir_name[1]; /* File name, 1-255 bytes */

 } DIRENT ;

 typedef struct s_dirext { /* Directory Extension */

 int dir_ino; /* File Ino number */

 char dir_other[1]; /* PFS specific data */

 } DIREXT;

 /* The dir_name field is of variable length.

 |

 | Given the following two pointers:

 | DIRENT *dp;

 | DIREXT *dx;

 |

 | To move from one entry to the next:

 |

 | dp = (DIRENT *) ((int)dp + dp->dir_len);

 |

 | To copy the name field to a standard C string buffer:

 |

 | memcpy(dp->dir_name, name, dp->dir_namelen);

 | name[dp->dir_namelen] = ’\0’;

 |

 | To address the optional extension structure:

 |

 | if ((dp->dir_len) > (4 + dp->dir_namelen)) {

 |

 | dx = (DIREXT *) ((int)dp + 4 + dp->dir_namelen);

 |

 | ino = dx->dir_ino;

 | }

 | else

 | ino = 0;

 |

 | To address the readdirplus attributes: @DFA

 | @DFA

 | ATTR *da; @DFA

 | @DFA

 | da = (ATTR *) ((int)dp + 4 + dp->dir_namelen); @DFA

 | ino = da->at_ino; @DFA

 |

 */

 /*--*/

 /* FSATTR - File System Attributes of v_fstatfs/vfs_statfs(BPXYSSTF)*/

 /*--*/

 struct fsf_prop { /* NFS V3 Properties @DFA*/

 BIT fs_fsf_v3ret :1; /* V3 Prop Returned @DFA*/

510 z/OS V1R7.0 UNIX System Services File System Interface Reference

BIT :2;

 BIT fs_fsf_CanSetTime :1; /* time_delta accuracy @DFA*/

 BIT fs_fsf_homogeneous :1; /* pathconf same for all@DFA*/

 BIT :1;

 BIT fs_fsf_symlink :1; /* Supports Symlinks @DFA*/

 BIT fs_fsf_link :1; /* Supports Hard Links @DFA*/

 }; /*@DFA*/

 typedef struct s_fsattr {

 CBHDR fs_hdr; /* (f_OEcbid and f_OEcblen) */

 unsigned long fs_blocksize; /* Block size (f_bsize) */

 int rsvd1; /* Reserved */

 int rsvd2; /* Reserved */

 unsigned long fs_totalspace; /* Total space. The total

 number of blocks on file

 system in units of f_frsize

 (f_blocks) @D6C*/

 int rsvd3; /* Reserved */

 unsigned long fs_usedspace; /* Used space in blocks

 (f_OEusedspace) */

 int rsvd4; /* Reserved */

 unsigned long fs_freespace; /* Free space in blocks

 (f_bavail) */

 unsigned long fs_fsid; /* File system ID (f_fsid)@DBM*/

 /* Flags: */

 BIT :1; /* Reserved @DCA*/

 BIT fs_exported :1; /* Filesys is exported

 (ST_OEEXPORTED) @DCA*/

 BIT :6; /* Reserved @DFC*/

 struct fsf_prop fs_nfsprop; /* NFS V3 Properties @DFA*/

 BIT :8; /* Reserved @DFC*/

 BIT :5; /* Reserved @DJC*/

 BIT fs_nosec :1; /* No Security Checks @DJA*/

 BIT fs_nosuid :1; /* SetUID/SetGID not supported

 (ST_NOSUID) @DBM*/

 BIT fs_rdonly :1; /* Filesys is read only

 (ST_RDONLY) @DBM*/

#ifdef _BPXLL

 long long fs_maxfilesize;

#else

 int fs_maxfilesizehw; /* High word of max file size

 (f_OEmaxfilesizehw) @DBM*/

 unsigned long fs_maxfilesizelw; /* Low word of max file size

 (f_OEmaxfilesizelw) @DBM*/

#endif

 char rsvd5[16]; /* Reserved @DBA*/

 unsigned long fs_frsize; /* Fundamental filesystem

 block size (f_frsize) @D6C*/

 int rsvd6; /* Reserved @DBC*/

 int rsvd7; /* Reserved @DBC*/

 unsigned long fs_bfree; /* Total number of free blocks

 (f_bfree) @D6A*/

 unsigned long fs_files; /* Total number of file nodes

 in the file system (f_files)

 @D6A*/

 unsigned long fs_ffree; /* Total number of free file

 nodes (f_ffree) @D6A*/

 unsigned long fs_favail; /* Number of free file nodes

 available to unprivileged

 users (f_favail) @D6A*/

 unsigned long fs_namemax; /* Maximum file name length

 (f_namemax) @D6A*/

 unsigned long fs_invarsec; /* Number of seconds fs will

 remain unchanged

 (f_OEinvarsec) @D6A*/

 unsigned long fs_time_delta_sec;/* Granularity of setting @DFA*/

 unsigned long fs_time_delta_ns; /* file times @DFA*/

Appendix D. Interface structures for C language servers and clients 511

char rsvd8[12]; /* Reserved @DBC*/

 } FSATTR ;

 #define FSATTR_ID "SSTF"

 #define FSATTR_HDR {{FSATTR_ID}, sizeof(FSATTR)}

 /*--*/

 /* PFS Type values for me_fstype and pfsi_pfstype. */

 /*--*/

 #define MNT_FSTYPE_LOCAL 1 /* Files are local */

 #define MNT_FSTYPE_REMOTE 2 /* Files are remote */

 #define MNT_FSTYPE_PIPE 3 /* Files are pipes/fifos */

 #define MNT_FSTYPE_SOCKET 4 /* Files are sockets */

 #define MNT_FSTYPE_CSPS 6 /* STREAMS char spec @DHA*/

 /*--*/

 /* Alternative Macro for Initializing Input Structures. */

 /*--*/

 #define CBINIT(cb,typ) { \

 memset(&(cb),’\0’,sizeof(typ)); \

 memcpy(((CBHDR *)(&(cb))) -> cbid, typ ## _ID, 4); \

 ((CBHDR *)(&(cb))) -> cblen = sizeof(typ); \

 }

 /*--*/

 /* I/O Control Command Codes used by w_pioctl & vn_ioctl (BPXYIOCC)*/

 /*--*/

 #ifndef IOC_EDITACL

 #define IOC_EDITACL 0x2000C100 /* Edit ACL: _IO(’A’,0) @P2A*/

 #endif

 /*--*/

 /* File Group Pathconf structure used by v_pathconf (BPXYPCF) */

 /*--*/

 /*@DFA*/

 struct PC_filegrp { /* PathConf File Group @DFA*/

 int pcfglinkmax; /* Link Max @DFA*/

 int pcfgnamemax; /* Name Max @DFA*/

 /* Flags: @DFA*/

 BIT pcfgnotrunc :1; /* No Trunc @DFA*/

 BIT pcfgchownRstd :1; /* Chown Rstd @DFA*/

 BIT pcfgcaseinsensitive :1; /* Case Insensitive @DFA*/

 BIT pcfgcasenonpreserving :1; /* Case non-presrv @DFA*/

 BIT :4; /*@DFA*/

 char pcfgRsvd[3]; /*@DFA*/

 } ;

 #endif /* End of Common Structures */

 #if !defined(__BPXYVFSI) && !defined(__BPXYVFSI_Common_Only)

 #define __BPXYVFSI

 /**/

 /**/

 /** **/

 /** Structures specific to the VFS interface. **/

 /** **/

 /**/

 /**/

 /*--*/

 /* VFSTOK & VNTOK - Opaque Tokens for file systems and files. */

 /*--*/

 typedef struct s_vfstok { /* VFS Token */

512 z/OS V1R7.0 UNIX System Services File System Interface Reference

char vfstok[8];

 } VFSTOK ;

 typedef struct s_vntok { /* Vnode Token */

 char vntok[8];

 } VNTOK ;

 /*--*/

 /* OSS - Operating System Specific Information Structure (BPXYOSS)*/

 /*--*/

 typedef struct s_oss {

 CBHDR os_hdr;

 bpx_int os_diribc; /* Directory I/O blk cnt @01C*/

 bpx_int os_readibc; /* Read I/O block cnt @01C*/

 bpx_int os_writeibc; /* Write I/O block cnt @01C*/

 BIT os_xmtpt :1; /* v_lookup cross mt pts @P5A*/

 BIT :31;

 void *rsvd[2]; /* Reserved */

 } OSS ;

 #define OSS_ID "OSS "

 #define OSS_HDR {{OSS_ID}, sizeof(OSS)}

 /*--*/

 /* RPNMNTE - Mount Entry Structures returned by v_rpn. (BPXYMNTE)*/

 /* NOTE: me_mountpoint is not filled in by v_rpn. */

 /*--*/

 #ifdef _BPX_MNTE2

 #ifndef __syslistdef /*@P8A*/

 #define __syslistdef 1 /*@P8A*/

 typedef struct s_syslistdef {

 short int mt_syslistnum; /* Number of systems in list

 @DRA*/

 short int mt_syslistflags; /* Flags @DRA*/

 char mt_syslist[32] [8];/* System names @DRA*/

 } SYSLISTDEF; /*@DRA*/

 #else /* Use the definition from mntent.h @P8A*/

 #define mt_syslistnum mnt2_syslistnum /*@P8A*/

 #define mt_syslistflags mnt2_syslistflags /*@P8A*/

 #define mt_syslist mnt2_syslist /*@P8A*/

 #endif /*@P8A*/

 /*

 * Values for mt_syslistflags

 */

 #define MNT_SYSLIST_INCLUDE 0x0000 /*@DRA*/

 #define MNT_SYSLIST_EXCLUDE 0x0001 /*@DRA*/

 #endif

 typedef struct s_mnteh { /* w_getmntent header */

 CBHDR mh_hdr; /* Header with total length */

 char mh_cursor[8]; /* Internal cursor */

 int mh_devno; /* File System devno to find */

 #ifndef _BPX_MNTE2 /* mnte header definition @DLA*/

 int rsvd; /* Reserved - must be

 zero on entry @D5C*/

 #else /* mnte2 header definition@DLA*/

 int mh_bodylen; /* Length of the mnte body@DLA*/

 char rsvd[8]; /* Reserved - must be

 zero on entry @DLC*/

 #endif /*@DLA*/

Appendix D. Interface structures for C language servers and clients 513

} MNTEH;

 typedef struct s_mnte { /* w_getmntent returned entry */

 int me_fstype; /* File system type */

 int me_mode; /* File system mount mode */

 int me_dev; /* st_dev of this file system */

 int me_parentdev; /* st_dev of parent file sys */

 int me_rootino; /* st_ino of the mount point */

 char me_status; /* status of the file system. */

 char me_ddname[9]; /* ddname specified on mount */

 char me_fstname[9]; /* FILESYSTYPE Name */

 char me_fsname[45]; /* File System Name (HFS DSN) */

 int me_pathlen; /* Length of mount point path */

 char me_mountpoint[1024]; /* Mount point pathname */

 char me_jobname[8]; /* Job Name issuing Quiesce */

 int me_pid; /* PID that issued Quiesce */

 int me_parmoffset; /* Offset of mount parameter

 from me_fstype @D8C*/

 short me_parmlen; /* Length of mount parameter

 @D5A*/

 #ifndef _BPX_MNTE2 /* mnte base definition @DLA*/

 char rsvd[54]; /* Reserved for expansion @D5C*/

 #else /* mnte2 base definition@DLA*/

 char me_sysname[8]; /* system mounted on @DKA*/

 char me_qsysname[8]; /* quiesce system name @DKA*/

 char me_fromsys[8]; /* filesystem moved from this

 system @DKA*/

 short rsvd1; /* reserved for alignment @DKA*/

 int me_rflags; /* request flags @DKA*/

 int me_status2; /* more status fields @DKA*/

 int me_success; /* filesystems moved ok @DKA*/

 bpx_int me_readct; /* Number of reads @01C*/

 bpx_int me_writect; /* Number of writes done @01C*/

 bpx_int me_diribc; /* Number dir I/O blks @01C*/

 bpx_int me_readibc; /* Number read I/O blocks @01C*/

 bpx_int me_writeibc; /* Number write I/O blks @01C*/

#ifdef _BPXLL

 bpx_longlong me_bytesread; /* @01C*/

 bpx_longlong me_byteswritten; /* @01C*/

#else

 bpx_int me_bytesreadhw; /* Total number bytes read

 high word @01C*/

 bpx_int me_bytesreadlw; /* Total number bytes read

 low word @01C*/

 bpx_int me_byteswrittenhw;/*Total number bytes-wrote

 high word @01C*/

 bpx_int me_byteswrittenlw;/*Total number bytes-wrote

 low word @01C*/

#endif

 char me_filetag[4]; /* File tag @DNA*/

 int me_syslistoff; /* offset to syslist @DRA*/

 short me_syslistlen; /* length of syslist @DRA*/

 short me_aggnamelen; /* length of aggregate name

 @DSA*/

 int me_aggnameoff; /* offset to aggregate name

 @DSA*/

 char me_roseclabel[8];/* read only seclabel @DTA*/

 #endif /* @DLA*/

 } MNTE;

 typedef struct s_rpnmnte { /* v_rpn returned entry: */

 MNTEH rpn_mnteh; /* w_getmntent header */

 MNTE rpn_mnte; /* one w_getmntent entry */

 } RPNMNTE;

514 z/OS V1R7.0 UNIX System Services File System Interface Reference

#define MNTEH_ID "MNTE"

 /*#define MNTE2H_ID "MNT2" */ /*@DLA*/

 #define MNTE2H_ID "\xD4\xD5\xE3\xF2" /* MNT2 In Hex @DSC*/

 /*#define MNTE2H MNTEH delete conflict @P8D @DLA*/

 #define MNTEH_HDR {{MNTEH_ID}, sizeof(MNTEH)+sizeof(MNTE)}

 /* Values for me_fstype are in the common area. */

 /* Values for me_mode */

 #define MNT_MODE_RDWR 0x00000000 /*@P8C*/

 #define MNT_MODE_RDONLY 0x00000001 /*@P8C*/

 #define MNT_MODE_NOSUID 0x00000002 /*@P8C @DCA*/

 #define MNT_MODE_EXPORT 0x00000004 /*@P8C @DCA*/

 #define MNT_MODE_NOSEC 0x00000008 /*@P8C*/

 #define MNT_MODE_NOAUTO 16 /*@DKA*/

 #define MNT_MODE_CLIENT 32 /*@DKA*/

 #define MNT_MODE_AUNMOUNT 64 /*@DPA*/

 #define MNT_MODE_SECACL 128 /*@DOA*/

 #define MNT_MODE_RSVD1 256 /*@P9A*/

 /* Values for me_status */

 #define MNT_FILE_ACTIVE 0x00 /*@D5A*/

 #define MNT_FILE_DEAD 0x01

 #define MNT_FILE_RESET 0x02

 #define MNT_FILE_DRAIN 0x04

 #define MNT_FILE_FORCE 0x08

 #define MNT_FILE_IMMED 0x10

 #define MNT_FILE_NORM 0x20

 #define MNT_FILE_IMMED_TRIED 0x40

 #define MNT_FILE_QUIESCED 0x80

 #define MNT_FILE_MOUNT_IN_PROGRESS 0x81 /*@D7A*/

 #define MNT_FILE_ASYNCH_MOUNT 0x82 /*@D5A*/

 /* Values for me_status2 */

 #define MNT_FILE_UNOWNED 0x01

 #define MNT_FILE_INRECOVERY 0x02

 #define MNT_FILE_SUPERQUIESCED 0x04

 /* Values for me_rflags */

 #define MNT_REQUEST_CHANGE 0x01

 #define MNT_REQUEST_NEWAUTO 0x02

 /*--*/

 /* NREG - Registration Parameter Block used with v_reg (BPXYNREG)*/

 /* */

 /* NOTE: The CBINIT macro cannot be used with this structure. */

 /*--*/

 typedef struct s_nreg {

 char nr_id[4]; /* Identifier */

 signed short nr_len; /* Length */

 short nr_ver; /* Version */

 int nr_type; /* Server Type in*/

 int nr_namelen; /* Server Name Length in*/

 char nr_name[32]; /* Server Name in*/

 int nr_maxvntok; /* Maximum VNTOK limit inout*/

 BIT nr_hotc :1; /* Exit needs Hotc Env in*/

 BIT nr_nowait :1; /* Don’t wait for Quiesce in*/

 BIT nr_secsfd :1; /* secondary sfd server in*/

 BIT :5; /* Reserved */

 char rsvd1[3]; /* Reserved */

 char nr_exitname[8]; /* Exit name in*/

 char nr_initparm[8]; /* Init parm for Exit in*/

 int nr_abendcode; /* Abend Code out*/

 int nr_abendrsn; /* Abend Reason out*/

Appendix D. Interface structures for C language servers and clients 515

char nr_pfstype[8]; /* Dependant PFS in*/

 } NREG;

 #define NREG_ID "NREG"

 #define NREG_VERSION 2

 #define NREG_HDR {NREG_ID}, sizeof(NREG), NREG_VERSION

 #define NREG_FILE 1 /* File Server e.g.NFSS */

 #define NREG_LOCK 2 /* Lock Server e.g.LOCKD */

 #define NREG_FEXP 3 /* File Exporter e.g. DFS */

 #define NREG_SFDS 4 /* Shared FD server: NW @DIA*/

 /*--*/

 /* VLOCK - Byte Range Locking Structure for v_lockctl. (BPXYVLOK)*/

 /* */

 /* The POSIX flock structure and locking constants are defined */

 /* in the fcntl.h header, which is included here. */

 /*--*/

 #ifndef _NOFCNTL /* If pgm does not request that*/

 #include <fcntl.h> /* fcntl.h be suppressed, */

 #define FLOCK struct flock /* see prolog for details. */

 #endif

 typedef struct s_vlock {

 CBHDR vl_hdr;

 /* LOCKER: fields that are used with VL_REGLOCKER*/

 int vl_serverpid; /* Server’s PID */

 int vl_clientpid; /* Server’s Client’s PID */

 GTOK vl_lockertok; /* Token for Locker(Spid+Cpid) */

 /* TID: individual lock owner within a locker. */

 char vl_clienttid[8]; /* Client’s Thread’s TID */

 /* OBJECT: represents a single locked file */

 int vl_objclass; /* Object Class: HFS, MVS, etc */

 char vl_objid[12]; /* Obj’s Unique Id within class*/

 GTOK vl_objtok; /* Token for Object(Class+Id) */

 /* DOS file sharing fields */

 char vl_dosmode;

 char vl_dosaccess;

 char vl_rsvd1[14];

 /* Lock information: range and type, etc */

 FLOCK vl_flock; /* POSIX flock structure */

 } VLOCK;

 /* The vl_objid used by fcntl() for POSIX locking of HFS files is: */

 struct hfsobjid {

 int hfsobj_devno; /* device number (at_dev) */

 FID hfsobj_fid; /* file ID (at_fid) */

 };

 #define VLOCK_ID "VLOK"

 #define VLOCK_HDR {{VLOCK_ID}, sizeof(VLOCK)}

 /* Values for Object Class: vl_objclass */

 #define VL_HFS 0 /* z/OS UNIX file */

 #define VL_MVS 1 /* MVS data set */

 #define VL_LFSESA 2 /* Lan File Server */

516 z/OS V1R7.0 UNIX System Services File System Interface Reference

/* Values for v_lockctl cmd */

 #define VL_REGLOCKER 1

 #define VL_UNREGLOCKER 2

 #define VL_LOCK 3

 #define VL_LOCKWAIT 4

 #define VL_UNLOCK 5

 #define VL_QUERY 6

 #define VL_PURGE 7

 /***/

 /***/

 /** **/

 /** Calling Interface Definitions **/

 /** **/

 /***/

 /***/

 /*---*/

 /* Macros to translate the vnode calls to their callable services */

 /*---*/

 #define v_reg _VCALL(V_REG ,145)

 #define v_rpn _VCALL(V_RPN ,146)

 #define v_get _VCALL(V_GET ,148)

 #define v_rel _VCALL(V_REL ,149)

 #define v_lookup _VCALL(V_LOOKUP ,150)

 #define v_rdwr _VCALL(V_RDWR ,151)

 #define v_readdir _VCALL(V_READDIR ,152)

 #define v_readlink _VCALL(V_READLINK,153)

 #define v_create _VCALL(V_CREATE ,154)

 #define v_mkdir _VCALL(V_MKDIR ,155)

 #define v_symlink _VCALL(V_SYMLINK ,156)

 #define v_getattr _VCALL(V_GETATTR ,157)

 #define v_setattr _VCALL(V_SETATTR ,158)

 #define v_link _VCALL(V_LINK ,159)

 #define v_rmdir _VCALL(V_RMDIR ,160)

 #define v_remove _VCALL(V_REMOVE ,161)

 #define v_rename _VCALL(V_RENAME ,162)

 #define v_fstatfs _VCALL(V_FSTATFS ,163)

 #define v_lockctl _VCALL(V_LOCKCTL ,164)

 #define v_export _VCALL(V_EXPORT ,218) /*@DCA*/

 #define v_access _VCALL(V_ACCESS ,235) /*@DDA*/

 #define w_pioctl _VCALL(W_PIOCTL ,245) /*@P2A*/

 #define v_pathconf _VCALL(V_PATHCONF,259) /*@DFA*/

 /*---*/

 /* Callable Services Typedefs and Prototypes */

 /* */

 /* NOTE: Each "len" parameter contains the length of the */

 /* parameter that follows. */

 /*---*/

 typedef void V_REG (int len, NREG *,

 int *rv, int *rc, int *rsn);

 typedef void V_RPN (OSS *,

 int pathlen, char *path,

 VFSTOK *, VNTOK *,

 int mlen, RPNMNTE *,

 int alen, ATTR *,

 int *rv, int *rc, int *rsn);

 typedef void V_EXPORT (OSS *, /*@DCA*/

 int function,

 char *filesysname,

 VFSTOK *, VNTOK *,

 int mlen, RPNMNTE *,

 int alen, ATTR *,

 char *volhdl,

 int *rv, int *rc, int *rsn);

 typedef void V_GET (VFSTOK, OSS *,

Appendix D. Interface structures for C language servers and clients 517

FID, VNTOK *,

 int *rv, int *rc, int *rsn);

 typedef void V_REL (VNTOK, OSS *,

 int *rv, int *rc, int *rsn);

 typedef void V_LOOKUP (VNTOK, OSS *,

 int namelen, char *name,

 int alen, ATTR *,

 VNTOK *,

 int *rv, int *rc, int *rsn);

 typedef void V_RDWR (VNTOK, OSS *,

 UIO *,

 int alen, ATTR *,

 int *rv, int *rc, int *rsn);

 typedef void V_READDIR (VNTOK, OSS *,

 UIO *,

 int *rv, int *rc, int *rsn);

 typedef void V_READLINK(VNTOK, OSS *,

 UIO *,

 int *rv, int *rc, int *rsn);

 typedef void V_CREATE (VNTOK, OSS *,

 int namelen, char *name,

 int alen, ATTR *,

 VNTOK *,

 int *rv, int *rc, int *rsn);

 typedef void V_MKDIR (VNTOK, OSS *,

 int namelen, char *name,

 int alen, ATTR *,

 VNTOK *,

 int *rv, int *rc, int *rsn);

 typedef void V_SYMLINK (VNTOK, OSS *,

 int namelen, char *name,

 int pathlen, char *pathname,

 int alen, ATTR *,

 int *rv, int *rc, int *rsn);

 typedef void V_GETATTR (VNTOK, OSS *,

 int alen, ATTR *,

 int *rv, int *rc, int *rsn);

 typedef void V_SETATTR (VNTOK, OSS *,

 int alen, ATTR *,

 int *rv, int *rc, int *rsn);

 typedef void V_LINK (VNTOK, OSS *,

 int namelen, char *name,

 VNTOK todir,

 int *rv, int *rc, int *rsn);

 typedef void V_RMDIR (VNTOK, OSS *,

 int namelen, char *name,

 int *rv, int *rc, int *rsn);

 typedef void V_REMOVE (VNTOK, OSS *,

 int namelen, char *name,

 int *rv, int *rc, int *rsn);

 typedef void V_RENAME (VNTOK, OSS *,

 int oldlen, char *oldname,

 VNTOK newdir,

 int newlen, char *newname,

 int *rv, int *rc, int *rsn);

 typedef void V_FSTATFS (VNTOK, OSS *,

 int falen, FSATTR *,

 int *rv, int *rc, int *rsn);

 typedef void V_ACCESS (VNTOK, OSS *,

 int mode,

 int *rv, int *rc, int *rsn);

 typedef void V_LOCKCTL (OSS *,

 int cmd,

 int vlen, VLOCK *,

 int *rv, int *rc, int *rsn);

 typedef void W_PIOCTL (int pathlen, char *path, /*@P2A*/

518 z/OS V1R7.0 UNIX System Services File System Interface Reference

int cmd,

 int arglen, char *arg,

 int *rv, int *rc, int *rsn);

 typedef void V_PATHCONF (VNTOK, OSS *, /*@DFA*/

 int pc_len, struct PC_filegrp *,

 int alen, ATTR *,

 int *rv, int *rc, int *rsn);

 /*---*/

 /* Macros & structures used to address the OE Callable Services */

 /*---*/

 /* _VCALL Macro to invoke the i’th Vnode Callable Service */

 #define _VCALL(op,i) ((op *) ((*(struct _v_cvt **)0x10) -> \

 _v_cvtcsrt -> _v_csrtvopt -> _v_vopptr[i]))

 /* Stub System Control Blocks for addressing the Callable Services */

 struct _v_vopt { /* z/OS UNIX Callable Services */

 void *filler;

 void *_v_vopptr[200];

 };

 struct _v_csrt { /* MVS Callable Services Table */

 char filler[0x18];

 struct _v_vopt *_v_csrtvopt;

 };

 struct _v_cvt { /* The CVT */

 char filler[0x220];

 struct _v_csrt *_v_cvtcsrt;

 };

 /*---*/

 /* Interface Linkages */

 /*---*/

#if !defined(__XPLINK__) && !defined(_LP64) /*@P7A*/

 #pragma linkage(V_REG , OS)

 #pragma linkage(V_RPN , OS)

 #pragma linkage(V_GET , OS)

 #pragma linkage(V_REL , OS)

 #pragma linkage(V_LOOKUP , OS)

 #pragma linkage(V_RDWR , OS)

 #pragma linkage(V_READDIR , OS)

 #pragma linkage(V_READLINK, OS)

 #pragma linkage(V_CREATE , OS)

 #pragma linkage(V_MKDIR , OS)

 #pragma linkage(V_SYMLINK , OS)

 #pragma linkage(V_GETATTR , OS)

 #pragma linkage(V_SETATTR , OS)

 #pragma linkage(V_LINK , OS)

 #pragma linkage(V_RMDIR , OS)

 #pragma linkage(V_REMOVE , OS)

 #pragma linkage(V_RENAME , OS)

 #pragma linkage(V_FSTATFS , OS)

 #pragma linkage(V_LOCKCTL , OS)

 #pragma linkage(V_EXPORT , OS) /*@DCA*/

 #pragma linkage(V_ACCESS , OS) /*@DDA*/

 #pragma linkage(W_PIOCTL , OS) /*@P2A*/

 #pragma linkage(V_PATHCONF, OS) /*@DFA*/

#else /* Linkage Versions for LP54 & XPLINK @P7A*/

#ifdef _LP64 /*@P7A*/

 #pragma linkage(V_REG , OS64_NOSTACK)

 #pragma linkage(V_RPN , OS64_NOSTACK)

 #pragma linkage(V_GET , OS64_NOSTACK)

 #pragma linkage(V_REL , OS64_NOSTACK)

 #pragma linkage(V_LOOKUP , OS64_NOSTACK)

 #pragma linkage(V_RDWR , OS64_NOSTACK)

Appendix D. Interface structures for C language servers and clients 519

#pragma linkage(V_READDIR , OS64_NOSTACK)

 #pragma linkage(V_READLINK, OS64_NOSTACK)

 #pragma linkage(V_CREATE , OS64_NOSTACK)

 #pragma linkage(V_MKDIR , OS64_NOSTACK)

 #pragma linkage(V_SYMLINK , OS64_NOSTACK)

 #pragma linkage(V_GETATTR , OS64_NOSTACK)

 #pragma linkage(V_SETATTR , OS64_NOSTACK)

 #pragma linkage(V_LINK , OS64_NOSTACK)

 #pragma linkage(V_RMDIR , OS64_NOSTACK)

 #pragma linkage(V_REMOVE , OS64_NOSTACK)

 #pragma linkage(V_RENAME , OS64_NOSTACK)

 #pragma linkage(V_FSTATFS , OS64_NOSTACK)

 #pragma linkage(V_LOCKCTL , OS64_NOSTACK)

 #pragma linkage(V_EXPORT , OS64_NOSTACK)

 #pragma linkage(V_ACCESS , OS64_NOSTACK)

 #pragma linkage(W_PIOCTL , OS64_NOSTACK)

 #pragma linkage(V_PATHCONF, OS64_NOSTACK)

#else /* XPLINK */

 #pragma linkage(V_REG , OS_UPSTACK)

 #pragma linkage(V_RPN , OS_UPSTACK)

 #pragma linkage(V_GET , OS_UPSTACK)

 #pragma linkage(V_REL , OS_UPSTACK)

 #pragma linkage(V_LOOKUP , OS_UPSTACK)

 #pragma linkage(V_RDWR , OS_UPSTACK)

 #pragma linkage(V_READDIR , OS_UPSTACK)

 #pragma linkage(V_READLINK, OS_UPSTACK)

 #pragma linkage(V_CREATE , OS_UPSTACK)

 #pragma linkage(V_MKDIR , OS_UPSTACK)

 #pragma linkage(V_SYMLINK , OS_UPSTACK)

 #pragma linkage(V_GETATTR , OS_UPSTACK)

 #pragma linkage(V_SETATTR , OS_UPSTACK)

 #pragma linkage(V_LINK , OS_UPSTACK)

 #pragma linkage(V_RMDIR , OS_UPSTACK)

 #pragma linkage(V_REMOVE , OS_UPSTACK)

 #pragma linkage(V_RENAME , OS_UPSTACK)

 #pragma linkage(V_FSTATFS , OS_UPSTACK)

 #pragma linkage(V_LOCKCTL , OS_UPSTACK)

 #pragma linkage(V_EXPORT , OS_UPSTACK)

 #pragma linkage(V_ACCESS , OS_UPSTACK)

 #pragma linkage(W_PIOCTL , OS_UPSTACK)

 #pragma linkage(V_PATHCONF, OS_UPSTACK)

#endif /*@P7A*/

#endif /*@P7A*/

 /*---*/

 /* Macros to allow the calls by either the v_ or bpx1 names */

 /*---*/

#ifndef _BPXRTL_VFSI /*@P7A*/

 #define bpx1vrg v_reg

 #define bpx1vrp v_rpn

 #define bpx1vgt v_get

 #define bpx1vrl v_rel

 #define bpx1vlk v_lookup

 #define bpx1vrw v_rdwr

 #define bpx1vrd v_readdir

 #define bpx1vra v_readlink

 #define bpx1vcr v_create

 #define bpx1vmd v_mkdir

 #define bpx1vsy v_symlink

 #define bpx1vga v_getattr

 #define bpx1vsa v_setattr

 #define bpx1vln v_link

 #define bpx1vre v_rmdir

 #define bpx1vrm v_remove

 #define bpx1vrn v_rename

 #define bpx1vsf v_fstatfs

 #define bpx1vlo v_lockctl

520 z/OS V1R7.0 UNIX System Services File System Interface Reference

#define bpx1vex v_export /*@DCA*/

 #define bpx1vac v_access /*@DDA*/

 #define bpx1pio w_pioctl /*@P2A*/

 #define bpx1vpc v_pathconf /*@P2A*/

#endif /*@P7A*/

 #endif /* End of VFSI Structures */

BPXYPFSI—PFS interface definitions

#ifndef __BPXYPFSI

 #define __BPXYPFSI

 /*****START OF SPECIFICATIONS**

*

* $MAC (BPXYPFSI) COMP(SCPX4) PROD(FOM):

*

01 MACRO NAME: BPXYPFSI

*

01 DSECT NAME: N/A

*

01 DESCRIPTIVE NAME: Physical File System Interface Definition for C

*

02 ACRONYM: N/A

* */

 /*01* PROPRIETARY STATEMENT= */

/****PROPRIETARY_STATEMENT**/

/* */

/* */

/* LICENSED MATERIALS - PROPERTY OF IBM */

/* THIS MACRO IS "RESTRICTED MATERIALS OF IBM" */

/* 5694-A01 (C) COPYRIGHT IBM CORP. 1993, 2003 */

/* */

/* STATUS= HOT7709 */

/* */

/****END_OF_PROPRIETARY_STATEMENT*************************************/

 /*

01 EXTERNAL CLASSIFICATION: PI

01 END OF EXTERNAL CLASSIFICATION:

*

01 FUNCTION: Provide a C language header file for the PFS Interface.

*

* Defines C structures for the control blocks and tokens that

* are used by the vfs_ and vn_ operations.

*

* Defines C prototypes for the PFS entry points

* of the vfs_ and vn_ operations.

*

* Defines C structures and prototypes for the osi_ services

* and the macros used to implement the calling linkages.

*

* Defines C structures and prototypes for the File Exporter Exit.

*

* The definition of the following can be suppressed, see below.

* Defines C functions for the following Kernel Extension services

* bcopy() - copy data from source to destination

* bzero() - zero out bytes starting at a destination

*

* Defines C functions for the following internal services

* _memmove() - copy characters from one data object to another

* with checks for data overlap. This is invoked

* from the bcopy() function

*

* The following structures are defined here:

*

* O_VNTOK - Output Vnode Token

* WPTOK - Wait/Post Token for osi_post

* SELTOK - Vn_select Token for osi_selpost

Appendix D. Interface structures for C language servers and clients 521

* TOKSTR - First Parameter of a Vnode or VFS Operation

* OSI - Operating System Information - Second Parameter

* CRED - Security Auditing Information - Third Parameter

* PFSPARM - Text from PARM operand of FILESYSTYPE and MOUNT.

* MTAB - vfs_mount parameter

* NETW - vfs_network parameter

* PFSI - PFS Initialization Block and related structures,

* including the vnode and vfs operations tables.

* PFSNAME - Name of the PFS from TYPE operand of FILESYSTYPE.

* OSIT - Operating System Interface Table with related

* structures, macros, and OSI function prototypes.

* GXPL - File Exporter Exit parameter structure

* OTHDPRM - osi_thread parameter

* OTHDCRCV- osi_thread called routine recovery block

* OGCDPRM - osi_getcred input structure

* BSIC - vfs_batsel input array

* vncanflags - vn_cancel input flags

*

*

* The following structures are automatically included from BPXYVFSI:

*

* GTOK - General Eight Byte Token

* FID - File Identifier

* CBHDR - General Control Block Header

* ATTR - File Attribute Structure

* UIO - User I/O Structure

* DIRENT - Directory Entries for v_readdir/vn_readdir.

* FSATTR - File System Attributes of v_fstatfs/vfs_statfs

*

* The following parts of the interface are defined in other

* headers as specified:

*

* open_flags for vn_open, vn_rdwr, etc. are in fcntl.h,

* except for O_EXEC which is defined here.

* access_intent for vn_access is in unistd.h

* unmount_options for vfs_umount are in stat.h

* pathconf_option for vn_pathconf is in unistd.h

* Except for PC_CASE and its return values @DHA

* which are defined in this header. @DHA

* sigval for osi_signal is in signal.h

*

* socket structures are in the various standard headers as used

* by the sockets applications.

*

* ioctl commands for vn_ioctl are usually in ioctl.h.

* Those used with Common Inet for initialization

* and route changes are also included here.

*

* The following symbols provide for replaceable features:

*

* _SOCKADDR - defines the socket address structure used in

* the prototypes of the socket oriented vnode ops.

*

* Default: #define _SOCKADDR char

* Example: #define _SOCKADDR struct mysocketaddr

*

*

* _OSIT_PTR - defines the name of the variable or structure member

* that holds the OSIT table address that was saved

* during PFS initialization. This is used to call

* the OSI services.

*

* Default: #define _OSIT_PTR osit_ptr

*

* Examples: There are two ways this can be used:

*

* (1) Declare and set osit_ptr to the saved value:

522 z/OS V1R7.0 UNIX System Services File System Interface Reference

*

* OSIT *osit_ptr;

* osit_ptr = saved_address;

* or

* (2) Change the #define for _OSIT_PTR:

*

* #undef _OSIT_PTR

* #define _OSIT_PTR saved_address

*

* _OSICALL - internal macro for invoking the OSI_ services.

* This macro is not normally replaced, refer to

* its definition for details on how it works.

*

* __ADDR64 - Controls definition of the ADDR64 data type.

* ADDR64 is an 8-byte data type used to deal with

* 64-Bit user pointers. If __ADDR64 is #defined

* then ADDR64 may be defined by the PFS else it will

* be defined here based on _LP64.

*

* __FSPL - Exposes the Fast Socket Parameter List.

* This requires inclusion of socket.h.

*

*

* Conditional Processing is controlled by the following symbol:

*

* _NO_PFS_KES - suppresses the Kernel Extension Services.

* Default: Include the service definitions.

* Example use: #define _NO_PFS_KES

*

*

01 METHOD OF ACCESS:

*

02 C/370:

*

* #include <string.h>

* #include <bpxypfsi.h>

*

01 NOTES:

*

* This header file is consistent with the following mappings:

*

* BPXZBSIC

* BPXYSEL

* BPXZCJAR

* BPXZGXPL

* BPXZMTAB

* BPXZNETW

* BPXZOSI

* BPXZOSIT

* BPXZPFSI

* BPXZTPRM

* BPXZCPRM

* BPXZVFSO

* BPXZVNOP

* BPXZFSPL

* IRRPCRED

*

01 COMPONENT: OpenMVS (SCPX4)

*

01 DISTRIBUTION LIBRARY: AFOMHDR1

*

****END OF SPECIFICATIONS***/

 /*--*/

 /* Include the common data areas */

 /*--*/

Appendix D. Interface structures for C language servers and clients 523

#define __BPXYVFSI_Common_Only

 #include <bpxyvfsi.h>

 #undef __BPXYVFSI_Common_Only

 #pragma page()

 /*--*/

 /* Opaque Tokens */

 /*--*/

 typedef struct s_o_vntok { /* Output Vnode Token */

 char o_vntok[8];

 } O_VNTOK ;

 typedef struct s_wptok { /* Wait/Post Token for osi_post */

 char wptok[24];

 } WPTOK ;

 typedef struct s_seltok { /* vn_select Token for osi_selpost */

 char seltok[16];

 } SELTOK ;

 /*--*/

 /* TOKSTR - Token Structure (BPXZCJAR)*/

 /* This is the first parameter on all Vnode/VFS Operations */

 /*--*/

 typedef struct s_tokstr {

 CBHDR ts_hdr; /*+00 Id & Length */

 /* PFS’s Tokens: */

 GTOK ts_init; /*+08 Init Token (Vnode & VFS) */

 GTOK ts_mount; /*+10 Mount Token (Vnode & VFS) */

 GTOK ts_file; /*+18 File Token (Vnode Only) */

 char ts_LFS[24]; /*+20 LFS specific fields */

 int ts_sysd1; /*+38 System Data 1 */

 int ts_sysd2; /*+3C System Data 2 */

 } TOKSTR ;

 /*--*/

 /* 64-Bit User Buffer Address Considerations @POA*/

 /*--*/

 /* An attempt is being made to accommodate C PFSes that are compiled

 * with LP64, those that are not, and those that aren’t even compiled

 * with the 2.6 level of Language Extended (for long long).

 * A non-exploiting PFS mostly needs to be able to copy the 64-bit

 * u_buff64vaddr field and its own 31-bit buffer address into the

 * 64-bit fields of the copy64_struct.

 *

 * The PFS may typedef ADDR64 to an 8-byte data type of its own

 * choice and #define __ADDR64 to bypass the default typedef. */

 #ifndef __ADDR64 /*@POM*/

 #ifdef _LP64 /* Compiler Flag */

 typedef char * ADDR64; /* 64-bit pointer */

 #else

 typedef struct { /* 64-bit area */

 int HW; /* High Word */

 char *LW; /* Low Word 31-bit ptr */

 } ADDR64;

 #endif

 #endif

 /*--*/

 /* OSI - Operating System Information - Second Parameter (BPXZOSI)*/

 /*--*/

 typedef struct s_osi {

524 z/OS V1R7.0 UNIX System Services File System Interface Reference

CBHDR osi_hdr; /*+00 Id & Length */

 char *osi_ascb; /*+08 ASCB ptr (set by osi_wait) */

 long *osi_ecb; /*+0C ECB ptr (set by osi_wait) */

 int osi_pid; /*+10 Caller’s PID for osi_signal*/

 char osi_lfs[8]; /*+14 LFS data */

 /* SMF I/O Counts Set by PFS: */

 int osi_diribc; /*+1C Directory I/O block cnt */

 int osi_readibc; /*+20 Read I/O block cnt */

 int osi_writeibc; /*+24 Write I/O block cnt */

 /*+28 Read Bytes (double word) */

 int osi_bytesrd_h; /* */

 int osi_bytesrd; /*+2C Read bytes (single wd) */

 /*+30 Write Bytes (double word)*/

 int osi_byteswr_h; /* */

 int osi_byteswr; /*+34 Written bytes (one wd) */

 char *osi_fsp; /*+38 Opt ptr to output FSP @P7M*/

 int osi_pfsid; /*+3C PFS identifier @D6A*/

 struct osirtoken /*+40 Ptr to Recovery Token */

 *osi_rtokptr;

 /*+44 Flags */

 BIT osi_LFSrsvd :2; /* Reserved by LFS @PMA*/

 BIT osi_extcaller :1; /* External Caller @PMA*/

 BIT :1; /* Reserved for LFS Use @E0A*/

 BIT osi_qnowait :1; /* No wait on quiesce @E0A*/

 BIT osi_proctrm :1; /* In process termination @PKA*/

 BIT osi_quiesce :1; /* On behalf of quiesce @PKA*/

 BIT osi_sharedread :1; /* Shared read @DJC*/

 BIT osi_asy1 :1; /* AsyncIO Part 1 @DGA*/

 BIT osi_asy2 :1; /* AsyncIO Part 2 @DGA*/

 BIT osi_ok2compimd :1; /* May Complete Immed @DGA*/

 BIT osi_compimd :1; /* Did Complete Immed @DGA*/

 BIT osi_timedwait :1; /* Timed Wait Requested @DJC*/

 BIT osi_usersync :1; /* sync requested by user @DJC*/

 BIT osi_remount :1; /* Call is for remount @D9A*/

 BIT osi_privileged :1; /* User is Privileged @D9A*/

 short osi_workarealen; /*+46 Work Area Length */

 char *osi_workarea; /*+48 Work Area for PFS Usage */

 ATTR *osi_attr; /*+4C Optional Ptr to Output Attr*/

 WPTOK osi_token; /*+50 Token for osi_post */

 char osi_rsvd2[8]; /*+68 reserved for LFS @P7C*/

 GTOK osi_asytok; /*+70 AsyncIO LFS/PFS Token @DGA*/

 char osi_rsvd3[4]; /*+78 reserved for LFS @P7C*/

 char *osi_xmib; /*+7C Ptr to XMIB @PMA*/

 /*+80 Original End of OSI @PFA*/

 /*+80 Flags2 */

 BIT osi_vfsexcl :1; /* VFS Latch is held EXCL @PMA*/

 BIT osi_onktask :1; /* Running on Kernel Task @PMA*/

 BIT :6;

 BIT osi_commbuff :1; /* Buffers in Common @DWA*/

 BIT osi_fsmoving :1; /* File System is moving @E0A*/

 BIT :6;

 char osi_rsvd4[6]; /*+82 unused yet @PMA*/

 ADDR64 osi_uaiocb64; /*+88 User’s Aiocb Addr @DWA*/

 int osi_LFSrsvd5; /*+90 reserved for LFS @PMA*/

 char osi_rsvd5[12]; /*+94 unused yet @PMA*/

 /*+A0 End of OSI @PFA*/

 } OSI ;

 #define osi_uaiocb osi_uaiocb64.LW /* User’s Aiocb Addr @DWA*/

 /*---*/

 /* PFS Recovery Token */

 /* Set and Cleared by the PFS during a VNODE/VFS operation. */

 /* If this is non-zero when an abend in the PFS is percolated*/

 /* to the LFS’s ESTAE the PFS will be invoked for */

Appendix D. Interface structures for C language servers and clients 525

/* VN_RECOVERY to clean up its resources. @D5A*/

 /* If this is non-zero during user EOM processing the */

 /* PFS will be invoked for VFS_RECOVERY to clean up */

 /* whatever was recorded with the token. */

 /*---*/

 struct osirtoken {

 void *osirt_ptr[2];

 } ;

 /* Extended recovery token area passed to vn_recovery @PCA*/

 struct osirtokenx { /*@PCA*/

 struct osirtoken osirtx_rtoken; /* Original osirtoken */

 char osirtx_rsv[16]; /* Reserved */

 void *osirtx_sdwa; /* Ptr to SDWA or 0 */

 struct vnrcvydumplist *osirtx_dumplist; /*@PKA*/

 } ; /*@PCA*/

 /* The fourth parameter to vn_recovery may be considered

 as either osirtoken or osirtokenx. For migration

 purposes the prototype is not being changed. @PCA*/

 /* vn_recovery output dumplist @PKA*/

 struct vnrcvydumplist { /*@PKA*/

 int vnrcvydumpcount; /*@PKA*/

 struct vnrcvydumparea { /*@PKA*/

 char vnrcvydumpstoken[8]; /*@PKA*/

 void *vnrcvydumpaddr; /*@PKA*/

 int vnrcvydumplength; /*@PKA*/

 BIT vnrcvydumpsumm :1; /*@PKA*/

 BIT :31; /*@PKA*/

 } vnrcvydumpareas[1]; /*@PKA*/

 }; /*@PKA*/

 /*--*/

 /* vn_recovery retval flags */

 /*--*/

 #define VNR_RETERRNO 1 /* Return -1 with retcode and rsncode */

 #define VNR_RETSUCCESS 2 /* Return retcode as retval to user */

 #define VNR_NODUMP 4 /* Suppress the SDUMP for this abend */

 /*--*/

 /* CRED - Security Auditing Information - Third Parameter (IRRPCRED)*/

 /* This parameter is generally just passed to SAF. */

 /* */

 /* Refer to SAF documentation for details on security */

 /* related interfaces and structures. */

 /*--*/

 /* length, alet, ptr set used by CREDACLINFO 6@DSA*/

 typedef struct s_credacl {

 int len; /* cred_aclinfo[].len */

 int alet; /* cred_aclinfo[].alet */

 int rsv;

 int ptr; /* cred_aclinfo[].ptr */

 } CREDACL;

 /* aclinfo area pointed to from cred 3@DSA*/

 typedef struct s_credaclinfo {

 CREDACL cred_aclinfo[5];

 } CREDACLINFO;

 /* constants used to access an aclinfo slot for an acl type 6@DSA*/

 #define CREDACCESSACL 0

 #define CREDFMODELACL 1

 #define CREDDMODELACL 2

 #define CREDPFMODELACL 3

 #define CREDPDMODELACL 4

526 z/OS V1R7.0 UNIX System Services File System Interface Reference

/* Constants for cred_utype: */

 #define CRED_UREGULAR 1 /* Regular User */

 #define CRED_USYSTEM 2 /* System User, like a superuser */

 /* Constants for cred_function: */

 #define AFC_ACCESS 1 /* Use Real UID/GID on checks */

 typedef struct s_cred {

 CBHDR cred_hdr; /*+00 Id & Length */

 char cred_ver; /*+08 Version */

 char cred_utype; /*+09 User Type */

 short cred_function; /*+0A User Function */

 char rsv4; /*+0C Reserved @DYA*/

 BIT cred_rsv_bit8 :1; /*+0D reserved bit #8 @DYC*/

 BIT cred_seclablactive :1; /* seclabel class active @DYA*/

 BIT cred_SeclRequired :1; /* mlfsobj option active @DZA*/

 BIT :5; /* reserved bits @DZC*/

 char cred_info[50]; /*+0E Security Audit Info @DYC*/

 int rsv1; /*+40 6@DSA*/

 int cred_aclalet; /*+44 */

 int rsv2; /*+48 */

 void *cred_aclptr; /*+4C points to an ACL for access*/

 #define cred_aclinfoptr cred_aclptr /* for makefsp and setfacl*/

 char cred_seclabel[8]; /*+50 security label @DYA*/

 void *cred_aceeptr; /*+58 ACEE for SRB requests @DXA*/

 char cred_ROSeclabel[8]; /*+5C Seclabel for RO Files @DYA*/

 char rsv5[28]; /*+64 */

 } CRED ;

 #pragma page()

 /*--*/

 /* PFSPARM - Text from PARM operand of FILESYSTYPE and MOUNT. */

 /* */

 /* The parmtext field is of variable length, from 0 to 1024 bytes, */

 /* with the actual length passed in the parmlen field. */

 /*--*/

 typedef struct s_pfsparm {

 short parmlen; /* Length of the text */

 char parmtext[1024]; /* Text, not null terminated.*/

 } PFSPARM ;

 /*--*/

 /* MTAB - vfs_mount parameter (BPXZMTAB)*/

 /* */

 /* This structure passes to the PFS the parameters that were */

 /* specified on a ROOT or MOUNT command and provides for the */

 /* exchange of information between the LFS and PFS. */

 /* */

 /* The PFS is expected to set the fields marked with an S, */

 /* if appropriate. */

 /* */

 /*--*/

 typedef char mt_aggname[45]; /* Aggregate Name @DUA*/

 typedef struct s_mtab {

 CBHDR mt_hdr; /* +00 Id & Length */

 int rsvd1; /* +08 Reserved */

 char mt_filesys[44]; /* +0C Name of the file system */

 char mt_ddname[8]; /*S+38 DD name of the file system if

 mt_filesys is an MVS DSN */

 char mt_filesystype[8]; /* +40 Type name of the PFS that

 owns this file system. */

 /* +48 Mount mode for this file sys*/

 BIT mt_readonly :1; /* Read only specified */

 BIT mt_readwrite :1; /* Read/Write specified */

 BIT mt_nosuid :1; /* no setuid @D8A*/

Appendix D. Interface structures for C language servers and clients 527

BIT mt_nosec :1; /* no security @DNA*/

 BIT mt_noauto :1; /* no automove @DPA*/

 BIT mt_aunmount :1; /* Unmount during recovery@DTA*/

 BIT :2; /* Reserved @DTC @DPC*/

 /* +49 Lfs specific flags */

 BIT mt_internalcall :1; /* Mount from an internal

 module - no authority check

 is needed. */

 BIT mt_nowait :1; /*S If requests are made of this

 file system while it is

 quiesced, don’t wait for the

 unquiesce, give error rc. */

 BIT mt_remount :1; /* mount is a remount @DCA*/

 BIT :5; /* Reserved @DCC*/

 short mt_syncinterval; /*S+4A Interval to use for sync */

 PFSPARM *mt_parmaddr; /* +4C Address of PARM specified

 on MOUNT or ROOT. */

 int mt_ccsid; /* +50 TAG Ccsid value @DRC*/

 /* Mount Point: (for info only)*/

 char *mt_mountptaddr; /* +54 Address of the pathname */

 int mt_pathlen; /* +58 Length of the pathname */

 /* */

 int mt_stdev; /* +5C The unique ID assigned to

 this filesystem. This value

 must be returned in at_dev. */

 /* +60 Pathconf values for File Sys*/

 int mt_linkmax; /*S+60 PFS: link_max */

 int mt_namemax; /*S+64 LFS & PFS: name_max */

 /* +68 Pathconf flags */

 BIT mt_notrunc :1; /*S LFS & PFS: posix_No_trunc */

 BIT mt_chownrstd :1; /*S Security: chown restricted*/

 BIT mt_caseinsensitive :1; /*S 0=sensitive,1=not @DHA*/

 BIT mt_casenonpreserving :1; /*S 0=perserving,1=not @DHA*/

 BIT :4; /* Reserved */

 char rsvd3[3]; /* +69 Reserved @DRC*/

 BIT mt_nullFS :1; /* Null value for FILESYSTEM @DRC*/

 BIT mt_nullMP :1; /* Null value for MOUNTPOINT @DRC*/

 BIT mt_TagText :1; /* TAG TEXT value. Auto conversion */

 /* is allowed for every untagged */

 /* file & mt_ccsid is the implicit */

 /* charset id. When off, auto */

 /* conversion is precluded. @DRC*/

 BIT :13; /* Reserved @DRA*/

 /* +6E PFS communication flags */

 BIT mt_asynchmount :1; /*S Asynchronous mount in

 progress.

 - Set by PFS to indicate

 to LFS that mount will

 complete asynchronously

 - Set by LFS to indicate

 to PFS that this call

 is to complete an

 asynchronous mount @DCC*/

 BIT mt_synchonly :1; /* Mount must be completed

 synchronously. That is,

 vfs_mount must not return

 +1 @D7A*/

 BIT mt_noclient :1; /*S Mount must not be completed

 by establishing a client -

 server relationship with

 owning system. Set by PFS

 @01C*/

 BIT mt_ininit :1; /* Set by the LFS to allow PFS

 to know mount was done

 during initialization @PAA*/

 BIT mt_nevermove :1; /*S Sysplex environment only:

 file system cannot be moved

528 z/OS V1R7.0 UNIX System Services File System Interface Reference

to another system @DPA*/

 BIT mt_secacl :1; /*S Security product supports

 ACLS. @DSA*/

 BIT mt_aggattachrw :1; /*S Agg is attached R/W @DUA*/

 BIT mt_agghfscomp :1; /*S Agg is HFS Compatible @DUA*/

 BIT :3; /* Reserved for HFS @04C @03A*/

 BIT :5; /* Reserved @04C*/

 char rsvd4[8]; /* Reserved @DPA*/

 char mt_sysname[8]; /* system to be mounted

 on @DPA*/

 /*+80 End of Ver1 Mtab --------------------- @DUA*/

 char rsvd5[32]; /*@DUA*/

 mt_aggname *mt_aggnameptr; /*+A0 Ptr to AggName Area @DUA*/

 char rsvd6[12]; /*@DUA*/

 /*+B0 End of Ver2 Mtab --------------------- @DUA*/

 } MTAB ;

 /*--*/

 /* NETW - vfs_network parameter (BPXZNETW)*/

 /* */

 /* This structure passes to the PFS the parameters that were */

 /* specified on a NETWORK command and provides for the */

 /* exchange of information between the LFS and PFS. */

 /* */

 /* The PFS is expected to set the fields marked with an S. */

 /* */

 /*--*/

 typedef struct s_netw {

 CBHDR nt_hdr; /* +00 ID & Length */

 int rsvd1; /* +08 Reserved */

 int nt_domnum; /* +0C Numeric value of the domain */

 char nt_domname[16]; /* +10 Name of the domain */

 char nt_type[8]; /* +20 Filesystype of the PFS */

 int nt_maxsockets; /* +28 Max number sockets */

 int nt_stdev; /* +2C The unique ID assigned to

 this filesystem. This value

 must be returned in at_dev. */

 /* +30 Parser Flags: */

 BIT nt_havename :1; /* DOMAINNAME given */

 BIT nt_havenum :1; /* DOMAINNUMBER given */

 BIT nt_havesock :1; /* MAXSOCKETS given */

 BIT nt_havetype :1; /* TYPE given */

 BIT :4;

 BIT nt_invaname :1; /* DOMAINNAME invalid */

 BIT nt_invanum :1; /* DOMAINNUMBER invalid */

 BIT nt_invasock :1; /* MAXSOCKETS invalid */

 BIT nt_invatype :1; /* TYPE invalid */

 BIT :4;

 /* +32 Flags: */

 BIT nt_localremote :1; /*S 0=Local, 1=Remote */

 BIT nt_commoninet :1; /* running under Cinet @PGA*/

 BIT :6;

 char rsvd2[1]; /* +33 Reserved */

 short nt_iaaport; /* +34 Starting Reserved Port @PGA*/

 short nt_iaacount; /* +36 Number of Reserved Ports@PGA*/

 char nt_parmmem[8]; /* +38 Parmlib Member name @PGA*/

 /* +40 */

 } NETW ;

 /* nt_localremote values */

 #define NETW_LOCAL 0 /* Local (intra-system) socket */

 #define NETW_REMOTE 1 /* Remote (network) socket */

 /*--*/

 /* O_EXEC flag for the open_flags parameter of vn_open (BPXYOPNF)*/

Appendix D. Interface structures for C language servers and clients 529

/*--*/

 #define O_EXEC 0x00800000 /* Do Open Access check for Exec */

 /*--*/

 /* _SOCKADDR Dummy Value (BPXYSOCK)*/

 /*--*/

 #ifndef _SOCKADDR /* This macro can be externally set @PIM*/

 #define _SOCKADDR char /* to the desired sockaddr struct. @PIM*/

 #endif /*@PIM*/

 /*--*/

 /* Select Parameters - vn_select and vfs_batsel (BPXYSEL)*/

 /*--*/

 /* sel_function values */

 #define SEL_QUERY 1 /* SELECT Query */

 #define SEL_CANCEL 2 /* SELECT Cancel */

 #define SEL_BATSELQ 3 /* BATCH-SELECT Query */

 #define SEL_BATSELC 4 /* BATCH-SELECT Cancel */

 #define SEL_POLLQUERY 5 /* POLL Query @P9A*/

 #define SEL_BATPOLLQ 6 /* BATCH-POLL Query @P9A*/

 #define SEL_BATPOLLC 7 /* BATCH-POLL Cancel @P9A*/

 #define SEL_POLLCANCEL 8 /* POLL Cancel @P9A*/

 /* sel_options values */

 #define SEL_READ 0x40000000 /* Read */

 #define SEL_WRITE 0x20000000 /* Write */

 #define SEL_XCEPT 0x10000000 /* Exception */

 /* Batch Select Interface Control (BSIC) Block (BPXZBSIC)*/

 typedef struct s_bsicent { /* Individual Entry: */

 int bs_request; /* Status Request */

 int bs_response; /* Status Response */

 GTOK bs_file; /* File Token, same as ts_file */

 char *bs_workptr; /* Work Area Ptr for use by PFS */

 SELTOK bs_seltok; /* Select Token for osi_selpost */

 } BSICENT;

 typedef struct s_bsic { /* Main structure with array: */

 char bsh_id[4]; /* Identifier */

 int bsh_fdcount; /* Number of bsh_ents (files) */

 char *bsh_workptr; /* Work Area Ptr for use by PFS */

 BSICENT bsh_ents[1]; /* Entry array (1 per fdcount) */

 } BSIC ;

 /*--*/

 /* Direction parameter for vn_sockopt @P8A*/

 /*--*/

 #define GET_SOCKOPT 1 /* Get socket options @P8A*/

 #define SET_SOCKOPT 2 /* Set socket options @P8A*/

 #define SET_IBMSOCKOPT 3 /* SetIBMsockopt options @PDA*/

 /*--*/

 /* vn_sockopt(SET_IBMSOCKOPT) Options (BPXYSOCK)*/

 /*--*/

 #define SOCK_SO_BULKMODE 0x8000 /*@DKA,@DMC*/

 #define SOCK_SO_IGNOREINCOMINGPUSH 1 /*@DKA,@DMC*/

 #define SOCK_SO_NONBLOCKLOCAL 0x8001 /*@DKA,@DMC*/

 #define SOCK_SO_IGNORESOURCEVIPA 2 /*@DKA,@DMC*/

 #define SOCK_SO_OPTMSS 0x8003 /*@DKA,@DMC*/

 #define SOCK_SO_OPTACK 0x8004 /*@DKA,@DMC*/

530 z/OS V1R7.0 UNIX System Services File System Interface Reference

/*--*/

 /* vn_getname Name_type values @PHA*/

 /*--*/

 #define gnm_getpeername 1 /*@PHA*/

 #define gnm_getsockname 2 /*@PHA*/

 /*--*/

 /* vn_cancel Flags @DGA*/

 /*--*/

 struct vncanflags { /* vn_cancel flags @DGA*/

 BIT :8; /* Reserved */

 BIT :23; /* Also reserved */

 BIT vncanforce :1; /* Forced Cancel @DGA*/

 } ;

 /*--*/

 /* PathConf Extensions - vn_pathconf (BPXYPCF)*/

 /*--*/

 #define PC_CASE 100 /* pathconf_option value @DHA*/

 #define CASE_INSENSITIVE 2 /* Ret if not sensitive @DHA*/

 #define CASE_NONPRESERVING 1 /* Ret if not preserving @DHA*/

 /*--*/

 /* Accept_and_Receive structure - vn_anr (BPXZOSI)*/

 /*--*/

 struct anr_struct { /*@PHA*/

 int remote_sockaddr_length;

 _SOCKADDR *remote_sockaddr_ptr;

 int local_sockaddr_length;

 _SOCKADDR *local_sockaddr_ptr;

 int msg_flags;

 } ; /*@PHA*/

 /*--*/

 /* 64-Bit Versions of the Iovec and MsgHdr (BPXYMSGH & BPXYIOV)*/

 /*--*/

 struct iov64 { /*@POA*/

 ADDR64 iov64_base; /* 64-Bit Ptr */

 int iov64_lenh; /* Required to be Zero */

 signed int iov64_len; /* Length, < 2G */

 };

 struct msg64hdr { /*@POA*/

 ADDR64 msg64_name; /* 64-Bit sockaddr ptr */

 ADDR64 msg64_iov; /* 64-Bit iov ptr */

 ADDR64 msg64_control; /* 64-Bit ancillary ptr */

 int msg64_flags; /* MSG_ flags */

 int msg64_namelen; /* 31-Bit sockaddr length */

 int msg64_iovlen; /* 31-Bit number of iovecs */

 int msg64_controllen; /* 31-Bit ancillary len */

 };

 /*--*/

 /* Fast Sockets Parameter List - VN_FSR/FSRF/FSRM (BPXZFSPL)*/

 /*--*/

 #ifdef __FSPL

 struct fs_sr { /* FSP1 - vn_fsr @POA*/

 /*+30*/

 int sr_ibufflen; /* buffer length */

 int sr_ibufferalet; /* buffer alet */

 int sr_iflags; /* flags */

Appendix D. Interface structures for C language servers and clients 531

char *sr_ibufferptr; /* 31-bit ptr */

 /*+40*/

 ADDR64 sr_ibufferptr64; /* 64-bit buff ptr */

 } ;

 struct fs_srf { /* FSP2 - vn_fsrf @POA*/

 /*+30*/

 int srf_ibufflen; /* buffer length */

 int srf_ibufferalet; /* buffer alet */

 int srf_iflags; /* flags */

 int srf_isockaddrlen; /* sockaddr length */

 /*+40*/

 char *srf_isockaddrptr; /* ptr to sockaddr in pri*/

 char *srf_ibufferptr; /* ptr to buffer */

 ADDR64 srf_ibufferptr64; /* 64-bit buff ptr */

 } ;

 struct fs_srm { /* FSP3 - vn_fsrm @POA*/

 /*+30*/

 int srm_iflags; /* flags */

 int srm_iiovalet; /* iov structure alet */

 int srm_iiovbufalet; /* alet for iov buffers */

 union {

 struct msghdr srm_imsghdr; /* 31-bit msghdr */

 struct { int rsvd;

 struct msg64hdr srm_imsghdr64; /* 64-bit msghdr */

 } srm_imsghdr64u;

 } srm_imsgh;

 } ;

 struct s_fspl { /*@POA*/

 CBHDR fs_hdr; /* ID & Length */

 char rsvd1[3]; /* Reserved */

 /* Flags: */

 BIT fs_key :4; /* user’s key */

 BIT fs_addr64 :1; /* 64-bit buffer addrs */

 BIT :1; /* */

 BIT fs_shutd :1; /* send & shutdown (msg_eof) */

 BIT fs_rwind :1; /* 0=read, 1=write */

 CRED *fs_cred; /* ptr to cred @DXA*/

 /*+10*/

 GTOK fs_pfstok; /* pfs token from vnode (ts_file)*/

 int fs_openflgs; /* open flags */

 OSI *fs_osi; /* ptr to osi */

 /*+20*/

 int fs_rv; /* return value */

 int fs_rc; /* return code (errno) */

 int fs_rsn; /* reason code (errnojr) */

 int fs_sockdes; /* common socket descriptor */

 /*+30*/

 union { /* call specific parms */

 struct fs_sr fs_isr;

 struct fs_srf fs_isrf;

 struct fs_srm fs_isrm;

 } fs_parms;

 } ;

 #endif

 /*--*/

 /* Inactive buffer structure (IAB) - vfs_inactive (BPXZOSI) */

 /*--*/

 typedef struct s_iabent { /* Individual Entry */

 char *iab_vnode; /* Vnode pointer */

 char iab_pfs[8]; /* Pfs token */

 char *iab_server_vnode; /* Server’s vnode ptr */

532 z/OS V1R7.0 UNIX System Services File System Interface Reference

FID iab_fid; /* Fid for validation @PPA*/

 int iab_return_value; /* Return value */

 } IABENT; /*@PLA*/

 typedef struct s_iab { /* Main structure with array: */

 int iab_devno; /* Device number */

 IABENT iab_ents[1]; /* Entry array (1 per vnode) */

 } IAB; /*@PLA*/

 #ifndef SIOCSETRTTD

 /*---*/

 /* Ioctl commands used during initialization of a PFS */

 /* when using Common Inet @P8A*/

 /* NOTE: Values of the form 000013xx can only be used */

 /* with the w_ioctl() function, not with ioctl(). */

 /*---*/

 #define SIOCSETRTTD 0x8008C981 /* Set TD - Left bookend */

 #define IOCC_TCCE 0x0000138e /* (5006) - Right bookend*/

 /*---*/

 /* Ioctl commands used during normal processing of route */

 /* changes when using Common Inet @P8A*/

 /*---*/

 #define SIOCMSDELRT 0x0000138f /* (5007) - Delete Route */

 #define SIOCMSADDRT 0x00001390 /* (5008) - Add Route */

 #define SIOCMSSIFADDR 0x00001391 /* (5009) - Set Interface

 Address */

 #define SIOCMSSIFFLAGS 0x00001392 /* (5010) - Set Interface

 Flags */

 #define SIOCMSSIFDSTADDR 0x00001393 /* (5011) - Set pt-to-pt

 interface address*/

 #define SIOCMSSIFBRDADDR 0x00001394 /* (5012) - Set broadcast

 Address */

 #define SIOCMSSIFNETMASK 0x00001395 /* (5013) - Set Interface

 Network Mask */

 #define SIOCMSSIFMETRIC 0x00001396 /* (5014) - Set Interface

 Routing Metric*/

 #define SIOCMSRBRTTABLE 0x00001397 /* (5015) - Rebuild Routing

 Table */

 #define SIOCMSMETRIC1RT 0x00001398 /* (5016) - Set Metric1 */

 #define SIOCMSICMPREDIRECT 0x00001399 /* (5017) - ICMP Redirect*/

 #endif

 #pragma page()

 /**/

 /* */

 /* Physical File System Initialization Interface Structures */

 /* */

 /* These structures are used during the activation of a PFS. */

 /* The pfsinit routine is invoked with the following parameters: */

 /* */

 /* pfsinit(PFSI *P, PFSNAME *N, PFSPARM *M, void *V, OSIT *O) */

 /* */

 /* The variable names, P,N,M,V, and O are used in the examples. */

 /**/

 /*--*/

 /* PFSI - PFS Initialization Block (BPXZPFSI)*/

 /* */

 /* This structure is used to exchange information between */

 /* the LFS and PFS during initialization. */

 /* */

 /* The PFS is expected to set the fields marked with an S. */

 /* */

 /*--*/

 typedef struct s_pfsi {

Appendix D. Interface structures for C language servers and clients 533

CBHDR pfsi_hdr; /* +00 ID and Length */

 short pfsi_ver; /* +08 Version number */

 char pfsi_rsvd1; /* +0A Reserved */

 char pfsi_tdindex; /* +0B Cinet Td Index passed to PFS @DVA*/

 GTOK pfsi_pfsanchor; /*S+0C The PFS init token that will be

 passed to the PFS on all calls. */

 struct vfsotab

 *pfsi_vfso; /*S+14 Address of the VFS ops table */

 /* +18 Flags */

 BIT pfsi_ook :1; /* File system is running outside

 the kernel */

 BIT pfsi_alone :1; /* File system is the only PFS in

 this A.S. outside the kernel */

 BIT pfsi_new :1; /* File system is being intialized

 for the 1st time in this AS @P0C*/

 BIT pfsi_estaeexits :1; /* osi_thread called routine

 permanent ESTAE supported @DMA*/

 BIT pfsi_memcritical:1; /* LFS supports osi_memcritical

 in this release @02A*/

 BIT pfsi_sysplex :1; /* USS started SYSPLEX(YES) @E0A*/

 BIT :2; /* Reserved @E0C*/

 BIT pfsi_commbuff :1; /* Common Buffers Supported @DWA*/

 BIT :7; /* Reserved @DGC*/

 BIT pfsi_osync :1; /*S vn_open does fsync for O_SYNC @PMA*/

 BIT pfsi_srb :1; /*S SRM Mode supported @DGA*/

 BIT pfsi_asyio :1; /*S Async I/O supported @DGA*/

 BIT pfsi_rddplus :1; /*S ReadDirPlus supported @DHA*/

 BIT pfsi_64datoff :1; /*S 64-Bit Real Page Supported @PMA*/

 BIT pfsi_nolgfile :1; /*S O_NOLARGEFILE size checking @PMA*/

 BIT pfsi_addr64 :1; /*S 64-Bit User areas supported @PMA*/

 BIT pfsi_ipv6 :1; /*S IPv6 Capable @DVA*/

 BIT pfsi_romntclient :1; /*S=1: Read-only mounts on other than

 owner should be client

 (i.e. served)

 =0: Such mounts should be local

 (i.e. file system is sysplex

 aware) @PEC*/

 BIT pfsi_rwmntclient:1; /*S=1: Read-write mounts on other than

 owner should be client

 =0: Such mounts should be local

 @DOC*/

 BIT pfsi_usethreads :1; /*S File system requests support for

 the osi_thread function @D7A*/

 BIT pfsi_disableLLA :1; /*S File system requests no lookup

 look aside support @D5A*/

 BIT pfsi_stayalone :1; /*S File system requests no other PFS

 be started in this A.S. */

 BIT pfsi_immeddel :1; /*S Removed files are deleted if, or

 when, their open count is 0 @D6A*/

 BIT pfsi_cpfs :1; /*S File system is written in C. Invoke

 w/ a preinit. C environment */

 BIT pfsi_datoffmove :1; /*S File system supports DATOFF move

 for page read operations */

 struct vnoptab

 *pfsi_vnop; /*S+1C Address of the Vnode ops table */

 int pfsi_tcbaddr; /* +20 Address of the TCB for this PFS */

 long pfsi_initcompecb; /* +24 ECB that the PFS posts when

 initialization is complete. */

 char pfsi_pfstype; /*S+28 The type of the PFS */

 char pfsi_rsvd2[3]; /* +29 Reserved */

 long pfsi_pfsecb; /* +2C ECB that is posted when the Kernel

 is terminating. The PFS should

 be waiting on this ECB. */

 /* Pathconf() values as applicable: */

 int pfsi_pipebuf; /*S+30 pipe_buf */

 int pfsi_maxcanon; /*S+34 max_canon */

 int pfsi_maxinput; /*S+38 max_input */

534 z/OS V1R7.0 UNIX System Services File System Interface Reference

/* +3C Flags: */

 BIT pfsi_chownrstd :1; /*S POSIX_Chown_restr */

 BIT :7; /* Reserved */

 char pfsi_rsvd3[2]; /* +3D Reserved */

 char pfsi_vdisable; /*S+3F _posix_vdisable */

 char *pfsi_restart; /* +40 Address of Restart Option Byte */

 struct dmpinf

 pfsi_dumpptr; / +44 Address of Dump Information */

 char pfsi_asname[8]; /* +48 Address Space Name of PFS @D1A*/

 char pfsi_ep[8]; /* +50 Entry point attached during

 initialization @D1A*/

 int pfsi_pfsid; /* +58 Pfs Identifier @P5A*/

 struct ot_statflags

 pfsi_otstatptr; / +5C osi_thread status flags @P5A*/

 char pfsi_rsvd4[8]; /* +60 Reserved @P5C*/

 /* Inserts for Dump Titles: */

 char pfsi_compon[3]; /*S+68 This PFS’s Component Prefix */

 char pfsi_compid[5]; /*S+6B This PFS’s Component ID */

 char pfsi_startname[8];/* +70 Start name for PFS @DAA*/

 int pfsi_pfspc; /* +78 PfsPc Number, Colony Only @PMA*/

 char pfsi_rsvd6[36]; /* +7C Reserved @D7C*/

 } PFSI ;

 /*---*/

 /* pfsi_restart - Restart Option Values */

 /* Example usage: *(P->pfsi_restart) = RESTART_NONE; */

 /*---*/

 #define RESTART_WTOR 0 /* Prompt operator first */

 #define RESTART_AUTO 1 /* Restart automatically */

 #define RESTART_NONE 2 /* Do not restart this PFS */

 #define RESTART_KILL 3 /* Terminate OMVS too */

 #define RESTART_RCWTOR 4 /* Restart Colony and Prompt

 operator for PFS restart @D1A*/

 #define RESTART_RCAUTO 5 /* Restart Colony and

 Automatic PFS restart @D1A*/

 #define RESTART_RCNONE 6 /* Bring down Colony and

 No PFS restart tried @D1A*/

 #define RESTART_PFSCTL 7 /* Wait for pfsctl(Restart)

 @PJA*/

 /*---*/

 /* pfsi_pfstype - PFS Type Values */

 /* Example usage: P->pfsi_pfstype = MNT_FSTYPE_REMOTE; */

 /*---*/

 /* These are defined with the common structures in */

 /* BPXYVFSI as the constants starting with MNT_FSTYPE_ */

 /*---*/

 /* pfsi_ver - Version Values */

 /*---*/

 #define PFSI_VER0 0 /* Initial Version */

 #define PFSI_VER1 1 /* Second Version */

 #define PFSI_VER2 2 /* Second Version + HOTC @D4A*/

 /*---*/

 /* pfsi_otstatptr - pointer to osi_thread status flags @P5A*/

 /*---*/

 struct ot_statflags { /* osi_thread status flags */

 BIT ot_available :1; /* Thread services are available*/

 BIT :7;

 } ;

 /*---*/

Appendix D. Interface structures for C language servers and clients 535

/* pfsi_vnop - VNODE Operations Table (BPXZVNOP)*/

 /* This table is built by the PFS and returned to the LFS */

 /*---*/

 #define VN_OPEN 0

 #define VN_CLOSE 1

 #define VN_RDWR 2

 #define VN_IOCTL 3

 #define VN_GETATTR 4

 #define VN_SETATTR 5

 #define VN_ACCESS 6

 #define VN_LOOKUP 7

 #define VN_CREATE 8

 #define VN_REMOVE 9

 #define VN_LINK 10

 #define VN_RENAME 11

 #define VN_MKDIR 12

 #define VN_RMDIR 13

 #define VN_READDIR 14

 #define VN_SYMLINK 15

 #define VN_READLINK 16

 #define VN_FSYNC 17

 #define VN_TRUNC 18

 #define VN_INACTIVE 19

 #define VN_AUDIT 20

 #define VN_PATHCONF 21 /*@D5A*/

 #define VN_RECOVERY 22 /*@D5A*/

 #define VN_LOCKCTL 23 /* for File Exp Exit only */

 #define VN_CANCEL 24 /*@DGA*/

 #define VN_SELECT 25

 #define VN_ACCEPT 26

 #define VN_BIND 27

 #define VN_CONNECT 28

 #define VN_GETNAME 29

 #define VN_SOCKOPT 30

 #define VN_LISTEN 31

 #define VN_READWRITEV 32

 #define VN_SNDRCV 33

 #define VN_SNDTORCVFM 34

 #define VN_SRMSG 35

 #define VN_SHUTDOWN 37

 #define VN_FSR 38 /*@DLA*/

 #define VN_FSRF 39 /*@DLA*/

 #define VN_FSRM 40 /*@DLA*/

 #define VN_SRX 42 /*@DLA*/

 #define VN_ANR 43 /*@DLA*/

 #define MAX_VNOPS 44

 typedef void VNOP_OP(); /* Generalized Vnode Op */

 #pragma linkage(VNOP_OP, OS) /* Is called with OS lnkg */

 struct vnoptab { /* The Vnode Op Table */

 CBHDR vnop_hdr;

 VNOP_OP *vnop_op[MAX_VNOPS];

 };

 #define VNOP_ID "VNOP"

 #define VNOP_HDR {{VNOP_ID}, sizeof(struct vnoptab)}

 /* Example initialization of this table:

 | /* Get storage, init hdr & zero out rest *

 | struct vnoptab pfstab = { VNOP_HDR };

 | /* Set the address of each supported op *

 | pfstab.vnop_op[VN_OPEN] = pfs_open;

536 z/OS V1R7.0 UNIX System Services File System Interface Reference

| pfstab.vnop_op[VN_CLOSE] = pfs_close;

 | pfstab.vnop_op[VN_RDWR] = pfs_rdwr;

 | . . . etc.

 | /* Return the table address to the LFS *

 | P->pfsi_vnop = &pfstab;

 */

 /*---*/

 /* pfsi_vfso - VFS Operations Table (BPXZVFSO)*/

 /* This table is built by the PFS and returned to the LFS */

 /*---*/

 #define VFS_MOUNT 0

 #define VFS_UMOUNT 1

 #define VFS_SYNC 2

 #define VFS_INACT 3 /*@PPA*/

 #define VFS_STATFS 4

 #define VFS_VGET 6

 #define VFS_RECOVERY 7

 #define VFS_BATSEL 9

 #define VFS_GETHOST 10

 #define VFS_SOCKET 11

 #define VFS_NETWORK 12

 #define VFS_PFSCTL 13

 #define MAX_VFSOPS 14

 typedef void VFS_OP(); /* Generalized VFS Op */

 #pragma linkage(VFS_OP, OS) /* Is called with OS lnkg */

 struct vfsotab { /* The VFS Op Table */

 CBHDR vfso_hdr;

 VFS_OP *vfso_op[MAX_VFSOPS];

 };

 #define VFSO_ID "VFSO"

 #define VFSO_HDR {{VFSO_ID}, sizeof(struct vfsotab)}

 /*---*/

 /* Dump Information - used by the PFS to add LFS address space */

 /* and data space areas to the dumps that are taken by the PFS.*/

 /*---*/

 struct pfsi_dumpent { /* Individual Dump Area Entry: */

 char pfsi_dumpstoken[8]; /* Stoken of the space */

 int pfsi_dumpalet; /* Reserved @P8C*/

 int pfsi_dumpflag; /* Reserved @P8C*/

 char *pfsi_dumpstart; /* Starting address */

 char *pfsi_dumpend; /* Ending address */

 } ;

 struct dmpinf { /* Area pointed to by pfsi_dumpptr */

 int pfsi_dumpents; /* Number of Dump Area Entries */

 char pfsi_dumpid[4]; /* EBCDIC ID - FDUM @P8A*/

 char pfsi_rsvd7[8]; /* Reserved @P8C*/

 struct pfsi_dumpent /* Array of Dump Areas, actual */

 pfsi_dumpdata[16]; /* number of entries is in */

 } ; /* pfsi_dumpents. */

 /*--*/

 /* PFSNAME - Name of the PFS from TYPE operand of FILESYSTYPE. */

 /* This string is blank padded and not null terminated. */

 /*--*/

 typedef struct s_pfsname {

 char pfsname[8]; /* PFS Type or Name */

 } PFSNAME ;

Appendix D. Interface structures for C language servers and clients 537

#pragma page()

 /**/

 /* */

 /* File Exporter Exit Interfaces */

 /* */

 /**/

 /*---*/

 /* Exit Parameter Structure (BPXZGXPL)*/

 /*---*/

 typedef struct s_gxpl {

 char gx_id[4]; /*+00 EBCDIC ID */

 short gx_ver; /*+04 Gxpl Version number */

 short gx_len; /*+06 Length of Gxpl structure */

 short gx_op; /*+08 Operation Code */

 /*+0A Flags: */

 BIT gx_postop :1; /* 1=PostOp Call */

 BIT gx_readwrite :1; /* 0=Read mode, 1=Write mode */

 BIT gx_eom :1; /* 1=Called from user EOM */

 BIT gx_trunc :1; /* 1=File Size Change */

 BIT :12;

 OSI *gx_osi; /*+0C OSI address */

 int gx_volhdl[4]; /*+10 VolHdl from v_export */

 int gx_anchor[2]; /*+20 Exit Anchor */

 int gx_state[2]; /*+28 Exit State Area */

 /* File Identifiers: */

 FID gx_fid1; /*+30 The principal target */

 FID gx_fid2; /*+38 The secondary target */

 FID gx_fid3; /*+40 for rename, the to-dir */

 FID gx_fid4; /*+48 for rename, the to-file */

 int gx_opretval; /*+50 Op Return Value to PostOp */

 int gx_retcode; /*+54 Exit Return Code */

 int gx_rsncode; /*+58 Exit Reason Code */

 char *gx_optparm; /*+5C Optional Parameter */

 char gx_lfs[8]; /*+60 Reserved for the LFS */

 char rsvd1[8]; /*+68 Reserved for expansion */

 } GXPL ;

 #define GXPL_ID "GXPL"

 #define GXPL_VERSION 1

 /*---*/

 /* Constants for gx_op */

 /*---*/

 #define GXPL_INIT 0x1001 /* Initialization Call */

 #define GXPL_EXPCMD 0x1002 /* Exporter Command */

 #define GXPL_RECOVERY 0x1003 /* Recovery Call */

 #define GXPL_UNMOUNT 0x1004 /* Unmount Call @DBA*/

 #define GXPL_UNEXPORT 0x1005 /* Unexport Call @DBA*/

 #define GXPL_EXPTERM 0x1006 /* Exporter has terminated */

 #define GXPL_TERM 0x1007 /* Termination Call */

 #define GXPL_MTPTCHG 0x1008 /* Mount Point Change @PNA*/

 /* The Vnode operation values are the same as the pfsi_vnop

 | constants listed above, i.e. VN_OPEN, VN_RDWR, etc.

 */

 /*--*/

 /* Byte Range Lock Parameters */

 /*--*/

 struct gxlk {

 int gxl_version; /* gxlk version number */

 int gxl_lckcmd; /* Lock Cmd: F_SETLK, etc. */

538 z/OS V1R7.0 UNIX System Services File System Interface Reference

int gxl_lcktype; /* Lock Type: F_RDLCK, etc. */

 int gxl_brbh; /* Range Beginning, high word */

 int gxl_brbl; /* Range Beginning, low word */

 int gxl_breh; /* Range End, high word */

 int gxl_brel; /* Range End, low word */

 int gxl_blkpid; /* Blocking PID */

 int rsvd[2];

 };

 /* gxl_lckcmd and gxl_lcktype values are defined in fcntl.h. */

 #define GXL_VER0 0 /* First gxlk version */

 #define GXL_EOFH 0x7FFFFFFF /* End-Of-File High word */

 #define GXL_EOFL 0xFFFFFFFF /* Low word */

 /* gx_optparm values for GXPL_MTPTCHG @05A*/

 /* The field must be cast to an (int) to be used here. @05A*/

 /*@05A*/

 #define GXPL_MTPT_UNMOUNT 0 /* Mount Point Unmounted @05A*/

 #define GXPL_MTPT_MOUNT 1 /* Mounting on Mt Pt @05A*/

 #define GXPL_REMOUNT_RO 3 /* File Sys ReMount(RO) @05A*/

 #define GXPL_REMOUNT_RW 4 /* File Sys ReMount(RW) @05A*/

 /*---*/

 /* Exit Routine Prototype - as called by the LFS */

 /*---*/

 #pragma linkage(gx_exitrtn, OS)

 void gx_exitrtn (GXPL *);

 #pragma page()

 /**/

 /* */

 /* Operating System Interface (OSI) Services */

 /* */

 /**/

 /*--*/

 /* Macros used to invoke the OSI services */

 /* */

 /* The OSIT table address must be saved during initialization */

 /* and made available at the time of an OSI service call. */

 /* Refer to the prolog for details on using this macro. */

 /*--*/

 #ifndef _OSIT_PTR /* Establish the default osi_ptr */

 #define _OSIT_PTR osit_ptr

 #endif

 /*--*/

 /* OSI Service Names */

 /* The OSI services are called with these names and the macros */

 /* use the OSIT table to find the associated routine. */

 /* */

 /* For example: osi_wait(OSI_SETUP, osiaddr, &rc); */

 /*--*/

 #define osi_getvnode _OSICALL(GETVNODE)

 #define osi_mountstatus _OSICALL(MOUNTSTATUS) /*@D4A*/

 #define osi_ctl _OSICALL(CTL) /*@DAA*/

 #define osi_selpost _OSICALL(SELPOST)

 #define osi_wait _OSICALL(WAIT)

 #define osi_post _OSICALL(POST)

 #define osi_signal _OSICALL(SIGNAL)

 #define osi_sleep _OSICALL(SLEEP) /*@D6A*/

 #define osi_wakeup _OSICALL(WAKEUP) /*@D6A*/

 #define osi_kmsgget _OSICALL(KMSGGET) /*@D6A*/

 #define osi_kmsgsnd _OSICALL(KMSGSND) /*@D6A*/

 #define osi_kmsgrcv _OSICALL(KMSGRCV) /*@D6A*/

 #define osi_kmsgctl _OSICALL(KMSGCTL) /*@D6A*/

Appendix D. Interface structures for C language servers and clients 539

#define osi_kipcget _OSICALL(KIPCGET) /*@DDA*/

 #define osi_uiomove _OSICALL(UIOMOVE) /* @D7A*/

 #define osi_copyin _OSICALL(COPYIN) /* @D7A*/

 #define osi_copyout _OSICALL(COPYOUT) /* @D7A*/

 #define osi_thread _OSICALL(THREAD) /* @D7A*/

 #define osi_getcred _OSICALL(GETCRED) /* @P6A*/

 #define osi_upda _OSICALL(UPDA) /*@DGA*/

 #define osi_sched _OSICALL(SCHED) /*@DGA*/

 #define osi_lkfs _OSICALL(LKFS) /*@DJA*/

 #define osi_ctrace _OSICALL(CTRACE) /*@DIA*/

 #define osi_socket _OSICALL(SOCKET) /*@DKA*/

 #define osi_copy64 _OSICALL(COPY64) /*@PMA*/

 /* Internal Macro used to invoke the OSI_ service from the OSIT */

 #ifndef _OSICALL

 #define _OSICALL(op) ((_OSIT_PTR) -> osit_ ## op)

 #endif

 /*--*/

 /* OTHDPRM - Parameter structure input to osi_thread (BPXZTPRM)*/

 /*--*/

 typedef struct s_othdprm {

 CBHDR ot_hdr; /*+00 Id & Length */

 char ot_modname[64]; /*+08 Name of module to fetch */

 void *ot_parms; /*+48 Pointer to parms to pass

 to module and(maybe) exit */

 char ot_exitname[64]; /*+4C Name of exit routine */

 /*+8C Input option flags */

 BIT ot_sigwait :1; /* Signal enabled wait */

 BIT ot_nowait :1; /* no wait */

 BIT ot_releasemods:1; /* release modules when done */

 BIT ot_rsvrd1:29; /* reserved */

 char ot_rsrvd2[8]; /*+90 reserved @DDC*/

 } OTHDPRM ; /* @D7A*/

 #define OTHDPRM_ID "TPRM"

 #define OTHDPRM_HDR {{OTHDPRM_ID}, sizeof(OTHDPRM)}

 /*--*/

 /* OTHDCRCV - osi_thread called routine recovery block */

 /* */

 /* This is the second parameter passed to the routine specified */

 /* in ot_modname and the "PARAM" for the ESTAEX routine. */

 /*--*/

 typedef struct s_othdcrcv {

 void *otr_rcvyrtn; /*+00 Pointer to called module’s

 recovery routine */

 void *otr_parms; /*+04 Pointer to parms to pass

 to called module’s

 recovery routine */

 long reserved1; /*+08 Reserved */

 long reserved2; /*+0C Reserved */

 char work_area[496]; /*+10 Work area for ESTAEX rtn */

 } OTHDCRCV ; /* @DMA*/

 /*--*/

 /* OGCDPRM - Parameter structure input to osi_getcred (BPXZCPRM)*/

 /*--*/

 typedef struct s_ogcdprm {

 CBHDR oc_hdr; /*+00 Id & Length I */

 int oc_real_uid; /*+08 Real uid O */

 int oc_effective_uid; /*+0C Effective uid O */

 int oc_saved_uid; /*+10 Saved uid O */

 int oc_real_gid; /*+14 Real gid O */

 int oc_effective_gid; /*+18 Effective gid O */

 int oc_saved_gid; /*+1C Saved gid O */

 int oc_maxsgids; /*+20 Maximum number of

540 z/OS V1R7.0 UNIX System Services File System Interface Reference

supplementary gids

 there is room for.

 Set to actual number

 if not room for all I/O */

 int oc_numsgids; /*+24 Number of supplementary

 gids returned O */

 int *oc_gid_list; /*+28 Pointer to array of

 supplementary gids I */

 } OGCDPRM ; /* @P6A*/

 #define OGCDPRM_ID "CPRM"

 #define OGCDPRM_HDR {{OGCDPRM_ID}, sizeof(OGCDPRM)}

 /*--*/

 /* Time Interval - Input to osi_sleep and osi_wait @P8A*/

 /* Double word S/390 timer units, or (time[0]*1.04) sec. approx. */

 /*--*/

 struct time_int {

 unsigned long time[2];

 };

 /*--*/

 /* OSI LkFs Parameter */

 /* Passed to osi_LkFs service. @DJA*/

 /*--*/

 typedef struct s_osilparm { /* osi LkFs parameter block @DJA*/

 int osil_length; /* Length @DJA*/

 TOKSTR *osil_tokstr;/* Cjar pointer @DJA*/

 int osil_devno; /* Device number @DJA*/

 int osil_cmdcode; /* Command Code (lock or unlk) @DJA*/

 GTOK osil_handle; /* Vfs lock handle @DJA*/

 } OSILPARM; /* @DJA*/

 #define OSIL_LOCK 1 /* Lock cmd code for osil_parm @DJA*/

 #define OSIL_UNLK 2 /* Unlock cmd code for osil_parm @DJA*/

 /*--*/

 /* osi_copy64 Parameter @PMA*/

 /*--*/

 struct copy64_struct { /*@PMA*/

 int c64_length; /* Struct Length */

 BIT :20; /* Flags */

 BIT c64_dontincrsrc :1; /* 0=Add Len to Source */

 BIT c64_dontincrdest :1; /* 0=Add Len to Dest */

 BIT c64_gotrecovery :1; /* 1=PFS has own FRR */

 BIT c64_direction :1; /* 0=Out, 1=In */

 BIT c64_keybits :4; /* User’s storage key */

 BIT :4;

 ADDR64 c64_sourcebuff; /* Source */

 ADDR64 c64_destbuff; /* Destination */

 int c64_CLrsvd; /* (reserved) */

 int c64_copylen; /* Move length */

 int c64_sourcealet;

 int c64_destalet;

 int c64_rc;

 int c64_rsn;

 char c64_workarea[64];

 };

 #define C64_OUT 0

 #define C64_IN 1

 /*--*/

 /* OSI Services Prototypes */

 /*--*/

Appendix D. Interface structures for C language servers and clients 541

typedef void OSI_GETVNODE(int ent, /* Entry Code */

 TOKSTR *, /* Object’s Parent’s Tokstr*/

 ATTR *, /* Attr of the new object */

 GTOK *, /* PFS File Token for obj */

 O_VNTOK *, /* Object’s vnode token */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_MOUNTSTATUS(int ent, /* Entry Code @D4A*/

 int devno, /* Devno (mt_stdev) @D5C*/

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_WAIT(int ent, /* Entry Code */

 OSI *, /* Caller’s (waiter’s) OSI */

 int *rc,

 ...); /* waitx parms: @P8A

 int wait_flags

 struct time_int * */

 typedef void OSI_POST(WPTOK *, /* osi_token of waiter */

 int *rc);

 typedef void OSI_SIGNAL(OSI *, /* Caller’s OSI */

 int pid, /* Target’s osi_pid value */

 int sigval, /* Signal to issue */

 int sigopt, /* Signal options */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_SELPOST(SELTOK *, /* Vn_select’s select token*/

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_SLEEP(OSI *, /* Caller’s OSI @D6A*/

 int resid, /* Resource id */

 struct time_int *, /* Timeout interval @P8C*/

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_WAKEUP(int resid, /* Resource id @D6A*/

 int pfsid, /* Pfs id */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_KMSGGET(int msgqkey, /* Message Q Id @D6A @D7C*/

 int msgflag, /* Flag field */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_KMSGSND(int msgqkey, /* Message Q Id @D6A @D7C*/

 void *msgaddr, /* Message address */

 int msgalet, /* Message alet */

 int msgsize, /* Message size */

 int msgflag, /* Flag field */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_KMSGRCV(int msgqkey, /* Message Q Id @D6A @D7C*/

 void *msgaddr, /* Message address */

 int msgalet, /* Message alet */

 int msgsize, /* Message size */

 int msgtype, /* Message type */

 int msgflag, /* Flag field */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_KMSGCTL(int msgqkey, /* Message Q Id @D6A @D7C*/

 int msgcmd, /* Message command */

 void *msgbuff, /* Message bufffer */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_KIPCGET(int ipctoken, /* IPC token @DDA*/

 void *ipcbuff, /* Output bufffer */

 int bufflen, /* IPC buffer length */

 int ipccmd, /* IPC command */

542 z/OS V1R7.0 UNIX System Services File System Interface Reference

int *retval, int *retcode, int *rsncode);

 typedef void OSI_UIOMOVE(OSI *, /* OSI struct @D7A*/

 char *uiomworkarea, /* work area for use by

 uiomove @D7A*/

 char *pfsbuf , /* Pfs buffer @D7A*/

 int pfsbufalet,/* Alet for the PFS buf@D7A*/

 int movelen, /* number of bytes to move */

 UIO *, /* Uio structure */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_COPYIN(char *desbuf, /* destination buffer @D6A*/

 int desbufalet, /* destination buffer alet */

 char *srcbuf, /* source buffer */

 int srcbufalet, /* source buffer alet */

 int srckey, /* source storage key */

 int movelen, /* length to move */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_COPYOUT(char *desbuf, /* destination buffer @D6A*/

 int desbufalet,/* destination buffer alet */

 char *srcbuf, /* source buffer */

 int srcbufalet,/* source buffer alet */

 int deskey, /* destination storage key */

 int movelen, /* length to move */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_THREAD(OSI *, /* OSI @D7A*/

 OTHDPRM *, /* Osit_Thread parm struct */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_GETCRED(OSI *, /* OSI @P6A*/

 char *workarea, /* 3K work area for

 use by getcred */

 int alet, /* alet for getcred parm and

 supplementary gid list */

 OGCDPRM *, /* Osit_Getcred parm struct*/

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_CTL (int cmd, /* Command Code @DAA*/

 int arglen, /* Argument Length */

 char *arg, /* Argument Length */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_UPDA (GTOK *lfs_asytok, /* LFS’s Token @DGA*/

 GTOK *pfs_asytok); /* PFS’s Token */

 typedef void OSI_SCHED (GTOK *lfs_asytok, /* LFS’s Token @DGA*/

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_CTRACE(char *pfs_name, /* name of the PFS @DIA*/

 char *workarea, /* 3K work area for

 use by osi_ctrace */

 int arglen, /* Argument Length */

 char *arg, /* Argument Length */

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_SOCKET(char *function, /* socket function @DKA*/

 ...); /* args for equiv BPX1xxx */

 typedef void OSI_LKFS (OSILPARM *, /* LkFs parm @PDC*/

 int *retval, int *retcode, int *rsncode);

 typedef void OSI_COPY64(struct copy64_struct *, /*2@PMA*/

 char *workarea); /* 512 Byte work area */

Appendix D. Interface structures for C language servers and clients 543

/* OS linkage pragmas for the Services */

 #pragma linkage(OSI_GETVNODE,OS)

 #pragma linkage(OSI_MOUNTSTATUS,OS) /*@D4A*/

 #pragma linkage(OSI_CTL,OS) /*@DAA*/

 #pragma linkage(OSI_SELPOST,OS)

 #pragma linkage(OSI_WAIT,OS)

 #pragma linkage(OSI_POST,OS)

 #pragma linkage(OSI_SIGNAL,OS)

 #pragma linkage(OSI_SLEEP,OS) /*@D6A*/

 #pragma linkage(OSI_WAKEUP,OS) /*@D6A*/

 #pragma linkage(OSI_KMSGGET,OS) /*@D6A*/

 #pragma linkage(OSI_KMSGSND,OS) /*@D6A*/

 #pragma linkage(OSI_KMSGRCV,OS) /*@D6A*/

 #pragma linkage(OSI_KMSGCTL,OS) /*@D6A*/

 #pragma linkage(OSI_KIPCGET,OS) /*@DDA*/

 #pragma linkage(OSI_UIOMOVE,OS) /*@D6A*/

 #pragma linkage(OSI_COPYIN,OS) /* @D7A*/

 #pragma linkage(OSI_COPYOUT,OS) /* @D7A*/

 #pragma linkage(OSI_THREAD,OS) /* @D7A*/

 #pragma linkage(OSI_GETCRED,OS) /* @P6A*/

 #pragma linkage(OSI_UPDA,OS) /*@DGA*/

 #pragma linkage(OSI_SCHED,OS) /*@DGA*/

 #pragma linkage(OSI_CTRACE,OS) /*@DIA*/

 #pragma linkage(OSI_LKFS,OS) /*@DJA*/

 #pragma linkage(OSI_SOCKET,OS) /*@DKA*/

 #pragma linkage(OSI_COPY64,OS) /*@PMA*/

 /*--*/

 /* OSIT - Operating System Interface Table (BPXZOSIT)*/

 /*--*/

 typedef struct s_osit {

 CBHDR osit_hdr; /*+00 ID & Length */

 short osit_ver; /*+08 Version */

 short osit_rsvd1;

 /* Function Pointers */

 OSI_GETVNODE *osit_GETVNODE; /* +0C */

 OSI_MOUNTSTATUS *osit_MOUNTSTATUS; /* +10 Ver3 */

 OSI_CTL *osit_CTL; /* +14 Ver2 */

 void *osit_intern1; /* +18 */

 OSI_SELPOST *osit_SELPOST; /* +1C */

 OSI_WAIT *osit_WAIT; /* +20 */

 OSI_POST *osit_POST; /* +24 */

 OSI_SIGNAL *osit_SIGNAL; /* +28 */

 OSI_SLEEP *osit_SLEEP; /* +2C Ver3 */

 OSI_WAKEUP *osit_WAKEUP; /* +30 Ver3 */

 OSI_KMSGGET *osit_KMSGGET; /* +34 Ver3 */

 OSI_KMSGSND *osit_KMSGSND; /* +38 Ver3 */

 OSI_KMSGRCV *osit_KMSGRCV; /* +3C Ver3 */

 OSI_KMSGCTL *osit_KMSGCTL; /* +40 Ver3 */

 OSI_KIPCGET *osit_KIPCGET; /* +44 Ver3 */

 OSI_UIOMOVE *osit_UIOMOVE; /* +48 Ver3 */

 OSI_COPYIN *osit_COPYIN; /* +4C Ver2 */

 OSI_COPYOUT *osit_COPYOUT; /* +50 Ver2 */

 OSI_THREAD *osit_THREAD; /* +54 Ver3 */

 OSI_GETCRED *osit_GETCRED; /* +58 Ver3 @P6C */

 OSI_SCHED *osit_SCHED; /* +5C @DGA*/

 OSI_UPDA *osit_UPDA; /* +60 @DGA*/

 OSI_LKFS *osit_LKFS; /* +64 Ver4 @DJA*/

 OSI_CTRACE *osit_CTRACE; /* +68 @DIA*/

 OSI_SOCKET *osit_SOCKET; /* +6C @DKA*/

 void *osit_rsvdB; /* +70 */

 /*--- End of Ver4 @PMA*/

 OSI_COPY64 *osit_COPY64; /* +74 @PMA*/

 void *osit_rsvdC; /* @PMA*/

 void *osit_rsvdD; /* @PMA*/

 void *osit_rsvdE; /* +80 @PMA*/

 void *osit_rsvdF; /* @PMA*/

544 z/OS V1R7.0 UNIX System Services File System Interface Reference

void *osit_rsvdG; /* @PMA*/

 void *osit_rsvdH; /* @PMA*/

 } OSIT;

 /* Version numbers */

 #define OSIT_VER1 1 /* Rel 1 and Rel 2 Base */

 #define OSIT_VER2 2 /* Rel 2 with copyin,copyout,ctl */

 #define OSIT_VER3 3 /* Rel 3 sleep,wkup,kmsg,uiom,thrd */

 #define OSIT_VER4 4 /* Rel 4 lkfs @DJA*/

 #define OSIT_VER5 5 /* Ver 5 copy64 @PMA*/

 #define OSIT_VER6 6 /* Ver 6 sysplex zfs @E0A*/

 /*--*/

 /* Constants used with the Service calls */

 /*--*/

 /* Input Entry Codes for osi_getvnode */

 #define OSI_BUILDVNOD 1 /* Build Vnode */

 #define OSI_BUILDVNODNL 2 /* Build Vnode without locks */

 #define OSI_RTNVNOD 3 /* Return unused Vnode */

 #define OSI_BUILDVNODXL 4 /* Build Vnode-excl locks @P3A*/

 #define OSI_UPDATEVNODE 5 /* Update PFS Area in Vnode@DGA*/

 #define OSI_ASSOCIATE 7 /* Update PFS Area in Vnode@DIA*/

 #define OSI_ASSOCIATENL 8 /* Update PFS Area in Vnode@DIA*/

 #define OSI_MEMCRITICAL 9 /* Crit PFS Storage Cond @05A*/

 #define OSI_INACTASAP 10 /* Inact vnod asap @E0A*/

 /* Input Entry Codes for osi_mountstatus @D4C*/

 #define OSI_MOUNTCOMPLETE 1 /* Asynchronous mount complete

 @D4C*/

 /* Input Entry Codes for osi_wait */

 #define OSI_SETUP 1 /* Setup request */

 #define OSI_SETUPSIG 4 /* Setup with signals */

 #define OSI_SUSPEND 2 /* Wait request */

 #define OSI_WAITX 5 /* Wait ext request with Latch

 and Timer control @D6A*/

 #define OSI_INIT 6 /* Init OSI for a Task @DGA*/

 #define OSI_INIT2 7 /* Init OSI with Length @PFA

 osi_hdr.cblen=sizeof(OSI) @PFA*/

 /* Output Return Codes from osi_wait */

 #define OSI_POSTED 0 /* Osi_post was called. */

 #define OSI_SIGNALRCV 4 /* Signal has been received. */

 #define OSI_SHUTDOWN 8 /* OMVS is shutting down. */

 #define OSI_UNMOUNTED 16 /* File System was unmounted */

 #define OSI_POSTERTRM 18 /* Poster has terminated @DBA*/

 #define OSI_TIMEOUT 28 /* Timer interval expired @D7C*/

 #define OSI_ABEND 32 /* Abend occurred. */

 #define OSI_BADPARM 34 /* Bad parm passed on call. */

 #define OSI_ESTAEF 36 /* Estae setup failure occurred*/

 #define OSI_SYSTEMERR 38 /* System Error occurred. */

 #define OSI_FRRACTIVE 40 /* FRR Active when signals

 enabled @D6A*/

 /* Output Return Codes from osi_post (in addition to above) @DDA*/

 #define OSI_NOTWAITING 4 /* Waiter has gone @DDA*/

 /* Flag values for ot_option_flags on osi_thread call @D7A*/

 #define OSI_SIGWAIT 0x80000000 /* Wait caller’s task with

 signals enabled */

 #define OSI_NOWAIT 0x40000000 /* Don’t wait caller’s task */

 #define OSI_RELEASEMODS 0x20000000 /* Release modules when done */

 /* Flag values for wait_flags on osi_wait(waitx) calls @P8A*/

 #define OSI_WTDROPLOCKS 0x00000001 /* Drop Locks over wait @P8A*/

Appendix D. Interface structures for C language servers and clients 545

/*--*/

 /* Information used for loading the OSIT into a separate addr space */

 /*--*/

 #define OSIT_INIT "BPXVOSIT" /* The module to load & call */

 typedef void OSIT_INITMOD (/* Prototype for the call: */

 OSIT **, /* Output is a ptr to an OSIT */

 int *retcode, int *rsncode);

 #pragma linkage(OSIT_INITMOD,OS) /* Called with OS linkgage */

 /*--*/

 /* Prototype of the PFS Initialization Routine */

 /* This routine is attached as an MVS task and invoked by the */

 /* system with the following parameters: */

 /*--*/

 void pfsinit (PFSI *, PFSNAME *, PFSPARM *, void *, OSIT *);

 #pragma linkage(pfsinit,OS) /* Is invoked with OS linkage */

 /*--*/

 /* Prototypes of the Vnode and VFS operation routines. */

 /* These routines are called by the LFS to perform their functions*/

 /*--*/

 /* File and Directory oriented operations */

 void vn_open (TOKSTR *, OSI *, CRED *,

 int *open_flags,

 int *retval, int *retcode, int *rsncode);

 void vn_close (TOKSTR *, OSI *, CRED *,

 int *open_flags,

 int *retval, int *retcode, int *rsncode);

 void vn_readdir (TOKSTR *, OSI *, CRED *,

 UIO *,

 int *retval, int *retcode, int *rsncode);

 void vn_readlink(TOKSTR *, OSI *, CRED *,

 UIO *,

 int *retval, int *retcode, int *rsncode);

 void vn_create (TOKSTR *, OSI *, CRED *,

 int *namelen, char *name, ATTR *, O_VNTOK *,

 int *retval, int *retcode, int *rsncode);

 void vn_mkdir (TOKSTR *, OSI *, CRED *,

 int *namelen, char *name, ATTR *, O_VNTOK *,

 int *retval, int *retcode, int *rsncode);

 void vn_symlink (TOKSTR *, OSI *, CRED *,

 int *namelen, char *name, ATTR *,

 int *symlen, char *symlink,

 int *retval, int *retcode, int *rsncode);

 void vn_lookup (TOKSTR *, OSI *, CRED *,

 int *namelen, char *name, O_VNTOK *,

 int *retval, int *retcode, int *rsncode);

 void vn_getattr (TOKSTR *, OSI *, CRED *,

 ATTR *,

 int *retval, int *retcode, int *rsncode);

 void vn_setattr (TOKSTR *, OSI *, CRED *,

 ATTR *,

 int *retval, int *retcode, int *rsncode);

 void vn_access (TOKSTR *, OSI *, CRED *,

 int *access_intent,

 int *retval, int *retcode, int *rsncode);

 void vn_trunc (TOKSTR *, OSI *, CRED *,

 int *offset,

 int *retval, int *retcode, int *rsncode);

 void vn_fsync (TOKSTR *, OSI *, CRED *,

 int *retval, int *retcode, int *rsncode);

 void vn_link (TOKSTR *, OSI *, CRED *,

 int *namelen, char *name, TOKSTR *,

 int *retval, int *retcode, int *rsncode);

546 z/OS V1R7.0 UNIX System Services File System Interface Reference

void vn_rmdir (TOKSTR *, OSI *, CRED *,

 int *namelen, char *name,

 int *retval, int *retcode, int *rsncode);

 void vn_remove (TOKSTR *, OSI *, CRED *,

 int *namelen, char *name,

 int *retval, int *retcode, int *rsncode);

 void vn_rename (TOKSTR *, OSI *, CRED *,

 int *oldlen, char *oldname,

 int *newlen, char *newname, TOKSTR *,

 int *retval, int *retcode, int *rsncode);

 void vn_audit (TOKSTR *, OSI *, CRED *,

 int *retval, int *retcode, int *rsncode);

 /* File System oriented operations */

 void vfs_mount (TOKSTR *, OSI *, CRED *,

 MTAB *, O_VNTOK *,

 int *retval, int *retcode, int *rsncode);

 void vfs_umount (TOKSTR *, OSI *, CRED *,

 int *unmount_options,

 int *retval, int *retcode, int *rsncode);

 void vfs_statfs (TOKSTR *, OSI *, CRED *,

 FSATTR *,

 int *retval, int *retcode, int *rsncode);

 void vfs_sync (TOKSTR *, OSI *, CRED *,

 int *retval, int *retcode, int *rsncode);

 void vfs_inact (TOKSTR *, OSI *, CRED *, /*@PPA*/

 struct s_iab *, int *iablen,

 int *retval, int *retcode, int *rsncode);

 void vfs_vget (TOKSTR *, OSI *, CRED *,

 FID *, O_VNTOK *,

 int *retval, int *retcode, int *rsncode);

 /* General operations */

 void vn_select (TOKSTR *, OSI *, CRED *,

 SELTOK *,

 int *sel_function,

 int *sel_options,

 char *pfsworkptr,

 int *retval, int *retcode, int *rsncode);

 void vfs_batsel (TOKSTR *, OSI *, CRED *,

 int *rsvd1,

 int *sel_function,

 BSIC *,

 int *rsvd2,

 int *retval, int *retcode, int *rsncode);

 void vn_rdwr (TOKSTR *, OSI *, CRED *,

 int *open_flags, UIO *,

 int *retval, int *retcode, int *rsncode);

 void vn_readwritev(TOKSTR *, OSI *, CRED *,

 int *open_flags, UIO *,

 int *retval, int *retcode, int *rsncode);

 void vn_inactive (TOKSTR *, OSI *, CRED *,

 int *retval, int *retcode, int *rsncode);

 void vn_ioctl (TOKSTR *, OSI *, CRED *,

 int *open_flags,

 int *cmd, int *arglen, char *arg,

 int *retval, int *retcode, int *rsncode);

 void vn_pathconf (TOKSTR *, OSI *, CRED *, /*@D5A*/

 int *pathconf_option,

 int *retval, int *retcode, int *rsncode);

 void vn_recovery (TOKSTR *, OSI *, CRED *, /*@D5A*/

 struct osirtoken *,

 int *retval, int *retcode, int *rsncode);

 void vfs_recovery (TOKSTR *, OSI *, CRED *,

 struct osirtoken *,

 int *retval, int *retcode, int *rsncode);

 void vfs_pfsctl (TOKSTR *, OSI *, CRED *,

Appendix D. Interface structures for C language servers and clients 547

int *cmd, UIO *,

 int *retval, int *retcode, int *rsncode);

 void vn_cancel (TOKSTR *, OSI *, CRED *, /*@DGA*/

 struct vncanflags *,

 GTOK *pfs_asytok,

 GTOK *lfs_asytok,

 int *retval, int *retcode, int *rsncode);

 /* Socket Network (domain) oriented operations */

 void vfs_network (TOKSTR *, OSI *, CRED *,

 NETW *,

 int *retval, int *retcode, int *rsncode);

 void vfs_socket (TOKSTR *, OSI *, CRED *, /* socket|socketpair*/

 int *domain, int *type, int *protocol,

 int *dim, O_VNTOK (*vntoks)[2],

 int *retval, int *retcode, int *rsncode);

 void vfs_gethost (TOKSTR *, OSI *, CRED *, /* get host id|name */

 int *namelen, char *name,

 int *retval, int *retcode, int *rsncode);

 /* Socket oriented operations */

 void vn_accept (TOKSTR *, OSI *, CRED *,

 int *addrlen, _SOCKADDR *,

 int *open_flags, O_VNTOK *,

 int *retval, int *retcode, int *rsncode);

 void vn_bind (TOKSTR *, OSI *, CRED *,

 int *addrlen, _SOCKADDR *,

 int *retval, int *retcode, int *rsncode);

 void vn_connect (TOKSTR *, OSI *, CRED *,

 int *addrlen, _SOCKADDR *,

 int *open_flags,

 int *retval, int *retcode, int *rsncode);

 void vn_getname (TOKSTR *, OSI *, CRED *, /* peername|sockname*/

 int *function,

 int *addrlen, _SOCKADDR *,

 int *retval, int *retcode, int *rsncode);

 void vn_listen (TOKSTR *, OSI *, CRED *,

 int *backlog,

 int *retval, int *retcode, int *rsncode);

 void vn_sndrcv (TOKSTR *, OSI *, CRED *,

 int *open_flags, UIO *, int *sr_flags,

 int *retval, int *retcode, int *rsncode);

 void vn_sndtorcvfm(TOKSTR *, OSI *, CRED *,

 int *open_flags, UIO *, int *sr_flags,

 int *addrlen, _SOCKADDR *,

 int *retval, int *retcode, int *rsncode);

 void vn_srmsg (TOKSTR *, OSI *, CRED *,

 int *open_flags, UIO *, int *sr_flags,

 int *retval, int *retcode, int *rsncode);

 void vn_shutdown (TOKSTR *, OSI *, CRED *,

 int *how,

 int *retval, int *retcode, int *rsncode);

 void vn_sockopt (TOKSTR *, OSI *, CRED *, /* Get|Set sockopt */

 int *function, int *level,

 int *optname, int *optvallen, char *optval,

 int *retval, int *retcode, int *rsncode);

 void vn_srx (TOKSTR *, OSI *, CRED *, /*@PFA*/

 int *open_flags, UIO *,

 int *retval, int *retcode, int *rsncode);

 void vn_anr (TOKSTR *, OSI *, CRED *, /*@PHA*/

 struct anr_struct *, UIO *, /*@PIC*/

 int *open_flags, O_VNTOK *,

 int *retval, int *retcode, int *rsncode);

 #pragma page()

 /* The PFS operations are invoked with OS linkage */

548 z/OS V1R7.0 UNIX System Services File System Interface Reference

#pragma linkage(vn_open ,OS)

 #pragma linkage(vn_close ,OS)

 #pragma linkage(vn_rdwr ,OS)

 #pragma linkage(vn_readdir ,OS)

 #pragma linkage(vn_readlink,OS)

 #pragma linkage(vn_create ,OS)

 #pragma linkage(vn_mkdir ,OS)

 #pragma linkage(vn_symlink ,OS)

 #pragma linkage(vn_lookup ,OS)

 #pragma linkage(vn_inactive,OS)

 #pragma linkage(vn_getattr ,OS)

 #pragma linkage(vn_setattr ,OS)

 #pragma linkage(vn_access ,OS)

 #pragma linkage(vn_trunc ,OS)

 #pragma linkage(vn_fsync ,OS)

 #pragma linkage(vn_link ,OS)

 #pragma linkage(vn_rmdir ,OS)

 #pragma linkage(vn_remove ,OS)

 #pragma linkage(vn_rename ,OS)

 #pragma linkage(vn_audit ,OS)

 #pragma linkage(vn_pathconf,OS) /*@D5A*/

 #pragma linkage(vn_recovery,OS) /*@D5A*/

 #pragma linkage(vn_cancel ,OS) /*@DGA*/

 #pragma linkage(vn_ioctl ,OS)

 #pragma linkage(vn_select ,OS)

 #pragma linkage(vn_accept ,OS)

 #pragma linkage(vn_bind ,OS)

 #pragma linkage(vn_connect ,OS)

 #pragma linkage(vn_getname ,OS)

 #pragma linkage(vn_listen ,OS)

 #pragma linkage(vn_sndrcv ,OS)

 #pragma linkage(vn_srmsg ,OS)

 #pragma linkage(vn_shutdown,OS)

 #pragma linkage(vn_sockopt ,OS)

 #pragma linkage(vn_readwritev,OS)

 #pragma linkage(vn_sndtorcvfm,OS)

 #pragma linkage(vn_srx ,OS)

 #pragma linkage(vn_anr ,OS)

 #pragma linkage(vfs_mount ,OS)

 #pragma linkage(vfs_umount ,OS)

 #pragma linkage(vfs_statfs ,OS)

 #pragma linkage(vfs_sync ,OS)

 #pragma linkage(vfs_inact ,OS) /*@PPA*/

 #pragma linkage(vfs_vget ,OS)

 #pragma linkage(vfs_recovery,OS)

 #pragma linkage(vfs_batsel ,OS)

 #pragma linkage(vfs_network ,OS)

 #pragma linkage(vfs_socket ,OS)

 #pragma linkage(vfs_gethost ,OS)

 /*--*/

 /* Ctrace utility */

 /*-- 4@DIA*/

 struct ctrcvt {char x[0x8c];struct ctrcve *cve;};

 struct ctrcve {char x[0xf0];struct ctrocvt *ocvt;};

 struct ctrocvt {char x[0x130];unsigned int csptrace:1;};

 #define TRACEISON ((*(struct ctrcvt**)0x10)->cve->ocvt->csptrace)

 #pragma page()

 #ifndef _NO_PFS_KES

 /*--*/

 /* Internal Services Prototypes */

 /*--*/

 void * _memmove (void *, const void *, size_t); /* @D7A */

Appendix D. Interface structures for C language servers and clients 549

/*--*/

 /* Kernel Extension Services */

 /* These functions are a subset of the OS/390 Language Environment */

 /* C functions. LE functions are not available to PFSes and */

 /* the functions included here may be called in their place. */

 /*--*/

/***/

/* */

/* Name: bcopy @D7A */

/* */

/* Format: #include <string.h> */

/* #include <bpxypfsi.h> */

/* void bcopy(source, destination, length) */

/* */

/* Description: */

/* Copies ’length’ bytes from ’source’ to ’destination’. */

/* Overlapping source and destination are handled */

/* correctly. */

/* */

/* Returned Value: */

/* None */

/* */

/* External References: _memmove */

/* */

/* Synopsis: */

/* void bcopy (const void *source, void *destination, size_t length) */

/* */

/* Related Information: */

/* <bpxypfsi.h> */

/* _memmove() */

/* */

/***/

static /*@DIA*/

void bcopy (const void *src, void *dst, size_t length) /*@D7A*/

{

 /*

 * let _memmove do the work...

 */

 _memmove(dst, src, length); /*@D7A*/

}

 #pragma page()

/***/

/* */

/* Name: bzero @D7A */

/* */

/* Format: #include <string.h> */

/* #include <bpxypfsi.h> */

/* void bcopy(destination, length) */

/* */

/* Description: */

/* Zeroes out ’length’ bytes, starting at ’destination’. */

/* */

/* Returned Value: */

/* None */

/* */

/* External References: memset */

/* */

/* Synopsis: */

/* void bzero (const void *destination, size_t length) */

/* */

/* Related Information: */

/* <bpxypfsi.h> */

/* memset() */

/* */

550 z/OS V1R7.0 UNIX System Services File System Interface Reference

/***/

static /*@DIA*/

void bzero (void *dest, size_t length) /*@D7A*/

{

 /*

 * let memset do the work ...

 */

 memset(dest, 0, length); /*@D7A*/

}

 #pragma page()

 /*--*/

 /* Internal Services */

 /*--*/

/*---*/

/* Name: _memmove */

/* */

/* */

/* Purpose: Copies characters from one data object to another */

/* with check for overlap */

/* */

/* Input: s1 - object to move the characters to */

/* s2 - object to move the characters from */

/* n - the number of characters to move */

/* */

/* Output: Returns a pointer to object s1 */

/* */

/* External References: None */

/* */

/* Description: */

/* */

/* Copy n characters from object s2 to object s1. */

/* If overlay exists between s2 and s1, the move shall */

/* take place correctly. A pointer to the object s1 shall */

/* be returned. */

/* */

/*---*/

static /*@DIA*/

void *_memmove (register void *s1, register const void *s2,

 register size_t n) {

 register void *anchor = s1; /* save s1 to return */

 char *p1;

 char *p2;

 size_t x;

 size_t y;

 /**/

 /* check for destructive overlap and if it exists, move the end */

 /* of the string first. */

 /**/

 if (((char *)s1 > (char *)s2) && (((char *)s2 + n) > (char *)s1)) {

 p2 = (char *)s2 + n - 1; /* point to last character to move */

 p1 = (char *)s1 + n - 1; /* point to last position in result */

 x = (char *)s2 + n - (char *)s1; /* # of bytes colliding */

 y = x;

 while (y-- > 0)

 *p1-- = *p2--;

 /***/

 /* can move the rest quickly */

Appendix D. Interface structures for C language servers and clients 551

/***/

 memcpy((char *)s1, s2, n - x);

 }

 else

 /***/

 /* otherwise, regular move */

 /***/

 memcpy (s1, s2, n);

 return anchor;

}

 #endif /* Endif _NO_PFS_KES */

 #endif /* Endif __BPXYPFSI */

552 z/OS V1R7.0 UNIX System Services File System Interface Reference

Appendix E. Assembler and C-language facilities for writing a

PFS in C

This appendix contains assembler routines that can be useful for writing a PFS in

C.

Replacements for the C/370™ Systems Programming Facilities routines @@XGET

and @@XFREE are included. These routines must be included in your PFS.

They are supplied in the BPXFASM sample, included here, which must be

assembled and link-edited with all PFS load modules.

C-function prototypes and assembler routines are also included for the following

facilities:

 BPXT4KGT Allocate a page of storage

BPXT4KFR Free a page of storage

BPXTWAIT Wait on an ECB list

BPXTPOST Post an ECB

BPXTEPOC Convert time-of-day clock format to seconds-since-the-epoch

Assembler replacements for @@XGET and @@XFREE

 TITLE ’BPXFASM: File System Assembler Utilities’

*/****START OF SPECIFICATIONS**

*

* $MOD(BPXFASM) COMP(SCPX1) PROD(BPX):

*

01 MODULE-NAME: BPXFASM

*

01 CSECT NAME: @@XGET and @@XFREE

*

01 DESCRIPTIVE-NAME: HOTC Replaceable Get/Free Storage for C PFSs

*

****END OF SPECIFICATIONS***/

*

BPXFASM CSECT

BPXFASM AMODE ANY

BPXFASM RMODE ANY

BPXFASM MODID BR=NO

*

* CSECT-NAME: @@XGET

*

* DESCRIPTIVE-NAME: Allocate storage for C/370

*

* Input: R0 - length of storage to obtain (high bit on for storage

* above the line).

* R14 - Return address

*

* Output: R0 - length of storage obtained

* R1 - address of memory obtained

*

* No save area is provided.

* R2 and R4 are used as work regs.

* Regs and Access Regs 0, 1, 14, 15 may be modified.

*

@@XGET CSECT

@@XGET AMODE ANY

@@XGET RMODE ANY

© Copyright IBM Corp. 1996, 2006 553

ENTRY @@XGET

*

 LR R2,R0 Save Input Length

 LR R4,R14 Save Return Addr

 EPAR R15 Extract Primary ASID

 LOCASCB ASID=(R15) Locate the Primary ASCB, Ret in R1

 USING ASCB,R1

 L R15,ASCBXTCB Save Xmem Resource Owning TCB

 DROP R1

 LR R0,R2 Restore Input Length to R0

 BALR R2,R0 Establish Addressability

 USING *,R2

*

 LTR R0,R0 request for below?

 BNL BELOW yes

 SLL R0,1 allocate anywhere

 SRL R0,1 clear high bit

 LTR R2,R2 are we running below the line

 BNL BELOW yes, get below instead of anywhere

 STORAGE OBTAIN,LENGTH=(R0),COND=YES,SP=3,TCBADDR=(R15)

 LTR R15,R15 successful?

 BZR R4 yes, return

 SR R1,R1 R1=0, R15<>0 for failure

 BR R4 Return

BELOW DS 0H Get memory below the line

 STORAGE OBTAIN,LENGTH=(R0),COND=YES,LOC=BELOW, +

 SP=3,TCBADDR=(R15)

 LTR R15,R15 Was it successful?

 BZR R4 yes, return

 SR R1,R1 R1=0, R15<>0 for failure

 BR R4 Return

*

*

* CSECT-NAME: @@XFREE

*

* DESCRIPTIVE-NAME: Free allocated storage for C/370

*

* Input: R0 - length of storage to free

* R1 - address of storage to free

* R14 - Return address

*

* No save area is provided.

* R2 and R4 are used as work regs.

* Regs and Access Regs 0, 1, 14, 15 may be modified.

*

@@XFREE CSECT

@@XFREE AMODE ANY

@@XFREE RMODE ANY

 ENTRY @@XFREE

*

 LR R2,R1 Save Input Addr

 ST R0,0(R2) Save Input Length in the passed area

 LR R4,R14 Save Return Addr

 EPAR R15 Extract Primary ASID

 LOCASCB ASID=(R15) Locate the Primary ASCB, Ret in R1

 USING ASCB,R1

 L R15,ASCBXTCB Save Xmem Resource Owning TCB

 DROP R1

 L R0,0(R2) Restore Input Length to R0

 LR R1,R2 Restore Input Addr to R1

 BALR R2,R0 Establish Addressability

 USING *,R2

*

 STORAGE RELEASE,LENGTH=(R0),ADDR=(R1),SP=3,TCBADDR=(R15)

 BR R4

554 z/OS V1R7.0 UNIX System Services File System Interface Reference

*

R0 EQU 0

R1 EQU 1

R2 EQU 2

R4 EQU 4

R14 EQU 14

R15 EQU 15

*

 PRINT OFF

 IHAASCB

 PRINT ON

*

 END

BPXT4KGT—Get a page of storage

This function gets a 4KB page of storage.

C function

#pragma linkage(BPXT4KGT,OS)

char *BPXT4KGT (long len,long key);

Assembler routine

* CSECT-NAME: BPXT4KGT

*

* DESCRIPTIVE-NAME: Allocate storage on a page boundary with key.

* Storage is allocated in subpool 229.

*

* Input: R1 - Parm list

* length of storage to obtain

* key for storage

*

* Output: R15 - address of storage obtained

BPXT4KGT CSECT

BPXT4KGT AMODE ANY

BPXT4KGT RMODE ANY

 ENTRY BPXT4KGT

 EDCPRLG

 L R2,0(R1) get addr of length

 L R0,0(R2) get length

 L R2,4(R1) get addr of key

 L R2,0(R2) get key

 SLL R2,4 put in bits 24-27

 STORAGE OBTAIN,LENGTH=(R0),BNDRY=PAGE,COND=YES,SP=229,KEY=(2)

 LTR R15,R15 successful?

 BZ OUT4KGT yes, return

 SR R1,R1 addr=0 for failure

OUT4KGT LR R15,R1 return storage address

 EDCEPIL

*

BPXT4KFR—free a page of storage

This function frees a 4KB page of storage.

C function

#pragma linkage(BPXT4KFR,OS)

void BPXT4KFR (long len,long key,char *stor);

Appendix E. Assembler and C-language facilities for writing a PFS in C 555

Assembler routine

* CSECT-NAME: BPXT4KFR

*

* DESCRIPTIVE-NAME: Free storage allocated by BPXT4KGT

*

* Input: R1 - Parm list

* length of storage to free

* key for storage

* address of storage

BPXT4KFR CSECT

BPXT4KFR AMODE ANY

BPXT4KFR RMODE ANY

 ENTRY BPXT4KFR

 EDCPRLG

 L R2,0(R1) get addr of length

 L R0,0(R2) get length

 L R2,4(R1) get addr of key

 L R2,0(R2) get key

 SLL R2,4 put in bits 24-27

 L R1,8(R1) get storage addr

 STORAGE RELEASE,LENGTH=(R0),ADDR=(R1),SP=229,KEY=(R2)

 EDCEPIL

*

BPXTWAIT—wait on an ECB list

This function waits for an ECB in a list to be posted.

C function

#pragma linkage(BPXTWAIT,OS)

void BPXTWAIT (ECB *ecb1,...);

Assembler routine

* CSECT-NAME: BPXTWAIT

*

* DESCRIPTIVE-NAME: Wait for an ECB in a list to be posted

*

* NOTES: This routine can be called from a PFS initialization

* routine. It will not run in cross memory mode.

*

* Input: R1 - Address of ECBLIST passed in R1

BPXTWAIT CSECT

BPXTWAIT AMODE ANY

BPXTWAIT RMODE ANY

 ENTRY BPXTWAIT

 EDCPRLG

 LR R4,R1 get pointer to ecb vector

 WAIT 1,ECBLIST=(R4),LINKAGE=SYSTEM,EUT=SAVE

 EDCEPIL

*

BPXTPOST—post an ECB

This function posts an ECB.

556 z/OS V1R7.0 UNIX System Services File System Interface Reference

C function

#pragma linkage(BPXTPOST,OS)

void BPXTPOST (long ascb,ECB *ecb);

Assembler routine

* CSECT-NAME: BPXTPOST

*

* DESCRIPTIVE-NAME: Post an ECB

*

* Input: R1 - parm list:

* ASCB address

* Address of ECB

*

BPXTPOST CSECT

BPXTPOST AMODE ANY

BPXTPOST RMODE ANY

 ENTRY BPXTPOST

 EDCPRLG USRDSAL=POSTLN

 USING POSTDYN,R13

 MVC POSTL(POSTLN),POSTS copy POST parmlist to dynamic area

 L R2,0(,R1) get addr of ascb addr

 L R2,0(,R2) get ascb addr

 L R4,4(,R1) get addr of ECB to post

 POST (R4),ASCB=(R2),ERRET=POSTERR,ECBKEY=0,LINKAGE=SYSTEM, X

 MF=(E,POSTL)

 EDCEPIL

POSTS POST 0,ASCB=0,ERRET=0,ECBKEY=YES,MF=L

POSTERR BR R14

POSTDYN EDCDSAD

POSTL POST 0,ASCB=0,ERRET=0,ECBKEY=YES,MF=L

POSTLN EQU *-POSTL

 IHAPSA

*

BPXTEPOC—convert time-of-day to epoch time

This function converts time-of-day to seconds-since-the-epoch.

C function

#pragma linkage(BPXTEPOC,OS)

void BPXTEPOC(char *tod, long *epoch);

Assembler routine

* CSECT-NAME: BPXTEPOC

*

* DESCRIPTIVE-NAME: Convert TOD to Epoch time

*

* Input: R1 ->

* address of TOD value to convert (double word)

* address of output epoch time (one word)

BPXTEPOC CSECT

BPXTEPOC AMODE ANY

BPXTEPOC RMODE ANY

 EDCPRLG

 L R2,0(R1) get tod address

 LM R14,R15,0(R2) get tod

Appendix E. Assembler and C-language facilities for writing a PFS in C 557

LTR R14,R14 check high word for 0

 BNZ EPOCTOD if input tod is 0

 STCK 0(R2) get current tod

 LM R14,R15,0(R2) get tod

EPOCTOD L R2,4(R1) get output area

 LM R0,R1,EPOCJ70 get epoch tod

 SLR R15,R1

 BC 11,*+6

 BCTR R14,0

 SLR R14,0

 D R14,EPOCST divide by seconds per tod unit

 SLR R14,R14

 LA R1,2

 DR R14,R1

 ST R15,0(R2)

 EDCEPIL

EPOCJ70 DS 0D

 DC X’7D91048BCA000000’

EPOCST DC X’7A120000’

*

558 z/OS V1R7.0 UNIX System Services File System Interface Reference

Appendix F. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1996, 2006 559

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

560 z/OS V1R7.0 UNIX System Services File System Interface Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the products and/or the programs described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2006 561

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the

customer to write programs that use z/OS UNIX System Services (z/OS UNIX).

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 AIX

C/370

DFS

IBM

ibm.com

IBMLink

Language Environment

Library Reader

MVS

RACF

z/Architecture

z/OS

z/VM

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Acknowledgments

This interface is a modification of the architecture outlined by S.R. Kleiman in the

paper, “Vnodes: An Architecture for Multiple File System Types in Sun UNIX”, which

was published in the Proceedings: Summer Usenix Technical Conference &

Exhibition (June 1986).

Notices

562 z/OS V1R7.0 UNIX System Services File System Interface Reference

Index

Special characters
@@XFREE, assembler replacement for 553

@@XGET, assembler replacement for 553

Numerics
64-bit addressing

indicating to the PFS 67

64-bit addressing, considerations for
VFS server interface 247

64-bit virtual addressing
PFS support for 66

indicating 66

levels 66

A
abnormal ends, PFS 25

accept a socket connection and read the first block of

data 118

accept a socket connection request 112

access check
against remote systems 13

availability 282

access to a file or directory 115

accessibility 559

address space control block (ASCB) 20

address space termination 24

appropriate privileges 12, 245

assembler facilities for writing a PFS in C 553

assembler language syntax 261

assembler programming language routines
converting TOD to epoch time 557

freeing a page of storage 555

getting a page of storage 555

posting an ECB 556

waiting on an ECB posting 556

assembler-language replacements for @@XGET and

@@XFREE 553

async I/O 410, 429

vn_cancel for asynchronous operations 128

asynchronous mount processing 28

attr structure
header file 506

ATTR structure 39

security fields 40

time fields 40

attributes
getting and setting 39

getting and setting with VFS servers 259

audit an action 123

authority 245

AUTO restart option 11

B
batch-select 73

bind a name to a socket 125

BPX1VAC, BPX4VAC 264

BPX1VCL 267

BPX1VCR, BPX4VCR 270

example 479

BPX1VEX, BPX4VEX 274

BPX1VGA, BPX4VGA 285

example 482

BPX1VGT, BPX4VGT 282

example 481

BPX1VLK, BPX4VLK 303

example 485

BPX1VLN, BPX4VLN 288

example 483

BPX1VLO, BPX4VLO 292

example 484

BPX1VMK, BPX4VMK 307

example 486

BPX1VOP, BPX4VOP 311

BPX1VPC, BPX4VPC 319

example 487

BPX1VRA, BPX4VRA 330

example 490

BPX1VRD, BPX4VRD 326

example 489

BPX1VRE, BPX4VRE 347

example 495

BPX1VRG, BPX4VRG 333

example 491

BPX1VRL, BPX4VRL 337

example 492

BPX1VRM, BPX4VRM 339

example 493

BPX1VRN, BPX4VRN 343

example 494

BPX1VRP, BPX4VRP
example 496

BPX1VRP, BPX4VRP) 350

BPX1VRW, BPX4VRW 322

example 488

BPX1VSA, BPX4VSA 354

example 497

BPX1VSF, BPX4VSF 279

example 480

BPX1VSY, BPX4VSY 361

example 498

BPX4VCL 267

BPXT4KFR (Free a page of storage) 555

BPXT4KGT (Get a page of storage) 555

BPXTEPOC (Convert TOD to epoch time) 557

BPXTPOST (Post an ECB) 556

BPXTWAIT (Wait on an ECB list) 556

BPXXCTME macro 69

BPXYATTR 445

BPXYBRLK 448

© Copyright IBM Corp. 1996, 2006 563

BPXYDIRE 449

BPXYFDUM 450

BPXYFTYP 451

BPXYFUIO 452

BPXYIOC6 454

BPXYIPCP 459

BPXYIPCQ 460

BPXYMNTE 463

BPXYMODE 466

BPXYMSG 462

BPXYNREG 467

BPXYOPNF 468

BPXYOSS 469

BPXYPCF 470

BPXYPFSI (VFS interface definitions) 521

BPXYSSTF 471

BPXYSTAT 473

BPXYVFSI (VFS interface definitions) 503

BPXYVLOK 474

BPXYVOPN 476

bsic structure
header file 530

bsicent structure
header file 530

buffers, read or write using multiple 186

byte-range locking 292

C
C-language facilities for writing a PFS in C 553

C-language PFSs 12

CALL macro 261

callable services
invoking 261

return_value parameter 262

syntax 261

callable services examples 477

callable services reentrant entry 478

cancel asynchronous operations that are still in

progress 128

cbhdr structure
header file 506

check access to a file or directory 115

check file accessibility 264

check file availability 282, 288

close a file 267

closing files 34, 132

comparing the VFS server and PFS interfaces 259

connect to a socket 135

control block structure for the LFS-PFS 17

control blocks
address space control block (ASCB) 20

ATTR structure 39

file security packet (FSP) 13, 40

general file system table (GFS) 4

GFS-PFS_anchor pair 18

initialization complete ECB 5

integrity of 19

IRRPAFC 124

NREG structure 249

OSI service routine vector table 6

control blocks (continued)
OSI structure 19

OSIT structure 4, 367

PFS initialization structure 6

serializing 23

termination ECB 5

Token_structure 18

UIO structure 36

VFS operations vector table 8

VFS-MNT pair 18

VFS-vnode vector tables 16

vnode operations vector table 8

vnode-inode pair 18

convert a file identifier to a vnode token 109, 282

converting TOD to epoch time 557

create a directory 166, 307

create a file 311

create a link to a file 157, 288

create a new file 138

create a socket or a socket pair 97

create a symbolic link 238, 361

creating a file 270

cred structure
header file 527

credacl structure
header file 526

credaclinfo structure
header file 526

cross memory for a PFS using daemons 41

cross-memory considerations for a PFS 12

cross-memory local lock 23

cursor technique for reading directories 38

D
daemon tasks 41

define a socket domain to the PFS 88

determine configurable pathname values 173

directories
creating 307

reading 37, 38

removing 347

dirent structure
header file 510

dirext structure
header file 510

disability 559

dynamic service activation, PFS support for 8

E
ECB 5

end-of-memory resource manager 25

entry interface 5

EOM resource manager 25

ESTAE exits 25

export a file system 274

exporting files to a VFS server 42

external name, symbolic link to 361

564 z/OS V1R7.0 UNIX System Services File System Interface Reference

F
FID (file identifier) 42

fid structure
header file 505

file
attributes 145

attributes, getting 285

availability 282, 288

caching 32

creating 270

exporter 379

exporting to a VFS server 42

handles, NFS 254

identifier (FID) 42

management PFS 14

sharing 18

system status 279

system status, report 406

truncating 242

file access, checking 264

file security packet (FSP) 13, 40

created by SAF 33

file systems
exporting 274

mounting 27

unmounting 29

file tag 41

file token 17

files
closing 267

creating 311

opening 311

FILESYSTYPE statement 3

freeing a page of storage 555

FRR 419, 434

FRR exits 25

fsattr structure
header file 511

FSP (file security packet) 13, 40

G
general file system table (GFS) 4

generate the requested signal event 415

get
attributes of a file 285

file attributes 145

file system status 100

page of storage 555

peer name 148

socket host ID or name 78

socket name 148

socket options 228

vnodes 385

getting and setting attributes 39

VFS servers 259

GFS (general file system table) 4

GFS-PFS_anchor pair 18

GIDs, obtaining with osi_getcred 382

gtok structure
header file 505

gxpl structure
header file 538

H
harden all file data for a file system 103

unmount a file system 106

harden file data 142

I
I/O control 154

iab structure
header file 533

iabent structure
header file 532

inactivate a vnode 81, 151

deleting 32

inactivating 32

index technique for reading directories 38

initialization 48

initialization token 17

initialization-complete ECB 5

inodes 16

installing a PFS 3

interface between LFS and PFS 14

Internet Protocol Version 6 (IPv6)
activating 62

invoking callable services 261

ioctl, convey a command 154

ipcget(), in-kernel 388

IPv6 (Internet Protocol Version 6)
activating 62

IRRPAFC 124

IRRPIFSP (file security packet) 13, 40

ISearchByExample 437

K
keyboard 559

L
LFS-PFS control blocks

serializing 23

structure 17

link
external 330

reading a symbolic 330

to a file 157

link counts 33

listen on a socket 160

lock a file 292

locking, byte-range 292

look up a file or directory 163, 303

LookAt message retrieval tool xv

LP64 (64-bit longs and pointers) 68

Index 565

M
make a directory 166

mapping macro
BPXYATTR 445

BPXYBRLK 448

BPXYDIRE 449

BPXYFDUM 450

BPXYFTYP 451

BPXYFUIO 452

BPXYIOC6 454

BPXYIPCP 459

BPXYIPCQ 460

BPXYMGS 462

BPXYMNTE 463

BPXYMODE 466

BPXYNREG 467

BPXYOPNF 468

BPXYOSS 469

BPXYPCF 470

BPXYSSTF 471

BPXYSTAT 473

BPXYVLOK 474

BPXYVOPN 476

message retrieval tool, LookAt xv

messages to or from a socket 231

mnte structure
header file 514

mnteh structure
header file 513

modules, invoking 261

mount
a file system 27, 84

key 251

points 29

structure 254

token 17

VFS servers 249

MOUNT statement 3

mounting file systems 27

asynchronously 28

moving data
between PFS buffers and buffers defined by a

UIO 426

between user and PFS buffers with 64-bit

addresses 376

from a PFS buffer to a user buffer 373

from a user buffer to a PFS buffer 370

msgctl(), in-kernel 391

msgget(), in-kernel 395

msgrcv(), in-kernel 398

msgsnd(), in-kernel 402

mtab structure
header file 527

multilevel security
PFS support for 64

multiple buffers, read or write 186

N
netw structure

header file 529

NETWORK statement 3

activating IPv6 62

in parmlib 43

NFS file handles 254

NONE restart option 11

Notices 561

nreg structure
header file 515

NREG structure 249

O
offset

system control
callable services 437

ogcdprm structure
header file 540

open a file 311

opening files 34, 170

OSI service routine vector table 6

OSI services 367, 416

osi structure
header file 524

OSI structure 19

osi_copy64 67, 376

osi_copyin 370

osi_copyout 373

osi_ctl 379

osi_getcred 382

osi_getvnode 385

osi_kipcget 388

osi_kmsgctl 391

osi_kmsgget 395

osi_kmsgrcv 398

osi_kmsgsnd 402

osi_mountstatus 406

osi_post 408

osi_sched 410

osi_selpost 413

osi_signal 415

osi_sleep 417

osi_thread 420

osi_uiomove 426

osi_upda 429

osi_wait 431

osi_wakeup 435

osilparm structure
header file 541

OSIT (OSI operations vector table) 4

OSIT operations vector table (OSIT) 4

osit structure
header file 544

oss structure
header file 513

othdcrcv structure
header file 540

566 z/OS V1R7.0 UNIX System Services File System Interface Reference

othdprm structure
header file 540

output file attribute buffer address 20

P
parm parameters 262

parmlib statements
FILESYSTYPE 3

NETWORK 4, 43

pathname
resolution 29, 350

symbolic link 361

PFS
abnormal ends 25

file protocols 27

initialization structure 6

installation 3

tokens 17

written in C 12

PFS interface
compared to VFS server interface 259

facilities for writing in C 553

file-oriented 14, 43

socket-oriented 43, 48

PFS interface definitions (VFSI) 521

PFS recovery considerations
abnormal ends 25

address space termination 24

task termination 24

thread termination 24

user process termination 24

vfs_recovery 25

vn_recovery 25

PFS recycling 9

PFS support for 64-bit virtual addressing 66

PFS support for multilevel security 64

PFS_Init module 4, 5

PFS-LFS control blocks
serializing 23

structure 17

pfsctl (PFS Control) 91

pfsi structure
header file 533

pfsname structure
header file 537

pfsparm structure
header file 527

physical file system
See PFS 15

physical file system interface
facilities for writing in C 553

socket-oriented 43, 48

PID (process id) 20

porting
file caching not done by PFS 32

file export operations 42

file representation in storage 17

mounting file systems 28

some operations not in this interface 15

vn_inactive not required for sockets 44

porting (continued)
vnode not freed by PFS 32

vnode structure 17

post a process in osi_wait 408

post a process waiting for select 413

posting an ECB 556

posting internal events 21

privileges, appropriate 12, 245

process ID (PID) 20

process, registering as a server 333

publications
on CD-ROM xiv

softcopy xiv

R
read

a symbolic link 183, 330

directory entries 180

entries from a directory 326

from a file 176, 322

using multiple buffers 186

reading and writing with sockets 45

reading directories
cursor technique for VFS servers 258

index technique for VFS servers 258

with VFS servers 257

reason codes 262

receive
data from a socket 209

datagrams from a socket 225

messages from a socket 231

recover
resources after an abend 190

resources at end-of-memory 94

recovery
considerations 24

token area 20

vfs_recovery at end-of-memory 94

vn_recovery after an abend 190

recycling a PFS 9

reentrant code 477

reentrant return linkage 499

referring to files for the first time 34

register a process as a server 333

registering with z/OS UNIX 249

release a vnode token 337

remove a directory 201, 347

remove a link to a file 194, 339

rename a file or directory 197, 343

resolve a pathname 29, 250, 350

restart option byte
address in the PFSI 7

setting controls restart 11

restart options 11

return
codes 262

file system status 279

unused vnodes 385

return_value parameter for callable services 262

ROOT statement 3

Index 567

rpnmnte structure
header file 514

S
SAF auditing 123

SAF UIDs and GIDs, obtaining with osi_getcred 382

save file updates to disk 142

security fields in the ATTR structure 40

select on a vnode 204

select processing for sockets 45

seltok structure
header file 524

send
data to a socket 209

datagrams to a socket 225

messages to a socket 231

serializing
directory reads 37

file creation 33

file deletion 34

file system mounts 29

getting and setting attributes 40

inode creation 32

LFS-PFS control blocks 23

reads and writes 37

socket read and write operations 45

vn_getattr 40

vn_open and vn_close 34

vn_readdir 37

vn_setattr 40

set
attributes 39

attributes for VFS servers 259

file attributes 213, 354

socket options 228

socket peer address 219

shared read support
specifying 23, 45

vn_close 134

vn_open 172

vn_rdwr 179

vn_readwritev 189

sharing files 18

shortcut keys 559

shut down a socket 222

socket management PFS 14

socket options 228

sockets
read and write operations 45

select processing 45

sending data to or receiving data from 209, 225

sending messages to or receiving messages

from 231

SUBFILESYSTYPE statement 3

summary of physical file system operations 15

superuser authority 245

supplementary GIDs, obtaining with osi_getcred 382

symbolic link
creating 238

read a 330

symbolic link (continued)
to external name 361

to pathname 361

synchronizing file data 103

syntax for callable services 261

syslistdef structure
header file 513

system control
offsets to callable services 437

T
termination

ECB 5

task 24

thread 24

thread, colony 420

time fields in the ATTR structure 40

time_t data type 68

Token_structure parameter 17

tokstr structure
header file 524

transport driver
AF_INET (IPV4) 52

AF_INET6 (IPV6) 53

truncate a file 242

U
UIDs, obtaining with osi_getcred 382

uio structure
header file 508

UIO structure 36

unmounting file systems 29

LFS processing 30

PFS processing 30

unmounting VFS servers 249

user process termination 24

V
v_ functions 248

v_access 264

v_close 267

v_create 270

example 479

v_export 274

v_fstatfs 279

example 480

v_get 282

example 481

v_getattr 285

example 482

v_link 288

example 483

v_lockctl 292

example 484

v_lookup 303

example 485

v_mkdir 307

example 486

568 z/OS V1R7.0 UNIX System Services File System Interface Reference

v_open 311

v_pathconf 319

example 487

v_rdwr 322

example 488

v_readdir 326

example 489

v_readlink 330

example 490

v_reg 333

example 491

v_reg()
implementation 249

v_rel 337

example 492

v_remove 339

example 493

v_rename 343

example 494

v_rmdir 347

example 495

v_rpn 350

example 496

v_setattr 354

example 497

v_symlink 361

example 498

VFS
callable services API functions 248

operation vector table, PFSI address 7

operations vector table 8

VFS interface definitions (VFSI) 503

VFS server interface 245, 261

compared to PFS interface 259

considerations for 64-bit addressing 247

installation considerations 245

vfs_batsel 73

vfs_get 109

vfs_gethost 78

vfs_inactive 81

implementation 32, 35

vfs_mount 84

vfs_network 88

vfs_pfsctl 91

vfs_recovery 94

vfs_socket 97

vfs_statfs 100

vfs_sync 103

vfs_unmount 106

VFS-MNT pair 18

VFS-vnode vector tables 16

vfstok structure
header file 512

vlock structure
header file 516

vn_accept 112

vn_access 115

vn_anr 118

vn_audit 123

vn_bind 125

vn_cancel 128

vn_close 132

implementation 35

vn_connect 135

vn_create 138

implementation 31, 33

vn_fsync 142

vn_getattr 145

implementation 39, 40

vn_getname 148

vn_inactive 151

implementation 32, 35

integrity of vnode-inode pair 19

vn_ioctl 154

vn_link 157

vn_listen 160

vn_lookup 163

implementation 31

vn_mkdir 166

implementation 31, 33

vn_open 170

access checking 35

implementation 35

vn_pathconf 173

vn_rdwr 176

implementation 36

vn_readdir 180

implementation 37

vn_readlink 183

vn_readwritev 186

implementation 36

vn_recovery 190

vn_remove 194

vn_rename 197

vn_rmdir 201

vn_select 204

implementation 43

vn_select(Cancel) 47

vn_select(Query) 46

vn_sendtorcvfm 209

vn_setattr 213

implementation 39, 40

vn_setpeer 219

vn_shutdown 222

vn_sockopt 228

vn_srmsg 231

vn_symlink 238

vn_trunc 242

vnode operations vector table 8

address in the PFSI 7

vnode token, releasing 337

vnode-inode pair 18, 19

vnodes 16, 32

creating 31

getting 385

referring to 31

vntok structure
header file 513, 524

Index 569

W
wait

for a resource 417, 435

for an event 431

for internal events 21

wait for an ECB posting 556

wptok structure
header file 524

write
to a file 322

using multiple buffers 186

WTOR restart option 11

Z
z/OS UNIX System Services

publications
on CD-ROM xiv

softcopy xiv

570 z/OS V1R7.0 UNIX System Services File System Interface Reference

Readers’ Comments — We’d Like to Hear from You

z/OS

UNIX System Services

File System Interface Reference

 Publication No. SA22-7808-07

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SA22-7808-07

SA22-7808-07

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01, 5655-G52

Printed in USA

SA22-7808-07

	Contents
	Figures
	Tables
	About this document
	Who should use this document?
	Where to find more information
	Softcopy publications
	IBM Systems Center publications
	z/OS UNIX porting information
	z/OS UNIX courses
	z/OS UNIX home page
	z/OS UNIX customization wizard
	Discussion list
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	Finding more information about sockets
	Finding more information about timer units

	Summary of changes
	Chapter 1. General overview
	System structure

	Chapter 2. Physical file systems
	Installing a PFS
	Activating and deactivating the PFS
	Activation flow for the PFS_Init module
	PFS_Init entry interface
	The PFSI structure
	VFS and vnode operations vector tables

	Recycling a PFS externally
	PC#RecyclePFS X8000000C
	PC#RestartPFS X8000000D

	Termination considerations

	Cross-memory considerations
	Considerations for writing a PFS in C
	Security responsibilities and considerations
	Running a PFS in a colony address space
	Overview of the PFS interface
	Operations summary
	LFS/PFS control block structure
	Sharing files
	LFS-PFS control block integrity
	The OSI structure
	Waiting and posting
	LFS-PFS control block serialization
	Recovery considerations
	PFS task or address space termination
	User process and thread termination
	PFS abnormal ends
	Terminating a PFS’s associated separate address space
	Dumping LFS data

	PFS interface: File PFS protocols
	Mounting file systems
	Asynchronous mounting

	Resolving pathnames
	LFS processing
	PFS processing

	Unmounting file systems
	LFS processing
	PFS processing

	Creating, referring to, and inactivating file vnodes
	Creating files
	PFS processing

	Deleting files
	PFS processing

	Opening and closing files and first references to files
	Reading from and writing to files
	Reading directories
	Getting and setting attributes
	File tags
	Using daemon tasks within a PFS
	Exporting files to a VFS server
	Select

	PFS interface: Socket PFS protocols
	Activating a domain
	Creating, referring to, and closing socket vnodes
	Reading and writing
	Getting and setting attributes
	Select/poll processing
	Query phase
	Cancel phase

	Common INET sockets
	Common INET sockets PFS structure
	The master socket
	Common INET prerouting function
	Limitations of common INET-attached PFS IP configurations
	Initialization for an AF_INET (IPV4) transport driver
	Initialization for an AF_INET6 (IPV6) transport driver
	Route changes

	SRB-mode callers
	Asynchronous I/O processing
	Related services
	Impact on initialization
	Waits that are avoided
	Related OSI fields
	Canceling an operation
	Responsibilities for the semantics

	Asynchronous I/O flow diagram
	Asynchronous I/O flow details

	Colony PFS PC
	Considerations for Internet Protocol Version 6 (IPv6)
	Activating IPv6 on a system
	Common INET transport driver index
	ioctl used by the C/C++ Run-Time Library
	ioctls used by the prerouter
	ioctls used by the resolver
	SIOCGSRCIPADDR (obtain source IP addresses for an array of IPv6 and IPv4 destination addresses)
	SIOCGIFVERSION (determine if an IPv4 or IPv6 interface has been configured on a TCP/IP stack)

	PFS support for multilevel security
	PFS support for 64-bit virtual addressing
	Levels of support for 64-bit virtual addressing
	Indicating support for 64-bit virtual addressing
	osi_copy64 routine

	Minimum 64-bit support
	Specific considerations for vnode operations
	Expanded 64-bit time values
	C/C++ Run-Time Library support
	PFS support

	Chapter 3. PFS operations descriptions
	Environment for PFS operations
	C header files

	vfs_batsel — Select/poll on a batch of vnodes
	vfs_gethost — Get the socket host ID or name
	vfs_inactive — Batch inactivate vnodes
	vfs_mount — Mount a file system
	vfs_network — Define a socket domain to the PFS
	vfs_pfsctl — PFS control
	vfs_recovery — Recover resources at end-of-memory
	vfs_socket — Create a socket or a socket pair
	vfs_statfs — Get the file system status
	vfs_sync — Harden all file data for a file system
	vfs_unmount — Unmount a file system
	vfs_vget — Convert a file identifier to a vnode Token
	vn_accept — Accept a socket connection request
	vn_access — Check access to a file or directory
	vn_anr — Accept a socket connection and read the first block of data
	vn_audit — Audit an action
	vn_bind — Bind a name to a socket
	vn_cancel — Cancel an asynchronous operation
	vn_close — Close a file or socket
	vn_connect — Connect to a socket
	vn_create — Create a new file
	vn_fsync — Harden file data
	vn_getattr — Get the attributes of a file
	vn_getname — Get the peer or socket name
	vn_inactive — Inactivate a vnode
	vn_ioctl — I/O control
	vn_link — Create a link to a file
	vn_listen — Listen on a socket
	vn_lookup — Look up a file or directory
	vn_mkdir — Create a directory
	vn_open — Open a file
	vn_pathconf — Determine configurable pathname values
	vn_rdwr — Read or write a file
	vn_readdir — Read directory entries
	vn_readlink — Read a symbolic link
	vn_readwritev — Read or write using a set of buffers for data
	vn_recovery — Recover resources after an abend
	vn_remove — Remove a link to a file
	vn_rename — Rename a file or directory
	vn_rmdir — Remove a directory
	vn_select — Select or poll on a vnode
	vn_sendtorcvfm — Send to or receive from a socket
	vn_setattr — Set the attributes of a file
	vn_setpeer — Set a socket's peer address
	vn_shutdown — Shut down a socket
	vn_sndrcv — Send to or receive from a socket
	vn_sockopt — Get or set socket options
	vn_srmsg — Send messages to or receive messages from a socket
	vn_srx — Send or receive CSM buffers
	vn_symlink — Create a symbolic link
	vn_trunc — Truncate a file

	Chapter 4. VFS servers
	Installation
	Activation and deactivation
	Termination considerations

	Security responsibilities and considerations
	VFS server considerations for 64-bit addressing
	Using the VFS callable services application programming interface
	Operations summary
	VFS server – LFS control block structure
	Registration
	Mounting and unmounting
	Overview of NFS processing
	Mounting a pathname
	Resolving the pathname of a file or directory
	Accessing an individual file or directory
	Capabilities and restrictions for Version 4 NFS server processing in a sysplex environment

	NFS file handles
	DFS-style file exporters
	Reading and writing
	Reading directories
	Getting and setting attributes
	Comparing the VFS server and PFS interfaces

	Chapter 5. VFS callable services application programming interface
	Syntax conventions for the VFS callable services
	Elements of callable services syntax
	CALL
	Service_name
	Parm parameters
	Return_value
	Return_code
	Reason_code

	Other subjects related to callable services

	Considerations for servers written in C
	v_access (BPX1VAC, BPX4VAC) — Check file accessibility
	v_close (BPX1VCL, BPX4VCL) — Close a file
	v_create (BPX1VCR, BPX4VCR) — Create a file
	v_export (BPX1VEX, BPX4VEX) — Export a file system
	v_fstatfs (BPX1VSF, BPX4VSF) — Return file system status
	v_get (BPX1VGT, BPX4VGT) — Convert an FID to a vnode Token
	v_getattr (BPX1VGA, BPX4VGA) — Get the attributes of a file
	v_link (BPX1VLN, BPX4VLN) — Create a link to a file
	v_lockctl (BPX1VLO, BPX4VLO) — Lock a file
	v_lookup (BPX1VLK, BPX4VLK) — Look up a file or directory
	v_mkdir (BPX1VMK, BPX4VMK) — Create a directory
	v_open (BPX1VOP, BPX4VOP) — Open or create a file
	v_pathconf (BPX1VPC, BPX4VPC) — Get pathconf information for a directory or file
	v_rdwr (BPX1VRW, BPX4VRW) — Read from and write to a file
	v_readdir (BPX1VRD, BPX4VRD) — Read entries from a directory
	v_readlink (BPX1VRA, BPX4VRA) — Read a symbolic link
	v_reg (BPX1VRG, BPX4VRG) — Register a process as a server
	v_rel (BPX1VRL, BPX4VRL) — Release a vnode token
	v_remove (BPX1VRM, BPX4VRM) — Remove a link to a file
	v_rename (BPX1VRN, BPX4VRN) — Rename a file or directory
	v_rmdir (BPX1VRE, BPX4VRE) — Remove a directory
	v_rpn (BPX1VRP, BPX4VRP)) — Resolve a pathname
	v_setattr (BPX1VSA, BPX4VSA) — Set the attributes of a file
	v_symlink (BPX1VSY, BPX4VSY) — Create a symbolic link

	Chapter 6. OSI services
	Using OSI services from a non-kernel address space
	osi_copyin — Move data from a user buffer to a PFS buffer
	osi_copyout — Move data from a PFS buffer to a user buffer
	osi_copy64 — Move data between user and PFS buffers with 64-bit addresses
	osi_ctl — Pass control information to the kernel
	osi_getcred — Obtain SAF UIDs, GIDs and supplementary GIDs
	osi_getvnode — Get or return a vnode
	osi_kipcget — Query interprocess communications
	osi_kmsgctl — Perform message queue control operations
	osi_kmsgget — Create or find a message queue
	osi_kmsgrcv — Receive from a message queue
	osi_kmsgsnd — Send a message to a message queue
	osi_mountstatus — Report file system status to LFS
	osi_post — Post an OSI waiter
	osi_sched — Schedule async I/O completion
	osi_selpost — Post a process waiting for select
	osi_signal — Generate the requested signal event
	osi_sleep — Sleep until a resource is available
	osi_thread — Fetch and call a module from a colony thread
	osi_uiomove — Move data between PFS buffers and buffers defined by a UIO structure
	osi_upda — Update async I/O request
	osi_wait — Wait for an event to occur
	osi_wakeup — Wake up OSI sleepers

	Appendix A. System control offsets to callable services
	Example
	List of offsets

	Appendix B. Mapping macros
	Macros mapping parameter options
	BPXYATTR — Map file attributes for v_ system calls
	BPXYBRLK — Map the byte range lock request for fcntl
	BPXYDIRE — Map directory entries for readdir
	BPXYFDUM — Logical file system dump parameter list
	BPXYFTYP — File type definitions
	BPXYFUIO — Map file system user I/O block
	BPXYIOC6 — ioctl network mapping information for IPV6
	BPXYIPCP — Map interprocess communication permissions
	BPXYIPCQ — Map w_getipc structure
	BPXYMSG — Map interprocess communication message queues
	BPXYMNTE — Map response and element structure of w_getmnte
	BPXYMODE — Map the mode constants of the file services
	BPXYNREG — Map interface block to vnode registration
	BPXYOPNF — Map flag values for open
	BPXYOSS — Map operating system specific information
	BPXYPCF — Map pathconf values
	BPXYSSTF — Map the response structure for file system status
	BPXYSTAT — Map the response structure for stat
	BPXYVLOK — Map the interface block for v_lockctl
	BPXYVOPN — Map the open parameters structure for v_open

	Appendix C. Callable services examples
	Reentrant entry linkage
	BPX1VCR, BPX4VCR (v_create) example
	BPX1VSF, BPX4VSF (v_fstatfs) example
	BPX1VGT, BPX4VGT (v_get) example
	BPX1VGA, BPX4VGA (v_getattr) example
	BPX1VLN, BPX4VLN (v_link) example
	BPX1VLO, BPX4VLO (v_lockctl) example
	BPX1VLK, BPX4VLK (v_lookup) example
	BPX1VMK, BPX4VMK (v_mkdir) example
	BPX1VPC, BPX4VPC (v_pathconf) example
	BPX1VRW, BPX4VRW (v_rdwr) example
	BPX1VRD, BPX4VRD (v_readdir) example
	BPX1VRA, BPX4VRA (v_readlink) example
	BPX1VRG, BPX4VRG (v_reg) example
	BPX1VRL, BPX4VRL (v_rel) example
	BPX1VRM, BPX4VRM (v_remove) example
	BPX1VRN, BPX4VRN (v_rename) example
	BPX1VRE, BPX4VRE (v_rmdir) example
	BPX1VRP, BPX4VRP (v_rpn) example
	BPX1VSA, BPX4VSA (v_setattr) example
	BPX1VSY, BPX4VSY (v_symlink) example
	Reentrant return linkage

	Appendix D. Interface structures for C language servers and clients
	BPXYVFSI—VFS interface definitions
	BPXYPFSI—PFS interface definitions

	Appendix E. Assembler and C-language facilities for writing a PFS in C
	Assembler replacements for @@XGET and @@XFREE
	BPXT4KGT—Get a page of storage
	C function
	Assembler routine

	BPXT4KFR—free a page of storage
	C function
	Assembler routine

	BPXTWAIT—wait on an ECB list
	C function
	Assembler routine

	BPXTPOST—post an ECB
	C function
	Assembler routine

	BPXTEPOC—convert time-of-day to epoch time
	C function
	Assembler routine

	Appendix F. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks
	Acknowledgments

	Index
	Readers’ Comments — We'd Like to Hear from You

