<|ll

7/08S

UNIX System Services

File System Interface Reference

<|ll

7/08S

UNIX System Services

File System Interface Reference

Note
Before using this information and the product it supports, be sure to read the general information under
B61]

Eigth Edition, April 2006

This edition applies to Version 1 Release 7 of z/OS (5694-A01), to Version 1 Release 7 of z/0S.e™ (5655-G52), and
to all subsequent releases and modifications until otherwise indicated in new editions.

This is a major revision of SA22-7808-06.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):
Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs @us.ibm.com
World Wide Web: www.ibm.com/servers/eserver/zseries/zos/webgs.htmi|

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
 Title and order number of this document
* Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures.
Tables .

About this document .

Who should use this document?

Where to find more information .
Softcopy publications . .
IBM Systems Center publlcatlons .
z/OS UNIX porting information .
z/OS UNIX courses . .
z/OS UNIX home page . .
z/OS UNIX customization wizard
Discussion list .

Using LookAt to look up message explanatlons .

Using IBM Health Checker for z/OS .
Finding more information about sockets.
Finding more information about timer units

Summary of changes

Chapter 1. General overview.
System structure.

Chapter 2. Physical file systems .

Installing a PFS .

Activating and deactivating the PFS
Activation flow for the PFS_Init module
PFS_Init entry interface .

Recycling a PFS externally .
Termination considerations

Cross-memory considerations

Considerations for writing a PFS in C

Security responsibilities and considerations

Running a PFS in a colony address space.

Overview of the PFS interface .
Operations summary. .

LFS/PFS control block structure
Sharing files .

LFS-PFS control block mtegrrty
The OSI structure . .o
Waiting and posting . .
LFS-PFS control block serlahzatlon
Recovery considerations

PFS interface: File PFS protocols .
Mounting file systems
Resolving pathnames
Unmounting file systems

Creating, referring to, and mactrvatrng f|Ie vnodes .

Creating files
Deleting files.

Opening and closing flles and flrst references to f|Ies

Reading from and writing to files

© Copyright IBM Corp. 1996, 2006

.oXi

. Xiii
. Xiii
. Xiii
. Xiv
. Xiv
. Xiv
. Xiv
. Xiv
. XV
. XV
. XV
. Xvi
. Xvi
. Xvi

. XVii

Reading directories . . . N Y 4

Getting and setting attrlbutes N 1)
File tags . . . N
Using daemon tasks W|th|n a PFS |
Exporting flestoa VFSserver42
Select A X
PFS interface: Socket PFS protocols C e e e43
Activating a domain . . . C e e43
Creating, referring to, and closmg socket vnodes P ¥
Reading and writing . . . Y 15
Getting and setting attnbutes Y 15
Select/poll processing .45
Common INET sockets. .48
SRB-mode callers. . . . s)
Asynchronous 1/0O processmg)
Related services .5bb
Impact on initialization .55
Waits that are avoided .bb
Related OSl fields. .56
Canceling an operaton. .5bb6
Responsibilities for the semantics56
Asynchronous I/O flow diagram.57
Asynchronous I/O flow details58
Colony PFSPC <2
Considerations for Internet Protocol VerS|on 6 (IPv6) N 2
Activating IPv6 on a system . . . T © 724
Common INET transport driver mdex N 724
ioctl used by the C/C++ Run-Time L|brary ¢ 72
ioctls used by the prerouter N 1
ioctls used by the resolver.68
PFS support for multilevel security.64
PFS support for 64-bit virtual addressing66
Levels of support for 64-bit virtual addressing66
Indicating support for 64-bit virtual addressing . e06
Minimum 64-bit support. . . . e < V4
Specific considerations for vnode operat|ons N <74
Expanded 64-bit time values.68
Chapter 3. PFS operations descriptions.71
Environment for PFS operations71
C header files e 472
vfs_batsel — Select/poll on a batch of vnodes e A€
vfs_gethost — Get the socket host ID orname78
vfs_inactive — Batch inactivate vnodes81
vfs_mount — Mount a file system . . . P < 7
vfs_network — Define a socket domain to the PFS I < 1<
vfs_pfsctl — PFS control X
vfs_recovery — Recover resources at end of memory T
vfs_socket — Create a socket or a socketpair97
vfs_statfs — Get the file system status100
vfs_sync — Harden all file data for a file system 103
vfs_unmount — Unmount a file system . . . P L0}
vfs_vget — Convert a file identifier to a vnode Token P [0 ¢
vn_accept — Accept a socket connection request. 112
vn_access — Check access to a file or directory15
vn_anr — Accept a socket connection and read the first block of data 118

iV z/0S V1R7.0 UNIX System Services File System Interface Reference

vn_audit — Audit an action .

vn_bind — Bind a name to a socket

vn_cancel — Cancel an asynchronous operatlon
vn_close — Close a file or socket

vn_connect — Connect to a socket .

vn_create — Create a new file

vn_fsync — Harden file data

vn_getattr — Get the attributes of a file

vn_getname — Get the peer or socket name
vn_inactive — Inactivate a vnode.

vn_ioctl — 1/O control . .

vn_link — Create a link to a file .

vn_listen — Listen on a socket

vn_lookup — Look up a file or directory .

vn_mkdir — Create a directory

vn_open — Open a file

vn_pathconf — Determine conflgurable pathname values
vn_rdwr — Read or write a file

vn_readdir — Read directory entries

vn_readlink — Read a symbolic link .
vn_readwritev — Read or write using a set of buffers for data .
vn_recovery — Recover resources after an abend
vn_remove — Remove a link to a file .

vn_rename — Rename a file or directory .

vn_rmdir — Remove a directory .

vn_select — Select or poll on a vnode.
vn_sendtorcvfm — Send to or receive from a socket
vn_setattr — Set the attributes of a file

vn_setpeer — Set a socket’s peer address .
vn_shutdown — Shut down a socket

vn_sndrcv — Send to or receive from a socket
vn_sockopt — Get or set socket options .

vn_srmsg — Send messages to or receive messages from a socket.

vn_srx — Send or receive CSM buffers
vn_symlink — Create a symbolic link .
vn_trunc — Truncate a file .

Chapter 4. VFS servers .
Installation . .
Activation and deactlvatlon .
Termination considerations .
Security responsibilities and conS|derat|ons
VFS server considerations for 64-bit addressing .

Using the VFS callable services application programming mterface .

Operations summary .

VFS server — LFS control bIock structure
Registration

Mounting and unmountlng

Overview of NFS processing

NFS file handles .

DFS-style file exporters

Reading and writing

Reading directories . .

Getting and setting attrlbutes . .
Comparing the VFS server and PFS mterfaces

. 123
. 125
. 128
. 132
. 135
. 138
. 142
. 145
. 148
. 151
. 154
. 157
. 160
. 163
. 166
. 170
. 173
. 176
. 180
. 183
. 186
. 190
. 194
. 197
. 201
. 204
. 209
. 213
. 219
. 222
. 225
. 228
. 231
. 235
. 238
. 242

. 245
. 245
. 245
. 246
. 246
. 247
. 247
. 248
. 248
. 249
. 249
. 250
. 254
. 255
. 257
. 257
. 259
. 259

Contents

\'}

Vi

Chapter 5. VFS callable services application programming interface
Syntax conventions for the VFS callable services. .
Elements of callable services syntax
Other subjects related to callable services
Considerations for servers written in C. . .
v_access (BPX1VAC, BPX4VAC) — Check f|Ie acce53|b|llty
v_close (BPX1VCL, BPX4VCL) — Close a file. .o
v_create (BPX1VCR, BPX4VCR) — Create a file.
v_export (BPX1VEX, BPX4VEX) — Export a file system .
v_fstatfs (BPX1VSF, BPX4VSF) — Return file system status . . .
v_get (BPX1VGT, BPX4VGT) — Convert an FID to a vnode Token .
v_getattr (BPX1VGA, BPX4VGA) — Get the attributes of a file.
v_link (BPX1VLN, BPX4VLN) — Create a link to a file .
v_locketl (BPX1VLO, BPX4VLO) — Lock a file. . . .
v_lookup (BPX1VLK, BPX4VLK) — Look up a file or d|rectory
v_mkdir (BPX1VMK, BPX4VMK) — Create a directory .
v_open (BPX1VOP, BPX4VOP) — Open or create a file .
v_pathconf (BPX1VPC, BPX4VPC) — Get pathconf information for a d|rectory
or file . e
v_rdwr (BPX1VRW, BPX4VRW) — Read from and wr|te to a f|Ie .
v_readdir (BPX1VRD, BPX4VRD) — Read entries from a directory .
v_readlink (BPX1VRA, BPX4VRA) — Read a symbolic link .
v_reg (BPX1VRG, BPX4VRG) — Register a process as a server .
v_rel (BPX1VRL, BPX4VRL) — Release a vnode token . . .
v_remove (BPX1VRM, BPX4VRM) — Remove a link to a file .
v_rename (BPX1VRN, BPX4VRN) — Rename a file or directory .
v_rmdir (BPX1VRE, BPX4VRE) — Remove a directory
v_rpn (BPX1VRP, BPX4VRP)) — Resolve a pathname. . . .
v_setattr (BPX1VSA, BPX4VSA) — Set the attributes of a file .
v_symlink (BPX1VSY, BPX4VSY) — Create a symbolic link .

Chapter 6. OSI services. .

Using OSI services from a non- kernel address space .

osi_copyin — Move data from a user buffer to a PFS buffer.

osi_copyout — Move data from a PFS buffer to a user buffer .

osi_copy64 — Move data between user and PFS buffers with 64-bit addresses

osi_ctl — Pass control information to the kernel

osi_getcred — Obtain SAF UIDs, GIDs and supplementary GIDs

osi_getvnode — Get or return a vnode . .

osi_kipcget — Query interprocess communications . .

osi_kmsgctl — Perform message queue control operations .

osi_kmsgget — Create or find a message queue .

osi_kmsgrcv — Receive from a message queue .

osi_kmsgsnd — Send a message to a message queue

osi_mountstatus — Report file system status to LFS

osi_post — Post an OSI waiter

osi_sched — Schedule async 1/0 completlon

osi_selpost — Post a process waiting for select

osi_signal — Generate the requested signal event .

osi_sleep — Sleep until a resource is available

osi_thread — Fetch and call a module from a colony thread

osi_uiomove — Move data between PFS buffers and buffers defined by a UIO
structure . .

osi_upda — Update async I/O request.

osi_wait — Wait for an event to occur .

osi_wakeup — Wake up OSI sleepers.

z/0OS V1R7.0 UNIX System Services File System Interface Reference

261

. 261
. 261
. 262
. 263
. 264
. 267
. 270
. 274
. 279
. 282
. 285
. 288
. 292
. 303
. 307
. 31

. 319
. 322
. 326
. 330
. 333
. 337
. 339
. 343
. 347
. 350
. 354
. 361

. 367
. 368
. 370

. 373
376

. 379
. 382
. 385
. 388
. 391
. 395
. 398
. 402
. 406
. 408
. 410
. 413
. 415
. 417

. 420

. 426
. 429
. 431
. 435

Appendix A. System control offsets to callable services .
Example .
List of offsets .

Appendix B. Mapping macros .

Macros mapping parameter options .

BPXYATTR — Map file attributes for v_ system calls
BPXYBRLK — Map the byte range lock request for fcntl .
BPXYDIRE — Map directory entries for readdir

BPXYFDUM — Logical file system dump parameter list
BPXYFTYP — File type definitionso
BPXYFUIO — Map file system user I/O block

BPXYIOC6 — ioctl network mapping information for IPV6
BPXYIPCP — Map interprocess communication permissions
BPXYIPCQ — Map w_getipc structure.

BPXYMSG — Map interprocess communication message queues

BPXYMNTE — Map response and element structure of w_getmnte .

BPXYMODE — Map the mode constants of the file services
BPXYNREG — Map interface block to vnode registration .
BPXYOPNF — Map flag values for open .

BPXYOSS — Map operating system specific mformatlon
BPXYPCF — Map pathconf values . .
BPXYSSTF — Map the response structure for flle system status .
BPXYSTAT — Map the response structure for stat . .
BPXYVLOK — Map the interface block for v_locketl.

BPXYVOPN — Map the open parameters structure for v_open

Appendix C. Callable services examples .
Reentrant entry linkage . . .

BPX1VCR, BPX4VCR (v_create) example
BPX1VSF, BPX4VSF (v_fstatfs) example.
BPX1VGT, BPX4VGT (v_get) example.
BPX1VGA, BPX4VGA (v_getattr) example
BPX1VLN, BPX4VLN (v_link) example.
BPX1VLO, BPX4VLO (v_lockctl) example
BPX1VLK, BPX4VLK (v_lookup) example
BPX1VMK, BPX4VMK (v_mkdir) example
BPX1VPC, BPX4VPC (v_pathconf) example
BPX1VRW, BPX4VRW (v_rdwr) example.
BPX1VRD, BPX4VRD (v_readdir) example .
BPX1VRA, BPX4VRA (v_readlink) example .
BPX1VRG, BPX4VRG (v_reg) example
BPX1VRL, BPX4VRL (v_rel) example .
BPX1VRM, BPX4VRM (v_remove) example.
BPX1VRN, BPX4VRN (v_rename) example .
BPX1VRE, BPX4VRE (v_rmdir) example .
BPX1VRP, BPX4VRP (v_rpn) example.
BPX1VSA, BPX4VSA (v_setattr) example
BPX1VSY, BPX4VSY (v_symlink) example .
Reentrant return linkage . .

Appendix D. Interface structures for C language servers and clients

BPXYVFSI—VFS interface definitions .
BPXYPFSI—PFS interface definitions .

Appendix E. Assembler and C-language facilities for writing a PFS in C

. 437
. 437
. 437

. 443
. 444
. 445
. 448
. 449
. 450
. 451
. 452
. 454
. 459
. 460
. 462
. 463
. 466
. 467
. 468
. 469
. 470
. 471
. 473
. 474
. 476

. 477
. 478
. 479
. 480
. 481
. 482
. 483
. 484
. 485
. 486
. 487
. 488
. 489
. 490
. 491
. 492
. 493
. 494
. 495
. 496
. 497
. 498
. 499

503

. 503
. 521

553

Vii

viii

Assembler replacements for @ @ XGET and @ @ XFREE .

BPXT4KGT—Get a page of storage
C function . .o .
Assembler routine

BPXT4KFR—free a page of storage
C function . .o .
Assembler routine .

BPXTWAIT—wait on an ECB Irst
C function .

Assembler routine . . .

BPXTPOST—post an ECB .

C function . .o
Assembler routine

BPXTEPOC—convert time-of- day to epoch tlme .

C function .
Assembler routine

Appendix F. Accessibility .

Using assistive technologies

Keyboard navigation of the user mterface
z/OS information .

Notices .)
Programming Interface Informat|on .
Trademarks.

Acknowledgments

Index .

z/OS V1R7.0 UNIX System Services File System Interface Reference

. 553
. 555
. 555
. 555
. 555
. 555
. 556
. 556
. 556
. 556
. 556
. 557
. 557
. 557
. 557
. 557

. 559
. 559
. 559
. 559

. 561
. 562
. 562
. 562

. 563

Figures

1. VFS server and PFS structure ... 2
2. PFS_Init entry parameterlist.5b
3. The LFS/PFS control block structure .18
4. Format of BPXYFDUM.26
5. Common INET sockets PFS structure .49
6. Async operation flow P o1
7. Input to module and exit using a parameter structure424
8. Input to module and exit without using a parameter structure 424

© Copyright IBM Corp. 1996, 2006 ix

X z/OS V1R7.0 UNIX System Services File System Interface Reference

Tables

PFS operations by PFS type and category
TOD and SSE fields with the EXTENDED keyword .
vn_select subfunctions . ..
attribute_structure input fields.

VFS callable sevices API functions.

Attributes fields .
OSI services . C e e
System control offsets to callable services .

©oOoNOO AN~

© Copyright IBM Corp. 1996, 2006

Summary of v_open parameters that vary by open type .

. 15

. 69
. 205
. 215
. 248
. 317
. 357
. 367
. 437

Xi

Xil z/0S V1R7.0 UNIX System Services File System Interface Reference

About this document

This document describes the interfaces that are used to create physical file systems
(PFSs) and virtual file system (VFS) servers that can operate with z/OS UNIX
System Services (z/OS UNIX). PFSs and VFS servers might be written to extend
the services provided by z/OS UNIX in the areas of device support for a file system
or network access to file systems. This document also describes how to use these
interfaces.

Chapter 1 is a general overview that shows how the physical file system, logical file
system, and virtual file system server interact. Chapters 2 and 3 describe the
physical file system interface. Chapters 4 and 5 describe the virtual file system
server interface. Chapter 6 describes the Operating System Interface (OSI) callable
services.

In the appendixes, you will find information about:

» System control offsets to callable services

* Mapping macros

» Callable services examples

 Interface structures for C language servers and clients

* Assembler and C-language facilities for writing a PFS in C
» Accessibility features

* Notices

* An index

Who should use this document?

This document is intended for a specialized audience: system programmers using C
or assembler language to create a physical file system (PFS) or a virtual file system
(VFS) server, or to port a PFS or a VFS server to z/0OS UNIX. Knowledge of POSIX
or UNIX® is assumed.

Depending on the complexity of the PFS or VFS server involved, a considerable
amount of MVS™ system programming knowledge might be required. Detailed
information on MVS services that might be needed can be found in:

* |2/0S MVS Programming: Authorized Assembler Services Reference ALE-DYN
* |2/0S MVS Programming: Authorized Assembler Services Reference ENF-IXG|
* |2/0S MVS Programming: Authorized Assembler Services Reference LLA-SDY
* |2/0S MVS Programming: Authorized Assembler Services Reference SET-WTQ
« [0S MVS Programming: Extended Addressability Guide]

« [0S MVS Programming: Authorized Assembler Services Guidg

This document should be used in conjunction with |[zZ0S UNIX System Services
[Programming: Assembler Callable Services Reference] and supplements
information that is contained in IEEE Std 1003.1-1990 and IEEE Std 1003.1a.

Where to find more information

Where necessary, this document references information in other documents about
the elements and features of z/0OS™. For complete titles and order numbers for all
z/0OS documents, see|z/OS Information Roadmag,

Direct your request for copies of any IBM publication to your IBM representative or
to the IBM branch office serving your locality.

© Copyright IBM Corp. 1996, 2006 xiii

There is also a toll-free customer support number (1-800-879-2755) available
Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can
use this number to:

* Order or inquire about IBM publications

* Resolve any software manufacturing or delivery concerns

» Activate the program reorder form to provide faster and more convenient ordering
of software updates

Softcopy publications

The z/OS UNIX library is available on the z/OS Collection Kit, SK2T-6700. This
softcopy collection contains a set of zZ/OS and related unlicensed product
documents. The CD-ROM collection includes the IBM® Library Reader™, a program
that enables customers to read the softcopy documents.

Softcopy z/OS publications are also available for web-browsing and PDF versions
of the z/OS publications for viewing or printing using Adobe Acrobat Reader. Visit
the z/OS library atjwww.ibm.com/servers/eserver/zseries/zos/bkservi

IBM Systems Center publications

IBM Systems Centers produce Redbooks that can be helpful in setting up and using
z/OS UNIX System Services. You can order these publications through normal
channels, or you can view them with a Web browser. See the IBM Redbooks site at
www.ibm.com/redbooks]

These documents have not been subjected to any formal review nor have they
been checked for technical accuracy, but they represent current product
understanding (at the time of their publication) and provide valuable information on
a wide range of z/OS UNIX topics. You must order them separately. A selected list
of these documents is on the z/OS UNIX web site at
Ihttp://www.ibm.com/servers/eserver/zseries/zos/unix/bpxaipub.html]

z/OS UNIX porting information

There is a Porting Guide on the z/OS UNIX porting page at
www.ibm.com/servers/eserver/zseries/zos/unix/bpxaipor.htmll You can read the
Porting Guide from the web or download it as a PDF file that you can view or print
using Adobe Acrobat Reader. The Porting Guide covers a range of useful topics,
including: sizing a port, setting up a porting environment, ASCII-EBCDIC issues,
performance, and much more.

The porting page also features a variety of porting tips, and lists porting resources
that will help you in your port.

z/OS UNIX courses

For a current list of courses that you can take, go to
www.ibm.com/services/learning/}

You can also see your IBM representative or call 1-800-IBM-TEACH
(1-800-426-8322).

z/OS UNIX home page

The z/OS UNIX home page on the World Wide Web contains technical news,
customer stories, and information about tools. You can visit it at
www.ibm.com/servers/eserver/zseries/zos/unix/}

XiV z/0S V1R7.0 UNIX System Services File System Interface Reference

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/redbooks
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1pub.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.ibm.com/services/learning/
http://www.ibm.com/servers/eserver/zseries/zos/unix/

Some of the tools available from the web site are ported tools, and some are
home-grown tools designed for z/OS UNIX. The code works in our environment at
the time we make it available, but is not officially supported. Each tool has a
README file that describes the tool and lists any restrictions.

The simplest way to reach these tools is through the z/OS UNIX home page. From
the home page, click on Tools and Toys.

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through
anonymous ftp.

Restrictions
FBecause the tools are not officially supported, APARs cannot be accepted.

z/0OS UNIX customization wizard

For help with customizing z/OS UNIX, check out our Web-based wizard at
www.ibm.com/servers/eserver/zseries/zos/wizards/}

This wizard builds two BPXPRMxx parmlib members; one with system processing
parameters and one with file system statements. It also builds a batch job that does
the initial RACF® security setup for zZOS UNIX. Whether you are installing z/OS
UNIX for the first time or are a current user who wishes to verify settings, you can
use this wizard.

The wizard also allows sysplex users to build a single BPXPRMxx parmlib member
to define all the file systems used by sysplex members participating in a z/OS UNIX
shared file system.

Discussion list

Customers and IBM participants also discuss z/OS UNIX on the mvs-oe
discussion list. This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion, send a note to:
lTistserv@vm.marist.edu

Include the following line in the body of the note, substituting your first name and
last name as indicated:

subscribe mvs-oe first_name last_name

After you are subscribed, you will receive further instructions on how to use the
mailing list.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for
z/0S elements and features, zVM®, VSE/ESA™, and Clusters for AIX® and Linux™:

» The Internet. You can access IBM message explanations directly from the LookAt
Web site at|http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/ |

About this document XV

http://www.ibm.com/servers/eserver/zseries/zos/wizards/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

* Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e
systems to access IBM message explanations using LookAt from a TSO/E
command line (for example: TSO/E prompt, ISPF, or z/OS UNIX System
Services).

+ Your Microsoft® Windows® workstation. You can install LookAt directly from the
z/0S Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK8T-4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS > command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

* Your wireless handheld device. You can use the LookAt Mobile Edition from
[http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html| with a
handheld device that has wireless access and an Internet browser (for example:
Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for
Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from:

* A CD-ROM in the z/OS Collection (SK3T-4269).
* The z/OS and Software Products DVD Collection (SK3T-4271).

* The LookAt Web site (click Download and then select the platform, release,
collection, and location that suit your needs). More information is available in the
LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to
gather information about their system environment and system parameters to help
identify potential configuration problems before they impact availability or cause
outages. Individual products, z/OS components, or ISV software can provide checks
that take advantage of the IBM Health Checker for z/OS framework. This book
refers to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,
see [IBM Health Checker for z/OS: User’s Guidd z/OS V1R4, V1R5, and V1R6
users can obtain the IBM Health Checker for z/OS from the z/OS Downloads page
at [http://www.ibm.com/servers/eserver/zseries/zos/downloads/

SDSF also provides functions to simplify the management of checks. See[z/09
[SDSF Operation and Customization|for additional information.

Finding more information about sockets

You can find more detailed information on sockets and their operations in various
publications, including the following:

* 4.3BSD UNIX QOperating System, by S. J. Leffler et al.

« [2/08 XL C/C++ Programming Guide

» [z/0S XL C/C++ Run-Time Library Reference]

* AIX Version 4.3 Communications Programming Concepts, SC23-4124

Finding more information about timer units

You can find detailed information about timer units in z/Architecture Principles of
Operation, SA22-7832.

XVi z/0S V1R7.0 UNIX System Services File System Interface Reference

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html
http://www.ibm.com/servers/eserver/zseries/zos/downloads/

Summary of changes

Summary of changes
for SA22-7808-07
2z/0OS Version 1 Release 7

This document contains information previously presented in zZ0S UNIX System
Services File System Interface Reference, SA22-7808-06, which supports z/OS
Version 1 Release 7.

Changed information

» Minor changes have been made to the following callable services:
— [‘osi_copyin — Move data from a user buffer to a PFS buffer” on page 370
— [‘osi_copyout — Move data from a PFS buffer to a user buffer” on page 37
— [‘osi_copy64 — Move data between user and PFS buffers with 64-bi

addresses” on page 376|

— [Fosi_kipcget — Query interprocess communications” on page 388

— |‘osi_kmsgctl — Perform message queue control operations” on page 391|

— [‘osi_kmsgget — Create or find a message queue” on page 395

— [‘osi_kmsgrcv — Receive from a message queue” on page 398|

— [‘osi_kmsgsnd — Send a message to a message queue” on page 402

— |‘osi_uiomove — Move data between PFS buffers and buffers defined by 5]

UIO structure” on page 426|

— ['vn_bind — Bind a name to a socket” on page 125|

- Fvn_setattr — Set the attributes of a file” on page 213

This document has been enabled for the following types of advanced searches in
the online z/OS LibraryCenter: examples.

You may notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes
for SA22-7808-06
z/OS Version 1 Release 7

The document contains information previously presented in zZOS UNIX System
Services File System Interface Reference, SA22-7808-05, which supports z/OS
Version 1 Release 6.

New information
» Support has been added for the dynamic service activation capability, including a
new flag, pfsi_modind, in the PFS initialization structure (BPXYPFSI).

* The BPX1VLO/BPX4VLO (v_lockctl) callable service has been enhanced and
several new fields have been added to the Vlok structure (mapped by
BPXYVLOK) to support the implementation of the version 4 NFS server
protocols.

© Copyright IBM Corp. 1996, 2006 XVii

xviii

» The following callable services have been added to support the implementation
of the version 4 NFS server protocols:
— BPX1VCL/BPX4VCL (v_close)
— BPX1VOP/BPX4VOP (v_open)

A new macro, BPXYVOPN, maps the open parameters for the v_open
service.

Changed information

» Information about waiting and posting has been clarified to indicate that LFS
serialization will not be dropped for writes to the stream sockets using the default
socket option of exclusive write.

» Minor changes have been made to the following callable services:
— BPX1VRD/BPX4VRD (v_readdir)
— BPX1VRG/BPX4VRG (v_reg)
— BPX1VRM/BPX4VRM (v_remove)
— BPX1VRN/BPX4VRN (v_rename)
— BPX1VRW/BPX4VRW (v_rdwr)
— BPX1VSA/BPX4VSA (v_setattr)

» Throughout this document, the phrase ’shared HFS’ has been changed to
’shared file system’.

Deleted information

* The BPXTTOD sample assembler routine that was listed in the appendix is no
longer accurate. The routine is not needed for writing PFSs and has been
removed from this document.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes
for SA22-7808-05
2z/0S Version 1 Release 6

The document contains information previously presented in zZOS UNIX System
Services File System Interface Reference, SA22-7808-04, which supports z/OS
Version 1 Release 5.

For a list of new and changed callable services, see|z/0S UNIX summary of]|
linterface changes|in|zZ0S Summary of Message and Interface Changes,

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes
for SA22-7808-04
2z/0S Version 1 Release 5

The document contains information previously presented in zZOS UNIX System
Services File System Interface Reference, SA22-7808-03, which supports z/OS
Version 1 Release 4.

Changed information

z/0OS V1R7.0 UNIX System Services File System Interface Reference

* The v_setattr (BPX1VSA) callable service has been modified to support the use
of security labels.

* An Osi field is added for improved Async I/O performance (see|‘Related OSI
fields” on page 56).

* |Chapter 2, “Physical file systems,” on page 3| has been updated for MLS support.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes
for SA22-7808-03
z/OS Version 1 Release 4

The document contains information previously presented in zZOS UNIX System
Services File System Interface Reference, SA22-7808-02, which supports z/OS
Version 1 Release 3.

New information

A new section, [‘Considerations for Internet Protocol Version 6 (IPv6)” on page 62, is
added to Chapter 2, “Physical File Systems”.

Changed information
Minor changes have been made to the vfs_mount callable service.
This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of changes ~ XiX

XX z/OS V1R7.0 UNIX System Services File System Interface Reference

Chapter 1. General overview

z/OS UNIX System Services (z/OS UNIX) allows you to install virtual file system
servers (VFS servers) and physical file systems (PFSs).

* A VFS server makes requests for file system services on behalf of a client. A
VFS server is similar to a POSIX program that reads and writes files, except that
it uses the lower-level VFS callable services APl instead of the POSIX
C-language API.

An example of a VFS server is the Network File System.
* A physical file system (PFS) controls access to data.

PFSs receive and act upon requests to read and write files that they control. The
format of these requests is defined by the PFS interface.

PFSs include pipes, sockets, the Network File System client, and the following
UNIX file systems: HFS, zFS, and TFS.

Another name for a PFS is an installable file system.

User-written programs use the POSIX API to issue file requests. VFS servers use
the VFS callable services API to issue file requests. These requests are routed by
the logical file system (LFS) to the appropriate PFS through the PFS interface. See
[Figure 1 on page 2| for a view of this structure.

This document describes these two interfaces and discusses the things you need to
know to write a VFS server or a PFS, or to port one to the z/OS UNIX environment.
In order to do this, you should be a system programmer who is familiar with POSIX
or UNIX.

Porting note
This document uses notes like this one to highlight certain points of the
implementation that are particularly important to readers who are considering
porting an existing UNIX-based program to z/OS UNIX.

z/OS UNIX supports the following types of files:

* Regular files

* Directories

* Symbolic links

» Character special files (for example, terminals)
* Pipes (both FIFOs and unnamed)

» Sockets

Note: Character special and unnamed pipe physical file systems cannot be
implemented with this interface. Unnamed pipes and socket files cannot be
exported by a VFS server.

System structure

The position of the VFS server and the PFS in the structure of z/OS UNIX and the
interfaces they use are illustrated in [Figure 1 on page 2|

© Copyright IBM Corp. 1996, 2006 1

AR ARRREN

z/OS UNIX Programs File
Server System

Users
—POSIX-API
C RTL T
(1)
Callable Services Interfaces 4‘1—

POSIX Services VFS/Vnode Services
Logical File System Logical
File
System
VFS/Vnode Layer
| z/OS UNIX-PFS Interface
(T)
v Physical
Physical HFS PFS Char File
File Pipes Spec System
System PFS PES

2222222222222,

Data

Figure 1. VFS server and PFS structure

(1) The VFS callable services API is used by VFS servers to call the logical file
system.

(2) The logical file system calls the PFSs through the PFS interface.

2 2/0S V1R7.0 UNIX System Services File System Interface Reference

Chapter 2. Physical file systems

This chapter describes:

* How to install a physical file system (PFS)

* How a PFS is activated and deactivated

* The functions that must be provided by a PFS
» The functions that are provided for it

» Cross-memory considerations

» Considerations for writing a PFS in C

» Security considerations

* Running a PFS in a colony address space

» Considerations for Internet Protocol Version 6 (IPv6)
* PFS support for multilevel security

* PFS support for 64-bit virtual addressing

Installing a PFS

A physical file system (PFS) is packaged as one or more MVS load modules. These
load modules must be installed in an APF-authorized MVS load library. The
hierarchical file system is not available when a PFS is loaded, so it cannot be
installed in the file system.

The PFS must have an initialization routine whose entry point, called PFS_Init
below, is externally known through the system link list or the STEPLIB of the OMVS
cataloged procedure. If the PFS runs in a colony address space (see
[PES in a colony address space” on page 14), it must be found through the system
link list or a STEPLIB of the colony address space’s procedure.

A physical file system is defined to z/OS UNIX through the BPXPRMxx parmlib
member you specify when you start the kernel address space (OMVS=xx). The
FILESYSTYPE statement defines a single instance of a PFS.

Additional MOUNT, ROOT, SUBFILESYSTYPE, or NETWORK statements activate
file system or socket support in the PFS.
FILESYSTYPE TYPE(file_system type)
ENTRYPOINT (PFS_Init)

PARM(parameter_string)
ASNAME (procname)

where:

* TYPE specifies a 1-to-8-character name that uniquely identifies this PFS. This
name is used to route subsequent MOUNT, ROOT, SUBFILESYSTYPE, or
NETWORK statements (as well as later MOUNT and PFSCTL syscalls) to the
correct PFS.

 ENTRYPOINT specifies the name of the PFS’s initialization module. The LFS
attaches the PFS_lInit entry point as an MVS task. This task remains active for as
long as the PFS is active. See [‘Activating and deactivating the PFS” on page 4|
for a description of initialization processing requirements for this routine.

* PARM specifies a PFS-defined parameter text string that can contain any value
and be up to 1024 bytes long. The meaning of this string is defined by the
individual PFS. The string is passed to the PFS when the PFS_Init routine is
attached.

+ ASNAME specifies that the PFS is to run outside the kernel in a separate
address space.

© Copyright IBM Corp. 1996, 2006 3

procname is the name of the procedure to be used when starting this address
space, and a logical name for the address space. Each procname generates a
different address space when it is first encountered, and each PFS with the same
procname shares that address space. These address spaces are logical
extensions of the kernel. They are referred to as colony address spaces.

All PFSs are activated automatically when z/OS UNIX is started, based on the
FILESYSTYPE and SUBFILESYSTYPE statements in the parmlib member. This is
the only way a PFS can be started.

Mounts may also be issued dynamically at a later time through a TSO/E command
or a program function call. A mount is not strictly necessary, but it is required if the
files that are managed by the PFS are to be visible in the file hierarchy (that is, if
they are to be represented by standard pathnames). Support for mount generally
implies support for the lookup operation, which is used to resolve a pathname to a
file. Pipes and sockets are examples of files that are not in the hierarchy; these
PFSs do not use mount.

For a discussion of mount processing, refer to [‘Mounting file systems” on page 27

The ROOT statement is a special case of MOUNT. It can be issued only from
parmlib, and it defines the system’s root file system.

The NETWORK statement does for a sockets PFS what MOUNT does for a data
file type of PFS: It activates an address family, or domain, so that subsequent
socket() calls are routed to that PFS to service.

For a discussion of network processing, refer to[“Activating a domain” on page 43

Activating and deactivating the PFS

A PFS is started for each FILESYSTYPE statement in the BPXPRMxx parmlib
member whenever z/OS UNIX is started. The LFS and PFS exchange information
during this initialization phase. Usually the PFS does not terminate.

The same ENTRYPOINT name may be specified on two or more FILESYSTYPE
statements with different TYPE operands. This causes the same PFS to be started
more than once. It is up to the PFS to allow this or to detect and reject it.

Activation flow for the PFS_Init module

4

The LFS builds a general file system table (GFS) for each PFS and attaches the

PFS’s initialization entry point. This creates an independent MVS task, which is

expected to follow these general steps:

1. Perform any PFS initialization that is necessary.

2. Load its VFS and vnode operation service routines and build their respective
vector tables.

These are the PFS routines that the LFS calls to get such services as mount,
open, read, and write. The VFS and vnode operations vector tables make up
the major part of the PFS interface.

This loading may be done by link-editing the operational routines with the
PFS_Init routine.

3. Save the OSI operations vector table (OSIT) address.

The OSI operations vector table contains the addresses of LFS routines that the
PFS uses to get certain services, such as those used to create vnodes.

z/OS V1R7.0 UNIX System Services File System Interface Reference

4. Pass back to the LFS an 8-byte token that is saved by the LFS and used on all
subsequent VFS and vnode operations. This token typically contains the
address of the PFS’s main anchor block. Its use is optional.

5. Exchange miscellaneous items of information between the LFS and PFS. Refer
to ['The PFSI structure” on page 6 and the PFSI structure in for
details on the specific information that is exchanged.

6. Notify the LFS that initialization has finished, by posting the
initialization-complete ECB that was supplied.

7. Wait on the termination ECB, which is also supplied by the LFS. This ECB is
posted by the LFS when it is time to terminate the PFS.

Each PFS is initialized synchronously and serially during z/OS UNIX initialization, so
that no PFS may go into an extended wait during initialization.

Note: The file system is not available this early in z/OS UNIX initialization. If the
PFS_Init routine needs configuration or other information from a file, it must
use an MVS data set.

PFS_lInit entry interface

The PFS_Init routine receives control as the result of an MVS ATTACH in the
following environment:

Authorization Supervisor state, PSW key 0

Dispatchable unit mode Task

Cross memory mode PASN = HASN

AMODE 31 bit

ASC mode Primary mode

Interrupt status Enabled for interrupts

Locks Unlocked

Control parameters All parameters are addressable in the primary

address space

On entry, register 1 points to a variable-length list of parameter addresses. The
high-order bit of the last parameter address is turned on. For information about
other entry registers, see |z70S MVS Programming: Authorized Assembler Serviceq
|Reference ALE-DYN for a description of ATTACH.

R1 |—» | PFS Initialization Structure —>
PFS Name —>
PFS Parm Parameter e
(reserved) e
OSIT Service Routines —

Figure 2. PFS_lInit entry parameter list

The addresses in the parameter list point to the following parameters, each of which
is described in|Appendix D

Parameter Description

Chapter 2. Physical file systems 5

6

PFSI

PFSNAME

PFSPARM

OoSIT

The PFS initialization structure. This contains information that is
being passed to the PFS and fields that are to be filled in by the
PFS during its initialization. See [‘The PFSI structure”| for a
description of these fields.

An 8-byte field that contains the name of the PFS. This name was
specified in either the TYPE parameter of a FILESYSTYPE parmlib
statement or the NAME parameter of a SUBFILESYSTYPE parmlib
statement. This name is used to identify the PFS for the pfsctl()
function and, when applicable, for the v_reg() function.

A variable-length field that contains the text string that is specified
in the PARM parameter of the FILESYSTYPE statement. This is a
2-byte field that contains the length of the text string, followed by
the string. If this parameter is absent, the length field is zero.

The OSI service routine vector table, which provides the PFS with
the addresses of the LFS service routines it needs to perform some
basic functions.

See for a description of the interfaces to, and functions
of, each of these OSI routines.

The PFSI structure
The PFS initialization structure (BPXYPFSI, referred to in this document as the
PFSI) contains the following fields (each name is prefixed with the characters

pfsi_):
Field

ver

ook

alone

new

romntclient

rwmntsysplex

initcompecb

pfsecb

Description

Supplied Fields

The version number of this PFSI.

An indication that this PFS is running outside the
kernel.

An indication that this PFS is the only PFS running
in the address space.

An indication that this is the first time this PFS has
been initialized in the address space.

Set on to indicate that the PFS does not support
simultaneous R/O mounts from multiple systems;
the LFS is responsible for making R/O file systems
available for sharing in a sysplex system.

The default value is off. This indicates that the PFS
supports sharing of R/O file systems in a sysplex.

Set on to indicate that the PFS does not support
simultaneous R/W mounts from multiple systems;
the LFS is responsible for making R/W file systems
available for sharing in a sysplex system.

The default value is off. This indicates that the PFS
supports sharing of R/W file systems in a sysplex.

The ECB that the PFS posts when its initialization
is complete.

The ECB that the LFS posts when z/OS UNIX is
stopped. The PFS must be waiting on this ECB.

z/OS V1R7.0 UNIX System Services File System Interface Reference

restart

dumpptr

pfsid

asname

ep

pfsanchor

vfso

vhop

srb
asyio
usethreads

disableLLA

stayalone

immeddel

The address of the restart option byte. The PFS
sets this byte any time during its processing, to
control if and how it is to be restarted if it should
terminate.

The address of dump information. This information
is used by the PFS to add significant LFS areas to
the dumps that are taken by the PFS.

The PFS identifier that is used with osi_sleep and
osi_wakeup.

The value of the ASNAME parameter of the
FILESYSTYPE statement.

The value of the ENTRYPOINT parameter of the
FILESYSTYPE statement.

Returned Fields

The PFS initialization token. This token value is
passed back to the PFS on every subsequent call
from the LFS as part of the token_structure, which
is the first parameter of every call. This field
typically contains the address of the PFS’s main
anchor block.

The address of the PFS’s VFS operation vector
table.

The address of the PFS’s vnode operation vector
table.

An indication that SRB mode is supported.
An indication that asynchronous 1/O is supported.

An indication that the PFS is requesting support for
the osi_thread service. This field can be set only by
PFSs that are running outside the kernel.

An indication that the LFS should not provide
lookup lookaside function for this PFS. If there is
not a strict one-to-one correspondence between the
spelling of a file name in a directory and the
vnode-inode pair that represents the file, the PFS
should set this bit. For example, if
"/usr/d1/f1,attr=fb' and '/usr/d1/f1"' represent
the same file in the /usr/d1 directory, you must
disable the LFS lookup lookaside function. If
directories are remote and files may be removed
from them remotely, the LFS’s LLA cache should
also be disabled.

An indication that the LFS should not initialize any
other PFSs in this address space. This field can be
set only by PFSs that are running outside the
kernel.

An indication that the PFS supports deleting a
removed file’s data when its open count becomes
zero, rather than waiting for vn_inactive to free the
space.

Chapter 2. Physical file systems 7

8

cpfs An indication that the PFS is written in C, and is
requesting that the LFS invoke it with pre-initialized
C environments.

datoffmove An indication that the PFS supports DATOFF move
for page read operations. For more information, see
[‘Reading from and writing to files” on page 36/

pfstype The type of the PFS. This identifies the PFS as a
local file PFS, a remote file PFS, or a socket PFS.

pipebuf pathconf() _PC_PIPE_BUF value, if applicable

maxcanon pathconf() _PC_MAX_CANON value, if applicable

maxinput pathconf() _PC_MAX_INPUT value, if applicable

chownrstd pathconf() _PC_CHOWN_RESTRICTED value, if
applicable

vdisable pathconf() _PC_VDISABLE value, if applicable.

Pathconf() values that are not constant for all files
supported by the PFS may be reported through the
vn_pathconf operation.

compon The PFS’s three-letter component (or module)
prefix.
compid The PFS’s five-letter component (or product) ID.

The component prefix and ID are used in dump
titles for dumps that are taken by the LFS when
there is an abnormal end in the PFS from which it
does not recover.

modind An indication that the PFS is supplying indirect
addresses in the VFS and vnode operations vector
tables for the various VFS and vnode operations
routines.

VFS and vnode operations vector tables

VFES and vnode operations vector tables are allocated and built by the PFS, and
their addresses are returned in the PFSI. These tables may not be altered after the
PFS posts the initialization-complete ECB.

Vnode operations, such as vn_open and vn_readdir, deal with file system objects.
VFS operations, such as vfs_mount and vfs_statfs, deal with whole file systems or
with the PFS itself.

The routine that supports each particular operation is loaded into storage by the
PFS_lInit routine, and the entry-point address is placed into the corresponding
vector table entry. If the PFS supports the dynamic service activation capability, it
must instead supply indirect addresses (that point to the actual entry-point
addresses for each operation routine) in the vector table entries and set the
pfsi_modind flag in the PFSI. When the LFS processes a VFS or vnode operation
request, it will recognize the flag and use the address supplied in the vector table
as an indirect address to locate the target operation routine.

If the PFS does not support a particular operation, the corresponding operation’s
vector must contain 0. The number of operations that are placed in the table by the
PFS, as determined by the returned table’s length, may be less than or equal to the

z/OS V1R7.0 UNIX System Services File System Interface Reference

number of operations that are supported by the LFS. If this value is less, the LFS
treats all remaining operations as not supported, just as though the PFS had
supplied 0 for those operation vectors. If the table contains more entries than the
LFS expects, it is considered a serious product-level mismatch between the LFS
and PFS, and the PFS is terminated.

For more information, see the description of vnoptab and vfsotab structures in

[Appendix 0]
Recycling a PFS externally

PFS Recycle can be driven externally by two calls to pfsctl. The caller must be a
superuser. This is supported for kernel-resident PFSs only; for PFSs that are
running in a colony address space, cancel the space to recycle the PFS.

PFS Recycle refreshes the PFS load module after service has been applied. The
kernel space does not terminate; the only way to refresh a kernel-resident PFS load
module is for the PFS_Init task to exit. The PFS may have its own technique to
accomplish this and the PFS_Init task can exit on its own at any time. PFS Recycle
restarts the PFS, or the LFS issues a WTOR and waits for a reply before restarting
the PFS. Refer to [‘Termination considerations” on page 11| for details. These pfsctl
commands coordinate the PFS’s termination with the LFS so that calls into the PFS
can be quiesced before the PFS_Init task exits.

PC#RecyclePFS X'8000000C'
PC#RecyclePFS X'8000000C' initiates a PFS recycle by posting the PFS’s
termination ECB.

* If no argument is passed, or if the argument value is not 1, the LFS returns to
the caller immediately after calls to the PFS have quiesced and the PFS has
been posted to terminate. The caller and the PFS must coordinate any
dependencies that they have on each other after this point, because the PFS
may not have terminated when the caller regained control.

» If a fullword argument value of 1 is passed, the LFS waits for the PFS to
terminate before returning to the caller.

The Return_value is 0 if the PFS is found.

Before this call the caller or PFS must ensure that:
» All current osi_waiters have been osi_posted.

If the v_reg service has been used to register that the PFS is dependent on the
caller’s process for osi_post, the LFS osi_posts the osi_waiters, just as it would if
the caller's process had terminated.

» All outstanding asyncio has been osi_scheduled.
» All internal waiters have been posted.

* No new vnode ops will be accepted by the PFS, or that no new ops will be
allowed to wait or for asyncio to cue.

Before posting the PFS termination ECB, the LFS ensures that there are no more
threads executing code in the PFS layer and it will permit no more VFS or vnode
ops to branch into the PFS. The LFS waits for any threads that are still in the PFS
layer at the time of the pfsctl call. These could include, for example, threads that
were just osi_posted, but whose address space had not been swapped in yet, or
that were otherwise not dispatched, so they have not had a chance to return back
up to the LFS layer.

Chapter 2. Physical file systems 9

A race condition exists between this call and user threads that are branching into
the PFS layer at about the same time. The PFS begins to reject these calls and the
LFS waits for those rejected threads to exit from the PFS layer.

When the termination ECB is posted, the PFS cleans up and exits the PFS_lInit
module. This decrements the load module’s use count; when that count goes to
zero the load module is deleted. This assumes a PFS that was not packaged to
reside in LPA.

If the second pfsctl, PC#Restart PFS, is going to be used, the PFS must have left
the Restart Option Byte (pfsi_restart) at its default value or reset it to
RESTART_WTOR before exiting. In this case, the normal WTOR message is not
issued when the PFS terminates, and the second pfsctl takes the place of the
operator reply to restart the PFS. Alternatively, the second pfsctl does not have to
be used if the PFS sets the Restart Option Byte to RESTART_AUTO.

The second pfsctl can also be used without the first if the PFS exits with the Restart
Option Byte set to RESTART_PFSCTL(7). This suppresses the WTOR message
and causes the LFS to wait for the second pfsctl before restarting the PFS.

PC#RestartPFS X'8000000D'
PC#RestartPFS X'8000000D' restarts the PFS by reattaching the PFS_Init module.

* If no argument is passed, or if the argument value is not 1, the LFS waits for the
PFS initialization to complete before returning to the caller.

 If a fullword argument value of 1 is passed, the LFS returns to the caller
immediately after posting the internal thread that does the reattach. The caller
and the PFS must coordinate between themselves for the restart. This is similar
to a startup during IPL.

The Return_value is 0 if the PFS was found and was awaiting this restart. The
Return_value is 1 if the PFS was found but was not waiting to be restarted. This
would be a normal situation immediately after an IPL, or if the caller did not recycle
the PFS. If the PFS is not found the call fails.

This call can be made before the PFS has finished terminating, in which case the
LFS proceeds directly to the PFS restart when it does finally terminate.

If all copies of the PFS have been recycled and the PFS load module does not
reside in the LPA, the first reattach of the load module brings a fresh copy into
storage.

The PFS should run through a more or less normal PFS initialization sequence with
respect to the LFS. The regular sequence of returning VFS and vnode operation
vectors, posting the LFS ECB, and waiting for the PFS termination ECB must be
followed.

On each restart of a PFS, the previously returned value of pfsi_pfsanchor is passed
into the new instance of the PFS. The PFS may use a design in which this anchor
points to persistent storage so that it can reuse or reclaim resources from a prior
instance.

For Socket PFSs:

+ After the PFS completes its reinitialization, the LFS reissues any vfs_network
calls that were originally made to set up for the address family domains that this
PFS supports.

10 2/0S V1R7.0 UNIX System Services File System Interface Reference

* The master socket opens with the normal sequence of events.
For File System PFSs, prior active mounts are reissued.

The PFS does not have to remember anything from one instance to the next with
respect to the LFS and the LFS/PFS interfaces.

Termination considerations

Because no “normal” termination is defined for a physical file system, there is no
operator command or other interface supplied by z/OS UNIX to terminate an

individual PFS. A PFS can define its own interface for this, although it cannot use
the operator STOP or MODIFY commands unless it is running outside the kernel.

Usually a PFS does not stop.

There is nothing to prevent a PFS from terminating, either normally in a manner
defined by the PFS, or abnormally. A PFS that is running in an address space
outside the kernel terminates if that address space is terminated. If the PFS_Init
program task terminates for any reason before the LFS posts the termination ECB,
the LFS takes the following actions:

1. All activity to this PFS is halted. Users receive EIO or EMVSERR errors for any
reference to a file that is owned by this PFS.

2. Every file system that is mounted for this PFS is logically unmounted. The
PFS’s vfs_umount is not called, because all activity is halted; but otherwise the
file system is unmounted as it would be for an UNMOUNT FORCE command.

File systems that are owned by other PFSs that are mounted on directories that
are owned by the terminating PFS are also unmounted. These PFSs receive
vfs_umount force.

3. The PFS is restarted or not depending on the setting of the restart option byte.
The address of this byte is passed to the PFS in the PFSI during initialization.
Its value may be adjusted by the PFS any time before it terminates.

4. If the PFS was running in an address space outside the kernel, that address
space may be stopped and restarted, depending on the setting of the restart
option byte.

The restart options available are:

RESTART_NONE Do not restart.

RESTART_AUTO Automatic restart.

RESTART_WTOR Prompt the operator before restarting.

RESTART_RCNONE Stop the address space and do not restart the PFS.

RESTART_RCAUTO Stop the address space and automatically restart the
address space and the PFS.

RESTART_RCWTOR Stop the address space and prompt the operator before

restarting the address space and the PFS.

The default restart option is RESTART_WTOR.

Notes:

1. If the PFS is restarted, file systems that were mounted at the time of failure are
not automatically remounted, and network statements are not reprocessed.
Socket file systems should specify that the PFS is not to be restarted, because
NETWORK statements cannot be issued dynamically.

Chapter 2. Physical file systems 11

2. If the PFS requests that the colony address space in which it runs be stopped,
the ASID for that address spaced is marked unusable.

Cross-memory considerations

Because all of the VFS and vnode operations can be called in cross-memory mode,
a PFS that must invoke MVS functions that cannot run in this mode must attach a
worker task, or tasks, to accomplish these functions. A worker task is a subtask that
performs non-cross memory work for PFS operations.

See ['Using daemon tasks within a PFS” on page 41|for information about some
services that make this task easier.

Although the PFS_Init task can be used as a worker task, if this task terminates,
the PFS also terminates.

Considerations for writing a PFS in C

A PFS can be written in System Programmer’s C. The BPXYPFSI and BPXYVFSI
headers define the structures and parameters that are needed for PFSs that are
written in C. A PFS that is written in C can avoid the cost of establishing a C
environment each time it is invoked for a vnode or VFS function, by requesting that
the LFS invoke the PFS with pre-initialized C environments. The PFS requests this
at initialization by setting the pfsi_cpfs flag in the PFSI.

The PFS must not do anything that would sever addressability to the stack.

Because the PFS is running in a cross-memory environment, Language
Environment® and C/C++ run-time library functions are not available. A PFS that
needs to invoke these functions must attach a worker task, or tasks, to accomplish
these functions.

See ['Using daemon tasks within a PFS” on page 41|for information about services
that make creating these worker tasks easier.

Some assembler services that may be useful are provided in[Appendix E)
[‘Assembler and C-language facilities for writing a PFS in C,” on page 553.|In
particular, BPXFASM must be assembled and link-edited with the PFS modules, to
provide the correct @ @ XGET/@ @ XFREE routines for their C environment.

Security responsibilities and considerations

z/OS UNIX maintains system security by verifying user identities and file access
control information. A PFS is primarily concerned with file access control.

For those functions where POSIX .1 (IEEE Standard 1003.1-1990) specifies that
“appropriate privilege” is required, the PFS refers to a bit that is set by the LFS to
determine whether the function has appropriate privileges. For more information,
see “Appropriate Privileges” in the POSIX standards.

Access control checks are based on information that is stored with each individual
file, and are generally carried out on the system where the data resides.

Access control is integrated with the SAF interface to call RACF, or whichever
security product is used at a particular installation.

12 2/0S V1R7.0 UNIX System Services File System Interface Reference

The basic flow of file security is as follows:

1. Security information, such as the owner’s UID-GID and the permission bits for a
file, is kept in a 64-byte area called the file security packet (FSP), which is
mapped by IRRPIFSP. The FSP is the security-related section of a file’s
attributes.

2. The FSP is created by a SAF call from the PFS when a file is created. Some of
the information is taken from the current security environment, and some of it is
passed as parameters.

3. The PFS stores the FSP with the attributes of the file.

4. When an access check is to be done, the PFS calls SAF with the type of check
that is being requested, the audit_structure from the current call, and the file’s
FSP. SAF passes these to the security product, which extracts user information
from the current security environment and compares it against the access
control that is stored within the FSP. The audit_structure is used primarily for
any auditing that may be necessary.

There are many access and privilege checks defined by the POSIX standards.
The detailed description of each vnode operation in discusses the

access checks that are expected.

5. When a file’s access control information is changed, such as by chmod(), the
PFS calls SAF with the type of change, the new values, the audit_structure from
the current call, and the file’s current FSP. A new version of the FSP is returned
to the PFS, which then replaces the file’s old FSP with the new one.

6. When a file is deleted, the PFS discards the FSP.

In the flow described above, the PFS provides some private space within the file
attributes for the security product’s use, ensures common access checking across
all PFSs, allows for the installation of different security products, and lets the
security product perform auditing or other non-POSIX processing.

The PFS is ultimately responsible for the following access checks:

 If the PFS controls the storage of its own files, it follows the flow outlined above
to create, maintain, and use security information.

» If the PFS is a client getting its data from some remote repository, it sends the
request to the remote system, where the access checks are performed using the
osi_getcred service.

» If access is not controlled for the type of data that is supported by a particular
PFS, the PFS may choose to skip these security procedures.

Some events that occur in the LFS are audited for security purposes by the
vn_audit operation. For example, because relative pathnames may be audited
during an access check, it is important to audit the working directory so that a full
pathname can be constructed if necessary. When a user calls chdir() or fchdir(),
the LFS invokes vn_audit to record the new working directory. chroot(), which
changes the current root, is another call that causes an audit record to be created.

Refer to [z/0S Security Server RACF Callable Serviced for more information about
these interfaces.

['PFS support for multilevel security” on page 64| discusses PFS responsibilities and
considerations for multilevel security.

Chapter 2. Physical file systems 13

Running a PFS in a colony address space

By default, PFSs are initialized in the kernel address space. An installation may
choose to run a PFS in a separate colony address space by specifying an ASNAME
parameter on its FILESYSTYPE statement. You may want to have a PFS run in a
colony address space if:

* The PFS is constrained by kernel address space resources, such as:
— Storage
— Data set allocations
— Lock contention

* The PFS needs to request callable services itself, in order to:
— Use sockets
— Make remote procedure calls
— Obtain POSIX file 1/10

When a PFS runs in a colony address space, an extra address space is created,
and each PFS operation has a slightly longer path length.

Any PFS can run in a colony address space unchanged. PFSs that are running in
colony address spaces can use the osi_thread service, which is not available to
PFSs that are running in the kernel address space. Any PFES that uses this service
must document to its users that the PFS must be initialized in a colony address
space. See[‘Using daemon tasks within a PFS” on page 41| for more information
about the osi_thread service.

The writer of a PFS cannot assume that the PFS will run in the kernel, nor that it
will run under the task that calls it.

Overview of the PFS interface

The PFS interface is a set of protocols and calling interfaces between the logical file
system (LFS) and the PFSs that are installed on z/OS UNIX. PFSs mount and
unmount file systems and perform other file operations.

This section describes the services provided by the PFS routines that are called by
the LFS. The services are described in terms of the requirements the PFS must
meet and the expectations of the LFS. Also included are descriptions of the design
that are intended to clarify the implementation of a physical file system on z/OS
UNIX.

There are two types of PFSs, those that manage files and those that manage
sockets:

1. File management PFSs deal with objects that have pathnames and that
generally follow the semantics of POSIX files.

2. Socket PFSs deal with objects that are created by the socket() and accept()
functions and that follow socket semantics.

As described in Chapter 1, the LFS is called by POSIX programs, non-POSIX z/OS
UNIX programs, and VFS servers. In this document, “the caller” refers to the LFS or
any of the programs that call the LFS. When the LFS is mentioned specifically, it is

usually to clarify a point of the design.

14 2/0S V1R7.0 UNIX System Services File System Interface Reference

This interface is a modification of the architecture that is outlined by S. R. Kleiman
in the paper “Vnodes: An Architecture for Multiple File System Types in Sun UNIX”,
which was published in Proceedings: Summer Usenix Technical Conference &

Exhibition (June 1986).

Porting note

Some operations that are found on some UNIX systems are not called by the
z/0S UNIX logical file system, and are not shown in the list in[Table 1|.[Table 1|
includes some functions that are unique to the logical file system.

Operations summary

The following PFS operations are grouped by category and by applicability to file or

socket PFSs.

Table 1. PFS operations by PFS type and category

File PFS - File System VFS_MOUNT Mount a file system
Services
VFS_UMOUNT Unmount a file system
VFS_SYNC Synchronize a file system
(synchronize all files)
VFS_STATFS Get general file system attributes
VFS_VGET Get a vnode from a file ID (FID)
File PFS - Directory Services | VN_LOOKUP Look up a filename in a directory
VN_READDIR Read a directory
VN_CREATE Create a regular, FIFO, or
character special file
VN_MKDIR Create a directory
VN_SYMLINK Create a symbolic or external link
VN_LINK Create a hard link to a file
VN_RMDIR Remove a directory
VN_REMOVE Remove a file
VN_RENAME Rename a file or directory
File PFS - File Services VN_OPEN Open a file
VN_CLOSE Close a file
VN_READLINK Read a symbolic link file or
external link file
VN_ACCESS Perform access check
VN_TRUNC Truncate a file
VN_FSYNC Synchronize a file (save data to

disk)

Chapter 2. Physical file systems 15

Table 1. PFS operations by PFS type and category (continued)

Any PFS - File Services

VN_RDWR

Read or write

VN_READWRITEV

Read or write with multiple
buffers

VN_GETATTR Get attributes for a file
VN_SETATTR Set attributes of a file
VN_IOCTL Control 1/0

VN_AUDIT Perform security auditing
VN_SELECT Select on a vnode
VN_INACTIVE Inactivate a vnode-inode

VN_PATHCONF

Return configurable limits

VN_RECOVERY

Recover from an abend for an
operation in progress

VFS_RECOVERY

Recover from an EOM condition
for an operation in progress

VFS_PFSCTL PFS Control

VFS_BATSEL Select on a set of files/sockets
Sockets PFS - Address VFS_NETWORK Activate a domain
Family, or Domain, Services VFS_SOCKET Create socket or socketpair in a

domain

VFS_GETHOST

Get host ID or name

Sockets PFS - Socket
Services

VN_ACCEPT Accept a connection request

VN_BIND Bind a socket

VN_CONNECT Establish a connection

VN_GETNAME Get the name of the peer or
socket

VN_SOCKOPT Get or set socket options

VN_LISTEN Get ready to accept connection
requests

VN_SNDRCV Send or receive

VN_SNDTORCVFM Send to or receive from

VN_SRMSG Send a message or receive a
message

VN_SETPEER Set a peer

VN_SHUTDOWN

Shut down a socket

The VFS-vnode vector tables returned by the PFS after its initialization contain
either the direct or indirect addresses (depending on the value of the pfsi_modind
flag in the PFSI) of the routines that implement the operations in the preceding list.

LFS/PFS control block structure

In the LFS/PFS model that is used in z/OS UNIX, each active file system object is
represented in the LFS and PFS by its own control blocks or structures. These are
called the vnode and inode, respectively. There is a one-to-one relationship
between the LFS’s vnode and the PFS’s inode. They effectively point to each other
across the interface, although neither ever directly refers to the other’s fields.

16 2/0S V1R7.0 UNIX System Services File System Interface Reference

Porting note
Such terms as “build the inode”, as used in this document, mean “construct
the in-storage representation of a file”. This does not imply anything about the
file representation as it is stored on disk.

There is only one vnode-inode pair for each data object in the system, no matter
how many links there are to the object (for file objects), or how many users may be
accessing the object. Users who access a vnode through the LFS must be
accessing the same data object through the PFS.

Token_structure:

A difference between the z/OS UNIX PFS interface and other implementations is
that the vnode is not directly addressable by the PFS during a vnode operation. A
Token_structure is presented on all calls as a vnode surrogate.

The Token_structure contains the following 8-byte PFS tokens:
« Initialization token, returned from the PFS_Init routine during PFS activation.
This token usually contains the address of the PFS anchor block.

* Mount token, returned from the vfs_mount or vfs_network operation for the file
system that is related to the current call. This token usually contains the address
of the PFS mount block.

* File token, originally passed by the PFS to osi_getvnode when the file’s
vnode-inode pair was created. This token usually contains the address of the
PFES file block—that is, the inode.

For a vnode operation, Token_structure contains all three tokens; for a VFS
operation, it contains only the initialization and mount tokens.

See the TOKSTR typedef in for the mapping of Token_structure.

— Porting note
The file token within Token_structure is a copy of the “private data” area in the
vnode. If a PFS expects a vnode structure as an input parameter, but does not
refer to any vnode fields other than the PFS’s private data pointer, the
subfields within the program’s vnode structure can be rearranged so that the
pointer’s offset matches that used in Token_structure. In this way, the PFS
code that refers to this field will pick up the correct value when it is
recompiled, and does not have to be changed.

Token_structure is transient; it lives only for the duration of a single call.

Chapter 2. Physical file systems 17

Sharing files

GFS

Pfsa@ VFS
Logical
Mnt@ File
Vnode System
Inod@
Pfsa@
—————————————— CALLVNOP ([Mnt@ |, ,) - ------
Inod@
Inode
Physical
MNT Vnod@ File
System
PFSA File
Mount Block
Block
PFS Anchor

Figure 3. The LFS/PFS control block structure

The control block relationships described so far are illustrated in [Figure 3 Reading
from left to right, in the order they are created:

The GFS-PFS_anchor pair is created at PFS initialization time and exists as long
as the PFS does. Pfsa@ represents the PFS token saved by the LFS.

The VFS-MNT pair is created during a file system mount or socket network
activation, and exists until the file system is unmounted, or forever, respectively.
Mnt@ represents the PFS token saved by the LFS from that operation.

The vnode-inode pair is created during lookup and creation operations, which are
explained in [‘Creating, referring to, and inactivating file vnodes” on page 31| and
|“Creating, referring to, and closing socket vnodes” on page 44|

Each of these control blocks contains the other’s token for the file object. The
vnode’s Inod@ token is placed in Token_structure as input for a call to the PFS,
and an inode’s Vnod@ token is returned by the PFS from any call that has a
vhode as output.

Token_structure contains all three PFS tokens, and spans the LFS-PFS interface
as the first parameter of each call.

The LFS manages user access to the vnodes. For programs that use the open() or
socket() function, the LFS allocates file descriptors and manages sharing between
processes and threads within a process. For VFS server programs, the LFS
allocates vnode tokens, which behave somewhat like file descriptors. All programs,
of any type, share the same file hierarchy.

18 2/0S V1R7.0 UNIX System Services File System Interface Reference

The PFS is not aware of who is using a file or how it is being shared. To the PFS,
there is only a vnode-inode pairing, and all file references come through that
structure. In effect, the PFS has only one user: the LFS.

The PFS does not generally maintain any state information that would associate a
sequence of calls. Successive calls to the PFS may relate to different end users, so
every call is self-contained and does not depend on any information saved by the
PFS from a previous call.

Files become shared when different end users open the same file, and when
additional references to descriptors are created through the fork() and dup()
functions.

Because the LFS maintains reference counts in its structures, it knows how many
references to a given vnode are active and how many threads are currently making
a call to the PFS with each reference. The PFS does not, therefore, have to be
aware of how many users are accessing a given vnode-inode pair. The LFS
ensures that all activity has ended and that the vnode-inode pair is no longer in use
before it invokes vn_inactive to disassociate the vnode and inode.

LFS-PFS control block integrity

To preserve the vnode-inode relationship, the LFS guarantees the following:

* On every operation, the inode, represented by the PFS’s token in
Token_structure, has not been inactivated.

* When the PFS is called to break the relationship (via vn_inactive at the time that
a vnode is being freed), the LFS ensures that there are no other operations in
progress against this vnode and, by extension, against the inode.

There are, in fact, no operations in progress against any file that is in the same
mounted file system as the file that is being inactivated. This is so that no other
operation may be attempting to find or recreate the inode while it is being
deleted.

» After a vn_inactive, the PFS does not receive any additional vn_ calls for that
inode until the PFS creates a new vnode-inode binding for this same object as a
result of a vn_lookup or vfs_vget call.

The OSI structure

The second parameter of every call from the LFS to the PFS is the address of the
operating system interface (OSlI) structure. This structure contains information that
is used by the OSI_operations and MVS-specific information that needs to be
passed between the LFS and the PFS. It is mapped by the OSI typedef in
Appendix D} The fields are described as follows:

Field Description

Wait-post fields

token Wait-post token. Set by osi_wait when it is called to set up for a
wait. This token is the input to osi_post when it is called to wake up
the current thread.

ecb Address of an event control block (ECB). Set by osi_wait when it is
called to set up for a wait. This is the ECB that is used by osi_wait
when it is called to suspend. A program that cannot call osi_post
can use this ECB with an MVS cross-memory post to wake up the
current thread. However, using the MVS cross-memory post for this
ECB can result in a system integrity problem.

Chapter 2. Physical file systems 19

ascb

diribc

readibc
writeibc
bytesrd

byteswr

rtokptr

workarea

workarealen

pid

pfsid

attr

fsp

Address of the address space control block (ASCB). Set by
osi_wait when it is called to set up for a wait. This ASCB address is
used, along with the ECB, for an MVS cross-memory post.

SMF accounting fields

Directory 1/0O block count that occurred on this operation.
Read 1/0O block count that occurred on this operation.
Write I/0O block count that occurred on this operation.
The number of bytes that were read on this operation.
The number of bytes that were written on this operation.

Miscellaneous fields

Address of the recovery token area. The recovery token area is set
and cleared by the PFS on each operation, to provide for abnormal
end and end-of-memory recovery. Refer to

[considerations” on page 24 for details.

Address of a work area for use by the PFS. This area can be used
for the dynamic, or automatic, storage necessary to run the current
operation. This can save the PFS the overhead of obtaining and
freeing stack storage on every call. The workarea is on a
doubleword boundary.

Length of the workarea. The workarea length is 3KB. This allows
2KB for routines that call the SAF Chk_Owner_Two_Files routine or
the osi_uiomove service, each of which requires that a 2-KB work
area be passed. The other SAF security routines require a 1-KB
work area.

The current thread’s process ID (PID). This is the input to osi_signal
if it is called to send a signal to the current thread’s process.

A PFS identifier that is used with osi_sleep and osi_wakeup.

Address of an output file attribute buffer. Whenever this field is
nonzero, the PFS should build and return a standard attribute
structure for the file operated on at the end of the current operation.
This is the same attribute structure that would be returned by
vn_getattr.

The buffer is preset with an attribute structure header that contains
the available length of the buffer.

Because this buffer may be the same area as an input attribute
structure, it should not be modified until the very end of the current
operation.

If the PFS does not return the file’s attributes when asked, the LFS
invokes vn_getattr to get them. This results in poorer performance
for files that are supported by this PFS.

Address of an output File Security Packet (FSP). Whenever this
field is nonzero, the PFS should return an fsp structure for the file
operated on. This is the same fsp structure that would be returned
by vn_getattr.

If the PFS does not return the file’s FSP when asked, the LFS
builds one. For a description of the FSP, refer to |“Securit;/|
[responsibilities and considerations” on page 12|

20 z/OS V1R7.0 UNIX System Services File System Interface Reference

remount A flag that indicates that the current operation is running during a
remount (that is, during UNMOUNT with the REMOUNT option).

NotSigReg Indicates that the calling process is not registered for signals and
so should not be sent any.

Waiting and posting

OSI_Operations are provided to the PFS to wait for internal events and to post the
waiting thread when the event occurs.

Three important reasons for using the OSI wait and post services rather than native
MVS WAIT and POST are:

» The OSI services allow signals to interrupt a wait.
» Users are not left hanging if zZOS UNIX or the PFS is stopped.

* The PFS is protected from any system integrity exposures that might result from
the cross-memory post operation.

There are two kinds of wait, distinguished by whether or not signals are enabled
during the wait:

* Not signal-enabled: Used to wait for internal serialization or other activities that
are independent of external forces likely to take a long time. These waits should
generally not be used with human interactions. Examples are: waiting for data to
be read from disk, or waiting for an available output buffer from a pool that is
shared by all users.

+ Signal-enabled: Usually correspond to the blocking situations that are defined by
POSIX, and often involve waiting for an end user to do something. Examples are:
waiting for data to be read or written by another independent program, such as a
socket session, or reading input from a terminal.

Signals should be enabled when the end user may need to break out of an
indefinite wait.

When a signal-enabled wait is entered, all serialization that was obtained by the
LFS is dropped before the wait and re-obtained after it. This means that other
operations may intrude on an otherwise exclusive operation. The PFS must take
this into account if it uses signal-enabled waits. This does not mean that two
exclusive operations will actually be running in the PFS for the same vnode-inode at
the same time, but that a second operation may run while the first is blocked. When
the first is resumed there may have been state changes made by the second. For
writes on stream sockets, the default socket option of exclusive write will prevent
the dropping of LFS serialization during single-enabled waits.

The WAITX option also allows LFS serialization to be dropped around the wait,
independent of whether signals are enabled. See the next section for details on
LFS serialization.

As a consequence of dropping LFS serialization, it is possible for a file system to be
unmounted, with the IMMEDIATE or FORCE operands, while a task is waiting. If
this happens, the wait service returns with an OSI_UNMOUNTED return code when
it is posted, and the PFS must cancel the rest of the operation and return to the
LFS with some care. Because it is expected that vfs_umount will have cleaned up
all file-system-related resources, the current operation may have to avoid
references to internal file system structures that are freed by vfs_umount.

Chapter 2. Physical file systems 21

Waits that are signal-enabled or that request the LFS to drop its serialization cannot
be used on some vnode and VFS operations. The implementation notes for those
operations state this.

The OSI sleep and wakeup functions are similar to wait and post, with these
advantages:
* Osi_sleep
— Does not require a separate setup call
— Associates a Resource_id and Pfs_id with the sleeping thread
* Osi_wakeup
— Wakes up all threads that match Resource_id and Pfs_id

Implementation details: The PFS implementation for waiting and posting involves
the steps described here. There are two threads involved: the waiting thread and
the posting thread.

1. The waiting thread is running on behalf of some VFS or vnode operation when it
must wait for an event to occur. It calls osi_wait to set up for the wait, performs
internal coordination to schedule the eventual wakeup, and calls osi_wait again
to actually suspend the thread.

2. The posting thread may be an independent PFS task, or it may be running on
behalf of some other user's VFS or vnode operation. It determines that a thread
is waiting for the resource it is dealing with, and calls osi_post to wake that
thread up.

3. When the waiting thread wakes up, it checks the return code from osi_wait and
reacts accordingly.

Waiting Thread Posting Thread

« Determine that a wait is necessary. (None)

osi_wait(0SI_SETUPSIG, OSI, RC)

« Create an internal wait structure that is used
by the posting thread to recognize that the
waiting thread is waiting.

» Save the osi_token in this structure.

* Chain the wait structure where the posting
thread will find it.

osi_wait(0OSI_SUSPEND, OSI, RC)

(None) When an event occurs, scan the wait
structures to see if anyone is waiting for
this event. Unchain and free the wait
structure.

osi_post(saved_token, RC)

If the return code is not zero, the
waiting thread did not get this post and
you may need to go on to the next
waiting thread.

22 7/0S V1R7.0 UNIX System Services File System Interface Reference

Waiting Thread Posting Thread

Select on return code: (None)
When (OSI_POSTED): proceed with
what you were going to do.

When (OSI_SIGNALRCV): a signal has
arrived (when using SETUPSIG rather
than SETUP). Back out of this
operation and return EINTR.
Otherwise: an abnormal end or
unexpected error occurred. Back out of
this operation and return EMVSERR.
End

Notes:

1. This example assumes that the PFS has its own serialization around the chaining and
unchaining of the wait structure.

2. A variation of the steps in this table would be to unchain and free the wait structure on
the waiting thread. In this case, the posting thread marks the structure as “posted” so
that another event occurrence cannot result in the same structure’s being used again.
Recovery is more complicated with this approach, though.

3. One also has to consider abnormal ends while waiting—for instance, the user might be
canceled. In that case, control does not return to the code after the osi_wait. If the PFS
supports vn_recovery, or has an ESTAE or FRR active, it gets control there and the
situation can be handled as when a signal is received.

4. For abnormal ends and any return code other than OSI_POSTED, additional
serialization between the waiting thread and the posting thread is necessary. In these
cases the waiting thread is ending before, or even while, the posting thread is trying to
wake it up.

This is why it is important to save a copy of the osi_token from the waiting thread’s OSI,
rather than just the address of the waiting thread’s OSI. The waiting thread’s OSI
storage could be gone by the time the posting thread tries to refer to it.

5. Another consideration is user address space end-of-memory, which abnormally
terminates the waiting thread without activating any ESTAE or FRR. In this case, the
LFS uses the OSI recovery token to invoke vfs_recovery, which gives the PFS a chance
to clean up.

LFS-PFS control block serialization

The LFS serializes use of the vnode-inode pair for each vnode operation. Writing of
file data is done under an exclusive latch. Reading of file data is also done under
an exclusive latch, unless shared read support has been indicated by the PFS for
the file, and the read is via vn_rdwr or vn_readwritev. Shared read can be indicated
in the OSI by the PFS upon return from vn_open, vn_close, vn_rdwr, vn_readwritev,
vn_setattr, and vn_trunc.

Other read operations, such as vn_readdir, are done under a shared latch.

In particular, to optimize the performance of pathname resolution, only a shared
latch is held on the directory that is involved in a vn_lookup operation.

Recommendation: Read operations that are done under a shared latch may
require the PFS to update some structures; for example, to
mark the access time of a file for update. The PFS is
responsible for any additional serialization that is required to
maintain integrity of its structures when functions are called
with a shared or an exclusive latch. Often the compare and

Chapter 2. Physical file systems 23

swap instruction is sufficient for this additional serialization. In
order to avoid contention problems, the cross-memory local
lock (CML) should not be used.

For the operations that refer to more than one vnode (vn_remove, vn_rmdir, vn_link,
and vn_rename), exclusive latches are held on all the vnodes that are involved in
the operation. This includes vnodes that are not explicitly passed on the interface,
such as the file that is being unlinked on vn_remove.

When the PFS enters a signal-enabled wait, as described in the previous section,
or when the WAITX option has been used to drop serialization around the wait, all
vnode and file system latches are released before the wait and re-obtained after it.
This means that other operations may be invoked from another thread for a given
vnode during an exclusive operation that enters a signal-enabled wait, although
there would not be two operations running at the same time, because the blocked
thread re-obtains exclusive access when it wakes up.

Note: While any operation is active, the PFS never receives a vn_inactive call for
that vnode, even if the latches are released. In cases of vn_open or
vn_close processing, the LFS does not allow a close against the last active
file descriptor while another thread has any operation in progress against it.

Refer to the individual operations for the level of serialization that is provided for
each call.

The serialization that is provided can be changed by the PFS when the
osi_getvnode service is called to create a vnode. The PFS can specify that no LFS
latching be performed. If no LFS latching is specified, all discussions in this chapter
about latches held on vnodes do not apply. Other LFS latches are unaffected;
sigwait and waitx should still be used to drop other latches, where necessary.

Recovery considerations
There are several recovery situations that must be handled by the PFS.

PFS task or address space termination

As discussed in[‘Termination considerations” on page 11,|if the PFS_lInit task
terminates for any reason, the LFS terminates the PFS and restarts it based on the
current setting of the restart option byte. If the PFS is started in a colony address
space and that address space terminates, the PFS_lInit task is also terminated by
MVS.

User process and thread termination

Two possible situations are discussed here: when the process or thread is between
calls to the PFS, and when it is actually running in the PFS code during a PFS
interface operation.

In general, when a user process terminates normally or abnormally, the LFS closes
all active file descriptors. There is nothing special about these close operations. The
PFS receives a normal vn_close if all file descriptors for an open file reference
happen to be closed. If forked children have not closed their inherited file
descriptors, the PFS does not receive a vn_close and may never know that the
user process terminated.

Individual user requests are run on dubbed tasks, but POSIX semantics assign file
resources to the process. Consequently, if a user task terminates between calls to
the PFS, and its process does not also terminate, the PFS is not notified.

24 7/0S V1R7.0 UNIX System Services File System Interface Reference

When a VFS server address space terminates, all of its vnode tokens are released
and files that were opened for the server are closed. If a vnode’s reference count
goes to zero, that vnode is inactivated. If this happens to remove all references to a
vnode, that vnode is inactivated after a delay interval. The PFS does not receive
any special notification.

PFS abnormal ends

If the user address space or task terminates while actually running in the PFS code
for a PFS interface operation, or if the PFS code itself fails, an MVS abnormal end
is generated for each affected task. The MVS system then usually runs the FRR
and ESTAE recovery exits.

» If the PFS does not have recovery established, the vn_recovery operation is
available to allow the PFS to run its recovery processing as an exit from the
LFS’s ESTAE. See the description of vn_recovery and vfs_recovery that follows
this list.

» If the PFS needs its own special recovery, it must establish an FRR or ESTAE on
each entry from the LFS.

 If task-level recovery is bypassed by MVS, the end-of-memory (EOM) resource
manager established by z/OS UNIX is run. It ensures that the PFS has a last
chance to clean up by calling vfs_recovery. See the next section on vn_recovery
and vfs_recovery.

vn_recovery and vfs_recovery are called to permit a PFS to recover resources
when a user request ends abnormally, or when the user’s address space enters
EOM processing while a request to that PFS is active. This works as follows:

1. On every VFS and vnode operation, the LFS makes an 8-byte recovery area
available to the PFS. This field is in the PFS’s primary address space, not in the
user’s address space. Its address is in the OSI.

2. The PFS should set this field soon after entry, or when it has resources that
need protection. The field is used for recovery information, or for the address of
a recovery structure that is not in the user’s address space.

3. The PFS clears the field on exit. The LFS also clears the field as soon as the
PFS returns, as it has meaning only during a call, and presumably the area it
points to is no longer valid. The PFS should clear the field so that it cannot be
invoked with bad data if the user is canceled after the PFS has returned, but
before the LFS can zero out the field.

4. If an abnormal end occurs and the LFS ESTAE routine finds this area to be
nonzero, the area is passed to the PFS with a call to vn_recovery and cleared
after this call.

See[‘vn_recovery — Recover resources after an abend” on page 190 for more
details.

5. If the EOM resource manager for a user address space finds this area to be
nonzero, the area is passed to the PFS with a call to vfs_recovery. This can
happen only for an abnormal end that bypasses normal ESTAE processing, or
when an address space is canceled during ESTAE processing.

See |“vfs_recovery — Recover resources at end-of-memory” on page 94{ for
more details.

6. The PFS uses the information that is stored in the area during vn_recovery or
vfs_recovery to clean up whatever was in progress at the time of the
interruption.

The PFS can establish its own MVS dynamic resource managers if it must perform
special recovery for a user or z/OS UNIX task or address space termination. This is

Chapter 2. Physical file systems 25

not recommended, however, because severe performance degradation occurs if
these resource managers have to be set up and removed on every operation.

Terminating a PFS’s associated separate address space

If a PFS communicates with a separate address space, that is, one unknown to
z/OS UNIX, and waits for replies from that address space, users could be left
waiting forever if that address space abnormally terminates while it has outstanding
responsibilities to post user threads. Usually, the PFS has to remember all users
that are waiting in this situation and post them from a recovery resource manager of
the separate address space. This can involve extra serialization and overhead
during mainline operations.

If, however, the separate address space registers with the v_reg() function,
specifying the PFS that is dependent on it, and uses osi_wait and osi_post, the
system remembers this information in a task-related area that does not require
additional serialization or overhead during mainline operations. When the separate
address space terminates, the system scans through all users looking for those in a
potential wait for this address space and posts them. Thus the extra overhead is
incurred only when the separate address space terminates.

Dumping LFS data

Information that can be used by the PFS to add LFS data areas to dumps taken by
the PFS is passed at initialization. Pfsi_dumpptr contains the address of an array of
elements, mapped by BPXYFDUM, shown pictorially in These may be
used to construct entries in a LISTD-type list passed to SDUMPX.

PfsiDumpPtr | ——— & Number of entries in DumpData array

Eye catcher - 'FDUM’ (4 bytes)

Reserved area (8 bytes)

First Dump Info element (24 bytes)
SToken for this area (8 bytes)
Reserved (8 bytes)

Start of area to dump (4 bytes)

Last byte to dump (4 bytes)

Second Dump Info element (24 bytes)

Last Dump Info element (24 bytes)

Figure 4. Format of BPXYFDUM

26 z/OS V1R7.0 UNIX System Services File System Interface Reference

PFS interface: File PFS protocols

Mounting file systems

Mountable file systems are subsets of the file hierarchy that are added and deleted
by mount and unmount. Each has its own root and hierarchical directory structure.
One such file system serves as the root of the whole file hierarchy, and mounts are
done upon the directories of other mounted file systems.

A mount may be issued from the BPXPRMxx parmlib member that is used with the
start of z/OS UNIX, by a user through ISHELL, by the TSO/E MOUNT command, by
automount, or by a program using the mount() function. The latter function is
restricted to users with appropriate privileges.

Here is the syntax of a MOUNT statement, showing the parameters that are
important to this discussion:
MOUNT FILESYSTEM(file_system_name) or DDNAME(ddname)

TYPE(file_system type)

MOUNTPOINT (pathname)

MODE (READ | RDWR)

PARM(parameter_string)

SETUID | NOSETUID

where:

* FILESYSTEM specifies a 1-to-44-character name, blank padded, by which this
file system is to be known. It must be unique among previously mounted file
systems. This is also used by some PFSs as an MVS data set name.

 DDNAME specifies the ddname on an ALLOCATE that is issued from the OMVS
cataloged procedure. This is an alternative to the FILESYSTEM parameter for
mounts that are issued from the parmlib member only. The real data set name
becomes the mounted file system’s name.

* TYPE identifies the PFS that supports this mounted file system. This operand
must match the TYPE operand used on the FILESYSTYPE statement that
defined the PFS.

* MOUNTPOINT specifies the pathname of the mount point directory within the file
hierarchy where this file system is to be mounted. This item is passed to the
PFS, but only for informational purposes.

* MODE specifies the type of access that the issuer of MOUNT has to this file
system. READ is specified for read-only access, and RDWR is specified for
read/write access.

The LFS enforces this parameter to prohibit operations such as writing and
creating files. The PFS must ensure that it does not update access times for read
operations, or otherwise change file systems that are mounted read-only.

» PARM specifies a PFS-defined parameter text string. It may contain any value
and be up to 1024 bytes long. The meaning of this text string is defined by the
individual PFS, and the text is passed to the PFS for it to interpret and process.

« SETUID | NOSETUID specifies whether the SETUID and SETGID mode bits on
executables in this file system are to be respected. This is enforced by z/OS
UNIX; the information is passed to the PFS for informational purposes only.

See the MOUNT command description|in|zZ0S UNIX System Services Command
|Referencg| for more information about the MOUNT command.

Chapter 2. Physical file systems 27

The parameters that are described above are passed to the PFS on the vfs_mount
operation. The FILESYSTEM or PARM values are used by the PFS to identify the
file system object that is being mounted.

During vfs_mount the PFS is expected to:
1. Ready the file system for all later processing.

2. Save the device number that has been assigned to this file system so that it can
be output on vn_getattr for any file within this file system. This number
corresponds to the st_dev value of POSIX.

3. Set output fields, as appropriate, in the MTAB.
4. Create an inode that represents the root of the file system.

5. Call osi_getvnode to create a vnode. The returned vnode token is saved in the
inode.

6. Return the vnode token of the root to the LFS.

7. Return an 8-byte token that will be saved by the LFS and used on all
subsequent VFS and vnode operations for this file system. This token is
typically the address of the PFS’s mount block. Its use is optional.

Porting note
This differs from some implementations in that vfs_root is not used to extract
the vnode of the root of a just-mounted file system.

The root vnode is never explicitly inactivated. If this file system is unmounted, the
vfs_umount operation implies vn_inactive for the root vnode-inode pair.

The PFS cannot use a signal-enabled wait or WAITX during MOUNT.

The LFS does not permit two mounts on a single MVS image with the same file
system name. If the PFS identifies its mounted objects through the PARM
parameter or by some other means, the PFS must permit or reject attempts to
mount the same object more than once. If the mounted file system is on DASD,
DASD file sharing must be taken into account. If the file system object is on or is
using a resource that is shared by multiple systems, the PFS is responsible for
managing or denying shared access.

The ROOQOT statement defines the system root. It is valid only from the parmlib
member, and it has the same parameters as MOUNT, except that a MOUNTPOINT
is not specified.

Asynchronous mounting

The PFS may choose to complete mounting the file system asynchronously.
Because latches are held by the LFS during execution of vfs_mount, it is desirable
to perform the mount asynchronously if it cannot be completed immediately
(perhaps because of the need to communicate with another system).

Asynchronous mount processing follows this sequence:

1. The vfs_mount service is called by the LFS as part of the mount processing
described in ['Mounting file systems” on page 27.|
» If the PFS decides to complete the mount asynchronously, it must indicate
this to the LFS with the AsynchMount flag in the MTAB before returning to the
LFS.

28 z/0S V1R7.0 UNIX System Services File System Interface Reference

 If the SynchOnly flag in the MTAB is set on, the mount must be completed
synchronously. The PFS must either complete it synchronously or reject it,
returning EINVAL.

2. When the PFS has completed its asynchronous processing, it calls
osi_mountstatus to indicate to the LFS that the mount can now be completed.

3. The LFS then calls vfs_mount a second time, from within the OMVS address
space. On the second call, AsynchMount in the MTAB is turned on so that the
PFS can identify this as the second mount.

The PFS completes the mount actions described above.

After the PFS returns to the LFS from the first call to vfs_mount, the LFS may call
any vfs_ operation. In particular, the PFS must be prepared to process vfs_unmount
and vfs_statfs. If the PFS can determine the file attributes on the first call, it can
create and return the root vnode on that call. Otherwise, it defers this until the
second call. If a vnode is returned on the first call and also on the second call, it
must be the same vnode each time. If the mount operation fails during the
asynchronous phase, the PFS calls osi_mountstatus and reports the failure on the
second vfs_mount call.

Serialization: During each vfs_mount, the PFS has exclusive access to the file
system that is being mounted, and no access is allowed until the second vfs_mount
has completed.

Resolving pathnames

LFS processing

Pathname resolution starts from the user’s root or working directory. The LFS looks
up the first component of the pathname in that directory. This often yields another
directory, and the LFS looks up the second component of the name in this new
directory. The LFS looks up each successive component of the name in the
directory that was returned from the previous lookup, until the end of the pathname
is reached.

When the LFS encounters a directory that is a mount point, it switches to the root
directory of the file system that was mounted there. The next lookup is done in the
mounted file system’s root directory, rather than in the directory that was returned
from the previous lookup. This is called crossing mount points; it is because of
these mount points that pathname resolution has to be done one component at a
time.

PFS processing
Resolving pathnames and identifying mount points is a function of the LFS. Except
for the individual vn_lookup operations that are invoked, the PFS is not involved.

Unmounting file systems

A user can issue an unmount through ISHELL, the TSO/E UNMOUNT command,
automount, or a program that is written to use the unmount() function. This function
is restricted to users with appropriate privileges.

Here is the syntax of the TSO/E UNMOUNT command, showing the parameters
that are important to this discussion:

UNMOUNT FILESYSTEM(file_ system name)
NORMAL | DRAIN | RESET | IMMEDIATE | FORCE | REMOUNT(RDWR | READ)

where:

Chapter 2. Physical file systems 29

* FILESYSTEM specifies the name that was used when the file system was
mounted.

* NORMAL | DRAIN | RESET | IMMEDIATE | FORCE | REMOUNT(RDWR |
READ) specifies the type of unmount to perform.

LFS processing

» NORMAL. The LFS checks to make sure no user is using any of the files in the
file system that is to be unmounted, and passes the request to the PFS via
vfs_umount. If files in this file system are being accessed, the LFS rejects the
unmount request.

* DRAIN. The LFS checks to make sure that no user is accessing any of the files
in the file system that is to be unmounted, and passes the request to the PFS via
vfs_umount. If files in this file system are being accessed, the LFS waits until all
activity has ceased, and then passes the request to the PFS.

* RESET. The LFS cancels a previous unmount drain request. The file system
goes back to the normal mounted state.

* IMMEDIATE. The LFS stops further user access to the file system that is being
unmounted. Any attempt to access files in this file system receives an error
return code. The LFS then passes the request to the PFS via vfs_umount.

UNMOUNT with IMMEDIATE can be used to override a previous UNMOUNT
DRAIN request for a file system.

* FORCE. The LFS stops further user access to the file system that is being
unmounted. Any attempt to access files in this file system receives an error
return code. The LFS passes the request to the PFS via vfs_umount.
UNMOUNT with FORCE can be used to unmount a file system even if /O errors
are being received from the underlying device.

An IMMEDIATE unmount request must be issued before a FORCE unmount can
be requested.

« REMOUNT. The LFS handles this like an IMMEDIATE unmount followed by a
mount. User access is suspended while the operations are in progress. vfs_vget
is used to establish the vnode/inode bindings so that the remount is not
disruptive to the users.

PFS processing
1. The PFS processes requests for UNMOUNT with the NORMAL, IMMEDIATE,
and FORCE options as follows:

« NORMAL. Synchronizes all data buffers to disk (if appropriate for this PFS).
This saves all data changes to files in the file system that is being
unmounted. If an I/O error occurs during this activity, the unmount request
fails.

* IMMEDIATE. Synchronizes all data buffers to disk (if appropriate for this
PES). If an 1/O error occurs during this activity, the unmount request fails.

* FORCE. Synchronizes all data buffers to disk (if appropriate for this PFS). If
an /O error occurs during this activity, the unmount proceeds anyway and
data is lost.

The difference between NORMAL and IMMEDIATE is whether the PFS is likely

to find itself with any active inodes other than the one belonging to the root. The

difference between IMMEDIATE and FORCE is whether the PFS continues if it
encounters an I/O error while trying to synchronize data during the unmount.

2. The PFS frees any inodes that are still active, including the root inode, which is
never explicitly inactivated.

3. The PFS reverses the vfs_mount and returns the file system to unready status.

30 2/0S V1R7.0 UNIX System Services File System Interface Reference

Serialization: The whole file system is serialized under an exclusive latch at the
time vfs_umount is called. No other vnode or VFS operations are running, although
some may be in the PFS in a blocked state. See[‘LFS-PFS control block
iserialization” on page 23| for more about serialization and blocking.

Creating, referring to, and inactivating file vnodes

The PFS creates vnodes by calling osi_getvnode, which is one of the OSI services
in the OSIT vector table that is passed to the PFS during its initialization. The
output of osi_getvnode is actually an 8-byte vnode token, but for the purposes of
this discussion the vnode and the vnode token are the same, and the term vnode is
used for both.

The first vnode for a mounted file system is created during vfs_mount processing.
At this time, the PFS must create a vnode-inode pair to represent the root of the
mounted file system and return the vnode token of the root. The LFS never
inactivates this first vnode; it is cleaned up as part of vfs_umount processing.

Subsequent vnodes within a mounted file system are created by calls to vn_lookup,
vn_create, vn_mkdir, or vfs_vget. The first three of these routines are passed a
previously obtained directory vnode, represented by a token structure, and the
name of a file within that directory to find or create.

The vfs_vget operation also generates vnodes directly from the file identifier (FID)
of a file within a given file system. See [‘Exporting files to a VFS server’ on page]

During vn_lookup the PFS must:
1. Look up the filename in the directory. If the name is not found, vn_lookup fails.

2. Find or create an inode that represents the named file. This may involve reading
the file’s control information from a disk when the file has not been referred to
for a while.

3. For a new inode or one without a vnode (depending on PFS design), call
osi_getvnode to create a vnode. The PFS’s file token is passed to osi_getvnode
to be saved in the vnode, and the returned vnode token is saved by the PFS in
the inode.

4. Return the vnode token from the inode that represents the named file in the
specified directory. The file may itself be another directory.

The creation operations of vn_create and vn_mkdir follow a similar flow. See
[‘Creating files” on page 32| for more information. They are also invoked with a
directory vnode and a name, but in these cases the file itself is created if it does not
exist. vn_lookup may create an inode, but it does not create the file.

The vnode is generally used in subsequent operations, such as vn_rdwr for a file or
vn_lookup and vn_create for a directory. A directory vnode may become a mount
point, the current root, or the working directory of POSIX processes. None of these
references to the vnode involve any processing by the PFS.

Eventually the vnode falls out of use. After all opens have been closed and all other
references to the vnode have been released, the LFS marks the vnode for
inactivation. If the vnode is not referred to again for some time after it is marked for
inactivation, the LFS invokes vn_inactive, or vfs_inactive if the PFS supports batch
inactive and actually frees the vnode. The same functions are performed by

Chapter 2. Physical file systems 31

Creating files

vfs_inactive and vn_inactive; vfs _inactive requires only one call to the PFS to
performs these functions for multiple vnodes.

During vn_inactive the PFS must:
1. Disassociate the inode from the vnode.
2. Perform any inode cleanup desired.

If the inode’s link count is zero, it must be deleted; otherwise it is just
deactivated and can be reactivated with vn_lookup.

After the call to vn_inactive, or vfs_inactive for multiple vnodes, LFS frees the
vnode, unless the PFS reports a problem via a bad return code from the operation.

Porting note
The PFS does not free the vnode. This is a change from some
implementations.

In cases in which a file is repeatedly opened and closed by a single process, the
deactivation delay helps to avoid the cost of reconstructing the vnode-inode
relationship, and whatever other overhead is incurred by a PFS in reactivating a file.
In these cases, file caching is done by the LFS and need not be done by the PFS.

Serialization: The vn_lookup service is called with a shared latch held on the
directory being searched. The vn_inactive service is called with an exclusive latch
on the whole file system that the object belongs to.

The serialization of vn_inactive ensures that no operations are running that could
possibly find, or attempt to create, the inode that is being processed by vn_inactive.
This is because an exclusive latch is held on the inode’s file system during
vn_inactive and the LFS does not allow links across file systems, therefore no
parent directory of the object that is being inactivated can be referred to while the
PFS is trying to inactivate the object.

The PFS must serialize the creation of its own inodes, to ensure that a single file
does not have two or more inodes. This is because the same file object may be
looked up or created by more than one process concurrently. The PFS must
atomically create the vnode-inode pair and associate the inode with the file object,
either through a global latch or with a Compare and Swap algorithm.

To help with a Compare and Swap algorithm, a Return an Unused Vnode option is
provided on osi_getvnode so that the Compare and Swap loser can free the vnode
it had acquired. The vnode obtained from osi_getvnode does not represent anything
until the PFS returns it to the LFS from this or another concurrent operation. The
instant that the PFS associates a vnode-inode pair with an object, any vn_lookup
for the same object that is running on another process must find this same
vnode-inode pair.

File hierarchy objects are created with the vn_create, vn_mkdir, and vn_symlink
calls.

The interface for all these operations includes:
* The object’s parent directory vnode, as a token structure
* The object’'s name, as a character string

32 z/0S V1R7.0 UNIX System Services File System Interface Reference

Deleting files

* An ATTR structure

Serialization: An exclusive latch is held on the parent directory vnode.

PFS processing
During these operations the PFS must:

1. Fail the operation if the object already exists—that is, if the name is already in
the directory.

2. Otherwise, create the object and add an entry to the parent directory.

A unique nonzero inode number that corresponds to the st_ino value of POSIX
must be assigned to this object. This value only has to be unique within this file
system and at this time. It may be reused after the object is deleted. For
additional information about reusing file identifiers, see|“Exporting files to a VFS|
[server” on page 42|

A directory object should be initialized by the PFS with the “.” and “..” entries.
For a root, “..” refers to itself, but for any other directory “..” refers to its parent
directory. These entries are not strictly required by POSIX.

3. Store at least the file’s type, major number, and minor number from the passed
ATTR structure with the stored attributes of the file. Whenever osi_getvnode is
called, the PFS must construct and pass an ATTR structure, as would be
returned by vn_getattr, so that the vnode can be built properly.

4. Call SAF to create the FSP. The user credentials and ATTR mode bits from the
interface and the FSP of the parent directory are passed to SAF, so that it can
construct the FSP and do any auditing that is necessary. See
[responsibilities and considerations” on page 12|

5. Store the FSP with the rest of the attributes of the file.

6. For vn_create and vn_mkdir, build an inode-vnode pair, as it would for a
vn_lookup of this object, and return the corresponding vnode token.

The PFS is responsible for link counts, which must be initialized here. The link
count of an object is the number of directory entries within the file system that point
to the object. It is reported to a caller via vn_getattr, and changed by vn_link,
vn_remove, vn_rmdir, and vn_rename.

@ 9

Special consideration must be made for the “.” and “..” entries when creating
directories. “.” implies that a directory’s initial link count would be two. “..” implies
that a directory’s parent directory’s link count has to be incremented when the child

directory is created and decremented when it is deleted.
vn_link creates a new node in the file hierarchy, but it does not create a new object.

The LFS does not allow the creation of links (vn_link) to a directory.

File hierarchy objects are deleted with the vn_remove, vn_rmdir, and vn_rename
calls. The vn_rename function causes the deletion of the new_name file when it
exists.

The interface for all these operations includes the object’s:
» Parent directory vnode, as a token structure

* Name, as a character string

* PFS file token

Chapter 2. Physical file systems 33

Serialization: An exclusive latch is obtained for the parent directory vnode and the
object’s vnode. For vn_rename, an exclusive latch is held on both parent
directories, the old object vnode, and the new object vnode, if it exists.

PFS processing
During these operations the PFS must:

1. Call SAF’s Check Access service to verify that the caller has write permission to
the parent directory. If the sticky bit (S_ISVTX) is on in the parent directory’s
mode, the PFS must call SAF’s Check20wners service to verify that the caller
is allowed to delete or rename the object.

2. Remove the directory entry for the named object, and update the Change and
Modification times for the directory.

3. Decrement the link count in the object whose name was removed.

“ »

If a directory is being removed, it must be empty except for the “.” and “..
entries. The parent’s link count is also decremented to account for the “..” entry
in the removed directory.

4. If the object’s link count goes to zero, the object itself is deleted later during
vn_inactive, but the deletion is recorded for audit purposes now.

If the object is a regular file that is not open, the space used by its data must be
released now. If a regular file is still open, its data is deleted on the last
vn_close. This behavior is required by POSIX.

A POSIX-conforming PFS should set the immeddel flag in the PFSI during
initialization to let the LFS know that this requirement is in force. Otherwise, the
LFS must issue vn_getattr and vn_trunc during unlink() and close() in order to
check the link count and free regular file data.

5. While an inode’s link count and open count both are zero, the PFS may reject
subsequent operations, except for vn_readdir, which would return no entries,
and vn_inactive.

Opening and closing files and first references to files

POSIX programs read and write files or read directories within an open-close
bracket, whereas VFS servers do this directly from the vnodes that they have
looked up or created.

The LFS inserts a single open-close bracket around the operations that are issued
by a VFS server against regular files. Operations that affect a file’s attributes or
read a directory may or may not be preceded by an open, and a PFS has to be
prepared for either case. In particular, a file’s size may be changed with the
truncate() function, which results in a call to vn_setattr without a preceding
vn_open.

The PFS must perform two main functions to support reading and writing, both of
which tend to be done only once:

1. Physically prepare to do the I/O. This may involve getting buffers ready or using
lower-layer protocols for a device or access method.

2. Perform access checking.

Note that for performance reasons, the fewest number of access checks
possible should be done when a particular end user accesses a particular file.

Serialization: Both vn_open and vn_close are invoked under an exclusive vnode
latch.

The PFS is expected to do the following:

34 z/0S V1R7.0 UNIX System Services File System Interface Reference

e During vn_open:
1. Perform access checks. This must be done here for POSIX users.
2. Prepare for I/O, if necessary.
3. Increment an open counter in the inode for regular files.
* During reading or writing:
Perform access checks, if the Check Access bit is on in the UIO.
* During vn_close:

1. Perform any /O that is necessary, instead of deferring it to the vn_inactive
call. Examples include saving the contents of data buffers to disk and
updating access times. This allows 1/O to be charged back to the end user,
whereas /O that is done during vn_inactive is charged to z/OS UNIX.

2. Decrement the inode’s open counter for regular files. If this goes to zero and
the file’s link count is zero, the file’s data blocks are deleted and their space
is reclaimed before the return from vn_close.

A PFS that reclaims space on the last vn_close of a deleted file should set
the immeddel bit in the PFSI during initialization, for best performance.
Otherwise, the LFS issues vn_trunc unnecessarily.

3. Perform the minimum amount of other cleanup. It is better to defer cleanup to
vn_inactive processing. Even if no one is still referring to a file, which would
not be apparent to the PFS, performance is better if the PFS allows LFS file
caching to reuse a closed file with minimal overhead.

» During vn_inactive, or vfs_inactive if the PFS supports batch inactive:

Perform final cleanup for the file or directory inode. This operation runs on a
z/OS UNIX system task with the containing file system locked, so the PFS should
accomplish this cleanup as quickly as possible. Avoid waits and I/O during this
cleanup processing.

If this process is followed, the access credentials of POSIX users are checked only
during their open() call. A VFS server that maintains state information requests
access checking for the first reference by a particular end user to a particular file,
but not for subsequent references. A VFS server without this state knowledge must
pay the price of access checks on every reference.

The LFS builds and manages the file descriptors that are used by POSIX programs.

The vn_open-vn_close pair has the following characteristics:

» There may be many vn_opens issued for the same file or directory, and any
number may be outstanding at a given time.

» The LFS may share a single vn_open with many users, because of forking or
VFS server usage. This sharing is not apparent, nor is it of concern, to the PFS.

» For any vn_open that is seen by the PFS, there is a corresponding vn_close.
Because there may be many vn_opens active, getting a vn_close does not mean
that the file is in any sense no longer in use. The PFS does not get any
indication that a particular vn_close is the “last close”, so it needs to maintain an
“open counter” to control the deletion of data blocks for removed regular files.

» There is no “open token” in this protocol, such as the traditional MVS DCB
structure or the POSIX file descriptor. The PFS does not know for which vn_open
a particular read, write, or close operation is being performed.

Chapter 2. Physical file systems 35

Reading from and writing to files

The PFS is responsible for actually moving data that is to be read or written, and
for implementing the semantics that are required by the standards supported by
z/OS UNIX.

See also |“Opening and closing files and first references to files” on page 34.|

vn_rdwr and vn_readwritev are UIO operations, which means that:

The UIO structure is part of the interface.

The UIO contains the address, ALET, storage key, and address space ID of the
user’s buffer or buffers. It has a read/write flag to distinguish direction. For reads,
it contains the length of the user’s buffer or buffers. For writes, it contains the
number of bytes that are to be written.

The UIO contains the process file size limit for the file. On a write or writev
request it is the responsibility of the PFS to determine when this limit has been
reached or exceeded. When a write or writev request is unable to write any data
without exceeding the file size limit, the PFS must set the bit in the UIO that
indicates that the limit was exceeded, and set the errno to EFBIG. The PFS must
also be aware of one other special value for the file size limit: If both
UIO.u_fssizelimithw and UIO.u_fssizelimitlw are equal to 0, there is no file size
limit set for the process.

It is the responsibility of the PFS to maintain system integrity while moving data
between the address spaces. This means that the Move With Source Key and
Move With Destination Key machine instructions or the osi_copyin, osi_copyout,
and osi_uiomove services must be used.

The caller maintains file positioning for the PFS, and the current file cursor is in
the UIO for every operation. This indicates the position from which the read or
write is to start.

When the O_APPEND flag is set on in the open flags parameter for a write
operation, the UIO cursor is ignored by the PFS. Writing begins at the end of the
file, as it is known by the PFS at the time of the write.

The UIO cursor may reflect the last read/write operation that was seen by the
PFS; it may be from a different instance of vn_open; or it may have been
changed through seek operations that were issued by the user and that are not
seen by the PFS.

The PFS modifies the UIO cursor to reflect the file position after the operation.

The UIO cursor area is 8 bytes long, to support large files. It is the responsibility
of the PFS to handle file offsets greater than 23! or to reject them. The 8-byte
cursor is a doubleword signed binary integer.

During vn_rdwr and vn_readwritev the PFS must:

1.
2.

Do access checking, if the UIO check-access bit is on.

Move the data. During vn_rdwr, if the UIO real-page bit is on, use the DATOFF
services of MVS to move the data. The ability to refer to real pages is indicated
by the PFS during its initialization. If this cannot be supported, the LFS supplies
an intermediate virtual page buffer.

Synchronize the data, if the UIO sync-on-write bit is on, and turn on the
sync-done bit to notify the LFS that it was done. Otherwise, the LFS issues
vn_fsync explicitly and the whole operation takes a little longer.

Ensure that the operation does not write beyond the process file size limit. If the
starting position is already at or beyond the limit, the PFS must set the

36 2/0S V1R7.0 UNIX System Services File System Interface Reference

limit-exceeded bit in the UIO and return with EFBIG. This check is done in the
PFS because of the O_APPEND case, in which it is much more efficient for the
PFS to verify the starting position.

5. Return the number of bytes that were transferred.
6. Modify the UIO cursor to reflect the file position after the operation.

Serialization: The vn_rdwr and vn_readwritev services are invoked with an
exclusive latch for both reads and writes. This is to help the PFS implement the
POSIX semantics that require atomic operations and immediate visibility to all other
processes.

Reading directories

To optimize directory reading, vn_readdir is designed to return as many entries as
possible on each call. The C run-time library deblocks the entries for POSIX
programs, to provide the sequencing that they expect.

Like vn_rdwr and vn_readwritev, vn_readdir is a UIO operation, but the
interpretation of the cursor is different. Cursor technique is described in the next
section. See also [‘Opening and closing files and first references to files” on page]

Serialization: Because the LFS obtains a shared latch for the vn_readdir operation,
there may be many users reading the same directory at the same time.

The vn_readdir output buffer is mapped by the DIRENT structure, and its format is
defined as follows:

» The buffer contains a variable number of variable-length directory entries. Only
full entries are placed in the buffer, up to the buffer size specified, and the
number of entries is returned on the interface.

» Each directory entry that is returned in the buffer has the following format:
1. 2-byte Entry_length. This length field includes itself.

2. 2-byte Name_length. This is the length of the following Member_name
subfield.

3. Member_name. A character field of length Name_length. This name is not
null-terminated.

4. File-system-specific data. If Entry_length equals Name_length plus 4 bytes,
this subfield is not present. Whenever this field is present, it must start with
the file’s inode number, st_ino, in 4 bytes.

To be XPG-conforming, the PFS must include the file’s inode number.
This subfield is not part of POSIX, but it is passed through to all programs to
use or ignore as they wish. A non-standards-conforming program may take

advantage of additional information provided by a specific PFS that it knows
about.

* The entries should be packed together. The length fields are not aligned on any
particular boundary.

An example of an entry for the name abc and inode number X'1234' is X'000B 0003
818283 00001234".

@ »

Many applications expect entries for “.” and “..” to be returned. This is not strictly
required for standards conformance.

Chapter 2. Physical file systems 37

Successive calls to vn_readdir for a particular end user must proceed through the
directory from the point at which the last one left off. A call does not have to
account for activity that occurred “behind” its position in the directory, nor worry
about items that may be deleted from “in front” of the current position before it was
reached.

The PFS does not directly maintain positioning over successive calls to vn_readdir.
The 8-byte UIO cursor is used to specify the positioning within the directory.

Not all directories are implemented as simple linear files that hold an array of name
entries. Two continuation techniques may be used, and these must both be
supported by a PFS. These techniques are:

» Cursor technique. The cursor that is returned by the PFS in the UIO contains
PFS-specific information that locates the next directory entry. The caller is
required to preserve the UIO cursor and the entire output buffer from the last
vn_readdir, and present both of these on the next vn_readdir.

The PFS may use the cursor as an offset into a simple linear directory file,
ignoring the buffer; or it may use it as an offset into the output buffer of the last
entry that was returned. The latter approach can be used by a PFS with a
tree-structured directory, where the previous entry name is used as a key to
search for the next entry. That is, the last returned name, a 1-to-255-byte-long
text string, is really the cursor for the caller’s position in the directory. To ensure
data integrity, you have to use the Move With Source Key instruction or
osi_copyin for the entry header, and then again for the name length.

The cursor technique is used by the [for POSIX-conforming functions.

* Index technique. The index that is set in the UIO by the caller determines which
entry to start reading from. To read through the directory, the caller starts at 1
and maintains the index by adding the number of entries returned to the previous
index. The caller may jump around in the directory, and there is no requirement
that the next index be related to the last vn_readdir.

This technique views the directory as a one-based array, where the first entry
has an index of 1, the second entry has an index of 2, and so on.

The index technique is used by the Network File System and by the C/C++
run-time library for XPG-conforming functions.

The UIO contains both the cursor and index fields that are used with these
continuation techniques. The interpretation of these two fields is summarized in the
following table:

Index Cursor Action

0 0 Start reading from the first entry.

0 M Use the cursor value to resume reading.
N 0 Start reading from entry N.

N M Start reading from entry N.

Note: 0O=zero; N and M are nonzero values.

A nonzero index overrides the cursor. When both are zero or the index is 1, reading
starts from the front of the directory.

The general flow for reading a directory is:

38 z/0S V1R7.0 UNIX System Services File System Interface Reference

1. On the first vn_readdir of a sequence, both fields are zero and the PFS starts at
the front of the directory. The normal cursor value of the PFS and the number of
entries that were placed in the buffer are returned.

2. On the next vn_readdir, the caller specifies whether the cursor technique or
index technique is being used to proceed through the directory. The PFS
positions itself in the directory based on the technique used, reads more entries,
and returns its normal updated cursor value and the number of entries that were
placed in the buffer.

The PFS must always return an updated cursor value, even if the index
technique is being used. Some callers may switch between techniques, as the
C/C++ run-time library does for the seekdir() function.

3. In most cases, the caller continues in this way until the directory is exhausted.

4. The application can reset the directory stream to the beginning, but this action is
not passed through to the PFS. The next vn_readdir simply has both cursor and
index values of zero. The application can also begin reading from any desired
entry.

The Move With Destination Key machine instruction or the osi_copyout or
osi_uiomove services must be used to write to the user’s buffer.

The end of the directory stream is indicated by the PFS in two different ways:

* A Return_value of 0 entries is returned. This must be supported by the PFS for
cases in which a vn_readdir is issued and the position is already at the end of
the directory.

* A null name entry is returned in the output buffer. A null name entry has an
Entry_length of 4 and a Name_length of 0—for example, X'00040000'.

This would be the last entry in the buffer, when the directory end has been
encountered on a call and there are at least 4 bytes left in the buffer.

A PFS that supports this indicator helps the caller to run faster. A small directory
may be read in only one operation, because the caller can detect that a second
call is unnecessary.

Note: POSIX allows open() and read() from a directory, but it only specifies that
these operations do not fail with an error. The PFS cannot tell whether a
vn_open is from an open() or from an opendir(), but read() results in a
vn_rdwr while readdir() results in a vn_readdir. The PFS is free to support
vn_rdwr as a traditional UNIX system would, or to just return zero bytes on
every operation. The X/Open Portability Guide, Version 4, Issue 2 allows the
EISDIR error to be returned for read(). The LFS ensures that only reading is
allowed.

Getting and setting attributes

The PFS is responsible for storing file attributes with its files. POSIX users can read
these attributes with such functions as stat(), and set various attributes through
such functions as chmod(). A VFS server does the same things with v_getattr()
and v_setattr().

All of this is passed through to the PFS when the LFS calls the vn_getattr or
vn_setattr service with the ATTR structure (BPXYATTR). The ATTR structure is the
file attribute interface between the LFS and the PFS. It contains all the fields of the
POSIX STAT structure, plus z/OS UNIX extensions that the PFS may support if it
can.

Chapter 2. Physical file systems 39

A file’s attributes are logically split between the security-related and
non-security-related attributes. The security-related attributes are kept in the file
security packet, IRRPIFSP, or FSP for short. The FSP is stored with the attributes
of the file by the PFS, but it is created and changed only through SAF-defined
routines. The FSP contains the file’s mode bits, UID, and GID; it may also contain
other information that is defined by the security product.

The FSP is the file attribute interface between the PFS and SAF. Refer to |“Securitﬂ
lresponsibilities and considerations” on page 12| and [‘Creating files” on page 32| for
more details on SAF and the FSP.

Serialization: The vn_getattr service is invoked with a shared vnode latch, and the
vn_setattr service with an exclusive latch.

vn_getattr and vn_setattr do not require vn_open, although the file may be open for
read or write at the time of these calls. Reads and writes would not be in progress
at the time of the get or set.

All times in the ATTR structure are specified in POSIX format, which is “Seconds
Since the Epoch” (00:00:00 January 1, 1970, Coordinated Universal Time). The
PFS may keep time values internally in any format, but they must be in POSIX
format across the LFS-PFS interface.

The ATTR structure’s header is initialized with the ATTR’s length before any get or
set call.

The vn_getattr protocol is as follows:
1. All ATTR fields that are supported by the PFS are returned.

2. To account for different release levels, the PFS should zero out the area and set
fields it understands only up to the minimum of the input area’s length (from the
ATTR length subfield) and the PFS’s native ATTR length (the one it was
compiled with). The input area’s ATTR length subfield should be updated to
reflect the amount of data that is returned or zeroed out.

A simple way to do this is to construct a local ATTR structure and copy this,
truncating it if necessary, to the input ATTR.

The vn_setattr protocol is as follows:

1. More than one attribute may be changed on a single vn_setattr call, and each
settable field in the ATTR structure is conditionally and individually set. Bit flags
are set by the LFS in an ATTR flag area to indicate which fields from the ATTR
structure are being set.

* In general, if a change bit is on, the PFS updates the corresponding file
attribute from the value that is passed in the corresponding ATTR field.

» Security fields. For each security-related field, such as mode, owner, or
audit, that is being changed, there is a corresponding SAF routine that the
PFS calls to actually make the changes in the FSP. This allows the security
product to do permission checks and security auditing, or other necessary
security-related processing.

* Time fields. Two bits are defined for each time field. The first bit indicates
that a change is to be made, and the second bit indicates whether to use the
corresponding ATTR time field’s value, or if the current time of day is to be
generated and stored by the PFS.

40 z/OS V1R7.0 UNIX System Services File System Interface Reference

Non-security fields may still have access control defined for them. This means
that SAF is called to see if the user has permission to make the change, but the
PFS does the change.

2. The PFS should ensure that either all changes or no changes are permanently
recorded for a single vn_setattr call.

3. To account for different release levels, the PFS must not refer to fields beyond
the input ATTR’s length, as specified in its length subfield.

Note: To optimize performance for VFS servers, several of the vnode operations,
such as vn_lookup and vn_rdwr, pass an ATTR structure pointer in the OSI
structure and expect an implicit vn_getattr to be performed at the end of the
current operation. If the PFS cannot support this, the LFS calls vn_getattr
after the operation in question. This flow has poorer performance when
accessing files owned by this PFS.

File tags

The file tag is a file attribute that identifies the character set of the text data within a
file.

It is not expected that the PFS will use file tags, but if the PFS supports its own

conversion capability, it may have to take file tags into consideration now that the
LFS is also doing conversions. For example, NFS Client will fail vfs_mount if both
the LFS TAG() parameter and the NFS PARM(XLATE()) parameter are specified.

The following headers are used by both the PFS interface and the VFS Server
functions v_getattr() and v_setattr().
In C header BPXYVFSI:

The following 'SetAttr Change Flag' is added:
BIT at_charsetidchg :1; /* File Info Set */

The following is added to the _BPX_MNTE2 form of the s_mnt struct:
char me_filetag[4] /* file tag */

In C header BPXYPFSI:

The following is added to the s_mtab structure:
char mt_tag[4]; /* TAG() Parameter */

Using daemon tasks within a PFS

If the PFS needs to invoke functions that cannot be performed in a cross-memory
environment, it must make use of other tasks to perform these functions. To use
these daemon tasks the PFS must, at a minimum:

1. Attach these tasks and

2. Communicate with them

Several services are provided to make this easier. They are:
* 0si_kmsgctl

* 0si_kmsgget

e 0si_kmsgrcv

* 0si_kmsgsnd

* osi_thread

The osi_thread service is available only to PFSs that are running in a colony
address space.

Chapter 2. Physical file systems 41

The PFS can attach these tasks via the MVS ATTACH service from its initialization
task, or it can use the osi_thread service. The osi_thread service attaches a task in
the PFS’s address space that runs in primary mode. The initial module on this task
is a C Main function that fetches the module that is specified by the invoker using
the C/C++ fetch() function, and then calls it. When called on this task, or thread,
the specified module can perform a single function and return; or it can service
work requests by the PFS until the PFS terminates. In the latter case, the
osi_thread service is used to attach a PFS daemon task.

When attached, these tasks need to communicate with the PFS functions that are
invoked by the LFS. One way these processes can communicate is through
message queue functions that are provided by the osi_kmsg services in the list
above. For descriptions of these services, see

Exporting files to a VFS server

For a VFS server to access files that are owned by a PFS on the same system, the

following support is necessary in the PFS:

* lts file objects must be visible in the file hierarchy. This is the same as saying
that the PFS supports vfs_mount and vn_lookup, as described earlier in this
chapter.

» Each file must have a unique and persistent file identifier (FID). This is 8 bytes
long, and is usually made up from the file’'s 4-byte st_ino value and a 4-byte
uniquifier. The uniquifier must be constructed by the PFS if it reuses file st_ino
values, so that the full 8-byte FID is unique and never reused.

The FID must persist over PFS restarts and even full-system IPLs. A VFS
server’s client may access a file days after it has obtained the FID.

¢ The FID must be returned in all ATTR structures that are returned.

» The PFS must be able to look up a file by its FID reasonably efficiently. The
vfs_vget operation must be supported to convert a FID value to a vnode-inode
pairing. This is similar to vn_lookup, except that a FID within a file system is
looked up, rather than a name within a directory.

« Access checking on read/write must be supported, as discussed in[‘Opening and|
[closing files and first references to files” on page 34

* vn_readdir must not require vn_open and vn_close.
* For better performance, the PFS should support:

— Implicit vn_getattr on any operation that passes a nonzero ATTR pointer in the
OSiI structure.

— Sync-on-write, when that bit is on in the UIO. (This eliminates the need for a
separate call to fsync.)

— Real-page support with DATOFF moves for memory-mapped files.

— Porting note
The vn_fid operation is not used to convert a vnode to a FID. The combination
of returning the FID in the ATTR structure and implicit vn_getattr on many
operations is much faster for VFS servers.

When a VFS server’s client mounts part of the file hierarchy, it really only
obtains tokens to a directory and the directory’s file system. It is not a mount
like that performed for the MOUNT command, and the PFS does not receive a
vfs_mount or any indication that it occurred. The first call from a VFS server
that the PFS would see is likely to be a vfs_vget, vn_lookup, or vn_readdir.

42 7/0S V1R7.0 UNIX System Services File System Interface Reference

Select

A PFS should consider supporting the vn_select operation if data for a read-type
operation may arrive asynchronously when no read has been issued; or if buffers
for a write-type operation are rationed and are therefore sometimes not immediately
available (require a WAIT).

The LFS answers READY for any select status requested from a PFS that does not
support vn_select.

See r‘SeIect/poII processing” on page 45| for more details.

PFS interface: Socket PFS protocols

Activating a domain

NETWORK statements in the BPXPRMxx parmlib member that is used to start
z/OS UNIX assign socket domains, or address families, to the socket PFSs.

The NETWORK syntax is:

NETWORK TYPE(file_system_type)
DOMAINNAME (domain_name)
DOMAINNUMBER (domain_number)
MAXSOCKETS (number)

where:

» TYPE identifies the PFS that supports this domain. This operand must match the
TYPE operand that is used on the FILESYSTYPE statement that defined the
PFS.

+ DOMAINNAME specifies the domain, or address family, name. The AF_UNIX
and AF_INET domains are supported by IBM-supplied socket PFSs.

- DOMAINNUMBER specifies the numeric value of the domain that is passed by
programs that call socket(). The values that are supported for this field are
defined in socket.h.

« MAXSOCKETS specifies the maximum number of currently active sockets that
are to be supported.

The parameters just described are passed to the PFS on the vfs_network operation.

During vfs_network the PFS is expected to:
1. Activate support for this domain.

2. Optionally return an 8-byte token that is saved by the LFS and used on all
subsequent VFS and vnode operations. This token is typically the address of
the PFS’s domain block.

When a user calls socket(), the first parameter is a domain number. The LFS
routes this request to the appropriate PFS with a call to vfs_socket.

The NETWORK statement is analogous to the MOUNT statement that is used by
file-oriented PFSs.

See [z/0S MVS Initialization and Tuning Referenceland the description of the
NETWORK statement of BPXPRMxxin[z/OS UNIX System Services Planning| for
more information.

Chapter 2. Physical file systems 43

Creating, referring to, and closing socket vnodes

The PFS creates vnodes by calling osi_getvnode, which is one of the OSI services
in the OSIT vector table that is passed to the PFS during its initialization.

Sockets are created by user calls to socket() and accept(). The corresponding
vhodes are created during vfs_socket and vn_accept, respectively. vfs_socket
creates a socket, and if that socket is connected, a stream session is established to
another socket that is created by vn_accept. socketpair() generates a special case
of the vfs_socket call that creates two connected sockets. This is similar to the
pipe() function.

During vfs_socket and vn_accept, the PFS is expected to:

1. Set up its socket support and build an inode.

2. Call osi_getvnode to create a vnode.

3. Return the vnode token that was returned by osi_getvnode.

The LFS builds the file descriptor, which is also called a socket descriptor, that is
the output of the socket() and accept() functions.

Sockets do not have a name in the file hierarchy; consequently, they cannot be
opened by POSIX users or exported by VFS servers.

The user program makes socket calls on the file descriptor, and the calling
parameters are generally passed straight through to the PFS by the LFS.

Socket descriptors can be inherited over fork(), and they can be duplicated with
dup(). The LFS manages this sharing; the PFS is not aware of how many active
references to a socket there are.

Eventually the program calls close() for its socket descriptors. After all active
references to the socket vnode-inode are closed, the LFS calls vn_close. Because
sockets cannot be opened like files, the PFS receives only a single vn_close for
any socket.

During vn_close, the PFS severs the user’'s socket session.

After the vn_close, the LFS calls vn_inactive for the final cleanup of the
vnode-inode relationship.

During vn_inactive, the PFS is expected to:
1. Disassociate the inode from the vnode.
2. Perform any inode cleanup that is desired.

After the call to vn_inactive, the LFS frees the vnode unless the PFS reports a
problem through a bad return code.

Porting note
Because sockets cannot be reused after vn_close, the PFS can combine its
close and inactive processing in vn_close, and choose not to support
vn_inactive. Nonsupport is not considered a failure of vn_inactive.

44 7/0S V1R7.0 UNIX System Services File System Interface Reference

Reading and writing

The five variations on read/write—vn_rdwr, vn_readwritev, vn_sndrcy,
vn_sndtorcvfm, and vn_srmsg—are all UIO operations, and are described in
[‘Reading from and writing to files” on page 36.|

The UIO contains additional fields for the socket-specific buffers that are used on
some of these calls.

During these read/write calls, the PFS must:

1. Move the data using Move With Source Key or Move With Destination Key, as
appropriate. The osi_copyin and osi_copyout services can be used to move
data areas between the user and kernel address spaces. The osi_uiomove
service can be used to move data areas based on the UIO structure for vn_rdwr
and vn_readwritev.

2. Return the number of bytes that were transferred.

Serialization: All five operations are called with an exclusive latch for writing. All
five operations are called with an exclusive latch for reading, with the exception of
vn_rdwr and vn_readwritev, which may be called with a shared latch for reading if
the PFS has specified shared read support for the file being read. The LFS defaults
to exclusive latching for both reading and writing, to help the PFS implement the
POSIX semantics of atomic operations and immediate visibility to all other
processes. This latching can be turned off if it is not needed by the PFS. Refer to
['LFS-PES control block serialization” on page 23 for more details.

Getting and setting attributes

Socket descriptors are eligible for fstat(), so sockets can be called for vn_getattr.
The PFS should consider supporting this operation and returning some information
in the ATTR structure. At a minimum, you could return: the file type, permission bits
of 777, the current time for the time values, the devno as passed by vfs_network,
and an inode number for the socket that is unique for this socket at this point in
time.

Note: Some programs use fdopen() with a socket descriptor, and this function does
an fstat() under the covers.

Generally, a program cannot set any attributes of a socket, so the PFS does not
have to support the vn_setattr operation.

Select/poll processing

An application program calls select() or poll() with a list of file descriptors and the
events that are to be waited for. The file descriptors can represent files, sockets,
pipes, or terminals; they are all referred to as “files” in this discussion. The events
that can be waited for are: ready for reading, ready for writing, and exceptional
conditions. Because a poll() is converted into a select() call by the time the request
reaches the PFS, for this discussion only select will be discussed.

There are two operations that can be called to handle the select request: vfs_batsel
and vn_select. The vfs_batsel operation is useful for a performance boost; it does
not have to be supported. If a PFS supports the vfs_batsel operation, a single call
is made to that PFS with an array of information about its files. If a single descriptor
is requested, or the PFS does not support vfs_batsel, the vn_select operation is
called for the owning PFS for each file specified.

Chapter 2. Physical file systems 45

The LFS converts the file descriptors into vnodes. If the user has multiple file
descriptors in the list that refer to the same file, such as after a dup(), or if a
particular PFS owns more than one file that is present in the list, it receives a
separate call for each file if the vfs_batsel operation is not supported. Otherwise, a
single call is made with multiple array entries for the same file. While one user is
waiting in select() for some files, another user may issue select() for some of the
same files. The LFS manages the lists and the associations of users to requests.
The PFS should just treat each vn_select or vfs_batsel array entry as a completely
separate and independent action against the file, and be prepared for more than
one select() to be active at a time for a file.

Select processing consists of two phases, called Query and Cancel, which are
identified by a parameter on the select call. Each file may be called for both phases
or just for Cancel. When a user specifies a timeout value of 0, the LFS skips the
Query phase and goes right into the Cancel phase.

The LFS passes a select token to the PFS with each vn_select or vfs_batsel array
element call. The select token uniquely identifies a request for both phases, and
thus can be used by the PFS to correlate Queries and Cancels. This token is
unique to this single instance of vn_select(Query) being called, and is not used
again until after the corresponding call to vn_select(Cancel).

There is also a PFS_work_token available on vn_select and in each array element
of vfs_batsel that can be set by the PFS to correlate Queries and Cancels.

Note: To simplify the discussion, only vn_select is mentioned in the next section.
The only difference between vn_select and vfs_batsel is that similar
processing must occur within a loop for the array elements of the vfs_batsel
request.

Query phase
In the Query phase of select processing, the LFS queries the PFSs by calling
vn_select(Query) with the vnode that is represented by each file descriptor.

During vn_select(Query), the PFS must:

1. Return status information without taking any other action, if any requested event
is immediately available.

2. Otherwise, save the select token (16 bytes) and the Select_Options in a
select-pending structure that is chained from its inode.

The Query phase ends as soon as any PFS reports immediate status. The
remaining PFSs are contacted during the Cancel phase, so the user can receive
the most information available at this time.

The LFS may omit recalling the PFS for the Cancel phase if:
1. The PFS does not set any of the PFS_work_tokens, and
2. For vfs_batsel, status is returned in the array entries.

If the PFS is dependent on being recalled for Cancel whenever it has been recalled
for Query, it must set a PFS_work_token to some nonzero value. For optimal
performance, the PFS should not have this dependence when it is able to report
immediate status to the Query request.

If no PFS reports immediate status, the LFS waits for one of the PFSs to call
osi_selpost, or for the time limit to expire.

46 z/OS V1R7.0 UNIX System Services File System Interface Reference

Event occurrence: Eventually an event occurs asynchronously within a PFS for a
given file. The PFS process or thread that handles these events notices that the file
has selects pending for it. Examples of such events are: data arriving for a read,
buffers freeing up for a write, or sessions terminating for an exceptional condition.

When such an event occurs, the PFS is expected to do the following:

1. Scan through the select-pending structures that are chained from the inode for
those that are waiting for this type of status.

The PFS must serialize this with its own processing for Cancel; see

2. For each pending select that is satisfied:

a. The PFS removes the select-pending structure, or marks it as “posted”. The
PFS must ensure that it never calls osi_selpost more than once for a
particular vn_select(Query) request or select token.

b. The osi_selpost routine is called with the select token saved during the
Query phase.

The osi_selpost routine uses the select token to find the waiting process and thread
and post it.

Note: The identity of the event that occurred is not passed to osi_selpost. This
information is picked up by the LFS during the Cancel phase.

Cancel phase
The LFS goes through the Cancel phase by invoking vn_select(Cancel) for each file
descriptor when:

* One of the PFS events has occurred and osi_selpost is called
* Any PFS reported status during the Query phase
* The timeout value expires

Note that if a PFS reported status during the Query phase, the loop that was doing
the queries is terminated; therefore, a cancel request may be received by a PFS
even though no query was done.

During vn_select(Cancel), the PFS is expected to do the following:

1. Scan the pending-select structures that are chained from the inode for one with
a matching select token. If one is found, it is removed so that osi_selpost is not
invoked for that select token after the PFS returns from this vn_select(Cancel)
call.

Note: It is the PFS’s responsibility to serialize the cancellation of a pending
select with its asynchronous event handler, which may be attempting to
call osi_selpost. It is critical that osi_selpost never be called for a
particular select token after the PFS returns to the LFS from a call to
vn_select(Cancel) for that same select token.

It is not unusual for the PFS not to find a pending select to be canceled, as it
could have been already removed by the event handler, or this PFS may not
have been queried in the first place.

2. After the PFS ensures that the select is no longer pending, it checks for the
requested status and returns this information to the LFS.

The LFS collects status from all of the files and reports it back to the program that
called select().

Chapter 2. Physical file systems 47

Note: Although it is rare in practice, there is nothing to stop a user from selecting
and reading on the same socket from two different processes or threads.
Consequently, it is technically possible that an event that is reported by
select may no longer be true when the selecting program finally acts on the
information. A selecting program may not act on the information, but pass it
off to another process to handle. Therefore, reporting back on select does
not reserve the data or buffers for the caller; it merely reports the status of
the file at that time.

Common INET sockets

Common INET sockets PFS structure

The Common INET layer (CINET) is inserted between the LFS and a sockets PFS
to allow multiple AF_INET transports to be used by a single application socket. A
sockets PFS may be attached directly to the LFS when it is the only AF_INET
transport on the system, or attached through the CINET layer when it is one of
several. To be attached to CINET, the PFS must implement the “master socket” and
support several additional ioctl command types, as described in this section. The
interface to the PFS is the same in both cases. Once the additional support for
CINET is written, the PFS does not have to distinguish between the two cases.

When Common INET is used, the sockets file system is initialized by the
SUBFILESYSTYPE statement in the parmlib member, instead of by the
FILESYSTYPE statement, which initializes the Common INET support. The
operands of the SUBFILESYSTYPE statement are similar to those for the
FILESYSTYPE statement.

The general model is that of a sockets PFS that is split into two pieces: a PFS layer
that runs in the kernel address space, and additional programming that runs in a
separate address space and that actually controls the transport interface to the
network. For the purposes of this discussion, the PFS layer piece will be called the
transport driver (TD) and the separate address space piece will be called the
transport provider (TP).

The transport driver is started by z/OS UNIX, as a PFS, and communicates with the
transport provider through its own internal mechanisms, usually by a space
switching program call (PC).

The transport provider (such as TCP/IP) is started independently, and
communicates with the transport driver through the master socket.

48 z/0S V1R7.0 UNIX System Services File System Interface Reference

Master Socket

Application

Logical File System

Common INET Layer PreRouter

TP1 TP2 TP3

Figure 5. Common INET sockets PFS structure

A TD/TP that is structured entirely within the PFS in the kernel address space still
has to establish the master socket and pass the minimum ioctl commands to run
under the CINET layer.

The master socket

The master socket is used to communicate between the transport provider and both
the Common INET layer and its own transport driver. It is used mostly for
initialization and, potentially, for later dynamic route updates. If the TP ever has to
initiate a message to the TD (for instance, due to an asynchronous configuration
update), it can do so over the master socket.

* The master socket is created by the transport provider with the standard socket()
C function or the BPX1SOC/BPX4SOC callable service, by specifying AF_INET
for the Domain and -1 for the Protocol parameters.

This builds a session from the TP to the CINET layer.

The TP address space must be defined to RACF as a z/OS UNIX user with a
UID of 0.

» The only functions that are used with the master socket are ioctl and close.

Most of the ioctl command codes that are used with zZOS UNIX are nonstandard,
so these ioctls must be issued with the w_ioctl() C function or the
BPX1I0C/BPX4I0C callable service.

Chapter 2. Physical file systems 49

The socket can be closed with either close() or BPX1CLS/BPX4CLS.

» The first thing that flows on the master socket must be an SIOCSETRTTD ioctl to
connect the socket to a specific transport driver. This ioctl is also known as the
left bookend, signifying the start of TD—TP initialization. On the call, the
Argument_length should be specified as 8, and Argument should refer to an
8-byte area in which the TD name is filled in. For more information about the
interface to ioctl, refer to ['vn_ioctl — 1/O control” on page 154

The vfs_socket request is issued at this point to the specified TD, which builds
the normal socket support between the LFS and PFS, but does not propagate
this session to the TP.

The SIOCSETRTTD command is then passed on to the TD with an ioctl call.

Note: The TP must know the name of its own TD in order to select it with
SIOCSETRTTD. This name was specified with the NAME parameter of
the SUBFILESYSTYPE statement that started the TD, and is passed to
the TD when it is initialized. There are several ways to make this name
known to the TP. It could be a product-specified constant value; the value
could be configured into the TP through its externals; the TD could pass
the name to the TP if it starts the PC session first; or the TD could store
the name with the MVS Named Token Services, where the TP would
retrieve it.

* Subsequent ioctls are then sent from the TP to the TD to perform
product-specific initialization, as necessary. For instance, these could drive the
TD to establish the PC session to the TP. These ioctl calls can specify
application-defined commands, or use existing command definitions. The ioctl
command values that are used must not conflict with any of the commands that
are discussed here, or any that are used by the prerouter.

These commands pass through z/OS UNIX without any interpretation.

Note: If the PFS is designed to run directly attached to the LFS, it has already
solved the problems of initialization between the TD and TP. This does not
have to change when it is attached through CINET. Only the first and last
ioctl commands discussed here are required on the master socket.

» After any product-specific initialization is finished, an IOCC#TCCE ioctl command
is sent by the TP to notify CINET that this file system is ready for business. This
ioctl command is also known as the right bookend, signifying the end of TD-TP
initialization. For this command, no other specific data is required, so the
Argument_length can be zero.

This command is also passed on to the TD.

At this time, the transport is considered to be active. The prerouter gathers
configuration information from the transport and applications that had used the
SO_EiolfNewTP socket option receive notification that a new transport is
available for use. This notification is performed by failing any socket accept or
receive type calls with a return code of EIO, after which the application closes
that socket and opens a new socket to pick up the new transport.

If the transport is not yet ready to accept new socket requests, the notification
phase can be delayed. If the argument length for IOCC#TCCE is four bytes and
the argument contains a value of one, this signifies a delay and the
SO_EiolfNewTP notification phase will be skipped. The transport must later send
another IOCC#TCCE ioctl command with a value of two to perform just the
notification phase.

» At this point the prerouter will start its conversation with the TD—TP on a separate
socket session, see FCommon INET prerouting function” on page 51

50 2/0S V1R7.0 UNIX System Services File System Interface Reference

loctls that flow on the master socket to the TD are never passed through to the TP,
because that is where they came from. Some of the ioctl commands are intended
only for the Common INET layer, and these are not even passed on to the TD.
However, the TD should be coded to ignore the ioctl commands that are intended
for the Common INET layer, because when it is connected directly to the LFS it will
receive these requests. The TP could also be configured to know how the TD is set
up within z/OS UNIX and process accordingly, but this is usually not worth the extra
effort and externals.

The master socket is left open for the duration of the transport provider. If this
socket is closed, the prerouter assumes that the transport provider has terminated.
This socket may also be needed later for dynamic route updates, and it can be
used within the TD/TP recovery design. If the TP abnormally terminates, the master
socket for it is closed. The TD sees this as a vn_close, at which point it can take
whatever recovery actions may be necessary. Thus, a resource manager for the TP
and the code to notify the TD are not necessary solely for the purpose of letting the
TD know when the TP crashes.

The constants for the various ioctl commands that are used during initialization are
defined in BPXYPFSI.

Common INET prerouting function

The Common INET support allows an installation to connect up to 32 different
instances of TCP/IP or other AF_INET physical file systems. Application programs
that use sockets do not need to change any code to take advantage of the multiple
AF_INET file systems.

Supporting multiple AF_INET physical file systems and providing a single file
system image to the user means that the Common INET must perform a set of
management and distribution functions that govern how a socket behaves with
multiple file systems. A fundamental requirement for distributing work across
multiple file systems is an understanding of the IP configurations of each file
system. The IP configurations are needed to determine which file system should
handle a bind() to a particular home IP address, a connect(), a sendto(), and so
forth.

When the Common INET processes a socket request that requires it to select only
a particular file system based on an input IP address from a user, the Common
INET uses its copy of each file system’s IP configuration to select the correct file
system to process the user’s request. Copies of the IP configurations are
maintained by the Common INET internally, and are only used for “prerouting” a
socket call to the correct file system. The file system that was selected performs all
of the official file system functions, such as routing, once the socket request
reaches the file system from the Common INET.

Each file system that is connected to the Common INET must provide a copy of its
internal IP routing table. An ioctl is issued to each transport provider (TP) as part of
the PFS initialization. This allows the Common INET function to query the routing
tables for that file system. Once the Common INET prerouter function has
successfully retrieved and stored routing information from a particular file system,
message BPXF206I is issued to the hardcopy log. Message BPXF206I is also
issued whenever a file system refreshes its routing table. For example, IBM’s
TCP/IP may refresh its routing tables as part of the OBEYFILE command. Message
BPXF207I is issued to the hardcopy log whenever the Common INET deletes

Chapter 2. Physical file systems 51

internal routing information for a file system. When the connection with a specific
file system is severed, the Common INET routing information for that file system is
deleted.

Limitations of common INET-attached PFS IP configurations
System programmers and network administrators should be aware of the following
information about the common INET prerouting function:

1. Two or more file systems may contain home IP addresses on the same network
or subnetwork. However, load balancing across file systems is not done. If a
user has not done a bind() to a home address, the same file system is selected
for all subsequent sendto()s, even if there are other transport providers with
routes to the same destination.

2. Two or more file systems may contain a route to the same destination. Again,
load balancing across the file systems is not performed.

3. Metrics for network routes: If two or more transports maintain network routes to
the same destination network, metric information is needed from each transport
in order to correctly select the best route. For IBM’s TCP/IP, this is best
accomplished when each TCP/IP is running with a dynamic routing daemon
(OMPROUTE). Statically defined indirect routes (routes to destinations that do
not reside on a transport’s directly attached links) do not provide adequate
metric information to select the shortest route to a destination network when two
or more transports maintain indirect routes to the network.

In cases in which two or more file systems maintain duplicate destination
network addresses and not all file systems provide metric information, selection
of the file system to process a request is unpredictable. Generally speaking, the
file systems with metric information are selected because of implementation
details.

4. In the event that two or more file systems contain network routes with no metric
information or duplicate metrics, selection of a file system to process the
request is as follows:

a. If one of the file systems with a route to the destination is the default file
system as specified in the BPXPRMxx parmlib member, the default file
system is selected.

b. Otherwise, the file systems are selected in the order in which they were
defined in the BPXPRMxx parmlib member.

5. Host-defined routes are always searched before network routes.

6. If a file system severs its connection, all routing information for the severed file
system is deleted. If the severed file system maintained duplicate home or
network routes, these routes are deleted. Subsequent requests for the duplicate
routes are routed to the remaining file systems.

7. If two transport providers have connections to the same network and two
applications that are running on the same MVS start communicating with each
other, performance may not be optimal. If for some reason the two applications
bind to different transport providers, the external network is used, rather than
the Common INET local INET support. Therefore, it is suggested that
applications use a method analogous to gethostid() to get the IP address of
themselves and bind to the address that is returned from the gethostid(). This
method ensures that the default transport provider is selected. The local INET
support works only with the default transport provider.

Initialization for an AF_INET (IPV4) transport driver
When a transport driver is being initialized, the prerouter is notified of the TD’s
arrival. The prerouter performs the following functions:

52 z/0S V1R7.0 UNIX System Services File System Interface Reference

1. Opens a socket from the kernel address space. This is not the master socket,
but a regular user socket that is initiated through the z/OS UNIX socket
interface.

2. lIssues an ioctl SIOCGIFCONF to get the list of home interfaces maintained by
the file system instance and adds them to the home IP table.

3. After all of the home routes have been processed, issues an ioctl with the
SIOCGRTTABLE function code. This gets the file system host and network
routing information in a table format. The mapping for this request is found in
ioctl.h.

4. Places the routes from the SIOCGRTTABLE in the host and network routing
tables managed by the prerouter. Note that the installation can give metrics in
hop counts or millisecond delays by setting the appropriate flag in the header of
the SIOCGRTTABLE structure. All metrics are converted to hop counts.

5. Closes the socket. The prerouter is now initialized for the transport driver.

Initialization for an AF_INET6 (IPV6) transport driver

When the transport driver that is being initialized is IPV6 capable, the prerouter is

notified of the TD’s arrival. The prerouter performs the following functions:

1. Opens a socket from the kernel address space. This is not the master socket,
but a regular user socket that is initiated through the z/OS UNIX socket
interface.

2. Issues an ioctl SIOCGHOMEIF®6 to get the list of home IPV6 interfaces
maintained by the file system instance.

3. After all of the IPV6 home routes have been processed, issues an ioctl with the
SIOCGRT6TABLE function code. This gets the file system IPV6 host and
network routing information in a table format.

4. Places the routes from the SIOCGRT6TABLE in the host and network routing
tables managed by the prerouter. Note that IPV6 metrics are in hop counts.

5. Closes the socket. The prerouter is now initialized for the transport driver.

Route changes

The prerouter handles BSD-style route changes for the routeD add (SIOCADDRT)
and delete (SIOCDELRT) functions. When a route is added, the rt_use field is
checked for a nonzero code. If rt_use is nonzero, it is assumed to be a hop count
metric. Metrics can be changed by reissuing the SIOMETRIC1RT ioctl or setting the
rt_use field in the SIOCADDRT to the new metric value.

Route changes can be sent to the prerouter in two ways:

* When using ioctls for add (SIOCADDRT) and delete (SIOCDELRT) functions that
use z/OS UNIX sockets, z/OS UNIX automatically passes the ioctls to the
prerouter and the prerouter makes the needed updates.

Note: IPV6 capable stacks should use the SIOCADDRT6 and SIOCDELRT6
functions for adding and deleting IPV6 addresses.

 If a routing daemon does not use z/OS UNIX sockets, but uses a different
interface to a file system, the ioctls for add (SIOCADDRT) and delete
(SIOCDELRT) functions must be propagated to z/OS UNIX. The file system
needs to use the add (SIOCMSADDRT) and delete (SIOCMSDELRT) functions.
These are issued on the master socket and are denoted with 'MS’. z/OS UNIX
needs the MS, or these functions are propagated back to the file system and
there is an endless loop.

ICMP redirects are handled using the SIOCMSICMPREDIRECT ioctl.

Chapter 2. Physical file systems 53

If the file system encounters a situation where it believes that the routing
information needs to be re-synchronized, the file system can issue the
SIOCMSRBRTTABLE ioctl (or, for IPV6 capable stacks, the SIOCMSRBT6TABLE
ioctl) on the master socket. This causes the prerouter to flush the routing
information for the file system and rebuild it from scratch. If the IPV6 home
information needs to be re-synchronized, SIOCMSRBHOMEIF6 should be used.

Note: If a user does a socket request during a rebuild, the user may or may not be
able to connect with the file system. The routing table is in flux.

SRB-mode callers

z/OS UNIX supports programs that are running on SRB dispatchable units, in
addition to the more standard TCBs. This affects the PFS, as the resulting vnode
operations are also running in SRB mode.

SRB mode is even more restrictive than cross-memory mode. Additional restrictions
on the PFS include the following:

* There are no MVS WAITSs; instead you have to use SUSPEND/RESUME. This
can impact some of the internal functions of the PFS that may not be easy to
modify, including task switching, lock managers, and tracing.

Note: The osi_wait/osi_post services transparently support both TCB and
SRB-mode callers.

* No TCB is available (Psatold=0). The TCB address is used by some programs to
build identifiers, or in other algorithms.

» There is no EOT or ESTAE recovery, although you can use an FRR.

Note: vn_recovery support is still available from the LFS.

» Because SRB callers do not receive POSIX signals, they cannot break out of
extended waits, as they can in the EINTR cases.

Signal-enabled osi_waits should still be set up where they are set up now,
because this also indicates that the osi_wait may be interrupted for process
termination.

The following OSI services are enabled for SRB-mode callers:

osi_copyin osi_sched
osi_copyout osi_selpost
osi_copy64 osi_uiomove
osi_getvnode osi_upda
osi_mountstatus osi_wait
osi_post osi_wakeup

The PFS signifies that it supports SRB-mode callers on the pfsi_srb bit that is
returned during PFS initialization. The LFS inhibits SRB-mode calls to PFSs that do
not support them.

All sockets-related vnode operations are potentially callable from an SRB, and in
the future this may be extended to file-related operations. The PFS should therefore
be made completely SRB safe.

Refer to |zZ0S MVS Programming: Authorized Assembler Services Guidd for more
information about SRB-mode programs.

54 z/0S V1R7.0 UNIX System Services File System Interface Reference

Asynchronous I/O processing

An asynchronous capability is provided by z/OS UNIX for socket calls that may
block. These include accept, connect, select, poll, and the five pairs of read/write
type functions. These services are provided asynchronously to programs through

the asyncio callable service. Refer to|z/OS UNIX System Services Programming:
ssembler Callable Services Reference| for details.
Asynchronous I/O processing between the LFS and PFS is implemented with a

two-pass technique using the regular vnode operations, such as vn_accept and
vn_rdwr:

« Part 1, which is indicated by a bit in the Osi structure, starts with the beginning of
the normal vnode operation and continues up to the point at which the PFS
would call osi_wait to block. The PFS returns to the LFS instead of waiting.
When the 1/O can be completed, the PFS calls the osi_sched service at the point
at which it would call osi_post for a blocked operation.

» Part 2, which is indicated by another bit in the Osi structure, continues from the
point after which osi_wait would have been called through the end of the
operation.

These two stages are covered in detail in the next sections.

Related services
Two special osi services are used in asynchronous I/O processing:

» 0si_upda, which is called during Part 1 to pass a PFS token to the LFS. Refer to
[‘osi_upda — Update async 1/O request” on page 429|for specifics.

» osi_sched, which is called to drive Part 2 when the I/O can be completed. Refer
to [‘osi_sched — Schedule async I/O completion” on page 410| for specifics.

The vn_cancel service is a special vnode operation that is used to cancel an
outstanding request. Refer to[‘vn_cancel — Cancel an asynchronous operation” on|

page 128|for specifics.

The vnode operations that can be run in two passes are:
vn_accept vn_rdwr vn_sndtorcvfm
vn_connect vn_readwritev vn_srmsg

vn_sndrcv

Impact on initialization

The PFS signifies that it supports asynchronous 1/O on the pfsi_asyio bit that is

returned during PFS initialization. To support asynchronous 1/O, the PFS must also
support SRB-mode callers, because Part 2 runs from an SRB, and it must support
vn_cancel. The LFS inhibits asynchronous calls to PFSs that do not support them.

Waits that are avoided

Asynchronous /O is intended to avoid long waits only. These are blocking,
indeterminate waits that usually depend on something from the network or an end
user. Long waits also tend to be conditional, based on the current non-blocking
mode. Short internal waits, such as lock waits for serialization, are not avoided. An
example is that of a read: you can wait for a lock to look at the inbound queue, but
if the queue is empty you cannot wait for the data.

Chapter 2. Physical file systems 55

Related OSI fields

The OSI fields that are significant to this discussion are:

osi_asy1, which signifies Part 1
osi_asy2, which signifies Part 2

osi_asytok, which holds the LFS’s token on entry to Part 1 and the PFS’s token
on entry to Part 2.

osi_ok2compimd, which indicates that the PFS may complete the operation
immediately, if possible. See |“Asynchronous I/0O flow details” on page 58| for
details.

osi_compimd, which is returned by the PFS to indicate that it has completed the
operation immediately. This is valid only if osi_ok2compimd is on.

osi_commbuff, which indicates that Part 2 of Async I/O must not occur. Within the
PFS, the changes from normal Async 1/O flow are:

1. Received data can be copied directly to the user’s buffers from the PFS’s
inbound data handler.

2. osi_sched is called after the data has been copied.
3. The amount of data being returned must be supplied to osi_sched.
4. There must be no dependence on Part 2 being called.

Note: The last four fields are meaningful only when osi_asy1 or osi_asy2 are on;

they should not be referred to otherwise.

These fields are covered in more detail in |Figure 6 on page 58|

Canceling an operation

The LFS attempts to cancel an outstanding operation with vn_cancel. There are two
types of vn_cancel: normal and forced.

A normal vn_cancel only flows to the PFS between Part 1 and Part 2, and is
used to get requests off the waiting, or blocking, queues in the PFS. If the
request is not currently on a waiting queue, nothing is done. If the request is
found, it is removed from the queue and failed with ECANCELED.

A forced vn_cancel is used during process termination of the original requestor. It
can be sent logically at any time, but the PFS will already have abnormally
ended and gone through recovery if the request was in Part 1 or Part 2 at the
time the process terminated. There is no Part 2 after a vn_cancel force, so the
PFS must do any necessary cleanup during the vn_cancel.

Refer to [‘'vn_cancel — Cancel an asynchronous operation” on page 128 for more
information.

Responsibilities for the semantics

The semantics for the asyncio function are split between the PFS and the LFS.
Some of the features whose support might be ambiguous are discussed here. Refer
tolaio_suspend (BPX1ASP, BPX4ASP) — Wait for an asynchronous 1/0 request|in

[z/0S UNIX System Services Programming: Assembler Callable Services Reference

while reading this section.

The LFS must handle the following:

The aiocb structure. The interface to the PFS is through the regular vnode
operations, such as vn_rdwr and vn_sndrcv.

56 2/0S V1R7.0 UNIX System Services File System Interface Reference

* The returned information. The PFS should return 0 for a successful Part 1, and
the normal functional values from Part 2. In particular, the LFS handles the
EINPROGRESS return_code.

» Scheduling the SRB and calling the I/O completion notification. This includes
calling the user exit, posting an ECB, and sending a signal.

* AioSync. This appears to the PFS as a normal synchronous operation
(osi_asy1=o0si_asy2=0FF).

* AioOk2Compimd, for accept and connect. The osi_ok2compimd bit is always on
in the PFS for vn_accept and vn_connect, so the PFS can always complete
these operations immediately without calling osi_upda or osi_sched.
osi_compimd should be turned on if the PFS does happen to complete these
operations immediately.

* The select and poll functions, which are already asynchronous with respect to the
PFS. The PFS continues to call osi_selpost for the vfs_batsel and vn_select
operations.

The PFS must handle or contribute to the support of:

* AioOk2Complmd, for reads and writes, through support for osi_ok2compimd.
Even when the PFS is able to complete a read or write type of operation
immediately, it must still call osi_sched whenever osi_ok2compimd=off. See
[‘Asynchronous I/O flow details” on page 58| for details.

» AioCallB4 and deferred buffer allocation, by not requiring the presence of the
user’s data buffers during Part 1, unless osi_ok2compimd=on; and by passing
the length of data that is available to be received to osi_sched.

+ The ECANCELED Return_code, by failing a request with that return code when
the request has been removed from a waiting queue because of vn_cancel. The
race condition between vn_cancel and data arrival can only be resolved by the
PFS.

Asynchronous /O flow diagram

This diagram describes the general flow of an asynchronous operation, noting those
parts of the interface that are specific to its asynchronicity, and the significant
design points within the PFS that the LFS is dependent on. As it is based on a
somewhat generic PFS model, it may not match any specific implementation, and a
PFS may have to do some work to accommodate it. PFSs that have an associated
separate address space should be able to fit this model. These design points can
be met either in the kernel address space or in the associated address space.

Chapter 2. Physical file systems 57

USER z/0OS UNIX

LFS : PFS
1) :
BPX1AIO (Aioch) — (2)
. Alloc RgBIk .
. vn_op (osi_asyl)——»(3)
w/LFS_AsyTok . Alloc RgBlk
. Save LFS_AsyTok
osi_upda (LFS_AsyTok, PFS_AsyTok)
Queue RgBIk on waiting Q —— *
If Sync
. osi_wait
(4) : Else
< : Ret (RRR)
If failed | Compimd - x DATA
: Clean Up . 4
: (5) ¢——Ret (RRR) . (6) *
Continue . v
<+———Event HdIr
If Sync :
osi_post
Else :
osi_sched (LFS_AsyTok, RRR)
@) - :
Schedule SRB .
Ret . " If failing
. Clean Up .
Ret g
8)
SRB +—
ReCall —— (9) .
vn_op (osi_asy2) — (10)
w/PFS_AsyTok : Find RqgBlk
Get Inffo——» *
4— *
Copy Data
From/To User
. Free RqBlk
(11) < : Ret (RRR)

(12) «— Ret (RRR)
Call Exit (Aiocb)

- Process data

- Can free buffer

- Can free AioCb
Free RqBIk

Figure 6. Async operation flow

Asynchronous 1/O flow details
This flow is discussed as an addition to an existing PFS design that already
handles synchronous blocking and non-blocking socket operations.
1. BPX1AIO/BPX4AIO (asyncio) is called with an Aiocb structure. The Aiocb
contains all the information that is needed to do the specific function.

2. The LFS builds an Async 1/0 Request Block (RgBIk). The PFS has signified
support via the Pfsi_Asyio PFSinit output bit. The regular vnode operation for
the function is invoked in the PFS with:

* + The osi_asy1 bit turned on to indicate Async I/O Part 1.
* + The osi_asytok field holding the LFS_AsyTok token.
3. Part 1 in the PFS:

* The PFS builds its own Request Block. The LFS_AsyTok is saved for later
use with osi_sched(). The PFS’s PFS_AsyTok is passed back to the LFS via

58 z/0S V1R7.0 UNIX System Services File System Interface Reference

osi_upda(). This identifies the request to the PFS in Part 2 and to
vn_cancel. Basic preliminary parameter and state checking can be done
here.

The user’s read buffers are not referenced during Part 1 unless
osi_ok2compimd=0N; see the variations below. This allows the user to defer
read buffer allocation to just before Part 2. The requested length for reads is
available, even if the buffers are not.

The PFS queues the request to await the desired event. This is essentially
the same thing that is normally done for blocking requests. Instead of calling
osi_wait(), as it would at this point for a blocking request, the PFS returns to
the LFS with the Return_value, Return_code, and Reason_code (RRR) from
qgueueing the asynchronous I/O. For a successfully queued request, the
Return_value is 0, and any output from the operation is deferred until Part 2.
Important PFS structures are preserved as necessary over this return and
the subsequent reentry to the PFS for Part 2.

Variations:

If the operation fails during Part 1, the normal path is taken and, instead of
the request being queued, the failure is returned. This includes both
queueing failures and failures of the function that is being requested.

If the operation can be completed immediately and osi_ok2compimd=0N,
the PFS can proceed as it would normally and complete the operation
synchronously. osi_compimd is turned ON to tell the LFS that this has
happened.

If osi_ok2compimd=0FF, the PFS must make the call to osi_sched from
within this vnode operation, and proceed from Part 2 as if the data were not
immediately available. This bit is only OFF for read/write type operations. If
the PFS does not need to be recalled for Part 2 (for instance, with a short
write), it can skip the call to osi_upda. It is all right to transfer the
responsibility for calling osi_sched to some other thread, making the call
asynchronously and returning to the LFS, as long as you do not wait for
network input.

The LFS returns to the caller with AioRC=EINPROGRESS,; or, if it has failed or
completed immediately, cleans up and returns the operation’s results.

The original caller continues. All structures and data buffers must persist
throughout the operation.

Event occurrence in the PFS:

At some point data arrives for the socket, or buffers become available, and
the request can be completed.

The PFS notices, or responds to, this condition as it normally does. Instead
of calling osi_post(), as it would at this point for a blocked request, it calls
osi_sched() with the saved LFS_AsyTok to drive Part 2.

For read type operations, the passed Return_Value contains the length of
the data that is available to be read in Part 2. This is an optional
performance enhancement that some applications may take advantage of. If
the length is not easily known, 0 should be passed.

The rest of the action happens on the SRB, because user data cannot
generally be moved while it is on the thread that calls osi_post/osi_sched.

Variations:

If the request fails asynchronously, the PFS can report this on the call to
osi_sched() by passing the failing three R’s. There will be no Part 2 if the
passed Return_value is -1, so the PFS has to clean everything up from
here.

Chapter 2. Physical file systems 59

» Alternatively, the PFS can save the results, pass success to osi_sched(),
and report the failure from Part 2. This is sometimes more convenient when
the event handler is in a separate address space and the PFS has
resources to clean up in the kernel address space. The only time
osi_sched() fails is if the passed LFS_AsyTok is no longer valid, which may
represent a logic error in the PFS. osi_sched() succeeds even after the user
has terminated, but the PFS sees vn_cancel instead of Part 2.

7. The LFS schedules an SRB into the user’'s address space and returns to the
PFS. The SRB runs asynchronously to the caller of osi_sched().

8. The SRB runs in the user's address space, so that the user’s data buffers can
be referenced from “home” while in cross-memory mode. This also gets the
user’s address space swapped in if necessary. The LFS is recalled to get into
the kernel address space.

9. The LFS reconstructs the original vnode request structures. The same vnode
operation is invoked in the PFS as for Part 1, with:
* + The osi_asy2 bit turned on to indicate Async I/O Part 2.
* + The osi_asytok field holding the PFS_AsyTok value from osi_upda()

Variations:
If osi_upda was not called during Part 1, the PFS is not called for Part 2.
10. Part 2 in the PFS:

» This is running on an SRB instead of the more usual TCB, and the PFS has
to be able to handle this mode.

» From the PFS_AsyTok, the PFS is able to pick up from where it left off at
the end of Part 1 (3), when it returned to the LFS instead of waiting.
Necessary information that is related to the completing operation is obtained
in a manner similar to that in which it is obtained after coming back from
osi_wait().

+ Data is moved between the user’'s and the PFS’s buffers for read/write types
of operations; or the operation is completed as appropriate.

* The normal cross-memory environment has been recreated, with the user’s
buffers in home and the PFS’s buffers in primary; or it is otherwise
addressable as arranged by the PFS.

* The normal move-with-key instructions are used to protect against
unauthorized access to storage. The osi copy services are available.

» For unauthorized callers in a TSO address space, the LFS has stopped the
user from running authorized TSO commands while async /O is
outstanding. This avoids an obscure integrity problem, with user key storage
being modified from a system SRB.

* The PFS returns to the LFS with the results of the operation and the normal
output for this particular vnode operation, such as the vnode_token from
vn_accept. The operation is over at this point, as far as the PFS is
concerned.

Variations:

* If the operation fails during Part 2, this is reported back. An earlier failure
may have been deferred to Part 2 by the PFS.

» For very large writes, the PFS may not want to commit all of its buffers to
one caller. It may instead loop, sending smaller segments and waiting in
between for more buffers. If this is the case, the PFS remains in control and
does not return from Part 2 until the whole operation is complete, that is,
until the remainder of the operation is synchronous and the PFS blocks as
necessary, as it normally does in this loop. osi_wait is convenient here, as it
accommodates SRB callers. Essentially, osi_sched() is only called when the

60 2/0S V1R7.0 UNIX System Services File System Interface Reference

11.

12.
13.

first set of buffers become available and the effect is to offload the work
from the user’s task or SRB to a system SRB. The operation is still
asynchronous to the user. This ties up the SRB, but it is considered to be a
situation of relatively small frequency.

» Because SRBs are not interrupted with signals, osi_waits during Part 2
normally do not return as they do in the EINTR cases. If the user's process
terminates, signal-enabled osi_waits return as if they have been signaled.

On return to the LFS, signals are sent and unauthorized exits are queued to
the user’s TCB (not shown).

The LFS returns to the SRB.

On return to the SRB, authorized exits are called and ECBs are posted. When
the user program is notified that the 1/0 has completed, either on the SRB or
user’'s TCB, it can free the Aiocb and buffers. The operation is over, as far as
the LFS is concerned, either at the end of the SRB or after an unauthorized
exit has run on the user’'s TCB.

Colony PFS PC

A PC number is established in colony address spaces that can be used from code
running in the kernel to PC into the colony. This could be used by a related PFS
that runs in the kernel or by a related file exporter’s glue exit.

The PC number is passed to the PFS in the pfsi_pfspc field during initialization.
Using this PC involves the following:

The colony PFS must have a PC routine that will be the target of the PCs. This
routine must reside in the colony or in common storage.

The colony PFS passes the pfsi_pfspc PC number and the address of its PC
routine to the cooperating code that runs in the kernel or otherwise makes these
values known to the kernel code that will use them.

The kernel PC caller must place the colony PC routine address in Register 15
and invoke the PC instruction with the pfsi_pfspc value.

In the colony, the real PC routine that was established by the LFS branches to
the address that is in Register 15.

The PFS’s PC routine is responsible for anything that it may need, and its entry
is not much different from that of a real PC routine.

The PC is defined to be entered in the following state:

PSW key: 0
Authorization: Supervisor state
AR: ASC mode
AMODE: 31-bit

Registers on entry:

Register Contents

0-13 As they were in the PC caller

14 A return address that can be used by the PC routine
15 The routine address as set by the PC caller

The routine does not have to save or restore any registers or state information.
This is a stacking PC.

The routine must acquire any working storage that it may need in the primary,
colony, address space.

Chapter 2. Physical file systems 61

The routine must set up an FRR or ESTAE if it needs any recovery to be run in
the colony address space. It will be officially running under an ARR (associated
recovery routine), but there will be no recovery done by that ARR.

When it has completed, the routine may either issue a PR instruction to return
back to the PC caller, or return to the address that was in Register 14 on entry;
that is, issue BR 14.

* The PC caller must beware of the colony address space terminating while it is
using the PC. If the colony address space terminates before the PC or during the
PC routine’s execution, the PC caller will abend.

Considerations for Internet Protocol Version 6 (IPv6)

Activating IPv6 on a system

IPv6 is activated on a system with a second NETWORK statement for
DOMAINNAME(AF_INET6) with DOMAINNUMBER(19), which arrives at the PFS
as a second vfs_network call. If a PFS supports IPv6, it must support both AF_INET
and AF_INET®6; there are no IPv6-only stacks.

To indicate support for IPv6, a PFS must:

1. Set Pfsilpv6 on during initialization, to indicate that it can receive
vfs_network(AF_INETS).

2. Return successfully from that call.

An administrator can add the second NETWORK statement for AF_INET6
dynamically with SETOMVS RESET=. The stack is free to reject the vfs_network if
it arrives after initialization. Generally, both vfs_network calls are passed to the PFS
during OMVS startup or after a PFS recycles. The vfs_network calls for AF_INET
and AF_INET6 may be in any order.

If Pfsilpv6 has not been set, or if the vfs_network for AF_INETS6 is not accepted,
IPv6 sockets are not opened to that stack. When an application opens an
AF_INET6 socket across a Common INET configuration of both IPv6-capable and
IPv4-only stacks, an AF_INET socket is opened to the IPv4-only stacks, and a
certain amount of address conversion and emulation is performed by CINET for the
IPv4-only stack. An IPv6-capable stack must do its own conversions and emulations
for any IPv4 partners that it permits on an IPv6 socket.

Common INET transport driver index

In a multi-stack configuration there can be duplication of interface indices. CINET
inserts its transport driver index, Tdindex, into the upper halfword of all output
interface indices to identify the interfaces uniquely. On input interface indices, the
upper halfword is used to select a stack, and is cleared before the information is
passed on to the stack. Each stack’s Tdindex value is passed to it in PfsiTdIndex,
but the stack does not have to do anything with the value.

For more information about the transport driver index, see the discussion of the
SIOCGIFNAMEINDEX ioctl command in w_ioctl (BPX110C, BPX4l0C) — Contro'
/0]in|z/0S UNIX System Services Programming: Assembler Callable Services|
Referenc

ioctl used by the C/C++ Run-Time Library

The if_nameindex(), if_nametoindex(), and if_indextoname() functions use the
SIOCGIFNAMEINDEX (Get Interface Name/Index Table) ioctl, which returns the

62 z/OS V1R7.0 UNIX System Services File System Interface Reference

Interface Name/Index Table for a PFS. The command and output arguments are
defined in the BPXYIOCC macro, and are described in the discussion of the
SIOCGIFNAMEINDEX ioctl command inw_ioctl (BPX110C, BPX4l0C) — Control|
I/0]in[/0S UNIX System Services Programming: Assembler Callable Services]

Referencgl

ioctls used by the prerouter

The dialog between a stack and the Common INET prerouter for IPv6 is basically
the same as the one for IPv4. The prerouter uses these ioctl commands, which are
defined in the BPXYIOCC macro:

SIOCMSADDRT6 Constant ('8044F604'x), /* Add IPV6 Route */
STOCMSDELRT6 Constant('8044F605'x), /* Delete IPV6 Route */
SIOCGRT6TABLE Constant('CO14F606'x), /* Get IPV6 Rte Table =/
SIOCMSRBRT6TABLE Constant('8000F607'x), /* Rebuild Rte & Home =*/
SIOCGHOMEIF6 Constant('C014F608'x), /* Get IPV6 HomelIf */
SIOCMSRBHOMEIF6 Constant('8000F609'x) /* Rebuild IPV6 HomeIf x/

The associated argument structures are defined in the BPXYIOC6 macro.

ioctls used by the resolver

The resolver uses two ioctl commands to get specific information from a stack.
These command codes are defined in BPXYIOCC, and the associated argument
structures are described as follows:

SIOCGSRCIPADDR (obtain source IP addresses for an array of
IPv6 and IPv4 destination addresses)

SIOCGSRCIPADDR obtains the associated source address (by Source Address
Selection algorithm, which is part of the Default Address Selection IETF draft) for
each of the IPv6 addresses passed in an array. This information is ultimately used
to sort the IPv6 and IPv4 destination addresses, using the algorithm described in
the Default Address Selection IETF draft for destination addresses.

Argument: An array of IPv6 and IPv4 destination addresses, with a total count of
the addresses being passed. Upon return from the IOCTL invocation, the array
structure is to include a source IP address (determined by the use of the IETF draft
for Default Address Selection) for each of the array elements associated with the
destination address that is being passed. This source address is determined by the
stack, using the IETF draft for Default Address Selection. If a source address
cannot be determined for a specific destination IP address (for example, if there is
no route to the destination), a null value is placed in the array element’s IP source
address field (SisSrclPaddr).

DCL 1 SrcIpSelect Based Bdy(Word),
2 SisHeader,

3 SisVersion Fixed(8), /* Version of the IOCTL interface
*/
3« Char(3), /* Available */

3 SisNumEntries Fixed(32), /* Number of destination
addresses for which a source
address must be selected */

2 SisIpAddrs(x),

3 SisDestIPaddr Char(16), /* Destination IP address. Can
contain a native IPv6 address,
mapped IPv4 address, or an
IPv4 compatible address */

5 SisIpVdprefix Char(12), /* IP address prefix x/
7 SisIpV4nulls Char(10), /* Always nulls for IPv4
compatible or IPv6 mapped

addresses */

Chapter 2. Physical file systems 63

7 SisIpV4mapped Char(2), /+ IPv6 mapped prefix */

5 SisV4DestIPaddr Char(4), /* IPv4 address */
3 SisSrcIPaddr Char(16), /* Associated Source IP address
(output from IOCTL) */
3 SisRetcode Fixed(32), /* Return code from attempt to
obtain an interface */
3 SisSrcAddrFlags Bit(8), /* Source IP address flags
(output from IOCTL */

5 SisSrcDeprecated Bit(1), /* B'l' indicates address is
deprecated (only applicable for
native IPv6 addresses */

5 * Bit(7),

3 * Char(3); /* Available */

DCL SrcIpSelect Version Fixed(8) Constant(1);

SIOCGIFVERSION (determine if an IPv4 or IPv6 interface has
been configured on a TCP/IP stack)

SIOCGIFVERSION determines if a TCP/IP stack in an INET environment has a
configured IPv6 or IPv4 source address. (In this case, the loopback address is not
considered to be valid as a configured interface.) This information is needed so that
appropriate DNS queries can be made (IPv6 address records (AAAA) vs. |IPv4
address records (AA)).

Argument: A four-byte area containing flags that provide the following information:

DCL 1 IfVersionInfo Based, /* SIOCGIFVERSION structure */
2 IfVerFlags Bit(16), /* Stack flags x/
3 IfVerIPv6Interfaces Bit(1), /* Are there any IPv6
interfaces active other than
Toopback */
3 IfVerIPv4Interfaces Bit(1), /* Are there any IPv4
interfaces active other than

Toopback */
3 IfVerIPv6Supported Bit(1l), /* Is IPv6 supported by this
stack */
3 * Bit(13), /* Available */
2 Char(2); /* Available */

PFS support for multilevel security

To support multilevel security, a PFS must provide the following capabilities:
* vn_link:
If a link is attempted to a character special file, and there is a security label on

the file or on the directory for the new link, the vn_link call will fail with EPERM. If
the ZCredSeclablActive flag is on, the following checks should be done:

1. If zCredSeclablRequired is on and the object has no security label, the
zCredROSeclabel should be used as the object security label for all
subsequent checks.

2. If the directory for the new link has a security label of SYSMULTI, no further
security label checking is necessary.

3. If the directory for the new link has no security label, or has a security label
other than SYSMULT]I, a check for equality must be done between the
security label of the directory and the security label of the file. If the values
are equal, no further security label checking is necessary.

4. If the equality check fails, a dominance check must be made to check that
the security label of the directory and the security label of the file are
equivalent. The call to check security label equivalence should look like this:

RACROUTE REQUEST=DIRAUTH,RSECLABEL=(x),TYPE=EQUALMAC,USERSECLABEL=(y)

64 z/0S V1R7.0 UNIX System Services File System Interface Reference

where x and y are registers that contain the addresses for the security labels.

* vn_readdir:
If the ZCredSeclablActive flag is set, the following checks should be done:

1.

If zCredSeclablRequired is on and the directory has no security label, the
zCredROSeclabel should be used as the object security label for all
subsequent checks.

If the directory has a security label of SYSMULTI, a dominance for read
should be made between the user’s security label and the security label of
each entry in the directory. The user’s security label is passed in the
ZCredSeclabel field. If the security label of the directory entry is SYSMULTI
or SYSLOW, the dominance check can be bypassed. If the dominance check
fails, the directory entry should be excluded from the output buffer. The
dominance check should look like this:

RACROUTE REQUEST=DIRAUTH,RSECLABEL=(x),ACCESS=READ,USERSECLABEL=(y)

where x and y are registers that contain the addresses for the security labels.

Notes:

1.

The PFS may cache object security labels to avoid rechecking for labels that
have already passed the dominance check. A good cache is likely to result in
a single check for each unique security label per readdir call.

No indication will be returned from the PFS if some names were excluded
from the output buffer.

Discrepancy between the apparent number of entries in a directory and the
number that can be read is acceptable.

The LFS will not filter names based on security label when it does a readdir2
for a PFS that does not support security labels. Any PFS that supports
security labels must also support readdir2.

When the index method is used to read a directory, the meaning of the index
is not the relative name in the directory, but the relative name that the user
can access. For example, if the request is to return entries beginning with
entry 10, the PFS must start at the first entry and verify dominance on each
name until the 10th name that the user is permitted to see is found, and start
returning names that can be seen from that point.

* vn_readlink:
If the zCredSeclablActive flag is set, the following checks should be done:

1.

If zCredSeclablRequired is on and the directory has no security label, the
zCredROSeclabel should be used as the object security label for all
subsequent checks. If this flag is on, and the resulting object security label
continues to be null because no value was provided by zCredROSeclabel,
vn_readlink should return with a failure of EACCES.

A dominance check should be performed between the user’'s security label
and the security label of the symbolic link. The user’s security label is passed
in the zCredSeclabel field. If the security label of the directory entry is
SYSMULTI or SYSLOW, the dominance check can be bypassed. If the
dominance check fails, the vn_readlink should return with a failure of
EPERM. The dominance check should look like this:

RACROUTE REQUEST=DIRAUTH,RSECLABEL=(x),ACCESS=READ,USERSECLABEL=(y)

where x and y are registers that contain the addresses for the security labels.

* vn_setattr:

Chapter 2. Physical file systems 65

If the AttrSeclabelChg flag is set, a call to the SAF callable service IRRSSB00
should be made to set the security label for the file. The new security label is
passed in the zCredSeclabel field, which is passed to SAF. The PFS does not
have to access the new or the old security label.

PFS support for 64-bit virtual addressing

The entry environment and parameters for the vnode and VFS operations are the
same for 31-bit and 64-bit addressing. The PFS is always entered in AMODE 31,
with a 31-bit parameter list address in R1 that points to a parameter list of 31-bit
addresses. All calling parameters are below the 2-gigabyte line, although some of
these parameters may contain 64-bit addresses of areas that are above the
2-gigabyte line.

The main consideration for 64-bit addressing is the user data buffers, which may
require 64-bit addressing in the UIO, IOV, and MSGH structures. In general, the
other user parameters are copied into the kernel below the 2-gigabyte line, and
these copies are passed to the PFS.

The data length parameter for read and write-type operations with 64-bit addressing
remains 31 bits long.

Levels of support for 64-bit virtual addressing

From the point of view of the LFS, there are three levels of PFS support for 64-bit

virtual addressing: None, 64-bit supporting, and 64-bit exploiting.

* None:
The PFS has no understanding of 64-bit addresses. The LFS copies 64-bit
addressable user data to an internal 31-bit addressable buffer before it invokes
the PFS for write-type operations, and vice versa for reads.

* 64-bit supporting:
The PFS can handle 64-bit user virtual addresses, or it makes use of the OSI
services that can. It does not itself use buffers above the 2-gigabyte line or run in
AMODE 64, at least not to the knowledge of the LFS.

* 64-bit exploiting:
The PFS supports 64-bit user virtual addresses. It may run in AMODE 64 and

have its own data buffers, or even autodata, above the 2-gigabyte line. Some
considerations for these PFSs are:

— Unless otherwise specified, the OSI service routines expect to be called in
AMODE 31, with a 31-bit parameter list address and 31-bit parameter
addresses. The calling interface may have to be manually constructed below
the 2-gigabyte line.

— The SAF (RACF) services do not support 64-bit callers or addresses.

— MVS WAIT and POST services do not support ECBs above the 2-gigabyte
line.

Recommendation: A PFS should be at least 64-bit supporting, in order to avoid the
extra LFS data move that is otherwise required for high user buffers.

Indicating support for 64-bit virtual addressing
A PFS indicates support for 64-bit user virtual addressing during initialization with:

pfsi_addr64 Indicates the PFS supports 64-bit user virtual addresses in
the UIO, IOV, and MSGH structures. PfsiAddr64 in PL/X.

66 2/0S V1R7.0 UNIX System Services File System Interface Reference

A user indicates 64-bit addressing to the PFS with the following fields and

structures:

u_addr64 Indicates that this UIO, and any associated IOV and/or MSGH
when present, uses 64-bit addresses. FuioAddr64 in PL/X.

u_buffé4vaddr A 64-bit field that contains the virtual address of the area
being passed. FuioBuff64VAddr in PL/X.

The IOV and MSGH structures have corresponding 64-bit formats, IOV64 and
MSGH64.

When an application program in AMODE 64 calls a z/OS UNIX service, 64-bit user
addressing is assumed and is used by the LFS. This does not necessarily mean
that the 64-bit address values are actually greater than 2 gigabytes. Most 64-bit
addresses will come from C programs that have been compiled with LP64, which
makes all longs and pointers 64 bits by default, regardless of whether the program’s
heap is above the 2-gigabyte line.

osi_copy64 routine
The OSI routine osi_copy64 (‘osi_copy4 — Move data between user and PFS
buffers with 64-bit addresses” on page 376) helps a PFS deal with 64-bit
addresses. It takes 64-bit virtual addresses and operates in much the same way as
osi_copyin and osi_copyout. osi_copy64 is a high-performance routine that does not
PC into the kernel. It handles 31- or 64-bit user and PFS buffer addresses for
AMODE 31 or AMODE 64 PFS callers.

Minimum 64-bit support

The minimum needed by a PFS to be 64-bit supporting is:

 If the only data moves to or from the user address space are done with
osi_uiomove, the PFS just needs to set pfsi_addr64 during initialization.

 If osi_copyin or osi_copyout are used for user buffers, the PFS must check the
FuioAddr64 flag at each of these calls, and use osi_copy64 or osi_uiomove
whenever this flag is on.

 If the PFS does its own MVCSKs and MVCDKs, it must check the FuioAddr64
flag at each of these locations and handle moves with 64-bit addresses; or call
osi_copy64 or osi_uiomove at these points. Doing your own moves is, of course,
fastest.

Specific considerations for vnode operations

The following vnode operations contain parameters that may contain 64-bit

addresses or point to structures that contain 64-bit addresses. Each of these

operations has Fuio as an input parameter, which may point to a 64-bit user buffer:

e vn_rdwr

* vn_readdir

* vn_readlink

e vn_sndrcv

* vn_sendtorcvfrom

* vn_readwritev—the 10 vectors passed may be in an IOV or an I0V64 structure.

* vn_srmsg—the message header passed may be an MSGH or an MSGH64
structure.

Notes:

1. MSGH64 and IOV64 are always used together.

2. Whenever FuioAddr64 is on (and FuioRealPage is off):
* FuioBuffé4Vaddr points to a buffer, an I0V64, or an MSGH64.
* A MSGH64 always points to an IOV64.

Chapter 2. Physical file systems 67

Expanded 64-bit time values

As part of the POSIX standards for 64-bit computing, known as LP64 (64-bit Longs
and Pointers), the time_t data type for file times is expanded to 64 bits in z/OS
V1R6. The current signed 31-bit data type will go negative in 2038. Because the
390 system clock will wrap in 2042, there is an issue for PFSs that store time in
STCK format.

The z/Architecture™ has a 128-bit STCKE that adds one byte to the left of the
current 8-byte format; that is, it has five bytes of “seconds”, and goes to about the
year 36765. An 8-byte POSIX time value goes far beyond that. A 9-byte time field,
or the left 8 bytes of the new STCKE, would hold any real times, and an 8-byte
POSIX format field would hold anything that could be set by a user.

C/C++ Run-Time Library support

C/C++ Run-Time Library supports old 31-bit programs and new LP64 programs with
a stat structure that contains 4-byte and 8-byte time fields for all five file time
values: the POSIX atime, mtime, ctime; and the z/OS UNIX reference time and
create time. The old fields could not be expanded in place without changing the
offset of all the following fields; new fields were therefore added to the end. When a
C program is compiled without LP64, the stat structure is generated with the POSIX
names (such as st_atime) on the 4-byte fields; and when it is compiled with LP64,
those names coincide with the new 8-byte fields. The unused fields in each compile
have dummy names that would not be referenced by the average C program.

There are two separate run-time libraries, compiled from the same source with and
without LP64, so that even the RTL will not reference both field types at the same
time.

PFS support

The kernel supports 31-bit and 64-bit programs with the same routines. The PL/X
stat structure, BPXYSTAT, has both fields generated; the new fields have new
names. BPXYATTR (‘BPXYATTR — Map file attributes for v_ system calls” on page|
also has five new 8-byte time fields:

3 AttrEndVerl Char(0), /* +A0--- End of Version 1 --- @D2C*/

3 AttrStatd , /* +A0 Fourth part of the stat @DAA*/
5 AttrLP64 , /* +A0 LP64 Versions @ODAA*/
7 AttrAtime64 Char(8), /*+A8 Access Time @DAAx/
7 AttrMtime64 Char(8), /*+B0O Data Mod Time @DAA*/
7 AttrCtime64 Char(8), /*+B8 Medadata Change Time @DAA*/
7 AttrCreateTime64 Char(8), /*+CO File Creation Time @DAAx/
7 AttrRefTime64 Char(8), /*+C8 Reference Time ODAA*/
7 * Char(8), /*+A0 May be AttrIno64 @DAAx/
5 * Char(16), /* +DO Reserved (1lst consider @DAA
space at +5C,+8D,+94) @DAA*/
3 AttrEndVer2 Char(0), /* +EOQ End of Version 2 ODAA*/

The associated 4- and 8-byte fields will usually contain the same values, until some
time in the year 2038.

The C ATTR structure in BPXYVFSI exactly matches the PL/X Attr:

/* +A0 --- End Ver 1 --- @P5A*/
char at_atime64[8]; /* Large Time Fields @P5A*/
char at_mtime64[8]; /*@P5Ax/
char at_ctime64[8]; /*@P5A*/
char at_createtime64[8]; /*@P5A*/
char at_reftime64[8]; /*@P5Ax/

68 2/0S V1R7.0 UNIX System Services File System Interface Reference

char at_rsvd4[8]; /*@P5A*/
char at_rsvd5[16]; /*@P5A*/
/* +EQ --- End Ver 2 --- @P5A*/

PFSs must return both sets of time fields in all output ATTRs. This includes
vn_getattr, any osi_attrs, and ReadDirPlus (part of|“v_readdir (BPX1VRD,
|BPX4VRD) — Read entries from a directory” on page 326). The LFS always
passes to the PFSs an ATTR that is large enough to hold the 8-byte times (at least
of length Attr#Ver2Len). The stat() function is performance-sensitive, because it is
called so often by programs in the field, and it is faster for the PFSs to set the five

extra fields than for the LFS to check to see if it has been done, and then copy the
4-byte values to the 8-byte fields.

PFSs that support vn_setattr, or setting times at all, must accept 8-byte time values.
The AttrLP64Times bit in BPXYATTR indicates that the time value is being passed
in the 8-byte fields. Most of these 8-byte time values will still be less than 2
gigaseconds, but they are being passed by LP64 programs. An LP64 program may
try to utime() beyond 2 gigaseconds.

PFSs that use BPXXCTME should use the new syntax for large time values. The
BPXXCTME macro converts to and from the extended STCKE TOD format with the
optional EXTENDED keyword:
?BPXXCTME INPUT(TOD|SSE)

TOD(8ByteArea|16ByteArea)

SSE (WordArea|DWordArea)

MICSEC (WordArea)
EXTENDED(8<,4>|16<,4>) (optional)

INPUT indicates the input field, and TOD is a doubleword-aligned 8- or 16-
character field containing the input TOD or the converted value. SSE is a
word-aligned 4-byte character field or doubleword-aligned 8-byte character field
containing the input SSE or the converted value. shows the TOD and SSE
fields with the EXTENDED keyword:

Table 2. TOD and SSE fields with the EXTENDED keyword

EXTENDED TOD SSE
Keyword is omitted Bytes 1 through 8 of the A 4-byte character field
STCK format
EXTENDED(8) Bytes 1 through 8 of the An 8-byte field
STCKE format
EXTENDED(16) Bytes 1 through 16 of the An 8-byte field
STCKE format
EXTENDED(16,4) Bytes 1 through 16 of the A 4-byte field
STCKE format

Chapter 2. Physical file systems 69

70 z/OS V1R7.0 UNIX System Services File System Interface Reference

Chapter 3. PFS operations descriptions

This chapter describes each PFS operation, which are arranged in alphabetic order.
The C language prototypes and definitions for these operations can be found in
lAppendix D, “Interface structures for C language servers and clients,” on page 503
Assembler definitions are in |[Appendix B, “Mapping macros,” on page 443

Environment for PFS operations

Each PFS operation (vfs_ and vn_ functions) operates in the following environment:

Environment at entry

Authorization: Supervisor state, PSW key 0

Dispatchable unit mode: Task or SRB, if the PFS has indicated that it supports
SRB-mode callers. You cannot assume that vfs or vn
routines receive control under the same dispatchable unit as
the requestor of the related callable service. For example,
unmount() and sync() do not.

Cross memory mode: Any

AMODE: 31-bit

ASC mode: Primary mode

Interrupt status: Enabled for interrupts

Locks: Unlocked

Control parameters: All parameters are in key 0 storage in the primary address

space. They are not fetch protected.

Registers at entry

The contents of the registers on entry to this operation are:

Register Contents

0 Undefined

1 Parameter list address

2-12 Undefined

13 Save area address, of a 136-byte save area
14 Return address

15 Entry address

ARO0-15 Undefined

Environment at exit
Upon return from this operation, the entry environment must be restored.
Registers at exit

Upon return from this operation, the register contents must be:

Register Contents

2-13 Restored from the entry values

0,1,14,15 Undefined

ARO0-15 Untouched or restored from the entry values

© Copyright IBM Corp. 1996, 2006 71

vfs_batsel

C header files

The C header files that are referred to in this section (such as stat.h) can be found
in [z70S XL C/C++ Run-Time Library Reference|

72 z/OS V1R7.0 UNIX System Services File System Interface Reference

vfs_batsel

vis_batsel — Select/poll on a batch of vhodes

Function

The vfs_batsel operation monitors activity on a batch of vnodes (multiple vnodes) to
see if they are ready for reading or writing, or if they have an exceptional condition
pending. The vnodes can be for a socket, pipe, regular, or pseudoterminal file.

Environment on entry and exit
See [‘Environment for PFS operations” on page 71

Input parameter format

vfs_batsel (Token_structure,
0SI_structure,
Audit_structure,
Reserved_1,
Function,
Batch-Select_Structure
Reserved 2,
Return_value,
Return_code,
Reason_code)

Parameters

Token_structure
Supplied parameter
Type: TOKSTR
Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) being operated on. It
contains the PFS’s initialization token and mount token. Refer to
|contro| block structure” on page 16| for a discussion of this structure, and to the
TOKSTR typedef in BPXYPFSI in|Appendix D, “Interface structures for C|
|Ianguage servers and clients,” on page 503 for its mapping.

OSI_structure
Supplied and returned parameter
Type: oSl
Length: Specified by OSl.osi_hdr.cblen.

The OSI_structure contains information used by the OSI operations that may be
called by the PFS. See for more information.

It also contains MVS-specific information that needs to be passed to the PFS,
including SMF accounting fields, a work area, a recovery area, and an optional
pointer to an output ATTR structure. For more details on the OSI structure, see
'The OSI structure” on page 19|

This area is mapped by the OSI typedef in BPXYPFSI in[Appendix D}

Audit_structure
Supplied parameter
Type: CRED
Length: Specified by CRED.cred_hdr.cblen.

Chapter 3. PFS operations descriptions 73

vfs_batsel

The Audit_structure contains information used by the security product for
access checks and auditing. It is passed to most SAF routines that are invoked
by the PFS.

Refer to [‘Security responsibilities and considerations” on page 12| for a
discussion of security processing, and to the CRED typedef in BPXYPFSI in
Appendix D for the mapping of this structure.

Reserved_1
Supplied parameter
Type: Integer
Length: Fullword

The value 0. This parameter is reserved to maintain consistency with the
vn_select operation interface.

Function
Supplied parameter
Type: Integer
Length: Fullword

A fullword that specifies whether this is a batch-select query or a batch-select
cancel request, and whether it is a poll or a select request. The values for this
field are defined in the BPXYPFSI header file (see|Appendix D).

Function specifies the type of select that is being requested:

* Query (SEL_BATSELQ or SEL_BATPOLLQ): The PFS should perform the
following for query:

1. Check each of the files in the Batch-Select_Structure to see if any of the
specified events for a file can be satisfied immediately. If so, the BSIC
Response fields for those files are updated, and the status for any one of
them is returned in the Return_value parameter.

2. If there is no immediate status to report for any file in the
Batch-Select_Structure, the PFS records that a select is pending for each
of the files and sets up to invoke osi_selpost later, when one of the
selected events has occurred. The PFS returns a value of 0 in
Return_value after it has performed its internal processing to set up
select pending for each of the files.

The occurrence of an event and the subsequent invocation of osi_selpost
happen asynchronously on another thread or MVS task.

» Cancel (SEL_BATSELC or SEL_BATPOLLC): The PFS performs the
following for cancel:

1. If there is a pending select recorded for a file with the same SelectToken
that was specified on a previous query, it must be canceled in such a
way that osi_selpost is not invoked.

2. Check each of the files that are specified in the Batch-Select_Structure to
see if any of the specified events can be immediately satisfied. If at least
one file has status, that status is returned in the Return_value parameter,
and the status for each of the selected files is returned in the BSIC
Response fields for those files. If a file does not have status, a 0 is
returned in the BSIC Response field for that file. If none of the files have
status, 0 is returned in the Return_value parameter.

Batch-Select_Structure
Returned parameter
Type: BSIC
Length: Calculated: A BSIC header plus one BSIC entry
for each selected file.

74 z/0S V1R7.0 UNIX System Services File System Interface Reference

vfs_batsel

An area that contains information about the selected files and events. It
specifies which files and events are being selected, a SelectToken for each file,
a response area for status, and work area pointers for use by the PFS. This
area is mapped by the BSIC typedef in the BPXYPFSI header file (see

Appendix D). The events that can be selected for select requests are:
* SEL_READ: A read that is issued against this file will not block.

* SEL_WRITE: A write that is issued against this file will not block.

» SEL_XCEPT: An exceptional condition, as defined by the particular PFS, has
occurred. This could happen when a socket connection becomes inoperative
because of network problems, or when the other end of the socket is closed.

For poll requests, the events that can be selected are documented in other
manuals (for instance, [z20S XL C/C++ Run-Time Library Reference). The
mapping for these fields is defined in the BPXYPFSI header file (see Appendix
D).

For reading and writing, an error condition that would cause the read or write to
fail means that the operation will not block and therefore the file is ready for that
operation.

If one or more of the selected events are ready for any of the selected files, the
PFS immediately returns the status for one of the files in the Return_value
parameter, using the same bit mapping that is used in the BSIC Response field.

Reserved_2
Supplied parameter
Type: Integer
Length: Fullword

The value 0. This parameter is reserved, to maintain consistency with the
vn_select operation interface.

Return_value
Returned parameter
Type: Integer
Length: Fullword

The name of a fullword in which the vfs_batsel service returns the results of the
operation, as one of the following:

Return_value Meaning

-1 The operation was not successful. This causes
the whole select() or poll() request, as made
by the application program, to fail. The
Return_code and Reason_code values are
passed back to the application program.

0 There is no status for any of the files in the
Batch-Select_Structure, and the operation was
successful.

» For query (SEL_BATSELQ or
SEL_BATPOLLQ): The PFS is set up to
invoke osi_selpost when the requested event
occurs.

* For cancel (SEL_BATSELC or
SEL_BATPOLLC): The PFS has canceled
the request to invoke osi_selpost, or it was

Chapter 3. PFS operations descriptions 75

vfs_batsel

never set up to do so. The PFS will not
invoke osi_selpost after returning from this
call.

Greater than 0 Status is being returned in the
Batch-Select_Structure. The returned status in
this parameter has the same format as the
BSIC Response field.

» For query (SEL_BATSELQ or
SEL_BATPOLLQ): The operation is
complete and the PFS will not invoke
osi_selpost for this request.

» For cancel (SEL_BATSELC or
SEL_BATPOLLC): The PFS has canceled
the request to invoke osi_selpost if it had
been recorded.

Return_code
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_batsel operation stores the return code. The
vfs_batsel operation returns Return_code only if Return_value is —1. For a
complete list of supported return code values, see [z70S UNIX System Serviced
Messages and Codes,

Reason_code
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_batsel operation stores the reason code. The
vfs_batsel operation returns Reason_code only if Return_value is 1.
Reason_code further qualifies the Return_code value. These reason codes are
documented by the PFS.

Implementation notes
Overview of vfs_batsel processing

The vfs_batsel operation is identical to the vn_select operation, except that a
batch of files (multiple files) are selected using the Batch-Select_Structure,

instead of only one. For information on vn_select, refer to [‘'Select/poll
[processing” on page 45|

For more information on the semantics of this operation for a POSIX-conforming
PFS, refer to the publications mentioned in [‘Finding more information about|
[sockets” on page xvi|for the select function.

Specific processing notes

— On the query request, the PFS should save the BSIC SelectToken for each
file passed in the Batch-Select_Structure. This token is used both during the
cancel request (to delete the request) and when an event occurs that the
LFS should be informed of through the osi_selpost function.

— The PFS can use the BSIC entry workptr field in the Batch-Select_Structure
to save information about each file during a query request. It can also use
the BSIC header workptr field to save information about the entire query
(such as an address where it has stored information about this request) so
that it can be found during a cancel request. The data is used to correlate

76 z/0S V1R7.0 UNIX System Services File System Interface Reference

vfs_batsel

the cancel request with its matching query request. This provides an
alternative to scanning the PFS control blocks for matching SelectToken
values.

Serialization provided by the LFS: None
Security calls to be made by the PFS: None.

Related services

“vn_select — Select or poll on a vnode” on page 204{

Chapter 3. PFS operations descriptions 77

vfs_gethost

vfs_gethost — Get the socket host ID or name

Function
The vfs_gethost operation gets the ID or the name of the socket host.

Environment on entry and exit
See r‘Environment for PFS operations” on page 71.|

Input parameter format

vfs_gethost (Token structure,
0SI_structure,
Audit_structure
Name_length,
Name,
Return_value,
Return_code,
Reason_code)

Parameters

Token_structure
Supplied parameter
Type: TOKSTR
Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.
It contains the PFS’s initialization token and mount token. Refer to[‘LFS/PFS
icontrol block structure” on page 16|for a discussion of this structure, and to the
TOKSTR typedef in BPXYPFSI in|Appendix D, “Interface structures for Cl
|Ianguage servers and clients,” on page 503] for its mapping.

OSI_structure
Supplied and returned parameter
Type: osli
Length: Specified by OSl.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that
may be called by the PFS. See [Chapter 6| for more information.

It also contains MVS-specific information that needs to be passed to the PFS,
including SMF accounting fields, a work area, a recovery area, and an optional
pointer to an output ATTR structure. For more details on the OSI structure, see
fThe OSI structure” on page 19

This area is mapped by the OSI typedef in BPXYPFSI in

Audit_structure
Supplied parameter
Type: CRED
Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for
access checks and auditing. It is passed to most SAF routines that are invoked
by the PFS.

78 z/0S V1R7.0 UNIX System Services File System Interface Reference

vfs_gethost

Refer to [‘Security responsibilities and considerations” on page 12| for a
discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Name_length
Supplied and returned parameter
Type: Integer
Length: Fullword

A fullword that contains the length of the name. If this value is zero, the request
is for the host ID. Otherwise, this is the length of the buffer to hold the name.
On return, for host name, this field contains the length of the name plus one for

the null.
Name
Returned parameter
Type: String
Length: Specified by Name_length

An area that contains the name on return, if the host name was requested. This
name must be null-terminated by the PFS.

Return_value
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_gethost operation returns the results of the
operation, as one of the following:

Return_value Meaning

-1 The operation was not successful. The
Return_code and Reason_Code values must
be filled in by the PFS when Return_value is
-1.

0 The operation was successful (for getting the
host name).
Greater than 0 The operation was successful (for getting the

host ID) and is the identifier of the current host.

Return_code
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_gethost operation stores the return code. The
vfs_gethost operation returns Return_code only if Return_value is —1. For a
complete list of supported return code values, see |z/OS UNIX System Services|
IMessages and Codes

Reason_code
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_gethost operation stores the reason code. The
vfs_gethost operation returns Reason_code only if Return_value is 1.
Reason_code further qualifies the Return_code value. These reason codes are
documented by the PFS.

Chapter 3. PFS operations descriptions 79

vfs_gethost

Implementation notes
Overview of vfs_gethost processing

For more information on the semantics of this operation, refer to the publications
mentioned in [‘Finding more information about sockets” on page xvi| for the
gethostid() and gethostname() functions.

Specific processing notes

The PFS determines whether to get the host name or host ID depending on
Name_length. A zero length indicates a gethostid() request.

Serialization provided by the LFS

The vfs_gethost operation is invoked with an exclusive latch held on the domain
of the PFS.

Security calls to be made by the PFS: None.

80 2/0S V1R7.0 UNIX System Services File System Interface Reference

vfs_inactive

vfs_inactive — Batch inactivate vnhodes

Function
The vfs_inactive disassociates multiple vnodes from the PFS’s related inodes.

Environment on entry and exit
See r‘Environment for PFS operations” on page 71.|

Input parameter format

vfs_inactive (Token structure,
0SI_structure,
Audit_structure,
InactBuffer_structure,
InactBuffer_length,
Return_value,
Return_code,
Reason_code)

Parameters

Token_structure
Supplied parameter
Type: TOKSTR
Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.
It contains the PFS’s initialization token, and mount token. Refer to ['LFS/PFS]
icontrol block structure” on page 16|for a discussion of this structure, and to the
TOKSTR typedef in BPXYPFSI in|Appendix D, “Interface structures for Cl
|Ianguage servers and clients,” on page 503] for its mapping.

OSI_structure
Supplied and returned parameter
Type: oSl
Length: Specified by OSl.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that
may be called by the PFS. See [Chapter 6| for more information.

It also contains MVS-specific information that needs to be passed to the PFS,
including SMF accounting fields, a work area, a recovery area, and an optional
pointer to an output ATTR structure. For more details on the OSI structure, see
fThe OSI structure” on page 19

This area is mapped by the OSI typedef in BPXYPFSI in

Audit_structure
Supplied parameter
Type: CRED
Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for
access checks and auditing. It is passed to most SAF routines that are invoked
by the PFS.

Chapter 3. PFS operations descriptions 81

vfs_inactive

Refer to [‘Security responsibilities and considerations” on page 12| for a
discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

InactBuffer_structure
Supplied and returned parameter
Type: IAB
Length: Calculated: An IAB header plus one IAB entry
for each selected vnode.

The InactBuffer_structure contains information about the vfs and the vnodes
that are to be made inactive. This area is mapped by the IAB typedef in the
BPXYPFSI header file (Appendix D).

This structure contains the following fields:

Server_devno
A fullword that contains the device number of this vfs.

Each Server_devno is followed by an array of records containing the
following information:

Vnode_pointer A pointer to the vnode.

Pfs_token An eight-byte area that contains the pfs
token for this vnode.

Server_Vnode A pointer to the server’s vnode.

Return_Value A fullword in which the vfs_inactive

operation returns the results of the
operation for the vnode. A nonzero value
indicates that the operation was not

successful.
InactBuffer_length
Supplied parameter
Type: Integer
Length: Fullword

A fullword that supplies the length of the InactBuffer_structure.

Return_value
Returned parameter
Type: Integer
Length: Fullword

The name of a fullword in which the vfs_inactive service returns the results of
the operation, as one of the following:

Return_value Meaning

-1 The operation was not successful. The
Return_code and Reason_Code values must
be filled in by the PFS when Return_value is
-1

0 The operation was successful.

Return_code
Returned parameter
Type: Integer
Length: Fullword

82 z/0S V1R7.0 UNIX System Services File System Interface Reference

vfs_inactive

A fullword in which the vfs_inactive service stores the return code. The
vfs_inactive service returns Return_code only if Return_value is —1. For a
complete list of supported return code values, see |zZ0OS UNIX System Services
[Messages and Codes

The vfs_inactive service should support the following error value:

Return_code Explanation
EIO An 1/0 error occurred while accessing the file.

Reason_code

Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_inactive service stores the reason code. The
vfs_inactive service returns Reason_code only if Return_value is -1.
Reason_code further qualifies the Return_code value. These reason codes are
documented by the PFS.

Implementation notes

Related services

Overview of vfs_inactive processing

[‘Creating, referring to, and inactivating file vnodes” on page 31| provides an
overview of file inactivate processing.

Specific processing notes

— The Return_value for each vnode that is being made inactive is returned in
the InactBuf_structure while the results of the vfs_inactive service is provided
in the returned parameters.

— If a transient error, such as an I/O error, is encountered, the Return_value
should be set to —1. In this case, the request is retried later.

— If a permanent error that prevents the specified file or directory from being
used is encountered, Return_value should be set to zero. In this case, all
references to the file or directory are removed from the LFS and the request
is not retried. The PFS must not issue a signal-enabled wait during inactivate
processing. [‘Waiting and posting” on page 21| provides an overview of wait
and post processing.

— If afile’s link count is zero, but its open count is not zero, the PFS should
ignore the open count and delete the file’s data along with the file. This might
happen, for example, when an address space is canceled right after vn_open
finishes in the PFS, but before the LFS regains control.

Serialization provided by the LFS

The vfs_inactive operation is invoked with an exclusive latch held on the file
system containing the vnode.

Security calls to be made by the PFS: None.

“osi_wait — Wait for an event to occur” on page 431|

“vn_inactive — Inactivate a vnode” on page 151|

Chapter 3. PFS operations descriptions 83

vfs_mount

vfs_mount — Mount a file system

Function

The vfs_mount operation activates a file system and returns the root directory
vhode_token.

Environment on entry and exit
See [‘Environment for PFS operations” on page 71

Input parameter format

vfs_mount (Token_structure,
0SI_structure,
Audit_structure,
Mount_table,
Vnode_token,
Return_value,
Return_code,
Reason_code)

Parameters

Token_structure
Supplied parameter
Type: TOKSTR
Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.
It contains the PFS’s initialization token and mount token. Refer to|“LFS/PF

ontrol block structure” on page 16| for a discussion of this structure, and to the
TOKSTR typedef in BPXYPESI in|Appendix D, “Interface structures for

|Ianguage servers and clients,” on page 503] for its mapping.

OSI_structure
Supplied and returned parameter
Type: OSI
Length: Specified by OSl.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that
may be called by the PFS. See [Chapter 6| for more information.

It also contains MVS-specific information that needs to be passed to the PFS,
including SMF accounting fields, a work area, a recovery area, and an optional
pointer to an output ATTR structure. For more details on the OSI structure, see
fThe OSI structure” on page 19

This area is mapped by the OS| typedef in BPXYPFSI in[Appendix D}

Audit_structure
Supplied parameter
Type: CRED
Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for
access checks and auditing. It is passed to most SAF routines that are invoked
by the PFS.

84 z/0S V1R7.0 UNIX System Services File System Interface Reference

vfs_mount

Refer to [‘Security responsibilities and considerations” on page 12| for a
discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Mount_table
Supplied and returned parameter
Type: Structure
Length: Specified by the MTAB.mtab_hdr.cblen field

An area that is used to pass the file system name, mount options, and
PFS-specific parameters to the vfs_mount operation. This area is mapped by
the MTAB typedef in the BPXYPFSI header file (see|Appendix D).

Vnode_token
Returned parameter
Type: Token
Length: 8 bytes

An area in which the vfs_mount service returns the vnode_token for the root
directory of the mounted file system.

Return_value
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_mount service returns the results of the operation,
as one of the following:

Return_value Meaning

-1 The operation was not successful. The
Return_code and Reason_Code values must
be filled in by the PFS when Return_value is
-1.

0 The operation was successful.

Return_code
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_mount service stores the return code. The
vfs_mount service returns Return_code only if Return_value is —1. See
[UNIX System Services Messages and Coded for a complete list of supported
return code values.

The vfs_mount operation should support at least the following error value:

Return_code Explanation
EEXIST A file system with the same name has already been
mounted.

Reason_code
Returned parameter
Type: Integer
Length: Fullword

Chapter 3. PFS operations descriptions 85

vfs_mount

A fullword in which the vfs_mount service stores the reason code. The
vfs_mount service returns Reason_code only if Return_value is -1.
Reason_code further qualifies the Return_code value. These reason codes are
documented by the PFS.

Implementation notes
Overview of vfs_mount processing

[‘Mounting file systems” on page 27| provides an overview of file system mount
processing.

Specific processing notes
— The PFS is responsible for the following fields:

token_structure.ts_mount
The PFS should fill in this field with a token that it can use to locate the
PFS structures that are associated with the mounted file system. On
subsequent calls for files within this file system, the token_structure value
contains the token set here by the PFS.

MTAB.mt_filesys or MTAB.mt_ddname
On entry to the PFS, the field MTAB.mt_filesys contains either the blank
padded file system name or nulls. On a successful return, if this field is
not nulls and it represents an MVS data set name, the field
MTAB.mt_ddname should be filled in by the PFS with the dynamically
allocated ddname.

If the field MTAB.mt_filesys is nulls on entry to the PFS, the field
MTAB.mt_ddname contains the ddname of an allocated MVS data set for
the file system. On a successful return, the field MTAB.mt_filesys should
be filled in by the PFS with the MVS data set name that is specified on
the DD statement.

If every file in this file system has the same values, the PFS is responsible
for filling in the MTAB with the following pathconf values (see the IEEE
POSIX 1003.1 specification for further details):

MTAB.mt_linkmax LINK_MAX
MTAB.mt_namemax NAME_MAX
MTAB.mt_notrunc POSIX_NO_TRUNC
MTAB.mt_chownrstd POSIX_CHOWN_RESTRICTED

Alternatively, the PFS may meet this responsibility by supporting
vn_pathconf.
— The PFS must not issue a signal-enabled wait under the thread invoking
vfs_mount.
- |“Waiting and posting” on page 21| provides an overview of wait and post
processing.
— If the mount is to be completed asynchronously:
- The PFS must set MTAB.mt_asynchmount on before returning to the LFS.
The LFS in turn sets MTAB.mt_asynchmount on before calling the PFS for
the second call to vfs_mount.

- When the mount operation has completed, the PFS indicates this to the
LFS by calling osi_mountstatus.

86 2/0S V1R7.0 UNIX System Services File System Interface Reference

Related services

vfs_mount

- The vnode_token must be returned on at least one of the calls to
vfs_mount. However, if the PFS chooses to return a nonzero vnode_token
on each call, it must be the same token.

- If asynchronous mount processing in the PFS fails, the PFS should call
osi_mountstatus to drive the second call to vis_mount. When called by the
LFS to complete the mount, the PFS should then return the error to the
LFS, which deletes all references to the incompletely mounted file system.
No call to vfs_umount results.

- If MTAB.mt_synchonly is set on in the Mount_table, vfs_mount must either
complete the mount synchronously or reject the request, returning EINVAL.
MTAB.mt_synchonly is always set on for the system root and for mounts
that result from MOUNT statements in BPXPRMxx that specify DDNAME.

- Vfs operations, such as vfs_umount and vfs_statfs, may need to be
handled during an asynchronous mount.

— Itis not necessary for the PFS to perform security checking during mount
processing, because the LFS has already performed all necessary checking.

— The PFS returns an aggregate name, if it has one, from the vfs_mount
operation. If mt_aggnameptr is not zero, it points to mt_aggname, which is a
45-byte area where the PFS can put the aggregate name. If the PFS may
run on an earlier release, it should test for mt_hdr.cblen > 0x80 before it tests
mt_aggnameptr. If read-only mounts of file systems with the same aggregate
name should be function shipped to the owning system rather than locally
mounted, mt_aggattachrw should be turned on. If subsequent recovery of this
mount should not attempt to attach the aggregate before issuing the
vfs_mount, mt_agghfscomp should be turned on.

Serialization provided by the LFS

The vfs_mount operation is invoked with an exclusive latch held on the file
system, to ensure that no other operations are attempted upon the file system
being mounted. In addition, the LFS ensures that all vfs_mount and vfs_umount
calls are serialized.

Note: However, if the mount is asynchronous, there is a time between the start
and the end of the mount in which the latch is not held.

Security calls to be made by the PFS: None.

“vfs_unmount — Unmount a file system” on page 106

“vn_pathconf — Determine configurable pathname values” on page 173

“osi_getvnode — Get or return a vnode” on page 385|

“osi_ctl — Pass control information to the kernel” on page 379

“osi_wait — Wait for an event to occur’ on page 431

Chapter 3. PFS operations descriptions 87

vfs_network

vfs_network — Define a socket domain to the PFS

Function

The vfs_network operation is called as a result of the NETWORK statement in the
BPXBPRMxx parmlib member that is used to start z/OS UNIX. It defines information
about a socket domain to the PFS that is supporting it.

Environment on entry and exit
See ['Environment for PFS operations” on page 71|

Input parameter format

vfs_network (Token_structure,
0SI_structure,
Audit_structure,
Network_structure,
Return_value,
Return_code,
Reason_code)

Parameters

Token_structure
Supplied parameter
Type: TOKSTR
Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure represents the file system (VFS) that is being operated on.
It contains the PFS’s initialization token and mount token. Refer to[‘LFS/PFS
fcontrol block structure” on page 16| for a discussion of this structure, and to the
TOKSTR typedef in BPXYPFSI in|Appendix D, “Interface structures for C|
|Ianguage servers and clients,” on page 503 for its mapping.

OSI_structure
Supplied and returned parameter
Type: oSl
Length: Specified by OSl.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that
may be called by the PFS. See |Chapter 6| for more information.

It also contains MVS-specific information that needs to be passed to the PFS,
including SMF accounting fields, a work area, a recovery area, and an optional
pointer to an output ATTR structure. For more details on the OSI structure, see
The OSI structure” on page 19

This area is mapped by the OSI typedef in BPXYPFSI in

Audit_structure
Supplied parameter
Type: CRED
Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for
access checks and auditing. It is passed to most SAF routines that are invoked
by the PFS.

88 2/0S V1R7.0 UNIX System Services File System Interface Reference

vfs_network

Refer to [‘Security responsibilities and considerations” on page 12| for a
discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Network_structure
Supplied parameter
Type: NETW
Length: Specified by netw.netw_hdr.cblen

The Network_structure is an area, built during initialization, that contains the
information that is included on the NETWORK statement—the socket domain
name and number and the maximum number of sockets. This area is mapped
by the NETW typedef in the BPXYPFSI header file (see[Appendix D).

Return_value
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_network operation returns the results of the
operation as one of the following:

Return_value Meaning

-1 The operation was not successful. The
Return_code and Reason_Code values must
be filled in by the PFS when Return_value is
-1.

0 The operation was successful.

Return_code
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_network operations stores the return code. The
vfs_network operation returns Return_code only if Return_value is —1. For a
complete list of supported return code values, see |[z70S UNIX System Serviced
[Messages and Codes

The vfs_network operation should support at least the following error values:

Return_code Explanation
EAFNOSUPPORT The address family that was specified in the
Network_structure is not supported by this PFS.

Reason_code
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_network operation stores the reason code. The
vfs_network operation returns Reason_code only if Return_value is -1.
Reason_code further qualifies the Return_code value. These reason codes are
documented by the PFS.

Implementation notes
Overview of vfs_network processing
For information concerning the vfs_network call, refer to [“Activating a domain’]

Chapter 3. PFS operations descriptions 89

vfs_network

Specific processing notes

The PFS should ensure that it does not do any blocking waits during its
processing.

The PFS is responsible for returning two fields set so that they can be used for
subsequent processing. These fields are:

NETW.nt_localremote An indication of whether the communication
done by this PFS is local or remote. Turn the bit
on to indicate remote communication.

TOKSTR.ts_mount The 8-byte token that is returned by the PFS
and used on all subsequent calls to this PFS.
This token is used by the PFS to locate the PFS
structures that are associated with this network.
Serialization provided by the LFS

The logical file system ensures that only one vfs_network statement is
processed at a time. Further, the PFS does not receive any socket requests
specifying this domain until the vfs_network operation completes.

Security calls to be made by the PFS: None.

90 2/0S V1R7.0 UNIX System Services File System Interface Reference

vis_pfsctl

vis_pfsctl — PFS control

Function
The vfs_pfsctl operation passes control information to the PFS.

Environment on entry and exit
See r‘Environment for PFS operations” on page 71.|

Input parameter format

vfs _pfsctl (Token structure,
0SI_structure,
Audit_structure,
Command,
User_I0_structure,
Return_value,
Return_code,
Reason_code)

Parameters

Token_structure
Supplied parameter
Type: TOKSTR
Length: Specified by TOKSTR.ts_hdr.cblen.

The Token_structure contains the PFS’s initialization token. Refer to[‘LFS/PFS
icontrol block structure” on page 16|for a discussion of this structure, and to the
TOKSTR typedef in BPXYPFSI in|Appendix D, “Interface structures for Cl
language servers and clients,” on page 503] for its mapping.

OSI_structure
Supplied and returned parameter
Type: osli
Length: Specified by OSl.osi_hdr.cblen.

The OSI_structure contains information that is used by the OSI operations that
may be called by the PFS. See [Chapter 6| for more information.

It also contains MVS-specific information that needs to be passed to the PFS,
including SMF accounting fields, a work area, a recovery area, and an optional
pointer to an output ATTR structure. For more details on the OSI structure, see
[The OSI structure” on page 19/

This area is mapped by the OSI typedef in BPXYPFSI in

Audit_structure
Supplied parameter
Type: CRED
Length: Specified by CRED.cred_hdr.cblen.

The Audit_structure contains information that is used by the security product for
access checks and auditing. It is passed to most SAF routines that are invoked
by the PFS.

Chapter 3. PFS operations descriptions 91

vis_pfsctl

Refer to [‘Security responsibilities and considerations” on page 12| for a
discussion of security processing, and to the CRED typedef in BPXYPFSI in

Appendix D for the mapping of this structure.

Command
Supplied parameter
Type: Integer
Length: Fullword

The command indicates the function that is to be performed by the PFS.

User_lO_structure
Supplied parameter
Type: Structure
Length: Specified by the UIO.u_hdr.cblen field

An area that is to be used by the vfs_pfsctl service to determine the buffer
address, length, storage key, and other attributes of the argument that is
passed by the caller of pfsctl (BPX1PCT). This area is mapped by the UIO
typedef in the BPXYVFSI header file (see [Appendix D).

Return_value
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_pfsctl operation returns the results of the operation,
as one of the following:

Return_value Meaning

-1 The operation was not successful. The
Return_code and Reason_Code values must
be filled in by the PFS when Return_value is
-1.

0 The operation was successful.

0 or greater Can be used by the PFS to return the length of
the information that is being returned in a
modified argument buffer.

Return_code
Returned parameter
Type: Integer
Length: Fullword

A fullword in which the vfs_pfsctl operation stores the return code. The
vfs_pfsctl operation returns Return_code only if Return_value is —-1. For a
complete list of supported return code values, see |z/OS UNIX System Services|
IMessages and Codes

The vfs_pfsctl operation should support at least the following error values when
the situation applies:

Return_code Explanation

EMVSPARM The command or argument parameters are incorrect.

EFAULT The address of the argument buffer is incorrect, or the user
is not authorized to read or write to that location.

EINTR The service was interrupted by a signal.

EPERM Permission was denied. The calling program does not have

sufficient authority for the service that was request