Programming Reference

Version 2 Release 1.3

Programming Reference

Version 2 Release 1.3

Before using this information and the product it supports, be sure to read the general information under "Notices" on page xiii]

Second Edition (December 1996)

This edition applies to Version 2 Release 1 Modification 3 of the IBM licensed program GDDM-PGF, program number 5668-812, to GDDM-PGF as an optional feature of OS/390 (program number 5645-001), and to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Consult the latest edition of the applicable IBM system bibliography for current information on this product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the addresses given below.

At the back of this publication is a page titled "Sending your comments to IBM". If you want to make comments, but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.
When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

This publication contains sample programs. Permission is hereby granted to copy and store the sample programs into a data processing machine and to use the stored copies for internal study and instruction only. No permission is granted to use the sample programs for any other purpose.
© Copyright International Business Machines Corporation 1981, 1996. All rights reserved.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Notices xiii
Programming interface information xiii
Trademarks and service marks xiv
Preface XV
What this book is about XV
Who this book is for XV
What you need to know xv
How to use this book xV
Book structure XV
Special note for online users xv
Latest GDDM information xvi
GDDM publications xvi
Summary of Changes xvii
Changes for Version 2 Release 1 Modification 3 xvii
Summary of amendments for GDDM-PGF Version 2 Release 1 Modification 2 xvii
Changes to GDDM Series for Version 3 Release 1 xvii
Changes to GDDM-PGF xvii
Summary of amendments for GDDM-PGF Version 2 Release 1 Modification 1 xvii
Changes to GDDM Series for Version 2 Releases 2 and 3 xvii
Changes to PGF xviii
Changes to this manual xviii
Chapter 1. Introduction 1
Relation to GDDM base calls 1
Types of chart and their uses 1
Line graphs and scatter plots 3
Surface charts 3
Histograms 4
Bar charts (column charts) 4
Pie charts 4
Venn diagrams 5
Polar charts (radar or star charts) 5
Tower charts (skyscraper or Manhattan charts) 5
Table charts 5
Getting data for a chart 5
Calling the ICU from an application program 6
Drawing a chart with the PG routines 6
Calling the Vector Symbol Editor from an application program 6
Calling the ISE from an application program 7
Chapter 2. Invoking the Interactive Chart Utility (ICU) 9
Summary of additional function 9
Creating charts from a program: the CSxxxx calls 10
Managing an ICU session 10
Setting chart fields 10
Querying chart fields 10
Using the directory 11
An outline series of calls 11
Relating calls to ICU panels 11
The CHART call 12
Which call to use 12
Things to consider when calling the ICU 12
Free (paired) and tied (non-paired) data 13
Missing data values 13
Symbol set usage with the ICU 14
Example programs 15
Chapter 3. Using the Presentation Graphics routines 21
Meaning of PG routine names 21
Special conventions in PG routines 21
How to draw a chart with the PG routines 21
States 1 and 2 and moving between them 22
What you can do in state-1 23
What you can do in state-2 23
Resetting the processing state 23
Chapter 4. Presentation graphics and chart routines 25
Invocation of PG and chart routines 25
Syntax conventions 25
Data types required for parameters 26
Language considerations 26
COBOL format 26
Assembler language linkage 26
PL/I and C/370 declarations 26
VS/FORTRAN character strings 27
APL 27
IBM BASIC 27
Alphabetic list of presentation graphics routines 28
CHAATT 28
CHAREA 28
CHBAR 29
CHBARX 31
CHBATT 32
CHCGRD 32
CHCOL 33
CHCONV 34
CHDATT 35
CHDCTL 36
CHDRAX 37
CHDTAB 37
CHFINE 38
CHGAP 39
CHGATT 39
CHGGAP 40
CHHATT 41
CHHEAD 42
CHHIST 43
CHHMAR 44
CHKATT 45
CHKEY 46
CHKEYP 47
CHKMAX 48
CHKOFF 49
CHLATT 50
CHLC 51
CHLT 52
CHLW 52
CHMARK 53
CHMISS 53
CHMKSC 54
CHNATT 54
CHNOFF 56
CHNOTE 56
CHNUM 59
CHPAT 60
CHPCTL 61
CHPEXP 61
CHPIE 62
CHPIER 63
CHPLOT 64
CHPOLR 65
CHQARE 66
CHQPOS 66
CHQRNG 67
CHRNIT 68
CHSET 68
CHSSEG 78
CHSTRT 78
CHSURF 79
CHTATT 80
CHTERM 81
CHTHRS 81
CHTOWR 82
CHTPRJ 83
CHVATT 84
CHVCHR 86
CHVDIG 86
CHVENN 87
CHVMAR 88
CHXDAY 88
CHXDLB 89
CHXDTM 89
CHXINT 90
CHXLAB 90
CHXLAT 91
CHXMTH 92
CHXRNG 93
CHXSCL 93
CHXSEL 94
CHXSET 94
CHXTAT 97
CHXTIC 99
CHXTTL 100
CHYDAY 100
CHYDTM 101
CHYINT 101
CHYLAB 102
CHYLAT 103
CHYMTH 104
CHYRNG 105
CHYSCL 105
CHYSEL 106
CHYSET 106
CHYTAT 109
CHYTIC 110
CHYTTL 111
CHZDLB 112
CHZGAP 112
CHZLAT 113
CHZRNG 114
CHZSET 115
CHZTIC 117
Alphabetic list of chart calls 118
CHART 118
CSCCRT 127
CSCDEL 127
CSCHA 127
CSDEL 130
CSDIR 131
CSFLT 132
CSINT 137
CSLOAD 150
CSNUM 151
CSQCHA 153
CSQCHL 154
CSQCS 154
CSQDIR 155
CSQFLT 156
CSQINT 157
CSQNUM 158
CSQUID 158
CSQXDT 159
CSQXSL 159
CSQYDT 160
CSQZDT 160
CSQZSL 161
CSSAVE 161
CSSICU 162
CSXDT 167
CSXSL 168
CSYDT 168
CSZDT 169
CSZSL 169
VSSE 170
GDDM-PGF APL codes in numeric order 171
Chapter 5. Using PGF under various subsystems 173
The Interactive Chart Utility 173
The Vector Symbol Editor 173
Data sets and file processing 173
CICS 173
IMS 174
TSO 174
VM/SP CMS 174
Appendix A. Sample programs 175
Compiling the programs 175
Link-editing the programs 176
Executing the programs 177
ADMUSC5 - COBOL program to draw a simple histogram 178
ADMUSF5 - FORTRAN program to draw a simple histogram 183
ADMUSP5 - PL/l program to draw a simple histogram 185
ADMUSP5 - IMS PL/I program to draw a simple histogram 188
ADMUSC6 - COBOL program that invokes the chart utility to plot data 191
ADMUSF6 - FORTRAN program that invokes the chart utility to plot data 194
ADMUSP6 - PL/I program that invokes the chart utility to plot data 197
Appendix B. ADMUCDSO 201
Chart utility with pre-opened device sample module 201
Parameters 201
Messages 202
Invocation 202
ADMUCIMV and ADMUCIMT 202
Appendix C. Colors, line types, markers, and shading patterns 209
Appendix D. Interactive Chart Utility panels 211
GDDM glossary 221
Index 231

Figures

1. Line graph 2
2. Surface chart 2
3. Histogram 2
4. Bar chart 2
5. Pie chart 2
6. Venn diagram 2
7. Mixed chart 3
8. Polar chart 3
9. Tower chart 3
10. Table chart 3
11. Program to display line graphs using the ICU 17
12. Program to send a chart to a page printer 18
13. Naming system used for PG routines 21
14. Specify gaps between bars with CHGAP and CHGGAP 41
15. An example of a state-1 y datum line 101
16. Parameters passed in a CHART call 120
17. Line type numbers 209
18. Marker numbers 209
19. Shading pattern numbers 210

Tables

1. Cross reference for the main CSxxxx calls 11
2. Chart definition marker types 15
3. Valid type settings 129
4. PGF data set characteristics for CICS 173
5. PGF default DBD names for IMS 174
6. PGF data set characteristics for TSO 174
7. PGF file characteristics for VM/SP CMS 174
tables

The following paragraph does not apply to any country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement may not apply to you.

References in this book to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any of the intellectual property rights of IBM may be used instead of the IBM product, program, or service. The evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, is the responsibility of the user.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact Laboratory Counsel, Mail Point 151, IBM United Kingdom Laboratories, Hursley Park, Winchester, Hampshire SO21 2JN, England. Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

Programming interface information

This book is intended to help you to write and run GDDM application programs that use the GDDM-PGF program product.

This manual also documents General-use Programming Interface and Associated Guidance Information provided by GDDM-PGF Version 2 Release 1 Modification 3.

General-use programming interfaces allow the customer to write programs that obtain the services of GDDM.

General-use Programming Interface and Associated Guidance Information is identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:
\square General-use programming interface

General-use Programming Interface and Associated Guidance Information...
\square End of General-use programming interface \qquad

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks of IBM Corporation in the United States or other countries:
APL2
CICS
GDDM
IBM
OS/2
PS/2

OS/390

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.
Microsoft, Windows and the Windows 95 Logo are trademarks or registered trademarks of Microsoft Corporation.

Preface

What this book is about

This manual provides information needed to use the Graphical Data Display Manager Presentation Graphics Facility (GDDM-PGF) licensed program.

Who this book is for

The material is intended primarily for application programmers, although some of the information is also applicable to system programmers.

What you need to know

Before using this manual, you are recommended to read the GDDM Base Application Programming Guide, which describes concepts and techniques for general graphics and alphanumerics programming. For information on presentation graphics programming, see the GDDM-PGF Application Programming Guide. Both manuals give examples of complete application programs.

How to use this book

You will need to use only part of this manual, depending on the task you have to do.

Application programmers will need to understand the concepts introduced in Chapters 2 and 3 , and will use Chapters 1, 4, and 5 for reference.

System programmers will need to read Chapters 1 and 3 to get an overview of GDDM-PGF and how it operates.

Book structure

The manual consists of five chapters and four appendixes:

- Chapter 1 on page 1 provides a general description of GDDM-PGF and its relation to the GDDM family of licensed programs.
- Chapter 2 on page 9 ntroduces the Interactive Chart Utility (ICU) and describes the two programming interfaces to it: the new CSxxxx calls and the old CHART call.
- Chapter 3 on page 21 introduces the basic concepts of the GDDM Presentation Graphics routines (GDDM-PG routines).
- Chapter 4 on page 25 ists the GDDM-PGF function calls (both CHxxxx and CSxxxx), with their syntax and parameters.
- Chapter 5 on page 173 lescribes how GDDM-PGF application programs are run on various operating systems.
- Appendix A on page 175 brovides information on sample programs.
- Appendix B on page 201 describes the Chart Utility sample module.
- Appendix C on page 209 shows tables of colors, line types, markers, and shading patterns.
- Appendix D on page 211 shows the ICU panels with their Version 2 Release 1 defaults.

Special note for online users

The pictures in this book may differ from those in the online version because of the characteristics of your graphics display. In the online version, the pictures show the colors described in the text. The representations of line types, shading patterns, and symbols vary depending on your graphic display, but they are usually more accurate in the online version than in this book.

preface

Latest GDDM information

For up-to-date information on GDDM products, check our Home Page on the Internet at the following URL:
http://www.hursley.ibm.com/gddm/
You might also like to look at the IBM Software Home Page at:
http://www.software.ibm.com

GDDM publications

$\begin{aligned} & \text { GDDM } \\ & \text { Base } \end{aligned}$	GDDM Base Application
	Programming Guide SC33-0867
	GDDM Base Application
	Programming Reference, SC33-0868
	GDDM Diagnosis, SC33-0870
	GDDM General Information,
	GC33-0866
	GDDM/MVS Program Directory
	GC33-1801
	GDDM/VM Program Directory,
	GC33-1802
	GDDM/VSE Program Directory,
	GC33-1803
	GDDM Messages, SC33-0869
	GDDM Series Licensed Program
	Specifications, GC33-0876
	GDDM System Customization and
	Administration SC33-0871
	GDDM User's Guide, SC33-0875
	GDDM Using the Image Symbod
	Editor SC33-0920
GDDM-GKS	GDDM-GKS Programming Guide
	and Reference SC33-0334
GDDM-IMD	GDDM Interactive Map Definition,
	SC33-0338
GDDM-IVU	GDDM Image View Utility
	SC33-0479

GDDM-PGF GDDM-PGF Application
Programming Guide SC33-0913
GDDM-PGF Programming
Reference SC33-0333
GDDM-PGF Interactive Chart Utility
SC33-0328
GDDM-PGF Vector Symbol Editor,
SC33-0330
GDDM-PGF OPS User's Guide SC33-1776

GDDM/MVS is an element of OS/390.
GDDM-REXX/MVS and GDDM-PGF are optional features of $\mathrm{OS} / 390$. For a complete list of the publications associated with OS/390, see the OS/390 Information Roadmap, GC28-1727.

Summary of Changes

Changes for Version 2 Release 1 Modification 3

There are no changes to the functions nor how you use them in Version 2 Release 1 Modification 3. Editorial changes have been made to remove some redundant material.

Summary of amendments for GDDM-PGF Version 2 Release 1 Modification 2

Changes to GDDM Series for Version 3 Release 1

A complete list of the changes to the GDDM Base programs is given in the GDDM General Information book. The main changes are:

- GDDM-OS/2 Link, GDDM-PCLK, and GDDM-REXX have been combined with GDDM Base to provide a single package, so that GDDM is easier to install and maintain.
- Changes have been made to GDDM's screen-redrawing functions to improve application-response time.
- Several enhancements have been made to GDDM's printing and plotting support, including support for more devices, the ability to store plotter output in IBM-GL files, and support for plots up to 11.862 m (38.91 ft .) in length.
- A number of usability enhancements have been made to the GDDM-OS/2 Link and GDDM-PCLK components of GDDM Base, and to the printing interfaces of User Control and the GDDM-PGF ICU.
- The User Control interface now allows both image and graphics to be panned and zoomed.
- C/370 is supported, and GDDM-REXX can be used in the MVS/TSO environment.
- A new, Mincho double-byte character set is provided, and multiple double-byte character sets can be installed and used.
- The GDDM library has been restructured, is smaller, and the GDDM Base library is available in soft-copy format.

Changes to GDDM-PGF

- GDDM-PGF calls can be issued from applications written in C/370.
- A new book (the GDDM-PGF Application Programming Guide) has been added to the GDDM-PGF library. This was previously published as volume 2 of the GDDM Application Programming Guide.
- Enhancements have been made to the printing interface of GDDM-PGF ICU. In particular, the user is no longer required to know the name of a printer or plotter in order to be able to print or plot a chart. Instead, the user can enter a "?" in the printer field and be presented with a list of devices. Also, output can be directed to family-4 devices (advanced-function printers) from the ICU if appropriate nickname statements are coded.

Summary of amendments for GDDM-PGF Version 2 Release 1 Modification 1

Changes to GDDM Series for Version 2 Releases 2 and 3

A complete list of changes to the base GDDM programs is given in the GDDM Release Guide. The main additions are:

- New GDDM Series licensed programs:
- GDDM-PCLK, which lets you use GDDM application programs on IBM PCs using PC DOS.
- GDDM-OS/2 Link, which lets you access GDDM application programs from IBM workstations, including PS/2s using OS/2 Extended Edition.
- GDDM/VMXA, which extends Base support to XA environments under VM.
- GDDM-CSPF (Central Slide and Plot Facility), which lets you run plotters in an unattended service rôle, and to improve charts and similar pictures for business presentations.
- GDDM-REXX, which lets you include GDDM calls in REXX EXECs under VM.
- GDDM-IVU (Image View Utility), which lets you create, edit, and print images.
- GDDM-GKS, which is an application programming interface for the Graphical Kernel System standard.
- Support for new devices, including some ASCII graphics devices, and more IBM displays, printers, and plotters.

Changes to PGF

There are no functional changes to GDDM-PGF since Version 2 Release 1 Modification 0 . The changes for Version 2 Release 1 Modification 1 incorporate service updates and a repackaging of the modules so that no GDDM Base modules are shipped with GDDM-PGF.

Changes to this manual

The only changes to this manual affect the definition of programming interfaces.

Chapter 1. Introduction

The Presentation Graphics Facility (PGF) of the IBM licensed program. Graphical Data Display
Manager (GDDM) helps you to draw business charts in a simple way, for displaying on a screen or for printing. An introduction to GDDM, including PGF, is given in the GDDM General Information book.

PGF has three levels of function:

- The Interactive Chart Utility (ICU) that can be used interactively by anyone to create charts at the terminal. It can be started from:
- The terminal. When the ICU is called from the terminal, it runs as a stand-alone utility; there is usually no need for DP specialists to be involved. Stand-alone use is described in the GDDM-PGF Interactive Chart Utility book.
- An application program. When the ICU is called from an application program using the CSxxxx calls, all the functions are available to the programmer.
- The Presentation Graphics (PG) routines; these must be called from an application program. The PG routines (CHxxxx calls) are more flexible than the ICU, and allow you to create more complex charts, but they do not have any interactive facilities.
- The Vector Symbol Editor, which can be started from a terminal or from an application program.
This manual gives a comprehensive description of the calls you can make from an application program to the ICU and the PG routines.

Only the call to the Vector Symbol Editor will be discussed in this manual. For full details see the GDDM-PGF Vector Symbol Editor book. GDDM also provides an Image Symbol Editor, which is described in the GDDM Using the Image Symbol

Editor book. You can use these editors to produce or modify symbols for annotating PGF charts.

This manual is intended as a reference document rather than as an introduction or guide to PGF. If you are unfamiliar with programming using GDDM, you may prefer to read the GDDM Base Application Programming Guide, which introduces the facilities of GDDM, and the GDDM-PGF Application Programming Guide, which describes how the GDDM-PGF API calls are used, first.

GDDM supports a variety of terminals and printers, and runs under several different software subsystems; these are summarized in the GDDM General Information book.

Relation to GDDM base calls

The GDDM Base product provides a call interface to an extensive set of graphics and alphanumeric functions. You can use these calls in application programs together with the ICU and PG routines. For example, GDDM Base calls might handle ordinary alphanumeric fields on one part of the page, while calls to the ICU or PG routines draw charts on another. If the page is a mapped one, charts can be drawn in the graphic area. The GDDM Base calls are described in the GDDM Base Application Programming Reference book. The compatibility with GDDM Base calls means that the ICU and the PG routines can be used together with BMS under CICS.

Types of chart and their uses

This section gives a brief description of the various types of chart produced by the ICU and the PG routines. The basic types available by both methods are shown in figures 1 to 10 .

Figure 1. Line graph

Figure 2. Surface chart

Figure 3. Histogram

Figure 4. Bar chart

Figure 5. Pie chart

Figure 6. Venn diagram

Figure 7. Mixed chart

Figure 8. Polar chart

Line graphs and scatter plots

Line graphs represent values as lines joining a series of points. By showing the points without the lines, scatter plots can be produced. On ordinary line graphs, the points can be joined by curves or straight lines, and the points themselves can be shown or omitted.

Line graphs are the most useful general purpose charts produced by the ICU. They are good for comparing accurately a number of sets of data. However, they do not give the same immediate visual impression of the sizes and trends of data as surface charts, bar charts, and pie charts.

Line graph totals can be absolute or relative. With absolute data, the y values are plotted as their

Figure 9. Tower chart

	198219831984198519861987
$\begin{aligned} & \text { North } \\ & \text { South } \end{aligned}$	5,000 5,2306,0106,050 6,000 6,120 4,300 4,600 4,520 4,670 4,630 4,540
$\begin{aligned} & \text { Eost } \\ & \text { West } \end{aligned}$	$\begin{array}{llll} 3,670 & 3,290 & 4,100 & 4,320 \\ 4,130 & 4,100 \\ 2,560 & 1,900 & 2,190 \\ 2,210 & 2,340 \\ 2,290 \end{array}$

Figure 10. Table chart absolute values. With relative data, the y values are relative to the y values of the previous data group.

Surface charts

Surface charts are similar to line graphs, but the areas under the lines are shaded. They emphasize the relative proportions of the sets of data. They show the value of each particular set of data and the total value of all the sets of data together.

Surface chart totals can be absolute or relative. With absolute data, the y values are plotted as their absolute values. With relative data, the y values are relative to the y values of the previous data group.

Histograms

A histogram represents y values across a range of x values. The width of a histogram bar is relevant, whereas that of a bar chart is not.

The general form of histogram requires two sets of x data: the "range-starts" and "range-ends."
These denote the left and right edges of each bar and therefore its width. The bars do not have to be contiguous along the x axis.

Histogram totals can be absolute or relative. With absolute data, the y values are plotted as their absolute values. With relative data, the y values are relative to the y values of the previous data group.

Types of histogram

A histogram produced by the ICU can have the y values represented by the areas of the bars or by bar height alone. The area option should be used if the x ranges are different for different steps. This normalizes the y values.

Histograms produced by the PG routines may have y values represented by bar height only.

Bar charts (column charts)

Bar charts show y values as a number of bars at specified points along the x axis.

Bar charts provide a powerful visual way of showing frequent changes in y values over a period or range. The use of multiple bars can show comparisons between different sets of data. When the bars are stacked, they can be used to show proportions of sets of data within a whole, and the changes both in the value of the sets of data and in the value of the whole over the x-axis range.

For the difference between bar charts and histograms, see the description of histograms.

Types of bar chart

When a bar chart has more than one component, the bars of the various components may be
placed side by side or stacked on top of one another. In the latter case, relative data is normally used, as it is for all stacked chart types.

You also have options to control the horizontal space between bars (removing it completely if you wish), to request bar values to be displayed on top of each bar, and to control methods of shading. If you want a horizontal set of bars, you must reverse the orientation of the axes.

Pie charts

A pie chart is one or more circles (or pies) that are cut or sliced to represent the proportions of a whole that are made up by various sets of data.

Pie charts give an immediate visual impression of the proportions of various sets of data within a whole. The use of more than one pie chart enables changes in the makeup of a whole to be compared.

To increase the visual impression, PGF lets you create three-dimensional pie charts, where the complete pie can be shown to have width and thickness. In addition, individual slices can be exploded (that is, moved out from the rest of the pie).

The size of each slice, expressed as a percentage, may be attached to the slice.

Generally, the maximum number of pie charts that can be shown at one time depends on the display device being used. The usual number is four or five. If more than one pie chart is being shown, you may prefer to have labels in a legend and not attached to the slices.

Types of pie chart

PGF allows you to specify your data either as absolute values or as percentages. If absolute values are used, PGF treats the total number entered in a data group as making up 100\%. Every pie is therefore complete.

For percentages, if the total is less than 100, part of the pie is not drawn. If the total is more than 100 , the pie is not drawn and an error message is given.

If you are showing more than one pie on the chart, the pies can be displayed vertically by changing the x-axis orientation to vertical. This option is preferable when there is more than one pie to display.

Venn diagrams

Venn diagrams represent two populations and an overlap. They give an immediate impression of the relative sizes of the two populations, and the proportion that the overlap represents in each population. The actual number in any population can be shown only by annotation.

When produced using the ICU, a Venn diagram represents the first three y values of the first data group.

Polar charts (radar or star charts)

Polar charts are like circular line graphs. They are sometimes called star or radar charts. They are most useful for displaying cyclical data, if the x axis represents a single continuous variable. A patient's temperature taken at intervals over a day would be a typical example.

Another important use is for comparing two or more entities, such as companies, on several different parameters, such as revenue, profit, capital invested, and so on.

Polar chart totals can be absolute or relative. With absolute data, the y values are plotted as their absolute values. With relative data, the y values are relative to the y values of the previous data group.

Tower charts (skyscraper or Manhattan charts)

Tower charts are similar to bar charts, but have a three-dimensional appearance and a third axis, the z axis. They are sometimes known as skyscraper or Manhattan charts.

They usually have several data groups, each being drawn at a different specified z -axis value, like the example in Figure 1 on page 2. Bars can be stacked, but towers cannot; otherwise, the choice between bar and tower charts depends mainly on appearance.

Table charts

Table charts allow you to present the actual figures of your data in rows and columns with suitable headings. A table chart is particularly useful as one of a series of charts showing different interpretations of the same data.

Getting data for a chart

There are several ways in which you can obtain the data to use for a chart. You can:

- Type it in when you create a chart
- Use some that already exists in a chart data file
- Use some that exists in a sequential file, perhaps as part of a data base.

The first two methods were available in Version 1; the third method is new for this Version.

Using data from existing sequential

files: Often, the data that you need to create a chart already exists in a sequential file somewhere. You can only select the fields that you need from the file by using the ICU interactively. A description of the selected fields is stored in a data definition file. Once you have created a data definition file, you can use the CSLOAD call (see "CSLOAD - Restore saved chart information" on page 150) to access the data.

The data definition file you create this way is sometimes referred to as a flat file. For full details on creating and using flat files, see the GDDM-PGF Interactive Chart Utility book.

Calling the ICU from an application program

You can call the ICU from an application program with the new CSxxxx calls. Using these calls, you can:

- Query format options in a specified chart format object.
- Override format options in a specified chart format object.
- Override default operating options.
- Have more than one instance of a called chart.
- Add data to a chart data object.
- Access a directory of GDDM objects.
- Pass data that is to be made available to the terminal operator as the initial contents of appropriate ICU menu panels. The application could obtain it from a data base.
- Display a chart using a saved chart format and saved chart data.
- Print a chart on a specified printer.
- Cause the ICU to construct a chart, then let your program modify it before it is displayed.
- Make the ICU into an interactive GDDM library manager, giving the terminal operator access to the Directory panel and its associated Help panel only.

In Version 1, you could call the ICU from an application program using the CHART call. Although you can still invoke the ICU from an application program using the CHART call with the appropriate arguments, in most cases you will find it better to use the new CSxxxx calls. The new calls are more flexible than the old CHART call. They allow you to control more options, increase the certainty of producing the result you expect and avoid incompatibility between releases.
Note: Under IMS, the ICU can be used interactively only in stand-alone mode. When called from a program, the ICU displays charts, but does not allow operator interaction through the menu panels.

Drawing a chart with the PG routines

Drawing a chart using the PG routines is done in two successive states:

1. Tailoring the default layout assumptions (termed chart definition)
2. Passing the data and plotting the chart (termed chart construction).

These two states must be preceded by initialization calls to GDDM, and followed by GDDM input/output calls to display or print the chart. There must also be a GDDM call (FSTERM) to terminate PGF and GDDM.

Plotting the chart is done by passing the data to the plotting routine for the relevant type of chart.

The two states differ. Calls in state-1 merely set up information that is used when the chart is constructed in state-2. Consequently they can be made in any sequence. Calls in state-2 actually result in the construction of parts of the graph and are therefore irreversible (except by starting again from scratch).

Further information on states 1 and 2 is given in "States 1 and 2 and moving between them" on page 22.

The PG routines allow you to create more complex charts than the CSxxxx calls do, but they cannot be used interactively.

Calling the Vector Symbol Editor from an application program

You can invoke the Vector Symbol Editor from an application program using the Vector Symbol Set Editor call with a symbol set name as the parameter. The symbol set can be a new or existing one, or it can be blank (in which case the name has to be entered by the operator once the Vector Symbol Editor has started).

For details of the call, see "VSSE - Vector Symbol Editor" on page 170

Calling the ISE from an application program

You can invoke the ISE from an application program using the ISSE call with a symbol set name as the parameter. The symbol set can be a new or existing one, or it can be blank (in which
case the name will have to be entered by the operator once the ISE has started).

For details of the call, see the GDDM Base Application Programming Reference book.

Chapter 2. Invoking the Interactive Chart Utility (ICU)

\square General-Use Programming Interface \square
The Interactive Chart Utility (ICU) can be invoked in two ways:

- As a stand-alone program
- Called from an application program.

The stand-alone ICU is described in the GDDM-PGF Interactive Chart Utility book.

This chapter describes how to call the ICU from an application program.

When you call the ICU from an application program using the CSxxxx calls, you can do everything that the stand-alone program can plus some extra functions that are not available with the stand-alone program. These functions are described first.

This section is followed by an introduction to the CSxxxx calls. The calls are described in detail in the section "Alphabetic list of chart calls" on page 118 The CHART call is then introduced. The call is described in detail, in the section "CHART - Invoke Interactive Chart Utility" on page 118 .

Next, there is a section that covers general points you need to know for whichever method of calling you use. It also explains when to use the CSxxxx calls and when to use the CHART call. Normally, however, you should use the CSxxxx calls in preference to the CHART call.

Finally, there are some example programs that demonstrate calling the ICU with the CHART call. Further examples of invoking the ICU by this method is given in Appendix A, "Sample programs" on page 175 .

Summary of additional function

When the ICU is called from an application program, parameters may be specified to exploit more function than is available in stand-alone mode. The main additional functions are summarized briefly below:

1. Additional functions supporting operator interaction (that is, access by the operator to some or all of the ICU menu and help panels):

- Interactive use in which initial data or chart format information is supplied by the application program.
- Interactive use in which initial data or chart format information is supplied from a named Chart files created during a previous ICU invocation.
- Interactive use in which a chart is displayed initially (instead of the Home Panel), and can then be modified by normal access to the menu panels.
- Interactive use in which a chart is displayed initially, but normal access to the menu panels is replaced by (at most) access to the Save and Print functions only.
- Interactive use in which the calling program supplies a specific print-destination name. All printing initiated by the operator takes place using this supplied print-destination name.
- Interactive use, restricted so that Chart Format and Chart Data files can be neither restored nor saved.
- Interactive use in which only the Directory panel and its associated Help panel can be displayed, making the ICU into a library manager.
Note: The interactive invocation of the ICU from an application program is not available under IMS.

2. Additional functions in which operator interaction in the above sense is not supported:

- Creating a Chart Data or Format file from information supplied by the application program.
- Creating a Graphics Data Format (GDF) file from data and format information supplied by the application program or from existing Chart Format and Chart Data files.
- Printing a chart on a specified printer or plotter.
- Constructing a chart in the current GDDM page of the calling program. The chart can be created from data and format information supplied by the application program or from existing Chart Format and Chart Data files. The calling program is responsible for the further use of the GDDM page containing the constructed chart (for example it may define alphanumeric fields, and display, print, or save the page).
- Outputting a chart using the GDDM ASREAD function. Control is returned to the calling program upon completion of the ASREAD.

Creating charts from a program: the CSxxxx calls

The ICU can be accessed from an application using the CSxxxx calls. This means that ICU graphics can be obtained by non-graphics programs. The application program remains in control while allowing the use of all the ICU facilities. The CSxxxx calls can offer the full interactive ICU or just create and display a chart.

The CSxxxx calls provide a very flexible method of invoking the ICU. Everything that can be done with the stand-alone ICU can be done with these calls. Most CSxxxx calls correspond to ICU panel settings and options.

There are a number of calls which, together with their parameters, control an ICU session. These calls can be divided into four groups according to their function:

Managing an ICU session
Setting chart fields
Querying chart fields
Using the directory.

Managing an ICU session

There are four calls that you need to manage an ICU session:

CSCCRT Initialize a new chart session
CSCDEL Terminate the ICU session
CSSICU Invoke the ICU
CSQUID Discover the next unused chart number.

Setting chart fields

To create a new chart, you need to give the ICU information about the chart. This group of calls passes the information to the ICU.

CSCHA	Pass character string information
CSDEL	Delete a chart item
CSFLT	Set floating point chart options
CSINT	Set integer chart options
CSNUM	Set control values
CSXDT	Pass x values
CSXSL	Set x selection information
CSYDT	Pass y values
CSZDT	Pass data group values
CSZSL	Set data group selection information.

Querying chart fields

This is the largest group of calls. You use them to find out the current state of your chart.

CSQCHA	Discover what is in the character strings
CSQCHL	Discover the number of character strings and their lengths
CSQCS	Discover the number of arrays in use
CSQFLT	Discover the floating point chart options
CSQINT	Discover the integer chart options
CSQNUM	Discover the control values
CSQXDT	Discover the x values
CSQXSL	Discover which x values have been selected and which excluded
CSQYDT	Discover the y values
CSQZDT	Discover the data group values
CSQZSL	Discover which data group values have been selected and which excluded.

Using the directory

This group of calls allows you to load, save, and delete charts. You can also create and examine a list of GDDM objects. The calls in this group are:
CSCDEL Delete an existing chart or directory list

CSDIR Create a list of GDDM objects
CSLOAD Restore an existing chart
CSQDIR Query the list of GDDM objects that you created
CSSAVE Save a chart.

An outline series of calls

To construct, display, and save a simple chart, this sequence could be used:

CSQUID	Find the next available chart number
CSCCRT	Initialize the chart
CSNUM	Specify how many x and y values
CSXDT	Pass the x data

CSYDT Pass the y data
CSCHA Pass the titles
CSSICU Start the ICU to display the chart
CSSAVE Save the chart
CSCDEL Terminate the ICU session.

Relating calls to ICU panels

There are four main calls that you need to create a chart: CSCHA, CSFLT, CSINT, and CSNUM. These calls have lots of options (called types), most of which are equivalent to making a selection or entering data on an ICU panel. Table 1 shows you what each call and type does and the corresponding ICU panel. If you are not sure of the effect of a particular call and type, try setting the equivalent ICU panel interactively in the same way and look at the resulting chart. Appendix D, "Interactive Chart Utility panels" on page 211 shows all the ICU panels with their default values and the GDDM-PGF Interactive Chart Utility book gives help on what panels to use.

	CSCHA type	CSFLT type	CSINT type	CSNUM type	ICU PANEL
Axis label options	7,10-12,33	11-14	27-30		4.4,2.4,2.8
Axis line options			23,24		4.2
Axis scale, range and position		9,10	25,26,39		4.3,5.2
Axis title options	13-16	29,30	21,22,46,47		4.1
Bar chart options	18	2,8	5,6		1.4
Chart heading	8,9	17	38,39		5.1,5.2
Chart note options	19,20	20,26	42,48	1,2	3
Chart proportions and dimensions		19,28	41		5.4
Chart type options			1,16		1,2.6
Data attributes		4,5	11-17	7	2.6
Data group options	6, 17	7	20	5,6,12,13	2.7, 2.3
Data import options	25,26,31,32		44		2.9
Data interpretation and indexing		6	19		2.5
Datum-line options		24, 25	36, 37		4.8
Directory options	4, 5		18	8	M
Histogram options			4		1.3
Legend options		18	40		5.3

Table 1 (Page 2 of 2). Cross reference for the main CSxxxx calls

	CSCHA type	CSFLT type	CSINT type	CSNUM type	ICU PANEL
Line graph options			2		1.1
Menu control options			18		M
Pie chart options			7, 17		1.5
Polar chart options			9		1.7
Printer and plotter options	3	1	45		PF4
Referenceline options		22, 23	35, 51		4.7
Save/load options	1,2,27-32				S or PF2
Scale marks and grids		15, 16	31-34		4.3, 4.6
Subchart options	21, 22	21	43	3,4,10,11	6
Surface chart options			3		1.2
Table chart options	23, 24	27, 31	49, 50		1.9
Tower chart options		3	10		1.8
User defined labels	10, 33				4.4
Venn diagram options			8		1.6

The CHART call

In Version 1, the only way to access the ICU was to use the CHART call. This call is still available, but it is not such a flexible method of invoking the ICU as the CSxxxx calls are. It cannot exploit the new features of the ICU. In particular, you CANNOT use it to:

1. Construct multiple charts
2. Replace data
3. Set or override chart format items
4. Interrogate the data or format of an existing chart
5. Interrogate the data or format of a chart during an interactive session
6. Access sequential data files
7. Interrogate a directory of GDDM objects.

Additionally, you cannot pass z-axis data in the CHART call. This limits your scope for drawing tower charts.

A detailed description of the CHART call can be found later in this book under "CHART - Invoke Interactive Chart Utility" on page 118

Which call to use

You should use the CSxxxx calls for all your new programs. The CHART call is still supported and you will be able to maintain any programs that use it. Programs that already use the CHART call can be mixed with new programs using the CSxxxx calls in the same suite.

Things to consider when calling the ICU

There are three special points you need to be aware of when invoking the ICU from an application program. They are:

1. The differences between free and tied data.
2. Using missing values.
3. Using GDDM symbol sets in the ICU; this section describes, among other things, how to make available nonstandard shading patterns and marker symbol sets for use by the ICU.

These points apply whether you use the CSxxxx calls or the CHART call.

Free (paired) and tied (non-paired) data

Free data is so named because each data group is free of association with any other data group, because it contains, as well as a set of y values, its own set of x values. Tied data, by contrast, has a single set of x values for all data groups. Free data was formerly known as paired data, and tied data as non-paired data.

All data groups with free data are completely independent of one another. Each data group can contain a different number of points from other data groups, and the individual point x and Y values in one data group can be different from those in other data groups.
Note: Although you can still use free data, there is no need to because tied data and missing values achieve the same effect.

All data groups with tied data are constrained to contain the same number of points, and all data groups share a common set of x values.

Saved Chart Data files contain data either in free mode or in tied mode. When a Chart Data file is restored, the free or tied mode of the data is restored also. Thus, during an interactive session, the ICU operator can switch the mode of operation between free and tied data by restoring a Chart Data file with data of the appropriate mode. In particular, a null chart data file may be restored in either free or tied mode by using the reserved names *FREE or *TIED.

You can convert free data into tied data by using the ICU's CONVERT command in the Data Manipulation panel. (You cannot convert tied data in this way.)

Missing data values

When you collect the data that you want to display in a chart, you might find that you have not been given all the data values you require. To display the chart without these values, you would have had to invent some values, which might give a false impression to your chart.

PGF allows you to omit the values that you do not have; your chart is still drawn, but the missing values are ignored.

PGF provides the following methods for the ICU and non-ICU user:

1. In the ICU Data Entry panels, specify a period (.) in place of a data value.
2. Using the CSxxxx calls in an application program, specify a missing data value as 10 raised to the power 72 ($\left.X^{\prime} 7 C 90 E 410^{\prime}\right)$.

You can specify missing values for all types of charts except Venn diagrams. The effect of missing values on the other types of charts is as described below:

- Histograms - the step is not drawn and there is no gap left between the adjacent steps.
- Bar and tower charts:
- On a multiple-bar chart, a gap is shown where the missing value would have appeared.
- On a composite (stacked) or floating bar chart, the bar for the missing value is not drawn; there is no gap left between the bars.
- Pie charts:
- On a pie chart with percentage values supplied, the slice that corresponds to the missing value is not drawn; there is no gap left between the slices.
- On a pie chart with absolute values supplied, the missing value is not used in calculating the percentages, and the slice for the missing value is not drawn (again, no gap is left between the slices).
- Line, surface, and polar charts:

The effect depends on where the missing value occurs:

- If the missing value is the first or last element in a component, the component is drawn without that element. This means that, for a line graph or polar chart without shading, the line that represents the component is shortened; for a surface chart or polar chart with shading, the shaded area extends only to the values that are present.
- If a sequence of one or more missing values lies between two elements that have values, the two elements with values are connected by a continuous line.

Symbol set usage with the ICU

The discussion of symbol set usage with the ICU is covered in the following sections:

- Image and vector symbol sets
- Shading-pattern symbol sets
- Marker symbol sets.

Image symbol sets and vector symbol sets are referred to directly as text attributes.

Shading pattern and marker symbol sets are referred to using pattern and marker data attribute values.

There are device-dependent restrictions on the use of symbol sets.

More information about symbol set usage is given in the GDDM System Customization and Administration book.

Image and vector symbol sets: An image symbol set (ISS) or a vector symbol set (VSS) can be referred to by name in the chart definition as a text attribute of any text appearing on the chart (for example, axis labels, keys, or chart notes). During chart construction, each symbol set is loaded as it is needed, if it is not already loaded, using GSLSS. When the chart has been constructed, loaded symbol sets that are not needed are unloaded using GSRSS. In this way, symbol set loading, and the use of storage, are optimized during an interactive session while successive charts are constructed and displayed.

Note: GSLSS replaces a symbol set name that ends with the substitution character "." with another name in which the "." is replaced by an appropriate alphabetic character, as described for the GSLSS call in the GDDM Base Application Programming Reference book. This is particularly relevant to image symbol sets, because, in general, different image symbol sets are required for different device types. For example, to print a chart containing a reference to an ISS, using an

ISS name that ends in "." causes the Print Utility to attempt to load an ISS whose name ends in a suffix character appropriate to the print device.

Any ISS or VSS already loaded by the application program (by a GSLSS or GSDSS call) at the time the CSSICU or CHART call is issued, is noted by the ICU as a preloaded symbol set. Such preloaded symbol sets are treated specially in that they are never loaded or released by the ICU.
Preloaded symbol sets may be used, in general, to prevent the dynamic loading and releasing of a symbol set that occurs in the normal case (as described above), depending on whether or not the symbol set is required for each chart constructed.

The only exception to this rule is a preloaded symbol set whose name ends with ".". In this case, the name of the symbol set treated as preloaded by the ICU is the name after substitution of an alphabetic character for the ".". If the chart definition includes a reference to the symbol set name ending with ".", the symbol set is loaded and released as normal (that is, it is not treated as a preloaded symbol set).

Before control is returned to the calling program, all symbol sets loaded by the ICU are released. In all cases the symbol sets loaded (and the symbol-set identifiers in use) are the same on return from the CSSICU or CHART call as they were immediately before that call.

Shading-pattern symbol sets: The chart definition may refer to shading-pattern values in the range 65 through 254 (for example, shading pattern 65 can be specified for a selected data group). In such cases, the ICU ensures that a user-defined shading-pattern symbol set is loaded.

Shading-pattern symbol sets are merely special uses of image symbol sets, so that any image symbol set can be referred to as a pattern set.

The ICU loads, using a GSLSS call, a user-defined pattern set with the name
ADMICUP.. The final "." character ensures that the GSLSS call loads a symbol set appropriate to the primary device type (for example, ADMICUP. is replaced by ADMICUPD or, if a symbol set with this name cannot be found, by ADMICUPC, on a 3279 device).

Table 2. Chart definition marker types				
Marker type	Marker scale	Symbol set type	Symbol set name	Comments
$0-62$	numeric	vector	ADMDHIMJ	ICU markers (types 1-8 are scalable versions of the image system markers 1-8)
$65-254$	numeric	vector	ADMICUM	User-defined markers (if ADMICUM cannot be found, image markers in ADMICUM. are used)
$1-8$	*	image	none	Image system markers (these cannot be scaled; their size depends on the particular device in use)

Thus, in order to set up installation-defined extended pattern sets available to ICU users, all that is required is for pattern sets with names ADMICUPx to be created (where \mathbf{x} is a suffix character appropriate to the device type in use). For example, the sample 64 -color shading pattern set supplied on the distribution tape under the name ADMCOLSD need only be copied under the name ADMICUPD to become available to the ICU user with pattern values 65 through 128. The copying can be done with the Copy command of the ICU Directory panel.

Like image symbol sets and vector symbol sets referred to through text attributes (discussed above), pattern symbol sets are loaded and released by the ICU as required for each chart constructed. Also, pattern sets of any name may be preloaded by the application program. In this case, no dynamic loading of pattern sets takes place. Use of preloading is recommended if an installation-defined standard extended pattern set (such as the 64-color shade set mentioned above) needs to be replaced for a particular session by a different pattern set.

Marker symbol sets: A chart definition may use marker types in the ranges 0 through 62 or 65 through 254, as shown in Table 2.

A chart may use only one marker symbol set. This means that, in general, marker types 0 through 62 should not be mixed with marker types 65 through 254. There is one exception to this: the image system markers (types 1 through 8 with a scale of *) do not require a symbol set to be loaded, and so can be mixed with ICU markers or with user-defined markers.

When the chart is drawn, the ICU decides which marker symbol set to use on the basis of the
markers required by the data actually plotted. If contradictory marker types have been specified, the highest priority marker set of those requested is used. In order of decreasing priority, these are:

- preloaded markers
- ICU markers
- user-defined markers.

If a preloaded marker set is used, it should be a vector symbol set, otherwise marker scaling cannot be supported.

If user-defined markers are requested, but ADMICUM cannot be found, the ICU tries to load the image marker set ADMICUM. . The "." character ensures that a symbol set appropriate to the device is used. These markers cannot be scaled.
\llcorner End of General-Use Programming Interface $\quad ـ$

Example programs

This section contains example programs that demonstrate calling the ICU from an application program with the CHART call.

See the GDDM-PGF Application Programming

 Guide for examples of programs using the CSxxxx calls.The first CHART call program, shown in Figure 11 on page 17 calls the ICU to display program-supplied data. It creates a line graph with three lines and five points on each line. It shows how to use the chart_control structure, the data value parameters, and the CHART call.

Figure 12 on page 18 shows how to send a chart to a page printer. The name of the chart is specified as a parameter to the program. The type of printer must be specified in a DSOPEN
statement. In this case, it is an IBM 4250 printer (a family-4 printer in GDDM terms).

For more information about the DSOPEN and DSUSE calls, see the GDDM Base Application Programming Reference book.

LGRAPH: PROC OPTIONS(MAIN);

Figure 11. Program to display line graphs using the ICU

invoking the ICU

PRTCHART: PROC(NAME) OPTIONS (MAIN);

\%INCLUDE ADMUPINC;	/* 'C..' ENTRY POINTS	*/
\%INCLUDE ADMUPIND;	/* 'D..' ENTRY POINTS	*/

\%INCLUDE ADMUPINF; /* 'F..' ENTRY POINTS */

DCL 1 CHAR	CONTROL,	/* CHART CONTROL PARAMETER	*/
2 LEVEL	FIXED BIN(31) INIT(1),	/* FULL STRUCTURE FORMAT	*/
2 DISPLAY	FIXED BIN(31) INIT(6),	/* BUILD CHART IN USER'S PAGE; /* DO NOT TERMINATE PG ROUTINES	*/
2 HELP	FIXED BIN(31) INIT(1),	/* PF KEYS SHOWN ON DISPLAY	*/
2 ISOLATE	FIXED BIN(31) INIT(0),	/* SAVE/RESTORE/DIRECTORY OK	*/
2 FORMNAME	CHAR(8),	/* FORMAT NAME SET LATER	*/
2 DATANAME	CHAR(8),	/* DATA NAME SET LATER	*/
2 BINDING	FIXED BIN(31) INIT(0),	/* DATA IS NORMAL IE. TIED	*/
2 NG	FIXED BIN(31),	/* NOT USED	*/
2 NE	FIXED BIN(31),	/* NOT USED	*/
2 KEYL	FIXED BIN(31),	/* NOT USED	*/
2 LABELL	FIXED BIN(31),	/* NOT USED	*/
2 HEADINGL	FIXED BIN(31),	/* NOT USED	*/
2 DESTNAME	CHAR(8) INIT (' '),	/* PRINT DESTINATION UNKNOWN	*/
2 PRTDEP	FLOAT DEC(6) INIT(60),	/* DEFAULT PRINT DEPTH	*/
2 PRTWID	FLOAT DEC(6) INIT(90),	/* DEFAULT PRINT WIDTH	*/
2 PRTCOPY	FIXED BIN(31) INIT(1),	/* JUST 1 PRINT COPY	*/
2 PRTHEAD	FIXED BIN(31) INIT(0),	/* NO PRINT HEADER PAGE	*/
2 PRTVOFF	FLOAT DEC(6) INIT(-1),	/* DEFAULT PRINT VERTICAL OFFSET	*/
2 PRTHOFF	FLOAT DEC(6) INIT(-1),	/* DEFAULT PRINT HORIZTAL OFFSET	*/
2 PRTUNIT	FIXED BIN(31) INIT(4),	/* ROW \& COLUMN PRINT UNITS	*/
2 RESERVED	FIXED BIN(31) INIT(0),	/* ICU RESERVED	*/
2 DRYNAME	CHAR(8) INIT(' '),	/* NO INITIAL DIRECTORY NAME	*/
2 DRYTYPE	FIXED BIN(31) INIT(0),	/* DEFAULT DIRECTORY TYPE	*/
2 DRYTYPEQ	FIXED BIN(31) INIT(0),	/* DEFAULT DIRECTORY SUBTYPE	*/
2 DRYLIB	CHAR(8) INIT(' '),	/* DEFAULT DIRECTORY LIBRARY	*/
2 EXPLVL	FIXED BIN(31) INIT(0);	/* STANDARD EXPERIENCE LEVEL	*/
DCL NAME	CHAR(8) VARYING;	/* CHART NAME (PARAMETER)	*/
FORMNAME $=$	NAME;	/* SET CHART FORMAT AND CHART	*/
DATANAME =	NAME;	/* DATA NAMES TO PARAMETER.	*/

Figure 12 (Part 1 of 2). Program to send a chart to a page printer

```
DCL /* DECLARES FOR THE DSOPEN */
PROCNT FIXED BIN(31) INIT(12),/* PROCESSING OPTION COUNT */
PROLIST(12) FIXED BIN(31), /* PROCESSING OPTION LIST */
NAMCNT FIXED BIN(31) INIT(1), /* NAME COUNT */
NAMLIST(1) CHAR(8); /* NAME LIST */
PROLIST(1) = 5; /* OPT GROUP: PRIMARY/SECONDARY */
PROLIST(2) = 0; /* PRIMARY */
PROLIST(3) = 6; /* OPT GROUP: SPILL/NO-SPILL */
PROLIST(4) = 0; /* SPILL */
PROLIST(5) = 7; /* OPT GROUP: SWATHES */
PROLIST(6) = 10; /* 10 SWATHES */
PROLIST(7) = 8; /* OPT GROUP: PAGE SIZE */
PROLIST(8) = 50; /* WIDTH 5 INCHES */
PROLIST(9) = 50; /* DEPTH 5 INCHES */
PROLIST(10) = 0; /* 1/10 INCHES */
PROLIST(11)= 9; /* OPT GROUP: UN/FORMATTED */
PROLIST(12)= 1; /* FORMATTED */
NAMLIST(1) = NAME; /* USE CHART NAME AS PRINT-FILE */
CALL FSINIT; /* INITIALIZE GDDM */
CALL DSOPEN /* OPEN A FAMILY-4 PRINTER */
    (88,4,'IMG600X',PROCNT,PROLIST,NAMCNT,NAMLIST);
CALL DSUSE(1,88); /* MAKE IMG600X PRIMARY DEVICE */
CALL CHART /* CALL CHART UTILITY */
    (CHART_CONTROL,DATA_CONTROL,X,Y,KEYS,LABELS,HEADING);
CALL FSFRCE; /* TRANSMIT PAGE TO PRINT FILE */
CALL FSTERM; /* TERMINATE GDDM PROCESSING */
```

END PRTCHART;
Figure 12 (Part 2 of 2). Program to send a chart to a page printer

Chapter 3. Using the Presentation Graphics routines

e purpose of the routines is to give you the maximum control of the chart layout, while at the same time minimizing the work necessary to get an acceptable chart. To achieve this, an extensive set of defaults is used. (Defaults are values that the PG routines assume when there are no explicitly specified values in the program. They cover, for example, the type of line that is used for axes, and the position of the heading.)

GDDM base functions are used for initialization, outputting the chart, and controlling the graphics field. (The graphics field is that part of a screen or printed page that is used for drawing the chart or charts.)

If you are about to use the PG routines for the first time, you may prefer to read the GDDM-PGF Application Programming Guide, which introduces the PG routines and gives guidance, with examples, on using them. After you have drawn one or two simple charts, you will find it easier to understand the PG routines. The remainder of this chapter is arranged as follows:

- Meaning of PG routine names
- How to draw a chart with the PG routines (a "cookbook" list to follow for creating charts)
- States 1 and 2, and moving between them.

Meaning of PG routine names

A mnemonic naming scheme is used in the PG routines. It is shown in Figure 13. As with most such schemes, there are some anomalies (the initial letters CHN, for example, are used for both notes and numbers). Even so, understanding it will help you to remember the names of the calls you need.

Letters	Usual Meaning	Example
CH....	PG routine	CHPLOT - Plot line graph
CHD...	Datum line	CHDATT - Datum line attributes
CHG...	Grid line	CHGATT - Grid line attributes
CHH...	Heading	CHHEAD - Heading text
CHK...	Legend (key)	CHKEYP - Legend position
CHM...	Markers	CHMKSC - Marker scale values
CHN...	Notes	CHNOTE - Note text
CHX...	x axis	CHXSCL - x-axis scale
CHY...	y axis	CHYSCL - y-axis scale
CHZ...	z axis	CHZRNG - z-axis range
CH.ATT	Attributes	CHNATT - Attributes of note

Figure 13. Naming system used for PG routines

Special conventions in PG routines

Many routines let you use a zero value to reset the defaults.

How to draw a chart with the PG routines

Drawing a chart with the PG routines normally consists of arranging your data in a format that suits the routines, deciding on which defaults you will need to change to get the results you require, and writing the necessary call statements to initialize GDDM, construct the chart, and transmit the chart to the terminal or printer. Here is a cookbook type of list that you can follow:

1. Decisions before you start:
a. Decide on the type of chart you are going to create.
b. Decide on whether you want the chart to take up the whole of the screen or printed page. If you do not use the CHAREA, CHHMAR, and CHVMAR calls
c. Decide on your data and divide it up to suit the PG routines, as follows:
1) Heading - the title of your chart, if any.
2) Data group names - the names to explain the data you are plotting. These are placed in a legend for most types of chart.
3) Axis titles.
4) Axis labels. Decide whether you want the automatically generated numeric labels, labels that you provide, or the day and month labels provided by the PG routines.
5) Values for plotting.
6) Additional annotation (chart notes).
d. Decide which of the defaults for the chart type you want to change.
2. Coding the PG routine and GDDM calls:
a. Place an FSINIT call at the start of your program before any PG routine calls. This is the start of state-1.
b. Use the CHHEAD call to specify the heading.
Change the default heading appearance, if you want to, using CHHEAD, CHHATT, and CHSET. It makes programming easier when you keep related calls together, so place them immediately after the call to CHHEAD.
c. Specify the names of your data groups using the CHKEY call.
These data groups are used in the legend, unless you are drawing a pie chart, Venn diagram, or table chart.

Change the legend appearance, if you want to, using CHKEYP, CHKATT, and CHSET. It makes programming easier when you keep related calls together, so place them immediately after the call to CHKEY.
d. If you decided you needed to specify axis labels, enter the text of the labels using the CHXLAB and CHYLAB calls.

Change any aspects of label appearance, if you want to, using CHXLAT, CHXDLB, CHXDAY, CHXMTH, CHXSCL, and CHXSET (or the y-axis equivalents), plus CHLATT, CHSET, and CHZSET. Place them immediately after CHXLAB or CHYLAB if you used either of the calls.
e. Specify the wording for your axis titles in CHXTTL and CHYTTL calls.

Change any aspects of axis title appearance, if you want to, using

CHXSET, and CHXTATT (or the y-axis equivalents), plus CHTATT. Place them immediately after the call to CHXTTL or CHYTTL.
f. Enter any other PG routines if you need to change other layout defaults.
g. Plot your data with one of the plotting calls:
CHPLOT Line graphs and scatter plots
CHSURF Surface charts
CHHIST Histograms
CHPIE Pie charts
CHBAR, CHBARX Bar charts
CHVENN Venn diagrams
CHPOLR Polar charts
CHTOWR Tower charts
CHDTAB Table charts
h. Add any additional annotation by means of CHNOTE calls, controlling the positioning and any nondefault positioning of the note by calls to CHNOFF and CHNATT.
i. Add a call to CHTERM to free PG-routine storage.
j. Transmit the constructed chart to the terminal or printer by means of an FSFRCE or ASREAD call.
k. Finish with a call to FSTERM to terminate GDDM.

States 1 and 2 and moving between them

Creating the chart using PG routines is a two-state process. This means that your program must define the chart in the following order:

1. Change the PG routine defaults as necessary to determine the appearance of your chart.
2. Plot the data.

If you do not do this, you may try to do something that can only be done in state- 1 when you have already entered state-2. This causes an error and may result in the chart not being produced.

The next section describes the restrictions in general terms so that you can foresee actions that may cause problems.

What you can do in state-1

Generally, you can do anything in state-1 except specify chart notes. However, if you issue a plotting routine call (CHPLOT, CHSURF, CHHIST, CHBAR, CHBARX, CHPIE, CHVENN, CHPOLR, CHTOWR, CHDTAB), the state changes to state-2.

What you can do in state-1 only: State 1 is used to set up the items that define the chart. These can be conveniently classified as follows:

Chart layout
Legend
Chart heading
Axes
Grid and datum lines.
Each of these items is defined by defaults that may be changed by parameters or options of the PG routine calls.

With the proviso that the latest invocation of a call statement supersedes the previous one, the order
in which the routines are used in state-1 is immaterial.

What you can do in state-2

Generally, in state-2 you can plot data and use the calls that affect the appearance of the plotted data and of notes. You can also specify datum lines but not datum reference lines (see "CHXDTM - X-axis datum line" on page 89 for an explanation of the difference).

Resetting the processing state

After constructing an interim or final version of the chart, you may want to change some items of the chart definition and replot, plot new data with the same or a different format, or create a new chart in another area on the screen. To do this, it is possible to return from state-2 to state-1 using either:

- A call to CHSTRT, which resets all options and parameters to their most recent values set in state-1. This can be used, for example, to modify some of the options or parameters before making a new plotting routine call.
- A call to CHRNIT, which reinitializes all options, parameters, and attributes to their default values.
using the PG routines

Chapter 4. Presentation graphics and chart routines

This chapter contains the definitive description of the GDDM-PGF call interface. The CHART call is superseded by the calls starting with the letters "CS," and the control block parameter is subject to change from release to release or as a result of maintenance. The "principal errors" lists are neither exhaustive nor guaranteed. Although part of the interface, the messages and their texts are subject to change from release to release or as a result of maintenance.

The section "PL/I declarations" on page 36 lists the sets of PL/I DECLARE statements that support the call interface to GDDM-PGF. These files are subject to change and rearrangement as they are dependent on interfaces with other IBM products.

This chapter contains the syntax of all PG routine calls (CHxxxx calls), the CHART call, the CSxxxx calls, and the call to the Vector Symbol Editor, in alphabetic order. The alphabetic listing is preceded by information about invocation and syntax.
Note: In the alphabetic listing, the CHART call should come between CHAREA and CHBAR. But as its logical place is with the CSxxxx calls, you will find it immediately before CSCCRT.

Invocation of PG and chart routines

The PG routines are invoked by using call statements from the application program. The routines exist in two forms, a reentrant form and a nonreentrant form.

The reentrant form differs from the nonreentrant one in that an additional parameter must be supplied. The additional parameter (the first) must be supplied on each call. This parameter is the anchor used to identify all resources (particularly storage) associated with that instance of GDDM.

A third type of interface, intended for system programming uses, is also available.

This chapter describes the nonreentrant interface to the PG routines. The other two forms are
similar to the reentrant and system programmer forms of the GDDM Base calls. Both are described fully in the GDDM Base Application Programming Reference book.

Syntax conventions

The syntax of the calls shown is for the nonreentrant PL/I or FORTRAN interface, omitting the CALL verb.

Lowercase words in the argument positions in the descriptions of the call statements in this chapter should be replaced by identifiers or expressions that are valid as subroutine arguments in the language being used. All numeric parameters must be fullword items. All counts and length parameters must be binary integers, whereas most other numeric values are single-precision floating-point. Text should be stored as strings of EBCDIC characters.

To assist APL users, the syntax box for each PGF call contains the APL code for that call. A complete list of APL codes in numerical order is provided on page 171. In addition, for users of the system programming interface, each call also contains the PGF request control parameter (RCP) code in hexadecimal and decimal format.

In the parameter descriptions that follow the syntax of a call, the parameters for which you must provide a value are indicated by (specified by user), followed by the type of value. Parameters that receive information from GDDM-PGF are indicated by (returned by GDDM), followed by the type of value.

The single-parameter calls CHSET, CHXSET, CHYSET, and CHZSET can be used to set various PG routine options. For each use, the parameter must consist of either:

- A variable name, that refers to a specific string of at least four alphabetic characters.
- A literal string of at least four alphabetic characters. This form is not applicable in COBOL.

Additional characters may be added to enhance application program readability, but only the first four defining the option are recognized by the PG routines.

In all cases, the default option is in uppercase bold.

Data types required for parameters

The parameters used in the calls have the following data types:

Numeric Parameters

All numeric parameters must be fullword integers or single precision (short) floating point numbers.

Integer parameters

Fullword integer parameters should be declared as follows:
Assembler F-constant
COBOL PICTURE S9(8) COMPUTATIONAL or equivalent
C/370 INT
FORTRAN INTEGER*4
PL/I FIXED BINARY(31)

Single-precision (short) floating-point

 parametersFloating-point parameters should be declared as follows:

Assembler E-constant
COBOL COMPUTATIONAL-1
C/370 FLOAT
FORTRAN REAL*4
PL/I FLOAT DECIMAL(6)

Character strings

These must be supplied as the appropriate EBCDIC codes. They should be declared as follows:

```
Assembler C-constant
COBOL PICTURE X (n)
C/370 char[n]
FORTRAN CHARACTER*n (VS/FORTRAN only),
        string literals, or a numeric
        data array initialized with
        string literals
PL/I CHARACTER(n)
    /*Note: Must not be VARYING*/
```


Language considerations

This section contains a number of points that apply to some of the languages supported by GDDM.

COBOL format

The call format for COBOL is as follows:
CALL Cxxxxx [USING Parameter-1 [Parameter-2] ...]

Assembler language linkage

In assembler language, linkage is accomplished according to normal OS conventions:

1. Register 1 points to an address list containing the addresses of the parameters. The high-order bit must be on in the last address word. If there are no parameters to be passed, Register 1 should contain the value 0 , or should point to a fullword of value 0 with the high-order bit on.
2. Register 13 points to a register save area of at least 72 bytes (18 fullwords) in size.
3. Register 14 points to the return address in the application program.
4. On entry, Register 15 points to the entry point of module Cxxxxx. On return from a call to PGF, the top half of Register 15 contains the error severity code; the bottom half contains the error number.
5. A branch to Cxxxxx is performed.

PL/I and C/370 declarations

In application programs using PL/I or C/370, it is necessary to declare as an external entry each GDDM and PGF function that is used. This can be done either explicitly or by including one of the sets of predefined declarations that is supplied with the program.

For a call using the nonreentrant interface, the PL/I declarations take the form:

DECLARE CHNUM EXTERNAL ENTRY(FIXED BINARY(31))
OPTIONS(ASM, INTER);

A number of sets of PL/I and C/370 entry declarations for GDDM and PGF functions are provided on the installation tapes. Each set is a library member that contains declarations for all the entry points beginning with a particular letter, in either the nonreentrant or reentrant form. The member names have the form ADMUPIxy (for PL/I) and ADMUCIxy (for C/370). The letter \mathbf{y} is the first letter of all the entry points in the member. The letter \mathbf{x} has the value \mathbf{N} for the nonreentrant entry declarations, and \mathbf{R} for the reentrant declarations.

The PGF entry points begin with the letter \mathbf{C} or \mathbf{V}, so all the nonreentrant PGF entry declarations are contained in members ADMUPINC and ADMUPINV (for PL/I) and ADMUCINC and ADMUCINV (for C/370). In addition to the PGF entry points, your programs also use some GDDM Base calls, such as FSINIT, ASREAD, and FSTERM. A typical set of inclusions for PL/I would therefore be:
\%INCLUDE SYSLIB(ADMUPINC);
\%INCLUDE SYSLIB(ADMUPINF);
\%INCLUDE SYSLIB(ADMUPINA);
These members contain sample declarations for the GDDM and PGF functions. They have parameter descriptions that match exactly the parameter specifications in the descriptions of the call statements. These declarations allow the PL/I compiler to check that the parameters have been correctly declared and, if necessary, permit automatic conversion by way of dummy parameters.

You can modify the parameter descriptors in the sample declarations to permit more flexibility, but you must be aware that checking or conversion may not occur if this is done.

For compatibility with GDDM Version 1, Release 2, two further PL/I members are provided. Each contains entry declarations for all the GDDM Base and PGF functions available in Version 1, Release 2. They do not contain declarations for the functions introduced subsequently. The member names are ADMUPLNO, for the nonreentrant declarations, and ADMUPLRO for the reentrant ones.

Possible rounding errors: The PG

 routines use short floating-point numbers to hold all values associated with the chart data. If the data has an unusually high number of significant figures, rounding errors may occur in the rightmost digit position. This is most likely to show itself in the total values specified on stacked bar charts. When repeated operations on numbers with a high number of significant digits occur, cumulative rounding errors are possible.
VS/FORTRAN character strings

Versions of the VS/FORTRAN compiler prior to Release 1.3 cause extra parameters to be generated for character items in CALL statements when the LANGLVL(77) compiler option is in effect. GDDM and PGF do not accept these extra parameters. To prevent the extra parameters being generated, the SC compiler option must be specified. The current release does not generate the extra parameters, and so the SC compiler option is not required.

APL

GDDM-PGF supports VS APL under CICS, TSO, and VM/CMS. Refer to the appropriate VS APL Terminal User's Guide for the subsystem being used for details of the VS APL interface to GDDM.

In addition, APL2 is supported under TSO and VM/CMS. The APL2 Programming: System Services Reference manual, SH20-9218 describes AP 126 (the GDDM Auxiliary Processor).

IBM BASIC

A call interface to GDDM-PGF is provided by IBM BASIC under TSO and VM/CMS. See the IBM BASIC Application Programming Language Reference manual, GC26-4026.

For IBM BASIC, the first argument to the CALL GDDM command is the RCP code; for example:

```
1 0 0 ~ C H X T I C = 2 6 9 0 9 2 3 5 7 ~
110 CALL GDDM (CHXTIC,27.8,38.2)
```

The second and subsequent arguments are as described for each GDDM and PGF call.

Alphabetic list of presentation graphics routines

This section starts on the next page. It lists and describes the Presentation Graphics Routines in alphabetic order.

CHAATT

Function: To establish axis line attributes.

CHAATT (count, array)

```
APL code 735
PGF RCP code X'10020701' (268568321)
```


Parameters

count (specified by user) (fullword integer) Fullword integer specifying the number of elements in array. If more than 15 elements are specified, the excess elements are ignored. If less than 15 , the remainder are unchanged from their previous setting. If zero is specified, all defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of fullword integers specifying the attributes for the axes. The first set of three attributes is for the primary x axis, the second set is for the primary y axis, the third set is for the secondary x axis, and the fourth set is for the secondary y axis. In the case of a tower chart, the fifth set is for the z axis.

For valid values of color and line type, see Appendix C. Colors, line types, markers, and shading patterns on page 209.
Valid values for line width are:
-1 leave unchanged
0 default (normal)
1 normal
2 double

Description

Overrides or reestablishes the default attributes to be used for each axis line and the associated major and minor scale marks.

The defaults are:

```
color green (displays), black (printers)
line type solid
line width normal
```

Valid only in State 1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
        THE CHART-DRAWING STATE
ADM0515 E ATtRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
        ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0518 E INVALID LINE TYPE VALUE
ADM0519 E INVALID LINE WIDTH VALUE
```


CHAREA

Function: To define the chart area.

```
CHAREA (x1, x2, y1, y2)
APL code 721
PGF RCP code X'10020A02' (268569090)
```


Parameters

$\mathbf{x 1}$ (specified by user) (short floating point) A short floating-point number that specifies the left-hand bounds of the chart area in picture-space units.
x2 (specified by user) (short floating point) A short floating-point number that specifies the right-hand bounds of the chart area in picture-space units.
y1 (specified by user) (short floating point) A short floating-point number that specifies the lower bounds of the chart area in picture-space units.
y2 (specified by user) (short floating point) A short floating-point number that specifies the upper bounds of the chart area in picture-space units.

Description

Overrides the default area to be used for the chart. You might want to override the default area because:

- You want to draw two charts in different areas of the screen
- You want the chart area to have specific fixed proportions, regardless of the screen or printed page size.

By default, the whole of the screen (or printed page) is used to display the chart. If this is not your intention, you can specify a graphics field and optionally a picture space within the graphics field (see GSFLD and GSPS described in the GDDM Base Application Programming Reference book).

Whether the graphics field and picture space have been explicitly defined or not, the chart area is specified in terms of the picture space. A call to the GDDM function GSQPS must be used to obtain the defined or defaulted picture-space dimensions. The parameters to CHAREA are then given as fractions of these values.

CHSET('CBOX') can be used to draw a frame round the chart area. CHSET('CBACK') can be used to shade in the background.

Valid only in state-1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
        THE CHART-DRAWING STATE
ADM0502 E PICTURE SPACE AND CHAREA ARE
        INCOMPATIBLE
ADM0507 E CONFLICTING PARAMETERS
```


CHBAR

Function: To plot a bar chart.

CHBAR (components, count, y-values)

```
APL code 795
PGF RCP code X'100D0A01' (269289985)
```


Parameters

components (specified by user) (fullword integer) An integer specifying the number of data groups (types of bar) to be created. The bar for each data group has new attributes as indicated by the appropriate chart-attribute tables.
count (specified by user) (fullword integer) An integer specifying the number of points on the x axis at which bars are placed. This is the number of bars in each component (data group). All components must have the same number of bars.
\mathbf{y}-values (specified by user) (array of short floating-point numbers)
An array of short floating-point numbers specifying the y values, which govern the lengths of the bars. For multiple components, the values must be stored sequentially by component; that is, all values for the first component, followed by all values for the second component (and so on, for as many components as are specified). No array of x values is necessary.

Description

Plots one or more bar-chart components on the currently selected axes. The type of bar chart constructed is that specified by the current chart-type setting of CHSET
('MBAR'|'CBAR'|'FBAR'). The possible choices are multiple, composite (stacked), or floating bar charts. The shading is determined by the CHSET shading option.

The bars or bar groups are centered on the values $1,2,3$ (and so on). If autoranging applies, the x-axis range is constructed to run from 0.5 to (count +0.5).

A CHSET('CVALUES') call can be issued to control whether bar values are to be placed inside or at the end of each bar. In addition (for compatibility with previous releases), a CHSET('VALUES') call may be specified to show the data value at the end of each bar (in a multiple bar chart), or to annotate the last component plotted (in composite (stacked) and floating bar charts).

Refer to "CHSET - Specify chart options" on page 68 for the full details of these options.

Valid in state-1 or state-2. If entered in state-1, the program enters state-2.

Example

This bar chart has three components (differently shaded bar types) each with two bars (two
positions on the x axis, labeled 1 and 2). The call to plot this would therefore be: CALL
CHBAR (3,2 , array) ;
The MBAR option of CHSET was in use for the example.

Principal errors

ADM0502 E PICTURE SPACE AND CHAREA ARE incompatible

ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
ADM0510 W LEGEND FORMAT MAY BE INCORRECT
ADM0511 W NOT ENOUGH ROOM TO DRAW ALL KEYS. ONE OR MORE WERE OMITTED
ADM0512 W HEADING TEXT EXCEEDS AVAILABLE SPACE AND HAS BEEN TRUNCATED
ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
ADM0525 W CHARACTER SIZE IS TOO LARGE FOR THE CHART
ADM0526 S LOGARITHMIC X OR Y AXIS RANGE CONTAINS A NON-POSITIVE VALUE
ADM0527 E NON-POSITIVE INTERCEPT ON LOGARITHMIC X OR Y AXIS
ADM0528 E X, Y, OR Z AXIS TICK INTERVAL TOO SMALL
ADM0529 W MAXIMUM OVERLAP EXCEEDED FOR A BAR CHART
ADM0531 W DATUM LINE DATA VALUE LIES OUTSIDE AXIS RANGE
AdM0532 E COMPONENT PARAMETER LESS THAN ZERO OR COUNT PARAMETER LESS than One
ADM0533 E CHART COMPONENT COUNT EXCEEDED
ADM0534 W DATA LIES OUTSIDE THE X, Y, OR Z aXis range and has not been plotted
ADM0536 W THE X AXIS CANNOT BE LOGARITHMIC FOR A BAR CHART CREATED WITH CHBAR
ADM0543 S InCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
ADM0545 E THE X, Y, OR Z AXIS HAS AN INVALID POWER OF 10 FOR TICK DEFINITION
ADM0546 E THE X, Y, OR Z AXIS RANGE EXCEEDS NUMERIC BOUNDS
ADM0547 E BARS ARE TOO NARROW FOR HARDWARE Character mode values
ADM0557 W AXIS TITLE TRUNCATED ON RIGHT OF CHART
ADM0558 W AXIS TITLE TRUNCATED AT TOP OR BOTTOM OF CHART
ADM0560 E LOGARITHMIC X, Y, OR Z AXIS RANGE IS TOO SMALL

CHBARX

Function: To plot a bar chart with numeric x-axis values.

CHBARX (components, count, x-values, y -values)

APL code	782
PGF RCP code	X'100D0A07' (269289991)

Parameters

components (specified by user) (fullword integer) A fullword integer specifying the number of components to be drawn, that is, the number of individual bars. Each component has a new set of attributes.
count (specified by user) (fullword integer) A fullword integer specifying the number of data values in each bar group.
x-values (specified by user) (array of short floating-point numbers)
An array of short floating-point numbers specifying the x values. Each chart uses the same set of values. For example, if count=5, five values must be supplied.
y -values (specified by user) (array of short floating-point numbers) An array of short floating-point numbers specifying the y values. One value must be supplied for each bar to be drawn. For multiple components, the values must be stored sequentially by component; that is, all values for the first component, followed by all values for the second component, and so on for as many components as are specified. Each component must contain count values.

Description

Plots one or more bar-chart components on the currently selected axes, using a numeric x axis. Each successive group of bars is centered on successive x values (which are defined in the x-values parameter), rather than on arbitrary 1,2 , $3, \ldots$ values. (Note that the CHBAR call (see "CHBAR - Plot a bar chart" on page 29) produces a logical, rather than numeric, x axis, and so gives these arbitrary x values.)

The width of each bar depends on the minimum interval between any two successive x values (as specified in the x-values parameter). If autoscaling is in effect, the x axis is extended to include all bars.

You can make multiple CHBARX calls in the same way as for the CHBAR call. Each one of these calls uses the x values supplied with the CHBARX calls. Therefore, the layout of the chart is changed if you change x values between successive calls.

Valid in state-1 or state-2.

Principal errors

```
ADM0502 E PICTURE SPACE AND CHAREA ARE
        INCOMPATIBLE
ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
ADM0510 W LEGEND FORMAT MAY BE INCORRECT
ADM0511 W NOT ENOUGH ROOM TO DRAW ALL KEYS.
        ONE OR MORE WERE OMITTED
ADM0512 W HEADING TEXT EXCEEDS AVAILABLE
        SPACE AND HAS BEEN TRUNCATED
ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
ADM0525 W CHARACTER SIZE IS TOO LARGE FOR THE
        CHART
ADM0526 S LOGARITHMIC X OR Y AXIS RANGE
        CONTAINS A NON-POSITIVE VALUE
ADM0527 E NON-POSITIVE INTERCEPT ON
        LOGARITHMIC X OR Y AXIS
ADM0528 E X, Y, OR Z AXIS TICK INTERVAL TOO
        SMALL
ADM0529 W MAXIMUM OVERLAP EXCEEDED FOR A BAR
        CHART
ADM0531 W DATUM LINE DATA VALUE LIES OUTSIDE
        AXIS RANGE
ADM0532 E COMPONENT PARAMETER LESS THAN ZERO
        OR COUNT PARAMETER LESS than ONE
ADM0534 W DATA LIES OUTSIDE THE X, Y, OR Z
        axis RANge and has not been plotted
ADM0535 E ZERO OR NEGATIVE DATA IS INVALID ON
        A LOGARITHMIC AXIS
ADM0543 S INCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
ADM0545 E THE X, Y, OR Z AXIS HAS AN INVALID
        POWER OF 10 FOR TICK DEFINITION
ADM0546 E THE X, Y, OR Z AXIS RANGE EXCEEDS
        NUMERIC BOUNDS
ADM0557 W AXIS TITLE TRUNCATED ON RIGHT OF
        CHART
```

```
ADM0558 W AXIS TITLE TRUNCATED AT TOP OR
    BOTTOM OF CHART
ADM0560 E LOGARITHMIC X, Y, OR Z AXIS RANGE
    IS TOO SMALL
```


CHBATT

Function: To set framing box attributes.

CHBATT (count, array)	
APL code	722
PGF RCP code	X'100B0A03' (269158915)

Parameters

count (specified by user) (fullword integer) Fullword integer specifying the number of elements in array. If more than three elements are supplied, the excess elements are ignored. If fewer than three are supplied, the remainder are unchanged from their previous setting. If count is set to zero, the defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of fullword integers giving the attributes:

1. Color

For valid values of color, see Appendix C.
Colors, line types, markers, and shading patterns on page 209
2. Line type

For valid values of line type, see Appendix C. Colors, line types, markers, and shading patterns on page 209.
3. Line width

Valid values are:
0 normal (default)
1 normal
2 double width

Description

Overrides or resets the default attributes for the chart area background or the chart area frame box, if these are used. The chart area background is only produced if CHSET ('CBACK') is used. A chart area framing box is only produced if CHSET('CBOX') is used. By default, neither a background nor a box is produced.

The defaults are:

color	7	neutral
line type	0	solid
line width	0	normal

Valid only in state-1.

Principal errors

```
AdM0501 E THIS FUNCTION CANNOT BE INVOKED IN the Chart-drawing state
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
        ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0518 E INVALID LINE TYPE VALUE
ADM0519 E INVALID LINE WIDTH VALUE
```


CHCGRD

Function: To set the basic character spacing/size.

```
CHCGRD (n, m)
APL code
    7 2 3
PGF RCP code X'10020615' (268568085)
```


Parameters

n (specified by user) (fullword integer) A fullword integer, giving the number of character columns across the width of the chart, which determines the basic character width and the size of the vertical margins. If zero is specified, the default basic character width is used (see below).
m (specified by user) (fullword integer)
A fullword integer, giving the number of character rows in the height of the chart, which determines the basic character height and the size of the horizontal margins. If zero is specified, the default basic character height is used (see below).

Description

Specifies the basic character size of all text constructed by the PG routines (for example, axis labels, keys, chart heading, chart notes). The basic character size is the fundamental measurement in chart layout. To obtain the actual text character size, the basic character size is multiplied by the character multiplier specified in the text attributes associated with each type of text.

The default basic character size is that of the current hardware characters of the primary device at the time of transition from state-1 to state-2, reduced if the chart area does not fill the picture space (see below).

If CHCGRD is used, it should be used with care. Normally, the defaults should be used. CHCGRD governs:

- Horizontal and vertical spacing of mode 2 characters.
- Horizontal and vertical size of mode 3 (vector) characters. That is the basic size upon which any multipliers will work.
- The size of the horizontal and vertical margins, and therefore the size of the plotting area.

The basic character size is specified in terms of a character grid. The parameters specify the number of characters (\mathbf{n}) to be accommodated across the width, and (\mathbf{m}) the number of character rows to be accommodated within the height of the chart area.

The default values correspond to the current hardware character size of the primary device at the time of transition from state-1 to state-2 (for example, $n=80, m=32$). If a CHAREA call is issued, this default value is reduced in proportion to the ratio of the chart-area dimensions to the picture-space dimensions (horizontal and vertical).

The physical width and height of the chart margins are affected when \mathbf{n}, \mathbf{m}, or both, differ from the default values. For example, if the default value of \mathbf{n} is 80 but \mathbf{n} is set to 60 , the 10-character default width of the vertical margins is physically $4 / 3$ as wide as the default value, and the physical width of the plotting area is correspondingly reduced.

When mode 2 characters are used, their size must be considered when specifying \mathbf{n} and \mathbf{m}. Character overlap occurs if the character size is too large to fit the specified character into the space available.

Valid only in state-1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
        THE CHART-DRAWING STATE
ADM0523 E PARAMETER IS LESS THAN THE
        ALLOWABLE MINIMUM
```


CHCOL

Function: To set the component basic color table.
CHCOL (count, colors)
APL code code $\quad 761$
PGF RCP code \quad X'10020303' (268567299)

Parameters

count (specified by user) (fullword integer)
A fullword integer specifying the number of attribute values to be taken from the colors array and used as the basic color-attribute table. If zero, the default table is used. The maximum number of values that can be specified is 32.
colors (specified by user) (an array of fullword integers)
An array of fullword integers indicating the color codes that are used consecutively for components.

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209.

Note: If a multicolored shading pattern or marker symbol is to be used (see|"CHPAT - Component shading pattern table" on page 60 and "CHMARK - Component marker table" on page 53, the corresponding color must be set to neutral.

Description

Overrides the default table of basic color-attribute values used for shading patterns and marker symbols used in representing data. Colors are taken from this table in sequence to construct each data component, pie slice, or Venn diagram circle. The colors in this table may also be used for lines and outlines, depending on the use of the CHLC call (see "CHLC - Component line color table" on page 51].

The default basic color-attribute table is as follows:

Valid only in State 1.

Example

If the first two data components (for example, the bars in a bar chart) are to be green and the third is to be red, enter the following:
DCL COLARRAY FIXED BIN(31) $\operatorname{INIT}(4,4,2)$;
CALL CHCOL (3,COLARRAY);
In this example, 3 is the number of attribute values, 4 means green, and 2 means red.

The color of the outlines of the data components are controlled by the CHLC call.

Note: The table is used cyclically and therefore, in this case, the fourth component (if any) would be green.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
        THE CHART-DRAWING STATE
AdM0515 E ATtRIBUTE COUNT IS NEGAtIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
        ALLOWED
ADM0517 E INVALID COLOR VALUE
```


CHCONV

Function: To convert coordinate values.

CHCONV | (h-type, h-old, h-new, v-type, v-old, |
| :--- |
| v-new, pos-flag) |

APL code	719
PGF RCP code	X'10170100' (269943040)

Parameters

h-type (specified by user) (fullword integer) Identifies the type of conversion required. The values that can be specified are:

0 Do not perform any conversion.
1 Convert from axis units to character-grid units.
2 Convert from character-grid units to axis units.

Specifying 0 performs no action; 0 can be specified when the caller has only one coordinate to be converted (for example, because a note has one coordinate in axis units and one in character-grid units). The h-type and v-type parameters cannot both be 0 ; neither of them can be 0 for polar charts.
h-old (specified by user) (short floating point) Specifies the values to be converted. The units in which this and the v-old parameter are expressed are indicated by the h-type and \mathbf{v}-type parameters. The point whose coordinates are given by (h-old,v-old) need not correspond to a point that is inside the plotting area or on the display; the coordinate system (whether character-grid units or axis units) extends as far as is necessary beyond the edges of the display.
h-new (returned by GDDM) (short floating point) Returns the converted value. The units in which this and the v-new parameter are expressed are indicated by the \mathbf{h}-type and v-type parameters.
v-type (specified by user) (fullword integer) See the description of the h-type parameter.
v-old (specified by user) (short floating point) See the description of the \mathbf{h}-old parameter.
v-new (returned by GDDM) (short floating point) See the description of the h-new parameter.
pos-flag (returned by GDDM) (fullword integer) Indicates whether the coordinates that have been converted correspond to a point that is inside or outside the plotting area. The values that can be returned are:

0 The point is inside the plotting area.
1 The point is outside the plotting area.
If either \mathbf{h}-type or \mathbf{v}-type is 0 , the entity indicated by the pos-flag parameter is a line rather than a point.

Description

Converts coordinates from axis units to character-grid units, or from character-grid units to axis units. The coordinates refer to the currently selected horizontal and vertical axes, and not to the x and y axes (which the user might have changed). CHCONV cannot be used for pie charts, tower charts, or Venn diagrams.

Valid in state-2 only.

Principal errors

ADM0503 E THIS FUNCTION CAN ONLY BE INVOKED in the chart-dRAWing state

CHDATT

Function: To set datum line attributes.

CHDATT (count, array)

APL code 757

PGF RCP code X'100B0A01' (269158913)

Parameters

count (specified by user) (fullword integer)
A fullword integer specifying the number of elements in array. If more than three
elements are supplied, the excess elements are ignored. If fewer than three, the remainder are unchanged from their previous setting. If count is set to zero, all defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of fullword integers giving the attributes:

1. Color

For valid values of color, see Appendix C.
Colors, line types, markers, and shading patterns on page 209
2. Line type

For valid values of line type, see Appendix
C. Colors, line types, markers, and shading patterns on page 209.
3. Line width

Valid values are:
0 normal (default)
1 normal width
2 double width

Description

Overrides the default attributes used in drawing datum lines.

The defaults are:

color	0	green (displays), black (printers)
line type	0	solid normal
line width	0	

Valid in state-1 or state-2.

Principal errors

```
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
    ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0518 E INVALID LINE TYPE VALUE
ADM0519 E INVALID LINE WIDTH VALUE
```


CHDCTL

Function: To control the format of values, and the overall size of table charts.

CHDCTL (count, list)

APL code	805
PGF RCP code	X'10150201' (269812225)

Parameters

count (specified by user) (fullword integer)
Specifies the number of items in the list array. The value must be in the range 0 through 5 . If 0 is specified, default values are used for all the options.
list (specified by user) (an array of fullword integers)
Controls the options for the table chart. If the list does not contain a value, the corresponding option is not changed. The options are:
\mathbf{x} spacing control: Defines the number of x slices between successive spaces or grids on the table chart. The choice between a grid line and a space is given by CHXSET.

A value of 0 indicates that no special spacing is to occur, the x slices will be adjacent. A value of 1 indicates that there is a space after each x slice. A value of 2 gives a space after every other x slice.
Default value is 0 , no special spacing.
z spacing control: Defines the number of components (data groups) between successive spaces or grids on the table chart. The choice between a grid line and a space is given by CHZSET.

A value of 0 indicates that no special spacing is to occur, the components will be adjacent. A value of 1 indicates that
there is a space after each component. A value of 2 gives a space after every other component.
Default value is 1 , space after each component.
x space multiplier: Defines a percentage multiplier that is applied to the gap between x items.
Default value is 100 , half a character margin around the text.
The value supplied must be between 0 and 9999.
z space multiplier: Defines a percentage multiplier that is applied to the gap between z items.

Default value is 100 , half a character margin around the text.
The value supplied must be between 0 and 9999.

Overall size multiplier: Defines a percentage multiplier that is applied to the size of the table.

Default value is 100 , no special scale factor is applied to the table.

The value supplied must be between 0 and 9999.

Description

Controls the format of values on a table chart. It also controls the overall size of the chart.

Valid only in state-1.

Principal errors

ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM
ADM0524 E PARAMETER IS GREATER THAN THE ALLOWABLE MAXIMUM

CHDRAX

Function: To specify control of axis drawing.

CHDRAX

```
APL Code 790
PGF RCP code X'10140100' (269746432)
```


Parameters

None

Description

Specifies that the axis lines, scale marks, labels, and associated grid and/or datum reference lines are to be constructed immediately, as described below. The call does not apply to axis titles. Note that CHSET ('NDRAW') should normally be used together with CHDRAX.

A CHTOWR call (to plot a tower chart) must not be followed by a CHDRAX call.

Valid only when in state-2, after the currently selected axes have been defined by a previous call to a plotting routine.

Principal errors

ADM0503 E THIS FUNCTION CAN ONLY BE INVOKED IN THE CHART-DRAWING STATE
ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
ADM0530 E A SELECTED AXIS HAS NOT BEEN GENERATED
ADM0566 E CHDRAX NOT ALLOWED WITH CURRENT Chart type

CHDTAB

Function: To construct a table chart.

CHDTAB (z-count, x-count, z-list, x-list, data-array)

APL code 806
PGF RCP code X'100D0AOB' (269289995)

Parameters

z-count (specified by user) (fullword integer) Specifies the number of data groups (components) to be shown along the z axis.
x-count (specified by user) (fullword integer) Specifies the number of data values to be shown along the x axis (that is, the number of values in each data group). All the data groups must have the same number of values.
z-list (specified by user) (array of short floating-point numbers)
The list of z values to be used along the z axis.
x-list (specified by user) (array of short floating-point numbers)
The list of x values to be used along the x axis.
data-array (specified by user) (array of short floating-point numbers)
An array that contains the data values to be shown in the table. The number of values to be displayed corresponds to the number specified in the z-count parameter multiplied by the number in the x-count parameter. For example, if the data-array contained 20 values, \mathbf{x}-count was 5 , and \mathbf{z}-count was 3 , then only 15 values would be displayed.

Description

Constructs a table chart. The horizontal dimension of the standard table chart is considered to be a z axis, and the vertical dimension an x axis. The data shown in the cells of the table is the y data.

The x and z axes of the standard table chart are treated similarly. They both have the option (controlled by CHXSET and CHZSET) to put a set of labels around the edge of the table. The x labels go down the left edge of the table and the z labels go across the top of the table. The labels can be:

Numeric values supplied on the CHDTAB call.
The data labels supplied by the CHXDLB and CHZDLB calls.
For the x axis only they may also be:
Labels supplied by the CHXLAB call. Month or day labels as specified by the CHXDAY or CHXMTH calls.

The outer edges of the chart are at the current margins. No legends are allowed with this chart as it already shows all the information that a legend would contain.

Valid only in state-1.

Principal errors

```
ADM0502 E PICTURE SPACE AND CHAREA ARE
        INCOMPATIBLE
ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
ADM0512 W HEADING TEXT EXCEEDS AVAILABLE
        SPACE AND HAS BEEN TRUNCATED
ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
ADM0532 E COMPONENT PARAMETER LESS THAN ZERO
        OR COUNT PARAMETER LESS THAN ONE
ADM0534 W DATA LIES OUTSIDE THE X, Y, OR Z
        AXIS RANGE AND HAS NOT BEEN PLOTTED
ADM0543 S INCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
ADM0546 E THE X, Y, OR Z AXIS RANGE EXCEEDS
        NUMERIC BOUNDS
ADM0566 E CHDRAX NOT ALLOWED WITH CURRENT
        CHART TYPE
ADM0587 W CHART IS T00 WIDE. n COLUMN(S)
        MISSING
ADM0588 W CHART IS TOO LONG. n ROW(S) MISSING
```


CHFINE

Function: To specify curve fitting smoothness.

```
CHFINE (smoothness)
APL code 799
PGF RCP code X'1002061A' (268568090)
```


Parameters

smoothness (specified by user) (fullword integer)
A fullword binary integer in the range 0 through 1000 specifying the number of straight lines to be constructed between each consecutive pair of data points to form the appearance of a smooth curve.

The default value, which applies if no CHFINE call is issued or if CHFINE(0) is issued, is 10.

Description

Overrides or resets the default smoothness of the curves used to connect consecutive data points in each component of a line graph or surface chart.

CHFINE has no effect unless CHSET('CURVE') is explicitly specified and CHPLOT, CHPOLR, or CHSURF is issued. It also has no effect on a CHPLOT or CHPOLR call for which
CHSET('NOLINES') is specified (that is, a scatter plot).

The smooth curve joining consecutive pairs of data points is constructed by interpolating a number of straight lines between each pair of data points. As the number of such interpolated lines increases so the resulting curve appears smoother. On higher-resolution devices, a larger number of interpolated lines are required to give a smooth appearance. CHFINE may be used to control the apparent smoothness by specifying the number of interpolated lines. The default number of interpolated lines is 10. A large number of interpolated lines can significantly increase plotting time.

Valid in state-1 or state-2.

Principal errors

Adm0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM
 adm0524 E PARAMETER IS GREATER THAN THE allowable maximum

CHGAP

Function: To specify spacing between bars.

CHGAP	(gap-to-bar-ratio)
APL code	765
PGF RCP code	$X^{\prime} 10020610^{\prime}(268568080)$

Parameters

gap-to-bar-ratio (specified by user) (short floating point)
A positive or zero short floating-point value that specifies the ratio of the gap between bars to the bar width. If gap-to-bar-ratio is set to zero, bars have common lines that may appear in unexpected colors because of color mixing.

If gap-to-bar-ratio is a negative number and CHGAP is used before CHBAR or CHBARX calls, the bars in the chart are positioned so that they partially overlap; that is, a bar is partially hidden behind the previous one. Values close to -1 are not recommended.

If a negative value is used before a CHTOWR call (for a tower chart), a value of zero is used. (The user-defined value remains unchanged.) The CHZGAP call allows you to specify the gap in the z-axis direction. Refer to "CHZGAP - Spacing between towers" on page 112 for details of this call.

The total length of the axis must accommodate all bars and gaps. As this parameter is increased, the actual bar width decreases. It is therefore possible to produce bars that appear as single lines.

Description

Overrides the default ratio of the gap between adjacent bars to the bar width (in bar charts) or adjacent towers to the tower width (in tower charts). See Figure 14 on page 41 and compare CHGGAP.

The default ratio is half the bar width (0.5).
Valid in state-1 or state-2.

Principal errors

ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM

CHGATT

Function: To set grid line attributes.
CHGATT (count, array)
APL code

| PGF RCP code | 754 |
| :--- | :--- | X'10020702' (268568322)

Parameters

count (specified by user) (fullword integer) Specifies the number of elements in array. If more than 15 elements are specified, the excess elements are ignored. If less than 15 , the remainder are unchanged from their previous setting. If zero is specified, all defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of fullword integers specifying the attributes for the grid lines.

The first set of three attributes applies to the primary x-axis grid lines, the second set applies to the primary x-axis grid lines, and the third and fourth sets apply to the secondary x-axis and y-axis grid lines. For tower charts and table charts, the fifth set applies to the z axis.

The three elements of each set are:

1. Color

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209
2. Line type

For valid values of line type, see Appendix
C. Colors, line types, markers, and shading patterns on page 209.
3. Line width

Valid values are:
-1 leave unchanged
0 normal (default)
1 normal width
2 double width

Description

Overrides or reestablishes the default attributes used in drawing grid lines.

The defaults are:

color	0	green (displays), black (printers)
line type	0	solid
line width	0	normal

Valid only in state-1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
        THE CHART-DRAWING STATE
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
        ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0518 E INVALID LINE TYPE VALUE
ADM0519 E INVALID LINE WIDTH VALUE
```


CHGGAP

Function: To specify spacing between bar groups.

```
CHGGAP (group-gap-to-bar-ratio)
APL code 766
PGF RCP code X'10020611' (268568081)
```


Parameters

group-gap-to-bar-ratio (specified by user) (short floating point)
A positive or zero short floating-point value that specifies the ratio of the gap between bar groups to the width of a single bar.

The total length of the axis must accommodate all bars and gaps. As this parameter is increased, the actual bar width decreases. It is therefore possible to produce bars that appear as single lines.

Description

For multiple bar charts with more than one component, CHGGAP overrides the default ratio of the gap between bar groups to the width of a single bar.

The default ratio is twice the bar width (2.0).
Valid in state-1 or state-2.

Principal errors

ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM

Figure 14. Specify gaps between bars with CHGAP and CHGGAP

CHHATT

Function: To set heading text attributes.

CHHATT (count, array)

APL code	729
PGF RCP code	$X^{\prime} 10020901^{\prime}$ (268568833)

Parameters

count (specified by user) (fullword integer) A fullword integer specifying the number of elements in array. If more than five elements are specified, the excess elements are ignored. If fewer than five, the remainder are unchanged from their previous setting. If zero is specified, all five defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of, at most, five fullword integers:

1. Color

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS

For mode 2 or mode 3, the identifier denotes:

0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS

4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3, the character-size multiplier is divided by 100 , and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. For example, if character-size multiplier $=200$ and mode 3 characters are being used, they are drawn twice as large as the basic size, which is that of the hardware characters unless overridden by CHCGRD. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width. 200 causes the height to be multiplied by twice the amount of the width.

Description

Overrides or reestablishes the default character-appearance attributes used in displaying the chart heading.

The defaults are:

Color	0	green (displays), black (printers)
Character mode	3	
Symbol-set identifier	0	system default results in the text size Character-size multiplier
	100	as defined by CHCGRD (by default, the size of the
hardware characters)		
Character		
height/width multiplier	100	results in the text size as defined by CHCGRD (by default, the size of the
hardware characters)		

Valid only in state-1.

Principal errors

CHHEAD

Function: To specify heading text.

CHHEAD (length, text)

APL code 730
PGF RCP code X'10020202' (268567042)

Parameters

length (specified by user) (fullword integer) A fullword integer giving the length in bytes of the EBCDIC character string supplied. The heading length cannot exceed 132 characters. Specifying length as zero suppresses the heading.
text (specified by user) (character)
A character string, of the length given in length, containing the text string to be used as a heading.

The text string may be formatted as a number of separate physical lines of heading on the chart by the use of the semicolon character (;) as a control character, indicating new line. The text string is scanned from left to right and, whenever a semicolon control character is found, a new line of heading is started. The control character itself is not displayed. The lines of heading are constructed in sequence, each line immediately under the preceding line. Each line is subject to separate justification.

If a semicolon character is required in the heading, two consecutive semicolons should be entered. In this case, no new line action is taken, and the two consecutive semicolons cause a single semicolon character to appear in the heading.

Description

Specifies the chart-heading text. CHSET options are available to control its occurrence, position, and justification. Its attributes are controlled by CHHATT

Valid only in state-1.

Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0508 E COUNT PARAMETER IS NEGATIVE, OR LENGTH PARAMETER IS NON-POSITIVE ADM0509 E CHARACTER STRING TOO LONG

CHHIST

Function: To plot histograms.

```
CHHIST (components, count, range1, range2,
    y-values)
APL code 793
PGF RCP code X'100D0A02' (269289986)
```


Parameters

components (specified by user) (fullword integer) Specifies the number of sets of histogram bars to be drawn on the current axes.
count (specified by user) (fullword integer) Specifies the number of ranges (bars) for each component. For example, if you want to plot the distribution of test scores (from $0-100$) in increments of five, you would specify a count of 20.
range1 (specified by user) (array of short floating-point numbers) Contains the number of elements specified in the count parameter. Each value represents the start of a range. Using the previous example, range 1 contains the following twenty elements: $0,5,10,15,20, \ldots, 90,95$.
range2 (specified by user) (array of short floating-point numbers) Each value in this array gives the end of the range whose start is given by the corresponding element of the range1 parameter. If range 2 contains the same values as range 1 or is the same array) the bars appear as vertical lines. Based on the previous example, the array contains the following values: $5,10,15,20,25, \ldots, 95$, 100. Note that, in the general case, the successive ranges do not have to be all equal.
y-values (specified by user) (array of short floating-point numbers)
Specifies the y values. For multiple components, the values must be stored sequentially by component; that is, all values for the first component, followed by all values for the second component (and so on), for as many components as are specified.

Description

Plots one or more histograms on the currently selected axes.

The histogram is drawn as a set of bars parallel to the x axis. Each bar extends over a range defined by a start value and an end value. The ends of the bars may be connected to the x axis (or datum reference line) by risers parallel to the y axis (see the CHSET option RISERS). The shading method is determined by the CHSET shading option. A multicomponent histogram is plotted in a manner similar to a composite (stacked) bar chart.

The color of the bars is controlled by the color table, which can be specified by a call to CHCOL. See Appendix C, "Colors, line types, markers, and shading patterns" on page 209 for further details.

Valid in state-1 or state-2. If entered in state-1, the program enters state-2.

Principal errors

```
ADM0502 E PICTURE SPACE AND CHAREA ARE
        INCOMPATIBLE
ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
ADM0510 W LEGEND FORMAT MAY BE INCORRECT
ADM0511 W NOT ENOUGH ROOM TO DRAW ALL KEYS.
        ONE OR MORE WERE OMITTED
ADM0512 W HEADING TEXT EXCEEDS AVAILABLE
        SPACE AND HAS BEEN TRUNCATED
ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
ADM0525 W CHARACTER SIZE IS TOO LARGE FOR THE
        CHART
ADM0526 S LOGARITHMIC X OR Y AXIS RANGE
        CONTAINS A NON-POSITIVE VALUE
ADM0527 E NON-POSITIVE INTERCEPT ON
        LOGARITHMIC X OR Y AXIS
ADM0528 E X, Y, OR Z AXIS TICK INTERVAL TOO
        SMALL
```

```
ADM0529 W MAXIMUM OVERLAP EXCEEDED FOR A BAR
    CHART
ADM0531 W DATUM LINE DATA VALUE LIES OUTSIDE
    AXIS RANGE
ADM0532 E COMPONENT PARAMETER LESS THAN ZERO
    OR COUNT PARAMETER LESS THAN ONE
ADM0534 W DATA LIES OUTSIDE THE X, Y, OR Z
    AXIS RANGE AND HAS NOT BEEN PLOTTED
ADM0535 E ZERO OR NEGATIVE DATA IS INVALID ON
        A LOGARITHMIC AXIS
ADM0543 S INCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
ADM0545 E THE X, Y, OR Z AXIS HAS AN INVALID
    POWER OF 10 FOR TICK DEFINITION
ADM0546 E THE X, Y, OR Z AXIS RANGE EXCEEDS
    NUMERIC BOUNDS
ADM0557 W AXIS TITLE TRUNCATED ON RIGHT OF
        CHART
ADM0558 W AXIS TITLE TRUNCATED AT TOP OR
    BOTTOM OF CHART
ADM0560 E LOGARITHMIC X, Y, OR Z AXIS RANGE
    IS TOO SMALL
```


CHHMAR

Function: To set horizontal margins.

```
CHHMAR (botmar, topmar)
APL code 724
PGF RCP code X'10020612' (268568082)
```


Parameters

botmar (specified by user) (fullword integer) A fullword integer specifying the number of character rows at the bottom of the plotting area.
topmar (specified by user) (fullword integer) A fullword integer specifying the number of character rows at the top of the plotting area.

Description

Overrides the default margin sizes of the chart, and therefore changes the size of the plotting area also. The margin sizes are specified in terms of character grid rows, where the character grid is that of the device unless explicitly overridden by a call to CHCGRD.

By default, the horizontal margins are five character rows above and below the plotting area.

CHHMAR can enlarge the margins to prevent the legend encroaching on the chart-plotting area, or reduce the margins to increase the size of the chart-plotting area.

See also "CHVMAR - Vertical margins" on page 88 for details on vertical margins.

Valid only in state-1.

Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM

CHKATT

Function: To set legend text attributes.

CHKATT (count, array)

```
APL code 727
PGF RCP code X'10020905' (268568837)
```


Parameters

count (specified by user) (fullword integer)
A fullword integer specifying the number of elements in array. If more than five elements are specified, the excess elements are ignored. If fewer than five, the remainder are unchanged from their previous setting. If zero is specified, all five defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of at most five fullword integers:

1. Color

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS

For mode 2 or mode 3, the identifier denotes:

0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS
4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100 , and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. For example, if character-size multiplier $=200$ and mode 3 characters are being used, they are drawn twice as large as the basic size set by CHCGRD. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width. 200 causes the height to be multiplied by twice the amount of the width.

Description

Overrides or reestablishes the default character appearance attributes used in displaying legend key labels, spider labels on pie charts, and Venn diagram labels. See CHSET('SPISLICE') for a description of the applicability of CHKATT to spider labels in pie charts.

The defaults are:

Color	0	green (displays), black (printers)
Character mode 3 0	system default results in text size as defined by CHCGRD (by default, the size	
Symbol-set identifier Character-size multiplier	100	of the hardware characters) results in text size as defined by CHCGRD (by default, the size of the hardware characters)
Character	100	
height/width multiplier		chen

Valid only in state-1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INVALID CHARACTER MODE VALUE
ADM0522 E INVALID CHARACTER SIZE MULTIPLIER
```


CHKEY

Function: To set legend key labels.

CHKEY (count, length, labels)

APL code	726
PGF RCP code	$X^{\prime} 10020201^{\prime}(268567041)$

Parameters

count (specified by user) (fullword integer) A fullword integer specifying the number of labels supplied in labels. Count $=0$ deletes labels defined by a previous CHKEY call.
length (specified by user) (fullword integer) A fullword integer specifying the number of characters in each label supplied in labels. All labels supplied have the same length. The effect of varying length labels may be produced by padding each label with null ($\mathrm{X}^{\prime} 00^{\prime}$) characters. All such trailing nulls are ignored when the legend is constructed.

If a label consists entirely of null characters, the associated legend key label or Venn diagram label is not constructed. For pie slice labels, the slice label and associated spider line connecting it to the pie slice are not constructed unless CHSET('VALUES') is specified when the value and associated connecting line are constructed.
labels (specified by user) (character)
A string of EBCDIC text, interpreted as a list of labels each of which is length characters long. The total length, L, of the text string that
is accessed is given, in bytes, by: $L=$ count*length
The maximum value of L permitted is approximately 32000.
Semicolon (";") and underscore ("_") characters in each label are interpreted specially when the labels appear in legends. Each semicolon is interpreted as a line break control character, causing a new line to be started, left-justified. Each underscore is interpreted as a request to construct the key symbol at this point (taking up three key label character positions).
If a semicolon character is required to appear as part of the legend key label text, ";""
achieves this effect, with no control-character line-break action. Similarly, if an underscore character is required to appear in the legend key label text, "_." achieves this effect, with no control-character key-symbol-substitution action.

If a legend key label contains no underscore control characters, a key symbol followed by a blank character (the whole occupying four character positions) is constructed at the start of the first line of the key label. Any further lines of the key label are indented four character positions to align with the text of the first line. If a legend key label contains one or more underscore control characters, key symbols (each occupying three character positions) are constructed where underscore control characters appear. No indenting of lines occurs.

In slice labels on pie charts, single semicolon characters are interpreted as line-break control characters as described above, and single underscore characters are interpreted as blanks. In Venn diagram labels, both semicolon and underscore single characters are interpreted as blanks. In both pie slice labels and Venn diagram labels, ";" and "__" appear as ";" and "_" respectively.
The following character codes have a special interpretation:

- $X^{\prime} 15$ ' is interpreted as a line-break control character.
- $\mathrm{X}^{\prime} 1 \mathrm{~A}^{\prime}$ is interpreted as a key-symbol-substitution control character.

Description

Specifies legend key labels for data components (on a line graph, surface chart, bar chart, histogram) or for pie chart slices. Also has other interpretations for pie charts and Venn diagrams, as follows:

- For pie charts, the labels specified by CHKEY appear as slice labels around each pie if CHSET('SPIDER') is specified; they appear instead as key labels in a legend only if CHSET('PIEKEY') is specified.
- For Venn diagrams, the labels specified by CHKEY appear as labels connected to the Venn circles and their overlap. Only the first three labels are used. No legend can be specified for a Venn diagram.

In all cases (legend key labels, pie slice labels, and Venn diagram labels), the labels are constructed with the attributes specified by CHKATT, or with the CHKATT default attribute values.

What follows refers to keys in a legend.
On each plotting-routine call, a key is created for each component or pie slice plotted using the supplied labels in sequence. Thus, if more labels are provided than are needed for the number of components or slices plotted, the remaining labels are ignored. If fewer labels are provided than are needed, the number of keys constructed is equal to the number of labels supplied. In all cases, legend base-position justification (see CHKEYP) is based on the assumption that all labels provided are generated. Thus, if all labels are not used, the legend may not be where you expect it.

If a CHKEY call is not issued; a legend is not constructed. Even if a CHKEY call is issued, a legend is constructed only if CHSET('LEGEND') applies. (For pie charts, both CHSET('LEGEND') and CHSET('PIEKEY') must apply.)

Valid only in state-1.

Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN the Chart-drawing state

ADM0508 E COUNT PARAMETER IS NEGATIVE, OR LENGTH PARAMETER IS NON-POSITIVE
ADM0509 E CHARACTER STRING TOO LONG

CHKEYP

Function: To set legend base position.

CHKEYP	(orientation, margin, justification)
APL code	728
PGF RCP code	X'10020801'

Parameters

orientation (specified by user) (character) A character string of length 1 containing ' V ' or ' H '.
'V' specifies a vertical legend (base position in the left- or right-hand margin, adjacent to the left- or right-hand chart-area boundary).
'H' specifies a horizontal legend (base position in the top or bottom margin, adjacent to the top or bottom chart-area boundary).
margin (specified by user) (character) A character string of length 1 containing ' R^{\prime}, 'L', 'T', or 'B'.
' R ' and ' L ' specify a base position in the right- and left-hand margins, respectively, and are valid only for vertical legends.
' T ' and ' B '. specify a base position in the top and bottom margins, respectively, and are valid only for horizontal legends.
justification (specified by user) (character) A character string of length 1 containing ' C ', 'R', 'L', 'T', or 'B'.
' C ' specifies a base position centered in the margin and is valid for both horizontal and vertical legends.
' R ' and ' L ' specify right and left justification respectively, and are valid only for horizontal legends. For example 'L' specifies a base position in which each row of the legend is justified to the left-hand boundary of the chart area (within the top or bottom margin).
'T' and 'B' specify top and bottom justification respectively, and are valid only for vertical legends. For example 'T' specifies a base position in which each column of the legend is justified to the top boundary of the chart area (within the left- or right-hand margin).

Description

Overrides the default base position of the legend. The legend offsets (0 by default, see "CHKOFFLegend offsets" on page 49 are applied to the base position, to obtain the legend final position. The legend base position also affects many aspects of the legend format.

The default base position, that applies when CHKEYP is not called, specifies a vertical legend centered in the right margin.

Valid only in state-1.

Principal errors

```
AdM0501 E THIS FUNCTION CANNOT BE INVOKED IN
        THE CHART-DRAWING STATE
ADM0554 E INVALID KEY POSITION CODE: c1
AdM0555 E CONFLICTING KEY POSITION CODE: c1
```


CHKMAX

Function: To set maximum legend width/height.

CHKMAX (hmax, vmax)

APL code	770
PGF RCP code	$X^{\prime} 100 A 0619 '(269092377)$

Parameters

hmax (specified by user) (fullword integer) Specifies the maximum width of a horizontal legend. The maximum possible number of key entries is constructed in each row of the legend within the maximum width specified (except that the first key entry in each row is
always constructed, even if it is wider than the maximum width specified).
When the maximum width would be exceeded by a new entry, a new line is started.
A zero value specifies that the full chart-area width is to be used.

If the value specified results in a maximum legend width greater than the chart-area width, the chart-area width is used as the maximum.
Each line of a key entry begins and ends with a blank character (for spacing). Therefore, the width of a key entry is:

```
(2 + number of character positions in
longest line of key entry)
```

The maximum legend width specified applies to the actual width, and includes these two extra spacing characters for each key entry.
vmax (specified by user) (fullword integer) Specifies the maximum height of a vertical legend. The maximum possible number of key entries is constructed in each column of the legend within the maximum height specified (except that the first key entry in each column is always constructed, even if it is taller than the maximum height specified). When the maximum height would be exceeded by a new entry, a new column is started.
A zero value specifies that the full chart-area height is to be used.
If the value specified results in a maximum legend height greater than the chart-area height, the chart-area height is used as the maximum.
The top line of text in a key entry begins a half-character height below the top of the space occupied by the key entry. Similarly, there is a half-character height between the bottom line of a key entry and the bottom of the space occupied by the key entry. Therefore, the height of a key entry is:
($1+$ number of lines in key entry)
The maximum legend height specified applies to the actual height, and includes this extra spacing character for each key entry.

Description

Specifies the maximum width of a horizontal legend, or the maximum height of a vertical legend, or both.

Both parameters are fullword binary integers. Their values must be non-negative. The units are the character width and height, which default to the hardware character size unless the defaults are explicitly overridden by CHCGRD (see "CHCGRD - Basic character spacing/size" on page 32).

Zero specifies that the legend height or width is limited by the height or width of the chart area.

Valid only in state-1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
    THE CHART-DRAWING STATE
ADM0523 E PARAMETER IS LESS THAN THE
    ALLOWABLE MINIMUM
```


CHKOFF

Function: To set legend offsets.

CHKOFF (hoffset, voffset)

APL code	771
PGF RCP code	X'100A0618' (269092376)

Parameters

hoffset (specified by user) (short floating point) A short floating-point number specifying the horizontal offset, in character-grid units (which default to the character size of the device
unless explicitly overridden by a call to CHCGRD), that is applied to the legend base position. A positive value specifies translation to the right, and a negative value translation to the left.
voffset (specified by user) (short floating point) A short floating-point number specifying the vertical offset, in character-grid units (which default to the character size of the device unless explicitly overridden by a call to CHCGRD), that is applied to the legend base position. A positive value specifies translation upward, and a negative value translation downward.

Description

Specifies the horizontal and vertical offsets, interpreted in character-grid units, which are used to obtain the final legend position from the legend base position.

If no CHKOFF call is issued, no offsets are applied.

When the legend is constructed, it is formatted in the legend base position, then translated across the chart area by the specified horizontal and vertical offsets. If, as a result, any part of the legend lies outside the chart area, the legend is further translated horizontally, or vertically, or both as necessary until it lies just within the nearest chart-area boundaries.

Both parameters are short (fullword) signed floating-point numbers.

Valid only in state-1.

Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE

CHLATT

Function: To specify axis label text attributes.

CHLATT (count, array)

APL code	747
PGF RCP code	X'10020903' (268568835)

Parameters

count (specified by user) (fullword integer) Specifies the number of elements in array. If more than six elements are specified, the excess elements are ignored. If fewer than six, the remainder are unchanged from their previous setting. If zero is specified, all six defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of, at most, six fullword integers:

1. Color

For valid values of color, see Appendix C.
Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS

For mode 2 or mode 3, the identifier denotes:

0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS

4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100 , and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. For example, if character-size multiplier is 200 and mode 3 characters are being used, they are drawn twice as large as the basic size set by CHCGRD. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width. 200 causes the height to be multiplied by twice the amount of the width.
6. Axis-label rotation

When axis-label rotation is requested, each label is written at the specified angle to the horizontal. Label rotation is indicated by specifying a nonzero value in this element. The value must be between -9000 and +9000 . This number is divided by 100 to give a value between -90 and +90 , which is the angle, in degrees, to the horizontal at which the labels will be drawn. The default is zero. When positive, the angle is in a counterclockwise direction. When negative, it is in a clockwise direction.

Description

Overrides or reestablishes the default character-appearance attributes used in displaying all axis labels, and pie titles (on pie charts) on all the axes. You can use the CHXLAT, CHYLAT, and CHZLAT calls to change the axis-label attributes for the currently selected x, y, or z axis.

By default, the attributes are as follows:
\(\left.$$
\begin{array}{lrl}\text { Color } & 0 & \begin{array}{l}\text { green (displays), } \\
\text { black (printers) }\end{array} \\
\begin{array}{l}\text { Character mode } \\
\text { Symbol-set identifier } \\
\text { Character-size } \\
\text { multiplier }\end{array} & \begin{array}{rl}0 & 0\end{array} & \begin{array}{l}\text { system default } \\
\text { results in the text size } \\
\text { as defined by } \\
\text { CHCGRD (by default, } \\
\text { the size of the }\end{array}
$$

hardware characters)

results in the text size

as defined by\end{array}\right]\)| ChCGRD (by default, |
| :--- |
| Cheight/width multiplier |
| the size of the |
| hardware characters) |
| unless overridden by |
| CHXLAT, CHYLAT, |

Valid only in state-1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
    THE CHART-DRAWING STATE
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
    ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INVALID CHARACTER MODE VALUE
ADM0522 E INVALID CHARACTER SIZE MULTIPLIER
```


CHLC

Function: To specify component line color table.

CHLC \quad (count, colors)	
APL code	800
GDDM RCP code	$X^{\prime} 10020307$

Parameters

count (specified by user) (fullword integer)
A fullword integer specifying the number of attribute values to be taken from the colors array and used as the line color attribute table. If zero, the default colors are used.

The maximum number of values that can be specified is 32 .
colors (specified by user) (an array of fullword integers)
An array of fullword integers indicating the color codes used consecutively for components.

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209

Example

If the line in the first two data components (for example, lines on a line graph) is to be green and the third red, enter the following:

```
DCL LCARRAY FIXED BIN(31) INIT(4,4,2);
CALL CHLC (3,LCARRAY);
```

In this example, 3 is the number of attribute values, 4 means green, and 2 means red.

Marker and shading colors are controlled by the CHCOL call.
Note: The table is used cyclically and therefore, in this case, the fourth component (if any) would be green.

Description

Overrides the default table of line color attributes used for data representation lines on, for example, line graphs; for outlines on, for example, bar charts; and for x slices on table charts. Colors are taken from the line color table in sequence to construct each data component, pie slice, or Venn diagram circle.

The default line color attribute table is the basic color attribute table, whether this is specified explicitly in CHCOL or allowed to default.

Valid only in state-1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
        THE CHART-DRAWING STATE
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
        ALLOWED
ADM0517 E INVALID COLOR VALUE
```


CHLT

Function: To specify component line type table.

CHLT	(count, line-types)
APL code	762
PGF RCP code	$X^{\prime} 10020302^{\prime}$

Parameters

count (specified by user) (fullword integer)
A fullword integer specifying the number of attribute values to be taken from line and used as the line type attribute table. If zero, the default table is used. A maximum of 32 values may be specified.
line-types (specified by user) (an array of fullword integers)
An array of fullword integers indicating the line types used consecutively for components.

For valid values of line type, see Appendix C. Colors, line types, markers, and shading patterns on page 209

Description

Overrides or reestablishes the default table of line type attributes. Line type attributes are taken in sequence from the table and are used for each data component, pie slice, or Venn diagram circle.

The default table has only one entry:

Index	Line type
1	solid

Valid only in state-1.

Principal errors

ADM0501 E this function cannot be invoked in the Chart-drawing state
Adm0515 E attribute count is negative
adm0516 W ARray count exceeds the maximum ALLOWED
adm0518 E invalid Line type value

CHLW

Function: To specify component line width table.

```
CHLW (count, line-widths)
APL code
PGF RCP code X'10020305' (268567301)
```


Parameters

count (specified by user) (fullword integer)
A fullword integer specifying the number of attribute values to be taken from line and used as the line-width attribute table. If zero, the default table is used. A maximum of 32 values can be specified.
line-widths (specified by user) (array of short floating-point numbers)
An array of short floating-point numbers indicating the line widths used consecutively for components. Valid values are 0 through 100.

The specified value is a multiplication factor to be applied to the standard line width, shown below. The standard width is multiplied by the specified factor, and then rounded down to an integral number of pels. If the result is less than one pel, a width of one pel is used. If the result is more than the maximum shown below, the maximum is used.

	Line Width in Pels		
	Minimum	Standard	Maximum
IBM	1	1	
Sta			
terminals			
and printers			
IBM	1	3	300
3800			
printer		6	600
IBM	1		
4250			
printer			

Description

Overrides or reestablishes the default table of line width attributes. Line width attributes are taken in sequence from the table and used for each data component, pie slice, or Venn diagram circle.

The default table has only one entry:

Index	Line width
1	$\mathbf{1 . 0}$

Valid only in state-1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM ALLOWED
ADM1047 E LINE WIDTH MUST BE A NUMBER IN THE RANGE n1 THROUGH n2
```


CHMARK

Function: To specify component marker table.

CHMARK (count, markers)	
APL code	763
PGF RCP code	X'10020301' $^{\prime}(268567297)$

Parameters

count (specified by user) (fullword integer) A fullword integer specifying the number of attribute values to be taken from markers and used as the marker-attribute table. If zero, the default table is used. A maximum of 32 values may be specified.
markers (specified by user) (an array of fullword integers)
An array of fullword integers indicating the marker values used consecutively for components. See Appendix C. Colors, line types, markers, and shading patterns on page 209 for valid values.

Description

Overrides or reestablishes the default table of marker values. Markers from this table are used in sequence to construct each data component.

A default attribute table, containing eight markers, is available.

Valid only in state-1.

Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
        THE CHART-DRAWING STATE
AdM0513 e invalid patterN OR MARKER value
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
        ALLOWED
```


CHMISS

Function: To specify missing values on a table chart.

CHMISS	(length, text)
APL code	804
PGF RCP code	$X^{\prime} 10150301 ' ~(269812481) ~$

Parameters

length (specified by user) (fullword integer) Specifies the number of characters in the text string. The value must be in the range 0 through 20. If 0 is specified, default values are used for all the options.
text (specified by user) (character)
A character string that will be used for each missing y value. The default string is a null string, which shows a blank space on the resulting chart.

Description

Sets a character string, up to 20 characters long, that is used to show missing values on a table chart.

Any y data element that has the special value corresponding to "missing" will be shown on the table chart using this character string.

Valid only in state-1.

Principal errors

```
ADM0508 E COUNT PARAMETER IS NEGATIVE, OR LENGTH PARAMETER IS NON-POSITIVE
ADM0509 E CHARACTER STRING TOO LONG
```


CHMKSC

Function: To set marker scale values.

CHMKSC (count, marker_scales)

APL code	781
PGF RCP code	$X^{\prime} 10030 C 01{ }^{\prime}(268635137)$

Parameters

count (specified by user) (fullword integer) Specifies the number of elements in the marker_scales parameter.
marker_scales (specified by user) (array of short floating-point numbers)
Specifies the scale factors that are applied to the markers used in the GSMARK call.

Description

Defines the scale factors that are applied to the markers used in the CHMARK call (see "CHMARK - Component marker table" on page 53. The scale factors can be reset by specifying 0 in the count parameter.

CHMKSC is used together with the CHMARK call in the following way. If the third element of the scale factor array in CHMKSC is 2.3 , the third marker number that is passed in a CHMARK call is scaled by 2.3 times its original size.

Markers can be scaled like other characters on a chart. See CHSET ('MSCALE') for details.

Valid only in state-1.

Principal errors

ADM0515 E ATtRIbute count is negative adme516 W ARRAY COUNT EXCEEDS THE MAXIMUM ALLOWED

CHNATT

Function: To specify attributes for notes.
CHNATT (count, array)
APL code $\quad 760$
PGF RCP code \quad X'100B0904' (269158660)

Parameters

count (specified by user) (fullword integer)
A fullword integer specifying the number of elements in array. If more than six elements are specified, the excess elements are ignored. If fewer than six, the remainder are unchanged from their previous setting. If zero is specified, all six defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of, at most, six fullword integers:

1. Color

For valid values of color, see Appendix C.
Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 the alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS
For mode 2 or mode 3, the identifier denotes:
0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS
4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100 , and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. (CHCGRD defaults are the size of characters for the device.) For example, if character-size multiplier = 200 and mode 3 characters are being used, they are drawn twice as large as the hardware characters unless CHCGRD has been used to override the default. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width. 200 causes the height to be multiplied by twice the amount of the width.
6. Note rotation

Note rotation is indicated by specifying a nonzero value in this element. When note rotation is requested, each note is written at the specified angle to the horizontal. The value must be between - 36000 and +36000 . This number is divided by 100 to give a value between -360 and +360 , which is the angle, in degrees, to the horizontal at which the notes are drawn. The default is zero. When positive, the angle is in a counterclockwise direction. When negative, it is in a clockwise direction.

The rotation occurs when the note is drawn (that is, when CHNOTE is called). The rotation is performed so that the part of the imaginary rectangle surrounding the note (as specified in CHNOTE) remains at the offset specified in CHNOFF.

When mode-1 characters are specified, any nonzero angle is treated as zero. No error or warning message is issued.
When mode-2 characters are used, the area that is blanked (if blanking is specified) or the surrounding box (if boxing is specified) may not surround the note but might cut through some of the characters. This is because of the inherent characteristics of mode-2 text.

Description

Overrides or reestablishes the default character attributes used for notes.

The defaults are:

Color	0	green (displays), black (printers)
Character mode 3 Symbol-set identifier Character-size 0 system default results in the text size as defined by CHCtiplier CHEGRD (by default,		
Character size of the height/width multiplier	100	hesdware characters) results in the text size as defined by CHCGRD (by default,
the size of the		
hardware characters)		

```
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
        ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INVALID CHARACTER MODE VALUE
ADM0522 E INVALID CHARACTER SIZE MULTIPLIER
ADM0569 E INVALID ANGLE OF ROTATION
```


CHNOFF

Function: To specify offsets for CHNOTE.

CHNOFF (hoffset, voffset)

APL code	759
PGF RCP code	$X^{\prime} 100 B 0617^{\prime}(269157911)$

Parameters

hoffset (specified by user) (short floating point) A signed, short floating-point number specifying the horizontal offset applied to the note. Depending on the CHNOTE position code, the offset may be interpreted in two ways:

- As an offset in character-grid units. A positive number specifies movement to the right, and a negative number movement to the left.

The size of character-grid units defaults to the character size of the device, but can be changed by a CHCGRD call.

- As an offset in scale units of the currently selected horizontal axis. The (positive or negative) number specifies movement from the base position (the axis origin (0)) to the axis position given by the number. (The offset must be positive for a logarithmic axis.)

The default value is zero.
voffset (specified by user) (short floating point) A signed, short floating-point number specifying the vertical offset applied to the note base position. Depending on the CHNOTE position code, the offset may be interpreted in two ways:

- As an offset in character grid units. A positive number specifies movement upward, and a negative number movement downward.

The size of character-grid units defaults to the character size of the device, but can be changed by a CHCGRD call.

- As an offset in scale units of the currently selected vertical axis. The (positive or
negative) number specifies movement from the base position (the axis origin (0)) to the axis position given by the number. (The offset must be positive for a logarithmic axis.)

The default value is zero.

Description

Specifies the offsets applied to the base position of the note to obtain the note position (see
"CHNOTE - Construct a character string at a designated position" on page 56). Applies to all subsequent calls to CHNOTE (until superseded by another CHNOFF call). If CHNOFF is not called, no offset is applied to the note.

Valid in state-1 or state-2.

Principal errors

None

CHNOTE

Function: To construct a character string at a designated position.

```
CHNOTE (position-code, length, string)
\begin{tabular}{ll} 
APL code & 758 \\
PGF RCP code & X'10130100' (269680896)
\end{tabular}
```


Parameters

position-code (specified by user) (2-byte character string)
A two-character code indicating the manner in which the final position of the note is determined in terms of a base position, note position, and relocation relative to the note position. As stated below, position codes may be divided into two classes:

- Class 1 position codes

This class contains the following 36 position codes: C1, C2, C3, C4, C5, C6, C7, C8, C9, H1, H2, H3, H4, H5, H6, H7, H8, H9, V1, V2, V3, V4, V5, V6, V7, V8, V9, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9.

The first character of each code is interpreted as follows:
C (character) The base position is the bottom left-hand corner of the chart area. Both horizontal and vertical CHNOFF note offsets are interpreted in character grid units from the base position to obtain the note position.
H (character) The horizontal CHNOFF note offset is interpreted in units of the scale of the currently selected horizontal axis from the base position given by the origin (0) on that axis (even when the origin is outside the range of that axis). The vertical CHNOFF note offset is interpreted in character grid units from the base position given by the bottom of the chart area.
V (character) The vertical CHNOFF note offset is interpreted in units of the scale of the currently selected vertical axis from the base position given by the origin (0) on that axis (even when the origin is outside the range of that axis). The horizontal CHNOFF note offset is interpreted in character grid units from the base position given by the left of the chart area.
Z (character) The horizontal CHNOFF note offset is interpreted as for \mathbf{H} above, and the vertical CHNOFF note offset is interpreted as for \mathbf{V} above.
The second character of each class 1 position code specifies the relocation that takes place from the note position to obtain the final position of the note. It is a number in the range 1 to 9 , which may be thought of as a compass key defining the point of the note that is to be fixed at the note position. The numbers correspond to the corners and mid-points of an imaginary rectangle just surrounding all the characters of the note (the note rectangle), as follows:

1	2	3
4	5	6
7	8	9

For example, number 1 relocates the note to place its top left corner at the note position, number 7 places the bottom left corner of the note at the note position, number 6 places the mid-point of the right side of the note at the note position, and so on.

Position codes beginning with H, V, or Z are only valid for notes on charts with axes (that is, for all chart types except pie charts and Venn diagrams). Further, for these position codes, any axis used for interpretation of note offsets must be defined when the CHNOTE call is issued. Finally, for these position codes, if an axis offset determines a note position outside the range of the corresponding axis, the note is not constructed (no diagnostic is issued in this case).
For position codes beginning with H, V, or Z and with the second compass-key character any value except 5 , the final position of the note is adjusted by a slight amount in the direction of each axis used for interpretation of note offsets. This is found to provide acceptable positioning in typical cases where the note is used to annotate a particular point on a chart (such as a marker), using as axis offsets the x or y values of the marker.
For all class 1 position codes, semicolon
(;) characters within the note text are interpreted as line-break control characters. This facility allows multiline notes to be constructed easily. For example the following note text:

This;note; is a;multiline;note.
is constructed so as to appear on the chart as follows:
This
note
is a
multiline
note.

If a semicolon is needed in the text on the chart, two contiguous semicolon characters must be supplied in the note text. These do not cause line breaks, and each such contiguous pair found during a start-to-end scan of the note text is replaced by a single semicolon character in the constructed note.

For all class 1 position codes, if the CHSET call option 'NBOX' is specified, the note is surrounded by a rectangular framing box, constructed of lines with default line type (solid), default line thickness (normal thickness), and line color the same as the color of the note text (specified by CHNATT).

For all class 1 position codes, any trailing nulls in the note text string are ignored, and do not contribute to the constructed note or its position.
If any part of the note rectangle (including any framing box) lies outside the chart area, the entire note rectangle is moved horizontally, or vertically, or both until it lies within the chart area. An error diagnostic is produced only if the note rectangle, after this translation, is too wide or too high to be contained entirely within the chart area.

- Class 2 position codes

This class contains 9 position codes.
They are defined below with a base position associated with each code.
TL the top-left point of the string will be at the top-left point of the chart area.
TC the top-center point of the string will be at the top-center point of the chart area.
TR the top-right point of the string will be at the top-right point of the chart area.
BL the bottom-left point of the string will be at the bottom-left point of the chart area.

BC the bottom-center point of the string will be at the bottom-center point of the chart area.

BR the bottom-right point of the string will be at the bottom-right point of the chart area.

DL the bottom-left point of the string will be at the left end of a horizontal datum line, or at the bottom end of a vertical datum line.
DC the bottom-center point of the string will be at the mid-point of a horizontal datum line, or the leftcenter point of the string will be at the mid-point of a vertical datum line.
DR the bottom-right point of the string will be at the right end of a horizontal datum line, or the top left-point of the string will be at the top of a vertical datum line.
Position codes beginning with D refer to datum or datum-reference lines associated with the currently selected axes when CHNOTE is called. The particular datum line to be annotated is determined as follows:

- If calls have been made to CHXDTM or CHYDTM in State 2 before CHNOTE is called, the most recent of such calls is used to identify the relevant datum line.
- If there have been no calls to CHXDTM or CHYDTM in State 2 preceding CHNOTE, the most recent y datum reference line specified by a State 1 call to CHYDTM (if any) is used. An x datum reference line specified in State 1 cannot be implicitly referred to in this manner.
For all class 2 position codes, the note position is obtained from the base position by applying CHNOFF note offsets interpreted in character grid units.
For class 2 position codes, semicolons are never interpreted as line break control characters, and a note framing box is never constructed. Explicit use of $X^{\prime} 15{ }^{\prime}$ as a line break control character can lead to the note extending beyond the chart area.

If the note position is not related to a datum line, and the position after adjusting for offsets lies outside the chart area, the note is drawn justified to the chart area boundary. No error or warning message is issued unless the note is too large to fit into the chart area.
length (specified by user) (fullword integer)
The number of characters in string.
string (specified by user) (character)
The character string constructed on the chart. (Depending on the position code, semicolon characters in the string may be interpreted as line-break control characters.)

Description

This call is valid only in state-2. It constructs a character string (a note) at a designated location on the chart.

The position of the note is adjusted by the offsets specified by the most recent CHNOFF call. The note text attributes are those specified by the most recent CHNATT call. If no CHNOFF or CHNATT call has been issued, defaults apply for offsets and text attributes, as described under CHNOFF and CHNATT.

The final position of the note on the chart is determined from the position code in the following way. The position code specifies a base position within the chart area. Horizontal and vertical note offsets are then added algebraically to the base position to obtain the note position. Finally, depending on the position code, the note may be relocated relative to the note position to obtain its final position, where it is constructed.

Position codes fall into two mutually exclusive classes. Class 1 codes support multiline notes, rectangular boxing around the note, and relocation relative to the note position. Class 2 supports none of these, and is provided mainly for compatibility with an earlier release of GDDM-PGF.

The CHSET call option 'BNOT' may be used with position codes of both classes to blank the rectangular area occupied by the characters of the note, before note construction.

Some examples of the use of CHNOTE are:

- To annotate individual plotted points, lines, or areas on a chart.
- To provide a subheading in a different font from the main heading.
- To provide a footnote on a chart.
- To extend the basic axis annotation functions (labels and titles) where required. For example, multiline axis titles or labels may be constructed as notes.

Principal errors

```
ADM0503 E THIS FUNCTION CAN ONLY BE INVOKED
        IN THE CHART-DRAWING STATE
ADM0508 E COUNT PARAMETER IS NEGATIVE, OR
        LENGTH PARAMETER IS NON-POSITIVE
ADM0509 E CHARACTER STRING TOO LONG
ADM0551 E INVALID POSITION CODE
ADM0552 E NO DATUM VALUE TO RESOLVE POSITION
        CODE
ADM0553 E AXIS NOT AVAILABLE FOR NOTE
        POSITIONED BY DATUM VALUE
ADM0556 W NOTE TEXT EXCEEDS AVAILABLE SPACE
        AND HAS BEEN TRUNCATED
ADM0563 E NOTE TEXT OR BAR VALUE WILL NOT FIT
        WITHIN THE CHART AREA
ADM0564 E AXIS OFFSET FOR NOTE NOT SUITABLE
ADM0565 E NON-POSITIVE LOGARITHMIC AXIS
        OFFSET SPECIFIED FOR A NOTE
ADM0567 E INVALID NOTE POSITION FOR A POLAR
        CHART
```


CHNUM

Function: To set number of components.
CHNUM (n)
APL code 794
PGF RCP code $\quad X^{\prime} 1002060 F^{\prime}(268568079)$

Parameters

\mathbf{n} (specified by user) (fullword integer) A fullword binary integer that specifies the total number of pies or bars to be drawn. If set to zero, or if no call is made, the number of pies or bars is determined from the first
subsequent call to CHPIE, CHBAR, or CHBARX.

Description

Sets the total number of pie charts or multiple bar charts to be constructed on the currently selected x axis by subsequent CHPIE, CHBAR, or CHBARX calls. For pie charts, the CHNUM value for the primary axis is used.

CHNUM controls the spacing and size of the pies (and bars) so that the complete chart fits within the plotting area. The call is used for multiple pie charts and multiple bar charts whenever they are to be constructed by more than one plotting call.

Valid in state-1 and state-2.

Principal errors

AdM0532 E COMPONENT PARAMETER LESS THAN ZERO or count parameter less than one

CHPAT

Function: To specify component shading pattern table.

```
CHPAT (count, patterns)
APL code 764
PGF RCP code X'10020304' (268567300)
```


Parameters

count (specified by user) (fullword integer)
A fullword integer specifying the number of attribute values to be taken from patterns and used as the shading-pattern attribute table. If zero, the default table is used. A maximum of 32 values may be specified.
patterns (specified by user) (an array of fullword integers)
An array of fullword integers indicating the pattern codes used consecutively for components.
Valid values are:
0-16 system-defined patterns
65-254 user-defined patterns
If values 65 through 254 are used, the pattern set must be loaded by the application program before the chart is constructed. (See the description of the GSLSS call in the GDDM Base Application Programming Reference book.)

Description

Overrides or reestablishes the default table of shading pattern values to be used. Patterns from the table are used in turn to construct each data component, pie slice, or Venn diagram circle.

If the patterns are multicolored (for example, the GDDM 64-color set), CHCOL must be used to set to neutral each color that corresponds to a multicolor pattern. If this is not done, the pattern takes on the color specified in the color table controlled by CHCOL.

The default pattern table contains eight patterns. These are the first eight shown in Figure 19 on page 210. The default patterns for other types of terminal may be different.

Valid only in state-1.

Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0513 E INVALID PATTERN OR MARKER VALUE ADM0515 E ATTRIBUTE COUNT IS NEGATIVE ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM ALLOWED

CHPCTL

Function: To control pie chart slices.

CHPCTL (count, list)

```
APL code 710
PGF RCP code X'10150101' (269811969)
```


Parameters

count (specified by user) (fullword integer) Specifies the number of items in the list array. The value must be in the range 0 through 3 . If 0 is specified, default values are used for all the options.
list (specified by user) (array of short floating-point numbers)
Controls the options for the slices of a pie chart. If the list does not contain a value, the corresponding option is not changed. The options are:

Explode Defines the amount, in terms of a multiple of the horizontal radius, by which exploded slices are moved out. For example, if a value of 0.5 is specified, the tip of each exploded slice is moved out to halfway between the center of the pie and its circumference. The horizontal radius of the pie is reduced as necessary to ensure that the entire pie remains within the plotting area. Values greater than 1 make the slices of the pie small and difficult to see. The default is 0.2 .

Tilt Controls the apparent tilt of all subsequent pies. The value can be in the range 0 through 0.99 . The default, 0 , means that a pie is not tilted; 0.99 tilts the pie away from the viewer by the maximum amount (thus reducing the top surface of the pie to a single horizontal line). For best results, the value should not be greater than 0.8.

Thickness Defines the thickness of the pie in terms of a multiplier of the horizontal radius. Any value less than 100 can be specified. The default is 0 . The horizontal radius of the pie is reduced as necessary to ensure that the entire pie remains within the plotting area. Values
greater than 10 make the slices of the pie small and difficult to see.

Description

Controls how the slices of a pie chart are displayed. The call operates on exploded slices (those that have been moved out from the rest of the pie) and non-exploded slices.

Valid only in state-1.

Principal errors

```
ADM0523 E PARAMETER IS LESS THAN THE
    ALLOWABLE MINIMUM
AdM0524 E PARAMETER IS GREATER THAN THE
    ALLOWABLE MAXIMUM
```


CHPEXP

Function: To specify exploded slices in pie charts.

```
CHPEXP (count, list)
APL code 775
PGF RCP code X'10020306' (268567302)
```


Parameters

count (specified by user) (fullword integer) Specifies the number of items contained in the list array. The value must be in the range 0 through 32. If 0 is specified, a default explosion array is restored.
list (specified by user) (an array of fullword integers)
Elements in this array correspond to slices of the pie. If there is more than one pie, then the elements correspond to the equivalent slice of each pie. An element that contains the value 1 indicates that the corresponding slice of the pie is moved out in isolation from the other slices. An element that contains the value 2 indicates that the corresponding slice of the pie is moved out with any neighboring slices that have the value 2; this creates a group of moved slices. An element with the
value 2 that does not have a neighboring slice with the value 2 is treated as if it had the value 1. The first and last slices of a pie chart cannot be grouped together. An element that contains the value 0 indicates that the corresponding slice of the pie is not moved. Only 0,1 , and 2 can be specified in this parameter.

If the length of the list does not match the number of slices in the pie, the list is truncated (if it is too long) or resumes from the start (if it is too short).

The default list array contains all zero values, which causes none of the slices to be moved out.

Note: Support for exploded slices in groups is by means of an APAR. Consult your local support center for details of the PTF.

Description

Specifies which slices of a pie chart are to be exploded (moved out from the other slices of the pie). The CHPCTL call (see "CHPCTL - Control pie chart slices" on page 61 controls the amount by which the slice is to be moved.

Valid only in state-1.

Principal errors

ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM
adm0524 e parameter is greater than the ALLOWABLE MAXIMUM

CHPIE

Function: To draw pie charts.

```
CHPIE (components, count, y-values)
APL code 796
PGF RCP code X'100D0A06' (269289990)
```


Parameters

components (specified by user) (fullword integer)
Specifies the number of pie charts to be drawn.
count (specified by user) (fullword integer) A fullword integer specifying the number of slices in each pie. All pies in a multicomponent chart must have the same number of slices.
y -values (specified by user) (array of short floating-point numbers)
Controls the sizes of the pie slices in each pie. The data may be given in percentages (the default) or in absolute values. Positive numbers must be specified.
CHSET('PERPIE' or 'ABPIE') may be set to indicate which data type is being used.
For absolute pie charts, the total for each component is assumed to correspond to 360 degrees, and a complete pie is always drawn. The total for each component in this case must be positive. For percentage pie charts, the total for each component must not exceed 100. If the total is less than 100 , an incomplete circle is drawn. Slices are drawn in a clockwise direction, with the first slice beginning at the 12 o'clock position.

Description

Draws one or more pie charts. When more than one pie is drawn, horizontal and vertical alignment of the pies is controlled by the CHSET YVERTICAL and XVERTICAL options. YVERTICAL specifies pies each beside the other (default) and XVERTICAL specifies pies one above the other.

The positioning and size of pies for a multiple pie chart is based on the number of pies specified on
the first call to CHPIE, or on the value of CHNUM, if CHNUM was used. The CHNUM value takes precedence.

Unless CHSET('NOFILL') has been specified, each slice of a pie is colored and shaded on the basis of the current settings of the attribute tables and the CHSET shading option. Corresponding slices in each pie have the same attributes.

All axis definition and datum line specifications are ignored, except that any labels specified by CHXLAB are used as titles for the pies.

Valid in state-1 or state-2. If entered in state-1, the program changes to state-2.

Principal errors

```
ADM0502 E PICTURE SPACE AND CHAREA ARE
        INCOMPATIBLE
ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
ADM0510 W LEGEND FORMAT MAY BE INCORRECT
ADM0511 W NOT ENOUGH ROOM TO DRAW ALL KEYS.
    ONE OR MORE WERE OMITTED
ADM0512 W HEADING TEXT EXCEEDS AVAILABLE
    SPACE AND HAS BEEN TRUNCATED
ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
ADM0525 W CHARACTER SIZE IS TOO LARGE FOR THE
    CHART
ADM0532 E COMPONENT PARAMETER LESS THAN ZERO
    OR COUNT PARAMETER LESS THAN ONE
ADM0533 E CHART COMPONENT COUNT EXCEEDED
ADM0537 E TOTAL OF ABSOLUTE PIE VALUES IS
        ZERO
ADM0538 E TOTAL OF PERCENTAGE PIE CHART
        SLICES EXCEEDS 100 PERCENT
ADM0539 E A NEGATIVE PIE SLICE VALUE WAS
        ENCOUNTERED
ADM0540 E PIE CHART CANNOT BE DRAWN IN THE
        AVAILABLE CHART AREA
ADM0543 S INCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
ADM0561 W PIE SPIDER TEXT OMITTED
ADM0571 W PIE RADIUS HAS BEEN INCREASED TO
    ALLOW CHART TO BE DRAWN
ADM0572 W ALL DATA HAS THE VALUE 'MISSING'
```


CHPIER

Function: To reduce pie chart size.

CHPIER (reduction)	
APL code	768
PGF RCP code	X'10020614' (268568084)

Parameters

reduction (specified by user) (fullword integer)
Specifies the percentage reduction of the area of each pie constructed. The value must be positive; 99 is the largest reduction.

Description

Allows the size of each pie in a pie chart to be reduced. This can be useful if the automatic sizing and spacing prevents a multiple pie chart being displayed (giving message ADM0540), or produces a congested chart.

Valid only in State 1.

Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM
ADM0524 E PARAMETER IS GREATER THAN THE ALLOWABLE MAXIMUM

CHPLOT

Function: To construct line graphs and scatter plots.

```
CHPLOT (components, count, x-values,
    y-values)
APL code 791
PGF RCP code X'100D0A03' (269289987)
```


Parameters

components (specified by user) (fullword integer) Specifies the number of components drawn; that is, the number of individual graph lines or groups of scatter plot data. Each component has a new set of attributes.
count (specified by user) (fullword integer) Specifies the number of data points in each graph line or scatter plot group.
x-values (specified by user) (array of short floating-point numbers) Specifies the x values. Each graph uses the same set of values. For example, if count=5, five values must be supplied.
y -values (specified by user) (array of short floating-point numbers) Specifies the y values. One value must be supplied for each point to be plotted. For multiple components, the values must be stored sequentially by component; that is, all values for the first component, followed by all values for the second component, and so on for as many components as are specified. Each component must contain the number of values given in the count parameter. The y values specified for each component are associated in sequence with the x values supplied in the \mathbf{x}-values parameter to give the (x, y) coordinate pairs to be plotted.

Description

Constructs one or more components consisting of line graphs or scatter plots on the currently selected axes. By default, markers are drawn at each data point, and solid straight lines connect them. The CHSET options ('LINES' |
'NOLINES') and ('MARKERS'| 'NOMARKERS') can be used to suppress the markers, or to produce a scatter plot by suppressing the lines.

The color of the lines and markers, and the line types, line widths, and markers used are determined by the current attribute table settings.

Valid in state-1 or state-2. If entered in state-1, the program changes to state-2.

Principal errors

	PICTURE SPACE incompatible
ADM0504	E MARGINS EXCEED AVAILABLE CHART
	W LEGEND FORMAT MAY BE InCORRECT
	W Not enough room to draw all ONE OR MORE WERE OMITTED
ADM0512	W HEADING TEXT EXCEEDS AVAILABL SPACE AND has been truncated
	LABEL(S)
ADM0525	W Character size is too large for the CHART
052	S LOGARITHMIC X OR Y AXIS RANGE CONTAINS A NON-POSItive value
ADM05	E NON-POSITIVE INTERCEPT ON LOGARITHMIC X OR Y AXIS
	e X, Y, OR Z AXIS TICK INTERVAL TOO SMALL
ADM0529	W MAXIMUM OVERLAP EXCEEDED FOR A BAR CHART
AD	w datum line data value lies outside axis range
ADM05	e COMPONENT PARAMETER LESS than ZerO OR COUNT PARAMETER LESS THAN ONE
	W DATA LIES OUTSIDE THE X, Y, OR Z axis range and has not been plotted
	E ZERO OR NEGATIVE DATA IS INVALID ON A LOGARITHMIC AXIS
ADM0543	E MIXTURE OF CHART TYPES
ADM054	it EXCEEDED
AD	E THE X, Y, OR Z AXIS HAS AN INVALID POWER OF 10 FOR TICK DEFINITION
	E THE X, Y, OR Z AXIS RANGE EXCEEDS NUMERIC BOUNDS
ADM0557	W AXIS title truncated on right of Chart
ADM0558	W AXIS title truncated at top or BOTTOM OF CHART
	E LOGARITHMIC X, Y, OR Z AXIS RANGE IS TOO SMALL

ADM0502 E PICTURE SPACE AND CHAREA ARE INCOMPATIBLE
ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
ADM0510 W LEGEND FORMAT MAY BE INCORRECT
ADM0511 W NOT ENOUGH ROOM TO DRAW ALL KEYS. ONE OR MORE WERE OMITTED
ADM0512 W HEADING TEXT EXCEEDS AVAILABLE SPACE AND HAS BEEN TRUNCATED
ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
ADM0525 W CHARACTER SIZE IS TOO LARGE FOR THE CHART
ADM0526 S LOGARITHMIC X OR Y AXIS RANGE CONTAINS A NON-POSITIVE VALUE LOGARITHMIC X OR Y AXIS SMALL CHART AXIS RANGE
ADM0532 E COMPONENT PARAMETER LESS THAN ZERO OR COUNT PARAMETER LESS THAN ONE aXis range and has not been plotted
ADM0535 E ZERO OR NEGATIVE DATA IS INVALID ON A LOGARITHMIC AXIS
ADM0543 S INCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
ADM0545 E THE X, Y, OR Z AXIS HAS AN INVALID POWER OF 10 FOR TICK DEFINITION NUMERIC BOUNDS chart
osso W AXis tite truncated at top or BOTTOM OF CHART IS TOO SMALL

CHPOLR

Function: To plot a polar chart.

CHPOLR (components, count, X-values, Y -values)

APL code 783
PGF RCP code X'100D0A08' (269289992)

Parameters

components (specified by user) (fullword integer) A fullword integer specifying the number of components drawn; that is, the number of individual polar charts. Each component has a new set of attributes.
count (specified by user) (fullword integer) A fullword integer specifying the number of data points in each polar chart.

X-values (specified by user) (array of short floating-point numbers) Specifies the x-axis values. Each polar chart uses the same set of x-axis values. For example, if count=5, five values must be supplied.

Y-values (specified by user) (array of short floating-point numbers) Specifies the y-axis values. One value must be supplied for each point to be plotted.

For multiple components, the values must be stored sequentially by component; that is, all values for the first component, followed by all values for the second component, and so on for as many components as are specified. Each component must contain the number of values specified in the count parameter. The y values specified for each component are associated in sequence with the x values supplied in the \mathbf{x}-values parameter to give the (x, y) coordinate pairs to be plotted.

Description

Constructs one or more components in a polar chart.

By default, markers are drawn at each data point, and solid straight lines connect them.

The CHSET options ('LINES' | 'NOLINES') and ('MARKERS'| 'NOMARKERS') can be used to suppress the markers, or to produce a scatter plot by suppressing the lines.

The ranges of the axes are set by the first call. Any data that lies outside the axis ranges is clipped at the boundary of the plotting area.

The color of the lines and markers, and the line types, line widths, and markers used are determined by the current attribute table settings.

The CHSET options 'NOFILL', 'INFILL', and 'FILL' (the default) specify whether the polar chart is to be shaded. The method of shading can be set by the CHSET calls 'MOUNTAIN' or 'NOMOUNTAIN' (the default).

If notes are produced, their offsets must be given either in axis offsets or in character grid offsets. They cannot be mixed.

It is not possible to have secondary axes. Only primary axis information is used. Therefore, any alterations made to secondary axis information as a result of issuing a CHXSEL or CHYSEL call are not seen on the chart.

The CHSET options 'LOWAXIS', 'MIDDLE', 'HIGHAXIS', 'XVERTICAL', and 'YVERTICAL' are ignored for polar charts. The CHXSET and CHYSET option 'ATABOVE' is interpreted as 'ATEND'.

Valid in state-1 or state-2. If entered in state-1, the program changes to state-2.

Principal errors

[^0]```
ADM0527 E NON-POSITIVE INTERCEPT ON
 LOGARITHMIC X OR Y AXIS
ADM0528 E X, Y, OR Z AXIS TICK INTERVAL TOO
 SMALL
ADM0529 W MAXIMUM OVERLAP EXCEEDED FOR A BAR
 CHART
ADM0531 W DATUM LINE DATA VALUE LIES OUTSIDE
 AXIS RANGE
ADM0532 E COMPONENT PARAMETER LESS THAN ZERO
 OR COUNT PARAMETER LESS THAN ONE
ADM0534 W DATA LIES OUTSIDE THE X, Y, OR Z
 AXIS RANGE AND HAS NOT BEEN PLOTTED
ADM0535 E ZERO OR NEGATIVE DATA IS INVALID ON
 A LOGARITHMIC AXIS
ADM0543 S INCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
ADM0545 E THE X, Y, OR Z AXIS HAS AN INVALID
 POWER OF 10 FOR TICK DEFINITION
ADM0546 E THE X, Y, OR Z AXIS RANGE EXCEEDS
 NUMERIC BOUNDS
ADM0557 W AXIS TITLE TRUNCATED ON RIGHT OF
 CHART
ADM0558 W AXIS TITLE TRUNCATED AT TOP OR
 BOTTOM OF CHART
ADM0560 E LOGARITHMIC X, Y, OR Z AXIS RANGE
 IS TOO SMALL
ADM0566 E CHDRAX NOT ALLOWED WITH CURRENT
 CHART TYPE
```


## CHQARE

Function: To query chart area.

| CHQARE (xlow, xhigh, ylow, yhigh) |  |  |
| :--- | :--- | :---: |
| APL code | 802 |  |
| PGF RCP code | $X^{\prime} 10180100$ |  |

## Parameters

xlow (returned by GDDM) (short floating point) Returns the left-hand bounds of the chart area in picture-space units. In state-1, this is zero when no CHAREA call has been issued.
xhigh (returned by GDDM) (short floating point) Returns the right-hand bounds of the chart area in picture-space units. In state-1, this is zero when no CHAREA call has been issued.
ylow (returned by GDDM) (short floating point) Returns the lower bounds of the chart area in picture-space units. In state-1, this is zero when no CHAREA call has been issued.
yhigh (returned by GDDM) (short floating point) Returns the upper bounds of the chart area in picture-space units. In state-1, this is zero when no CHAREA call has been issued.

## Description

Returns the extents of the chart area.
Valid in state-1 or state-2

## Principal errors

None

## CHQPOS

Function: To query positional information.

| CHQPOS (entity-type, count, h-array, v-array) |
| :--- |
| APL code |
| PGF RCP code 718 <br> X'10170200' $(269943296)$  |

## Parameters

entity-type (specified by user) (fullword integer) Specifies that positional information for a chart note is to be returned. The only value that can be specified is 1 .
count (specified by user) (fullword integer) Specifies the number of elements in $\mathbf{h}$-array and $\mathbf{v}$-array.
h-array (returned by GDDM) (array of short floating-point numbers)
v-array (returned by GDDM) (array of short floating-point numbers)
Contain the positional information that is returned. The coordinates are returned in character-grid units, and correspond to the actual position of the note in the chart (that is, after PG routines has performed any positional adjustment).

For interactive chart notes, the returned coordinates correspond to the position
originally specified by the user. For non-interactive notes, the returned coordinates might correspond to a position that is different from that originally specified by the user (because the chart note was partially or completely off the display, and has been adjusted by PG routines).

The coordinates of the following points are returned in consecutive elements:

The top left-hand corner
The bottom left-hand corner
The top right-hand corner
The bottom right-hand corner
The reference point.

## Description

Queries the positional information associated with the specified type of chart entity (a chart note). The positional information is returned for the last chart note drawn; the chart note must have a class 2 position code specified in the CHNOTE call (see "CHNOTE - Construct a character string at a designated position" on page 56. If there is no such preceding note, an error message is issued.

Valid in state-2 only.

## Principal errors

```
ADM0503 E THIS FUNCTION CAN ONLY BE INVOKED
 IN THE CHART-DRAWING STATE
ADM0575 E NO PRECEDING VALID NOTE CALL
```


## CHQRNG

Function: To query axis ranges.

```
CHQRNG (count, xlow, xhigh, ylow, yhigh)
APL code 801
PGF RCP code X'10170300' (269943552)
```


## Parameters

count (specified by user) (fullword integer) Specifies the number of parameters returned. This may be from 0 through 4 . If the count is greater than 4,4 is assumed. If the count is less than zero, zero is assumed.
xlow (returned by GDDM) (short floating point) Returns the left-most (or low) value on the currently selected x axis.
xhigh (returned by GDDM) (short floating point) Returns the right-most (or high) value on the currently selected $x$ axis. If this is the same as xlow, the axis has not been generated.
ylow (returned by GDDM) (short floating point) Returns the bottom (or low) value on the currently selected y axis.
yhigh (returned by GDDM) (short floating point) Returns the top (or high) value on the currently selected $y$ axis. If this is the same as ylow, the axis has not been generated.

## Description

Returns the bounds of the currently defined x and y axes.

Valid in state-2 only.

## Principal errors

None

## CHRNIT

Function: To reinitialize PG routines.

| CHRNIT |  |
| :--- | :--- |
| APL Code | 704 |
| PGF RCP code | X'10010100' $^{\prime}(268501248)$ |

## Parameters

None

## Description

Resets all chart-definition options and parameters to their default values. If issued in state-2 it also returns the application program to state-1. (See "CHSTRT - Reset the processing state to state-1" on page 78 for returning to state-1 without reinitialization.)

CHRNIT may be used, for example, to reinitialize the PG routines before using CHAREA to construct a second chart in another area of the display screen. (See also "CHTERM - Terminate the PG routines" on page 81)

CHRNIT does not clear charts from the page. Any further charts are added to the existing ones. Charts can be cleared by the GSCLR call, described in the GDDM Base Application Programming Reference book.

Valid in state-1 or state-2. If entered in state-2, the application program reenters state-1.

## Principal errors

## None

## CHSET

Function: To specify chart options.

| CHSET (option) |  |
| :--- | :--- |
|  |  |
| APL code | 798 |
| PGF RCP code | $X^{\prime} 10020101 '$ |

## Parameters

option (specified by user) (4-byte character string) The option string must be at least four characters long, and must be enclosed in single quotes. If more than four characters are specified, they are ignored. However, they may be used to increase the readability of the program.

The options are as follows, in alphabetic order by function; the defaults are shown LIKE THIS.

| Function | Option |
| :---: | :---: |
| Axis, autoranging | RANGE NORANGE |
| Axis, orientation | YVERTICAL |
|  | XVERTICAL |
|  | ZVERTICAL |
| Axis, time of drawing | IDRAW |
|  | DRAW |
|  | NDRAW |
| Axis, title line break | TLBREAK |
|  | NTLBREAK |
| Bar chart, controlled values | CVALUES |
|  | VALUES |
|  | NOVALUES |
| Bar chart, type | MBAR |
|  | CBAR |
|  | FBAR |
| Bar values, blanking behind | bvalues |
|  | NBVALUES |
| Bar values, notation | VFIXED |
|  | VSCIENTIFIC |
| Bar values, placement | VINSIDE |
|  | VONTOP |
| Chart area, boxed or shaded | CBOX |
|  | cback |
|  | NCBOX |
| Curve fitting or not | CURVE |
|  | NOCURVE |


| Function | Option | Function | Option |
| :---: | :---: | :---: | :---: |
| Data, absolute or relative | RELATIVE | Shading method | FILL |
|  | ABSOLUTE |  | INFILL |
| Date label abbreviations | ABREV |  | NOFILL |
|  | FULL | Shading, mountain range | MOUNTAIN |
|  | LETTER |  | NOMOUNTAIN |
| Heading justification | HCENTER | Tower charts, backplane drawn | BACK |
|  | HLEFT |  | NOBACK |
|  | HRIGHT | Tower charts, color face | BGBASE |
| Heading or not | HEADING |  | TCBASE |
|  | NOHEADING | Tower charts, pick axis | ZPICK |
| Heading position | HTOP |  | XPICK |
|  | HBOTTOM | Tower charts, scale tower | SCALETOWER |
| Histogram risers | RISERS |  | NOSCALETOWER |
|  | NORISERS | Tower charts, side plane drawn | SIDE |
| Label areas blanked | BLABEL |  | NOSIDE |
|  | NBLABEL | Tower charts, y-axis ticks | TOWERTICK |
| Legend areas blanked | NBKEY |  | NOTOWERTICK |
|  | BKEY | X axis, secondary specification | XDUP |
| Legend, box around | KBOX |  | XNOD |
|  | NKBOX | Y axis, secondary specification | YDUP |
| Legend or not | LEGEND |  | YNOD |
|  | NOLEGEND |  |  |
| Legend, order of elements | KNORMAL KREVERSED | Description |  |
| Line graphs and polar charts, lines | LINES NOLINES | Overrides defaults on all chart attributes that are not related to axes. In general, any attribute that does not need a value and does not refer to an axis is an option of CHSET. |  |
| Line graphs and polar charts, markers | MARKERS NOMARKERS |  |  |
| Marker scaling | MSCALE |  |  |
|  | NOMSCALE | Only one option may be set by each CHSET call. |  |
| Note area blanked | BNOTE NBNOTE | For example, to request a left-justified heading in the bottom margin, two calls are needed: |  |
| Notes, box around | NBOX | ```CHSET ('HBOT') CHSET ('HLEFT')``` |  |
|  | NONBOX |  |  |
| Notes, repositioned | NNOTES | Unless otherwise stated, CHSET calls are valid only in state-1. |  |
|  | INOTES |  |  |
| Numbers punctuation | PGFS |  |  |
|  | NPGFS | Principal errors |  |
| Pie charts, labeling appearance | SPISLICE |  |  |
|  | SPILABEL | ADM0505 E INVALID PARAMETE |  |
| Pie charts, labeling type | PIEKEY | ADM0549 E OPTION a IS INVALID IN THECHART-DRAWING STATE |  |
|  | SPIDER |  |  |
| Pie charts, relative size | PROPIE NOPROPIE |  |  |
| Pie data, type of | PERPIE |  |  |
|  | ABPIE |  |  |
| Screen position occupied by | POSITION |  |  |
| SO/SI characters | NOPOSITION |  |  |

## CHSET Options

The groups of CHSET options are listed in alphabetic order by option.

## - CHSET 'ABREV' | 'FULL' | 'LETTER'

Specifies the form of axis labels supplied by CHXMTH, CHYMTH, CHXDAY, and CHYDAY. It applies to all charts except pie charts and Venn diagrams.
ABREV specifies three-character abbreviations.

FULL specifies complete words.
LETTER specifies first letters only.
The following tables list the month/day sequence numbers and the display variations.
Number ABREV FULL LETTER
Month

| 1 | JAN | JANUARY | J |
| ---: | :--- | :--- | :--- |
| 2 | FEB | FEBRUARY | F |
| 3 | MAR | MARCH | M |
| 4 | APR | APRIL | A |
| 5 | MAY | MAY | M |
| 6 | JUN | JUNE | J |
| 7 | JUL | JULY | J |
| 8 | AUG | AUGUST | A |
| 9 | SEP | SEPTEMBER | S |
| 10 | OCT | OCTOBER | 0 |
| 11 | NOV | NOVEMBER | N |
| 12 | DEC | DECEMBER | D |

Day

| 1 | MON | MONDAY | M |
| :--- | :--- | :--- | :--- |
| 2 | TUE | TUESDAY | T |
| 3 | WED | WEDNESDAY | W |
| 4 | THU | THURSDAY | T |
| 5 | FRI | FRIDAY | F |
| 6 | SAT | SATURDAY | S |
| 7 | SUN | SUNDAY | S |

- CHSET 'ABSOLUTE' | 'RELATIVE'

ABSOLUTE specifies that absolute data values are supplied.
RELATIVE specifies that the dependent data values, for all data groups except the first, are relative to the previous component. Relative data is the natural and recommended form of data for all chart types that involve stacking of components. The depth of each bar (or layer in a surface chart) then gives the absolute data value. The following example illustrates this point:

| Component | Value Supplied | Value Plotted |
| :---: | :---: | :---: |
|  |  |  |
| 1 | 2 | 2 |
| 2 | 5 | 7 |
| 3 | 3 | 10 |

The resultant bar chart is:


- CHSET 'BACK' | 'NOBACK'

BACK specifies that the back plane is to be drawn on a tower chart. If this plane is present, an edge is always drawn round it, corresponding to the extremes of the axis. A grid can be drawn on this plane by using the GRID option of CHZSET.
NOBACK specifies that the back plane is not to be drawn on a tower chart.

- CHSET 'BGBASE' | 'TCBASE'

BGBASE specifies that the face of the tower on a tower chart at the reference plane is to be shown in the background color. This allows any negative towers to be identified easily.
TCBASE specifies that the face of the tower at the reference plane is to be shown in the same color as the tower.

- CHSET 'BKEY' | 'NBKEY'

BKEY specifies that the rectangular area to be occupied by the legend is blanked before the legend is constructed. On terminals not in the IBM 3270 family, this option may have no effect, because some types of hardware do not permit blanking.

NBKEY specifies that the legend area is not blanked.

- CHSET 'BLABEL' | 'NBLABEL'

Controls blanking of the areas to be occupied by axis labels, before the labels are constructed. It can be used with CHSET('CBACK'), CHSET('DRAW'), or CHDRAX, to ensure that the axis labels are not obscured by background shading or some aspect of the plot.
Valid in state-1 or state-2.
NBLABEL does not blank label areas (except for mode 1 text, for which blanking is performed by hardware action).
BLABEL blanks the label areas before the labels are written. On terminals not in the 3270 family, this option may have no effect, because some types of hardware do not permit blanking.

- CHSET 'BNOTE' | 'NBNOTE'

Controls the blanking of areas to be occupied by notes, before the notes are written (see CHNOTE).

BNOTE blanks note areas before the notes are written. On terminals not in the 3270 family, this option may have no effect, because some types of hardware do not permit blanking.
NBNOTE does not blank note areas (except for mode 1 text, for which blanking is performed by hardware action).

Valid in state-1 or state-2.

- CHSET 'BVALUES' | 'NBVALUES'

Controls blanking of the areas to be occupied by data values on bar charts if CHSET('VALUES') is set.

Valid in state-1 or state-2.
NBVALUES does not blank the value areas (except for mode 1 text, for which blanking is performed by hardware action).

BVALUES blanks the value areas before the values are written. On terminals not in the IBM 3270 family, this option may have no effect, because some types of hardware do not permit blanking.

- CHSET 'CBOX' | 'NCBOX' | 'CBACK'

Permits the drawing of a framing box about the perimeter of the chart area or the shading of the background. Defaults for the attributes of the lines defining the box can be overridden by CHBATT.
CBOX specifies that the box is to be drawn.
NCBOX suppresses the framing box.
CBACK specifies that the entire chart area is to be shaded with a solid pattern as a background, in addition to drawing the framing box. The background color will be the same as the lines defining the box, as set by CHBATT.
CBACK should not be used for Venn diagrams, for monochrome devices, or when the chart is to be printed. Furthermore, remember that the data streams generated by this option may be very long, because many more cell definitions are generated with multicolor contents. PS stores may be quickly exhausted with other than simple charts. Note that to cancel a CBACK request, CBOX or NCBOX must be specified.

- CHSET 'CURVE' | 'NOCURVE'

Controls the manner in which the supplied data points in a line graph, surface chart, or polar chart are connected. Each consecutive pair of points may be connected by a straight line, or by a smooth curve. For a line graph or polar chart, it is effective only if CHSET('LINES') is also specified (or defaulted).
If a smooth curve is specified, the smoothness of the curve may be controlled by the CHFINE call. Note that the smooth curve constructed by use of this option is not intended to provide an interpretation of the supplied data values. Rather, the option is provided purely for its cosmetic effect on the resulting graph.

Valid in state-1 or state-2.
CURVE specifies that consecutive data points within each data group of a line graph, polar chart, or surface chart are to be connected by
a smooth curve constructed using the current data-group attributes.

NOCURVE specifies that consecutive data points within each data group of a line graph, polar chart, or surface chart are to be connected by straight lines constructed using the current data-group attributes.

- CHSET 'CVALUES' | 'VALUES' | 'NOVALUES'

Specifies how values are to be displayed for bar charts and table charts (or, in the case of the 'VALUES' option, for bar and pie charts).
Valid in state-1 or state-2.
CVALUES specifies that controlled bar-chart values are to be provided. Related calls are CHVDIG, CHTHRS, CHSET('VINSIDE' | 'VONTOP'), CHSET('VFIXED' 'VSCIENTIFIC'), and CHVATT with the bar-value rotation option. Values and bars might overlap on composite (stacked) or floating bar charts. See "CHVCHR - Number of characters in bar values" on page 86 for a further discussion. Text attributes for the value representations are set by CHVATT. The area to be occupied by each bar value may be blanked, before the value is constructed, with the BVALUES option.
VALUES controls the appearance of dependent data values at the ends of bars on bar charts, or percentage values on pie charts.

For bar charts, VALUES constructs character representations of the dependent data values at the end of each bar, on each CHBAR or CHBARX call. Overlap of values and bars may occur on composite (stacked) or floating bar charts. See the description of CHVCHR for further discussion. Text attributes for the value representations are set by CHVATT. The area to be occupied by each bar value may be blanked, before the value is constructed, with the BVALUES option.

For pie charts, VALUES has two possible meanings:

- If the option CHSET('PIEKEY') (the default) is in effect, integer percentage data values are constructed as spider labels around the pie, connected to their corresponding slices by lines. Each consists of the character representation of the integer closest to the percentage slice value, followed by a \% sign.
- If CHSET('SPIDER') is in effect, spider labels are constructed, each consisting of a percentage representation as above, followed by a label text string as specified by CHKEY.

In both cases, the data values are always in percentage form, regardless of the pie chart data type. See CHSET('SPISLICE') for a description of text attributes.

NOVALUES indicates that no values are given on bar charts or pie charts.

- CHSET 'FILL' | 'INFILL' | 'NOFILL'

Specifies the method of shading. Applies to all charts except line graphs, scatter plots, and table charts. Note that shading, when specified, always shades the interior of a defined boundary. If the defined boundary crosses itself, the effects of shading may be unexpected.
Valid in state-1 or state-2.
Shading patterns are taken from the pattern-attribute table. The default table may be overridden by a call to CHPAT.

- Surface charts, bar charts, polar charts, tower charts, and histograms

FILL specifies that all data groups are shaded with patterns taken from the pattern-attribute table. The first data group specified in a plotting routine call is shaded to the $x$ axis (or y datum reference line if specified). Subsequent data groups in the same call are shaded to the previous data group.

INFILL is equivalent to FILL for multiple bar charts and tower charts. It suppresses the shading of the first data group for polar charts, surface charts,
histograms, and composite (stacked) bar charts.

NOFILL suppresses all shading for all charts except surface charts, for which it is equivalent to INFILL.

- Pie charts

FILL specifies that all pie slices are shaded with patterns taken from the pattern-attribute table. Corresponding slices in different pies are shaded with the same pattern.

INFILL is equivalent to FILL.
NOFILL suppresses shading for all pie slices.

- Venn diagrams

FILL specifies that the two population circles are shaded with patterns from the pattern attribute table.

INFILL is equivalent to FILL.
NOFILL suppresses shading of the two population circles.

- CHSET 'HCENTER' | 'HLEFT' | 'HRIGHT'

Controls the justification of the chart heading.
HCENTER specifies that each line of the heading is centered between the left and right edges of the chart area.

HLEFT specifies that each line of the heading is left-justified to the edge of the chart area.
HRIGHT specifies that each line of the heading is right-justified to the edge of the chart area.

- CHSET 'HEADING' | 'NOHEADING'

This option controls whether or not the chart heading is displayed.
HEADING specifies that the heading is displayed.

NOHEADING specifies that the heading is suppressed.

- CHSET 'HTOP' | 'HBOTTOM'

Controls the location of the chart heading.
HTOP specifies that the heading is placed in the top margin.

HBOTTOM specifies that the heading is placed in the bottom margin.

## - CHSET 'IDRAW' | 'DRAW' | 'NDRAW'

This option governs the time of construction of the axes, together with their scale marks, labels, and associated grid/datum lines.
Valid in state-1 or state-2.
IDRAW specifies that each axis is constructed automatically at the time of its definition, that is, when the first plotting routine call is issued with the axis selected. In this case each axis is constructed once and once only, before the data supplied on the plotting routine call is plotted. Data thus overwrites the axis where they cross.
DRAW specifies that each axis is constructed automatically on each plotting routine call for which the axis is selected, after the data is plotted. In this case each axis is constructed as many times as there are plotting routine calls for which the axis is selected. The axis thus overwrites the data. DRAW may result in unnecessary processing if several plotting routines calls are made. In such a situation, data can be overwritten using the CHDRAX call and possibly the NDRAW option.

DRAW is ignored for tower charts.
NDRAW suppresses the automatic construction of axes on plotting routine calls. Axis drawing can be explicitly requested by means of a CHDRAX call.

In all cases, axis construction may be forced at any time in state-2 by execution of CHDRAX.

- CHSET 'KBOX' | 'NKBOX'

Controls the construction of a box around each key in the legend. NKBOX specifies that no key box is to be constructed.

KBOX specifies that each key in the legend is surrounded by a box whose attributes are the same as those for the primary $x$-axis line (see CHAATT).

- CHSET 'KNORMAL' | 'KREVERSED'

Controls the order of items in a legend (K stands for Key).

KNORMAL specifies that the first key is on the left or bottom.

In a horizontal legend, each row of key entries is constructed from left to right (using the keys
in the order in which they are defined by a CHKEY call). Similarly, in a vertical legend, each column of key entries is constructed from bottom to top.

KREVERSED specifies that the first key is on the right or top.

In a horizontal legend, each row of key entries is constructed from right to left (using the keys in the order in which they are defined by a CHKEY call). Similarly, in a vertical legend, each column of key entries is constructed from top to bottom.

- CHSET 'LEGEND' | 'NOLEGEND'

Specifies whether a legend is to be constructed. Legends are not produced for Venn diagrams irrespective of the setting of this option. See the PIEKEY option for information about construction of legends for pie charts.

LEGEND specifies that a legend is to be constructed after any subsequent plotting calls (for example, CHPLOT, CHTOWR, CHBAR, and CHBARX).

Valid in state-1 or state-2.
NOLEGEND specifies that a legend is not to be constructed.

Valid in state-1 only.

- CHSET 'LINES' | 'NOLINES'

Controls whether CHPLOT and CHPOLR produce a line graph (LINES) or a scatter plot (NOLINES).

Valid in state-1 or state-2.
LINES specifies that consecutive points on each data group are joined by a line, or curve (see CHSET('CURVE')).

NOLINES specifies that only the markers are drawn, giving the effect of a scatter plot. If the CHSET('NOMARKERS ') option is specified, nothing is drawn for CHPLOT; for CHPOLR, only shaded areas are drawn.

- CHSET 'MARKERS' | 'NOMARKERS'

Indicates whether markers are shown.
Valid in state-1 or state-2.
MARKERS specifies that markers on line graphs, scatter plots, or polar charts appear at the data points specified on a CHPLOT or

CHPOLR call. Markers are obtained from the marker-attribute table. The default marker table can be overridden by a CHMARK call.
NOMARKERS suppresses the construction of markers.

- CHSET 'MBAR' | 'CBAR' | 'FBAR'

Specifies the type of bar chart to be constructed.

Valid in state-1 or state-2.
MBAR specifies a multiple bar chart (groups of bars, side-by-side).

CBAR specifies a composite (stacked) bar chart (colinear bars).

FBAR specifies a floating bar chart (like a stacked bar chart but with first data group bars omitted).

- CHSET 'MOUNTAIN' | 'NOMOUNTAIN'

MOUNTAIN specifies that, for surface charts and polar charts, the successive data groups appear behind the previous data group(s) so that the shading does not overlap. This effect is called mountain-range shading. Chart details (for example, grid lines and datum lines) that are behind a mountain range are not shown. The first component is shaded if the CHSET option 'FILL' has been specified; otherwise, shading is suppressed.

NOMOUNTAIN suppresses mountain-range shading and restores the standard method of shading.

Valid in state-1 only.

- CHSET 'MSCALE' | 'NOMSCALE'

Indicates whether markers are scaled to the size of the chart.

NOMSCALE, the default, specifies that markers on line graphs, scatter plots, or polar charts have an absolute size independent of the overall size of the chart. Markers are scaled relative to the device's default markers. This option has been kept for compatibility with other releases.

MSCALE specifies that scaling of markers is to occur relative to the size of the chart. This means that if the overall size of the chart is changed, then the markers will be scaled accordingly.

## - CHSET 'NBOX' | 'NONBOX'

Controls the construction of a framing box round all subsequent chart notes, until the option is changed. Refer to the CHNOTE call description for the parameters affecting framing-box construction.
Valid in state-1 or state-2.
NBOX specifies construction of a framing box round subsequent chart notes.
NONBOX suppresses construction of a framing box round subsequent chart notes.

- CHSET 'NNOTES' | 'INOTES'

Controls whether notes that do not fully appear on a display are repositioned.

Valid in state-1 or state-2.
NNOTES indicates that notes drawn after this call are repositioned by PGF to ensure that all of the note is visible on the display.

INOTES indicates that notes drawn after this call are not repositioned by PGF; this means that not all of the note is visible on the display.

- CHSET 'PERPIE' | 'ABPIE'

Specifies the data type for pie charts.
Valid in state-1 or state-2.
PERPIE specifies that the data supplied in any subsequent calls to CHPIE is a percentage. Each slice subtends an angle of $\mathrm{V} * 360 / 100$ degrees, where V is the data value for the slice.
If the total for all slices is less than 100, the complete circle is not drawn. If it is greater than 100, an error message is issued.
ABPIE specifies that the data is absolute. All values of a pie are added together and the slice angle determined as a proportion of the total. Each slice subtends an angle of V * $360 / \mathrm{T}$ degrees, where V is the data value and T is the total of all data values for the pie.

- CHSET 'PGFS' | 'NPGFS'

Specifies the method used to punctuate numbers of 1000 and over. The convention is used for the display of numeric data values in fixed-point format. Applies to all numeric axis labels, to bar values on bar charts, and to table chart values. These options are used in CHXSET and CHYSET calls to specify
punctuation for numeric labels on the x or y axis.
Valid in state-1 or state-2.
PGFS suppresses all punctuation except the decimal point. This minimizes the space required for numeric values, for example: 1234567.999

NPGFS selects the default national convention that may be specified when GDDM is installed. Widely used conventions are:

- The period decimal convention. Example: 1,234,567.999
- The comma decimal convention. Example: 1.234.567,999
- The French convention. Example: 1234 567,999
- CHSET 'PIEKEY' | 'SPIDER'

Specifies the configuration of pie chart labels.
PIEKEY specifies that a legend will be constructed in the chart margin.
SPIDER suppresses the generation of a legend, and specifies the construction of spider labels consisting of the labels specified by CHKEY written around the circumference of each pie. The labels are connected to their corresponding slices by lines. See CHSET('SPISLICE') for further discussion.
Note: Any labels supplied by CHXLAB are written as pie titles adjacent to the pies, independently of labels supplied by CHKEY.

- CHSET 'POSITION' | 'NOPOSITION'

Controls whether the shift out (SO) and shift in (SI) characters occupy a screen position or not.
NOPOSITION indicates that the SO/SI characters are removed.
POSITION indicates that the SO/SI characters are replaced by blanks.
Valid in state-1 only.

- CHSET 'PROPIE' | 'NOPROPIE'

Applies only to multiple pie charts using absolute (not percentage) data, generated by a single call to CHPIE.
NOPROPIE specifies that all pies generated are the same size.

PROPIE specifies that the area of each pie will be proportional to the sum of its slice values. The pies generated from a single call to CHPIE will be in proportion. The largest pie in each such group of pies has the same size as if NOPROPIE had been specified, and the remaining pies are reduced in proportion.

## - CHSET 'RANGE' | 'NORANGE'

Controls whether plotting is to be done or whether just the range of the currently selected axes is to be calculated.

Valid in state-1 only.
RANGE indicates that a subsequent CHPLOT, CHSURF, CHHIST, CHBAR, or CHBARX call will enter state-2, calculate the axis range, define the axes (if they have not already been defined), and return without plotting any data. (Note that the first plotting call always defines the axes, whether RANGE has been specified or not.)
NORANGE indicates that a subsequent plotting call will plot the data, as normal.

- CHSET 'RISERS' | 'NORISERS'

Controls whether steps of a histogram are delimited by riser lines.

Valid in state-1 or state-2.
RISERS specifies that lines perpendicular to the $x$ axis are drawn at the ends of each histogram range. NORISERS suppresses the generation of intermediate histogram risers. The two outermost risers remain, joining the ends of the step to the x axis or datum reference line.

- CHSET 'SCALETOWER' | 'NOSCALETOWER'

SCALETOWER specifies that a tower, whose height corresponds to the $y$ axis, is to be constructed on the left-hand side of the x axis if the $z$ axis slopes to the right, or on the right-hand side if it slopes to the left. The tower will be placed so that it appears to be constructed on the $\mathrm{x}-\mathrm{z}$ plane.

NOSCALETOWER specifies that a tower is not to be constructed.

- CHSET 'SIDE' | 'NOSIDE'

SIDE specifies that the side plane is to be drawn on a tower chart. If this plane is
present, an edge is always drawn round it, corresponding to the extremes of the axis. A grid can be drawn on this plane by using the GRID option of CHZSET.

NOSIDE specifies that the side plane is not to be drawn.

- CHSET 'SPISLICE' | 'SPILABEL'

Specifies the appearance of pie-chart labels. It determines whether the pie labels and spider lines are the same colors as the slice to which they are attached, or are controlled by CHKATT or CHVATT. SPISLICE and SPILABEL are effective only if slice values, or slice labels, or both are specified. Slice values are specified by CHSET('VALUES'), and slice labels are specified by CHKEY and CHSET('SPIDER').
Valid in state-1 or state-2.
SPISLICE draws the spider line and associated text (slice value, or label, or both) in the color of the corresponding slice. The character mode, symbol-set identifier, and character multiplier for the text are determined by CHKATT if CHSET('SPIDER') is in effect, by CHVATT otherwise.
Note: The SPISLICE option was previously called SPISECTOR. Both names are valid; the abbreviation (SPIS) is the same for both names.
SPILABEL draws the spider lines in the default color. The associated text attributes are those specified by CHKATT if CHSET('SPIDER') is in effect, by CHVATT otherwise.

- CHSET 'TLBREAK' | 'NTLBREAK'

TLBREAK specifies that a semicolon in an axis title will cause a line break.

NTLBREAK specifies that a semicolon in an axis title will not cause a line break.

- CHSET 'TOWERTICK' | 'NOTOWERTICK'

TOWERTICK specifies that a tower is to have the major scale (tick) marks from the $y$ axis copied on to it. This option allows the heights of the towers to be compared more easily. The scale marks are drawn in the background color. A solid shading pattern should be specified in the CHPAT call (see "CHPAT Component shading pattern table" on
page 60) when this option is used so that the scale marks are clearly visible.

NOTOWERTICK specifies that scale marks are not to be copied.

- CHSET 'VINSIDE' | 'VONTOP'

Controls the placement of values for bar charts. The values can appear either on top of or inside the bars. A CHSET('CVALUES') call is required if you specify one of these options.
VINSIDE specifies that bar values are to be centered within each bar.
VONTOP specifies that bar values are to be placed on top of the bars.
Valid in state-1 or state-2.

- CHSET 'VSCIENTIFIC' | 'VFIXED'

Controls the format of the values for bar charts and table charts. The values can appear either in scientific format or in fixed-point format. A CHSET('CVALUES') call is required if you specify one of these options.

VSCIENTIFIC specifies that values are to appear in scientific format (for example, $1.3 \mathrm{E}+01$ ).

VFIXED specifies that values are to appear in fixed-point format (for example, 13).

Valid in state-1 or state-2.

- CHSET 'XDUP' | 'XNODUP'
- CHSET 'YDUP' | 'YNODUP'

These options specify that a duplicate of the primary axis is used as a secondary axis. By default this will give axes at both sides or ends of the graph.
XDUP specifies that the primary x axis is duplicated.
YDUP specifies that the primary $y$ axis is duplicated.
XNODUP specifies that the x axis is not duplicated.
YNODUP specifies that the y axis is not duplicated.
For pie charts and Venn diagrams, a duplicate axis specification is ignored.

When a duplicate axis is specified, the secondary axis is used to support it. For this reason, certain items are copied into the secondary axis fields on entry to state-2 if the duplicate axis option is set. The following items are copied: axis range, scale mark positions, scale type (linear or logarithmic), scaling factor, and axis attributes (line type, width, and color). These supersede any corresponding items that may have been explicitly specified for the secondary axis. Also, the secondary axis grid lines option is suppressed to avoid redrawing grid lines.

- CHSET 'YVERTICAL' | 'XVERTICAL' | 'ZVERTICAL'
Specifies the orientation of all axes; also controls the orientation of multiple pie charts, and Venn diagrams. It is ignored for tower charts.
YVERTICAL specifies that the $y$ axis should be vertical and the x axis horizontal.
YVERTICAL is the default and creates horizontal line graphs, and bar charts and histograms with vertical bars. Venn diagrams are arranged horizontally and pie charts in a horizontal line if there are more than one. Table charts have components (data groups) in columns vertically.
XVERTICAL specifies that the x axis is to be vertical and the $y$ axis horizontal.
XVERTICAL creates vertical line graphs, and bar charts and histograms with horizontal bars. Venn diagrams are vertically aligned. Pie charts are arranged above one another if there are more than one. Table charts have components (data groups) in columns vertically.
ZVERTICAL specifies that table charts have components (data groups) in rows horizontally. All other chart types are arranged as for YVERTICAL.
- CHSET 'ZPICK' | 'XPICK'

ZPICK specifies that the color, pattern, and line types for each tower in a tower chart or each component (data group) on a table chart are to be picked from the attribute list, according to their positions on the $z$ axis.
XPICK specifies that the color, pattern, and line types for each tower in a tower chart or each x slice on a table chart are to be picked
from the attribute list, according to their positions on the x axis.

## CHSSEG

Function: To set segment number.

```
CHSSEG (entity-type, id)
APL code 717
PGF RCP code X'100B0703' (269158147)
```


## Parameters

entity-type (specified by user) (fullword integer) The only value you can specify is 1 , which means that a chart note is created in a separate segment with the specified identifier.
id (specified by user) (fullword integer)
Specifies the segment identifier to be used for the next chart note. After it has been used, the segment identifier is reset to zero. A value of zero resets any current nonzero value.

## Description

Defines the segment identifier to be used by the Presentation Graphics routines (PGR) for the next chart entity (a chart note) that is drawn. The chart note is created in a separate segment with the specified identifier.

Valid in state-2 only.

## Principal errors

ADM0503 E THIS FUNCTION CAN ONLY BE INVOKED in the chart-drawing state

## CHSTRT

Function: To reset the processing state to state-1.

| CHSTRT |  |
| :--- | :--- |
| APL Code | 703 |
| PGF RCP code | X'10110100' $^{\prime}(269549824)$ |

## Parameters

None

## Description

If issued in state-1, CHSTRT has the same effect as CHRNIT. It resets all chart-definition options and parameters to their default values.

If issued in state-2 (as is normally the case), CHSTRT resets the processing state to state-1, and resets the chart-definition options and parameters to their values just before the most recent transition from state-1 to state-2. Also causes the primary axes to become selected. Note that, because very few options can be set in state-2, CHSTRT usually leaves the settings as they stand.

CHSTRT may be used to plot a series of charts using the same (or similar) formats, without the overhead of respecifying the common format for each chart.

## Principal errors

None

## CHSURF

Function: To draw surface charts.

## CHSURF (components, count, $x$-values,

 y -values)APL code 792
PGF RCP code X'100D0A04' (269289988)

## Parameters

components (specified by user) (fullword integer) Specifies the number of data groups to be drawn; that is, the number of individual graph lines. Each data group has a new set of attributes.
count (specified by user) (fullword integer) Specifies the number of data points in each data group.
x-values (specified by user) (array of short floating-point numbers) Specifies the $x$ values. Each data group uses the same set of $x$ values. For example, if count $=5$, five values must be supplied.
y-values (specified by user) (array of short floating-point numbers) Specifies the $y$ values. One value must be supplied for each point to be plotted. For multiple data groups, the values must be stored sequentially by data group; that is, all values for the first data group, all values for the second (and subsequent) data group, for as many data groups as specified. Each data group must contain the number of values specified in the count parameter. The y values specified for each data group are associated in sequence with the $x$ values supplied in the $x$-values parameter to give the $(\mathrm{x}, \mathrm{y})$ coordinate pairs to be plotted.

## Description

Produces a surface chart on the currently selected axes.

A surface chart is, essentially, a shaded line graph without marker symbols. As in a line graph, each data group is drawn as a series of lines connecting the data points. Data group colors, shading patterns, line types, and line widths are determined by the current attribute tables. Surface charts are, in general, drawn with relative data and are often improved by curved lines. CHSET('RELATIVE') and CHSET('CURVE') control these aspects. Shading of the first component can be suppressed by calling CHSET('INFILL').

Valid in state-1 or state-2. If entered in state-1, the program changes to state-2.

## Principal errors

```
AdM0502 e PICTURE SPACE AND CHAREA ARE
 INCOMPATIBLE
ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
ADM0510 W LEGEND FORMAT MAY BE INCORRECT
ADM0511 W NOT ENOUGH ROOM TO DRAW ALL KEYS.
 ONE OR MORE WERE OMITTED
ADM0512 W HEADING TEXT EXCEEDS AVAILABLE
 SPACE AND HAS BEEN TRUNCATED
ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
ADM0525 W CHARACTER SIZE IS TOO LARGE FOR THE
 CHART
ADM0526 S LOGARITHMIC X OR Y AXIS RANGE
 CONTAINS A NON-POSITIVE VALUE
ADM0527 E NON-POSITIVE INTERCEPT ON
 LOGARITHMIC X OR Y AXIS
ADM0528 E X, Y, OR Z AXIS TICK INTERVAL TOO
 SMALL
ADM0529 W MAXIMUM OVERLAP EXCEEDED FOR A BAR
 CHART
ADM0531 W DATUM LINE DATA VALUE LIES OUTSIDE
 AXIS RANGE
ADM0532 E COMPONENT PARAMETER LESS THAN ZERO
 OR COUNT PARAMETER LESS THAN ONE
ADM0534 W DATA LIES OUTSIDE THE X, Y, OR Z
 AXIS RANGE AND HAS NOT BEEN PLOTTED
ADM0535 E ZERO OR NEGATIVE DATA IS INVALID ON
 A LOGARITHMIC AXIS
ADM0543 S INCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
```

ADM0545 E THE X, Y, OR Z AXIS HAS AN INVALID POWER OF 10 FOR TICK DEFINITION<br>ADM0546 E THE X, Y, OR Z AXIS RANGE EXCEEDS NUMERIC BOUNDS<br>ADM0557 W AXIS TITLE TRUNCATED ON RIGHT OF CHART<br>ADM0558 W AXIS TITLE TRUNCATED AT TOP OR BOTTOM OF CHART<br>ADM0560 E LOGARITHMIC X, Y, OR Z AXIS RANGE IS TOO SMALL

## CHTATT

Function: To specify axis title text attributes.

## CHTATT (count, array)

```
APL code 736
PGF RCP code X'10020902' (268568834)
```


## Parameters

count (specified by user) (fullword integer)
A fullword integer specifying the number of elements in array. If more than five elements are specified, the excess elements are ignored. If fewer than five, the remainder are unchanged from their previous setting. If zero is specified, all five defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of, at most, five fullword integers:

1. Color

For valid values of color, see Appendix C.
Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS
For mode 2 or mode 3, the identifier denotes:
0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS
4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100 , and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. (The default character size is the size of hardware characters for the device on which the chart will be displayed.) For example, if character-size multiplier $=200$ and mode 3 characters are being used, they are drawn twice as large as the basic. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width; 200 causes the height to be multiplied by twice the amount of the width.

## Description

Overrides or reestablishes the default character appearance attributes used in displaying all axis titles on all the axes. You can use the CHXTAT and CHYTAT calls to change the axis-title attributes for the currently selected x or y axis.

The defaults are:
\(\left.$$
\begin{array}{lll}\text { Color } & 0 & \begin{array}{l}\text { green (displays), } \\
\text { black (printers) }\end{array} \\
\begin{array}{lll}\text { Character mode } \\
\text { Symbol-set identifier } \\
\text { Character-size } \\
\text { multiplier }\end{array} & 3 & 0\end{array}
$$ \begin{array}{l}system default <br>
results in the text size <br>
as defined by <br>
CHCGRD (by default, <br>

the size of the\end{array}\right]\)| hardware characters) |
| :--- |
| results in the text size |
| Character |
| height/width multiplier |$\quad 100$| as defined by |
| :--- |
| CHCGRD (by default, |
| the size of the |
| hardware characters) |
| unless overridden by |
| CHXTAT or CHYTAT. |

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INVALID CHARACTER MODE VALUE
ADM0522 E INVALID CHARACTER SIZE MULTIPLIER

## CHTERM

Function: To terminate the PG routines.

| CHTERM |  |
| :--- | :--- |
| APL Code | 705 |
| PGF RCP code | X'10000100' $^{\prime}$ (268435712) |

## Parameters

None

## Description

Terminates the PG routines. The main action taken is to free any storage obtained on previous calls to the PG routines. CHTERM should be issued when the application program has no further requirement for $P G$ routine services.

It is recommended, in addition, that CHTERM should normally be issued as soon as the final form of the chart has been constructed, and before ASREAD or FSFRCE is called to cause output to the device. This practice provides the most efficient use of storage. The next call to the PG routines (after return from ASREAD or FSFRCE) is treated as if it were the first call to the PG routines. CHTERM thus provides the same function as CHRNIT, except that it also releases all storage used by the PG routines.

Neither CHTERM nor CHRNIT clears charts from the page. Any further charts are added to the existing ones. Charts can be cleared by the GSCLR call, which is described in the GDDM Base Application Programming Reference book.

Valid in state-1 or state-2.

## Principal errors

None

## CHTHRS

Function: To set bar value threshold limit.

| CHTHRS (n, array) |  |
| :--- | :--- |
| APL code | 776 |
| PGF RCP code | $X^{\prime} 100 \mathrm{BOA} 05^{\prime}(269158917)$ |

## Parameters

n (specified by user) (fullword integer)
Must be 0 or 1 . A 0 resets the parameter to the default of 0 .
array (specified by user) (array of short floating-point numbers)
This parameter is an array of dimension $\mathbf{n}$. If $\mathbf{n}$ is 1 , it is a single-element array that
specifies the threshold limit; if $\mathbf{n}$ is 0 it is ignored. The value is a percentage of the $y$-axis range. For example, if the $y$-axis range is 0 through 20 and the number in array is a threshold limit of 50 (percent), any bar value that is 10 or less $(50 \%$ of 20$)$ is not drawn.

## Description

Specifies the minimum bar size for which a bar value will be displayed. If the data value of a bar is less than this limit, the bar value is not drawn. The CHSET('CVALUES') and CHSET('VINSIDE') options have to be specified if this call is to take effect.

Valid only in state-1.

## Principal errors

```
ADM0508 E COUNT PARAMETER IS NEGATIVE, OR
 LENGTH PARAMETER IS NON-POSITIVE
ADM0523 E PARAMETER IS LESS THAN THE
 ALLOWABLE MINIMUM
ADM0524 E PARAMETER IS GREATER THAN THE
 ALLOWABLE MAXIMUM
```


## CHTOWR

Function: To plot a tower chart.

CHTOWR ( $n, z$-count, $x$-count, $z$-list, $x$-list, data-array)

| APL code | 785 |
| :--- | :--- |
| PGF RCP code | X'100D0A09' (269289993) |

## Parameters

n (specified by user) (fullword integer) Reserved; must be 1.
z-count (specified by user) (fullword integer) The number of data groups (components) to be shown along the $z$ axis. The tower for each data group will have new attributes as indicated by the appropriate chart-attributes tables.
x-count (specified by user) (fullword integer)
The number of data values to be shown along the $x$ axis (that is, the number of towers in each data group). All the data groups must have the same number of towers.
z-list (specified by user) (array of short floating-point numbers)
The list of $z$ values to be used along the $z$ axis. Each group of towers is constructed at the positions indicated by these values.
x-list (specified by user) (array of short floating-point numbers)
The list of $x$ values to be used along the $x$ axis. Each group of towers is constructed at the positions indicated by these values.
data-array (specified by user) (array of short floating-point numbers)
An array that contains the values for the heights of the towers. The values to be used correspond to the number specified in the z-count parameter multiplied by the number in the $\mathbf{x}$-count parameter. For example, if data-array contained 16 values, x-count was 5 , and $\mathbf{z}$-count was 3 , the number of towers displayed would be 15 .

## Description

Draws a tower chart, which is, in effect, a three-dimensional bar chart with a numeric $x$ axis. In addition to the $x$ and $y$ axes, tower charts have a z axis.

The towers are arranged on a regular horizontal grid that is represented by $x$ and $z$ axes; the vertical axis is the $y$ axis. The chart is constructed using an oblique projection; the $x$ axis remains horizontal, the $y$ axis remains vertical, and the $z$ axis is drawn "into" the display screen at a user-defined angle that is specified in the CHTPRJ call (see "CHTPRJ - Tower chart projection" on page 83).

When text is placed on the chart, it is by default aligned so that it appears either vertically or horizontally, and not parallel to the related axis. You can rotate text from this position by using CHNATT, CHXLAT, CHYLAT, or CHZLAT calls.

Several options from the CHSET call can be used with the CHTOWR call. The SCALETOWER option draws a dummy tower at the side of the
chart to enable the scale of the $y$ axis to be assessed. The TOWERTICK option draws lines around the towers at the major y -axis tick marks values. The XPICK and ZPICK options select the colors, shading patterns, and types of outline for the towers from the three attribute lists, according to their order along either the $x$ axis (XPICK) or the $z$ axis (ZPICK). Refer to "CHSET - Specify chart options" on page 68 for the full details of this call.

By default, the CHTOWR call constructs a back and side wall on which can be drawn grid lines for the $x, y$, and $z$ axes (by using the GRID option of the CHXSET, CHYSET, and CHZSET calls, respectively). The NOBACK and NOSIDE options of the CHSET call suppress the back and side walls. The CHZSET call (see "CHZSET - Z-axis options" on page 115) enables options to be specified applicable only to the $z$ axis.

The CHZDLB call (see "CHZDLB - Z-axis data labels" on page 112 allows the $z$ axis to be labeled; the CHXDLB call (see "CHXDLB - X-axis data labels" on page 89) does the same for the $x$ axis.

The CHXRNG, CHYRNG, and CHZRNG calls allow the ranges of axes to be specified, overriding the default scheme. Similarly, the CHXTIC, CHYTIC, and CHZTIC calls allows the user's own tick marks to be specified.

The CHGAP call (see "CHGAP - Spacing between bars" on page 39) allows the user to specify how the towers are spaced along the x axis; the CHZGAP call (see "CHZGAP - Spacing between towers" on page 112 controls the spacing in the direction of the $z$ axis.

Valid in state-1 only.

## Principal errors

```
ADM0502 E PICTURE SPACE AND CHAREA ARE
 INCOMPATIBLE
ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
ADM0510 W LEGEND FORMAT MAY BE INCORRECT
ADM0511 W NOT ENOUGH ROOM TO DRAW ALL KEYS.
 ONE OR MORE WERE OMITTED
ADM0512 W HEADING TEXT EXCEEDS AVAILABLE
 SPACE AND HAS BEEN TRUNCATED
```

```
ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
ADM0525 W CHARACTER SIZE IS TOO LARGE FOR THE
 CHART
ADM0526 S LOGARITHMIC X OR Y AXIS RANGE
 CONTAINS A NON-POSITIVE VALUE
ADM0527 E NON-POSITIVE INTERCEPT ON
 LOGARITHMIC X OR Y AXIS
ADM0528 E X, Y, OR Z AXIS TICK INTERVAL TOO
 SMALL
ADM0531 W DATUM LINE DATA VALUE LIES OUTSIDE
 AXIS RANGE
ADM0532 E COMPONENT PARAMETER LESS THAN ZERO
 OR COUNT PARAMETER LESS THAN ONE
ADM0534 W DATA LIES OUTSIDE THE X, Y, OR Z
 AXIS RANGE AND HAS NOT BEEN PLOTTED
ADM0535 E ZERO OR NEGATIVE DATA IS INVALID ON
 A LOGARITHMIC AXIS
ADM0543 S INCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
ADM0545 E THE X, Y, OR Z AXIS HAS AN INVALID
 POWER OF 10 FOR TICK DEFINITION
ADM0546 E THE X, Y, OR Z AXIS RANGE EXCEEDS
 NUMERIC BOUNDS
ADM0557 W AXIS TITLE TRUNCATED ON RIGHT OF
 CHART
ADM0558 W AXIS TITLE TRUNCATED AT TOP OR
 BOTTOM OF CHART
ADM0560 E LOGARITHMIC X, Y, OR Z AXIS RANGE
 IS TOO SMALL
ADM0566 E CHDRAX NOT ALLOWED WITH CURRENT
 CHART TYPE
ADM0573 W SMALLEST GAP RATIO IS 0 FOR TOWER
 CHARTS
```


## CHTPRJ

Function: To specify tower chart projection.

## CHTPRJ (projection, option-count, option-start, options)

APL code 720
PGF RCP code X'10160100' (269877504)

## Parameters

projection (specified by user) (fullword integer) The type of projection to be used. Must be 1, indicating an oblique projection.
option-count (specified by user) (fullword integer) Specifies the length of the array given in the options parameter. The maximum is 2 .
option-start (specified by user) (fullword integer) Specifies the starting point in the array given in the options parameter. Options before this point in the array remain unchanged; options after this point in the array are affected by the meaning of the value specified in the options parameter.
options (specified by user) (array of short floating-point numbers) Specifies the angle of projection and the scale value to be used. Defaults are applied if the number of options specified is greater than that specified in the option-count parameter. The default angle is 45 degrees and the default scale is 1 . The options are:

Angle Specifies the angle (in degrees, moving counterclockwise) between the $x$ and $z$ axes. The value must be from 0 through 180. Values from 5 through 85 or 95 through 175 are recommended. Other values are permitted but do not produce such acceptable results.
Scale Specifies the length of the $z$ axis in relation to the length of the $x$ axis. $A$ value of 2 (for example) means that the $z$ axis is to be twice as long as the $x$ axis.

## Description

Overrides the default or current projection angle and scale of the $z$ axis for the next tower chart that is plotted. The default is that the $z$ axis is drawn at 45 degrees to the $x$ axis, and that one $z$-axis unit is the same as one unit on the $x$ axis.

Valid only in state-1.

## Principal errors

```
ADM0523 E PARAMETER IS LESS THAN THE
 ALLOWABLE MINIMUM
ADM0524 E PARAMETER IS GREATER THAN THE
 ALLOWABLE MAXIMUM
ADM0570 E INVALID PROJECTION NUMBER GIVEN
```


## CHVATT

Function: To specify attributes of values text in bar and pie charts.

| CHVATT (count, array) |  |
| :--- | :--- |
| APL code | 769 |
| PGF RCP code | $X^{\prime} 10020906{ }^{\prime}(268568838)$ |

## Parameters

count (specified by user) (fullword integer) A fullword integer specifying the number of elements in array. If more than six elements are specified, the excess elements are ignored. If fewer than six, the remainder are unchanged from their previous setting. If zero is specified, all six defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of, at most, six fullword integers:

1. Color

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS

For mode 2 or 3, the identifier denotes:
0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS
4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100, and the horizontal and vertical character sizes are multiplied by this factor before the characters are drawn. The default character size is the size of the hardware character for the device. For example, if the character-size multiplier is 200 and mode 3 characters are being used, they are drawn twice as large as normal. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width; 200 causes the height to be multiplied by twice the amount of the width.
CHSET('CVALUES') must be specified for this option to take effect.
6. Bar-value rotation

Bar values can be inclined away from the horizontal. This element must have a value from -9000 through +9000 . This number is divided by 100 to give a value from -90 through +90 , which is the angle, in degrees, to the horizontal at which bar values will be drawn. The default is zero. When positive, the angle is in a counterclockwise direction. When negative, it is in a clockwise direction.
CHSET('CVALUES') must be specified for this option to take effect.

## Description

Overrides or reestablishes the default character-appearance attributes used for data values on bar charts, or percentage values on pie charts, or values (but not labels) on table charts. These values are only shown if CHSET('CVALUES') or CHSET('VALUES') has been specified.

See CHSET('SPISLICE') for a description of how CHVATT applies to pie chart spider labels.

By default, the attributes are as follows:

| Color | 0 | green (displays), <br> black (printers) |
| :--- | :--- | :--- |
| Character mode   <br> Symbol-set identifier <br> Character-size <br> multiplier 3 0system default <br> results in the text size <br> as defined by <br> CHCGRD (by default, <br> the size of the <br> hardware characters) <br> results in the text size <br> as defined by <br> CHCGRD (by default, <br> the size of the <br> hardware characters) |  |  |
| Character <br> height/width multiplier | 100 |  |
| Bar-value rotation | 0 |  |
| Valid in state-1 only. |  |  |
| Principal errors |  |  |

ADM0515 E ATTRIBUTE COUNT IS NEGATIVE ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INVALID CHARACTER MODE VALUE
ADM0522 E INVALID CHARACTER SIZE MULTIPLIER
ADM0569 E INVALID ANGLE OF ROTATION

## CHVCHR

Function: To specify number of characters in bar values.

## CHVCHR (number)

| APL code | 767 |
| :--- | :--- |
| PGF RCP code | X'10020616' (268568086) |

## Parameters

number (specified by user) (fullword integer)
The maximum number of value characters that are displayed at the end of each bar of a bar chart. This includes the minus sign, decimal point character, and separator characters for $10 * * 3$ and $10 * * 6$ positions, if present. If a value cannot be displayed in this number of characters, asterisks will replace it.

The default value is 9 , and the maximum is 15. Because the 15 -character maximum includes the sign, decimal point, and possibly a signed exponent, the maximum number of digits displayed will be eight.

If the number of characters specified does not fit across the bar, and character mode 3 is specified for the value text, the character box width or height is adjusted to force a fit. Note that this may produce very small mode 3 characters.

In general, the PG routines involved use the minimum number of characters needed to distinguish between different bar values. The format used is similar to those of the matching $y$-axis labels.

## Description

Overrides the default maximum number of characters used for displaying the value on each bar of a bar chart and the values in a table chart if CHSET('VALUES') is specified. Value text attributes are controlled by CHVATT.

The default maximum is 9 .
Valid in either state-1 or state-2.

## Principal errors

```
ADM0523 E PARAMETER IS LESS THAN THE
 ALLOWABLE MINIMUM
ADM0524 E PARAMETER IS GREATER THAN THE
 ALLOWABLE MAXIMUM
```


## CHVDIG

Function: To set decimal digits for bars and tables.

| CHVDIG (n) |  |
| :--- | :--- |
|  |  |
| APL code | 774 |
| PGF RCP code | X'100B0A04' $^{\prime}(269158916)$ |

## Parameters

n (specified by user) (fullword integer)
The number of decimal digits that are to be shown. The default is 2 .

## Description

Indicates the number of decimal digits that are to be shown after the decimal point in each value on bar charts and table charts. The CHSET('CVAL') option must be specified for this call to take effect.

Valid in state-1 or state-2.

## Principal errors

ADM0515 E ATTRIBUTE COUNT IS NEGATIVE<br>ADM0524 E PARAMETER IS GREATER THAN THE ALLOWABLE MAXIMUM

## CHVENN

Function: To draw a Venn diagram.

```
CHVENN (population1, population2, overlap)
APL code 797
PGF RCP code X'100D0A05' (269289989)
```


## Parameters

population1 (specified by user) (short floating point)
A short floating-point number specifying the size of the set represented by the area of the first circle. May not be negative.
population2 (specified by user) (short floating point)
A short floating-point number specifying the size of the set represented by the area of the second circle. May not be negative.
overlap (specified by user) (short floating point) A short floating-point number specifying the size of the intersection of the two population sets, represented by the area of overlap of the two circles. Must be less than or equal to the smaller of population1 or population2. May not be negative.

## Description

Draws a Venn diagram.
Two circles are drawn within the plotting area, proportional in area to the population1 and population2 data values supplied, and positioned in such a way that the area of their overlap is proportional to the overlap parameter supplied.

The centers of the circles may be aligned horizontally or vertically with the first circle to the left or at the top respectively. Alignment specifications are controlled by the CHSET option YVERTICAL (default horizontal alignment) or XVERTICAL (vertical alignment).

Three labels corresponding to the three populations can be specified by CHKEY; their attributes are controlled by CHKATT. The labels
are constructed in the chart margins. If fewer than three labels are specified, only those specified appear. If more than three are specified, only the first three are used.

When the circles are arranged horizontally, the label for the first area is to the left, the label for the second area is to the right, and the label for the area of overlap is below the overlapping area. The labels are joined to the areas by straight lines. If no overlap exists, the third label does not appear.

When the circles are arranged vertically, the first label is above, the second label is below, and the third label is to the left of the circles.

Each circle is shaded and colored, based on current settings of the attribute tables and the CHSET shading-option setting. The intersection merges the two shading patterns and mixes the two color settings. Because color mixing is used for Venn diagrams (and only Venn diagrams), CHSET('CBACK') should not be specified for a Venn diagram. Color- and shading-attribute tables can be changed by CHCOL and CHPAT.

Only one Venn diagram may be produced at a time. Subsequent invocations of this call in state-2 produces an error message.

Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0502 E PICTURE SPACE AND CHAREA ARE
 INCOMPATIBLE
ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
ADM0512 W HEADING TEXT EXCEEDS AVAILABLE
 SPACE AND HAS BEEN TRUNCATED
ADM0525 W CHARACTER SIZE IS TOO LARGE FOR THE
 CHART
ADM0541 E VENN DIAGRAM POPULATION OR OVERLAP
 IS TOO SMALL
ADM0542 E VENN DIAGRAM OVERLAP EXCEEDS ONE OF
 THE POPULATIONS
ADM0543 S INCOMPATIBLE MIXTURE OF CHART TYPES
ADM0544 S STORAGE LIMIT EXCEEDED
ADM0559 W INSUFFICIENT SPACE FOR VENN LABEL
 IN MARGIN
```


## CHVMAR

Function: To specify vertical margins.

```
CHVMAR (leftmar, rightmar)
APL code 725
PGF RCP code X'10020613' (268568083)
```


## Parameters

leftmar (specified by user) (fullword integer)
Fullword integer specifying the number of character columns at the left-hand side of the plotting area.
rightmar (specified by user) (fullword integer) Fullword integers specifying the number of character columns at the right-hand side of the plotting area.

## Description

Overrides the default size of the chart margins, and therefore the size of the plotting area also. The margin control sizes are specified in terms of character grid columns, where the character grid is defined by CHCGRD, or is defaulted (the default is the hardware character size of the device on which the chart is displayed or printed).

By default, the vertical margins are ten character columns on each side of the plotting area.

CHVMAR can be used to enlarge the margins to give more room for the legend, or to reduce them to give more room to the chart.

See "CHHMAR - Horizontal margins" on page 44 for details on horizontal margins.

Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0523 E PARAMETER IS LESS THAN THE
 ALLOWABLE MINIMUM
```


## CHXDAY

Function: To specify x -axis day labels.

```
CHXDAY (day)
APL code 752
PGF RCP code X'1002060B' (268568075)
```


## Parameters

day (specified by user) (fullword integer)
A fullword integer that identifies the day to be associated with the first major scale mark.
Valid values are 1 through 7 . Monday is day 1.

## Description

Specifies uppercase day labels for the x axis. The specified day is associated with the first major scale mark position. Each successive day is assigned to the next major mark. The labels are normally 3 -letter abbreviations, but a CHSET option is available to change this; see CHSET('ABREV').

This call implicitly sets the corresponding label type to 'DATE'.

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE<br>ADM0505 E INVALID PARAMETER: a

## CHXDLB

Function: To specify $x$-axis data labels.

```
CHXDLB (n1, n2, x-array, lab-array)
APL code 773
PGF RCP code X'10020505' (268567813)
```


## Parameters

n1 (specified by user) (fullword integer) Specifies the number of values in x-array and the number of labels in lab-array.
n2 (specified by user) (fullword integer) Specifies the length of each $x$-axis label in the lab-array parameter.
x-array (specified by user) (array of short floating-point numbers) Specifies the $x$-axis value that corresponds to a scale-mark value.
lab-array (specified by user) (character) Specifies an array of labels in the form of character strings.

## Description

Specifies user-provided data labels for the x axis.
When a label is to be associated with a major scale mark on the x axis, the x -array parameter of CHXDLB is searched for a value that corresponds to the scale-mark value. If such a value is found, the corresponding label from the lab-array parameter is drawn at the scale mark. An x-array value is considered to correspond to a scale-mark value if it is the nearest value (either greater than or less than) to the scale-mark value, and if it lies within $10 \%$ of the scale-mark interval of the scale-mark value. If two x-array values are the same distance from the scale-mark value, the first $x$-array value is used.

Valid only in state-1.

## Principal errors

```
AdM0508 E COUNT PARAMETER IS NEGATIVE, OR lengit parameter is non-positive
```

ADM0509 E CHARACTER STRING TOO LONG
ADM0550 E INSUFFICIENT STORAGE AVAILABLE

## CHXDTM

Function: To specify $x$-axis datum line.

| CHXDTM (xvalue) |  |
| :--- | :--- |
| APL code | 755 |
| PGF RCP code | X'100E060D' (269354509) |

## Parameters

xvalue (specified by user) (short floating point) Short floating-point number giving the $x$-axis value through which the datum line passes.

## Description

Specifies an x datum line relative to the currently selected $x$ axis. The xvalue must lie within the axis range.

The $x$ datum lines are drawn parallel to the $y$ axis with xvalue specifying the point of intersection with the x axis.

The color, line type, and line width are controlled by the current datum-line attribute values, which may be specified by CHDATT.

In state-1, the call results in the specification of a datum line to be constructed when the axis is constructed. If a y datum line is specified (see "CHYDTM - Y-axis datum line" on page 101, it is also the line used in place of the axis for all shaded charts. It also acts as a baseline for bars of bar charts or risers of histograms.

If more than one call is made in state- 1 , the most recent is used.

In state-2, the call results in the immediate construction of a datum line. More than one datum line can be added in state-2. Such lines have no effect on the shading of charts.

In the ICU, a datum line created in state-1 is called a reference line.

## Principal errors

ADM0530 E A SELECTED AXIS HAS NOT BEEN
GENERATED
ADM0531 W DATUM LINE DATA VALUE LIES OUTSIDE AXIS RANGE

## CHXINT

Function: To specify $x$-axis interception point.

## CHXINT (x)

| APL code | 741 |
| :--- | :--- |
| PGF RCP code | X'100A0603' (269092355) |

## Parameters

$\mathbf{x}$ (specified by user) (short floating point) Short floating-point number specifying the x -axis interception point.

## Description

Specifies the interception point for the currently selected x axis. (Primary axes are selected by default.)

CHXINT positions the $y$ axis by giving the position on the $x$ axis at which the $y$ axis should cross it. (CHYINT positions the $x$ axis by giving the position on the $y$ axis where the $x$ axis should cross.) CHXINT is only brought into effect if CHYSET('INTERCEPT') is also specified. CHXINT is ignored for pie charts, tower charts, and Venn diagrams.

If the interception value is outside the range when the axis is to be constructed, the range is extended to include it. Note that interception values for logarithmic axes must be positive, and nonzero.

If CHXSET('INTERCEPT') is specified and CHXINT is not used, a default interception value of 0 is assumed.

Valid only in state-1.

## Principal errors

## ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE

## CHXLAB

Function: To set x -axis label text.

| CHXLAB | (count, length, text) |
| :--- | :--- |
| APL code | 748 |
| PGF RCP code | X'10020503' (268567811) |

## Parameters

count (specified by user) (fullword integer)
Fullword binary integer specifying the number of labels supplied. A specification of zero suppresses the labels.
length (specified by user) (fullword integer) Fullword binary integer specifying the number of characters associated with each label. All labels must be the same length. Each label is centered on the corresponding axis position (scale-mark position, or point mid-way between scale-mark positions). Centering occurs after any trailing null ( $\mathrm{X}^{\prime} 00^{\prime}$ ) characters have been deleted. Therefore, the effect of varying-length labels can be obtained by using nulls as padding characters to extend each label to the standard length.
text (specified by user) (character)
An EBCDIC character string that contains all of the labels, in order of use. The total length of the string must not exceed 32000 characters.

## Description

Specifies alphanumeric labels as a sequence of EBCDIC text strings. The labels are placed, in sequence, at major scale marks on the currently selected x axis, starting with the scale mark with the algebraically lowest value. If the number of labels specified is less than the number of major scale marks on the axis, the sequence of labels is reused as necessary until each scale mark is associated with a label.

CHXLAB may also be used for assigning a title to each pie of a pie chart.

Semicolons can be used to cause line breaks in the labels.

This call implicitly causes a call to CHXSET('ALPHANUMERIC') and causes a logarithmic-axis type specification to be ignored.

CHSET('BLABEL') can be used to clear the areas to be occupied by labels, before labels are written.

The label text attributes can be set by CHLATT.
Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 tHE CHART-DRAWING STATE
ADM0508 E COUNT PARAMETER IS NEGATIVE, OR
 lengTh PaRAMETER IS NON-POSItIVE
ADM0509 E CHARACTER STRING TOO LONG
```


## CHXLAT

Function: To set x -axis label attributes.

## CHXLAT (count, array)

```
APL code 711
PGF RCP code X'10020907' (268568839)
```


## Parameters

count (specified by user) (fullword integer) Specifies the number of elements in array. If more than six elements are specified, the excess elements are ignored. If fewer than six, the remainder are unchanged from their previous setting. If zero is specified, all six defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of, at most, six fullword integers:

1. Color

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS

For mode 2 or mode 3, the identifier denotes:

0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS

## 4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100 , and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. For example, if character-size multiplier $=200$ and mode 3 characters are being used, they are drawn twice as large as the basic size set by CHCGRD. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width. 200 causes the height to be multiplied by twice the amount of the width.
6. Axis-label rotation

When axis-label rotation is requested, each label is written at the specified angle to the horizontal. Label rotation is indicated by specifying a non-zero value in this element. The value must be from -9000 through +9000 . This number is divided by 100 to give a value from -90 through +90 , which is the angle, in degrees, to the horizontal at which the labels will be drawn. The default is zero. When positive, the angle is in a counterclockwise direction. When negative, it is in a clockwise direction.

## Description

Establishes the default character-appearance attributes to be used in displaying labels for the currently selected x axis.

By default, the attributes are as follows:

| Color | 0 | green (displays), <br> black (printers) | | |
|---|---|---|---|---|
| Character mode | 3 | system default |
| Symbol-set identifier | 0 | syst <br> results in the text size <br> as defined by |
| Character-size |  |  |
| multiplier |  |  |$\quad$| CHCGRD (by default, |
| :--- |
| the size of the |
| hardware characters) |
| results in the text size |
| as defined by |
| CHCGRD (by default, |
| the size of the |
| hardware characters) |

Valid only in state-1.

## Principal errors

## CHXMTH

Function: To specify x -axis month labels.

```
CHXMTH (month)
APL code 750
PGF RCP code X'10020609' (268568073)
```


## Parameters

month (specified by user) (fullword integer) A fullword integer that identifies the month to be associated with the first scale mark. Valid values are 1 through 12. January is month 1.

## Description

Specifies English language, uppercase month labels for the currently selected x axis. The specified month is associated with the first major scale-mark position. Each successive month is assigned to the next major mark. The labels are normally 3 -letter abbreviations, but a CHSET option is available to change this; see CHSET('ABREV').

This call implicitly sets the corresponding label type to 'DATE'.

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0505 E INVALID PARAMETER: a

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
 ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INVALID CHARACTER MODE VALUE
ADM0522 E INVALID CHARACTER SIZE MULTIPLIER
```


## CHXRNG

Function: To specify $x$-axis explicit range.

## CHXRNG (x1, x2)

```
APL code 739
PGF RCP code X'100A0601' (269092353)
```


## Parameters

$\mathbf{x 1}$ (specified by user) (short floating point) Short floating-point number specifying the data value at the start point of the x axis. For a horizontal $x$ axis, the start-point data value is at the left. For a vertical $x$ axis, the start-point data value is at the top.
x2 (specified by user) (short floating point) Short floating-point number specifying the data value at the end point of the $x$ axis. For a vertical $x$ axis, the end-point data value is at the bottom. For a horizontal x axis, the end-point data value is at the right.

## Description

Specifies explicitly the range of the currently selected $x$ axis. If the range is not specified or is specified as ( $\mathrm{n}, \mathrm{n}$ ) (with lower- and upper-limit values identical), autoranging applies to the axis. In general, the second parameter is greater than the first, but you may switch the direction of the axis by reversing the order of the parameters. Note that logarithmic axis ranges must have positive, nonzero values.

Valid only in state-1.

## Principal errors

AdM0501 E This function cannot be invoked in THE CHART-DRAWING STATE

## CHXSCL

Function: To specify $x$-axis scale factor.

```
CHXSCL (scale-factor)
APL code 745
PGF RCP code X'10020607' (268568071)
```


## Parameters

scale-factor (specified by user) (short floating point)
A short floating-point number acting as a scaling factor for each label to be generated. The value associated with each major scale mark is first multiplied by scale-factor. For example, if the value is 7000 and the factor is 0.001 , the resulting label is 7 . The value must be greater than zero.

## Description

Specifies a scale factor for numeric labels on the currently selected x axis. The call specifies that, when labels are generated from numeric values, the values should be multiplied by the scale factor before the labels are generated. This enables superfluous zeros to be suppressed. Scale factors are ignored for alphanumeric and date labeling.

If a scaling factor is specified, it may be useful to include a notation in the axis title describing its use. For example, if the scaling factor is 0.001 and the data is in dollars, the axis title might be "Thousands of Dollars."

Valid only in state 1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE<br>ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM

## CHXSEL

## CHXSEL

Function: To specify $x$-axis selection.

```
CHXSEL (axis-number)
APL code 731
PGF RCP code X'100F0801' (269420545)
```


## Parameters

axis-number (specified by user) (fullword integer) A fullword integer specifying the axis number to be selected. The integer must be 1 for the primary axis, or 2 for the secondary axis. The default is 1 .

## Description

Overrides the default axis selection to select the primary or secondary $x$ axis. By default, the primary axis is selected.

The selected axis is that against which data is plotted by the plotting routines CHPLOT, CHSURF, CHHIST, and CHBAR.

In addition, CHXSET options and calls to CHXRNG, CHXTTL, CHXTIC, CHXINT, CHXSCL, CHXLAB, CHXMTH, and CHXDAY apply to the selected axis.

Valid in state-1 or state-2.

## Principal errors

adm0506 E invalid axis selection value

## CHXSET

Function: To specify x -axis options.

```
CHXSET (option)
APL code 733
PGF RCP code X'10020401' (268567553)
```


## Parameters

option (specified by user) (4-byte character string) The option string must be at least four characters long and must be enclosed in single quotes. If more than four characters are specified, they are ignored. However, they can be used to increase the readability of the program.

The options are as follows, in alphabetic order by function; the defaults are shown LIKE THIS:

| Function | Option |
| :---: | :---: |
| Axis, drawn or not | AXIS |
|  | NOAXIS |
| Axis, intercept | LOWAXIS |
|  | MIDDLE |
|  | HIGHAXIS |
|  | INTERCEPT |
| Axis, title position | ATCENTER |
|  | ATEND |
|  | ATABOVE |
| Grid drawn or not | GRID |
|  | NOGRID |
| Label position | LABADJACENT |
|  | LABMIDDLE |
|  | NOLAB |
| Label, punctuation | PGFS |
|  | NPGFS |
| Label, type of | NUMERIC |
|  | ALPHANUMERIC |
|  | DATE |
| Scale, linear or logarithmic | LINEAR |
|  | LOGARITHMIC |
| Tick mark, style | NTICK |
|  | PTICK |
|  | XTICK |
|  | PLAIN |
| Zero forced into autorange | FORCEZERO |
|  | NOFORCEZERO |

## Description

Controls how the lines on the currently selected x axis are drawn when the chart is constructed.

Note: Only one option can be used per call. For example, if the $x$ axis is to be logarithmic and to have no tick marks, enter the following:

```
CALL CHXSET('LOGA')
CALL CHXSET('PLAIN')
```

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN the Chart-drawing state
ADM0505 E INVALID PARAMETER: a

## CHXSET Options

The groups of CHXSET options are listed below in alphabetic order by option:

## - 'ATCENTER' | 'ATEND' | 'ATABOVE'

Control the positioning or justification of the titles, or both, for the currently selected axis.
ATCENTER specifies that the axis title should be centered along the axis.

ATEND specifies that the axis title should be right-justified for a horizontal axis and justified to the top for a vertical axis.

ATABOVE provides for placing the title above the vertical axis.

For a horizontal axis, the ATABOVE specification is equivalent to ATEND.

When both primary and secondary vertical axes are employed, and the titles are positioned above them, overlap may occur, depending on the distance between the axes and the title lengths. Note also that an 'ATABOVE' title may overlap horizontal axis labels and scale marks if the horizontal axis is at the top of the chart.

## - 'AXIS' | 'NOAXIS'

Control whether the currently selected axis lines will be drawn when the chart is constructed.

On a table chart, it controls whether the primary grid will be drawn.

AXIS specifies that the axis line is to be drawn.

NOAXIS specifies that the axis line should not be drawn. The axis title will not be suppressed, nor will the scale marks and labels, unless they have been suppressed by other options.

- 'FORCEZERO' | 'NOFORCEZERO'

If autoranging applies, these options specify whether the range is to be extended, if necessary, to include zero.
FORCEZERO specifies that the axis range is to be extended to include zero, if the range of the data does not. This option is ignored for bar-chart x axes, for logarithmic axes, and for axes whose range is explicitly specified by CHXRNG calls.

NOFORCEZERO suppresses the forced inclusion of zero in the range.

- 'GRID' | 'NOGRID'

Specify whether grid lines are to be constructed.

CHXSET controls grid lines perpendicular to the $x$ axis. On a table chart, it controls both vertical and horizontal grid lines. Grid lines are constructed at the same time as their associated axes. Grid lines are positioned on major tick marks, whose positions are controlled by CHXTIC calls. The attributes of the grid lines are controlled by CHGATT.

GRID specifies that grid lines are to be constructed when the axis is constructed.

NOGRID specifies that grid lines are not required.

- 'LABADJACENT' | 'LABMIDDLE' | 'NOLAB'

Specify label position for the currently selected $x$ axis. This call controls the positioning of labels with respect to the major scale marks.

LABADJACENT centers the label on the major scale-mark position, thus:


LABMIDDLE places the label between the major scale mark it is associated with and the preceding one. (The label that would normally
be adjacent to the first mark on the axis is omitted.) The label is centered on the point midway between the two scale marks as shown below. This option is ignored for logarithmic axes.


NOLAB specifies that no labels are to be constructed for the corresponding axis.

## - 'LINEAR' | 'LOGARITHMIC'

Specify whether the axis scale is linear or logarithmic (base 10). The $x$ axis of a bar chart is forced to be linear even if it is specified as logarithmic.

A logarithmic specification is ignored unless the axis label type is numeric. In particular, a logarithmic specification is ignored if alphanumeric labels are specified via CHXLAB.

- 'LOWAXIS' | 'MIDDLE' | 'HIGHAXIS'

LOWAXIS positions the selected axis at the bottom or left-hand side of the plot area.
MIDDLE positions the selected axis in the middle of the plot area.
HIGHAXIS positions the selected axis at the top or right-hand side of the plot area.
INTERCEPT indicates that the position of the selected axis will be controlled by the CHXINT (or CHYINT) call referring to the other selected axis. CHXSET is used with CHYINT, and CHYSET with CHXINT. If the appropriate CHXINT call is not made, an intercept value of 0 is assumed.

- 'NTICK' | 'PTICK' | 'XTICK' | 'PLAIN'

Specify whether tick marks are to be drawn on the axis and, if so, the style of drawing. The options apply to both major and minor scale marks on the currently selected x axis.

NTICK draws scale marks from the x axis in the negative direction of the $y$ axis, as shown below. The positive direction of an axis is that defined by movement from the end of the axis with the algebraically lower value to the end with the algebraically higher value. The negative direction is the opposite. NTICK is recommended for the x axis of shaded bar charts and histograms to avoid obscuring the scale marks by the shading (assuming the default axis orientation and positions).


PTICK reverses the scale-mark direction from that described for NTICK:


XTICK draws scale marks perpendicular to the axis and crossing it, projecting equally on each side:


PLAIN indicates that the axis is to be constructed without scale marks:


Note: 'NTICK' is the default for primary axes, and 'PTICK' for secondary axes.

- 'NUMERIC' | 'ALPHANUMERIC' | 'DATE' Specify the labeling method used for the currently selected axis.

NUMERIC specifies that a label is to be generated automatically for each major scale mark. The label is an EBCDIC representation of the numeric value along the axis defining the scale mark. The representation may be in fixed- or floating-point format. If in fixed-point format, the application program may control the format by means of CHSET or
CHXSET('NPGFS') and CHSET or CHXSET('PGFS') calls, and the scaling by using CHXSCL.

ALPHANUMERIC specifies that each interval on the axis represents an item described by a label provided by a CHXLAB call.
ALPHANUMERIC is implicitly set by a CHXLAB call.

DATE implies that each interval on the axis is associated with a month of the year or a day of the week as specified by calls to CHXMTH or CHXDAY. DATE is implicitly set by these calls.

If ALPHANUMERIC or DATE is specified, any logarithmic-axis type specification is ignored; the axis is forced to be linear.

Note that all forms of labels correspond one-for-one with the major scale marks. The spacing of such marks along an axis is controlled by CHXTIC.

- 'PGFS' | 'NPGFS'

Specifies the method used on the $x$ axis to punctuate numbers of 1,000 and over except on table charts, where it has no effect. The convention is used for the displaying numeric data values in fixed-point format.

PGFS suppresses all punctuation except the decimal point. This minimizes the space required for numeric values, for example: 1234567.999

NPGFS selects the default national convention that may be specified when GDDM is installed. Widely used conventions are:

- The period decimal convention. Example: 1,234,567.999
- The comma decimal convention. Example: 1.234.567,999
- The French convention. Example: 1234 567,999

Valid in state-1 or state-2.

## CHXTAT

Function: To set x -axis title attributes.
CHXTAT (count, array)
APL code
PGF RCP code $\quad 713$
X'10020909' (268568841)

## Parameters

count (specified by user) (fullword integer) A fullword integer specifying the number of elements in array. If more than five elements are specified, the excess elements are ignored. If fewer than five, the remainder are unchanged from their previous setting. If zero is specified, all five defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of at most five fullword integers:

1. Color

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209.
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2

3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS
For mode 2 or mode 3, the identifier denotes:

0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS
4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100 , and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. (The default character size is the size of hardware characters for the device on which the chart will be displayed.) For example, if character-size multiplier $=200$ and mode 3 characters are being used, they are drawn twice as large as the basic. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width. 200 causes the height to be multiplied by twice the amount of the width.

## Description

Establishes the default character-appearance attributes to be used in displaying titles for the currently selected x axis.

The defaults are:

| Color | 0 | green (displays), <br> black (printers) |
| :---: | :---: | :---: |
| Character mode | 3 |  |
| Symbol-set identifier | 0 | system default |
| Character-size multiplier | 100 | results in the text size as defined by CHCGRD (by default, the size of the hardware characters) |
| Character height/width multiplier | 100 | results in the text size as defined by CHCGRD (by default, the size of the hardware characters) |

Valid only in state-1.

## Principal errors

AdM0501 e this function cannot be invoked in the chart-drawing state
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
adm0516 W ARRAY COUNT EXCEEDS THE MAXIMUM ALLOWED
ADM0517 E INVALID COLOR VALUE
AdM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INVALID CHARACTER MODE VALUE
ADM0522 E INVALID CHARACTER SIZE MULTIPLIER

## CHXTIC

Function: To specify x -axis scale mark interval.

## CHXTIC (major, minor)

| APL code | 743 |
| :--- | :--- |
| PGF RCP code | X'100A0605' (269092357) |

## Parameters

major (specified by user) (short floating point) Specifies the interval between major scale marks. If zero, the default action is taken. Linear and logarithmic axes are treated differently.

## Linear axes

Linear axes can have both minor and major scale marks. The major scale marks are placed at the interval specified by major.

## Logarithmic axes

Logarithmic axes, if they have any major scale marks, always have them at powers of 10 . CHXTIC is used to define extra tick marks between the powers of ten.
Only the high-order digit of the parameter has any effect. The high-order digit specifies at which multiples of power of 10 extra marks should be drawn.
Assume a logarithmic axis with a range of 1 through 100 (remember, there is no 0 on a logarithmic axis). Tick marks are placed at the points shown in the table:

| снXtIC value | Major scale-mark points (assuming an axis range of 1 to 100) |
| :---: | :---: |
| 0 | '1,10,100' |
| 1 | $\begin{gathered} ' 1,2,3,4,5,6,7,8,9,10,20,30,40, \\ 50,60,70,80,90,100 ' \end{gathered}$ |
| 2 | '1,2,4,6,8,10,20,40,60,80,100' |
| 3 | '1,3,6,9,10,30,60,90,100' |
| 4 | '1,4,8,10,40,80,100' |
| 5 | '1,5,10,50,100' |
| 6 | '1,6,10,60,100' |
| 7 | '1,7,10,70,100' |
| 8 | '1,8,10,80,100' |
| 9 | '1,9,10,90,100' |
| 10 | $\begin{aligned} & \text { '1,2,3,4,5,6,7,8,9,10,20,30,40, } \\ & 50,60,70,80,90,100 ' \end{aligned}$ |

Method of determining logarithmic scale marks: If marks are required on a logarithmic axis, each power of 10 receives a major mark, and additional intermediate major marks are placed at a frequency corresponding to the high-order digit (base 10) of the major interval specification. This correspondence is as follows. If the digit is n , major marks are placed, in the interval between $10 * * i$ and $10^{* *}(\mathfrak{i}+1)$, at each point defined by the following equation:
$P=j * n * 10 * * i$
for $j=1,2,3, \ldots 9$, if $\left(j^{*} n\right)<10$
For logarithmic-axis scale marks, each power-of-ten scale mark is labeled in full. Intermediate scale marks are labeled with a digit in the range 2 through 9 . This is the multiplication factor that must be applied to the immediately lower power-of-ten label to derive the value of the scale mark.
minor (specified by user) (short floating point) Specifies the number of minor marks between major marks. If zero, no minor marks are drawn. Minor marks may be specified even though major marks are automatically generated (by means of major=0). The maximum number of minor marks that can be specified is 2048.
Minor marks are drawn half the length of major marks. Minor marks are never drawn for logarithmic axes, so the parameter is ignored.

## Description

Overrides the default positions of major and minor scale marks (also known as tick marks) on the currently selected x axis. CHXTIC is ignored for bar charts.

By default, the interval on a linear axis is 1, 2, or 5 multiplied by some power of ten. Minor marks are never generated for logarithmic axes.

The default for logarithmic axes places a major mark at each power of 10 over the range of the axis; for example: 1, 10, 100, 1000 (and so on). Because minor marks cannot be generated for logarithmic axes, minor specifications are ignored.

The above default actions are taken if no CHXTIC call is issued.

Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0523 E PARAMETER IS LESS THAN THE
 ALLOWABLE MINIMUM
ADM0524 E PARAMETER IS GREATER THAN THE
 ALLOWABLE MAXIMUM
```


## CHXTTL

Function: To set x -axis title specification.

## CHXTTL (length, text)

| APL code | 737 |
| :--- | :--- |
| PGF RCP code | X'10020501' (268567809) |

## Parameters

length (specified by user) (fullword integer) A fullword integer specifying the number of characters in the title. A length of zero suppresses the title. The length must not exceed 32000.
text (specified by user) (character)
Specifies the EBCDIC character string to be used as a title.

## Description

Specifies a title for the currently selected x axis. Semicolons can be used to force line breaks if CHSET ('TLBREAK') is set.

Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0508 E COUNT PARAMETER IS NEGATIVE, OR
 LENGTH PARAMETER IS NON-POSITIVE
ADM0509 E CHARACTER STRING TOO LONG
```


## CHYDAY

Function: To specify y-axis day labels.

```
CHYDAY (day)
APL code 753
PGF RCP code X'1002060C' (268568076)
```


## Parameters

day (specified by user) (fullword integer)
A fullword integer that identifies the day to be associated with the first major scale mark.
Valid values are 1 through 7 . Monday is day 1.

## Description

Specifies uppercase day labels for the y axis. The specified day is associated with the first major scale mark position. Each successive day is assigned to the next major mark. The labels are normally 3 -letter abbreviations, but a CHSET option is available to change this; see CHSET('ABREV').

This call implicitly sets the corresponding label type to 'DATE'.

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0505 E INVALID PARAMETER: a

## CHYDTM

Function: To specify y-axis datum line.

## CHYDTM (yvalue)

```
APL code 756
PGF RCP code X'100E060E' (269354510)
```


## Parameters

yvalue (specified by user) (short floating point) Short floating-point number giving the y-axis value through which the datum line is to pass.

## Description

Specifies a y datum line relative to the currently selected y axis. The yvalue must lie within the axis range. The y datum lines are drawn parallel to the $x$ axis with the yvalue specifying the point of intersection with the $y$ axis.

The color, line type, and line width are controlled by the current datum line attribute values, which may be specified by CHDATT.

In state-1, the call results in the specification of a datum line that is constructed when the axis is constructed. If a y datum line is specified, it is also the line that is used in place of the axis for all shaded charts. It also acts as a baseline for bars of bar charts or risers of histograms. If more than one call is made in state-1, the most recent is used.

In the ICU, a datum line created in state- 1 is called a reference line.

In state-2, the call results in the immediate construction of a datum line. More than one datum line can be added in State 2. Such lines have no effect on the shading of charts.

## Principal errors

```
ADM0530 E A SELECTED AXIS HAS NOT BEEN GENERATED
ADM0531 W DATUM LINE DATA VALUE LIES OUTSIDE AXIS RANGE
```



Note that a y datum line is parallel to the x axis.
Figure 15. An example of a state-1 y datum line

## CHYINT

Function: To specify y-axis interception point.

| CHYINT (y) |  |
| :--- | :--- |
|  |  |
| APL code | 742 |
| PGF RCP code | X'100A0604' $^{\prime}(269092356)$ |

## Parameters

y (specified by user) (short floating point) Short floating-point number specifying the $y$-axis interception point.

## Description

Specifies the interception point for the currently selected y axis. (Primary axes are selected by default.) CHYINT positions the $x$ axis by giving the position on the $y$ axis where the $x$ axis should cross it. (CHXINT positions the $y$ axis by giving the position on the $x$ axis at which the $y$ axis should cross it.)

CHYINT is only applied if CHYSET('INTERCEPT') is also specified. CHYINT is ignored for pie charts and Venn diagrams.

If the interception value is outside the range when the axis is to be constructed, the range will be extended to include it. Note that interception values for logarithmic axes must be positive, and nonzero.

If CHYSET('INTERCEPT') is specified and CHYINT is not used, a default intercept of 0 is assumed.

Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
```


## CHYLAB

Function: To specify y-axis label text.

| CHYLAB (count, length, text) |  |
| :--- | :--- |
| APL code | 749 |
| PGF RCP code | X'10020504' (268567812) $^{2}$ |

## Parameters

count (specified by user) (fullword integer) Fullword binary integer specifying the number of labels supplied. A specification of zero suppresses the labels.
length (specified by user) (fullword integer) Fullword binary integer specifying the number of characters associated with each label. All labels must be the same length. Each label is centered on the corresponding axis position (scale-mark position, or point midway between scale-mark positions). Centering occurs after any trailing null ( $\mathrm{X}^{\prime} 00^{\prime}$ ) characters have been deleted. Hence, the effect of varying-length
labels can be obtained by using nulls as padding characters to extend each label to the standard length.
text (specified by user) (character)
An EBCDIC character string that contains all of the labels, in order of use. The total length of the string must not exceed 32000 characters.

## Description

Specifies alphanumeric labels as a sequence of EBCDIC text strings. The labels are placed, in sequence, at major scale marks on the corresponding currently selected y axis, starting with the scale mark with the algebraically lowest value. If the number of labels specified is less than the number of major scale marks on the axis, the sequence of labels is reused as necessary until each scale mark is associated with a label.

Semicolons can be used to cause line breaks in the labels.

This call implicitly causes a call to CHYSET('ALPHANUMERIC') and causes a logarithmic axis type specification to be ignored.

CHSET('BLABEL') can be used to clear the areas to be occupied by labels, before labels are written.

The label text attributes can be set by CHLATT.
Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0508 E COUNT PARAMETER IS NEGATIVE, OR LENGTH PARAMETER IS NON-POSITIVE
ADM0509 E CHARACTER STRING TOO LONG

## CHYLAT

Function: To set y -axis label attributes.

## CHYLAT (count, array)

```
APL code 712
PGF RCP code X'10020908' (268568840)
```


## Parameters

count (specified by user) (fullword integer) Specifies the number of elements in array. If more than six elements are specified, the excess elements are ignored. If fewer than six, the remainder are unchanged from their previous setting. If zero is specified, all six defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of, at most, six fullword integers:

1. Color

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS

For mode 2 or mode 3, the identifier denotes:

0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS

## 4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100 , and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. For example, if character-size multiplier $=200$ and mode 3 characters are being used, they are drawn twice as large as the basic size set by CHCGRD. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width. 200 causes the height to be multiplied by twice the amount of the width.
6. Axis-label rotation

When axis-label rotation is requested, each label is written at the specified angle to the horizontal. Label rotation is indicated by specifying a nonzero value in this element. The value must be from -9000 through +9000 . This number is divided by 100 to give a value from -90 through +90 , which is the angle, in degrees, to the horizontal at which the labels will be drawn. The default is zero. When positive, the angle is in a counterclockwise direction. When negative, it is in a clockwise direction.

## CHYMTH

## Description

Establishes the default character-appearance attributes to be used in displaying labels for the currently selected y axis.

By default, the attributes are as follows:
$\left.\begin{array}{lrl}\text { Color } & 0 & \begin{array}{l}\text { green (displays), } \\ \text { black (printers) }\end{array} \\ \begin{array}{l}\text { Character mode } \\ \text { Symbol-set identifier } \\ \text { Character-size } \\ \text { multiplier }\end{array} & 3 & 0\end{array} \begin{array}{l}\text { system default } \\ \text { results in the text size } \\ \text { as defined by } \\ \text { CHCGRD (by default, } \\ \text { the size of the } \\ \text { hardware characters) } \\ \text { results in the text size } \\ \text { as defined by } \\ \text { CHCGRD (by default, } \\ \text { the size of the }\end{array}\right\}$

Valid only in state-1.

## Principal errors

```
AdM0501 E THIS FUNCTION CANNOT BE INvOKED IN
 THE CHART-DRAWING STATE
AdM0515 E ATtRIBUTE COUNT IS NEGAtIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
 ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INvALID CHARACTER MODE VALUE
ADM0522 E INvALID CHARACTER SIZE MULTIPLIER
```


## CHYMTH

Function: To specify y-axis month labels.

## CHYMTH (month)

```
APL code 751
PGF RCP code X'1002060A' (268568074)
```


## Parameters

month (specified by user) (fullword integer) A fullword integer that identifies the month to be associated with the first scale mark. Valid values are 1 through 12. January is month 1.

## Description

Specifies English language, uppercase month labels for the currently selected $y$ axis. The specified month is associated with the first major scale mark position. Each successive month is assigned to the next major mark. The labels are normally 3 -letter abbreviations, but a CHSET option is available to change this; see CHSET('ABREV').

This call implicitly sets the corresponding label type to 'DATE'.

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE
ADM0505 E INVALID PARAMETER: a

## CHYRNG

Function: To set $y$-axis explicit range.

## CHYRNG (y1, y2)

| APL code | 740 |
| :--- | :--- |
| PGF RCP code | $X^{\prime} 100 A 0602^{\prime}(269092354)$ |

## Parameters

y1 (specified by user) (short floating point) Short floating-point number specifying the data value at the start point of the $y$ axis. For a horizontal $y$ axis, the start-point data value is at the left. For a vertical $y$ axis, the start-point data value is at the bottom.
y2 (specified by user) (short floating point) Short floating-point number specifying the data value at the end of the $y$ axis. For a vertical $y$ axis, the end-point data value is at the top. For a horizontal y axis, the end-point data value is at the right.

## Description

Specifies explicitly the range of the currently selected $y$ axis. If the range is not specified or is specified as ( $\mathrm{n}, \mathrm{n}$ ) (with lower and upper limit values identical), autoranging applies to the axis. In general, the second parameter is greater than the first, but you may switch the direction of the axis by reversing the order of the parameters. Note that logarithmic axis ranges must have positive, nonzero values.

Valid only in state-1.

## Principal errors

AdM0501 E This function cannot be invoked in THE CHART-DRAWING STATE

## CHYSCL

Function: To set y -axis scale factor.

```
CHYSCL (scale-factor)
APL code 746
PGF RCP code X'10020608' (268568072)
```


## Parameters

scale-factor (specified by user) (short floating point)
Short floating-point number to act as a scaling factor for each label to be generated. The value associated with each major scale mark is first multiplied by scale-factor. For example, if the value is 7000 and the factor is 0.001 , the resulting label is 7 . The value must be greater than zero.

## Description

Specifies a scale factor for numeric labels on the currently selected $y$ axis. The call specifies that, when labels are generated from numeric values, the values should be multiplied by the scale factor before the labels are generated. This enables superfluous zeros to be suppressed. Scale factors are ignored for alphanumeric and date labeling.

If a scaling factor is specified, it may be useful to include a notation in the axis title describing its use. For example, if the scaling factor is 0.001 and the data is in dollars, the axis title might be "Thousands of Dollars."

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE<br>ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM

## CHYSEL

Function: To specify $y$-axis selection.

## CHYSEL (axis-number)

| APL code | 732 |
| :--- | :--- |
| PGF RCP code | $X^{\prime} 100 F 0802 '(269420546)$ |

## Parameters

axis-number (specified by user) (fullword integer) A fullword integer specifying the axis number to be selected. The integer must be 1 for the primary axis, or 2 for the secondary axis. The default is 1 .

## Description

Overrides the default axis selection to select the primary or secondary y axis. By default, the primary axis is selected.

The selected axis is that against which data is plotted by the plotting routines CHPLOT, CHSURF, CHHIST, and CHBAR.

In addition, CHYSET options and calls to CHYRNG, CHYTTL, CHYTIC, CHYINT, CHYSCL, CHYLAB, CHYMTH, and CHYDAY apply to the selected axis.

Valid in state-1 or state-2.

## Principal errors

adm0506 E invalid axis selection value

## CHYSET

Function: To set y -axis options.

```
CHYSET (option)
APL code 734
PGF RCP code X'10020402' (268567554)
```


## Parameters

option (specified by user) (4-byte character string) The option string must be at least four characters long and must be enclosed in single quotes. If more than four characters are specified, they are ignored. However, they can be used to increase the readability of the program.

The options are as follows, in alphabetic order by function; the defaults are shown LIKE THIS:

| Function | Option |
| :---: | :---: |
| Axis, drawn or not | AXIS |
|  | NOAXIS |
| Axis, intercept | LOWAXIS |
|  | MIDDLE |
|  | HIGHAXIS |
|  | INTERCEPT |
| Axis, title position | ATCENTER |
|  | ATEND |
|  | ATABOVE |
| Grid, drawn or not | GRID |
|  | NOGRID |
| Label position | LABADJACENT |
|  | LABMIDDLE |
|  | NOLAB |
| Label, punctuation | PGFS |
|  | NPGFS |
| Label, type of | NUMERIC |
|  | ALPHANUMERIC |
|  | DATE |
| Scale, linear or logarithmic | LINEAR |
|  | LOGARITHMIC |
| Tick mark, style | NTICK |
|  | PTICK |
|  | XTICK |
|  | PLAIN |
| Zero forced into autorange | FORCEZERO |
|  | NOFORCEZERO |

## Description

Controls how the lines on the currently selected $y$ axis are drawn when the chart is constructed.

Note: Only one option can be used per call. For example, if you want your y axis to be logarithmic and to have no tick marks, you would need to enter:

```
CALL CHYSET('LOGA')
CALL CHYSET('PLAIN')
```

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN the Chart-drawing state
ADM0505 E INVALID PARAMETER: a

## CHYSET Options

The groups of CHYSET options are listed below in alphabetic order:

## - 'ATCENTER' | 'ATEND' | 'ATABOVE'

Control the positioning or justification of the titles, or both, for the currently selected axis.
ATCENTER specifies that the axis title is centered along the axis.
ATEND specifies that the axis title is right-justified for a horizontal axis and justified to the top for a vertical axis.

ATABOVE provides for placing the title above the vertical axis.

For a horizontal axis, the ATABOVE specification is equivalent to ATEND.

When both primary and secondary vertical axes are employed, and the titles are positioned above them, overlap may occur, depending on the distance between the axes and the title lengths. ATABOVE may cause the titles to overlap horizontal axis labels and scale marks, if the horizontal axis is at the top of the chart.

- 'AXIS' | 'NOAXIS'

Control whether the currently selected axis lines are drawn when the chart is constructed.

AXIS specifies that the axis line is to be drawn.

NOAXIS specifies that the axis line should not be drawn. The axis title is not suppressed, nor are the scale marks and labels, unless they have been suppressed by other options.

- 'FORCEZERO' | 'NOFORCEZERO'

If autoranging applies, these options specify whether the range is to be extended, if necessary, to include zero.

FORCEZERO specifies that the axis range is to be extended to include zero, if the range of the data does not. This option is ignored for logarithmic axes and for axes whose range is explicitly specified by a CHYRNG call.
NOFORCEZERO suppresses the forced inclusion of zero in the range.

- 'GRID' | 'NOGRID'

Specify whether grid lines are to be constructed.

CHYSET controls grid lines perpendicular to the y axis. Grid lines are constructed at the same time as their associated axes. Grid lines are positioned on major tick marks, whose positions are controlled by a CHYTIC call. The attributes of the grid lines are controlled by CHGATT.

GRID specifies that grid lines are to be constructed when the axis is constructed.

NOGRID specifies that grid lines are not required.

- 'LABADJACENT' | 'LABMIDDLE' | 'NOLAB'

Specify label position for the currently selected y axis. These calls control the positioning of labels with respect to the major scale marks.

LABADJACENT centers the label on the major scale-mark position, thus:


LABMIDDLE places the label between the major scale mark it is associated with and the preceding one. (The label that would normally be adjacent to the first mark on the axis is omitted.) The label is centered on the point midway between the two scale marks as shown below. This option is ignored for logarithmic axes.

195
200 205

NOLAB specifies that no labels are to be constructed for the corresponding axis.

## - 'LINEAR' | 'LOGARITHMIC'

Specify whether the axis scale is linear or logarithmic (base 10).

A logarithmic specification is ignored unless the axis label type is numeric. In particular, a logarithmic specification is ignored if alphanumeric labels are specified by means of CHYLAB.

- 'LOWAXIS' | 'MIDDLE' | 'HIGHAXIS' | 'INTERCEPT'

LOWAXIS positions the selected axis at the bottom or left-hand side of the plot area.
MIDDLE positions the selected axis in the middle of the plot area.
HIGHAXIS positions the selected axis at the top or right-hand side of the plot area.
INTERCEPT indicates that the position of the selected axis will be controlled by the CHYINT call referring to the other selected axis. CHYSET is used with CHXINT, and CHXSET with CHYINT. If the appropriate CHYINT (or CHXINT) call is not made, an intercept value of 0 is assumed.

- 'NTICK' | 'PTICK' | 'XTICK' | 'PLAIN'

Specify whether tick marks are to be drawn on the axis and, if so, the style of drawing. The options apply to both major and minor scale marks, on the currently selected $y$ axis.

NTICK draws scale marks from the $y$ axis in the negative direction of the $x$ axis, as shown below. The positive direction of an axis is that defined by movement from the end of the axis with the algebraically lower value to the end with the algebraically higher value. The negative direction is the opposite.


PTICK reverses the scale-mark direction from that described for NTICK:


XTICK draws scale marks perpendicular to the axis and crossing it, projecting equally on each side:


PLAIN indicates that the axis is to be constructed without scale marks:
2
PLAIN
012

Note: 'NTICK' is the default for primary axes, and 'PTICK' for secondary axes.

- 'NUMERIC' | 'ALPHANUMERIC' | 'DATE'

Specify the labeling method used for the currently selected axis.

NUMERIC specifies that a label is to be generated automatically for each major scale mark. The label is an EBCDIC representation of the numeric value along the axis defining the scale mark. The representation may be in fixed- or floating-point format. If in fixed-point format, you can control the format using CHSET or CHYSET('NPGFS'), and CHSET or CHYSET('PGFS') calls. You canb control scaling by using CHYSCL.

ALPHANUMERIC specifies that each interval on the axis represents an item described by a
label provided by a CHYLAB call.
ALPHANUMERIC is implicitly set by a
CHYLAB call.
DATE implies that each interval on the axis is associated with a month of the year or a day of the week as specified by calls to CHYMTH and CHYDAY. DATE is implicitly set by these calls.

If ALPHANUMERIC or DATE is specified, any logarithmic axis-type specification is ignored; the axis is forced to be linear.

Note that all forms of labels correspond one-for-one with the major scale marks. The spacing of such marks along an axis is controlled by CHYTIC.

## - 'PGFS' | 'NPGFS'

Specifies the method used on the $y$ axis to punctuate numbers of 1,000 and over. The convention is used for the display of numeric data values in fixed-point format. These options also control how bar values are punctuated in bar charts.
PGFS suppresses all punctuation except the decimal point. This minimizes the space required for numeric values, for example: 1234567.999

NPGFS selects the default national convention which may be specified when GDDM is installed. Widely used conventions are:

- The period decimal convention. Example: 1,234,567.999
- The comma decimal convention. Example: 1.234.567,999
- The French convention. Example: 1234 567,999

Valid in state-1 or state-2.

## CHYTAT

Function: To specify $y$-axis title attributes.

```
CHYTAT (count, array)
APL code 714
PGF RCP code X'1002090A' (268568842)
```


## Parameters

count (specified by user) (fullword integer) A fullword integer specifying the number of elements in array. If more than five elements are specified, the excess elements are ignored. If fewer than five, the remainder are unchanged from their previous setting. If zero is specified, all five defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of at most five fullword integers:

1. Color

For valid values of color, see Appendix C.
Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1
2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:

0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS

For mode 2 or mode 3, the identifier denotes:

0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS
4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100, and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. (The default character size is the size of hardware characters for the device on which the chart will be displayed.) For example, if character-size multiplier $=200$ and mode 3 characters are being used, they are drawn twice as large as the basic. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width. 200 causes the height to be multiplied by twice the amount of the width.

## Description

Establishes the default character-appearance attributes to be used in displaying titles for the currently selected y axis.

The defaults are:

| Color | 0 | green (displays), <br> black (printers) |
| :--- | ---: | :--- |
| Character mode | 3 |  |
| Symbol-set identifier | 0 | system default <br> results in the text size <br> Character-size <br> multiplier |
|  | 100 | as defined by <br> CHCGRD (by default, <br> the size of the |
| Character | hardware characters) <br> results in the text size <br> as defined by <br> CHCGRD (by default, <br> the size of the |  |
| height/width multiplier | 100 |  |
| hardware characters) |  |  |

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
 ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INVALID CHARACTER MODE VALUE
ADM0522 E INVALID CHARACTER SIZE MULTIPLIER
```


## CHYTIC

Function: To specify y-axis scale mark interval.

| CHYTIC (major, minor) |
| :--- |
| APL code |
| PGF RCP code $\quad 744$ |

## Parameters

major (specified by user) (short floating point) Specifies the interval between major scale marks. If zero, the default action is taken. Linear and logarithmic axes are treated differently.

## Linear axes

Linear axes can have both minor and major scale marks. The major scale marks are placed at the interval specified by major.

## Logarithmic axes

Logarithmic axes, if they have any major scale marks, always have them at powers of 10. CHYTIC defines extra tick marks between the powers of ten.

Only the high-order digit of the parameter has any effect. The high-order digit specifies at which multiples of power of 10 extra marks should be drawn.

Assume a logarithmic axis with a range of 1 through 100 (remember, there is no 0 on a logarithmic axis). Tick marks are placed at the points shown in the table:

Valid only in state-1.

| CHYTIC <br> value | Major scale-mark points <br> (assuming an axis range of $\mathbf{1}$ to <br> $\mathbf{1 0 0}$ ) |
| :--- | :--- |
| 0 | $' 1,10,100$ |
| 1 | $' 1,2,3,4,5,6,7,8,9,10,20,30,40$ |
|  | $50,60,70,80,90,100 '$ |
| 2 | $' 1,2,4,6,8,10,20,40,60,80,100 '$ |
| 3 | $' 1,3,6,9,10,30,60,90,100 '$ |
| 4 | $' 1,4,8,10,40,80,100 '$ |
| 5 | $' 1,5,10,50,100$ |
| 6 | $' 1,6,10,60,100$ |
| 7 | $' 1,7,10,70,100 '$ |
| 8 | $' 1,8,10,80,100 '$ |
| 9 | $' 1,9,10,90,100 '$ |
| 10 | $' 1,2,3,4,5,6,7,8,9,10,20,30,40$ |
|  | $50,60,70,80,90,100 '$ |

Method of determining logarithmic scale marks: If marks are required on a logarithmic axis, each power of 10 receives a major mark, and additional intermediate major marks are placed at a frequency corresponding to the high-order digit (base 10) of the major interval specification. This correspondence is as follows. If the digit is n , major marks are placed, in the interval between 10**i and $10^{* *}(\mathrm{i}+1)$, at each point defined by the following equation:
$P=j * n * 10 * * i$
for $\mathrm{j}=1,2,3, \ldots 9$, if $(j * n)<10$
For logarithmic-axis scale marks, each power-of-ten scale mark is labeled in full. Intermediate scale marks are labeled with a digit in the range 2 through 9 . This is the multiplication factor that must be applied to the immediately lower power-of-ten label to derive the value of the scale mark.
minor (specified by user) (short floating point) Specifies the number of minor marks between major marks. If zero, no minor marks are drawn. Minor marks may be specified even though major marks are automatically generated (by means of major=0). The maximum number of minor marks that can be specified is 2048.

Minor marks are drawn half the length of major marks. Minor marks are never drawn for logarithmic axes, so the parameter is ignored.

## Description

Overrides the default positions of major and minor scale marks (also known as "tick marks") on the currently selected y axis.

By default, the interval on a linear axis is 1,2 , or 5 multiplied by some power of ten. Minor marks are never generated for logarithmic axes.

The default for logarithmic axes places a major mark at each power of 10 over the range of the axis; for example: 1, 10, 100, 1000 (and so on). Because minor marks cannot be generated for logarithmic axes, "minor" specifications are ignored.

The above default actions are taken if no CHYTIC call is issued.

Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0523 E PARAMETER IS LESS THAN THE
 ALLOWABLE MINIMUM
ADM0524 E PARAMETER IS GREATER THAN THE
 ALLOWABLE MAXIMUM
```


## CHYTTL

Function: To set y -axis title specification.

```
CHYTTL (length, text)
APL code 738
PGF RCP code X'10020502' (268567810)
```


## Parameters

length (specified by user) (fullword integer) A fullword integer specifying the number of characters in the title. A length of zero suppresses the title. The length must not exceed 32000.
text (specified by user) (character) Specifies the EBCDIC character string to be used as a title.

## Description

Specifies a title for the currently selected y axis. Semicolons can be used to force line breaks if CHSET ('TLBREAK') is set.

Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0508 E COUNT PARAMETER IS NEGATIVE, OR
 lengTh PARAMETER IS NON-POSItIVE
ADM0509 E CHARACTER STRING TOO LONG
```


## CHZDLB

Function: To specify z-axis data labels.

```
CHZDLB (n1, n2, z-array, lab-array)
APL code 779
PGF RCP code X'10020507' (268567815)
```


## Parameters

n1 (specified by user) (fullword integer) Specifies the number of values in z-array and the length of each label in lab-array.
n2 (specified by user) (fullword integer)
Specifies the length of each $z$-axis label in the lab-array parameter.
z-array (specified by user) (array of short floating-point numbers) Specifies the $z$-axis value that corresponds to a scale-mark value.
lab-array (specified by user) (character) Specifies an array of labels in the form of character strings.

## Description

Specifies user-provided data labels for the $z$ axis.
When a label is to be associated with a major scale mark on the $z$ axis, the $\mathbf{z}$-array parameter of CHZDLB is searched for a value that corresponds to the scale-mark value. If such a value is found, the corresponding label from the lab-array parameter is drawn at the scale mark. A z-array value is considered to correspond to a scale-mark value if it is the nearest value (either greater than or less than) to the scale-mark value, and if it lies within $10 \%$ of the scale-mark interval of the scale-mark value. If two $\mathbf{z}$-array values are the same distance from the scale-mark value, the first value is used.

Valid only in state-1.

## Principal errors

```
ADM0508 E COUNT PARAMETER IS NEGATIVE, OR
 lENGTH PARAMETER IS NON-POSITIVE
ADM0509 E CHARACTER STRING T00 LONG
ADM0550 E INSUFFICIENT STORAGE AVAILABLE
```


## CHZGAP

Function: To specify spacing between towers.

| CHZGAP | (gap-to-tower-ratio) |
| :--- | :--- |
| APL code | 709 |
| PGF RCP code | $X^{\prime} 1002061 B^{\prime}(268568091)$ |

## Parameters

gap-to-tower-ratio (specified by user) (short floating point)
A positive or zero short floating-point value that specifies the ratio of the gap between towers to the width of the towers. If gap-to-tower-ratio is set to zero, towers have common lines that may appear in unexpected colors because of color mixing.

If a negative value is specified, a value of zero is used.

The total length of the axis must accommodate all towers and gaps. As this
parameter is increased, the actual tower width decreases. It is therefore possible to produce towers that appear as single lines.

## Description

For tower charts, CHZGAP overrides the default ratio of the gap between adjacent towers to the width of the towers.

The default ratio is half the tower width (0.5).
Valid in state-1 or state-2.

## Principal errors

## ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM

## CHZLAT

Function: To specify z-axis label attributes.

```
CHZLAT (count, array)
APL code 715
PGF RCP code X'1002090B' (268568843)
```


## Parameters

count (specified by user) (fullword integer) Specifies the number of elements in array. If more than six elements are specified, the excess elements are ignored. If fewer than six, the remainder are unchanged from their previous setting. If zero is specified, all six defaults are reinstated.
array (specified by user) (an array of fullword integers)
An array of, at most, six fullword integers:

1. Color

For valid values of color, see Appendix C. Colors, line types, markers, and shading patterns on page 209
2. Character mode

Valid values are:
0 system default (mode 3)
1 mode 1

2 mode 2
3 mode 3
3. Symbol-set identifier

For mode 1, the identifier denotes:
0 the default hardware set
1 an alternative hardware set (valid only on terminals that have this facility)
n a programmed symbol set that has been previously loaded into the device by the application program using the GDDM call PSLSS
For mode 2 or mode 3, the identifier denotes:

0 the default character set
n a programmed symbol set that has been previously loaded into GDDM by the application program using the GDDM call GSLSS
4. Character-size multiplier

This specification is ignored for character mode 1. For modes 2 and 3 , the character-size multiplier is divided by 100 , and the horizontal and vertical spacings or sizes specified by CHCGRD (or its defaults) are multiplied by this factor before the characters are drawn. For example, if character-size multiplier $=200$ and mode 3 characters are being used, they are drawn twice as large as the basic size set by CHCGRD. The character-size multiplier must have a value greater than zero.
5. Character height/width multiplier

Specifies the height of the character box relative to its width. For example, 100 indicates that the height is multiplied by the same amount as the width. 200 causes the height to be multiplied by twice the amount of the width.
6. Axis-label rotation

When axis-label rotation is requested, each label will be written at the specified angle to the horizontal. Label rotation is indicated by specifying a non-zero value in this element. The value must be from -9000 through +9000 . This number is divided by 100 to give a value between -90 and +90 , which is the angle, in
degrees, to the horizontal at which the labels will be drawn. The default is zero. When positive, the angle is in a counterclockwise direction. When negative, it is in a clockwise direction.

## Description

For tower charts, CHZLAT establishes the default character-appearance attributes to be used in displaying z -axis labels.

By default, the attributes are as follows:

| Color | 0 | green (displays), <br> black (printers) |
| :---: | :---: | :---: |
| Character mode | 3 |  |
| Symbol-set identifier | 0 | system default |
| Character-size multiplier | 100 | results in the text size as defined by CHCGRD (by default, the size of the hardware characters) |
| Character height/width multiplier | 100 | results in the text size as defined by CHCGRD (by default, the size of the hardware characters) |
| Label rotation | 0 |  |

Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0515 E ATTRIBUTE COUNT IS NEGATIVE
ADM0516 W ARRAY COUNT EXCEEDS THE MAXIMUM
 ALLOWED
ADM0517 E INVALID COLOR VALUE
ADM0520 E INVALID SYMBOL SET IDENTIFIER
ADM0521 E INVALID CHARACTER MODE VALUE
ADM0522 E INVALID CHARACTER SIZE MULTIPLIER
```


## CHZRNG

Function: To specify z-axis explicit range.

```
CHZRNG (z1, z2)
APL code 707
PGF RCP code X'100A061D' (269092381)
```


## Parameters

z1 (specified by user) (short floating point) Specifies the data value at the start point of the $z$ axis. The start-point data value is at the left.
z2 (specified by user) (short floating point) Specifies the data value at the end point of the z axis.

## Description

For tower charts, CHZRNG specifies explicitly the range of the $z$ axis. If the range is not specified or is specified as ( $\mathrm{n}, \mathrm{n}$ ) (with lower- and upper-limit values identical), autoranging applies to the axis. In general, the second parameter is greater than the first, but you may switch the direction of the axis by reversing the order of the parameters.

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE

## CHZSET

Function: To specify z-axis options.

## CHZSET (option)

```
APL code 777
PGF RCP code X'10020403' (268567555)
```


## Parameters

option (specified by user) (4-byte character string) The option string must be at least four characters long and must be enclosed in single quotes. If more than four characters are specified, they are ignored. However, they can be used to increase the readability of the program.

The options are as follows, in alphabetic order by function; the defaults are shown LIKE THIS:
$\left.\begin{array}{ll}\begin{array}{l}\text { Function } \\ \text { Axis, drawn or not }\end{array} & \begin{array}{l}\text { Option } \\ \text { AXIS }\end{array} \\ \text { NOAXIS }\end{array}\right\}$

## Description

For tower charts, CHZSET controls how the lines on the $z$ axis are to be drawn when the chart is constructed.

Note: Only one option can be used per call. For example, if you wanted your $z$ axis to have a grid and to have numeric labels on the axis, you need to enter:

CALL CHZSET('GRID')
CALL CHZSET('NUMERIC')
Valid only in state-1.

## Principal errors

```
ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN
 THE CHART-DRAWING STATE
ADM0505 E INVALID PARAMETER: a
```


## CHZSET Options

The groups of CHZSET options are listed below in alphabetic order:

- 'AXIS' | 'NOAXIS'

Control whether the $z$-axis lines are drawn when the chart is constructed except on a table chart, where it has no effect.

AXIS specifies that the axis line is to be drawn.

NOAXIS specifies that the axis line should not be drawn. The axis title is not suppressed, nor are the scale marks and labels, unless they have been suppressed by other options.

- 'GRID' | 'NOGRID'

Specify whether grid lines are to be constructed. On a table chart, control grid lines between data groups.

Grid lines are constructed at the same time as their associated axes. Grid lines are positioned on major tick marks, whose positions are controlled by CHZTIC calls. The attributes of the grid lines are controlled by CHGATT.

GRID specifies that grid lines are to be constructed when the $z$ axis is constructed.

NOGRID specifies that grid lines are not required.

- 'LABADJACENT' | 'LABMIDDLE' | 'NOLAB'

Specify label position for the $z$ axis. This call controls the positioning of labels with respect to the major scale marks. It has no effect on table charts.

LABADJACENT centers the label on the major scale-mark position, thus:


LABMIDDLE places the label between the major scale mark it is associated with and the preceding one. (The label that would normally be adjacent to the first mark on the axis is omitted.) The label is centered on the point midway between the two scale marks, as shown below.

| 195 | 200 | 205 |
| :--- | :--- | :--- |

## - 'NTICK' | 'PTICK' | 'XTICK' | 'PLAIN'

Specify whether tick marks are to be drawn on the axis and, if so, the style of drawing. The options apply to both major and minor scale marks.

NTICK draws scale marks from the $z$ axis in the negative direction of the $x$ axis, as shown below. The positive direction of an axis is that defined by movement from the end of the axis with the algebraically lower value to the end with the algebraically higher value. The negative direction is the opposite.


PTICK reverses the scale-mark direction from that described for NTICK:


XTICK draws scale marks perpendicular to the axis and crossing it, projecting equally on each side:


PLAIN indicates that the axis is to be constructed without scale marks:


- 'NUMERIC' | 'ALPHANUMERIC' | 'DATE'

Specify the labeling method used for the z axis.

NUMERIC specifies that a label is to be generated automatically for each major scale mark. The label is an EBCDIC representation of the numeric value along the axis defining the scale mark. The representation may be in fixed- or floating-point format. If in fixed-point format, the application program may control the format by a CHZSET('PGFS ') call.

ALPHANUMERIC specifies that labels are provided by a CHZDLB call.
ALPHANUMERIC is implicitly set by a CHZDLB call.

DATE implies that each interval on the axis is associated with a month of the year or a day of the week as specified by calls to CHYMTH and CHYDAY. DATE is implicitly set by these calls.

- 'PGFS' | 'NPGFS'

Specifies the method used on the $z$ axis to punctuate numbers of 1,000 and over except on a table chart where it has no effect. The
convention is used for the displaying numeric data values in fixed-point format.
PGFS suppresses all punctuation except the decimal point. This minimizes the space required for numeric values, for example: 1234567.999

NPGFS selects the default national convention that may be specified when GDDM is installed. Widely used conventions are:

- The period decimal convention. Example: 1,234,567.999
- The comma decimal convention. Example: 1.234.567,999
- The French convention. Example: 1234 567,999


## CHZTIC

Function: To specify z-axis scale mark interval.

```
CHZTIC (major, minor)
APL code 706
PGF RCP code X'100A061C' (269092380)
```


## Parameters

major (specified by user) (short floating point)
Specifies the interval between major scale marks. If zero, the default action is taken.
minor (specified by user) (short floating point) Specifies the number of minor marks between major marks. If zero, no minor marks are drawn. Minor marks may be specified even though major marks are automatically generated (by means of major $=0$ ). The maximum number of minor marks that can be specified is 2048.
Minor marks are drawn half the length of major marks.

## Description

For tower charts, CHZTIC overrides the default positions of major and minor scale marks (also known as tick marks) on the $z$ axis.

The axis can have both minor and major scale marks. The major scale marks are placed at the interval specified by major.

By default, the interval on an axis is 1,2 , or 5 multiplied by some power of ten. The default action is taken if no CHZTIC call is issued.

Valid only in state-1.

## Principal errors

ADM0501 E THIS FUNCTION CANNOT BE INVOKED IN THE CHART-DRAWING STATE<br>ADM0523 E PARAMETER IS LESS THAN THE ALLOWABLE MINIMUM<br>ADM0524 E PARAMETER IS GREATER THAN THE ALLOWABLE MAXIMUM

## Alphabetic list of chart calls

This section lists and describes the CSxxxx calls in alphabetic order.

With the CSxxxx calls, any number of chart instances can exist concurrently. The chart instances can be several different charts or the same chart reproduced more than once, or a mixture of the two. Each chart instance has a unique identifier (chart-id) which must be passed with most of the CSxxxx calls that you make.

CHART calls can be mixed with CSxxxx calls. The chart instance used by a CHART call is independent of any used by CSxxxx calls or other CHART calls, and cannot be accessed by them.

For simplicity, most call descriptions refer to a chart and not a chart instance.

## CHART

Function: To invoke Interactive Chart Utility.

| CHART | (chart_control, data_control, $\mathbf{x}, \mathbf{y}$, <br> keys, labels, heading) |
| :--- | :--- |
| APL code | 1200 <br> PGF RCP code |

## Parameters

Note: Names in capitals (like BINDING) are fields in chart_control.
chart_control (specified by user) (124-byte character string)
A structure giving invocation control information and describing the contents of later parameters. The format and more detailed information are given in "Format of the chart_control parameter" on page 119 .
data_control (specified by user) (undefined) Integer array used only for free data (that is, only when BINDING=1). Must always be included.
Contains an integer value for each data group (see NG). These integer values indicate the
actual number of elements in each data group (note that these values control the interpretation of the storage occupied by the $x$ - and $y$-array parameters below). The values are in the order of the data groups (for example, the first value is the number of elements for the first data group). Each value must lie in the range 0 through NE.
Ignored if BINDING=0, if $N G=0$, if $N E=0$, or if DISPLAY $\neq 0$ and DATANAME ${ }^{\prime \prime *}$.
$\mathbf{x}$ (specified by user) (undefined) Array containing $\mathbf{x}$-data values in short floating-point format. Data is arranged data group by data group. Data must be stored such that all the elements of data group (i) precede the elements of data group ( $\mathrm{i}+1$ ).

Note: Line graphs, surface charts, and histograms use $x$ values when they are plotted. Bar charts, pie charts, and Venn diagrams use x-data labels, whose values are supplied in the labels parameter.

For tied data (BINDING=0 in chart_control), x contains one set of NE values. These values apply to all data groups.
For free data (BINDING=1 in chart_control) x contains NG sets of values. The number of values in each set is determined by the corresponding value in data_control, which may not exceed NE.
The $x$ array is ignored if LABELL>0 and $\mathrm{NE} \times 0$. Both x and y arrays are ignored if $N E=0$, or if DISPLAY $\neq 0$ and DATANAME $\neq^{\prime * \prime}$.
y (specified by user) (undefined)
Array containing y-coordinate data in short floating-point format. Data is arranged data group by data group. Data must be stored such that all the elements of data group (i) precede the elements of data group ( $\mathrm{i}+1$ ).
For tied data (BINDING=0 in chart_control) y contains NG sets of NE values.

For free data (BINDING=1 in chart_control) y contains NG sets of values. The number of values in each set is determined by the corresponding value in data_control, which must not exceed NE.

The $y$ array is ignored if $N G=0$. Both $x$ and $y$ arrays are ignored if $\mathrm{NE}=0$, or if DISPLAY $\neq 0$ and DATANAME $\boldsymbol{\neq}^{\prime *}{ }^{\prime \prime}$.
keys (specified by user) (undefined)
An array containing NG character strings, each giving the key (description), of length KEYL, for a particular data group. The number of the corresponding data group is determined by the position of the string within keys (for example, the first string describes the first data group). For information on formatting the keys by means of control characters within the key character strings, see the CHKEY call description.

Ignored if $\mathrm{KEYL}=0$, if $\mathrm{NG}=0$, or if DISPLAY $\neq 0$ and DATANAME $^{\prime *}{ }^{\prime \prime}$
labels (specified by user) (undefined)
An array containing NE character strings, each giving the data label ( $x$ label), of length LABELL, to be displayed instead of $x$ values, for bar charts, pie charts, and Venn diagrams.

Note: Bar charts, pie charts, and Venn diagrams use x data labels, whose values are supplied in this parameter. Line graphs, surface charts, and histograms use x axis values that are supplied in the $x$ parameter.
Ignored if $\mathrm{LABELL}=0$, if $\mathrm{NE}=0$, or if DISPLAY $\neq 0$ and DATANAME $\neq{ }^{\prime *}$.

Note: If this parameter is not initialized, LABELL must be set to 0 .
heading (specified by user) (undefined)
A string of length HEADINGL giving the chart heading to be displayed with the data.

When DISPLAY=0, the string is also taken as the description of the chart and is stored with the chart data. The text appears in the Description column of the Directory panel when the chart data file is listed in an interactive session. Only the first 52 bytes of the string are stored as the description.

In displaying the heading, the ICU interprets
";" as a new line character and ";;" as ";" In
storing the description text, it replaces ";" with a blank and ";"" with ";".
Ignored if HEADINGL=0, or if DISPLAY $\neq 0$ and DATANAME '*' $^{\prime \prime}$.

## Description

Invokes the ICU from an application program. When the ICU is started from an application program by a call to the entry point CHART, seven parameters are always required,
irrespective of whether they are all used by the particular call.

## Principal errors

```
ADM0700 E INVALID PRINTER WIDTH, DEPTH, OR
 OFFSET
ADM0701 E FIRST DATA GROUP DOES NOT HAVE 3
 VALUES FOR VENN DIAGRAM
ADM0702 S INVALID PRIMARY DEVICE
ADM0704 S SCREEN IS T00 SMALL (n1 BY n2
 REQUIRED)
ADM0706 E 'a' (=n) IS INVALID
ADM0707 E NUMBER OF COPIES FOR PRINT (=n) IS
 INVALID
ADM0708 E MISSING X VALUES NOT ALLOWED IN
 'FREE' DATA
ADM0716 E INVALID {PRINT|GRAPHIC DATA FORMAT
 (GDF)} DESTINATION NAME
ADM0717 E PRINT NAME IS '*OPEN' BUT NO
 ALTERNATE DEVICE IS IN USE
```


## Format of the chart_control parameter

The structure of the chart_control parameter, which provides overall control information for a CHART call, is described below. The interpretation of the parameter is shown schematically in Figure 16 on page 120

## CHART



Figure 16. Parameters passed in a CHART call

The chart_control parameter is a structure containing information that controls (among other things) the use of the remaining parameters. The arrows in the figure show dependencies between fields in chart_control and other parameters of the CHART call. All the fields illustrated are described below:

- LEVEL (offset 0; fullword integer)

Indicates whether chart_control contains all the currently defined fields, or only those that were defined at Version 1, Releases 1 and 2 of GDDM-PGF. See page 126 for details of using LEVEL.

- DISPLAY (offset 4; fullword integer)

The value supplied in this field controls the overall function of the CHART call. For example, it controls whether operator interaction is supported, and if so, whether the Home Panel or the Display Panel is displayed initially.

The DISPLAY field of the chart_control parameter may be set by the calling application program to a value from 0 through 9.

Values 0 and 9 apply to the CHART call only and are described fully below with possible applications. Values 1 through 8 are very similar to those of element 1 of the control parameter of the CSSICU call. A brief description of these values is given below. Fuller explanations and possible applications are given with "CSSICU - Start an ICU session for a chart" on page 162

- DISPLAY = 0


## Meaning - Save a chart

When DISPLAY $=0$, the only action taken by the ICU is to create a new Chart Data file from the data supplied in the remaining parameters of the CHART call. No operator interaction occurs and no chart is drawn.

The DATANAME field must contain the name to be assigned to the newly created Chart Data file. If a Chart Data file with the same name already exists, no action is taken, and control is returned to the calling program with an error message.

The data is supplied by setting fields NG, NE, LABELL, KEYL, and HEADINGL in chart_control appropriately, and by supplying corresponding data arrays in the remaining parameters of the CHART call. The string supplied in the heading parameter is used for the description text associated with the saved chart data file, as well as for the chart heading.

## Possible application

Data derived from an application file or data base may be converted and stored as Chart Data files with DISPLAY $=0$ for later access by operator action during an ICU interactive session. Or, instead, a Chart Data file created in this way may be passed to the ICU on a later call (when the original application file or data base may no longer be accessible) by placing the Chart Data name in DATANAME.

DISPLAY = 1, 2, or 3

## Meaning - Display panels

These are the only values by which a CHART call can initiate an interactive session, defined as access by the operator (at the GDDM primary device) to the ICU Display panel and to some or all of the other panels and help information, using the standard ICU interpretation of interrupts (ENTER key, PF keys, and so on).
Note: An interactive session in the above sense cannot be initiated by a program running under the IMS subsystem. In general, when DISPLAY $=1$, 2 , or 3 , the primary device must be one that supports input.
DISPLAY = 1 causes the Home Panel to be displayed to the operator initially, and so gives access to the panel hierarchy. All panels are accessible except possibly
the Save, Restore, and Directory panels (see the ISOLATE field) and possibly the Print panel (see the DESTNAME field). Chart format and data are initialized according to the values of FORMNAME and DATANAME.

- DISPLAY = 4


## Meaning - Print or plot a chart

This value is used to invoke the ICU as a subroutine that causes a specified chart to be printed on a specified GDDM printer or plotter. The chart is specified in FORMNAME and DATANAME, and the printer or plotter is specified by the value in the DESTNAME field.

For a valid print destination name in DESTNAME, the specified chart is printed as one print file. A header page is added, unless otherwise specified in PRTHEAD. The number of copies is given by PRTCOPY. The size of the printed chart is given by PRTDEP and PRTWID, in units defined by PRTUNIT. The position of the chart on the page is controlled by PRTVOFF and PRTHOFF, which specify the vertical and horizontal offsets, also in units defined by PRTUNIT.
Or, instead, the calling program may add the chart to a print file that it has already opened, by specifying '*OPEN' as the value of DESTNAME. In this case, PRTCOPY is ignored because the number of copies to be printed was specified on the FSOPEN or DSOPEN call issued by the application program to open the print file. PRTHEAD is also ignored. However, PRTDEP, PRTWID, PRTVOFF, and
PRTHOFF can be used to specify the size and position of the chart on the printed page.

- DISPLAY = 5 or 6


## Meaning - Construct a chart

These values cause a specified chart to be constructed in the calling program's current GDDM page. The chart constructed is that specified by FORMNAME and DATANAME.

- DISPLAY = 7


## Meaning - Only display a chart

This value causes the ICU to construct a chart on a GDDM page inaccessible to the calling program (as for DISPLAY = 1, 2, 3, and 4), and then to output the constructed chart with a GDDM ASREAD call. On return from this ASREAD call, the ICU immediately returns control to the calling program.

- DISPLAY = 8


## Meaning - Only show the directory

This value restricts the ICU to the Directory panel in advanced mode format, and its associated Help panel.

- DISPLAY = 9


## Meaning - Create a GDF file

The only action taken by the ICU is to create a new Graphics Data Format (GDF) file from the Chart Format and Chart Data supplied in the CHART call parameters. No operator interaction occurs.

Chart Data can be supplied with the CHART call parameters by setting DATANAME = '*', or can be taken from an existing Chart Data file by specifying DATANAME = 'file-name'.

The Chart Format used can be the default if FORMNAME $={ }^{\prime *}$ ', or can be taken from an existing Chart Format file if FORMNAME = 'file-name'.

Any string supplied with the heading parameter is used as a file descriptor for the GDF file, as well as any possible use as part of the Chart Data.

The destination name DESTNAME = 'file-name' is used to determine the name of the GDF file that is produced.

## Possible application

Data derived from an application file or data base may be merged with a Chart Format to produce a GDF file that contains a chart picture using specific data.

GDF files can be used by a wider range of applications than the ICU; this type of file
may, therefore, find wider usage than Chart Format and Chart Data files.

- HELP (offset 8; fullword integer)

0 PF key information is not displayed initially on the Display and GDF Display panels. This setting can be changed by using ENTER whenever either panel is displayed.
1 PF key information is displayed initially on the Display and GDF Display panels. This setting may be changed by using ENTER whenever either panel is displayed.

Ignored unless DISPLAY $=1,2,3$, or 8 .

- ISOLATE (offset 12; fullword integer)

0 Save, Restore, and Directory panels are made available to the operator. The setting is taken from the value of the ICUISOL option in GDDM's external defaults (see the GDDM System Customization and Administration book).
1 Save, Restore, and Directory panels are not made available to the operator.
2 Save and Restore panels are made available to the operator, but the Directory panel is not.

Ignored unless DISPLAY = 1, 2 , or 3 .

- FORMNAME (offset 16; 8-byte character)
and
- DATANAME (offset 24; 8-byte character)

These two fields specify the use of Chart
Format and Chart Data files respectively. The name of an existing Chart Format file may be supplied by the calling program in FORMNAME. If specified in FORMNAME, the named Chart Format file is used by the ICU to initialize the chart format. Similarly, DATANAME may be used to initialize chart data.

If FORMNAME contains the reserved name ${ }^{\prime *}$ ', the chart format is initialized to the default format. This is the format used when the ICU is used in stand-alone mode. It specifies a line graph with autoscaled axes, a legend in the center of the right margin, and so on.

The '*' is also a reserved name for DATANAME. It specifies that chart data is to be initialized from data supplied in the other
parameters of the CHART call. These parameters define the $x$ - and $y$-data values, the data labels (used instead of $x$-data values for bar charts, pie charts, and Venn diagrams), the keys (which describe data groups), and the chart heading.

Only when DATANAME = '*' (or when DISPLAY = 0) are these remaining parameters accessed during ICU execution. If no data is to be supplied on the CHART call, DATANAME should be set to ${ }^{\prime * 1}$ and other fields (NG, NE, KEYL, LABELL, and HEADINGL - see below), which describe the data supplied in the remaining parameters, should be set to zero.

- BINDING (offset 32; fullword integer)

The BINDING field is used only when DATANAME $={ }^{* *}$ or when DISPLAY $=0$. It indicates whether the data supplied is free or tied. In free mode, each data group has its own set of $x$ values that are different from other data groups. A typical example where free data mode is appropriate is a scatter plot, where each data group is an arbitrary set of $(x, y)$ pairs, and is unrelated to other data groups. In tied data mode, all data groups have the same set of $x$ values.

Free data was formerly known as paired data, and tied as non-paired.

In both free and tied modes there is only one set of data labels, which is common to all data groups (but only used for bar charts, pie charts, Venn diagrams, and table charts).
Valid values are:
0 Sets of $x$ and $y$ values are tied. There is one set of $x$ values, against which each set of $y$ values is plotted.
1 Sets of $x$ and $y$ values are free. For each set of $y$ values there is a corresponding set of $x$ values. The sets of $x$ values are distinct.

Note: For further details on free and tied data see "Free (paired) and tied (non-paired) data" on page 13 .

- NG (offset 36; fullword integer)

The NG field is used only when DATANAME = ${ }^{1 * 1}$ or when DISPLAY $=0$. It specifies the number of data groups supplied.

For tied data, NG specifies the number of sets of $y$ values in the $y$-array parameter.

For free data, NG specifies the number of sets of values in each of the $x$ - and $y$-array parameters, and the number of values in the data_control parameter.

For both free and tied data, NG also specifies the number of character-string elements in the keys array parameter (if the length of each string, given by KEYL, is nonzero).
If BINDING $=0$, the number of data groups for which values are specified in the $y$-array parameter. If BINDING $=1$, the number of data groups for which values are specified in the $x$ - and $y$-array parameters, and the number of values in the data_control array parameter. Range 0 through 999.

- NE (offset 40; fullword integer)

The NE field is used only when DATANAME = ${ }^{1 * 1}$ or when DISPLAY $=0$. It specifies the exact number of points in each data group (for tied data), or the maximum number of points in any data group (for free data).
For tied data, NE specifies the number of $y$ values in each set of values in the $y$-array parameter, and the number of $x$ values in the $x$-array parameter (which is common to all data groups).
For free data, NE specifies the maximum value of any element in the data_control array parameter. The values in data_control specify the actual number of elements in each data group.

For both free and tied data, NE also specifies the number of data label character string elements in the labels array parameter (provided the length of each string, given by LABELL, is non-zero).

The calling program may choose whether to supply just data labels, or just $x$ data values, or both data labels and $x$ data values. Specifies the number of elements (per data group) in $x$ and $y$. Also specifies the number of label strings in labels (if LABELL>0). Range -999 through 999. A positive value causes either labels (if $L A B E L L>0$ ) or $x$ (if LABELL=0) to be passed, but not both. A negative value acts in the same way as the corresponding positive value except that $x$ is
passed even if $\mathrm{LABELL}>0$. (This allows both $x$ and labels to be passed.)
If BINDING $=1$, the absolute value of NE gives the maximum number of elements in any data group. The actual number in each data group is specified in the data_control array parameter.

- Length fields

The length fields KEYL, LABELL, and HEADINGL are used only when DATANAME $=$ '*' or when DISPLAY $=0$. They specify respectively the number of characters in each key in the keys parameter, the number of characters in each label in the labels parameter, and the number of characters in the heading parameter. In each case, a zero value is allowed, and the corresponding parameter is then ignored.

- KEYL (offset 44; fullword integer) Length of each string in keys. Range 0 through 132.

Ignored unless $N G \neq 0$ and either DISPLAY $=0$ or DATANAME $=1 *$ '.

- LABELL (offset 48; fullword integer) Length of each string in labels. Range 0 through 132.
Ignored unless $N E \neq 0$ and either DISPLAY $=0$ or DATANAME= ${ }^{* *}$.
- HEADINGL (offset 52; fullword integer) Length of heading. Range 0 through 132. Ignored unless DISPLAY=0, DISPLAY=9, or DATANAME='*'.
- DESTNAME (offset 56; 8-byte character)

IF DISPLAY=1, 2, 3, 4, the DESTNAME field describes the destination name for a print or plot operation.
DESTNAME=' ' indicates no printer is available (for DISPLAY $=1$, 2 , or 3 this makes the Print panel inaccessible).
DESTNAME $=$ '*' indicates that the name is unknown (for DISPLAY $=1,2$, or 3 the name appears blank initially on the Print panel). DESTNAME $=$ '*OPEN ' indicates that only the current open alternate device supplied by the calling program may be used. These three names are reserved names. Any other name is used as follows:

For DISPLAY $=1,2$, or 3 the name appears on the Print panel and cannot be modified by the operator.
For DISPLAY $=4$ the name identifies the print destination device.
The reserved names ' ' and '*' are not valid for DISPLAY $=4$.
IF DISPLAY=9, DESTNAME is the name of the GDF file to be produced.
Ignored unless DISPLAY $=1,2,3,4$, or 9 .

- Printing fields

The PRTDEP, PRTWID, PRTCOPY, PRTHEAD, PRTVOFF, PRTHOFF, and PRTUNIT fields may be used to control the printing action of the ICU.
If DISPLAY $=1,2$, or 3 , used to initialize the Print panel.

- PRTDEP (offset 64; short floating point)

Depth of the chart area on the printer, in units given by PRTUNIT. A 0 gives the default depth (the same as '*' on the ICU Print panel). Ignored unless DISPLAY = $1,2,3$, or 4, and DESTNAME $\neq$ ' '.

- PRTWID (offset 68; short floating point)

Width of the chart area on the printer, in units given by PRTUNIT. A 0 gives the default width (the same as '*' on the ICU Print panel). Ignored unless DISPLAY = $1,2,3$, or 4 , and DESTNAME $\not{ }^{\prime}$ ' .

- PRTCOPY (offset 72; fullword integer)

Number of copies to be printed. Range 0 through 99 ( 0 is treated as a request for the ICU default value of 1 ). Ignored unless DISPLAY = 1, 2, 3, or 4, and DESTNAME $\neq$ ' ' and DESTNAME $\neq$ '*OPEN'.

- PRTHEAD (offset 76; fullword integer)

Specifies the type of identification that is to precede the output. The identification can have combinations of a header page, an origin identification (userid/time/date), neither, or both.
0 default (same meaning as 1)
1 header page, no origin identification
2 no header page, no origin identification

3 header page plus origin identification 4 origin identification, no header page Ignored unless DESTNAME $\neq$ ' ' and DESTNAME $\neq$ '*OPEN'.

- PRTVOFF (offset 80; short floating point)

Vertical offset of chart area on the printer from top of page, in units given by PRTUNIT. -1 gives the default offset (the same as '*' on the ICU Print panel.)
Ignored unless DESTNAME $\neq{ }^{\prime}$ ' .

- PRTHOFF (offset 84; short floating point)

Horizontal offset of chart area on the printer from the left-hand edge of the page, in units given by PRTUNIT. -1 gives the default offset (the same as ${ }^{* *}$ on the ICU Print panel.)
Ignored unless DESTNAME $\neq{ }^{\prime}$ '.

- PRTUNIT (offset 88; fullword integer)

Units of measurement for page layout
fields PRTDEP, PRTWID, PRTVOFF, and PRTHOFF.

0 default (same meaning as 1)
1 percent of corresponding page dimension (depth or width)
2 inches
3 centimeters
4 printer rows for PRTDEP and PRTVOFF, or columns for PRTWID and PRTHOFF

Ignored unless DESTNAME ${ }_{\neq 1}$ '.

- RESERVED (offset 92; fullword integer)

Reserved field.

- Directory fields

DRYNAME, DRYTYPE, DRYTYPEQ, and DRYLIB are used to control the content of the initial Directory panel. Ignored unless DISPLAY=8.

- DRYNAME (offset 96; 8-byte character)

Names of objects to be listed on initial Directory panel. Can begin and/or end with '*', to specify a set of object to list. Blank means list all names.

- DRYTYPE (offset 104; fullword integer)

Type of object to be listed on initial Directory panel. Some types must be further defined by the type qualifier field, DRYTYPEQ.

0 list nothing
1 list symbol sets (as qualified)
2 list generated mapgroups
3 list pictures stored with FSSAVE
4 list chart descriptor(s) (as qualified)
5 list chart descriptor(s) (as qualified)
7 list GDF files
9 list data definitions
10 list image projection files
11 list image data files.

- DRYTYPEQ (offset 108; fullword integer)

Qualifier for type of object to be listed on initial Directory panel.
If DRYTYPE $=1$ then
0 default: same effect as 2
1 list image symbol sets
2 list vector symbol sets
If DRYTYPE $=4$ then
0 default: same effect as 1
1 list chart format objects only
2 list chart data objects only
3 list chart format and data objects
If DRYTYPE $=5$ then
0 default: same effect as 2
1 list chart format objects only
2 list chart data objects only
3 list chart format and data objects
Ignored unless DRYTYPE $=1$, 4 , or 5 .

- DRYLIB (offset 112; 8-byte character)

Library containing objects to be listed on initial Directory panel. Must be left-justified and padded with blanks.

```
Under TSO, a ddname
Under CICS, a symbolic data set
name
Under VM, a 1- or 2-character
filemode
Under IMS, a DBD name
```

In all cases, a blank means that the library defined by ESLIB calls (or GDDM defaults) is listed.

- EXPLVL (offset 120; fullword integer)

The EXPLVL field defines the experience level mode (standard or advanced) of the initial Directory panel, as discussed under "Format of the chart_control parameter" on page 119 Initial experience level mode for Directory panel.
The ICU provides two modes, called standard and advanced. They differ in the amount of function available.
0 default, same effect as 1
1 standard
2 advanced
Ignored unless DISPLAY $=1,2$, or 3.

## Passing chart data

Chart data may be supplied by one of two methods:

1. By specifying the name of an existing Chart Data file in DATANAME. Such a Chart Data file must have been created previously by operator action during an ICU session, or by invocation of the ICU with DISPLAY=0, supplying data by method 2 below, or by using CSSAVE.
2. By specifying ${ }^{* \prime}$ ' in DATANAME, and supplying chart data in array parameters of the CHART call.
One use of this method is to supply no data with the CHART call (in order, for example, to invoke the ICU with a specific initial format, but without supplying any data). To achieve this result, put DATANAME= ${ }^{* '}$, $\mathrm{NG}=0, \mathrm{NE}=0$, $\mathrm{KEYL=0}, \mathrm{LABELL}=0$ and HEADINGL=0. Only the chart_control parameter is accessed by the ICU in this case; values for the other parameters may be dummy values.

## Passing z-axis data to the ICU

Tower charts have z-axes, but you cannot pass z-axis data in the CHART call. However, you can still create tower charts because, in the absence of $z$-axis data, the ICU creates a logical $z$ axis
with the data groups spaced evenly along it. If you want to pass $z$-axis data, use the CSxxxx calls.

## Using the chart_control parameter

When including the chart_control parameter in your program, you may find it convenient to copy it from a sample program and make alterations to suit your needs. A PL/I version can be seen in the sample program ADMUSP6 in Appendix A, "Sample programs" on page 175 For a COBOL version or a FORTRAN version, see the sample programs ADMUSC6 and ASMUSF6, also in Appendix A, "Sample programs."

The structure has two versions, or levels. You must indicate which you are using in the field called LEVEL. If $\operatorname{LEVEL=0}$, the current release of GDDM interprets the structure in the same way as in Version 1 Releases 1 and 2. This means that fields beyond PRTCOPY are not inspected. Instead, the following default values are assumed:

```
PRTHEAD=0
PRTVOFF=0
PRTHOFF=0
PRTUNIT=4
DRYNAME=' '
DRYTYPE=0
DRYLIB=' '
EXPLVL=0
```

In addition, PRTDEP and PRTWID are interpreted as fullword binary integers instead of floating point numbers, and DISPLAY=8, and ISOLATE=2 are invalid. These actions ensure that, when LEVEL=0, the CHART call gives the same result as under Version 1 Releases 1 and 2.

If you specify $L E V E L=1$, you must include the full structure shown above.

Note that it is not necessary to use the field names shown here. Any names that obey the conventions of the corresponding language may be used.

## CSCCRT

Function: To create a chart.

| CSCCRT | (chart-id, level) |
| :--- | :--- |
|  |  |
| APL code | 1203 |
| PGF RCP code | X'14040000' (335806464) |

## Parameters

chart-id (specified by user) (fullword integer) Gives the unique identification number of the chart to be created. It must be greater than 0 .
level (specified by user) (fullword integer) This must be set to 1 .

## Description

Creates a new chart initialized with default format information and null data for a new chart instance.

The defaults that you get are shown with the CSCHA, CSFLT, CSINT, and CSNUM calls. Where a default is device-dependent, the default that you get will be the one for the primary device at the time you make the CSCCRT call. If there is no primary device, a 3179-PC/G is assumed.

To obtain the same results with CSCCRT as with the CSSICU call or when using the ICU interactively, a DSOPEN call must first be issued.

## Principal errors

```
ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0722 E CHART WITH IDENTIFIER n ALREADY
 EXISTS
ADM0723 E 'LEVEL' (=n) IS INVALID
```


## CSCDEL

Function: To delete a chart.

```
CSCDEL (chart-id)
APL code }121
PGF RCP code X'14040004' (335806468)
```


## Parameters

chart-id (specified by user) (fullword integer) If greater than 0 , gives the identification number of the chart to be deleted. If -1 , requests that the previously built directory list be deleted.

## Description

Deletes a specified chart format and its related data, or deletes a directory list previously built by a CSDIR call.

## Principal errors

```
ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
 EXIST
ADM0724 E NO DIRECTORY LIST EXISTS
```


## CSCHA

Function: To set character values for a chart.

```
CSCHA (chart-id, type, start, count, length,
chars)
APL code 1219
PGF RCP code X'14080008' (336068616)
```


## Parameters

chart-id (specified by user) (fullword integer)
Gives the identification number of the chart for which the character items are to be set.
type (specified by user) (fullword integer)
Gives the type of character item to be set.
See the table below for valid settings of type.
start (specified by user) (fullword integer)
For character items that have a number of values (like labels), gives the number of the first character item to be set. For other character items, it must be 1 . See the table below for valid settings of start.
count (specified by user) (fullword integer)
Gives the number of character items in the chars parameter.

See the table below for valid settings of count.
length (specified by user) (fullword integer) Gives the length of each character item in the chars parameter. See the table below for valid settings of length.
chars (specified by user) (character) A character item array made up of count individual items. All the items must be the same length and padded with blanks if necessary.

The length of the array must be equal to count * length.

For character items that have a number of values (like labels), the items in chars set count consecutive values, from start onward.

If a character item contains six values and you want to set values 3 and 4, set start to 3 and set count to 2.

## Description

Sets character items for a chart. These items normally correspond to items on ICU panels. See the GDDM-PGF Interactive Chart Utility book or help panels for more information.

Typical character items are labels, the heading, data group names, symbol set names, directory
names, chart format and data names, and printer/plotter destination names.

## Principal errors

```
ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
 EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0729 E FOR TYPE t, 'START' (=n1) PLUS
 'COUNT' (=n2) IS TOO LARGE
ADM0732 E FOR TYPE t, 'LENGTH' (=n) IS
 INVALID
ADM0736 E FOR TYPE t, NO INSTANCE EXISTS
ADM0740 E FOR TYPE t, 'COUNT' (=n) IS INVALID
ADM0741 E FOR TYPE t, 'START' (=n) IS INVALID
ADM0743 E VALUE IS INVALID FOR THE MASTER
 CHART
```


## Valid Type settings

Range Gives the lower and upper limits for the start and count parameters and the upper limit for start + count - 1 .

Default Gives the value set by the CSCCRT call. For some settings of type, there are two defaults. These are shown in the table as two values with "|" between them. The first is the Version 1 Release 4 default, the second is the Version 2 default. The default is selected depending on the setting of the GDDM external default, ICUFMDF. For details of this GDDM external default, see the GDDM System Customization and Administration book.

## Where saved

D indicates that the item is saved in the chart data file
DD indicates that the item is saved in a data definition file
F indicates that the item is saved in the chart format file

- indicates that the item is not saved.

Table 3 (Page 1 of 2). Valid type settings

| Type | Range | Length | Default | Where <br> saved |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ Chart format name | 1 | 1 to 8 | $'^{\prime}$ | - |
| $\mathbf{2}$ Chart data name | 1 | 1 to 8 | $'^{\prime}$ | - |
| $\mathbf{3}$ Printer/plotter destination name | 1 | 1 to 8 | ${ }^{*}$ | - |

' ' = no printer available
${ }^{1 * \prime}=$ name is unknown
'*OPEN' = only the current open alternate device
supplied by the calling program may be used

| 4 Object names to appear on Directory panel when using CSSICU with DISPLAY=8 | 1 | 1 to 8 | ' | - |
| :---: | :---: | :---: | :---: | :---: |
| ' ' = list all objects |  |  |  |  |
| ${ }^{1 * \prime}=$ any character in this position |  |  |  |  |
| 5 Library name for Directory panel when using CSSICU with DISPLAY=8 | 1 | 1 to 8 | '' | - |

TSO = ddname
CICS = symbolic data set name
$\mathrm{VM}=1$ or 2 character filemode

IMS = DBD name

| 6 Data group names for keys (See Note) | 1 to number of components | 0 to 255 | All null | D |
| :---: | :---: | :---: | :---: | :---: |
| 7 Data labels (See Note) | 1 to number of elements | 0 to 255 | All null | D |
| 8 Chart heading (See Note) | 1 | 0 to 132 | Null | D |
| 9 Chart heading symbol set name | 1 | 1 to 8 | * or <br> ADMUUKSF | F |
| 10 User-defined x-axis labels (See Note) The number of labels is increased if necessary | 0 to 999 | 0 to 255 | All null | F |
| 11 x-axis labels symbol set name | 1 | 1 to 8 | * or <br> ADMUUSRP | F |
| 12 y -axis labels symbol set name | 1 | 1 to 8 | * or <br> ADMUUSRP | F |
| 13 x -axis title symbol set name | 1 | 1 to 8 | * or ADMUUDRP | F |
| 14 y -axis title symbol set name | 1 | 1 to 8 | * or ADMUUDRP | F |
| 15 x-axis title (See Note) | 1 | 0 to 52 | null | F |
| 16 y-axis title (See Note) | 1 | 0 to 52 | null | F |
| 17 Data group names symbol set name | 1 | 1 to 8 | * or <br> ADMUUSRP | F |

Table 3 (Page 2 of 2). Valid type settings

| Type | Range | Length | Default | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| 18 Bar values symbol set name | 1 | 1 to 8 | * or <br> ADMUUSRP | F |
| 19 Chart note symbol set name (for the current chart note (See CSNUM type 1)) | 1 | 1 to 8 | * or <br> ADMUUKSF | F |
| 20 Chart note text (for the current chart note (See CSNUM type 1)) | 1 | 0 to 255 | Null | F |
| 21 Format name for the current subchart (See CSNUM type 3) (Must be blank for master chart) | 1 | 1 to 8 | '' | F |
| 22 Data name for the current subchart (See CSNUM type 3) (Must be blank for master chart) | 1 | 1 to 8 | '' | F |
| 23 Table chart text symbol set name | 1 | 1 to 8 | * or <br> ADMUUSRP | F |
| 24 Text for table chart missing values | 1 | 0 to 20 | '.' | F |
| 25 Data import file identifier | 1 | 0 to 56 | '' | DD |

$V M=f n f t f m$

TSO = data set name or DD name

| $\mathbf{2 6}$ Text for data import missing values | 1 to 3 | 0 to 12 | All null | DD |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2 7}$ Chart format description | 1 | 0 to 52 | Null | - |
| $\mathbf{2 8}$ Chart data description | 1 | 0 to 52 | Null | - |
| $\mathbf{2 9}$ GDF name | 1 | 1 to 8 | $'^{\prime}$ | - |
| $\mathbf{3 0}$ GDF description | 1 | 0 to 52 | Null | - |
| $\mathbf{3 1}$ Data definition name | 1 | 1 to 8 | $\mathbf{N}^{\prime}$ | - |
| $\mathbf{3 2}$ Data definition description | 1 | 0 to 52 | Null | - |
| $\mathbf{3 3}$ User-defined y-axis labels |  |  |  |  |
| The number of labels is increased if necessary | 0 to 999 | 0 to 255 | All null | F |

Note: When the text is displayed, ";" causes a new line. If you want to display a ";", use two of them together.

The text can contain mixed EBCDIC and DBCS (Kanji) characters if the chart format specified allows this (see the GDDM-PGF Interactive Chart Utility book for details of this).

## CSDEL

Function: To delete item for a chart.

```
CSDEL (chart-id, type, value)
APL code 1227
PGF RCP code X'14000824' (335546404)
```


## Parameters

chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be used.
type (specified by user) (fullword integer) Indicates the type of item to be deleted.

1 delete the chart note specified by the number in value
3 delete the subchart specified by the number in value. (This is invalid for the master chart.)

All subsequent notes or subcharts are renumbered and the maximum number is reduced by one.
value (specified by user) (fullword integer)
Gives the number of the note or subchart to delete.

## Description

Delete chart notes or subcharts.

## Principal errors

```
ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
 EXIST
```


## CSDIR

Function: To build object directory list.

| CSDIR | (name, type, library, count) |
| :--- | :--- |
|  |  |
| APL code | 1224 |
| PGF RCP code | $X^{\prime} 14000020^{\prime}(335544352)$ |

## Parameters

name (specified by user) (8-byte character string) The file name of objects to be included in the list.

Partial names may be used by substituting '*' for parts of the name. Thus 'AB*' lists all objects with names beginning 'AB'.
' ' gives a complete list of file names.
type (specified by user) (fullword integer)
The file type of objects to be included in the list.

0 Image symbol sets
1 Vector symbol sets
2 Generated map groups
3 Saved pictures (in device-dependent form)
4 Chart format
5 Chart data
6 Chart format and data
7 GDF files (in device-independent form)
9 Chart data definitions
10 Projections
11 Image data
' ' gives a complete list of file types.
library (specified by user) (8-byte character string) The library objects to be included in the list.

Under TSO, this is a ddname.
Under CICS, this is a symbolic data set name.
Under VM, this is a one- or two-character filemode.
Under IMS, this is a DBD name.
' ' gives a complete list of libraries.
count (returned by GDDM) (fullword integer)
The number of objects in the list that has been created.

## Description

Creates a list of GDDM objects. Any existing list is replaced by this new one. The list created can then be queried using CSQDIR.

The list is not affected by any other CSxxxx call, but it can be deleted by using CSCDEL (-1).

## Principal errors

ADM0724 E NO DIRECTORY LIST EXISTS

## CSFLT

Function: To set floating-point values for a chart.

| CSFLT | (chart-id, type, start, count, control, <br> values) |
| :--- | :--- | :--- |
| APL code | 1207 |
| PGF RCP code | $X^{\prime} 14080004$ ' (336068612) |

## Parameters

chart-id (specified by user) (fullword integer)
Gives the identification number of the chart for which floating-point items are to be set.
type (specified by user) (fullword integer)
Gives the group of items to be set, for example note attributes.

See the table below for the valid settings of type and the associated elements of values.
start (specified by user) (fullword integer) Gives the number of the first item in the group to be set.
count (specified by user) (fullword integer) Gives the number of items to be set.

If a group contains six items and you want to set items 3 and 4 , set start to 3 and set count to 2.
control (specified by user) (an array of fullword integers)
This array indicates how the elements in the values parameter are to be used. The first element in this array corresponds to the first one in the values array, and so on.
The valid values for the control parameter are:
0 Set the item to that given in the corresponding element of values.
1 Leave the item as it is. Ignore the corresponding element of values.

3 Set the item as though * had been entered on the corresponding ICU panel. Ignore the corresponding element of values. See "Range" in the table below for items that can have this.
values (specified by user) (array of short floating-point numbers)
Gives the values to be used for the set of items defined by type and subject to the setting of control.

The table below gives the meaning of each element of values for each setting of type.

## Description

Sets the value of floating-point items for a chart. These items normally correspond to items on the ICU panels.

Use the GDDM-PGF Interactive Chart Utility book or help panels for more information. Typical floating-point items are line width, character widths and note positions.

Items are divided into groups, defined by type.

## Principal errors

```
ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
 EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0729 E FOR TYPE t, 'START' (=n1) PLUS
 'COUNT' (=n2) IS TOO LARGE
ADM0730 E FOR TYPE t, ELEMENT n1 OF 'CONTROL'
 (=n2) IS INVALID
ADM0731 E FOR TYPE t, ELEMENT n1 OF 'VALUES'
 (=n2) IS INVALID
ADM0736 E FOR TYPE t, NO INSTANCE EXISTS
ADM0740 E FOR TYPE t, 'COUNT' (=n) IS INVALID
ADM0741 E FOR TYPE t, 'START' (=n) IS INVALID
ADM0743 E VALUE IS INVALID FOR THE MASTER
 CHART
```


## Valid Type settings

Default Gives the value set by the CSCCRT call. For some settings of type, there are two defaults. These are shown in the table as two values with "|" between them. The first is the Version 1 Release 4 default, the second is the Version 2 default. The default is selected depending on the setting of the external default, ICUFMDF. For details of this external default, see the GDDM System Customization and Administration book.

Range Gives the range of values allowed for each item. "Any number" means any number in the valid number range of the ICU.

## Where saved

F indicates that the item is saved in the chart format file

- indicates that the item is not saved.

Unless otherwise shown, the indicator in this column applies to all elements of values.

| Type | Element of Values | Default | Range | Where |
| :--- | :--- | :--- | :--- | :--- |
| saved |  |  |  |  |


| Type | Element of Values | Default | Range | Where |
| :---: | :---: | :---: | :---: | :---: |
| 8 Bar value attributes | 1. Character width | 1 | 0.01 to 100 | F |
|  | 2. Character height | * | 0.01 to 100 or * (makes height equal to width) |  |
|  | 3. Rotation angle | 0 | -90 to +90 |  |
| 9 x -axis range | 1. Range start | * | Any number or * (allows the data to dictate the axis range) | F |
|  | 2. Range end | * |  |  |
|  | 3. Intersection with opposite axis | * |  |  |
| 10 y -axis range | 1. Range start | * | Any number or * (allows the data to dictate the axis range) | F |
|  | 2. Range end | * |  |  |
|  | 3. Intersection with opposite axis | * |  |  |
| 11 x -axis labels | 1. Numeric multiplier if labels are numeric | 1 | Any number > 0 | F |
| 12 y -axis labels | 1. Numeric multiplier if labels are numeric | 1 | Any number > 0 | F |
| 13 x-axis label attributes | 1. Character width | 1 | 0.01 to 100 | F |
|  | 2. Character height | * | 0.01 to 100 or * (makes height equal to width) |  |
|  | 3. Character rotation angle | 0 | -90 to +90 |  |
| 14 y-axis label attributes | 1. Character width | 1 | 0.01 to 100 | F |
|  | 2. Character height | * | 0.01 to 100 or * (makes height equal to width) |  |
|  | 3. Character rotation angle | 0 | -90 to +90 |  |
| 15 x-axis scale marks | 1. Major scale mark interval | * | Any number or * (gives a sensible value based on the data for linear axes and powers of 10 for logarithmic axes) | F |
|  | 2. Number of minor scale marks | * | 0 to 2048 or * |  |
| 16 y-axis scale marks | 1. Major scale mark interval | * | Any number or * (gives a sensible value based on the data for linear axes and powers of 10 for logarithmic axes) | F |
|  | 2. Number of minor scale marks | * | 0 to 2048 or * |  |


| Type | Element of Values | Default | Range | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| 17 Heading attributes | 1. Character width | 1 or 2.5 | 0.01 to 100 | F |
|  | 2. Character height | * | 0.01 to 100 or * (makes height equal to width) |  |
|  | 3. Must be 0 | 0 | 0 |  |
| 18 Legend offset from base position | 1. Horizontal | 0 | Any number | F |
|  | 2. Vertical | 0 |  |  |
| 19 Chart proportions | 1. Horizontal | devicedependent or 11 | 0.01 to 100 or * (stretch to cover output area) | F |
|  | 2. Vertical | 1 or 8.5 | 0.01 to 100 |  |
| 20 Note position (for the current note, set by CSNUM type 1) | 1. Horizontal | Half the default horizontal character grid | Any number | F |
| For units see CSINT type 42 | 2. Vertical | Half the default vertical character grid (but sets of new notes are evenly spaced down the chart area) | Any number |  |
| 21 Subchart options (for the current subchart, set by CSNUM type 3) | 1. Leftmost position | 30 | 0 to 100 | F |
|  | 2. Rightmost position | 70 | 0 to 100 |  |
|  | 3. Top position | 70 | 0 to 100 |  |
|  | 4. Bottom position | 30 | 0 to 100 |  |
|  | All these are percentages of the chart area | (but initially 4 subcharts, | Master chart settings must be: |  |
|  |  | one in each corner) | $\begin{array}{lr} \text { Element } 1 & 0 \\ \text { Element } 2 & 100 \\ \text { Element } 3 & 100 \end{array}$ |  |
|  | 5. Box line width | 1 | Element 40 0 to 100 |  |
| 22 x-reference-line options | 1. Reference value | 0 | Any number | F |
| 23 y-reference-line options | 1. Reference value | 0 | Any number | F |
| 24 x-datum-line options | 1. Datum value | 0 | Any number | F |


| Type | Element of Values | Default | Range | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| 25 y-datum-line options | 1. Datum value | 0 | Any number | F |
| 26 Note attributes (for the current note, set by CSNUM type 1) | 1. Character width | 1 or 2 | 0.01 to 100 | F |
|  | 2. Character height | * | 0.01 to 100 or * (makes height equal to width) |  |
|  | 3. Character rotation angle | 0 | -180 to 180 |  |
| 27 Table chart text attributes | 1. Character width | 1 | 0.01 to 100 | F |
|  | 2. Character height | * | 0.01 to 100 or * (makes height equal to width) |  |
|  | 3. Must be 0 | 0 | 0 |  |
| 28 Character width multiplier | 1. Character width multiplier | 1 or 1.74 | 0.01 to 100 | F |
| 29 x-axis title attributes | 1. Character width | 1 | 0.01 to 100 | F |
|  | 2. Character height | * | 0.01 to 100 or * (makes height equal to width) |  |
|  | 3. Must be 0 | 0 | 0 |  |
| 30 y-axis title attributes | 1. Character width | 1 | 0.01 to 100 | F |
|  | 2. Character height | * | 0.01 to 100 or * (makes height equal to width) |  |
|  | 3. Must be 0 | 0 | 0 |  |
| 31 Table chart options | 1. Relative size | 100 | 10 to 1000 | F |

## CSINT

Function: To set integer values for a chart.

| CSINT | (chart-id, type, start, count, control, <br> values) |
| :--- | :--- | :--- |
| APL code | 1205 |
| PGF RCP code | $X^{\prime} 14080000^{\prime}(336068608)$ |

## Parameters

chart-id (specified by user) (fullword integer)
Gives the identification number of the chart for which values are to be set.
type (specified by user) (fullword integer)
Gives the group of items to be set; for example, bar chart attributes.

See the table below for the valid settings of type and the associated elements of values.
start (specified by user) (fullword integer)
Gives the number of the first item in the group to be set.
count (specified by user) (fullword integer)
Gives the number of items to be set.
If a group contains six items and you want to set items 3 and 4, set start to 3 and set count to 2.
control (specified by user) (an array of fullword integers)
This array indicates how the elements in the values parameter are to be used. The first
element in this array corresponds to the first one in the values array, and so on.
The valid values for the control parameter are:
0 Set the item to that given in the corresponding element of values.

1 Leave the item as it is. Ignore the corresponding element of values.

3 Set the item as though * had been entered on the corresponding ICU panel. Ignore the corresponding element of values. See "Range" in the table below for items that can have this.
values (specified by user) (an array of fullword integers)
Gives the values to be used for the set of items defined by type and subject to the setting of control.

The table below gives the meaning of each element of values for each setting of type.

## Description

Sets the value of integer items for a chart. These items normally correspond to items on the ICU panels. Use the GDDM-PGF Interactive Chart Utility book or help panels for more information.

Typical items are chart type, line colors, and data interpretation options. Items are divided into groups depending on type.

## Principal errors

```
ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT EXIST
```

```
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0729 E FOR TYPE t, 'START' (=n1) PLUS
 'COUNT' (=n2) IS TOO LARGE
ADM0730 E FOR TYPE t, ELEMENT n1 OF 'CONTROL'
 (=n2) IS INVALID
ADM0731 E FOR TYPE t, ELEMENT n1 OF 'VALUES'
 (=n2) IS INVALID
ADM0736 E FOR TYPE t, NO INSTANCE EXISTS
ADM0740 E FOR TYPE t, 'COUNT' (=n) IS INVALID
ADM0741 E FOR TYPE t, 'START' (=n) IS INVALID
ADM0743 E VALUE IS INVALID FOR THE MASTER
 CHART
```


## Valid Type settings

Default Gives the value set by the CSCCRT call. For some settings of type, there are two defaults. These are shown in the table as two values with "|" between them. The first is the Version 1 Release 4 default, the second is the Version 2 default. The default is selected depending on the setting of the external default, ICUFMDF. For details of this external default, see the GDDM System Customization and Administration book.

Range and meaning Gives the values allowed for each item and their meaning.

## Where saved

D indicates that the item is saved in the chart data file.
DD indicates that the item is saved in a data definition file.
F indicates that the item is saved in the chart format file.

- indicates that the item is not saved.

Unless otherwise shown, the indicator in this column applies to all elements of values.

| Type | Element of Values | Default | Range and meaning | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| 1 Chart type options <br> (Element 1 is ignored when element 2 is set to 2.) | 1. Chart type <br> 2. Single or mixed chart | 1 | 1 line graph <br> 2 surface chart <br> 3 histogram <br> 4 bar chart <br> 5 pie chart <br> 6 Venn diagram <br> 7 polar chart <br> 8 tower chart <br> 9 table chart <br> 1 single chart <br> 2 mixed chart | F |
| 2 Line graph options | 1. Data type <br> 2. Markers <br> 3. Connected points <br> 4. Connector type <br> 5. Curve smoothness | 1 <br> 1 <br> 1 <br> 1 $10$ | 1 absolute <br> 2 relative <br> 1 yes <br> 2 no <br> 1 yes <br> 2 no <br> 1 straight line <br> 2 curved line <br> 1 to 99 <br> Higher numbers give <br> a smoother curve | F |
| 3 Surface chart options | 1. Data type <br> 2. Shading <br> 3. First data group shaded <br> 4. Connector type <br> 5. Curve smoothness | 2 <br> 1 <br> 1 <br> 1 <br> 10 | 1 absolute <br> 2 relative <br> 1 mountain range <br> 2 to previous line <br> 1 yes <br> 2 no <br> 1 straight line <br> 2 curved line <br> 1 to 99 <br> Higher numbers give <br> a smoother curve | F |
| 4 Histogram options | 1. Data type <br> 2. $y$-value representation <br> 3. y value to be ignored <br> 4. Riser lines from $x$ axis <br> 5. Data group shading <br> 6. First data group shaded | 1 or 2 <br> 2 or 1 <br> 1 <br> 1 <br> 1 <br> 1 | 1 absolute <br> 2 relative <br> 1 bar areas <br> 2 bar heights <br> 1 last value <br> 2 first value <br> 1 yes <br> 2 no <br> 1 yes <br> 2 no <br> 1 yes <br> 2 no | F |



| Type | Element of Values | Default | Range and meaning | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| 9 Polar chart options | 1. Data type | $1$ | 1 absolute <br> 2 relative | F |
|  | 2. Bands shaded | 1 or 2 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |
|  | 3. Shading type | 2 or 1 | 1 mountain range 2 to reference line |  |
|  | 4. Markers | 1 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |
|  | 5. Points connected | 1 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |
|  | 6. Connector type | 1 | 1 straight line 2 curved line |  |
|  | 7. Curve smoothness | 10 | 1 to 99 Higher numbers give a smoother curve |  |
| 10 Tower chart options | 1. Grid | 0 | 0 on base only <br> 1 on base and behind 2 on base and one side <br> 3 on all three | F |
|  | 2. Attributes selected | $1$ | 1 along z axis <br> 2 along x axis |  |
|  | 3. $z$-axis labels | 1 | 1 no labels <br> 2 data group names <br> 3 numeric labels |  |
|  | 4. Scale mark shadows on towers | 2 or 1 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |
|  | 5. Scale tower drawn | 2 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |
| 11 Shading and marker color for each data group (see Color numbers on page 209 | 1. Applies to the set of data attributes indicated by start <br> 2. Applies to the next set of data attributes, ..., and so on <br> see CSNUM type 7 for the number of sets of data attributes. | Depends on data-attribute-set-number and primary device | 0 to 255 | F |
| 12 Line color for each data group (see Color numbers on page 209 | 1. Applies to the set of data attributes indicated by start <br> 2. Applies to the next set of data attributes, ..., and so on <br> see CSNUM type 7 for the number of sets of data attributes. | * | 0 to 255 or * (same as type 11) | F |
| 13 Shading pattern for each data group (see Figure 19 on page 210 | 1. Applies to the set of data attributes indicated by start <br> 2. Applies to the next set of data attributes, ..., and so on <br> see CSNUM type 7 for the number of sets of data attributes. | Depends on data-attribute-set-number and primary device | 0 to 16 and 65 to 254 | F |


| Type | Element of Values | Default | Range and meaning | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| 14 Line type for each data group (see "'Line type numbers" on page 209 | 1. Applies to the set of data attributes indicated by start <br> 2. Applies to the next set of data attributes, ..., and so on <br> see CSNUM type 7 for the number of sets of data attributes. | 7 | 0 to 8 | F |
| 15 Marker type for each data group (see "Marker numbers" on page 209 | 1. Applies to the set of data attributes indicated by start <br> 2. Applies to the next set of data attributes, ..., and so on <br> see CSNUM type 7 for the number of sets of data attributes. | Depends on data-attribute-set-number and primary device | 0 to 62 and 65 to 254 | F |
| 16 Chart type for each data group | 1. Applies to the set of data attributes indicated by start <br> 2. Applies to the next set of data attributes, ..., and so on <br> see CSNUM type 7 for the number of sets of data attributes. | Depends on data-attribute-set-number and primary device | 1 line <br> 2 surface <br> 3 histogram <br> 4 bar | F |
| 17 Pie slices to be exploded | 1. Applies to the set of data attributes indicated by start <br> 2. Applies to the next set of data attributes, ..., and so on <br> see CSNUM type 7 for the number of sets of data attributes. | 2 | 1 exploded <br> 2 not exploded | F |
| 18 Profile options | 1. Preview chart | 1 | 1 no preview chart 2 on all panels except data entry 3 on all panels | - |
|  | 2. Screen line for start of preview chart (counted from top) | 23 | $1 \text { to } 99$ | - |
|  | 3. Screen line for end of preview chart (counted from bottom) | 3 | $1 \text { to } 99$ | - |
|  | 4. Text highlighting | 1 | 1 no <br> 2 reverse video | - |
|  | 5. Characters in text strings | 1 | 1 latin <br> 2 latin and DBCS mixed, with position 3 latin and DBCS mixed, no position | F and D |
|  | 6. Type of directory | 1 | 1 standard <br> 2 advanced | - |


| Type | Element of Values | Default | Range and meaning | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| 19 Data interpretation options | 1. Position of $y$ values | 1 | ```1 at specified x values (see CSXDT) 2 at equal x intervals``` | F |
|  | 2. y value representation | 1 | 1 as entered 2 as indicated by element 3 |  |
|  | 3. y value indexing | 1 | 1 as percentage of all $y$ at $x$ <br> 2 as percentage of all $y$ in that data group |  |
|  |  |  | 3 as percentage of the $y$ at the $x$ value given in the first element of CSFLT type 6 |  |
|  | 4. y value position | 1 | 4 as percentage of the $y$ value in data group given in the second element of CSFLT type 6 <br> 1 at specified z values <br> 2 at equal $z$ intervals |  |
| 20 Data-groupname attributes | 1. $\qquad$ numbers on page 209 | 0 or 7 | $0 \text { to } 255$ | F |
|  | 2. Character mode | 3 | 1 fixed size, approximate positioning 2 fixed size, exact positioning 3 scaled, exact positioning |  |
|  | 3. Data-group-name areas blank | 1 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |
|  | 4. Data-group-name areas outlined | 1 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |
| 21 x-axis title options | 1. Axis position | 1 | 1 Parallel to axis, centered <br> 2 Parallel to axis, at end <br> 3 Horizontal above axis (if axis vertical) Parallel to axis (if axis horizontal) | F |
| 22 y-axis title options | 1. Axis position | 1 or 3 | 1 Parallel to axis, centered <br> 2 Parallel to axis, at end <br> 3 Horizontal above axis (if axis vertical) Parallel to axis (if axis horizontal) | F |

\begin{tabular}{|c|c|c|c|c|}
\hline Type \& Element of Values \& Default \& Range and meaning \& Where saved \\
\hline 23 x-axis line options \& \begin{tabular}{l}
1. Axis line required \\
2. Axis line color (see Color numbers on page 209 \\
3. Axis line type (see "Line type numbers" on page 209 \\
4. Axis line width
\end{tabular} \& \begin{tabular}{l}
1 \\
0 or 7 \\
7 \\
1
\end{tabular} \& \begin{tabular}{l}
1 yes \\
2 no \\
0 to 255 \\
1 to 8 \\
1 to 2
\end{tabular} \& F \\
\hline 24 y-axis line options \& \begin{tabular}{l}
1. Axis line required \\
2. Axis line color (see Color numbers on page 209 \\
3. Axis line type (see "Line type numbers" on page 209 \\
4. Axis line width
\end{tabular} \& \begin{tabular}{l}
1 \\
0 or 7 \\
7 \\
1
\end{tabular} \& \begin{tabular}{l}
1 yes \\
2 no \\
0 to 255 \\
1 to 8 \\
1 to 2
\end{tabular} \& F \\
\hline 25 x-axis scale and range \& \begin{tabular}{l}
1. Axis type (normally only the \(y\) axis is logarithmic) \\
2. Make 0 appear on axis
\end{tabular} \& 1
2 \& \begin{tabular}{l}
1 linear \\
2 logarithmic \\
1 yes \\
2 no
\end{tabular} \& F \\
\hline \(26 y\)-axis scale and range \& \begin{tabular}{l}
1. Axis type (normally only the \(y\) axis is logarithmic) \\
2. Make 0 appear on axis
\end{tabular} \& 1
2 \& \begin{tabular}{l}
1 linear \\
2 logarithmic \\
1 yes \\
2 no
\end{tabular} \& F \\
\hline 27 x-axis label options \& \begin{tabular}{l}
1. Label type \\
2. First label if label type is 4 \\
3. Position of labels \\
4. Label abbreviations if label type is 3 or 4 \\
5. Punctuation type if labels are numeric \\
6. First label if label type is 3
\end{tabular} \& 5

1
1
1
1
1

1 \& | 0 no labels |
| :--- |
| 1 numeric values multiplied by value in CSFLT type 11 |
| 2 your own labels |
| 3 day labels |
| 4 month labels |
| 5 data labels |
| 1 to 12 |
| 1 = January etc. |
| 1 beside scale marks |
| 2 between scale |
| marks |
| 1 no abbreviations |
| 2 first three letters |
| 3 first letter |
| 1 none |
| 2 standard |
| 1 to 7 |
| 1 = Monday etc. | \& F <br>

\hline
\end{tabular}

| Type | Element of Values | Default | Range and meaning | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| 28 y-axis label options | 1. Label type | 1 | 0 no labels <br> 1 numeric values multiplied by value in CSFLT type 12 <br> 2 your own labels <br> 3 day labels <br> 4 month labels <br> 5 data labels | F |
|  | 2. First label if label type is 4 | 1 | $\begin{aligned} & 1 \text { to } 12 \\ & 1 \text { = January etc. } \end{aligned}$ |  |
|  | 3. Position of labels | 1 | 1 beside scale marks 2 between scale marks |  |
|  | 4. Label abbreviations if label type is 3 or 4 | 1 | 1 no abbreviations <br> 2 first three letters <br> 3 first letter |  |
|  | 5. Punctuation type if labels are numeric | 1 | 1 none <br> 2 standard |  |
|  | 6. First label if label type is 3 | 1 | ```1 to 7 1 = Monday etc.``` |  |
| $29 x$-axis label attributes | 1. Label color (see Color numbers on page 209 <br> 2. Character mode | 0 or 7 | $0 \text { to } 255$ | F |
|  |  | 3 | 1 fixed size, approximate positioning 2 fixed size, exact positioning 3 scaled, exact positioning |  |
|  | 3. Must be 0 | 0 | 0 |  |
|  | 4. Must be 0 | 0 | 0 |  |
| 30 y-axis label attributes | 1. Label color (see Color numbers on page 209 <br> 2. Character mode | 0 or 7 | $0 \text { to } 255$ | F |
|  |  | 3 | 1 fixed size, approximate positioning 2 fixed size, exact positioning 3 scaled, exact positioning |  |
|  | 3. Must be 0 | 0 | 0 |  |
|  | 4. Must be 0 | 0 | 0 |  |
| 31 x-axis scale marks | 1. Scale mark type | 3 | 1 no scale marks 2 scale marks on one side of axis 3 scale marks on other side of axis 4 scale marks across axis | F |


| Type | Element of Values | Default | Range and meaning | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| $32 y$-axis scale marks | 1. Scale mark type | 3 | 1 no scale marks 2 scale marks on one side of axis 3 scale marks on other side of axis 4 scale marks across axis | F |
| $33 x$-axis grid line options | 1. Grid lines required <br> 2. Grid line color (see Color numbers on page 209 <br> 3. Grid line type (see "Line type numbers" on page 209 <br> 4. Grid line width | 2 <br> 0 or 7 <br> 7 or 1 <br> 1 | 1 yes <br> 2 no <br> 0 to 255 <br> 1 to 8 <br> 1 to 2 | F |
| 34 y-axis grid line options | 1. Grid lines required <br> 2. Grid line color (see Color numbers on page 209 <br> 3. Grid line type (see "Line type numbers" on page 209 <br> 4. Grid line width | 2 <br> 0 or 7 <br> 7 or 1 <br> 1 | 1 yes <br> 2 no <br> 0 to 255 <br> 1 to 8 <br> 1 to 2 | F |
| 35 x-reference-line options (elements 2, 3, 4 also affect type 51) | 1. $y$-reference-line required <br> 2. $x$ - and $y$-line color (see Color numbers on page 209 <br> 3. $x$ - and $y$-line type (see "Line type numbers" on page 209 <br> 4. $x$ - and $y$-line width | 2 <br> 0 or 7 <br> 7 <br> 1 | 1 yes <br> 2 no <br> 0 to 255 <br> 1 to 8 <br> 1 to 2 | F |
| 36 x-datum-line options | 1. Line required <br> 2. Line color (see Color numbers on page 209 <br> 3. Line type (see "Line type numbers" on page 209 <br> 4. Line width | 2 <br> 0 or 7 <br> 7 <br> 1 | 1 yes <br> 2 no <br> 0 to 255 <br> 1 to 8 <br> 1 to 2 | F |
| 37 y-datum-line options | 1. Line required <br> 2. Line color (see Color numbers on page 209 <br> 3. Line type (see "Line type numbers" on page 209 <br> 4. Line width | 2 <br> 0 or 7 <br> 7 <br> 1 | 1 yes <br> 2 no <br> 0 to 255 <br> 1 to 8 <br> 1 to 2 | F |



| Type | Element of Values | Default | Range and meaning | Where saved |
| :---: | :---: | :---: | :---: | :---: |
| 41 Chart dimensions | 1. Number of grid rows | device rows or | 1 to 255 | F |
|  | 2. Number of grid columns | 32 device columns or 80 | 1 to 255 |  |
|  | 3. Number of rows in top margin | 5 | 0 to 255 |  |
|  | 4. Number of rows in bottom margin | 5 | 0 to 255 |  |
|  | 5. Number of columns in left margin | 10 | 0 to 255 |  |
|  | 6. Number of columns in right margin | 10 | 0 to 255 |  |
| 42 Note options (for the current note, set by CSNUM type1) | 1. Horizontal distance units | 1 | 1 character grid 2 axis | F |
|  | 2. Vertical distance units | 1 | 1 character grid 2 axis |  |
|  | 3. Point on the note rectangle at which to apply the distance | 5 | 1 to 9 |  |
|  | 4. Interactive note | 1 | 1 yes |  |
|  |  |  | 2 no |  |
|  | 5. Note is selected | 1 | 1 yes |  |
|  |  |  | 2 no |  |
| 43 Subchart options (for the current subchart, set by CSNUM type 3) | 1. Subchart shaded | 0 | 1 yes | F |
|  | 2. Background shading color (see Color numbers on page 209 | 8 | $0 \text { to } 255$ |  |
|  | 3. Background shading pattern (see Figure 19 on page 210 | 16 | 0 to 16, 65 to 254 |  |
|  | 4. Boxed subchart | 2 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |
|  | 5. Box line color (see Color numbers on page 209 | 7 | 0 to 255 |  |
|  | 6. Box line type (see "Line type numbers" on page 209 | 7 | $0 \text { to } 8$ |  |
|  | 7. Subchart selected | 1 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |
|  | 8. Chart identification of main storage chart. If not zero, the identification number of a chart to be the subchart rather than the one named in CSCHA type 21 or 22. | 0 | $\geq 0$ |  |
| 44 Data import options | 1. Type of file | 1 | 1 unformatted (sequential) | DD |
|  |  |  | 2 Data Interchange Format (DIF) |  |
|  | 2. First data group placement | 0 | 0 (replace all) <br> 1 to 999 or * (add at end) |  |
|  | 3. First note placement | 0 | 0 (replace all) 1 to 999 or * (add at end) |  |
|  | 4. Transpose after import | 2 | $\begin{aligned} & 1 \text { yes } \\ & 2 \text { no } \end{aligned}$ |  |

\begin{tabular}{|c|c|c|c|c|}
\hline Type \& Element of Values \& Default \& Range and meaning \& Where saved \\
\hline \multirow[t]{2}{*}{45 Printing options} \& \begin{tabular}{l}
1. Number of copies to print \\
2. Content of header pages
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
1 to 99 \\
0 default (same as 1) \\
1 header page and no origin identification 2 no header page or origin identification \\
3 header page and origin identification 4 no header page but origin identification
\end{tabular} \& - \\
\hline \& \begin{tabular}{l}
3. Units to be used for print position (CSFLT type 1) \\
4. Protect print name fields
\end{tabular} \& 0

2 \& | 0 default (same as 1 ) |
| :--- |
| 1 a percentage of the appropriate page dimension (depth or length) |
| 2 inches |
| 3 centimeters |
| 4 number of rows for calls affecting page depth, number of columns for calls affecting page width 1 yes |
| 2 no | \& <br>

\hline \multirow[t]{3}{*}{46 x-axis title attributes} \& | 1. Title color (see Color numbers on page 209 |
| :--- |
| 2. Character mode | \& \[

0 or 7
\] \& ```

0 to 255
1 fixed size,
approximate
positioning
2 fixed size, exact
positioning
3 scaled, exact
positioning

``` & F \\
\hline & 3. Must be 0 & 0 & 0 & \\
\hline & 4. Must be 0 & 0 & 0 & \\
\hline \multirow[t]{4}{*}{47 y-axis title attributes} & 1. Title color (see Color numbers on page 209 & 0 or 7 & 0 to 255 & \\
\hline & 2. Character mode & 3 & ```
1 fixed size,
approximate
positioning
2 fixed size, exact
positioning
3 scaled, exact
positioning
``` & \\
\hline & 3. Must be 0 & 0 & 0 & \\
\hline & 4. Must be 0 & 0 & 0 & \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Type & Element of Values & Default & Range and meaning & \begin{tabular}{c} 
Where \\
saved
\end{tabular} \\
\hline 48 Note attributes & 1. Note color (see Color numbers on & 0 or 7 & 0 to 255 & F
\end{tabular}
(for the current note, page 209 set by CSNUM type
1)
\begin{tabular}{|c|c|c|c|c|}
\hline & 2. Character mode & 3 & \begin{tabular}{l}
1 fixed size, approximate positioning 2 fixed size, exact positioning \\
3 scaled, exact positioning
\end{tabular} & \\
\hline & 3. Area behind note blanked & 2 & \[
\begin{aligned}
& 1 \text { yes } \\
& 2 \text { no }
\end{aligned}
\] & \\
\hline & 4. Note to be outlined & 2 & \[
\begin{aligned}
& 1 \text { yes } \\
& 2 \text { no }
\end{aligned}
\] & \\
\hline \multirow[t]{12}{*}{49 Table chart options} & 1. Color of numeric data & 0 & 0 all the same 1 varies by data group 2 varies by x slice & F \\
\hline & 2. Number of \(x\) slices per set & * & 1 to 250 or * (all) & \\
\hline & 3. Lines drawn between sets of \(x\) slices & 2 & \[
\begin{aligned}
& 1 \text { yes } \\
& 2 \text { no }
\end{aligned}
\] & \\
\hline & 4. Gap between sets of \(x\) slices & 100 & 0 to 250 & \\
\hline & 5. Number of data groups per set & 1 & 1 to 250 or * (all) & \\
\hline & 6. Lines drawn between sets of data groups & 1 & \[
\begin{aligned}
& 1 \text { yes } \\
& 2 \text { no }
\end{aligned}
\] & \\
\hline & 7. Gap between sets of data groups & 100 & 0 to 250 & \\
\hline & 8. z-axis labels & 2 & 1 none & \\
\hline & & & \begin{tabular}{l}
2 use data group names \\
3 use \(z\) values
\end{tabular} & \\
\hline & 9. Scientific notation & 2 & 1 yes & \\
\hline & & & 2 no & \\
\hline & 10. Number of digits after decimal point & 2 & 0 to 6 & \\
\hline \multirow[t]{5}{*}{50 Table chart text attributes} & 1. Text color (see Color numbers on page 209 & 0 or 4 & 0 to 255 & \\
\hline & 2. Character mode & 3 & 1 fixed size, approximate positioning & \\
\hline & & & 2 fixed size, exact positioning 3 scaled, exact positioning & \\
\hline & 3. Must be 0 & 0 & 0 & \\
\hline & 4. Must be 0 & 0 & 0 & \\
\hline 51 x-reference-line (attributes set by & 1. Line required & 2 & \[
\begin{aligned}
& 1 \text { yes } \\
& 2 \text { no }
\end{aligned}
\] & \\
\hline
\end{tabular} type 35)

\section*{CSLOAD}

Function: To restore saved chart information.
\begin{tabular}{l} 
CSLOAD \\
(chart-id, type, name) \\
APL code \\
PGF RCP code \\
\hline
\end{tabular}
```

APL code 1222
PGF RCP code X'14000010' (335544336)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart for which the object is to be restored.
type (specified by user) (fullword integer) Indicates the type of chart object to be restored:

1 Load a format object. The name of the format file to be loaded must be given in the name parameter.
2 Load a data object. The name of the data file to be loaded must be given in the name parameter.
5 Load a data definition object. The name of the data definition file must be given in the name parameter.
6 Import a data file using a previously loaded data definition object. The name parameter is ignored.
name (specified by user) (8-byte character string) Gives the name of the chart object to be restored. The character string must be eight characters long.
'*' resets an object to the default state.
The special names \({ }^{1 *}\) TIED' and '*FREE' that are available on the ICU panels, are not available with this call, use CSNUM type 12.

\section*{Description}

Loads a chart object that has previously been saved. The name parameter updates the corresponding chart name set by CSCHA. The description loaded with the chart updates the corresponding chart description set by CSCHA.

\section*{Principal errors}
```

ADM0711 E CHART {DATA|FORMAT} 'a' HAS INVALID
CONTENTS
ADM0712 E CANNOT {LOAD|DISPLAY|PRINT}
KANJI/HANGEUL CHART
{FORMAT|DATA|FORMAT AND DATA} 'a'
ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM1154 E NO CURRENT DATA DEFINITION
AvAILABLE

```

ADM1155 E CURRENT DATA DEFINITION HAS NO VALID ITEMS DEFINED

\section*{CSNUM}

Function: To set control value for a chart.
\begin{tabular}{|ll|}
\hline CSNUM & (chart-id, type, value) \\
APL code & 1211 \\
PGF RCP code & X' \(^{\prime} 14080020^{\prime}(336068640)\) \\
\hline
\end{tabular}

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart for which control values are to be set.
type (specified by user) (fullword integer) Indicates the type of control value to be set.
The valid types are:
1. Set the current note number to the number in the value parameter. If the number is greater than the current maximum, new empty notes are created and the maximum is increased to this number.

The current note number is set to the default of 0 :
When a new chart is created
After a CSNUM type 2 call
After a CSSICU call with DISPLAY =
1 or 2
After a CSDEL type 1 call
After a CSLOAD type 1 call.

The value parameter must be in the range 0 through 999. This item is not saved.
2. Set the maximum note number to the number in the value parameter. If the number is greater than the current maximum, new empty notes are created and the maximum is increased to this number. If the number is less than the current maximum, the excess notes are deleted. The maximum note number is 8 when a new chart is created.

The value parameter must be in the range 0 through 999. This item is saved in the chart format file.
3. Set the current subchart number to the number in the value parameter. If the number is greater than the current maximum, new empty subcharts are created and the maximum is increased to this number.

The current subchart number is set to the default of 0 :

When a new chart is created
After a CSNUM type 4 call
After a CSSICU call with DISPLAY = 1 or 2
After a CSDEL type 3 call After a CSLOAD type 1 call.
The value parameter must be in the range 0 through 999. This item is not saved.
4. Set the maximum subchart number to the number in the value parameter. If the number is greater than the current maximum, new default subcharts are created and the maximum is increased to this number. If the number is less than the current maximum, the excess subcharts are deleted (but never the master chart). The maximum subchart number is 5 when a new chart is created.

The value parameter must be in the range 1 through 999. This item is saved in the chart format file.
5. Set the number of data groups to the number in the value parameter. If the number is greater than the current number, new data groups with missing values, null names, and appropriate \(z\) values are created. If the number is less than the current number, the excess data groups are deleted. The number of data groups is 0 when a new chart is created.
The value parameter must be in the range 0 through 999. This item is saved in the chart data file.
6. Set the number of elements ( \(x\) values) to the number in the value parameter. If the number is greater than the current number, new elements with missing
values are added to each data group and appropriate x values and null data values are created. If the number is less than the current number, the excess elements are deleted. The number of elements is 0 when a new chart is created.

For free data, the number of elements is set for the current component, as defined by CSNUM type 13.
The value parameter must be in the range 0 through 999. This item is saved in the chart data file.
7. Set the number of data attribute sets to the number in the value parameter. If the number is greater than the current number, new sets are created and attribute values are created as if the I command had been used on the ICU data attributes panel (2.6). If the number is less than the current number, the excess attribute sets are deleted. The number of sets is 12 if Version 2 defaults have been selected or 8 if not, when a new chart is created. (See ICUFMDF in the GDDM System Customization and Administration book for information on selecting these GDDM external defaults.)
The value parameter must be in the range 0 through 32. This item is saved in the chart format file.
8. Set the type of object to be listed on the directory panel when using CSSICU with DISPLAY \(=8\). The number in the value parameter must be one of the following:
-1 No list
0 Image symbol sets
1 Vector symbol sets
2 Generated map groups
3 Saved pictures (in device-dependent form)
4 Chart format
5 Chart data
6 Chart format and data
7 GDF files (in device-independent form)
9 Chart data definitions
10 Projections
11 Image data
This item is not saved.
9. Reserved. The value must be 0 .
10. Set the number of the master chart to the number in the value parameter. The master chart is moved so that it precedes the subchart with this number. The subcharts are renumbered. The number must not be greater than the maximum subchart number. The number is set to 1 when a new chart is created.

This item is saved in the chart format file.
11. Set the subchart nesting level to the number in the value parameter. The number must be in the range 0 through 5 . The number is set to 5 when a new chart is created.

This item is not saved.
12. Set type of data: tied or free data. All existing data is cleared and all data groups are deleted.

1 = tied data
2 = free data
This is set to 1 when a new chart is created.

This item is saved in the chart data file.
13. Set the current component for x data to be used by CSNUM and CSQNUM type 6. The number in the value parameter must not exceed the current number of components as set by CSNUM type 5 .

It must be set to 0 for tied data. It is set to 1 for free data:

When a new chart is created After a CSSICU call with DISPLAY = 1 or 2
After a CSNUM type 5 call
After a CSLOAD type 2 call.
This item is not saved.
value (specified by user) (fullword integer)
An integer giving the control number as indicated by the type parameter.

\section*{Description}

Sets control values for a chart.

\section*{Principal errors}

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
```

ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0738 E FOR TYPE t, 'VALUE' (=n) IS INVALID

```

\section*{CSQCHA}

Function: To query character values for a chart.
```

CSQCHA (chart-id, type, start, count, length,
chars)

APL code	1220
PGF RCP code	X'140C0008' $^{\prime}(336330760)$

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
type (specified by user) (fullword integer) Gives the type of character item to be queried. See CSCHA on page 127 for the meaning and valid settings of type, start, count, and length.
start (specified by user) (fullword integer) For character items that have a number of values (like labels), gives the number of the first character item to be queried. For other character items, it must be 1.
count (specified by user) (fullword integer) Gives the number of character items to be queried.

For example, if a character item contains six values and you want to look at values 3 and 4, set start to 3 and set count to 2.
length (specified by user) (fullword integer) Gives the length of each character item in the chars parameter. All the items in the array must be the same length.
chars (returned by GDDM) (character) A character string array made up of count individual items each of length length. An array of length count * length will be returned, starting with the element specified by start.

\section*{Description}

Queries character items for a chart.
The items returned can be used unchanged in a subsequent CSCHA call.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0729 E FOR TYPE t, 'START' (=n1) PLUS
'COUNT' (=n2) IS TOO LARGE
ADM0732 E FOR TYPE t, 'LENGTH' (=n) IS
INVALID
ADM0740 E FOR TYPE t, 'COUNT' (=n) IS INVALID
ADM0741 E FOR TYPE t, 'START' (=n) IS INVALID

```

\section*{CSQCHL}

Function: To query character lengths for a chart.
```

CSQCHL (chart-id, type, count, length)
APL code 1221
PGF RCP code X'140C000C' (336330764)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
type (specified by user) (fullword integer) Gives the type of character item to be queried. See CSCHA on page "CSCHA - Set character values for a chart" on page 127 for valid settings of type.
count (returned by GDDM) (fullword integer)
Returns the number of values for the character item being queried.
length (returned by GDDM) (fullword integer) Returns the length of each character item in the char parameter.

\section*{Description}

Queries a character item set by a CSCHA call to find the number of values and the length of each value.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0736 E FOR TYPE t, NO INSTANCE EXISTS

```

\section*{CSQCS}

Function: To query CSxxxx call information.
```

CSQCS (chart-id, mode, type, count, values)
APL code 1226
PGF RCP code X'14040014' (335806484)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
mode (specified by user) (fullword integer) Use with the type parameter to specify the information required.
See the table under the type parameter for valid combinations of the mode and type parameters.
type (specified by user) (fullword integer) Use with the mode parameter to specify the information required.

Valid mode and type combinations
\begin{tabular}{ccl} 
Mode & Type & \begin{tabular}{l} 
Requests \\
0
\end{tabular} \\
1 & 0 & \begin{tabular}{l} 
maximum type value for \\
CSNUM and CSQNUM \\
maximum type value allowed \\
for CSINT and CSQINT \\
current item information and \\
number of elements valid for
\end{tabular} \\
2 & 0 & \begin{tabular}{l} 
CSINT and CSQINT type n \\
maximum type value allowed \\
for CSFLT and CSQFLT
\end{tabular} \\
2 & n & \begin{tabular}{l} 
current item information and \\
number of elements valid for \\
CSFLT and CSQFLT type n
\end{tabular} \\
3 & 0 & \begin{tabular}{l} 
maximum type value allowed \\
for CSCHA, CSQCHA, and \\
CSQCHL
\end{tabular} \\
3 & n & \begin{tabular}{l} 
Current item information valid \\
for CSCHA, CSQCHA, and \\
CSQCHL type n
\end{tabular}
\end{tabular}
count (specified by user) (fullword integer)
Gives the number of elements to be returned in the values parameter.
values (returned by GDDM) (an array of fullword integers)
Returns the requested information.
The elements are arranged as follows:
Element 1 The maximum type value or the number of elements allowed, as requested by the mode and type parameters.
For mode 3 Type n , the returned value is always 1 .
Element 2 and Element 3 These give the instance information, if any, for the call and type specified by mode and type.
Where a call (like CSINT type 42) refers to an item (like notes) that can have a number of instances, element 2 gives the type value to use with CSNUM and CSQNUM to set or query the total number of instances.

Element 3 gives the type value to use to set or query the current instance.

If the call and type specified by mode and type do not apply to items that can have several instances, then elements 2 and 3 are both set to 0 .

Note: Elements 2 and 3 contain 0 if type is 0 .

\section*{Description}

Gives information about the valid parameter ranges of other CSxxxx calls.

If you use this call with other CSQxxx calls, you can discover all you need to know about any chart.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0726 E 'MODE' (=n) IS INVALID
ADM0727 E 'COUNT' (=n) IS INVALID
ADM0737 E FOR MODE n, 'TYPE' (=t) IS INVALID

```

\section*{CSQDIR}

Function: To query object directory list.
\begin{tabular}{cl} 
CSQDIR & \begin{tabular}{l} 
(count, name, type, library, date, \\
length, description)
\end{tabular}
\end{tabular}
APL code 1225
PGF RCP code X'14000024' (335544356)

\section*{Parameters}
count (specified by user) (fullword integer) Gives the number of the object in a list of GDDM objects created by a CSDIR call, about which information is required. CSDIR will have returned the total number of objects in the list.
name (returned by GDDM) (8-byte character string)
Returns the name of the object whose number was given by the count parameter.
type (returned by GDDM) (fullword integer) Returns the type of the object whose number was given by the count parameter. Possible types are:
\begin{tabular}{cl}
0 & Image symbol sets \\
1 & Vector symbol sets \\
2 & Generated map groups \\
3 & \begin{tabular}{l} 
Saved pictures \\
(in device-dependent form)
\end{tabular} \\
4 & \begin{tabular}{l} 
Chart format
\end{tabular} \\
5 & Chart data \\
6 & Chart format and data \\
7 & \begin{tabular}{l} 
GDF files \\
(in device-independent form)
\end{tabular} \\
9 & Chart data definitions \\
10 & Projections \\
11 & Image data
\end{tabular}
library (returned by GDDM) (8-byte character string)
Returns the library of the object whose number was given by the count parameter.

Under TSO, this will be a ddname.
Under CICS, this will be a symbolic data set name.
Under VM, this will be a one- or two-character filemode.
Under IMS, this will be a DBD name.
date (returned by GDDM) (20-byte character string)
Returns the date and time of the last update of the object whose number was given by the count parameter. Your GDDM defaults give the format for the date and time. The field is left-justified.
length (specified by user) (fullword integer)
Gives the length of the string to be returned in the description parameter.
description (returned by GDDM) (character) Returns the description of the object whose number was given by the count parameter.

\section*{Description}

Queries a list of GDDM objects created by a CSDIR call.

\section*{Principal errors}

ADM0724 E NO DIRECTORY LIST EXISTS
ADM0727 E 'COUNT' (=n) IS INVALID

\section*{CSQFLT}

Function: To query floating-point values for a chart.
\begin{tabular}{ll} 
CSQFLT & \begin{tabular}{l} 
(chart-id, type, start, count, control, \\
values)
\end{tabular} \\
APL code & 1208 \\
PGF RCP code & \(X^{\prime} 140 C 0004^{\prime}(336330756)\)
\end{tabular}

\section*{Parameters}
chart-id (specified by user) (fullword integer)
Gives the identification number of the chart to be queried.
type (specified by user) (fullword integer) Gives the group of items to be queried; for example, note attributes.

See CSFLT on page 132 for the meaning and the valid settings of type, start, and count.
start (specified by user) (fullword integer) Gives the number of the first item in the group to be queried.
count (specified by user) (fullword integer) Gives the number of items in the group to be queried.
For example, if a group contains six items and you want to look at items 3 and 4, set start to 3 and set count to 2 .
control (returned by GDDM) (an array of fullword integers)
This returned array indicates how the elements in the values parameter are to be interpreted. The first element in this array corresponds to the first one in the values array, and so on.
The valid values for the control parameter are:
0 The item has the value given in the corresponding element of values.

3 The item is set as though * had been entered on the corresponding ICU panel.
values (returned by GDDM) (array of short floating-point numbers)
Returns the values of the group of items requested.

\section*{Description}

Queries floating-point items for a chart.
The information returned is in a format suitable for use in a subsequent CSFLT call.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0729 E FOR TYPE t, 'START' (=n1) PLUS
'COUNT' (=n2) IS TOO LARGE
ADM0736 E FOR TYPE t, NO INSTANCE EXISTS
ADM0740 E FOR TYPE t, 'COUNT' (=n) IS INVALID
ADM0741 E FOR TYPE t, 'START' (=n) IS INVALID

```

\section*{CSQINT}

Function: To query integer values for a chart.
\begin{tabular}{|ll|}
\hline CSQINT & \begin{tabular}{l} 
(chart-id, type, start, count, control, \\
values)
\end{tabular} \\
APL code & 1206 \\
PGF RCP code & X' \(^{\prime} 140 C 0000{ }^{\prime}(336330752)\) \\
\hline
\end{tabular}

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
type (specified by user) (fullword integer) Gives the group of items to be queried; for example, bar chart attributes.

See CSINT on page 137 for the meaning and the valid settings of type, start, and count.
start (specified by user) (fullword integer) Gives the number of the first integer item to be queried.
count (specified by user) (fullword integer) Gives the number of items in the group to be queried.

For example, if a group contains six items and you want to look at items 3 and 4, set start to 3 and set count to 2.
control (returned by GDDM) (an array of fullword integers)
This returned array indicates how the elements in the values parameter are to be interpreted. The first element in this array corresponds to the first one in the values array, and so on.

The valid values for the control parameter are:
0 The item has the value given in the corresponding element of values.

3 The item is set as though * had been entered on the corresponding ICU panel.
values (returned by GDDM) (an array of fullword integers)
Returns the values of the group of items requested.

\section*{Description}

Queries integer items for a chart.
The information returned is in a format suitable for use in a subsequent CSINT call.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0728 E FOR TYPE t, ELEMENT n1 OF 'VALUES'
(=n2) IS INVALID
ADM0736 E FOR TYPE t, NO INSTANCE EXISTS
ADM0740 E FOR TYPE t, 'COUNT' (=n) IS INVALID
ADM0741 E FOR TYPE t, 'START' (=n) IS INVALID

```

\section*{CSQNUM}

Function: To query control value for chart.

\section*{CSQNUM (chart-id, type, value)}
\begin{tabular}{ll} 
APL code & 1212 \\
PGF RCP code & \(X^{\prime} 140 C 0020^{\prime}(336330784)\)
\end{tabular}

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
type (specified by user) (fullword integer)
Gives the type of control value to be queried.
The valid types are:
1. Query the current note number.
2. Query the maximum note number.
3. Query the current subchart number.
4. Query the maximum subchart number.
5. Query the number of data groups.
6. Query the number of elements ( \(x\) values).
7. Query the number of data attribute sets.
8. Query the type of object listed on the initial directory panel. The number returned in the value parameter will be one of the following:
-1 No list
0 Image symbol sets
1 Vector symbol sets
2 Generated map groups
3 Saved pictures (in device-dependent form)
4 Chart format
5 Chart data
Chart format and data
GDF files (in device-independent form)
9 Chart data definitions
10 Projections
11 Image data
9. Reserved. The number returned in the value parameter will be 0 .
10. Query the number of the master chart.
11. Query the subchart nesting level.
12. Query whether the data is tied or free. The number returned in the value parameter will be one of the following:
1 tied data
2 free data
13. Query the current component for \(x\) data to be used by CSNUM and CSQNUM type 6.
value (returned by GDDM) (fullword integer)
Returns an integer giving the control number as indicated by the type parameter.

\section*{Description}

Queries control values for a chart.
The information returned is in a form suitable for use in a subsequent CSNUM call.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0725 E 'TYPE' (=t) IS INVALID

```

\section*{CSQUID}

Function: To query unique chart identifier.
```

CSQUID (chart-id)
APL code 1209
PGF RCP code X'14040010' (335806480)

```

\section*{Parameters}
chart-id (returned by GDDM) (fullword integer)
Returns the next unused chart identification number.

\section*{Description}

Gives an unused chart identification number. (The number will be the highest available unused number.)

\section*{Principal errors}

None

\section*{CSQXDT}

Function: To query independent (x) data values for a chart.
```

CSQXDT (chart-id, component, count,
x-values)
APL code 1216
PGF RCP code X'140C0010' (336330768)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
component (specified by user) (fullword integer) For tied data, this must be 0 .

For free data, gives the number of the component for which x data values are required. The number must be less than or equal to the current number of components as returned by CSQNUM type 5.
count (specified by user) (fullword integer) Gives the number of elements to be returned in values.
x-values (returned by GDDM) (array of short floating-point numbers)
An array containing the queried independent (x) data values.

\section*{Description}

Queries the x (independent) data values for a chart.

The information returned is in a format suitable for use with a subsequent CSXDT call.

\section*{Principal errors}

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
```

ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0727 E 'COUNT' (=n) IS INVALID
ADM0734 E 'COMPONENT' (=n) IS INVALID

```

\section*{CSQXSL}

Function: To query independent (x) data selection for a chart.
```

CSQXSL (chart-id, component, count,
x-values)
APL code 1229
PGF RCP code X'140C0030' (336330800)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
component (specified by user) (fullword integer) For tied data, this must be 0 .
For free data, gives the number of the component for which \(x\) data values are required. The number must be less than or equal to the current number of components as returned by CSQNUM type 5 .
count (specified by user) (fullword integer) Gives the number of elements to be returned in the values array.
x-values (returned by GDDM) (an array of fullword integers)
An array indicating which corresponding independent (x) data values are selected and which excluded. Possible values are:

1 selected
2 excluded

\section*{Description}

Queries the independent ( \(x\) ) data values selected for a chart.

The information returned is in a format suitable for use with a subsequent CSXSL call.

\section*{Principal errors}

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT EXIST
ADM0727 E 'COUNT' (=n) IS INVALID
ADM0734 E 'COMPONENT' (=n) IS INVALID

\section*{CSQYDT}

Function: To query dependent (y) data values for a chart.
```

CSQYDT (chart-id, component, count,
y-values)
APL code 1217
PGF RCP code X'140C0014' (336330772)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
component (specified by user) (fullword integer) Gives the number of the component for which \(y\) data values are to be returned in the values array. It must be less than or equal to the number of components as returned by CSQNUM type 5.
count (specified by user) (fullword integer) Gives the number of elements to be returned in the values array.
y-values (returned by GDDM) (array of short floating-point numbers)
An array containing the queried dependent (y) data values.

\section*{Description}

Queries the dependent (y) data values for a chart.
The information returned is in a format suitable for use with a subsequent CSYDT call.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0727 E 'COUNT' (=n) IS INVALID
ADM0734 E 'COMPONENT' (=n) IS INVALID

```

\section*{CSQZDT}

Function: To query data group (z) values for a chart.
```

CSQZDT (chart-id, components, z-values)
APL code 1218
PGF RCP code X'140C0018' (336330776)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
components (specified by user) (fullword integer) Gives the number elements to be returned in the values array. Must be less than or equal to the current number of components as returned by CSQNUM type 5 .
z-values (returned by GDDM) (array of short floating-point numbers)
An array giving the queried data group (z) values.

\section*{Description}

Queries the data group ( z ) values for a chart.
The information returned is in a format suitable for use with a subsequent CSZDT call.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0735 E 'COMPONENTS' (=n) IS INVALID

```

\section*{CSQZSL}

Function: To query data group (z) selection for a chart.
```

CSQZSL (chart-id, components, z-values)
APL code 1231
PGF RCP code X'140C0038' (336330808)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be queried.
components (specified by user) (fullword integer) Gives the number of elements to be returned in values.
z-values (returned by GDDM) (an array of fullword integers)
An array indicating which corresponding data group ( \(z\) ) values are selected and which excluded. Possible values are:
selected
2 excluded

\section*{Description}

Queries the data group (z) values selected for a chart.

The information returned is in a format suitable for use with a subsequent CSZSL call.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0735 E 'COMPONENTS' (=n) IS INVALID

```

\section*{CSSAVE}

Function: To save chart information.
```

CSSAVE (chart-id, type, name, mode)
APL code 1223
PGF RCP code X'14000014' (335544340)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be saved.
type (specified by user) (fullword integer)
Gives the type of chart object to be saved.
1 Save a chart format in an object called name

2 Save a chart data in an object called name

4 Save a chart data and format as a graphic data format (GDF) file in an object called name

5 Save a data definition in an object called name.

See CSCHA, CSFLT, CSINT, CSNUM, CSXDT, CSXSL, CSYDT, CSYSL, CSZDT, and CSZSL for details of which items are saved with which type of chart object.
name (specified by user) (8-byte character string) Gives the name of the chart object to be saved.
mode (specified by user) (fullword integer) Indicates whether an existing object with the same name can be overwritten or not.

1 An existing object may not be overwritten.

2 An existing object may be overwritten.

\section*{Description}

Saves chart objects. The name parameter updates the current chart name set by CSCHA. The description saved with the current chart object is taken from the chart description set by CSCHA.

\section*{Principal errors}
```

ADM0324 E FILE 'a' ALREADY EXISTS
ADM0713 E CHART {DATA|FORMAT} CANNOT BE SAVED
WITH NAME '*'
ADM0714 E TOO MUCH DATA TO
{SAVE|PRINT|DISPLAY}
ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0725 E 'TYPE' (=t) IS INVALID
ADM0726 E 'MODE' (=n) IS INVALID

```

\section*{CSSICU}

Function: To start an ICU session for a chart.

\section*{CSSICU (chart-id, count, control)}
\begin{tabular}{ll} 
APL code & 1204 \\
PGF RCP code & \(X^{\prime} 14000004^{\prime}(335544324)\)
\end{tabular}

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be used.
count (specified by user) (fullword integer) Gives the number of elements in the control parameter.
control (specified by user) (an array of fullword integers)
This array can have up to three elements. These elements define how the ICU session will operate.

\section*{Element 1 - Display}

The value in this element must be in the range 1 through 8 . If omitted, 1 is assumed.

1 Full interactivity, with the Home panel seen first

2 Full interactivity, with the Display panel seen first

3 Only the Save/load and Display panels available

4 Print or plot a chart
5, 6 Draw a chart in the current page
7 Only the Display panel available
8 Only the Directory panel available
A full explanation of each setting is given below.

\section*{Element 2 - Help}

Sets the help level.
If omitted, 1 is assumed. This is ignored unless element 1 is set to \(1,2,3\), or 8 .

0 PF key information is not shown initially on the Display and GDF Display panels. This can be changed by pressing ENTER on either panel.
1 PF key information is shown initially on the Display and GDF Display panels. This can be changed by pressing ENTER on either panel.

\section*{Element 3 - Isolate}

Indicates which Save/load and Directory panels are available to the user.
If omitted, 0 is assumed. This is ignored unless element 1 is set to 1,2 , or 3 .

0 Panels specified by the ICUISOL option in the GDDM external defaults are available (see the GDDM System Customization and Administration book). If this is 0 , all Save/load and Directory panels are available.

1 No Save/load or Directory panels available.

2 Save/load panels are available, but not the Directory panels.

\section*{Description}

Starts an ICU session using a chart that has been specified already.

The amount of control that the user has over the chart is specified by this call. The user may have access to all the ICU panels or to only a few, for example the display and print panels.

\section*{Principal errors}
```

ADM0700 E INVALID PRINTER WIDTH, DEPTH, OR
OFFSET
ADM0701 E FIRST DATA GROUP DOES NOT HAVE 3
VALUES FOR VENN DIAGRAM
ADM0702 S INVALID PRIMARY DEVICE
ADM0704 S SCREEN IS T00 SMALL (n1 BY n2
REQUIRED)
ADM0706 E 'a' (=n) IS INVALID
ADM0707 E NUMBER OF COPIES FOR PRINT (=n) IS
INVALID
ADM0708 E MISSING X VALUES NOT ALLOWED IN
'FREE' DATA
ADM0716 E INVALID {PRINT|GRAPHIC DATA FORMAT
(GDF)} DESTINATION NAME
ADM0717 E PRINT NAME IS '*OPEN' BUT NO
ALTERNATE DEVICE IS IN USE
ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST

```

\section*{Valid values for control element 1 - Display}
- DISPLAY = 1, 2, or 3

\section*{Meaning - Display panels}

These values initiate an interactive session, defined as access by the operator (at the GDDM primary device) to the ICU Display panel and to some or all of the other panels and help information, using the standard ICU interpretation of interrupts (ENTER key, PF keys, and so on). For interactive sessions, the ICU constructs charts using a unique GDDM page that is not accessible to the calling application program. This means that once an interactive session starts, GDDM calls cannot affect the chart. Conversely, ICU internal processing does not affect the calling program. (There is one exception: whenever the ICU constructs a chart, the PG routines call CHTERM to reinitialize the PG routines, and this may affect a calling program that uses PG routines.)
DISPLAY = 5 and DISPLAY = 6 (see below) should be used if further control over charts constructed by the ICU is desired.

Note: An interactive session in the above sense cannot be initiated by a program running under the IMS subsystem. In general, when DISPLAY \(=1,2\), or 3 , the primary device must be one that supports input.

DISPLAY = 1 causes the Home Panel to be displayed to the operator initially, and so gives access to the panel hierarchy. All panels are accessible except possibly the Save/load, and Directory panels (see element 3 of the control parameter) and possibly the Print panel.
DISPLAY = 2 causes the Display panel, showing a chart constructed from the specified data and format, to be displayed initially to the operator (if there is data to display). The operator can then choose to exit directly from the Display panel to the calling program, or may use the Home PF key to display the Home Panel and so get access to the panel hierarchy, as for DISPLAY \(=1\). In this case, if a chart cannot be constructed because there is no data available, the Home Panel is displayed as for DISPLAY \(=1\).
DISPLAY = 3 causes the Display panel to be displayed initially to the operator as for DISPLAY = 2, but with access to panels and help very much restricted. Only the Print and Save panels, at most, are accessible. Help information for the Display panel, and for the Print and Save panels, is available.

\section*{Possible application}

DISPLAY = 1 is used to give normal full access to the ICU panels, as in stand-alone mode.

DISPLAY = 2 may be used, for example, where normally the operator wants only to see the chart, but sometimes may want access to all the ICU panels.
DISPLAY = 3 may be used, for example, to present a given set of data values in a given graphical format, and to allow the operator additional choices of printing or saving the chart, or both. Note that the interpretation of the ENTER and PF keys is the normal interpretation in an interactive ICU session. If the
requirement is simply to display a chart for an operator who is not experienced in the use of the ICU, DISPLAY \(=7\) (see below) may be a better choice, because in that case any interrupt returns control to the calling program.
- DISPLAY = 4

\section*{Meaning - Print or plot a chart}

This value is used to invoke the ICU as a subroutine that causes a created or loaded chart to be printed on a specified GDDM printer or plotter with a name specified by CSCHA type 3. (Note that, under VM/SP, a print file is created, but may have to be printed separately.)
If a valid print destination name has been specified, the specified chart is printed as one print file. A header page is added, unless otherwise specified by CSINT type 45. The number of copies is also given by CSINT type 45. The size and position of the printed chart are given by CSFLT type 1 in units defined by CSINT type 45.
Another way is for the calling program to add the chart to a print file that it has already opened, by specifying '*OPEN' as the value of CSCHA type 3. In this case, the type of heading page and the number of copies as specified by CSINT type 45 are ignored because the number of copies to be printed was specified on the FSOPEN or DSOPEN call issued by the application program to open the print file. However, CSFLT type 1 can still be used to specify the size and position of the chart on the printed page.
As for DISPLAY = 1, 2 , or 3 , the application program cannot modify or access the chart constructed for printing, because it is created using a GDDM page inaccessible to the calling program.

\section*{Possible application}

DISPLAY = 4 may be used to print charts without operator interaction (or create a print file under VM/SP). Setting CSCHA type 3 to '*OPEN' may be used to include a chart in a print file already being created by an application program. In this case, the application program should open a print file, set CSCHA type 3 to
'*OPEN', and use the CSSICU call with DISPLAY \(=4\) for each chart to be printed, then close the print file.
- DISPLAY \(=5\) or 6

\section*{Meaning - Construct a chart}

These values cause a specified chart to be constructed in the calling program's current GDDM page. Control is returned to the calling program with the chart available for modification or use in the current page. ICU action is limited to chart construction; the chart is not written to a device.

The chart constructed differs from the form in which it would be displayed in the Display panel of an ICU interactive session in that it contains no alphanumeric fields. (The Display panel, as shown with DISPLAY \(=3\) or 7 , may show PF key information and error message information in alphanumeric fields overlaying the displayed chart.)
If an error message is returned from a CSSICU call when DISPLAY \(=5\) or 6 , the error is the first one of highest severity generated during chart construction.
The chart constructed is that created or loaded by the application object names already specified, as usual. On return to the calling program, the chart exists in the current page as a collection of unnamed (zero-id) graphics segments in a GDDM graphics field. The graphics field and picture space are those defined by the caller, or defaulted by GDDM. The window and viewport are set as follows:
- If the chart constructed is a line graph, surface chart, histogram, or bar chart the viewport boundaries are defined by the edges of the plotting area (in picture space coordinates), and the window boundaries are defined by the extreme values of the horizontal and vertical axis ranges (in axis coordinates).
- If the chart constructed is a pie chart, Venn diagram, polar chart, tower chart, or table chart, both viewport and window boundaries are undefined.

DISPLAY = 5 and DISPLAY \(=6\) differ in the following way:

DISPLAY = 5 causes the ICU to issue a CHRNIT call (to initialize the PG routines) before chart construction, and a CHTERM call (to terminate the PG routines) after chart construction.
This is the same action as is taken for DISPLAY = 1, 2, 3, and 4. The effect is that chart construction is isolated from PG routine calls issued by the calling program. The chart is drawn as large as possible within the graphics field.

DISPLAY = 6 causes the ICU to construct the chart without issuing the CHTERM call after chart construction. The effect is that the chart constructed can be modified by PG routine calls issued by the calling program after the CSSICU call. Control is returned to the calling program with the PG routines in state-2. Any further PG routine calls issued by the application program must be valid in state-2 (for example, plotting routine calls), unless the program first returns to state-1 with a CHRNIT or CHSTRT call. With DISPLAY = 6, the chart is drawn as large as possible within the area specified with the CHAREA call. This area may be a subset of the graphics field.

\section*{Possible application}

DISPLAY = 5 and DISPLAY \(=6\) allow the CSSICU call to be used as a high-level graphics call that may be combined with other GDDM or PGF calls in a straightforward manner to construct a picture. Any further use of the constructed picture (for example, to display it, print it, or save it) is under the control of the application program issuing the CSSICU call.

DISPLAY = 5 is used when the calling program does not issue PG routine calls, or when the calling program does not need to modify chart construction by PG routine calls. For example, a chart may be constructed with DISPLAY = 5 and then saved in data-stream form by the
calling program issuing the GDDM FSSAVE call.

DISPLAY = 6 allows the calling program to modify the chart by issuing PG routine calls after the CSSICU call. Some examples follow, to illustrate the power of this technique:
- CHAREA can be issued before the CSSICU call to specify the size and position of the chart area within which the chart is to be constructed. Thus CHAREA may be used, for example, to specify a chart area occupying the top left-hand quarter of the picture space. With normal GDDM defaults, this causes the chart constructed by the CSSICU call and displayed by means of FSFRCE or ASREAD to appear one-quarter its normal size, in the top left-hand corner of the screen.
- Additional data groups can be added to the chart by plotting routine calls issued after the CSSICU call. For example, the CSSICU call can construct a bar chart. A subsequent CHPLOT call can be used to plot a line (a data group of a line graph) over this bar chart, thus mixing chart types.
Note that the CSSICU call leaves the PG routines in state-2. A plotting routine call such as CHPLOT is valid in state-2, and has the effect of plotting the specified data against the axes already constructed by the CSSICU call (the \(x\) coordinates of the points of the line are plotted against the bar chart \(x\) axis).
Note that no entry appears in the legend for the added line. This is because the ICU issues a CHKEY call (in state-1) for the keys of the plotted bar chart data groups. All the keys in the list specified in this CHKEY call are used in the bar chart legend, so there is no key available for the additional data group constructed by the CHPLOT call.
- Secondary axes may be utilized by a similar technique. If the CHPLOT call is preceded by CHYSEL(2) (in order to select the secondary \(y\) axis), the
effect is that the line graph is plotted against the bar chart x axis already constructed by the CSSICU call, and against a secondary \(y\) axis that is constructed by the CHPLOT call.
- Finally, two (or more) charts can be overlaid by a sequence such as:
```

CALL CSSICU(...); /*with element = 6*/
.
.

```

```

Specify another chart

```

```

.
CALL CSSICU(...); /*with element = 6*/

```

The main difference between this case and the examples discussed above is that two sets of axes, and two legends, are constructed (one from each CSSICU call). With appropriate chart formats, the sets of axes may be made to coincide, or they may be made to appear in left/right and top/bottom pairs (like primary and secondary axes). Again, with suitable chart format specifications, the two legends can be made to appear as parts of a single legend, or they can be separated (one on the left and one on the right of the chart, for example).
- DISPLAY = 7

\section*{Meaning - Only display a chart}

DISPLAY = 7 causes the ICU to construct a chart on a GDDM page inaccessible to the calling program (as for DISPLAY \(=1\), 2 , 3 , and 4 ), and then to output the constructed chart with a GDDM ASREAD call. On return from this ASREAD call, the ICU immediately returns control to the calling program.

The chart is displayed without the error message or PF key information lines that may appear in alphanumeric fields on the Display panel during an interactive session.

\section*{Possible application}

DISPLAY = 7 can be used as a simple means of causing a specified chart to be displayed on the GDDM primary device. The application programmer need not know anything about GDDM concepts such as pages or graphics fields, because the ICU action is completely isolated from the calling program. The primary device is normally a display terminal, but could also be a queued printer (for example). This allows the same application program to be used to present a chart on different types of device.

In the normal case where the primary device is a screen, the ASREAD is terminated when the operator causes an interrupt of any kind (by pressing any key, for example). Hence DISPLAY = 7 can be used by an operator unfamiliar with the input conventions of an interactive ICU session. For example, an application program can display a sequence of charts by using a sequence of CSSICU calls with DISPLAY = 7. The operator can examine each chart for as long as is required, then press any key to get the next chart in the sequence. However, the calling program cannot determine what type of interrupt completed the ASREAD. Thus, the application cannot take different actions depending upon which PF key was pressed.
Note: If the primary device is defined as output-only (as under IMS, for example) the ASREAD call acts like FSFRCE. In this case the chart remains on a display screen until the application program causes further output, and operator input is disallowed.
- DISPLAY = 8

\section*{Meaning - Only display a chart}

This value restricts the ICU to the Directory panel in advanced mode format, and its associated Help panel. The Directory panel is displayed initially, not the Home panel, and no other panel, apart from Help panels, can be accessed. Library management functions only are included on the panels: chart display and printing functions are not accessible, nor are the chart update, save, or restore facilities. However, GDF files can be displayed and printed.

The Directory panel may be used to list those objects that are listed when the ICU is started in stand-alone mode (namely, chart data and formats, vector and image symbol sets, pictures saved with FSSAVE calls, GDF files, and generated mapgroups). Delete, list and copy functions are available for all these objects.

\section*{Possible application}

DISPLAY = 8 allows the ICU to be used as an interactive library manager.

\section*{CSXDT}

Function: To set independent (x) data values for a chart.
```

CSXDT (chart-id, component, count,
x-values)
APL code 1213
PGF RCP code X'14080010' (336068624)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be used.
component (specified by user) (fullword integer) Gives the number of the component for which the \(x\) data values are to be set.

It must be 0 for tied data.
For free data, it must be less than or equal to the current number of components as set by CSNUM type 5.
count (specified by user) (fullword integer) Gives the number of elements in the values array.

It must be less than or equal to the number of elements set by CSNUM type 6.

For tied data, if this number is smaller than the current number of \(x\) data values, the values array replaces the first count elements in the current array, and those not replaced are set to missing values.

For free data, the number in count must be the same as the current number of \(x\) data values. (Missing values are not valid for free data.)
x-values (specified by user) (array of short floating-point numbers) An array containing the independent (x) data values to be set.

\section*{Description}

Sets the independent ( x ) data values for a chart.
The number of \(x\) values set is normally the same as the current number of elements as set by CSNUM type 6.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0727 E 'COUNT' (=n) IS INVALID
ADM0734 E 'COMPONENT' (=n) IS INVALID
ADM0739 E ELEMENT n1 OF 'VALUES' (=n2) IS
INVALID

```

\section*{CSXSL}

Function: To set independent (x) data selection for a chart.

\section*{CSXSL (chart-id, component, count, x -values)}
\begin{tabular}{ll} 
APL code & 1228 \\
PGF RCP code & \(X^{\prime} 14080030 '(336068656)\)
\end{tabular}

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be used.
component (specified by user) (fullword integer) Gives the number of the component for which the \(x\)-data values are to be selected or excluded.

It must be 0 for tied data.
For free data, it must be less than or equal to the current number of components as set by CSNUM type 5.
count (specified by user) (fullword integer) Gives the number of elements in the values array.

It must be less than or equal to the number of elements set by CSNUM type 6.

For tied data, if this number is smaller than the current number of \(x\) data values, the values array selects or excludes the first count elements in the current array, and those not set remain as they were.

You cannot exclude x data values with free data.
x-values (specified by user) (an array of fullword integers)
An array corresponding to the \(x\)-values array of CSXDT, which indicates those values to be excluded. Valid values are:

1 selected
2 excluded

\section*{Description}

Selects and excludes independent (x) data values for a chart.

The number of \(x\) values is normally the same as the current number of elements as set by CSNUM type 6.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0727 E 'COUNT' (=n) IS INVALID
ADM0734 E 'COMPONENT' (=n) IS INVALID
ADM0739 E ELEMENT n1 OF 'VALUES' (=n2) IS
INVALID

```

\section*{CSYDT}

Function: To set dependent (y) data values for a chart.
```

CSYDT (chart-id, component, count,
y-values)
APL code 1214
PGF RCP code X'14080014' (336068628)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the chart identification number of the chart to be used.
component (specified by user) (fullword integer) Gives the number of the component for which the \(y\) data values are to be set. It must be less than or equal to the current number of components as set by CSNUM type 5 .
count (specified by user) (fullword integer)
Gives the number of elements in values.
It must be less than or equal to the number of elements set by CSNUM type 6.

For tied data, if this number is smaller than the current number of \(y\) data values, the values array replaces the first count elements
in the current array, and those not replaced are set to missing values.

For free data, the number in count must be the same as the current number of \(y\) data values. (Missing values are not valid for free data.)
y-values (specified by user) (array of short floating-point numbers)
An array containing the dependent (y) data values to be set.

\section*{Description}

Sets dependent (y) data values for a chart.
The number of \(y\) values passed is normally the same as the current number of elements as set by CSNUM type 6.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0727 E 'COUNT' (=n) IS INVALID
ADM0734 E 'COMPONENT' (=n) IS INVALID
ADM0739 E ELEMENT n1 OF 'VALUES' (=n2) IS
INVALID

```

\section*{CSZDT}

Function: To set data group (z) data values for a chart.
```

CSZDT (chart-id, components, z-values)
APL code 1215
PGF RCP code X'14080018' (336068632)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be used.
components (specified by user) (fullword integer) Gives the number of elements in values. It must be equal to the current number of components as set by CSNUM type 5 .
z-values (specified by user) (array of short floating-point numbers)
An array giving the data group (z) values to be set.

\section*{Description}

Sets the data group \((z)\) values for a chart.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0735 E 'COMPONENTS' (=n) IS INVALID
ADM0739 E ELEMENT n1 OF 'VALUES' (=n2) IS
INVALID

```

\section*{CSZSL}

Function: To set data group (z) selection for a chart.
```

CSZSL (chart-id, components, z-values)
APL code 1230
PGF RCP code X'14080038' (336068664)

```

\section*{Parameters}
chart-id (specified by user) (fullword integer) Gives the identification number of the chart to be used.
components (specified by user) (fullword integer) Gives the number of elements in values to be selected or excluded.

It must be equal to the current number of components as set by CSNUM type 5.
z-values (specified by user) (an array of fullword integers)
An array corresponding to the data group (z) values array of CSZDT, which indicates those values to be excluded. Valid values are:

1 selected
2 excluded

\section*{Description}

Selects and excludes data group (z) values for a chart.

\section*{Principal errors}
```

ADM0720 E CHART IDENTIFIER (=n) IS INVALID
ADM0721 E CHART WITH IDENTIFIER n DOES NOT
EXIST
ADM0735 E 'COMPONENTS' (=n) IS INVALID
ADM0739 E ELEMENT n1 OF 'VALUES' (=n2) IS
INVALID

```

\section*{VSSE}

Function: To invoke the Vector Symbol Editor
\begin{tabular}{|ll|}
\hline VSSE & (symbol-set-name) \\
& \\
APL code & 1202 \\
PGF RCP code & \(X^{\prime} 20000000^{\prime}\) (536870912) \\
\hline
\end{tabular}

\section*{Parameters}
symbol-set-name (specified by user) (character)
Either the name of a new or existing symbol set. If no name is entered, the operator will need to enter one after the first Vector Symbol Editor panel has been presented.

\section*{Description}

When the Vector Symbol Editor is called from an application program, the GDDM ESLIB routine can be called beforehand, to specify the libraries to be used for retrieving and storing symbol sets and object decks. For a full description of the ESLIB function and the subsystems in which it applies, refer to the GDDM Base Application Programming Reference book.

In PL/I, VSSE must be declared as an external entry point name. PGF provides a declaration that you can include into your program by using the following statement:
\%INCLUDE SYSLIB(ADMPIRV);
For details of using the Vector Symbol Editor see the GDDM-PGF Vector Symbol Editor book.

\section*{Principal errors}

None

\section*{GDDM-PGF APL codes in} numeric order
\begin{tabular}{|c|c|c|c|c|c|}
\hline APL code & Call name & Description & \begin{tabular}{l}
APL \\
code
\end{tabular} & Call name & Description \\
\hline 703 & CHSTRT & Reset the processing state to & 757 & CHDATT & Datum line attributes \\
\hline & & state-1 & 758 & CHNOTE & Construct a character string at a \\
\hline 704 & CHRNIT & Reinitialize PG routines & & & designated position \\
\hline 705 & CHTERM & Terminate the PG routines & 759 & CHNOFF & Specify offsets for CHNOTE \\
\hline 706 & CHZTIC & Z-axis scale mark interval & 760 & CHNATT & Specify attributes for notes \\
\hline 707 & CHZRNG & Z-axis explicit range & 761 & CHCOL & Component basic color table \\
\hline 709 & CHZGAP & Spacing between towers & 762 & CHLT & Component line type table \\
\hline 710 & CHPCTL & Control pie chart slices & 763 & CHMARK & Component marker table \\
\hline 711 & CHXLAT & X -axis label attributes & 764 & CHPAT & Component shading pattern \\
\hline 712 & CHYLAT & Y-axis label attributes & & & table \\
\hline 713 & CHXTAT & X-axis title attributes & 765 & CHGAP & Spacing between bars \\
\hline 714 & CHYTAT & Y-axis title attributes & 766 & CHGGAP & Spacing between bar groups \\
\hline 715 & CHZLAT & Z-axis label attributes & 767 & CHVCHR & Number of characters in bar \\
\hline 717 & CHSSEG & Set segment number & & & values \\
\hline 718 & CHQPOS & Query positional information & 768 & CHPIER & Reduce pie chart size \\
\hline 719 & CHCONV & Convert coordinate values & 769 & CHVATT & Attributes of values text in bar \\
\hline 720 & CHTPRJ & Tower chart projection & & & and pie charts \\
\hline 721 & CHAREA & Chart area & 770 & CHKMAX & Maximum legend width/height \\
\hline 722 & CHBATT & Set framing box attributes & 771 & CHKOFF & Legend offsets \\
\hline 723 & CHCGRD & Basic character spacing/size & 772 & CHLW & Component line width table \\
\hline 724 & CHHMAR & Horizontal margins & 773 & CHXDLB & X-axis data labels \\
\hline 725 & CHVMAR & Vertical margins & 774 & CHVDIG & Set decimal digits for bars and \\
\hline 726 & CHKEY & Legend key labels & & & tables \\
\hline 727 & CHKATT & Legend text attributes & 775 & CHPEXP & Exploded slices in pie charts \\
\hline 728 & CHKEYP & Legend base position & 776 & CHTHRS & Bar value threshold limit \\
\hline 729 & CHHATT & Heading text attributes & 777 & CHZSET & Z-axis options \\
\hline 730 & CHHEAD & Heading text & 779 & CHZDLB & Z-axis data labels \\
\hline 731 & CHXSEL & X-axis selection & 781 & CHMKSC & Set marker scale values \\
\hline 732 & CHYSEL & Y-axis selection & 782 & CHBARX & Plot a bar chart with numeric \\
\hline 733 & CHXSET & X-axis options & & & x -axis values \\
\hline 734 & CHYSET & Y-axis options & 783 & CHPOLR & Plot a polar chart \\
\hline 735 & CHAATT & Axis line attributes & 785 & CHTOWR & Plot a tower chart \\
\hline 736 & CHTATT & Axis title text attributes & 790 & CHDRAX & Specific control of axis drawing \\
\hline 737 & CHXTTL & X-axis title specification & 791 & CHPLOT & Line graphs and scatter plots \\
\hline 738 & CHYTTL & Y-axis title specification & 792 & CHSURF & Surface charts \\
\hline 739 & CHXRNG & X-axis explicit range & 793 & CHHIST & Histograms \\
\hline 740 & CHYRNG & Y-axis explicit range & 794 & CHNUM & Set number of components \\
\hline 741 & CHXINT & X-axis interception point & 795 & CHBAR & Plot a bar chart \\
\hline 742 & CHYINT & Y-axis interception point & 796 & CHPIE & Pie charts \\
\hline 743 & CHXTIC & X-axis scale mark interval & 797 & CHVENN & Venn diagram \\
\hline 744 & CHYTIC & Y-axis scale mark interval & 798 & CHSET & Specify chart options \\
\hline 745 & CHXSCL & X-axis scale factor & 799 & CHFINE & Curve fitting smoothness \\
\hline 746 & CHYSCL & Y-axis scale factor & 800 & CHLC & Component line color table \\
\hline 747 & CHLATT & Axis label text attributes & 801 & CHQRNG & Query axis ranges \\
\hline 748 & CHXLAB & X-axis label text & 802 & CHQARE & Query chart area \\
\hline 749 & CHYLAB & Y-axis label text & 804 & CHMISS & Missing values on a table chart \\
\hline 750 & CHXMTH & X -axis month labels & 805 & CHDCTL & Control the format of values, and \\
\hline 751 & CHYMTH & \(Y\)-axis month labels & & & the overall size of table charts \\
\hline 752 & CHXDAY & X-axis day labels & 806 & CHDTAB & Construct a table chart \\
\hline 753 & CHYDAY & Y-axis day labels & 1200 & CHART & Invoke Interactive Chart Utility \\
\hline 754 & CHGATT & Grid line attributes & 1202 & VSSE & Run the Vector Symbol Editor \\
\hline 755 & CHXDTM & X -axis datum line & 1203 & CSCCRT & Create a chart \\
\hline 756 & CHYDTM & \(Y\)-axis datum line & 1204 & CSSICU & Start an ICU session for a chart \\
\hline
\end{tabular}

\section*{APL codes}


\section*{Chapter 5. Using PGF under various subsystems}

The basic considerations for running PGF under CICS, IMS, TSO, and VM/SP CMS are the same as those described in the GDDM Base Application Programming Guide. This appendix provides some additional subsystem-specific information on the data-set characteristics that are required for PGF.

\section*{The Interactive Chart Utility}

The Interactive Chart Utility (which is described in "Chapter 2. Invoking the Interactive Chart Utility (ICU)" on page 9) provides the means for storing and retrieving chart formats and chart data.

\section*{CICS}

\section*{The Vector Symbol Editor}

The Vector Symbol Editor (which is described in the GDDM-PGF Vector Symbol Editor book) provides the means for storing and retrieving vector symbol sets (VSS).

\section*{Data sets and file processing}

The PGF file names, file types, and record types used (according to the subsystem environment) for symbol sets, chart formats, and chart data are shown in the following tables.
\begin{tabular}{|c|c|c|c|}
\hline Type of Data & PGF Default Name or Type & Data Set Type & \begin{tabular}{l}
Data \\
Characteristics
\end{tabular} \\
\hline Chart Format & \begin{tabular}{l}
Data set name = ADMF \\
Record type = ADMCFORM
\end{tabular} & Records in VSAM data set & \[
\begin{aligned}
& \text { RECORDSIZE(400 400) } \\
& \text { KEYS(20 0) }
\end{aligned}
\] \\
\hline Chart Data & \begin{tabular}{l}
Data set name = ADMF \\
Record type = ADMCDATA
\end{tabular} & Records in VSAM data set & \[
\begin{aligned}
& \text { RECORDSIZE(400 400) } \\
& \text { KEYS(20 0) }
\end{aligned}
\] \\
\hline Chart Data Definition & \begin{tabular}{l}
Data set name = ADMF \\
Record type = ADMCDEF
\end{tabular} & Records in VSAM data set & \[
\begin{aligned}
& \text { RECORDSIZE(400 400) } \\
& \text { KEYS(20 0) }
\end{aligned}
\] \\
\hline Symbol Sets & \begin{tabular}{l}
Data set name \(=\) ADMF \\
Record type \(=\) ADMSYMBL
\end{tabular} & Records in VSAM data set & \[
\begin{aligned}
& \text { RECORDSIZE(400 400) } \\
& \text { KEYS(20 0) }
\end{aligned}
\] \\
\hline GDF Files & Data set name = ADMF Record type = ADMGDF & Records in VSAM data set & \[
\begin{aligned}
& \text { RECORDSIZE(400 400) } \\
& \text { KEYS(20 0) }
\end{aligned}
\] \\
\hline
\end{tabular}

Note: COBOL programs running under CICS must not end with a STOP RUN statement. A GO BACK statement or an EXEC CICS RETURN must be used instead.

\section*{IMS}
\begin{tabular}{|ll|}
\hline Table 5. PGF default DBD names for IMS & \\
\hline Type of Data & PGF Default DBD Name \\
\hline Chart Format & ADMOBJ1 \\
Chart Data & ADMOBJ1 \\
Chart Data Definition & ADMOBJ1 \\
Symbol Sets & ADMOBJ1 \\
GDF Files & ADMGDF \\
\hline
\end{tabular}

\section*{TSO}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type of Data & PGF Default File Name & Data Set Type & DCB Format (RECFM) & \begin{tabular}{l}
DCB Record Length \\
(LRECL)
\end{tabular} & \begin{tabular}{l}
DCB Block Size \\
(BLKSIZE)
\end{tabular} \\
\hline Chart Format & ADMCFORM & Partitioned & \[
\begin{aligned}
& \mathrm{F} \text { or } \\
& \text { FB }
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400^{*} n
\end{aligned}
\] \\
\hline Chart Data & ADMCDATA & Partitioned & \[
\begin{aligned}
& \text { F or } \\
& \text { FB }
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400^{*} n
\end{aligned}
\] \\
\hline Chart Data Definition & ADMCDATA & Partitioned & \[
\begin{aligned}
& \text { F or } \\
& \text { FB }
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400^{*} \mathrm{n}
\end{aligned}
\] \\
\hline Symbol Sets & ADMSYMBL & Partitioned & \[
\begin{aligned}
& \text { F or } \\
& \text { FB }
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400^{*} \mathrm{n}
\end{aligned}
\] \\
\hline GDF Files & ADMGDF & Partitioned & \[
\begin{aligned}
& \text { F or } \\
& \text { FB }
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 400^{*} n
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{VM/SP CMS}
\begin{tabular}{|llll|}
\hline \multicolumn{2}{|l|}{ Table 7. PGF file characteristics for VM/SP CMS } & \\
\hline Type of Data & \begin{tabular}{l} 
PGF Default \\
Filetype
\end{tabular} & \begin{tabular}{l} 
RECFM \\
(Record Format)
\end{tabular} & \begin{tabular}{l} 
LRECL \\
(Record Length)
\end{tabular} \\
\hline Chart Format & ADMCFORM & F & 400 \\
Chart Data & ADMCDATA & F & 400 \\
Chart Data Definition & ADMCDEF & F & 400 \\
Symbol Sets & ADMSYMBL & F & 400 \\
GDF Files & ADMGDF & F & 400 \\
\hline
\end{tabular}

\section*{Appendix A. Sample programs}

This appendix contains listings of the following sample PGF programs supplied on the installation tape. The statements listed are those of the sample programs initially supplied with Version 2 Release 1 of PGF. Sample programs shipped with subsequent PTFs may differ from these listings.

The sample programs shown in this appendix are:
- A program that uses PG routines to draw a simple histogram. The same program is given in three languages, with the following names:
\(\begin{array}{ll}\text { COBOL } & \text { ADMUSC5 } \\ \text { FORTRAN } & \text { ADMUSF5 } \\ \text { PL/I } & \text { ADMUSP5 }\end{array}\)
The IMS version of this program is distributed as ADMUSP5I. However, its main entry point is still ADMUSP5.

A C/370 version of this program, called ADMUSB5, is supplied with GDDM-PGF 2.1.2. ADMUSB5 is not listed in this appendix.
- Programs that call the Interactive Chart Utility (ICU) using the CHART call to plot supplied data that is built into the programs. The programs are given in three languages, with the following names:

\section*{COBOL ADMUSC6 \\ FORTRAN ADMUSF6 \\ PL/I ADMUSP6}

No version of this program is provided for IMS.

A C/370 version of this program, called ADMUSB6, is supplied with GDDM-PGF 2.1.2. ADMUSB6 is not listed in this appendix.

Sample program ADMUSP7, which is supplied in PL/I only, performs translation of chart objects from one country-extended code page (CECP) to another. ADMUSP7 displays a panel on which the user specifies the names and types of chart objects that are to undergo code-page conversion. The user can specify whether characters in the chart data, the chart format, or in both are to be represented by code points on the country extended code page (CECP) shown on the panel.

When the user presses the ENTER key, the translation starts. The program translates all character strings in the chart objects from the object code page to the application code page. If the translation is successful, the program replaces the chart objects, overwriting previous versions saved under the same name. If any of the chart objects is not found, or if the chart type is invalid, the program issues an error message. If any other errors occur, the program does not save the translated chart but issues the appropriate GDDM message instead.

ADMUSP7 is not listed in this appendix.

\section*{Compiling the programs}

All of the sample programs should be compiled, link-edited, and executed as follows. (Refer also to the GDDM Base Application Programming Guide, which contains more detailed instructions for the various subsystems.) The source programs do not need to be modified except for:
1. Optional changes to the FSINIT call, as noted below under "Link-Editing the Programs."
2. Replacing the STOP RUN statements in the COBOL programs if they are to run under CICS. The statements should be replaced with GO BACK or EXEC CICS RETURN.

The programs should be compiled by a compiler appropriate to the source language and target subsystem (DOS/VS or OS/VS COBOL, FORTRAN G or H, or PL/I Optimizing Compiler). Note that CICS does not support programs written in FORTRAN.

Release 2 of the OS/VS COBOL compiler has a default option QUOTE, causing the " (double quote) to be used as the string delimiter. This is a change from OS/VS COBOL Release 1, and in order to compile the sample COBOL programs, the APOST option must be explicitly specified.

ADMUSP5 makes use of the supplied files of GDDM PL/I entry declarations. The members ADMUPINC, ADMUPINF, and ADMUPING are used by both versions of the program, and, in addition, ADMUPINA by the non-IMS version, and

\section*{sample programs}

ADMUPINE by the IMS version. All the necessary members must be available to the compiler in a source statement library on DOS/VS, via a SYSLIB specification on OS/VS, or via a GLOBAL

MACLIB command on CMS. The compilation of ADMUSP5 must be performed with the MACRO option. No errors should result from the compilation steps.

\section*{Link-editing the programs}

Except under VM/CMS the object code from the compilation must be link-edited with a GDDM interface routine appropriate to the subsystem and to the interface used (reentrant or nonreentrant).

Under OS/VS, the link-edit SYSLIBs should include the GDDM load library. The correct interface module is selected by an INCLUDE control statement specifying the appropriate member, as follows:
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
ADMUSC5 \\
ADMUSF5 \\
ADMUSP5
\end{tabular} \\
\begin{tabular}{ll} 
ADMUSC6 \\
(nonreentrant)
\end{tabular} \\
\hline \begin{tabular}{l} 
CICS/ESA \\
IMS \\
TSO
\end{tabular} & \begin{tabular}{l} 
ADMASF6 \\
ADMASNJ \\
ADMASNT
\end{tabular} \\
\hline
\end{tabular}

Another way is to use the automatic-library-call facility. For this, the source programs must be changed to replace the references to FSINIT with the appropriate member, as follows:
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
ADMUSC5 \\
ADMUSF5
\end{tabular} \\
\hline \begin{tabular}{l} 
ADMUSC6 \\
ADMUSP5 \\
(nonreentrant)
\end{tabular} \\
\hline \begin{tabular}{l} 
CICS/ESA \\
IMS \\
TSO
\end{tabular} & \begin{tabular}{l} 
FSINNC \\
FSINNPI \\
FSINN
\end{tabular} \\
\hline
\end{tabular}

Note that for PL/I the standard declarations do not include the other forms of FSINIT. They must, therefore, always be explicitly declared thus:

\section*{DCL FSINNC ENTRY EXTERNAL OPTIONS (ASM INTER);}

On DOS/VS, GDDM should be included from the relocatable libraries during link-editing. The correct interface modules should be selected as follows:
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
ADMUSC5 \\
ADMUSF5 \\
ADMUSP5 ADMUSF6 \\
(nonreentrant)
\end{tabular} \\
\hline CICS/DOS/VS & \begin{tabular}{l} 
ADMASNO and \\
ADMASLC
\end{tabular} \\
\hline
\end{tabular}
and should be included as described under the information on link-editing for CICS/DOS/VS in the GDDM Base Application Programming Guide. The automatic inclusion of the interface modules by source-program modification is not available for DOS/VS.

In VM/CMS, there is no link-editing. However, the CMS GLOBAL TXTLIB command must be executed (as described in the GDDM Base Application Programming Guide under the information on running a program
under CMS) to identify TXTLIBs from which GDDM/PGF routines can be loaded. The TXTLIBs required depend on the sample program attributes and the presence of GDDM/PGF in a discontiguous shared segment (DCSS), as follows:
\begin{tabular}{|l|l|}
\hline & \begin{tabular}{l} 
ADMUSC5
\end{tabular} \\
\begin{tabular}{ll} 
ADMUSF5 & ADMUSC6 \\
ADMUSP5 & ADMUSP6 \\
(nonreentrant)
\end{tabular} \\
\hline VM/CMS & ADMNLIB \\
Plus, \\
If a DCSS is available ... no extra TXTLIBs \\
If no DCSS is available ... ADMGLIB \& ADMPLIB \\
\hline
\end{tabular}

\section*{Executing the programs}

Note that the COBOL programs should not be run under CICS unless the STOP RUN statements have been replaced by a GO BACK statement or an EXEC CICS RETURN.

When the programs are executed, the GDDM load (or core-image) library containing PGF code must be available. The same library is used for nonreentrant and reentrant programs.

On CICS, the programs must be added to the Program Control Table (PCT) and Processing Program Table (PPT). The GDDM and PGF load library (or core-image library) must be specified when CICS is started.

On IMS, a PSB and ACB must be built for the transaction, and a data base, used to define the characteristics of the terminal from which it is executed, must be allocated and initialized. This is part of the installation procedure for PGF under IMS.

On TSO, the GDDM and PGF load library should be available (for example, in a STEPLIB). If a print is requested, the print queue data set (ADMPRINT.REQUEST.QUEUE by default) must have been created and initialized.

On VM/CMS, the GDDM/PGF TXTLIBs should be included in the GLOBAL libraries during execution, as described above, together with the language libraries.

To allow sufficient storage for GDDM, PL/I execution should specify ISASIZE. A value of 10 K bytes is sufficient.

No GDDM files are used by the sample programs, and no printing is performed (unless requested from the ICU in ADMUSC6, ADMUSF6, and ADMUSP6).

\section*{ADMUSC5 - COBOL program to draw a simple histogram}

******************************************************************09300000
* DATA FOR RANGE LABELS *16800000
01 RANGE-LABEL-DATA. 17700000
02 RANGE-LABEL-COUNT PIC S9(8) COMP VALUE +8. 18000000
02 RANGE-LABEL-LENGTH PIC S9(8) COMP VALUE +5. 18300000

02 RANGE-LABELS. 18600000
03 RANGE-LABEL1 PIC X(5) VALUE ' '. 18900000
03 RANGE-LABEL2 PIC X(5) VALUE ' <11 '. 19200000
03 RANGE-LABEL3 PIC X(5) VALUE '11-20'. 19500000
03 RANGE-LABEL4 PIC X(5) VALUE '21-30'. 19800000
03 RANGE-LABEL5 PIC X(5) VALUE '31-40'. 20100000
03 RANGE-LABEL6 PIC X(5) VALUE '41-50'. 20400000
03 RANGE-LABEL7 PIC X(5) VALUE '51-60'. 20700000

03 RANGE-LABEL8 PIC X(5) VALUE ' >60'. 21000000
21300000
******************************************************************21900000
* the heading data specifies the attributes, OF Which only the *22200000
* COLOR IS GIVEN (AS YELLOW, COLOR 6), THE HEADING LENGTH *22500000
* AND THE HEADING TEXT ITSELF. *22800000
******************************************************************23100000
23400000
01 HEADING-DATA. 23700000
02 HEADING-ATTR-COUNT PIC S9(8) COMP VALUE +1 . 24000000
02 HEADING-ATTRS. 24300000
03 HEADING-COLOR PIC S9(8) COMP VALUE +6. 24600000
02 HEADING-LENGTH PIC S9(8) COMP VALUE +47. 24900000
02 HEADING-TEXT PIC A(47) VALUE, 25200000
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{'PERCENTAGE POPULATION DISTRIBUTION BY AGE GROUP'.}} & 25500000 \\
\hline & & & 25800000 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(* * * * * * * * * * * * * * * * * * * * * * * *\)}} & +26100000 \\
\hline & & & *26400000 \\
\hline * SPEC & ECIFIES THE AXI & IS title, the AXIS RANGE & *26700000 \\
\hline * AND & d the scale mark & RK Interval. & *27000000 \\
\hline \multicolumn{4}{|l|}{***************************************************************27300000} \\
\hline & & & 27600000 \\
\hline \multicolumn{3}{|l|}{01 X-AXIS.} & 27900000 \\
\hline \multicolumn{3}{|l|}{02 TITLE.} & 28200000 \\
\hline \multirow[t]{2}{*}{} & TitLe-LENGTH & PIC S9(8) COMP VALUE +10. & 28500000 \\
\hline & TITLE-TEXT & PIC A(10) VALUE 'AGE GROUPS'. & 28800000 \\
\hline \multicolumn{3}{|l|}{02 RANGE.} & 29100000 \\
\hline \multicolumn{2}{|r|}{03 MIN} & COMP-1 Value 0.0E0. & 29400000 \\
\hline & MAX & COMP-1 VALUE 70.0E0. & 29700000 \\
\hline \multicolumn{3}{|l|}{02 SCALE-MARKS.} & 30000000 \\
\hline \multirow[t]{3}{*}{03
03} & MAJOR & COMP-1 VALUE 10.0E0. & 30300000 \\
\hline & MINOR & COMP-1 VALUE 0.0E0. & 30600000 \\
\hline & & & 30900000 \\
\hline \multicolumn{4}{|l|}{***********************************************************31200000} \\
\hline \multicolumn{3}{|l|}{* Y AXIS SPECIFICATION} & *31500000 \\
\hline \multicolumn{3}{|l|}{* SPECIFIES the axis title, the axis rang} & *31800000 \\
\hline \multicolumn{3}{|l|}{* AND THE SCALE MARK Interval.} & *32100000 \\
\hline \multicolumn{4}{|l|}{**********************************************************32400000} \\
\hline \multicolumn{4}{|r|}{32700000} \\
\hline \multicolumn{3}{|l|}{01 Y-AXIS.} & 33000000 \\
\hline \multicolumn{3}{|l|}{02 TITLE.} & 33300000 \\
\hline \multicolumn{2}{|l|}{03 TITLE-LENGTH} & PIC S9(8) COMP VALUE +10. & 33600000 \\
\hline \multicolumn{2}{|r|}{03 TITLE-TEXT} & PIC A(10) VALUE 'PERCENTAGE'. & 33900000 \\
\hline \multicolumn{3}{|l|}{02 RANGE.} & 34200000 \\
\hline \multicolumn{2}{|r|}{03 MIN} & COMP-1 VALUE 0.0E0. & 34500000 \\
\hline \multicolumn{2}{|r|}{03 MAX} & COMP-1 VALUE 22.0E0. & 34800000 \\
\hline \multicolumn{3}{|l|}{02 SCALE-MARKS.} & 35100000 \\
\hline \multicolumn{2}{|r|}{03 MAJOR} & COMP-1 VALUE 2.0E0. & 35400000 \\
\hline \multirow[t]{3}{*}{} & MINOR & COMP-1 VALUE 1.0E0. & 35700000 \\
\hline & & & 36000000 \\
\hline & & & 36300000 \\
\hline \multicolumn{4}{|l|}{*************************************************************36600000} \\
\hline \multicolumn{3}{|l|}{* X AXIS RANGE DATA} & *36900000 \\
\hline \multicolumn{4}{|l|}{**********************************************************37200000} \\
\hline \multicolumn{3}{|l|}{01 RANGES.} & 37500000 \\
\hline \multicolumn{2}{|r|}{02 RANGE-COUNT} & PIC S9(8) COMP VALUE +7. & 37800000 \\
\hline \multicolumn{2}{|r|}{02 RANGE-STARTS.} & & 38100000 \\
\hline \multicolumn{2}{|r|}{03 RANGE-START} & T COMP-1 OCCURS 7 TIMES. & 38400000 \\
\hline \multicolumn{2}{|r|}{02 RANGE-ENDS.} & & 38700000 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{03 RANGE-END}} & COMP-1 OCCURS 7 TIMES. & 39000000 \\
\hline & & & 39300000 \\
\hline \multicolumn{4}{|l|}{**********************************************************39600000} \\
\hline \multicolumn{3}{|l|}{* Y dATA VALUES} & *39900000 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(* * * * * * * * * * * * * * * * *\)}} & **40200000 \\
\hline & & & 40500000 \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{02 DATA-VALUE COMP-1 OCCURS 7 TIMES.}} & 40800000 \\
\hline \multicolumn{3}{|l|}{***********************************************************41400000} & \\
\hline \multicolumn{3}{|l|}{* ATTRIBUTE VALUES USED FOR THE CHART.} & *41700000 \\
\hline \multicolumn{3}{|l|}{* - HISTOGRAM IS RED} & *42000000 \\
\hline \multicolumn{3}{|l|}{* - AND IS IN PATTERN 12, A SPRINKLING OF DOTS.} & *42300000 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 42600000 ~\) 4290000}} \\
\hline & & & \\
\hline
\end{tabular}


```

* SPECIFY A VERTICAL Y RANGE OF 22 WITH LONG (MAJOR) TICKS *84800000
* EVERY TWO, AND ONE SHORT (MINOR) TICK BETWEEN. *85200000
* - IF THE RANGE IS OMITTED, AUTOSCALING WILL NORMALLY *85600000
* PRODUCE A SUITABLE AXIS RANGE PROVIDED CONSISTENCY FROM *86000000
* CHART TO CHART IS NOT IMPORTANT. *86400000
**}8680000
87200000
CALL 'CHYRNG' USING MIN OF Y-AXIS, MAX OF Y-AXIS. 87600000
CALL 'CHYTIC' USING MAJOR OF Y-AXIS, MINOR OF Y-AXIS. 88000000
88400000
***88800000
* HAVING SPECIFIED THE AXIS CHARACTERISTICS, THE DATA *89200000
* IS PLOTTED. FIRST THE COLOR AND PATTERN ARE *89600000
* SPECIFIED FROM THE STRUCTURE CHART-ATTRIBUTES. *90000000
* (IF THEY ARE NOT, PGF WILL USE PATTERN 1 AND BLUE). *90400000
***90800000
91200000
CALL 'CHCOL' USING COMPONENT-COUNT, CHART-COLOR. 91600000
CALL 'CHPAT' USING COMPONENT-COUNT, CHART-PATTERN. 92000000
CALL 'CHHIST' USING COMPONENT-COUNT, RANGE-COUNT, 92400000
RANGE-STARTS, RANGE-ENDS, DATA-VALUES. }9280000
93200000
**93600000
* PUT A NOTE ON THE CHART WITH INSTRUCTIONS ABOUT PRINTING *94000000
**}9440000
CALL 'CHNOTE' USING ANNOTATION-POSITION, ANNOTATION-LENGTH, 94800000
ANNOTATION-TEXT. }9520000
**}9560000
* PRESENT THE CHART AND READ THE KEYBOARD. *96000000
* THIS SERVES TO HOLD THE PICTURE ON THE SCREEN UNTIL *96400000
* SOME ACTION (SUCH AS THE ENTER KEY) IS TAKEN. *96800000
***}
CALL 'CHTERM'. }9760000
CALL 'ASREAD' USING ATTENTION-TYPE, ATTENTION-MODIFIER, 98000000
FIELD-COUNT. 98400000
CALL 'FSTERM'. 98800000
GOBACK. 99200000
99600000

```

\section*{ADMUSF5 - FORTRAN program to draw a simple histogram}


C************************************************************************ 19600000
\[
\text { REAL*4 } 20300000
\]
* RANGE1 (7) /0.0,10.0,20.0,30.0,40.0,50.0,60.0/, 21000000
* RANGE2 (7) /10.0,20.0,30.0,40.0,50.0,60.0,70.0/ 21700000
\(\begin{array}{ll}C & 22400000 \\ C & 23100000\end{array}\)

C* DATA TO BE PLOTTED. 24500000
C* THE DATA IS CONSTANT IN THIS EXAMPLE PROGRAM SO THAT THE * 25200000
C* PROGRAM WILL RUN WITHOUT INPUT. * 25900000
C* THERE IS ONE VALUE FOR EACH BAR, GIVING ITS HEIGHT. * 26600000

REAL*4 28000000
* DATA (7) /12.3,15.0,21.3,20.2,15.3,11.4,4.5/ 28700000

C************************************************************************* 30100000
C* VARIABLES CONCERNED WITH SCREEN READ - * 30800000
C* THE ATTENTION TYPE, ATTENTION MODIFIER AND FIELD COUNT * 32900000

INTEGER*4 33600000
* ATYPE, 34400000
* ATMOD, 35200000
* FLDCT 36000000

C********************************************************************** 43200000
C* INITIALIZE GDDM. * 44000000
C* A DEFAULT GRAPHIC FIELD WILL BE USED THAT COVERS THE SCREEN. * 44800000
C********************************************************************** 48000000
CALL FSINIT 48800000

C* SPECIFY THE CHART HEADING IN COLOR YELLOW. BECAUSE NO OTHER * 52000000
C* ATTRIBUTES ARE GIVEN, THEY WILL DEFAULT TO STANDARD SIZE, * 52800000
C* STANDARD CHARACTER-SET MODE 1 TEXT. * 53600000
C********************************************************************** 54400000
CALL CHHATT (1,YELLOW) 55200000

\section*{sample programs}


\section*{ADMUSP5 - PL/l program to draw a simple histogram}


\section*{sample programs}
```

/**)}4880000
CALL FSINIT; 49600000
/**}5200000
/* SPECIFY THE CHART HEADING IN COLOR YELLOW. BECAUSE NO OTHER */ 52800000
/* ATTRIBUTES ARE GIVEN, THEY WILL DEFAULT TO STANDARD SIZE, */ 53600000
/* STANDARD CHARACTER-SET MODE 1 TEXT. */ 54400000
/**/5 5200000
CALL CHHATT(1,YELLOW); }5600000
CALL CHHEAD(47,'PERCENTAGE POPULATION DISTRIBUTION BY AGE GROUP');56800000
/***/57600000
/* SPECIFY THE X (HORIZONTAL) TITLE AND THE Y (VERTICAL) TITLE. */ 58400000
/* THE ATTRIBUTES ARE NOT GIVEN AND WILL BE THE DEFAULT ONES - */ 59200000
/* (GREEN, STANDARD MODE 1 TEXT). */ 60000000
/***/ 6080000
CALL CHXTTL (10,'AGE GROUPS'); 61600000
CALL CHYTTL (10,'PERCENTAGE'); 62400000
/***/ 63200000
/* BECAUSE THE BARS REPRESENT RANGES, EACH IS LABELED WITH */ 64000000
/* THE RANGE IT REPRESENTS. IF THIS LABELING IS OMITTED */ 64800000
/* THE NORMAL NUMERIC AXIS LABELING WOULD BE SUFFICIENT TO */ 65600000
/* INDICATE THE RANGES EXCEPT AT THE EXTREMES. */ 66400000
/* THE RANGE OF X VALUES IS 0 TO 70, WITH TICKS EVERY 10. */ 67200000
/* THE LABELS ARE CENTERED BETWEEN THE TICKS. */ 68000000
/***/68*****
CALL CHXRNG(0,70); 69600000
CALL CHXTIC(10,0); }7040000
CALL CHXLAB(8,5,' <11 11-2021-3031-4041-5051-60 >60 '); 71200000
CALL CHXSET('LABMIDDLE'); }7200000
/***/72800000
/* SPECIFY A VERTICAL Y RANGE OF 22 WITH LONG (MAJOR) TICKS */ 73600000
/* EVERY TWO, AND ONE SHORT (MINOR) TICK BETWEEN. */ 74400000
/* - IF THE RANGE IS OMITTED, AUTOSCALING WILL NORMALLY */ 75200000
/* PRODUCE A SUITABLE AXIS RANGE PROVIDED CONSISTENCY FROM */ 76000000
/* CHART TO CHART IS NOT IMPORTANT. */ 76800000
/**/7760000
CALL CHYRNG(0,22); }7840000
CALL CHYTIC(2,1); }7920000
80000000
80800000
/**)}8160000
/* HAVING SPECIFIED THE AXIS CHARACTERISTICS, THE DATA */ 82400000
/* IS PLOTTED. THE HISTOGRAM IS SPECIFIED AS RED AND */ 83200000
/* USING PATTERN 12 (A DUSTING OF DOTS). BY DEFAULT THE */ 84000000
/* PGF ROUTINES WILL GENERATE THE GRAPH IN BLUE USING PATTERN 1. */ 84800000
/***/ 8500000
CALL CHCOL(1,RED); 86400000
CALL CHPAT(1,PAT); 87200000
CALL CHHIST(1,7,RANGE1,RANGE2,DATA); 88000000
88800000
/***)}8960000
/* PUT A NOTE AT THE BOTTOM LEFT OF THE CHART WITH INSTRUCTIONS */ 90400000
/**/91200000
CALL CHNOTE('BL',30,'PRESS ENTER TO END THE PROGRAM'); 92000000
92800000
93600000
/**)}9440000
/* FINALLY ISSUE A SCREEN READ. WHEN ANY INTERRUPT IS GENERATED */ 95200000
/* BY THE TERMINAL OPERATOR, THE PROGRAM TERMINATES. */ 960000000

```
```

/***/ 9680000
CALL ASREAD(ATTENTION_TYPE,ATTENTION_MOD,FLD_COUNT); 97600000
CALL FSTERM; 98400000
END ADMUSP5; 992000000

```

\section*{ADMUSP5 - IMS PL/I program to draw a simple histogram}

```

 DECLARE 27000000
 RANGE1 (7) FLOAT STATIC INIT(0,10,20,30,40,50,60), 27500000
 RANGE2 (7) FLOAT STATIC INIT(10,20,30,40,50,60,70), 28000000
 /**/280000
/* DATA TO BE PLOTTED.
*/ 29000000
/* THE DATA IS CONSTANT IN THIS EXAMPLE PROGRAM SO THAT THE */ 29500000
/* PROGRAM WILL RUN WITHOUT INPUT. */ 30000000
/* THERE IS ONE VALUE FOR EACH BAR, GIVING ITS HEIGHT. */ 30500000
/**/ 31000000
DATA (7) FLOAT INIT(12.3,15,21.3,20.2,15.3,11.4,4.5); 31500000
32000000
DECLARE 37000000
PLITDLI EXTERNAL ENTRY, /* IMS PLI INTERFACE ROUTINE */ 37500000
THREE FIXED BIN(31) STATIC INIT(3), 380000000
GUFUNC CHAR(4) STATIC INIT('GU '), /* GET UNIQUE DLI CODE */ 38500000
1 INPUTSEG, /* INPUT SEGMENT */ 39000000
2 INPUTLL FIXED BIN(31), /* INPUT LENGTH */ 39500000
2 INPUTZZ CHAR(2), /* THE ZZ BYTES */ 40000000
2 INPUT_TEXT CHAR(80); /* THE INPUT MESSAGE */ 40500000
DECLARE - 41000000
(IOPCB STATIC INIT(0), /* ESPCB CODE FOR I/O PCB */ 41500000
DBPCB STATIC INIT(2)) /* ESPCB CODE FOR DATABASE PCB */ 42000000
FIXED BIN(31); 42500000
4 3 0 0 0 0 0 0
1/***)}4350000
/* */44000000
/* ISSUE A GU TO THE IOPCB. TERMINATE THE TRANSACTION IF */ 44500000
/* NO MESSAGE IS RETURNED. */ 45000000
/* */ 45500000
/**/4600000
4 6 5 0 0 0 0 0
GU: 47000000
CALL PLITDLI(THREE,GUFUNC,IOPCBP->PCB,INPUTSEG); 47500000
IF IOPCBP->PCBSTAT`=' ' THEN GOTO EXIT; 48000000
INPUTLL=INPUTLL-4; /* SET LENGTH OF TEXT ENTERED */ 48500000
4 9 0 0 0 0 0 0
/**/ 49500000
/* */ 50000000
/* INITIALIZE GDDM, AND IDENTIFY THE PCBS TO GDDM */ 50500000
/* */ 51000000
/**/51500000
5 2 0 0 0 0 0 0
52500000
CALL FSINIT; /* INITIALIZE. */ 53000000
53500000
CALL ESPCB(IOPCB,IOPCBP->PCB); /* DEFINE IO PCB */ 54000000
CALL ESPCB(DBPCB,SYSPCBP->PCB); /* DEFINE SYSTEM DEFINITION PCB */ 54500000
6 0 5 0 0 0 0 0
/**/ 61000000
/* SPECIFY the Chart heading in COLOR YeLlOW. BECAUSE NO OTHER */ 61600000
/* ATTRIBUTES ARE GIVEN, THEY WILL DEFAULT TO STANDARD SIZE, */ 62200000
/* STANDARD CHARACTER-SET MODE 1 TEXT. */ 62800000
/**/ 63400000
CALL CHHATT(1,YELLOW); 64000000
CALL CHHEAD(47,'PERCENTAGE POPULATION DISTRIBUTION BY AGE GROUP');64600000
/***/65200000
/* SPECIFY the X (hORIZONTAL) TITLE AND THE Y (VERTICAL) TITLE. */ 65800000
/* THE ATTRIBUTES ARE NOT GIVEN AND WILL BE THE DEFAULT ONES - */ 66400000

```

\section*{sample programs}


\section*{ADMUSC6 - COBOL program that invokes the chart utility to plot data}


\section*{sample programs}

```

* 01 KEYS. 83400000
02 KEYDATA PICTURE X(17) OCCURS 3 TIMES. 83700000
* 84000000
* CHART CHART-HEADING. }8430000
* 84600000
01 CHART-HEADING PICTURE X9(12) VALUE 'EXPENDITURE'. }8490000
85200000
85500000
85800000
86100000
PROCEDURE DIVISION. 86400000
* INITIALIZE X VALUES 86700000
87000000
MOVE 1 TO XDATUM (1). 87300000
MOVE 2 TO XDATUM (2). 87600000
MOVE 3 TO XDATUM (3). 88000000
88400000
88800000
* INITIALIZE KEYS. 89200000
MOVE 'TRANSPORT' TO KEYDATA (2). 90400000
MOVE 'FOOD AND CLOTHING' TO KEYDATA (3). 90800000
91200000
91600000
92000000
92400000
92800000
93200000
93600000
94000000
94400000
94800000
95200000
95600000
96000000
96400000
96800000
* CALL the chart utility with the prepared dATA.
* CALL 'CHART' USING ADMTPCS, DUMMY, XDATA, YDATA,
KEYS, DUMMY, CHART-HEADING.
* TERMINATE GDDM
97200000
97600000
98000000
98400000
98800000
CALL 'FSTERM'. 99200000
GOBACK. 99600000

```

\section*{ADMUSF6 - FORTRAN program that invokes the chart utility to plot data}



\section*{sample programs}


\section*{ADMUSP6 - PL/I program that invokes the chart utility to plot data}

```

 /***/ 00001410
 /* THE REMAINING FIELDS ARE NEW FROM */ 00001420
 /* RELEASE 3 ONWARDS. THEY ARE NOT USED */ 00001430
 /* IN THIS APPLICATION, EXCEPT PCSUNIT */ 00001440
 /***/ 00001450
 2 PCSPHEAD FIXED BIN(31) /* PRINTER HEADER PAGE CONTROL */ 00001460
INIT(0), /* 0 = DEFAULT, HEADER PAGE OUTPUT */ 00001470
2 PCSPVOFF FLOAT DEC(6) /* PRINTER VERTICAL OFFSET (ROWS) */ 00001480
INIT(0), /* */ 00001490
2 PCSPHOFF FLOAT DEC(6) /* PRINTER HORIZONTAL OFFSET (COLUMNS) */ 000001500
INIT(0), /* */ 00001510
2 PCSPUNIT FIXED BIN(31) /* PRINTER LAYOUT PARAMETER UNITS */ 00001520
INIT(4), /* 4 = ROWS AND COLUMNS */ 00001530
2 PCSDUMMY FIXED BIN(31) /* RESERVED */ 00001540
INIT(0), /* */ 00001550
2 PCSDYNAM CHAR(8) /* DIRECTORY LISTING OBJECT NAME */ 00001560
INIT(' '), /* */ 00001570
2 PCSDYTYP FIXED BIN(31) /* DIRECTORY LISTING OBJECT TYPE */ 00001580
INIT(0), /* 0 = DEFAULT, NO INITIAL LIST */ 00001590
2 PCSDYTYQ FIXED BIN(31) /* DIRECTORY LISTING OBJECT SUBTYPE */ 00001600
INIT(0), /* 0 = DEFAULT */ 00001610
2 PCSDYLIB CHAR(8) /* DIRECTORY LISTING OBJECT LIBRARY */ 00001620
INIT(' '), /* */ 00001630
2 PCSEXPL FIXED BIN(31) /* INITIAL EXPERIENCE LEVEL VALUE */ 00001640
INIT(0); /* 0 = DEFAULT, STANDARD LEVEL */ 00001650
/***/ 00001660
00001670
DECLARE 00001680
/***)}0000169
/* */ 00001700
/* VARIOUS LOCAL VARIABLES */ 00001710
/* */ 00001720
/**/ 00001730
DUMMY(1) FIXED BIN(31), 00001740
00001750
/***)}0000176
/* X DATA */ 00001770
/**/ 00001780
00001790
XDATA(3) FLOAT DEC(6) INIT(1.0,2.0,3.0), }0000180
00001810
/***/ 00001820
/* Y DATA */ 00001830
/***/ 00001840
00001850
YDATA(9) FLOAT DEC(6) INIT(3.0,7.0,10.0,5.0,8.0,11.0,6.0,9.0,12.0), 00001860
00001870
/**/ }0000188
/* KEYS */ 00001890
/**)}0000190
00001910
KEYS(3) CHAR(17) INIT('HOUSING', 00001920
'TRANSPORT', 00001930
'FOOD AND CLOTHING'), 00001940
00001950
/***/ }0000196
/* KEYS */ 00001970
/***/ 00001980

```
```

 00001990
 LABELS(3) CHAR(1), 00002000
00002010
/***}0000202
/* CHART HEADING */ 00002030
/***/ 00002040
00002050
HEADING CHAR(12) INIT('EXPENDITURE'); 00002060
%INCLUDE(ADMUPINF); 00002080
%INCLUDE(ADMUPINC); 00002090
00002100
CALL FSINIT; /* INITIALIZE GDDM */ 00002110

```

```

CALL CHART(ADMTPCS, DUMMY, XDATA, YDATA, KEYS, LABELS, HEADING); 00002130
/* CALL THE CHART UTILITY */ 00002140
96800000
CALL FSTERM; /* TERMINATE GDDM */ 97600000
98400000
END ADMUSP6; 99200000

```

Appendix B. ADMUCDSO

\section*{Chart utility with pre-opened device sample module}
```

ADMUCDSO chartdata chartform disp family token (procopts) (names)

```

To enable you to invoke the Interactive Chart Utility (ICU) in circumstances that require special DSOPEN parameters, PGF provides the sample module ADMUCDSO. This module performs a DSOPEN, then invokes the ICU using the CHART call. ADMUCDSO is supported in TSO and VM/CMS only.

\section*{Parameters}

The parameters to the DSOPEN call and some of the parameters to the ICU are specified as parameters to ADMUCDSO. These parameters must be in the standard TSO or VM/CMS format.

The parameters are:

\section*{chartdata}

The chart-data name that is passed to the ICU. The default is \({ }^{\prime *}\) '.

\section*{chartform}

The chart-format name that is passed to the ICU. The default is ' \(=\) '. If the chart-format name is specified as ' \(=\) ', the chart-data name is used also as the format name.

\section*{disp}

The display parameter (a number, 1 through 7) in the Chart Control Area; see the CHART call. The default is 1 .

Note: The disp parameter can have the special value 99 . In this case, chartdata is the name of a GDF file that is to be shown on the device that ADMUCDSO opens. The chartform parameter is ignored.

The remaining parameters are used as arguments to the DSOPEN call. See the description of

DSOPEN in the GDDM Base Application
Programming Reference book for further details.
family
The family parameter (a number, 1 through 4) for DSOPEN. The default is 1 .

\section*{token}

The device token for DSOPEN. The default is '*'.

\section*{procopts}

Processing options (numbers) for DSOPEN. The list of procopts is enclosed in parentheses. The default is ().
The procopt-count parameter of DSOPEN is deduced by ADMUCDSO and is, therefore, not specified by the user.

\section*{names}

The name-list parameter of DSOPEN. For VM/CMS, this parameter is a number of tokens (typically the filename, filetype, and filemode); for TSO, it is a DDNAME or a data-set name. The default is ().
The name-count parameter of DSOPEN is deduced by ADMUCDSO and is, therefore, not specified by the user.

\section*{Notes:}
1. If any parameter preceding procopts is omitted, all following parameters up to procopts must also be omitted. For example, if chartform is omitted, disp, family, and token must also be omitted.
2. If procopts is omitted, (names) must also be omitted.

\section*{ADMUCDSO}

\section*{Messages}

ADMUCDSO does not issue any messages directly. Any invalid CHART or DSOPEN parameter is diagnosed by the respective call. ADMUCDSO returns a nonzero return code if it is unable to parse the input parameters. The return codes are:

100 Too many parameters
101 Expected '(' for procopts not found

102 Expected '(' for names not found
103 Too many names
104 Too many procopts
105 Numeric parameter contains a non-numeric
106 Parameter too long (TSO only).
107 Error during chart call.
In addition, ADMUCDSO might also issue a nonzero return code if the DSOPEN call fails.

\section*{Invocation}

ADMUCDSO is invoked either from a CMS EXEC, or from a TSO CLIST. A sample EXEC and a sample CLIST are provided with GDDM:
\begin{tabular}{ll} 
ADMUCIMV & EXEC (CMS) \\
ADMUCIMT & CLIST (TSO)
\end{tabular}

\section*{ADMUCIMV and ADMUCIMT}

ADMUCIMV and ADMUCIMT invoke the Chart Utility non-interactively to output a specified chart for a composed page printer. The various DSOPEN printer-control parameters (such as image size, output-file name, whether color masters are to be generated, device token, form of output) are specified in the EXEC or CLIST, and should be edited as required.

ADMUCIMV and ADMUCIMT require two parameters: chart-data name and chart-format name. The chart-format name may be specified as ' \(=\) ' if it is the same as the chart-data name. If the chart-format name is specified as 'GDF', the chart-data name is assumed to be a GDF file to be printed. For example:
CMS
EXEC ADMUCIMV chartdata chartform
EXEC ADMUCIMV chartdata \(=\)
EXEC ADMUCIMV gdffile GDF
TSO
EXEC 'SYS1.PROCLIB(ADMUCIMT)' 'chartdata chartform'
EXEC 'SYS1.PROCLIB(ADMUCIMT)' ' chartdata ='
EXEC 'SYS1.PROCLIB(ADMUCIMT)' 'gdffile GDF'
If the input is a GDF, the GDF dataset (PDS) that contains the GDF must be preallocated. For example, if the dataset 'USERID.ADMGDF' contains a GDF member 'GDFFILE', issue the command:
ALLOC F (ADMGDF) DSN ('USERID.ADMGDF')

\section*{Contents of ADMUCIMT}

PROC 2 CHARTDATA FORMAT

/********************************************************************************)
/* DEFINE CHART DISPLAY OPTION : DEFAULT = 6 */
/* : IF CHART FORMAT IS GDF THEN \&DP */
/* SHOULD BE SET TO 99 SO THAT */
/* ADMUCDSO WILL GSLOAD THE GDF FILE */ /* AND THEN DISPLAY IT ON THE SPECIFIED*/ /* DEVICE. */ /********************************************************************************)
SET \&DP = 6
IF \&STR(\&CF) \(=\) GDF THEN SET \&DP \(=99\)
```

/**
/* DEFINE DEVICE TOKEN: (IMG240) 3800-3/3820/3812 PRINTER QUARTO P */
/* (A4) 3800-3/3820/3812 PRINTER A4 PAPER */
/* (IMG300A4) 4028 PRINTER A4 PAPER */
/* (IMG300Q) 4028 PRINTER QUARTO PAPER */
/* (IMG144A4) 4224/4230 PRINTER A4 PAPER */
/* (IMG144Q) 4224/4230 PRINTER QUARTO PAPER */
/* (IMG600X) 4250 PRINTER */
/**/
SET \&DT = IMG240
/***/
/* DSOPEN OPTION GROUP 5 */
/* ===================== */
/* DEFINE DATA STREAM TYPE: (0) DOCUMENT (PRIMARY D/STREAM) */
/* (1) PAGE SEGMENT (SECONDARY D/STREAM) */
/* (2) OVERLAY (SECONDARY D/STREAM) */
/***/
SET \&DS = 0

```

\section*{ADMUCDSO}
```

/**
/* DSOPEN OPTION GROUP 6 */
/* ===================== */
/* DEFINE SPILL FILE USAGE: (0) KEEP INTERNAL DATA IN A SPILL FILE */
/* (1) KEEP INTERNAL DATA IN MAIN STORAGE */
/***/
SET \&SP = 0
/***/
/* DSOPEN OPTION GROUP 7 */
/* ===================== */
/* DEFINE THE NUMBER OF SWATHES THAT MAKE UP THE COMPLETE IMAGE */
/**
SET \&N = 8
/**
/* DSOPEN OPTION GROUP 8 */
/* ===================== */
/* DEFINE IMAGE WIDTH */
/* DEPTH */
/* UNITS: (0) TENTHS OF AN INCH */
/* (1) MILLIMETERS */
/**/
SET \&W = 60
SET \&D = 40
SET \&U = 0
/**/
/* DSOPEN OPTION GROUP 9 */
/* ===================== */
/* DEFINE IMAGE FORMAT: (0) UNFORMATTED (BIT ARRAY) */
/* (1) FORMATTED D/STREAM TO CDPF/PSF */
/* REQUIREMENTS: */
/* (CDPF IS THE 4250 DEVICE DRIVER) */
/* (PSF IS THE 3800-3/3820 DEVICE DRIVER) */
/* (2) FORMATTED D/STREAM - GOCA UNCOMPRSSD IMGE*/
/* (3) FORMATTED D/STREAM - GOCA COMPRESSED IMGE*/
/***/
SET \&FO = 1
/**
/* DSOPEN NAMELIST PARAMETERS */
/* ========================== * */
/* DEFINE OUTPUT IMAGE FILE_IDENTIFER */
/***/
SET \&F = \&CHARTDATA..\&STR(*)
/**
/* PRINTOUT OF ALL VARIABLES FOR A VISUAL CHECK */
/***/
WRITE . CHART DATA NAME = \&CD
WRITE CHART FORMAT NAME = \&CF
WRITE DEVICE TOKEN = \&DT
IF \&DS = 0 THEN WRITE .DATA STREAM TYPE = DOCUMENT
IF \&DS = 1 THEN WRITE .DATA STREAM TYPE = PAGE SEGMENT
IF \&DS = 2 THEN WRITE .DATA STREAM TYPE = OVERLAY
IF \&SP = 0 THEN WRITE .SPILL FILE USAGE = REQUIRED

```
```

IF \&SP = 1 THEN WRITE .SPILL FILE USAGE = NOT REQUIRED
WRITE NUMBER OF SWATHES = \&N
WRITE IMAGE WIDTH = \&W
WRITE IMAGE DEPTH = \&D
IF \&U = 0 THEN WRITE .IMAGE SIZE UNITS = TENTHS OF AN INCH
IF \&U = 1 THEN WRITE .IMAGE SIZE UNITS = MILIMTRS
IF \&FO = 0 THEN WRITE ... OUTPUT FORMAT = BIT ARRAY
IF \&FO = 1 THEN WRITE ... OUTPUT FORMAT = CDPF / PSF DATA STREAM
IF \&FO = 2 THEN WRITE ... OUTPUT FORMAT = GOCA AND UNCMPRSD IMAGE
IF \&FO = 3 THEN WRITE ... OUTPUT FORMAT = GOCA AND COMPRSSD IMAGE
/**/
/* GO/QUIT DECISION */
/***
WRITE
WRITE ==> ENTER GO OR QUIT:
READ \&REPLY
IF \&REPLY ᄀ= GO THEN GOTO EXIT

```
```

/***

```
/*******************************************************************************
/* */
/* */
/* PARAMETERS AT ADMUCDSO ENTRY: */
/* PARAMETERS AT ADMUCDSO ENTRY: */
/* */
/* */
/* CHARTDATA CHARTFORM CHARTDISP DSOPEN-PARAMETERS */
/* CHARTDATA CHARTFORM CHARTDISP DSOPEN-PARAMETERS */
/* */
/* */
/* CHARTDISP IS THE DISPLAY PARAMETER OF CSSICU. */
/* CHARTDISP IS THE DISPLAY PARAMETER OF CSSICU. */
/* */
/* */
/* THE DEVICE-ID IS OMITTED FROM DSOPEN-PARAMETERS. THE */
/* THE DEVICE-ID IS OMITTED FROM DSOPEN-PARAMETERS. THE */
/* PROCLIST AND NAMELIST ARE WRITTEN IN BRACKETS SO THAT THE */
/* PROCLIST AND NAMELIST ARE WRITTEN IN BRACKETS SO THAT THE */
/* PROCOPT-COUNT AND NAMELIST COUNT ARE DEDUCED BY ADMUCDSO */
/* PROCOPT-COUNT AND NAMELIST COUNT ARE DEDUCED BY ADMUCDSO */
/* */
/* */
/* PARAMETERS AT ADMUCDSO DSOPEN CALL TO GDDM: */
/* PARAMETERS AT ADMUCDSO DSOPEN CALL TO GDDM: */
/* */
/* */
/* FAMILY DEVICE-TOKEN ( PROCOPT-LIST ) ( NAMELIST ) */
/* FAMILY DEVICE-TOKEN ( PROCOPT-LIST ) ( NAMELIST ) */
/* */
/* */
/***************************************************************************/
/***************************************************************************/
    CALL 'GDDM.SADMMOD(ADMUCDSO)' /* INVOKE PROGRAM */+
    CALL 'GDDM.SADMMOD(ADMUCDSO)' /* INVOKE PROGRAM */+
    '&CD &CF &DP 4 &DT (5 &DS 6 &SP 7 &N 8 &W &D &U 9 &FO ) ( &F )'
```

 '&CD &CF &DP 4 &DT (5 &DS 6 &SP 7 &N 8 &W &D &U 9 &FO) (&F)'
    ```
EXIT:EXIT

\section*{ADMUCDSO}

\section*{Contents of ADMUCIMV}

```

*

(IMG600X) 4250 PRINTER
**
\&DT = IMG240
*
**

* DSOPEN OPTION GROUP 5
* =====================
* DEFINE DATA STREAM TYPE: (0) DOCUMENT (PRIMARY D/STREAM)
* (1) PAGE SEGMENT (SECONDARY D/STREAM)
* (2) OVERLAY (SECONDARY D/STREAM)
**
\&DS = 0
*

* DSOPEN OPTION GROUP 6
* =====================
* DEFINE SPILL FILE USAGE: (0) KEEP INTERNAL DATA IN A SPILL FILE
*

(1) KEEP INTERNAL DATA IN MAIN STORAGE

\&SP = 0
*

* DSOPEN OPTION GROUP 7
* =====================
* DEFINE THE NUMBER OF SWATHES THAT MAKE UP THE COMPLETE IMAGE

\&N = 8
*

* DSOPEN OPTION GROUP 8
* =====================
* DEFINE IMAGE WIDTH
* DEPTH
* UNITS: (0) TENTHS OF AN INCH
* (1) MILLIMETERS
**
\&W = 60
\&D = 40
\&U = 0
*

* DSOPEN OPTION GROUP 9
* ====================
* DEFINE IMAGE FORMAT: (0) UNFORMATTED (BIT ARRAY)
* (1) FORMATTED D/STREAM TO CDPF/PSF REQUIREMENTS:
* (CDPF IS THE 4250 DEVICE DRIVER)
* (PSF IS THE 3800-3/3820 DEVICE DRIVER)
* (2) FORMATTED D/STREAM - GOCA UNCOMPRESSED IMAGE
* (3) FORMATTED D/STREAM - GOCA COMPRESSED IMAGE

\&FO = 1
*

* DSOPEN NAMELIST PARAMETERS
* ==========================
* DEFINE OUTPUT IMAGE FILE_NAME
* FILE_TYPE
* FILE_MODE

```

\section*{ADMUCDSO}
```

\&F = \&CD
\&T = *
\&M = A1
*

* PRINTOUT OF ALL VARIABLES FOR A VISUAL CHECK

\&SPACE
\&TYPE . CHART DATA NAME = \&CD
\&TYPE CHART FORMAT NAME = \&CF
\&TYPE DEVICE TOKEN = \&DT
\&IF \&DS = 0 \&TYPE .DATA STREAM TYPE = DOCUMENT
\&IF \&DS = 1 \&TYPE .DATA STREAM TYPE = PAGE SEGMENT
\&IF \&DS = 2 \&TYPE .DATA STREAM TYPE = OVERLAY
\&IF \&SP = 0 \&TYPE .SPILL FILE USAGE = REQUIRED
\&IF \&SP = 1 \&TYPE .SPILL FILE USAGE = NOT REQUIRED
\&TYPE NUMBER OF SWATHES = \&N
\&TYPE IMAGE WIDTH = \&W
\&TYPE IMAGE DEPTH = \&D
\&IF \&U = 0 \&TYPE .IMAGE SIZE UNITS = TENTHS OF AN INCH
\&IF \&U = 1 \&TYPE .IMAGE SIZE UNITS = MILIMTRS
\&IF \&FO = 0 \&TYPE ... OUTPUT FORMAT = BIT ARRAY
\&IF \&FO = 1 \&TYPE ... OUTPUT FORMAT = CDPF / PSF DATA STREAM
\&IF \&FO = 2 \&TYPE ... OUTPUT FORMAT = GOCA AND UNCMPRSD IMAGE
\&IF \&FO = 3 \&TYPE ... OUTPUT FORMAT = GOCA AND COMPRSSD IMAGE
\&TYPE . OUTPUT FILENAME = \&F
\&TYPE . OUTPUT FILETYPE = \&T
\&TYPE . OUTPUT FILEMODE = \&M
*

**

* GO/QUIT DECISION
**
\&SPACE
\&TYPE ==> ENTER GO OR QUIT:
\&READ VARS \&REPLY
\&IF .\&REPLY NE .GO \&EXIT 100
*

* *
* PARAMETERS AT ADMUCDSO ENTRY: *
* *
* CHARTDATA CHARTFORM CHARTDISP DSOPEN-PARAMETERS *
* *
* CHARTDISP IS THE DISPLAY PARAMETER FOR CSSICU. *
* *
* THE DEVICE-ID IS OMITTED FROM DSOPEN-PARAMETERS. THE *
* PROCLIST AND NAMELIST ARE WRITTEN IN BRACKETS SO THAT THE *
* PROCOPT-COUNT AND NAMELIST COUNT ARE DEDUCED BY ADMUCDSO *
*
* PARAMETERS AT ADMUCDSO DSOPEN CALL TO GDDM: *
* *
* FAMILY DEVICE-TOKEN (PROCOPT-LIST) (NAMELIST) *
* *

**
ADMUCDSO \&CD \&CF \&DP 4 \&DT (5 \&DS 6 \&SP 7 \&N }8\mathrm{ \&W \&D \&U 9 \&FO)(\&F \&T \&M)
*
\&EXIT \&RC

```

\section*{Appendix C. Colors, line types, markers, and shading patterns}
\(\lceil\) General-Use Programming Interface \(\square\)

The color, line types, markers and shading patterns that are given to distinguish one data group from another are taken from tables whose values are used in rotation. Different data groups, therefore, have different colors and different shading patterns.

Tables with default values are supplied. You can control the colors and other attributes of the data by resetting the values in the tables.

Color numbers Valid color numbers and their meanings are:
0 default (green on displays, black on printers)
1 blue
2 red
3 pink
4 green
5 turquoise
6 yellow
7 neutral (white on displays, black on printers)
8 background (black on displays, white on printers)
9-255 user-defined colors
If the device does not support one or more of these colors, another device-dependent color is chosen. For a four-color printer, the primary colors (red, green, and blue) are interpreted correctly. Other colors print as black. The colors produced by plotters depend on the position of the pens in the pen carousel.

Line type numbers Valid line type numbers and their meanings on 3270-family terminals are:

0 - solid line (defaut)
1 - dotted line
2 - shot-tdashed line
3. dash-dot line

4 - double-dotted line
5 - long-dashed line
6 - dash-double-dotted line
7 - solid line
8 - invisible line
Figure 17. Line type numbers
Some types of terminal do not support all of these line types. In these cases, GDDM draws a line that approximates to the 3270 type as closely as possible.

Marker numbers Valid marker numbers and their meanings are:


Figure 18. Marker numbers
If values \(65-254\) are used, the symbol set defining the markers must be loaded by the application program before the chart is constructed. (See the description of the GSLSS call in the GDDM Base Application Programming Reference book.)

Shading pattern numbers Valid pattern numbers and their meanings are:


If values \(65-254\) are used, the symbol set defining the shading patterns must be loaded by the application program before the chart is constructed.

L End of General-Use Programming Interface \(ـ\)

Figure 19. Shading pattern numbers

\section*{Appendix D. Interactive Chart Utility panels}

This appendix gives the ICU panels in numeric order with the Version 2 Release 1 default values.

\section*{interactive chart utility - home panel}
* Either choose the following to make a chart by selecting from pictures: 0 - Chart by Example
* Or choose from the following to make or change a chart by setting options:
\begin{tabular}{ll} 
1 - Chart Type & \\
2 - Data Entry and Import & M - Menu Control \\
3 - Chart Notes & and Preview Chart \\
4 - Axis Options & S - Save, Load, List, \\
5 - Heading, Legend, and Layout & Delete, Reset Chart \\
6 - Multiple Charts &
\end{tabular}
* Type the number or letter of the choice you want \(======>0\) * Press ENTER to continue.
Use PF12 (Home) to return directly to this panel from other panels. Use PF1 (Help) on any panel to get more information about what to do.
GDDM-PGF 5668-812 (C) Copyright IBM Corp 1979, 1986
PF: 1=Help 2=Save/Load 4=Print 5=Display 9=Exit 11=Edit
```

0 CHART BY EXAMPLE

* You will need some data for your chart. Choose the following to get some:
1 - Get data, heading, and titles for your chart
* Choose one of the following to make your chart:
2 - From a ready-made chart using your data
3-A step at a time using your data
5-Save your chart in a file
6 - Reset everything except your data, ready to start again
* Type the number of the choice you want ======>
${ }^{*}$ Press ENTER to continue.
PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display 12=Home

```
```

0.1
ChART BY EXAMPLE - DATA

* Either choose from the following to get various sorts of sample data, to
use as a basis for typing your own data:
1 - General purpose
2 - Planned against Actual
3 - Comparison over time
4 - Parts of a whole, for a Pie chart
Ranges, for a Histogram
- Schedule, for yearly), for a Polar Chart
Iso set your chart
chosen sample data)
 - Schedule, for a horizontal Bar Chart
 * Or choose from the following to get or type in your own data:
8-Load data from a file created by the ICU
 - Import data from a file created by another program
0 - Type in your own data
12 - Type in your X-axis title
13 - Type in your Y-axis title
 * Type the number of the choice you want ======>
 * Press ENTER to continue. Press PF3 (End) to return to Chart by Example.
PF: 1=Help 3=End 4=Print 5=Display 12=Home

```
(The free data panels are shown after panel 2.9.4.)

```

0.2
READY-MADE CHARTS

```

This is the chart you have chosen:


Press PF3 (End) to exit and let you save or print your chart.
Press PF7 (Back) to retrace your steps and change your choice.
PF: 1=Help 3=End 4=Print 5=Display 7=Back 12=Home


1.3
\begin{tabular}{|c|c|}
\hline CHART OPTIONS & (HISTOGRAM) \\
\hline Type of Data ==> 2 & \begin{tabular}{l}
1 - Absolute \\
2 - Relative
\end{tabular} \\
\hline Histogram Type ==> 1 & \begin{tabular}{l}
1-Y Values are Bar Areas \\
2 - Y Values are Bar Height
\end{tabular} \\
\hline Histogram Y Values ==> 1 & \begin{tabular}{l}
1-Last Y Value Ignored \\
2 - First Y Value Ignored
\end{tabular} \\
\hline
\end{tabular}

Lines Rising from \(X\) Axis ? YES
Data Groups Shaded ? YES
First Data Group Shaded? YES (used only when Data Groups Shaded)

PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display 12=Home



PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display 12=Home
\begin{tabular}{|c|c|}
\hline 1.5 CHART OPTIONS (PIE & CHART) \\
\hline Data Type ==> 1 & \begin{tabular}{l}
1-Absolute \\
2 - Percentage
\end{tabular} \\
\hline Pie Sizes (Absolute Data Only) ==> 1 & \begin{tabular}{l}
1-All Same Size \\
2 - Related to Total Value
\end{tabular} \\
\hline Pie Labeling ==> 2 & \begin{tabular}{l}
1 - Labels Attached to Slices \\
2 - Labels in a Legend
\end{tabular} \\
\hline Shaded Slices ? YES & \\
\hline Values Attached to Slices ? YES & \\
\hline Size of Pies compared to Maximum ==> 100 & (\% between 1 and 100) \\
\hline Tilt of Pies away from the Viewer ==> 0 & (\% between 0 and 99) \\
\hline Thickness of Pies compared to Size \(==>0\) & (\% between 0 and 250) \\
\hline Movement of Exploded Slices ==> 20 & (\% between 0 and 250) \\
\hline PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display & 12=Home \\
\hline
\end{tabular}
\(\left.\begin{array}{|c|c|}\hline 1.6 \\ \text { CHART OPTIONS (VENN DIAGRAM) } \\ \text { Shaded Areas ? YES }\end{array}\right]\)




> 2.7 text attributes
> Symbol Set Name ==> ADMUUSRP

> (0.01 through 100)
> Character Height Multiplier ==> *
> (* = same as Width Multiplier)
> \(\begin{array}{r}\text { Text Area Initially Blanked ? YES } \\ \text { Text Area Outlined? YES }\end{array}\)
> PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display 12=Home



\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Imported data may either replace existing data or be added to it. \\
Where is the first imported \\
Data Group to be placed? ==> 0 \\
(Number of first Data Group to replace, or ' \(*\) ' to add after existing data, or ' 0 ' to replace all data) \\
Transpose data after import ? NO (only when all data is being replaced) \\
Items that match these strings are made 'missing' without error: \\
First string ==> \\
Second string ==> \\
Third string ==> \\
Imported Notes may either replace existing Notes or be added to them. \\
Where is the first imported \\
Note to be placed? ==> 0 (Number of first Note to replace, or ' \(\mathrm{k}^{\prime}\) to add after existing Notes, or ' 0 ' to replace all notes) \\
PF: 1=Help 3=End 12=Home
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}


```

2.4 DATA LABELS (FREE DATA)
Commands X Labels
-_**

```
Commands: / (Scroll Here)
PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display 7=Up 8=Down 12=Home



* Type the number of the choic

Use PF6 ( \(Y\) Axis) to switch between the \(X\) and \(Y\) axis options.

PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display 6=Y Axis 12=Home
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{4.1} & X AXIS TItLe \\
\hline & Title Text ==> \\
\hline & (The title may be up to 55 characters long. It may contain ; characters, which act as line separators.) \\
\hline & \begin{tabular}{l}
1-Parallel to Axis, Centered \\
2 - Parallel to Axis, at End \\
3 - Horizontal Above Axis (if axis vertical) Parallel to Axis, at End (if axis horizontal)
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Would you like to change the color, character size, or typestyle used for this axis title ? NO} \\
\hline \multicolumn{2}{|l|}{PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display 6=Y Axis 12=Home} \\
\hline
\end{tabular}

\begin{tabular}{l} 
X AXIS LINE \\
\begin{tabular}{l} 
Do you want the Axis Line to be drawn ? YES \\
Would you like to change the \\
color or type of the Axis Line ? NO
\end{tabular} \\
PF: 1=Help 2=Save/Load 3=End 4=Print \(5=\) Display \(6=\) Y Axis \(12=\) Home \\
\hline
\end{tabular}







\section*{\(4.7 \quad \mathrm{X}\) REFERENCE LINE}

Do you want a Reference Line to be drawn ? NO Reference \(x\) Value ==> 0

Would you like to change the
color or type of the Reference Line? No (The same attributes affect both \(X\) and \(Y\) Reference Lines)

PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display 6=Y Axis 12=Home




\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{5.3 LEGEND POSITION AND FORMAT} \\
\hline \multicolumn{3}{|l|}{Do you want a Legend Produced ? YES} \\
\hline Margin for Base Position ==> 1 & 1 - Right & 3 - Bottom \\
\hline & 2 - Left & 4 - Top \\
\hline (This also sets the Legend format) & Vertical Legend or & Horizontal Legend \\
\hline Placement within Margin ==> 1 & 1 - Centered & 1 - Centered \\
\hline & 2 - At Top & 2 - At Right \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Offset from Base Position \\
(in Character Grid Units): \\
Horizontal \(==>0\)
Vertical \(==>\)
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline Order of Construction ==> 1 & 1 - Bottom to Top & 1 - Left to Right \\
\hline & 2 - Top to Bottom & 2 - Right to Left \\
\hline Maximum Width ==> * & & (Horizontal only) \\
\hline Maximum Height ==> * & (Vertical only) & \\
\hline \multicolumn{3}{|l|}{PF: 1=Help 2=Save/Load 3=End 4=Print 5=Display 12=Home} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{SAVE AND LOAD CHART} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
What do you want to do? ==> \\
1-Load from a File \\
2 - Reset to initial defaults \\
3 - Save in a File \\
4 - List Files, to pick or delete
\end{tabular}} \\
\hline Which part of chart? ==> & \begin{tabular}{l}
1 - Format \\
2 - Data \\
3 - Both Format and Data \\
4 - Whole chart as Graphic Data Format (GDF) (not for Load or Reset)
\end{tabular} \\
\hline Replace ? No & (Type YES for Load or Reset to replace your current chart even if it has unsaved changes, or for Save to replace an existing file) \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{PF: 1=Help 3=End 4=Print 5=Display 12=Home} \\
\hline
\end{tabular}



Commands: R (Restore (Load)) D (Delete) P (Pick Name) C (Copy From)
/(Scroll Here) SH (Show GDF File) PR (Print GDF File)
*** line only: L (List) \(S\) (Save) U (Update) T (Copy To)
PF: 1=Help 3=End 4=Print 5=Display 6=Show Description 7=Up 8=Down 12=Home

\section*{ICU panels}

\section*{GDDM glossary}

This glossary defines technical terms used in GDDM documentation. In the definitions, the qualification "In GDDM" means in the GDDM Base products or in GDDM-PGF (or both). "In GDDM-PGF" means in GDDM-PGF, which includes the ICU.

If you do not find the term you are looking for, refer to the index of the appropriate GDDM manual or view the IBM Dictionary of Computing, located on the Internet at:
http:\\www.networking.ibm.com/nsg/nsgmain.htm

\section*{A}

AAB. Application anchor block.
absolute data. In GDDM-PGF, the actual y values to be plotted. Contrast with relative data.
alphanumeric character attributes. In GDDM, comprise the highlighting, color, and symbol set to be used.
alphanumeric cursor. A physical indicator on a display. It may be moved from one hardware cell to another.
alphanumeric field. A field (area of a screen or printer page) that can contain alphabetic, numeric, or special characters. In GDDM, contrast with graphics field.
alphanumeric field attributes. In GDDM, comprise intensity, highlighting, color, symbol set to be used, field type, field end output conversion, input conversion, translate table assignment, transparency, field outlining, and mixed-string fields.
alphanumeric label. In GDDM-PGF or the ICU, a user-specified alphanumeric string used to annotate an \(x\)-axis or \(y\)-axis scale mark. Contrast with numeric label.
alternate device. In GDDM, a device to which copies are sent of the primary device's output. Usually the alternate device is a printer or plotter. See also primary device.
annotation. An added descriptive comment or explanatory note.

API. Application program interface.
APL. One of the programming languages supported by GDDM.
application program interface (API). The formally defined programming-language interface between an IBM system control program or program product and its user.
aspect ratio. The width-to-height ratio of an area, symbol, or shape.
attribute table. In GDDM-PGF, a set of values for one particular attribute (for example, shading pattern), that are used in sequence to display the components of a business chart.
attributes. Characteristics or properties that can be controlled, usually to obtain a required appearance; for example, the color of a line. See also alphanumeric character attributes, alphanumeric field attributes, and graphics attributes.
autoranging. In GDDM-PGF, the process in which the axis ranges are determined by the extremes of the data values passed by the application. Synonymous with autoscaling.
autoscaling. Synonym for autoranging.
axis. In a chart, a line that is drawn to indicate units of measurement against which items in the chart can be viewed. GDDM-PGF charts have an \(x, y\), and (in the case of tower charts) \(z\) axis.
axis label. In GDDM-PGF, text appearing at or between axis major scale marks on a business chart. Such labels may be numeric or alphanumeric. Contrast with data label.
axis title. In GDDM-PGF, a text string describing what an axis represents.

\section*{B}
background color. Black on a display, white on a printer. The initial color of the display medium. Contrast with neutral color.
bar chart. A chart consisting of several bars of equal width. The value of the dependent variable is indicated by the height of each bar. Synonymous with column chart.

BASIC. One of the programming languages supported by GDDM.
blank character. An empty character represented by X'40' in the EBCDIC code. In GDDM-PGF, such a character occupies one position in a label or a key and
may be used for positioning purposes. Contrast with null character.
business graphics. The methods and techniques for presenting commercial and administrative information in chart form. For example, the creation and display of a sales bar chart. Contrast with general graphics.

\section*{C}

\section*{cell. See character cell.}
character. A letter, digit, or other symbol.
character attributes. See alphanumeric character attributes. See also graphics text attributes.
character box. In GDDM, the rectangle or (for sheared characters) the parallelogram boundaries that govern the size, orientation, spacing, and italicizing of individual symbols or characters to be shown on a display screen or printer page.

The box width, height, and if required, shear, are specified in world coordinates and may be program-controlled. See also character mode. Contrast with character cell.
character cell. The physical, rectangular space in which any single character or symbol is displayed on a screen or printer device. The size and position of a character cell are fixed. Size is usually specified in pixels on a given device, for example, 9 by 12 on an IBM 3279 Model 3 display. Position is addressed by row and column coordinates. Synonymous with hardware cell and symbol cell. Contrast with character box.
character code. The means of addressing a symbol in a symbol set, sometimes called code point.

The particular form and range of codes depends on the GDDM context, for example:
- For the Image Symbol Editor, a hexadecimal constant in the range \(X^{\prime} 41^{\prime}-X^{\prime}\) FE', or its EBCDIC character equivalent.
- For the Vector Symbol Editor, a hexadecimal constant in the range \(X^{\prime} 00^{\prime}-X^{\prime}\) FF' or its EBCDIC character equivalent.
- For the GDDM API, a decimal constant in the range 0 through 239, or subsets of this range (for example, a marker symbol code range of 1 through 8).
character grid. A notional grid that covers the chart area. The size of the grid determines the basic size of the characters in all text constructed by PG routines. It is the fundamental measurement in chart layout,
governing the spacing of mode-2 characters and the size of mode-3 characters. It also governs the size of the chart margins and thus the plotting area.
character matrix. Synonym for dot matrix.
character mode. In GDDM, the type of characters to be used. There are three modes:
- Mode-1 characters are loadable into PS and are of device-dependent fixed size, spacing, and orientation, as are hardware characters.
- Mode-2 characters are image (ISS) characters. Size and orientation are fixed. Spacing is variable by program.
- Mode-3 characters are vector (VSS) characters. Box size, position, spacing, orientation, and shear of individual characters are variable by program.
chart. In GDDM, usually means business chart, for example, a bar chart.
chart annotation. Annotative text added to a business chart. In GDDM-PGF, referred to as chart notes.
chart area. In GDDM-PGF, the part of the picture space in which a business chart is to be drawn.
chart attributes. In GDDM-PGF, define how each part of the chart will appear - for example, the font to be used for the chart heading.
chart data. An ICU chart is saved in two distinct parts, the data and the format. The chart data consists of the \(x\) and \(y\) values, the data labels, the data group names, and the chart heading.
chart data attributes. In GDDM-PGF, define the appearance of the data representation. For example, the color of the lines on a line graph or the shading patterns used for the sectors of a pie chart.
chart format. An ICU chart is saved in two distinct parts, the data and the format. The chart format consists of the chart type, the chart attributes, the axis characteristics, the chart layout, and the chart notes.
chart notes. In GDDM-PGF, additional text to annotate a business chart. May be used in isolation to create alphanumeric presentation material (using the ICU interactive notes facility).
chart type. In GDDM-PGF, specifies whether the business chart should be a line graph, surface chart, histogram, bar chart, pie chart, Venn diagram, polar chart, table chart, or tower chart.
choice device. A logical input device that enables the application program to identify keys pressed by the terminal operator.

CICS. Customer Information Control System. A subsystem of MVS or VSE under which GDDM can be used.

CMS. Conversational Monitor System. A time-sharing subsystem that runs under VM/SP.

COBOL. One of the programming languages supported by GDDM.
code point. Synonym for character code.
column chart. See bar chart.
compass keys. In the GDDM Vector and Image Symbol Editors, a set of PF keys predefined to draw a line in vector symbols or add a dot in image symbols, in directions corresponding to points of the compass.
component (data). In GDDM-PGF, synonym for data group. One line on a line graph, for example, or one set of bars on a bar chart.
composite bar chart. In GDDM-PGF, a bar chart in which multiple \(y\) values for the same \(x\) value or \(x\) label are stacked one on top of another. Contrast with multiple bar chart. See also floating bar chart.
cursor. A physical indicator that may be moved around a display screen. See alphanumeric cursor and graphics cursor.
curve construction line. In the GDDM Vector Symbol Editor, one of a series of vectors that is used in the construction of a curve.
curve fitting. The construction of a smooth curve through a sequence of plot points, as opposed to their connection by straight lines. In GDDM-PGF or the ICU, curve fitting may be requested for line graphs or polar charts.

\section*{D}
data group. In GDDM-PGF, one set of \(y\) values corresponding to a given set of \(x\) values (for example, the data values for one line on a line graph). Synonymous with component.
data indexing. In ICU, the display of \(y\) values relative to other \(y\) values in the same chart, rather than as originally specified. For example, all bars might be displayed as a percentage of the set of bars at \(X=1979\).
data label. In ICU, text specified on the data entry panel rather than on the \(x\)-axis label panel. If the chart has axes, the label is displayed on a tick mark that is close to the matching numeric \(x\) value. Data labels are attached to the sectors on a pie chart and to the circles
and overlap area of a Venn diagram. Contrast with axis label.
data values. In GDDM-PGF, the \(x\) and \(y\) values that are plotted on a business chart.
datum line. In GDDM-PGF, a line drawn parallel to a chart axis, through a specified value along the other axis. See also datum reference line.
datum reference line. In GDDM-PGF, a datum line that also acts as a shading boundary for the first component of a surface chart, histogram or composite bar chart, or for all the components of a polar chart or multiple bar chart. If no datum reference line is present, such components are shaded from the x axis.
data set. The major unit of data storage and retrieval, consisting of a collection of data in one of several prescribed arrangements and described by control information to which the system has access.

DBCS. Double-byte character set.
default value. A value chosen by GDDM when no value is explicitly specified by the user. For example, the default line type is a solid line.
device family. In GDDM, a device classification that governs the general way in which I/O will be processed. See also processing options. For example:
- Family 1: 3270 display or printer
- Family 2: queued printer
- Family 3: system printer (alphanumerics only)
- Family 4: high-resolution printer.
device token. In GDDM, an 8-byte code giving entry to a table of pre-established device hardware characteristics that are required when the device is opened (initialized).
display device. Any output unit that gives a visual representation of data. For example, a screen or printer. More commonly, the term is used to mean a screen as opposed to a printer.
display point. Synonym for pixel.
display terminal. An input/output unit by which a user communicates with a data-processing system or subsystem. Usually includes a keyboard and always provides a visual presentation of data. For example, an IBM 3179 display.
double-byte character set (DBCS). A set of characters in which each character occupies two byte positions in internal storage and in display buffers. Used for oriental languages.
dual characters. In GDDM, characters that each occupy two bytes in internal storage and in display buffers. They are used to display Kanji or Hangeul symbols.

\section*{E}
edit. To enter, modify, or delete data.
exploded pie chart. A pie chart in which one or more sectors have been moved outward from the center of the pie, to have a greater impact on the eye.
external defaults. GDDM-supplied values that users can change to suit their own needs.

\section*{F}
field attributes. See alphanumeric field attributes.
floating bar chart. In GDDM-PGF, a special type of composite bar chart in which the first data group is not displayed. The stacks of bars representing the remaining data groups therefore appear to "float".
foil. A transparency for overhead projection.
font. A particular style of typeface (for example, Gothic English). In GDDM, a font may exist as a programmed symbol set.

FORTRAN. One of the programming languages supported by GDDM.
four-button cursor. A hand-held device, with cross-hair sight, for indicating positions on the surface of a tablet. Synonymous with puck.
free data. In GDDM-PGF, data that has a separate set of \(x\) points for each component. Formerly known as paired data. Contrast with tied data.

\section*{G}

GDDM. Graphical Data Display Manager.
GDDM storage. The portion of host computer main storage used by GDDM.

GDF. Graphics data format.
general graphics. The methods and techniques for converting data to or from graphics display in mathematical, scientific, or engineering applications; that is, any application other than business graphics. See also business graphics.
graphics. A picture defined in terms of graphics primitives and graphics attributes.
graphics attributes. In GDDM, comprise color selection, color mix, line type, line width, graphics text attributes, marker symbol, and shading pattern definition.
graphics cursor. A physical indicator that can be moved (often with a joystick, mouse, or stylus) to any position on the screen.
graphics data format (GDF). A picture definition in an encoded order format used internally by GDDM and, optionally, providing the user with a lower-level programming interface than the GDDM API.
graphics text attributes. In GDDM, comprise symbol (character) set to be used, character box size, character angle, character mode, character shear angle, and character direction.
grid lines. In GDDM-PGF, lines drawn parallel to one axis and through the major scale marks of the other axis.

\section*{H}
hardware cell. Synonym for character cell.
hardware characters. Synonym for hardware symbols.
hardware symbols. The characters that are supplied with the device. The term is loosely used also for GDDM mode- 1 symbols that are loaded into a PS store for subsequent display. Synonymous with hardware characters.
help panel. A panel presenting tutorial text to assist the terminal user. All the GDDM interactive utilities possess comprehensive help panels.
hidden bars. See overlapping bar chart.
high-resolution image file. An intermediate form, residing on disk, of a picture destined for a high-resolution printer.
high-resolution printer. A printer, such as the 4250 or 3800-3, that has a high density of pixels to the inch and therefore produces output of good quality.
histogram. A chart in which each value of the dependent variable corresponds to a range of values of the independent variable (represented by the width of the associated bar). Such a chart might display the number of persons in various age ranges, for example.
home panel. The first panel that is displayed by the ICU. It is the starting point for access to the other panels.

ICU. Interactive Chart Utility.
image. Pictorial information that is specified in terms of the dots (pixels) of which it is made up.
image symbol. A character or symbol defined as a dot pattern.

Image Symbol Editor (ISE). A GDDM-supplied interactive editor that lets users create or modify their own image symbol sets (ISS).
image symbol set (ISS). A set of symbols each of which was created as a pattern of dots. Contrast with vector symbol set (VSS).

IMS. Information Management System. A subsystem of MVS under which GDDM can be used.
include member. A collection of source statements stored as a library member for later inclusion in a compilation.
indexing. In ICU, see data indexing.
integer. A whole number (for example, \(-2,3,457\) ).
Interactive Chart Utility (ICU). A GDDM-PGF menu-driven program that allows business charts to be created interactively by nonprogrammers.
interactive graphics. In GDDM, those graphics that can be moved or manipulated by a user at a terminal.
interactive mode. A mode of application operation in which each entry receives a response from a system or program, as in an inquiry system or an airline reservation system. An interactive system may also be conversational, implying a continuous dialog between the user and the system.
interactive subsystem. (1) One or more terminals, printers, and any associated local controllers capable of operation in interactive mode. (2) One or more system programs or program products that enable user applications to operate in interactive mode. For example, CICS.
intercept. In a chart, a method of describing the position of one axis relative to another. For example, the \(x\) axis can be specified so that it intercepts (crosses) the \(y\) axis at the bottom, middle, or top of the plotting area of a chart.

ISE. Image Symbol Editor.
ISS. Image symbol set.

JCL. Job Control Language.
joystick. A lever that can pivot in all directions, used as a locator device.

\section*{K}

Kanji. A character set of symbols used in Japanese ideographic alphabets.
key. In a legend, a symbol and an associated data group name. A key might, for example, indicate that the pink line on a graph represents "Predicted Profit." See also legend.
key symbol. A small part of a line (from a line graph) or an area (from a shaded chart) used in a legend to identify the various data groups.
legend. A set of symbolic keys used to identify the data groups in a business chart.
line attributes. In GDDM, color, line type, and line width.
line graph. In GDDM-PGF, a chart in which the plotted points (each optionally represented by a marker) are joined by straight or curved lines. If only the markers are displayed, the chart is known as a scatter plot.
link edit. To create a loadable computer program by means of a linkage editor.
load module. A program unit that is suitable for loading into main storage for execution; it is usually the output of a linkage editor.
logarithmic axis. In GDDM-PGF, an axis on which ascending powers of 10 are equally spaced.

\section*{M}

Manhattan chart. Synonym for tower chart.
menu. A displayed list of logically grouped functions from which the operator may make a selection. Sometimes called a menu panel.
menu-driven. Describes a program that is driven by an operator responding to one or more displayed menus.
missing values. In GDDM-PGF or the ICU, \(x\) or \(y\) values that are omitted from a chart. For example, one line on a graph might represent a sales forecast and extend to the end of the year on the \(x\) axis, while a second line might represent actual sales and extend only to the current month.
mixed character string. A string containing a mixture of Latin (one-byte) and Kanji (two-byte) characters.
mixed chart. In GDDM-PGF or the ICU, the combination of more than one chart type in a business graph. For example, the overlaying of a line graph on top of a bar chart.
mode \(1 / 2 / 3\) characters. See character mode.
mountain shading. A method of shading surface charts where each component is shaded separately from the base line, instead of being shaded from the data line of the previous component.
mouse. A hand-held device (the IBM 5277 Mouse) that is moved around a locator pad to position the graphics cursor on the screen.
multicomponent chart. In GDDM-PGF, a chart presenting more than one data group.
multiple axis chart. In GDDM-PGF, a chart in which more than one \(x\) axis or \(y\) axis, or both, is used. See also secondary axis.
multiple bar chart. In GDDM-PGF, a form of bar chart in which the bars at a given \(x\) value or label are placed side by side. Contrast with composite bar chart.
multiple charts. Two or more charts appearing together on the display screen or page. Multiple charts can be of the same type or different types, and can be derived from one or more sets of data.

\section*{N}

National Language (NL) feature. The translations of the ICU panels and GDDM messages into a variety of languages other than English.
neutral color. White on a display, black on a printer. Contrast with background color.
nickname. In GDDM, a quick and easy means of referring to a device, the characteristics and identity of which have been predefined.
non-paired data. See tied data.
null character. An empty character represented by \(X^{\prime} 00\) ' in the EBCDIC code. In GDDM-PGF, such a character does not occupy a screen position. The
trailing positions of short keys or labels may be filled with nulls. Contrast with blank character.
numeric label. In GDDM-PGF, an axis major scale mark label derived directly from the data value at that scale mark. Contrast with alphanumeric label.

\section*{0}
overlapping bar chart. A form of business chart where adjacent bars partly overlap each other. Overlapping bars are sometimes called hidden bars.

\section*{P}
page. In GDDM, the main unit of output and input. All specified alphanumerics and graphics are added to the "current page." An output statement always sends the current page to the device, and an input statement always receives the current page from the device.

\section*{paired data. See free data.}
panel. A predefined display that defines the locations and characteristics of alphanumeric fields on a display terminal. When the panel offers the operator a selection of alternatives it may be called a menu panel.
Synonymous with frame.
PDS. In TSO, a partitioned data set.
pel. Synonym for pixel.
PGF. Presentation Graphics Facility.
picture element. Synonym for pixel.
picture interchange format (PIF) file. In graphics systems, the type of file, containing picture data, that can be transferred between GDDM and a 3270-PC/G or 3270-PC/GX work station.
pie chart. A chart that takes the form of one or more circles divided into sectors, the angles of which represent the contributions of each data value to the group total.

PIF. Picture interchange format (PIF) file.
pixel. The smallest area of a display screen capable of being addressed and switched between visible and invisible states. Synonymous with display point, pel, and picture element.

PL/I. One of the programming languages supported by GDDM.
plotter. An output device that uses pens to draw its output on paper or transparency foils.
polar chart. A form of business chart where the x axis is circular and the \(y\) axis is radial.
presentation graphics. Computer graphics products or systems, the functions of which are primarily concerned with graphics output presentation. For example, the display of business planning bar charts.

Presentation Graphics Facility (PGF). A member of the GDDM family of program products. It is concerned with business graphics, as opposed to general graphics.
preview chart. A small version of the current chart that may be displayed on ICU menu panels.
primary device. In GDDM, the main destination device for the application program's output, usually a display terminal. The default primary device is the user console. See also alternate device.
processing options. Describe how a device's I/O will be processed. These device-family-dependent and subsystem-dependent options are specified when the device is opened. An example is the choice between CMS attention-handling protocols.
program library. (1) A collection of available computer programs and routines. (2) An organized collection of computer programs. (3) Synonym for partitioned data set.
programmed symbols (PS). Dot patterns loaded by GDDM into the PS stores of an output device.

PS. Programmed symbols.
PS overflow. A condition where the graphics cannot be displayed in its entirety because the picture is too complex to be contained in the device's PS stores.
puck. Synonym for four-button cursor.

\section*{Q}
queued printer. A printer belonging to the subsystem under which GDDM runs, to which output is sent indirectly by means of the GDDM Print Utility program. In some subsystems, this may allow the printer to be shared between multiple users. Contrast with system printer.

\section*{R}

RCP. Request control parameter.
reentrant. The attribute of a program or routine that allows the same copy of the program or routine to be used concurrently by two or more tasks.
reference line. See datum reference line.
regression line. In ICU, the conversion of a set of \(y\) values into other values that form a straight line most closely resembling the original values.
relative data. In GDDM-PGF, real y-data values that are to be presented in a stacked chart-type. The actual points to be plotted for a particular component are obtained by adding the \(y\) data of that component to the y data of the previous components. Contrast with absolute data.
reverse video. A form of alphanumeric highlighting for a character, field, or cursor, in which its color is exchanged with that of its background. For example, changing a red character on a black background to a black character on a red background.

\section*{S}
scalable markers. In GDDM-PGF, (vector) markers on a line graph or polar chart that may be varied in size.
scale marks. In GDDM-PGF, markings spaced at equal intervals along an axis. Each pair of "major scale marks" may have one or more "minor scale marks" in between. Synonymous with tick marks.
scatter plot. In GDDM-PGF, a variety of line graph in which only the marked points, and not their joining lines, are drawn.
scrolling. In computer graphics, moving a display image vertically or horizontally in a manner such that new data appears at one edge as existing data disappears at the opposite edge.
secondary axis. In GDDM-PGF, an \(x\) - or \(y\)-axis line drawn parallel to the primary axis and capable of having scale marks, labels, and title different from those of the primary axis. Permits the combination of two business charts.
skyscraper chart. Synonym for tower chart.
spider labels. In GDDM-PGF, labels that annotate pie-chart sectors. Each label is joined to its associated sector by a line, giving the resulting chart a spider-like appearance.
stacked chart type. A surface chart, composite bar chart, or histogram where the data components are stacked one on top of another. The data value of a particular component is indicated by the depth of the band at that point. See also relative data.
stand-alone (mode). Operation that is independent of another device, program, or system.
state-1. In GDDM-PGF, the state of a business graphics program, before the first plot has been made.
state-2. In GDDM-PGF, the state of a business graphics program after the first plot has been made, thereby constructing the axes.
stylus. A pen-like pointer for indicating positions on the surface of a tablet.
surface chart. A chart similar to a line graph, except that no markers appear and the areas between successive lines are shaded.
symbol. Synonymous with character. For example, the following terms all have the same meaning: vector symbols, vector characters, vector text.
symbol cell. Synonym for character cell.
symbol matrix. Synonym for dot matrix.
symbol set. A collection of symbols, usually but not necessarily forming a font. GDDM applications may use the hardware device's own symbol set.
Alternatively, they can use image or vector symbol sets, which the user may have created.
symbol set identifier. In GDDM, an integer (or the equivalent EBCDIC character) by which the programmer refers to a loaded symbol set.
system printer. A printer belonging to the subsystem under which GDDM runs, to which output is sent indirectly by means of system spooling facilities. Contrast with queued printer.

\section*{T}
table chart. In GDDM-PGF, a chart in which the data is presented as numbers arranged in rows and columns.
tablet. (1) A locator device with a flat surface and a mechanism that converts indicated positions on the surface into coordinate data. (2) The IBM 5083 Tablet Model 2, which, with a four-button cursor or stylus, allows positions on the screen to be addressed and the graphics cursor to be moved without use of the keyboard.
tag. In interactive graphics, an identifier associated with one or more primitives that is returned to the program if such primitives are subsequently picked.
terminal. A device, usually equipped with a keyboard and a display unit, capable of sending and receiving information over a link. See also display terminal.
text. Characters or symbols sent to the device. GDDM provides alphanumeric text and graphics text.
text attributes. See graphics text attributes.
tick marks. In GDDM-PGF, synonym for scale marks.
tied data. In GDDM-PGF, data that shares the same set of \(x\) points for each component. This is the most common form of data. It was formerly known as non-paired data. Contrast with free data.
tilted pie chart. A pie chart drawn in three dimensions, which has been tilted away from full face to reveal its three-dimensional properties.
tower chart. A form of business chart in which rows of towers stand on a two-dimensional base. Synonymous with Manhattan chart and skyscraper chart.
transparency. (1) A document on transparent material suitable for overhead projection. (2) An alphanumeric attribute that allows underlying graphics to show.

TSO. Time sharing option. A subsystem of OS/VS under which GDDM can be used.

\section*{U}
user exit. A point in GDDM execution where a user routine will gain control if such has been requested.

\section*{V}
variable cell size. In most devices, the hardware cell size is fixed. But the 3290 Information Panel has a cell size that can be varied. This in turn causes the number of rows or columns on the device to alter.
vector symbol. A character or shape made up of a series of lines or curves.

Vector Symbol Editor. A program supplied with GDDM-PGF, the function of which is to create and edit vector symbol sets (VSS).
vector symbol set (VSS). A set of symbols each of which was originally created as a series of lines and curves.

Venn diagram. A form of business chart in which two populations and their intersection are represented by two overlapping circles.

VM/SP CMS. IBM Virtual Machine/System Product Conversational Monitor System. A system under which GDDM can be used.

VSE. Virtual storage extended. An operating system consisting of VSE/Advanced Functions and other IBM programs. In GDDM, the abbreviation VSE has
sometimes been used to refer to the Vector Symbol Editor, but to avoid confusion, this usage is deprecated.

VSS. Vector symbol set.
glossary

\section*{Index}

\section*{Numerics}

4250 printer
example of printing using ICU 15
invocation from ICU 202

\section*{A}

ABPIE option 75
ABREV option 70
absolute data 70
ADMCOLSD supplied shading-pattern symbol set name 14
ADMICUPx, shading-pattern symbol set name 14
ADMUCDSO (chart utility sample module) 201
ADMUCGAT (supplied TSO CLIST) 202
ADMUCGAV (supplied CMS EXEC) 202
ADMUCIMT (supplied TSO CLIST) 202
ADMUCIMV (supplied CMS EXEC) 202
ADMUPIxy libraries of PL/I declarations 27
ADMUPLxO libraries of PL/I declarations 27
ADMUSC5 (COBOL sample program) 178
ADMUSC6 (COBOL sample program using chart utility) 191
ADMUSF5 (FORTRAN sample program) 183
ADMUSF6 (FORTRAN sample program using chart utility) 194
ADMUSP5 (IMS PL/I sample program) 188
ADMUSP6 (PL/I sample program using chart utility) 197
advanced directory (CSINT) 142
ALPHANUMERIC option
CHXSET 97
CHYSET 108
CHZSET 116
annotation, chart notes
CHNATT (note attributes) 54
CHNOTE (specify notes) 56
API (see application programming interface)
APL codes in numeric order 171
APL, interface to GDDM-PGF 27
application program, calling ICU from 6
application program, calling ISE from 7
application program, calling Vector Symbol Editor from 6
application programming interface (API) 25
area
CHAREA (define chart area) 28
querying with CHQARE 66
relationship between pies 75
assembler language 26

ATABOVE option 95, 107
ATCENTER option 95, 107
ATEND option 95, 107
attributes
CHDATT (datum line) 35
CHGATT (grid line) 39
CHKATT (legend text) 45
CHLATT (axis label) 50
CHNATT (notes) 54
CHTATT (text) 80
CHVATT (values in bar and pie charts) 84
CHXLAT (x-axis labels) 91
CHXTAT (x-axis titles) 97
CHYLAT ( \(y\)-axis labels) 103
CHYTAT (y-axis titles) 109
CHZLAT (z-axis labels) 113
automatic axis drawing, control of 73
autoranging
RANGE option (CHSET) 76
axis
automatic ranging 76
characteristics
x axis (CHXSET) 94
x-axis explicit range (CHXRNG) 93
\(x\)-axis label type (CHXSET) 97
\(x\)-axis line occurrence (CHXSET) 95
x-axis scale mark interval (CHXTIC) 99
\(x\)-axis scale-mark style (CHXSET) 96
y axis (CHYSET) 106
y-axis explicit range (CHYRNG) 105
\(y\)-axis label type (CHYSET) 108
y-axis line occurrence (CHYSET) 107
y-axis scale mark interval (CHYTIC) 110
y-axis scale-mark style (CHYSET) 108
z axis (CHZSET) 115
z-axis explicit range (CHZRNG) 114
z-axis label type (CHZSET) 116
\(z\)-axis line occurrence (CHZSET) 115
z-axis scale mark interval (CHZTIC) 117
z-axis scale-mark style (CHZSET) 116
duplicate 77
label type
x axis (CHXSET) 97
y axis (CHYSET 108
z axis (CHZSET) 116
labels
CHLATT (text attributes) 50
CHXDAY (x-axis day) 88
CHXLAB (x-axis text) 90
CHXLAT (x-axis attributes) 91
CHXMTH (x-axis month) 92
CHXSCL (x-axis scale factor) 93
CHYDAY (y-axis day) 100
```

axis (continued)
labels (continued)
CHYLAB (y-axis text) }10
CHYLAT (y-axis attributes) }10
CHYMTH (y-axis month) }10
CHYSCL (y-axis scale factor) }10
CHZLAT (z-axis attributes) }11
x-axis label position (CHXSET) }9
y-axis label position (CHYSET) }10
z-axis label position (CHZSET) }11
line
CHXSET 95
CHYSET 107
CHZSET 115
options
x axis (CHXSET) }9
y axis (CHYSET) }10
z axis (CHZSET) }11
orientation 77
placement
CHXINT (set interception point) }9
CHYINT (set interception point) 101
position (CSINT) }14
querying }x\mathrm{ and y ranges 67
selection
duplicate 77
x axis (CHXSEL) }9
y axis (CHYSEL) }10
titling
CHTATT (text attributes) 80
CHXSET (title position and justification) 95
CHXTAT (x-axis attributes) }9
CHXTTL (x axis) }10
CHYSET (title position and justification) }10
CHYTAT (y-axis attributes) }10
CHYTTL (y axis) }11
axis label text attributes (CHLATT) 50
AXIS option
CHXSET }9
CHYSET }10
CHZSET }11
B
BACK option 70
bar chart
CHBAR 29
CHBARX (numeric x values) }3
CHGGAP (spacing between bar groups) }4
CHTHRS (bar-value threshold limit) 81
CHVDIG (set number of digits) 86
controlling bar values }7
CSINT }13
decimal digits in values 86
horizontal bars 77
MBAR, CBAR, and FBAR options 74

```
    bar chart (continued)
    numeric \(x\) values 31
    options (CSFLT) 134
    options (CSINT) 140
    spacing between bar groups (CHGGAP)
    threshold limit for values (CHTHRS) 81
    types of 4
    uses for 4
bar-value areas, blanking 71
bar-value attributes (CSFLT) 135
bar-value attributes (CSINT) 140
bar-value digits (CHVDIG) 86
bar-value symbol set name (CSCHA) 130
bar-value threshold limit (CHTHRS) 81
base position of legend (CHKEYP) 47
BASIC (IBM), interface to GDDM-PGF 27
BGBASE option 70
BINDING (field of CHART call) 123
BKEY option 70
BLABEL option 71
blanking
    axis-label areas 71
    bar-value areas 71
    note areas 71
BNOTE option 71
BVALUES option 71
C
call statements, syntax conventions 25
calling ICU from application program 6
    example 15
calling ISE from application program 7
calling Vector Symbol Editor from application
    program 6
CBACK option 71
CBAR option 74
CBOX option 71
character items
    creating (CSCHA) 127
    querying (CSQCHA) 153
CHARACTER parameters in VS/FORTRAN 27
character spacing/size (CHCGRD) 32
character width multiplier (CSFLT) 137
CHAREA (define chart area) 28
chart 28
    area
        CHAREA 28
        querying with CHQARE 66
    dimensions (CSINT) 148
    drawing with CSxxxx calls 10
    drawing with PG routines 6
    framing box 71
    heading
        CHHATT (heading text attributes) 41
        CHHEAD (heading text) 42
```

chart (continued)
how to draw chart with PG routines 21
layout specifications 28
CHCGRD (character spacing/size) }3
CHHMAR (horizontal margins) 44
CHVMAR (vertical margins) }8
margin specifications
CHHMAR (horizontal) 44
CHVMAR (vertical) }8
notes
querying position 66
setting current number (CSNUM) 151
setting maximum number (CSNUM) }15
options (CHSET) }6
saving
CSSAVE 161
types and their uses
bar 4
histogram 4
line graph 3
pie 4
polar 5
surface 3
table 5
tower 5
Venn diagram 5
utility (see ICU) 9
CHART call
examples }1
introduction 12
syntax }11
when to use 12
chart data description (CSCHA) }13
chart data names
CSCHA (set character item) }12
CSQCHA (query character string) 153
chart format description (CSCHA) }13
chart format names
CSCHA (set character item) }12
CSQCHA (query character string) }15
chart heading (CSCHA) }12
chart heading attributes (CSFLT) }13
chart heading symbol set name (CSCHA) }12
chart identification number
querying (CSQUID) }15
chart note symbol set name (CSCHA) }13
chart note text (CSCHA) }13
chart options, querying floating-point values
(CSQFLT) }15
chart options, querying integer values (CSQINT) }15
chart options, setting floating-point values
(CSFLT) }13
chart options, setting integer values (CSINT) }13
chart proportions (CSFLT) }13
chart type options (CSINT) }13
chart (continued)
how to draw chart with PG routines 21
layout specifications 28
CHCGRD (character spacing/size) 32
CHHMAR (horizontal margins) 44
CHVMAR (vertical margins) 88
margin specifications
CHHMAR (horizontal) 44
CHVMAR (vertical) 88
notes
querying position 66
current number (CSNUM) 15
otions (CHSET) 68
saving
CSSAVE 161
types and their uses
bar 4
histogram 4
line graph 3
pie 4
polar 5
table 5
tower 5
Venn diagram 5
utility (see ICU) 9
CHART call
examples 15
introduction 12
syntax 118
when to use 12
data description (CSCHA) 130
CSCHA
CSCHA (set character item) 127
CSQCHA (query character string) 153
chart format description (CSCHA) 130
CSCHA (set character item) 127
CSQCHA (query character string) 153
chart heading (CSCHA) 129
chart heading attributes (CSFLT) 136
chart heading symbol set name (CSCHA) 129
chart identification number
querying (CSQUID) 158
chart note symbol set name (CSCHA) 130
chart note text (CSCHA) 130
chart options, querying floating-point values
(CSQFLT) 156
chart options, querying integer values (CSQINT) 157
chart options, setting floating-point values
(CSFLT) 132
g integer values (CSINT) 137
chart type options (CSINT) 139

```
chart_control parameter
example 15
format 119
CHBAR (create bar chart) 29
CHBARX (create bar chart with numeric \(x\) values) 31
CHCGRD (set character grid) 32
CHCOL (set color table) 33
CHCONV (convert coordinates) 34
CHDATT (set datum line attributes) 35
CHDCTL (control format of values on table chart) 36
CHDTAB (create table chart) 37
CHFINE (set curve-fitting smoothness) 38
CHGATT (set grid line attributes) 39
CHGGAP (set spacing between bar groups) 40
CHHATT (set heading text attributes) 41
CHHEAD (set heading text) 42
CHHIST (create histogram) 43
CHHMAR (set horizontal margins) 44
CHKATT (set legend text attributes) 45
CHKEY (set legend key labels) 46
CHKEYP (set base position of legend) 47
CHKMAX (set maximum legend height/width) 48
CHKOFF (set legend offsets) 49
CHLATT (set axis label text attributes) 50
CHLC (set component line color table) 51
CHLW (set component line width table) 52
CHMISS (set missing values string) 53
CHMKSC (set marker scale values) 54
CHNATT (set note attributes) 54
CHNOTE (specify notes) 56
CHNUM (set number of components) 59
CHPAT (set component shading pattern table) 60
CHPCTL (control pie chart slices) 61
CHPEXP (exploded slices in pie chart) 61
CHPIE (create pie chart) 62
CHPIER (reduce pie chart size) 63
CHPLOT (create line graph or scatter plot) 64
CHPOLR (create polar chart) 65
CHQARE (query chart area) 66
CHQPOS (query chart note position) 66
CHQRNG (query \(x\) and \(y\) axis ranges) 67
CHSET (set chart options) 68
area relationship between pies 75
automatic axis ranging 76
axis title line break 76
back plane (towers) 70
background color (towers) 70
bar chart type 74
blanking
axis-label areas 71
bar-value areas 71
note areas 71
chart framing box 71
control of automatic axis drawing 73
controlling bar values 72
conventions for displaying numeric data values 75
```

CHSET (set chart options) (continued)
curve fitting 71
data relative or absolute 70
duplicate axis selection 77
format of bar-chart values
heading
justification 73
occurrence 73
position 73
histogram risers 76
legend
blanking 70
box 73
legend or no legend 74
lines on line graph 74
major scale (tick) marks on towers 76
markers on line graph 74
month or day abbreviations 70
mountain-range shading 74
note framing box 75
notes repositioned by PGF 75
order of key entries in legend 73
picking attributes for towers 77
pie chart
data type 75
label configuration 75
spider appearance 76
placing bar-chart values
repositioning notes 75
scale tower 76
scaled markers 74
screen position of SO/SI characters 75
shading 72
side plane (towers) 76
CHSSEG (set a segment number) 78
CHSTRT (reset processing state to state-1) 78
CHSURF (create surface chart) 79
CHTATT (set text attributes) 80
CHTERM (terminate PG routines) 81
CHTHRS (set bar-value threshold limit) 81
CHTOWR (create tower charts) 82
CHTPRJ (set tower chart projection) 83
CHVATT (set value of text attributes) 84
CHVCHR (set number of bar value characters) 86
CHVDIG (set bar-value digits) 86
CHVENN (create Venn diagram) 87
CHVMAR (set vertical margins) 88
CHXDAY (set x-axis day labels) 88
CHXDLB (set x-axis data labels) 89
CHXDTM (specify x-axis datum line) 89
CHXINT (set x-axis interception point) 90
CHXLAB (specify x-axis label text) 90
CHXLAT (set x-axis label attributes) 91
CHXMTH (set x-axis month labels) 92
CHXRNG (set an explicit range of x axis) 93

```

CHSET (set chart options) (continued)
curve fitting 71
data relative or absolute 70
duplicate axis selection 77
format of bar-chart values
heading
justification 73
occurrence 73
position 73
histogram risers 76
legend
blanking 70
box 73
legend or no legend 74
lines on line graph 74
major scale (tick) marks on towers 76
month or day abbreviations 70
mountain-range shading 74
note framing box 75
notes repositioned by PGF 75
picking attributes for towers 77
pie chart
data type 75
label configuration 75
spider appearance 76
placing bar-chart values
repositioning notes 75
scale tower 76
scaled markers 74
screen position of SO/SI characters 75
side plane (towers) 76
CHSSEG (set a segment number) 78
CHSTRT (reset processing state to state-1) 78
CHSURF (create surface chart) 79
TATT (set text attributes) 80
CHTERM (terminate PG routines) 81
CHTOWR (create tower charts) 82
CHTPRJ (set tower chart projection) 83
CNATI (set value of text attributes) 84
CHVDIG (set bar-value digits) 86
CHVENN (create Venn diagram) 87
CHVMAR (set vertical margins) 88
CHXDAY (set \(x\)-axis day labels) 88
CHXDTM (specify \(x\)-axis datum line) 89
CHXINT (set \(x\)-axis interception point) 90
CHXLAB (specify \(x\)-axis label text) 90
CHXLAT (set x-axis label attributes) 91
CHXRNG (set an explicit range of \(x\) axis) 93

CHXSCL (set \(x\)-axis scale factor) 93
CHXSEL (select \(x\) axis) 94
CHXSET (x-axis options) 94
axis
label type 97
line occurrence 95
scale type 94
conventions for displaying numeric data values 97
grid lines 95
label
position 95
type 97
scale-mark style 96
title position and justification 95
CHXTAT (set x-axis title attributes) 97
CHXTIC (set x-axis scale mark interval) 99
CHXTTL (specify x-axis title) 100
CHYDAY (set y-axis day labels) 100
CHYDTM (specify y-axis datum line) 101
CHYINT (set y-axis interception point) 101
CHYLAB (set y-axis label text) 102
CHYLAT (set y-axis label attributes) 103
CHYMTH (set y-axis month labels) 104
CHYRNG (specify an explicit range of y axis) 105
CHYSCL (set y-axis scale factor) 105
CHYSEL (select y axis) 106
CHYSET (y-axis options) 106
axis
label type 108
line occurrence 107
conventions for displaying numeric data values 109
grid lines 107
label
position 107
type 108
scale-mark style 108
title position and justification 107
CHYTAT (set \(y\)-axis title attributes) 109
CHYTIC (set y-axis scale mark interval) 110
CHYTTL (specify y-axis title) 111
CHZDLB (set z-axis data labels) 112
CHZGAP (set spacing between towers) 112
CHZLAT (set z-axis label attributes) 113
CHZRNG (set an explicit range of \(z\) axis) 114
CHZSET (z-axis options) 115
axis
label type 116
line occurrence 115
conventions for displaying numeric data values 116
grid lines 115
label
position 115
type 116
scale-mark style 116
CHZTIC (set z-axis scale mark interval) 117

CICS, using PGF under 173
CMS
too many external names in PL/I 27
using PGF under 173
COBOL
format 26
sample programs
ADMUSC5 178
ADMUSC6 191
color table, shading and markers 33
compass keys 57
component appearance
CHCOL (set color table) 33
CHFINE (curve-fitting smoothness) 38
CHLC (line color table) 51
CHLW (line width table) 52
CHPAT (component shading pattern table) 60
component line color table (CHLC) 51
component line width table (CHLW) 52
component shading pattern table (CHPAT) 60
control
automatic axis drawing 73
bar-chart values 72
functions
CHSTRT (reset processing state to state-1) 78
CHTERM (terminate the PG routines) 81
pie chart slices 61
control pie chart slices (CHPCTL) 61
control values, setting (CSNUM) 151
conventions for call syntax 25
conventions for displaying numeric data values
CHSET 75
CHXSET 97
CHYSET 109
CHZSET 116
converting coordinates (CHCONV) 34
CSCHA (create character items) 127
CSCHA, guide to options and attributes 11
CSDEL (delete chart items) 130
CSDIR (build a directory) 131
CSFLT (set floating-point values) 132
CSFLT, guide to options and attributes 11
CSINT (set integer values) 137
CSINT, guide to options and attributes 11
CSLOAD (restore a chart) 150
CSNUM (set control values for a chart) 151
CSNUM, guide to options and attributes 11
CSQCHA (query character items) 153
CSQCS (query CSxxxx call information) 154
CSQDIR (query directory) 155
CSQFLT (query floating-point values) 156
CSQINT (query integer values) 157
CSQUID (query chart identification number) 158
CSQXSL (query selected x data) 159
CSQZDT (query data group (z) values) 160

CSSAVE (save a chart) 161
CSSICU (start an ICU session) 162
CSXDT (set independent (x) values) 167
CSXSL (set data selection) 167
CSxxxx calls
basic steps in a program 10, 11
examples 15
ICU panels and 11
when to use 12
CSYDT (set dependent (y) values) 168
CSZSL (select data groups (z)) 169
CURVE option 71
curve-fitting smoothness
CHFINE 38
CURVE option (CHSET) 71
CVALUES option 72

\section*{D}
data
free (paired) and tied (non-paired) 13
missing values 13
type 70
data definition description (CSCHA) 130
data definition name (CSCHA) 130
data group name (CSCHA) 129
data group name attributes (CSFLT) 134
data group name attributes (CSINT) 143
data group name symbol set name (CSCHA) 129
data import
file identifier (CSCHA) 130
options (CSINT) 148
text for missing values 130
data interpretation options (CSINT) 143
data labels
\(x\) axis (CHXDLB) 89
z axis (CHZDLB) 112
data labels (CSCHA) 129
data values on bar and pie charts 72
data, where to get it 5
DATANAME (field of CHART call) 122
DATE option 97, 109
datum lines
attributes (CHDATT) 35
x axis (CHXDTM) 89
y axis (CHYDTM) 101
day labels
abbreviations 70
x-axis (CHXDAY) 88
y axis (CHYDAY) 100
DBCS (double-byte character set) 142
DCSS (discontiguous shared segment) 176
decimal digits in bar charts 86
decimal digits in table charts 86
delete chart items (CSDEL) 130

\section*{index}
```

dependent (y) values, setting (CSYDT) }16
DESTNAME (field of CHART call) }12
directory
creating (CSDIR) }13
names
CSCHA (set character item) 127
CSQCHA (query character string) 153
selecting standard or advanced (CSINT) }14
selecting types of object to appear (CSNUM) }15
directory panel as only function of ICU 122,167
discontiguous shared segment (DCSS) }17
DISPLAY (field of CHART call) 120
DRAW option }7
drawing chart with PG routines 6
DRYLIB (field of CHART call) }12
DRYNAME (field of CHART call) }12
DRYTYPE (field of CHART call) }12
DRYTYPEQ (field of CHART call) }12
duplicate axis selection 77

```
```

E
errors
numeric anomalies due to rounding errors 27
too many external PL/I names under CMS 27
unexpected legend position 47
exclude data (CSXSL) }16
exploded slices in pie charts (CHPEXP) }6
EXPLVL (field of CHART call) }12
external names restriction in PL/l 27

```
```

F
FBAR option 74
file identifier for data import (CSCHA) 130
FILL option 72
flat file
same as sequential file 5
FORCEZERO option 95,107
format of bar-chart values }7
FORMNAME (field of CHART call) }12
FORTRAN CHARACTER parameters 27
FORTRAN sample programs
ADMUSF5 183
ADMUSF6 }19
free data 13
restoring (CSNUM) 153
FULL option 70

```

\section*{G}
```

GDDM Base calls
using with ICU 121, 164
using with ICU and PG routines 1
GDDM Internet home page xvi

```
```

ICU (Interactive Chart Utility) (continued)
CHART call (continued)
syntax 118
compared to PG routines 1
composed page printer }20
create short data without display 121
CSxxxx calls
examples }1
DISPLAY field usage 120
free (paired) and tied (non-paired) data 13
invoking 9
invoking by program call 9
library manager mode 122,167
limiting access at terminal }16
passing z-axis data 126
printing a chart, example 15
printing charts without operator intervention 121,
1 6 4
starting (CSSICU) }16
symbol, pattern, and marker sets }1
using with GDDM program 121,164
with ADMUCDSO 201
IDRAW option }7
image symbol sets (ISS) }1
IMS, PL/I sample program 188
independent (x) values, setting (CSXDT) }16
indexing y values (CSFLT) }13
INFILL option }7
INOTES option 75
Interactive Chart Utility (see ICU)
INTERCEPT option 96,108
interception point
x axis (CHXINT) }9
y axis (CHYINT) 101
interface to PG routines, three types of 25
Internet home page for GDDM xvi
invoking ICU by program call 9
ISE (Image Symbol Editor)
calling from an application program 7
J
justifying and positioning titles
x axis (CHXSET) 95,115
y axis (CHYSET) }10

```

\section*{K}
```

KBOX option 73
KEYL (field of CHART call) 124
KNORMAL option 73
KREVERSED option 74

```
```

L
LABADJACENT option
CHXSET 95
CHYSET }10
CHZSET 115
label
attributes for axes
x axis (CHXLAT) }9
y axis (CHYLAT) 103
z axis (CHZLAT) }11
configuration for a pie chart }7
CSCHA (set character item) }12
CSQCHA (query character string) }15
legend key (CHKEY) 46
position
x axis (CHXSET) }9
y axis (CHYSET) }10
z axis (CHZSET) }11
text
x axis (CHXLAB) }9
y axis (CHYLAB) }10
type
x axis (CHXSET) 97
y axis (CHYSET) }10
z axis (CHZSET) }11
user-provided
x axis (CHXDLB) }8
z axis (CHZDLB) }11
LABELL (field of CHART call) }12
LABMIDDLE option
CHXSET 95
CHYSET }10
CHZSET 116
legend
base position 47
blanking 70
box 73
CHKATT (legend text attributes) 45
CHKEYP (base position) 47
CHKMAX (maximum legend height/width) 48
columns/rows, order of keys 73
construction 74
CSCHA (set character item) 127
CSQCHA (query character string) }15
key labels
CHKEY 46
maximum legend height/width (CHKMAX) 48
offset (CSFLT) }13
offsets (CHKOFF) 49
position and format (CSINT) }14
rows/columns, order of keys }7
text attributes (CHKATT) 45
unexpected positioning 47
LEGEND option 74

```

\section*{index}
```

LETTER option 70
LEVEL (field of CHART call) 120
library manager mode of ICU 122,167
line color
setting (CSINT) 141
table (CHLC) 51
line graph
CHPLOT }6
CSINT }13
lines on 74
markers on 74
options (CSINT) }13
uses for 3
line type
setting (CSINT) }14
line width
setting (CSFLT) }13
table (CHLW) 52
LINEAR option 96,108
lines on a line graph 74
LINES option }7
linkage, assembler language 26
LOGARITHMIC option 96,108
LOWAXIS option 96,108

```

\section*{M}
major scale (tick) marks on tower charts 76
Manhattan chart
same as tower chart 5
marker colors (CSINT) 141
marker scale (CSFLT) 134
marker scale values (CHMKSC) 54
marker scaling 74
marker symbol sets, usage with ICU 15
marker type, setting (CSINT) 142
markers on line graph 74
MARKERS option 74
master chart, changing the number (CSNUM)
maximum legend height/width (CHKMAX) 48
MBAR option 74
MIDDLE option 96, 108
missing data values 13
missing values string (CHMISS) 53
missing values, text for (CSCHA) 130
mixed chart, specifying 139
mnemonic naming of PG routines 21
month labels
abbreviations 70
x axis (CHXMTH) 92
y axis (CHYMTH) 104
MOUNTAIN option 74
mountain-range shading 74
moving between states 1 and 222
MSCALE option 74
multiple charts, setting (CSINT) 142

\section*{N}
names of PG routines, meaning of 21
NBKEY option 71
NBLABEL option 71
NBNOTE option 71
NBOX option 75
NBVALUES option 71
NCBOX option 71
NDRAW option 73
NE (field of CHART call) 123
NG (field of CHART call) 123
NKBOX option 73
NNOTES option 75
NOAXIS option
CHXSET 95
CHYSET 107
CHZSET 115
NOBACK option 70
NOCURVE option 72
NOFILL option 73
NOFORCEZERO option 95, 107
NOGRID option
CHXSET 95
CHYSET 107
CHZSET 115
NOHEADING option 73
NOLAB option 96, 108
NOLEGEND option 74
NOLINES option 74
NOMARKERS option 74
NOMOUNTAIN option 74
NOMSCALE option 74
non-paired data (tied data) 13
NONBOX option 75
NOPOSITION option 75
NOPROPIE option 75
NORANGE option 76
NORISERS option 76
NOSCALETOWER option 76
NOSIDE option 76
notes
attributes (CHNATT) 54
attributes (CSFLT) 137
attributes (CSINT) 150
blanking areas 71
CHNATT (note attributes) 54
CHNOTE (specify notes) 56
converting coordinates to positions (CHCONV) 34
framing box 75
options (CSINT) 148
position (CSFLT) 136
querying position information (CHQPOS) 66
repositioned by PGF 75

NOTOWERTICK option 77
NOVALUES option 72
NTICK option
CHXSET 96
CHYSET 108
CHZSET 116
NTLBREAK option 76
number of bar value characters (CHVCHR) 86
number of components (CHNUM)
numeric data values, conventions for displaying
CHSET 75
CHXSET 97
CHYSET 109
CHZSET 116
NUMERIC option
CHXSET 97
CHYSET 108
CHZSET 116
numeric \(x\) values in bar charts 31

\section*{0}
offset
legend (CSFLT) 136
omitting data values 13
order of keys in legend 73
orientation, axis 77

\section*{P}
paired data (free data) 13
passing z-axis data to the ICU 126
pattern symbol sets, usage with ICU 14
percentages in pie charts 4
PERPIE option 75
PG routines
how to draw chart with 6,21
invocation 25
meaning of names 21
special conventions in 21
using with ICU 121, 164
pie chart
area relationship between pies 75
CHNUM (set number of components) 59
CHPCTL (control pie chart slices) 61
CHPIE 62
CHPIER (reduce pie chart size) 63
CSINT 139
data type 75
exploded slices (CHPEXP) 61
exploded slices (CSINT) 142
label configuration 75
options (CSINT) 140
slice labels 46
spider appearance 76
types of 4
pie chart (continued)
uses for 4
PIEKEY option 75
PL/I
declarations 26
sample programs
ADMUSP5 185, 188
ADMUSP6 197
placing bar-chart values 77
PLAIN option
CHXSET 96
CHYSET 108
CHZSET 116
plotter destination names
CSCHA (set character item) 127
CSQCHA (query character string) 153
plotting
bar charts
CHBAR 29
CHGGAP (spacing between bar groups) 40
CHVATT (value of text attributes) 84
CHVCHR (number of bar value characters) 86
CSFLT 132
CSINT 127, 137
histograms
CHHIST 43
line graphs and scatter plots
CHPLOT 64
pie charts
CHNUM (set number of components) 59
CHPCTL (controlling slices) 61
CHPEXP (exploded slices) 61
CHPIE 62
CHPIER (reduce pie chart size) 63
CHVATT (value of text attributes) 84
slice labels 46
polar charts
CHPOLR 65
surface charts
CHSURF 79
table charts 36,37
CHDCTL 36
CHDTAB 37
tower charts
CHTOWR 82
CHTPRJ 83
Venn diagrams
CHVENN 87
polar chart
CHPOLR 65
CSINT 139
mountain-range shading 74
options (CSINT) 141
uses for 5
position information, querying with CHQPOS 66

\section*{index}

POSITION option 75
positioning and justifying titles
\(x\) axis (CHXSET) 95
y axis (CHYSET) 107
preloaded symbol sets 14
Presentation Graphics routines (see PG routines)
preview chart (CSINT) 142
primary and secondary axes
CHXSEL (x-axis selection) 94
CHYSEL ( \(y\)-axis selection) 106
printer destination names
CSCHA (set character item) 127
CSQCHA (query character string) 153
printer options (CSFLT) 134
printing
options (CSINT) 149
printing, using the ICU
example 15
GDF files 122
via CHART call 121
via CSSICU call 164
processing state
reset to state-1 (CHSTRT) 78
resetting 23
profile options (CSINT) 142
programs, sample (see sample programs)
projection angle/scale for tower charts 83
PROPIE option 75
proportions of chart (CSFLT) 136
PRTCOPY (field of CHART call) 124
PRTDEP (field of CHART call) 124
PRTHEAD (field of CHART call) 124
PRTHOFF (field of CHART call) 124
PRTUNIT (field of CHART call) 124
PRTVOFF (field of CHART call) 124
PRTWID (field of CHART call) 124
PTICK option
CHXSET 96
CHYSET 108
CHZSET 116
punctuation
numeric values
CHSET 75
CHXSET 97
CHYSET 109
CHZSET 116

\section*{Q}
query calls
character items (CSQCHA) 153
chart area (CHQARE) 66
CSxxxx call information (CSQCS) 154
data group (z) values (CSQZDT) 160
directory list (CSQDIR) 155
floating-point values of chart settings
(CSQFLT) 156
```

query calls (continued)
integer values of chart settings (CSQINT) 157
note position information (CHQPOS) 66
range of x and y axes(CHQRNG) 67
selected independent (x) data 159
querying chart fields with CSxxxx calls 10

```
```

R
radar chart
same as polar chart 5
range
explicit setting
x axis (CHXRNG) 93
y axis (CHYRNG) 105
z axis (CHZRNG) 114
querying x and y axis ranges 67
range of x axis (CHXRNG) 93
range of y axis (CHYRNG) 105
range of z axis (CHZRNG) 114
RANGE option 76
reduce pie chart size (CHPIER) 63
relative data 70
RELATIVE option 70
repositioning notes 75
reset processing state to state-1 (CHSTRT) 78
resetting processing state 23
restoring a chart (CSLOAD) 150
RISERS option 76
risers, histogram 76
rounding errors 27
S
sample programs
ADMUSC5: COBOL program to display simple
histogram 178
ADMUSC6: COBOL program that uses chart
utility 191
ADMUSF5: FORTRAN program to display simple
histogram 183
ADMUSF6: FORTRAN program that uses chart
utility 194
ADMUSP5: IMS PL/I program to display simple
histogram 188
ADMUSP5: PL/I program to display simple
histogram 185
ADMUSP6: PL/I program that uses chart
utility 197
saving and printing GDF files, using the ICU 122
saving charts (CSSAVE) 161
scale
factor
x axis (CHXSCL) 93
y axis (CHYSCL) 105
mark interval
x axis (CHXTIC) 99

```
```

scale (continued)
mark interval (continued)
y axis (CHYTIC) }11
z axis (CHZTIC) 117
scale-mark style
x axis (CHXSET) }9
y axis (CHYSET) }10
z axis (CHZSET) 116
scaled markers 74
SCALETOWER option 76
scatter plot
CHPLOT }6
segment, setting the number with CHSSEG 78
select data (CSXSL) }16
select data groups (z) (CSZSL) }16
selecting an axis
x axis (CHXSEL) }9
y axis (CHYSEL) 106
sequential file
getting data from 5
setting chart fields with CSxxxx calls 10
shading
CHPAT (set component shading pattern table) }6
method for PG routines }7
shading and markers, color table 33
shading colors (CSINT) }14
shading pattern
setting (CSINT) }14
shading-pattern symbol sets, usage with ICU 14
SIDE option }7
single chart, specifying }13
size of pie charts (CHPIER) 63
size/spacing of characters 32,151
skyscraper chart
same as tower chart 5
SO/SI characters }7
spacing
between bar groups (CHGGAP) 40
between towers (CHZGAP) }11
of bars on bar charts 4
spacing/size of characters 32,151
specifying chart options 68
spider appearance, pie chart 76
SPIDER option }7
SPILABEL option 76
SPISECTOR option 76
SPISLICE option 76
stacked data, bar charts 4
standard directory (CSINT) }14
star chart
same as polar chart 5
starting an ICU session (CSSICU) }16
starting an ICU session with CSxxxx calls 10
state-1
moving between states 1 and 2 22
resetting processing state 23
scale (continued)
mark interval (continued)
y axis (CHYTIC) 110
z axis (CHZTIC) 117
scale-mark style
x axis (CHXSET) 96
y axis (CHYSET) 108
z axis (CHZSET) 116
scaled markers 74
SCALETOWER option 76
scatter plot
CHPLOT 64
segment, setting the number with CHSSEG 78
select data (CSXSL) 167
select data groups (z) (CSZSL) 169
selecting an axis
x axis (CHXSEL) 94
y axis (CHYSEL) 106
sequential file
getting data from 5
setting chart fields with CSxxxx calls 10
shading
CHPAT (set component shading pattern table) 60
method for PG routines 72
shading and markers, color table 33
shading colors (CSINT) 141
shading pattern setting (CSINT) 141
shading-pattern symbol sets, usage with ICU 14
SIDE option 76
single chart, specifying 139
size of pie charts (CHPIER) 63
(Chiacters 32, 151
same as tower chart 5
SO/SI characters 75
spacing
veen bar groups (CHGGAP) 40
between towers (CHZGAP) 112
of bars on bar charts 4
spacing/size of characters 32,151
specifying chart options 68
spider appearance, pie chart 76
SPIDER option 75
SPILABEL option 76
SPISECTOR option 76
SPISLICE option 76
stacked data, bar chars 4
standard directory (CSINT) 142
same as polar chart 5
starting an ICU session (CSSICU) 162
staring an ICU session with CSxxxx calls 10
moving between states 1 and 222
resetting processing state 23

```
state-2
moving between states 1 and 222
subcharts
data name (CSCHA) 130
format name (CSCHA) 130
options (CSFLT) 136
options (CSINT) 148
setting current number (CSNUM) 151
setting maximum number (CSNUM) 151
setting nesting level (CSNUM) 151
subsystems, using PGF 173
surface chart
CHSURF 79
CSINT 139
mountain-range shading 74
options (CSINT) 139
uses for 3
symbol set name (CSCHA) 130
symbol sets
marker names 15
preloaded 14
shading-pattern names 14
subsystem considerations 173
usage with ICU 14
symbol-set names
CSQCHA (query character string) 153
syntax
CHART call 118
conventions 25
assembler language linkage 26
C/370 declarations 26
COBOL format 26
PL/I declarations 26

\section*{T}
table chart
CHDCTL 36
CHDTAB 37
CHVDIG (set number of digits) 86
CSINT 139
decimal digits in values 86
missing values
CSMISS (set replacement string) 53
options (CSFLT) 137
options (CSINT) 150
text
text attributes (CSFLT) 137
text attributes (CSINT) 150
text for missing values (CSCHA) 130
uses for 5
TCBASE option 70
terminate PG routines (CHTERM) 81
text
attributes
axis label (CHLATT) 50
axis title (CHTATT) 80

\section*{index}
```

text (continued)
attributes (continued)
bar and pie chart values (CHVATT) 84
heading (CHHATT) 41
notes (CHNATT) 54
x-axis labels (CHXLAT) 91
x-axis titles (CHXTAT) }9
y-axis labels (CHYLAT) }10
y-axis titles (CHYTAT) }10
z-axis labels (CHZLAT) 113
axis title 80
legend (CHKATT) 45
x-axis title (CHXTTL) }10
y-axis title (CHYTTL) }11
threshold limit for bar-chart values }8
tied data 13
restoring (CSNUM) 153
title attributes
x axis (CHXTAT) }9
y axis (CHYTAT) }10
title position and justification
CHXSET 95
CHYSET }10
title specification
x axis (CHXTTL)
y axis (CHYTTL) }11
TLBREAK option 76
tower chart
CHTOWR 82
CHTPRJ 83
CSINT }13
major scale (tick) marks 76
options (CSFLT) }13
options (CSINT) }14
picking attributes }7
projection 83
scale for height of tower 76
spacing between towers (CHZGAP) }11
uses for 5
z-axis labels (CHZLAT) 113
TOWERTICK option 76
trademarks xiv
TSO, using PGF under 173

```
```

U
user-defined shading-pattern and marker symbol
sets 14
user-provided data labels
x axis (CHXDLB) }8
z axis (CHZDLB) }11
using the ICU directory with CSxxxx calls 11

```

\section*{V}
value of text attributes (CHVATT) 84
VALUES option 72, 77
Vector Symbol Editor
calling 170
calling from application program 6
vector symbol sets (VSS) 14
Venn diagram
CHVENN 87
CSINT 139
options (CSINT) 140
sector labels 46
uses for 5
Version 1 Releases 1 and 2 level chart control parameter 120
vertical margins (CHVMAR) 88
vertical pie charts 4
VFIXED option 77
VINSIDE option 77
VM/SP
too many external names in PL/I 27
using PGF under 173
VONTOP option 77
VS/FORTRAN CHARACTER parameters 27
VSCIENTIFIC option 77
VSSE (call the vector symbol editor) 170

\section*{X}
\(x\) axis
grid line options (CSINT) 146
label attributes (CSINT) 145
label options (CSINT) 144
line options (CSINT) 144
scale and range (CSINT) 144
scale marks (CSINT) 145
title attributes (CSINT) 149
title options (CSINT) 143
\(x\) values
independent CSXDT 167
\(x\)-axis data labels (CHXDLB) 89
\(x\)-axis datum line (CHXDTM) 89
\(x\)-axis day labels (CHXDAY) 88
x-axis interception point (CHXINT) 90
x-axis label attributes (CHXLAT) 91
x-axis label attributes (CSFLT) 135
\(x\)-axis label text (CHXLAB) 90
\(x\)-axis labels
symbol set name (CSCHA) 129
x-axis labels (CSCHA) 129
x-axis labels (CSFLT) 135
\(x\)-axis month labels (CHXMTH) 92
x-axis options (CHXSET) 94
```

x-axis range (CSFLT) }13
x-axis scale factor (CHXSCL) }9
x-axis scale mark interval (CHXTIC) 99
x-axis scale marks (CSFLT) }13
x-axis title 129
symbol set name (CSCHA) }12
x-axis title (CHXTTL) }10
x-axis title attributes (CHXTAT) 97
x-axis title attributes (CSFLT) }13
x-datum-line options (CSFLT) }13
x-datum-line options (CSINT) }14
x-reference-line options (CSFLT) }13
x-reference-line options (CSINT) }14
x-reference-line, setting (CSINT) }15
XPICK option }7
XTICK option
CHXSET }9
CHYSET }10
CHZSET }11
XVERTICAL option 77

```

\section*{Y}
```

y axis
grid line options (CSINT) }14
label attributes (CSINT) }14
label options (CSINT) }14
line options (CSINT) }14
scale and range (CSINT) }14
scale marks (CSINT) }14
title attributes (CSINT) }14
title options (CSINT) 143
y axis datum line (CHYDTM) 101
y values
dependent
CSYDT }16
indexing (CSFLT) }13
representation, indexing, positioning (CSINT) }14
y-axis day labels (CHYDAT) }10
y-axis interception point (CHYINT) }10
y-axis label attributes (CHYLAT) }10
y-axis label attributes (CSFLT) }13
y-axis label text (CHYLAB) }10
y-axis labels
symbol set name (CSCHA) }12
y-axis labels (CSCHA) }13
y-axis labels (CSFLT) }13
y-axis month labels (CHYMTH) }10
y-axis options (CHYSET) }10
y-axis range (CSFLT) }13
y-axis scale factor (CHYSCL) }10
y-axis scale mark interval (CHYTIC) }11
y-axis scale marks (CSFLT) }13
y-axis title }12
symbol set name (CSCHA) }12

```
\(y\)-axis title attributes (CHYTAT) 109
y-axis title attributes (CSFLT) 137
\(y\)-axis title specification (CHYTTL) 111
y-datum-line options (CSFLT) 137
y-datum-line options (CSINT) 146
y-reference-line options (CSFLT) 136
y-reference-line options (CSINT) 146
YVERTICAL option 77

\section*{Z}
z values data groups querying (CSQZDT) 160
z-axis data labels (CHZDLB) 112
z-axis label attributes (CHZLAT) 113
z-axis options (CHZSET) 115
z-axis scale mark interval (CHZTIC) 117
ZPICK option 77
ZVERTICAL option 77

\section*{Sending your comments to IBM}

\section*{GDDM-PGF Version 2 Release 1.3}

Programming Reference

\section*{SC33-0333-01}

If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization, subject matter, or completeness of this book. Please limit your comments to the information in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:
- By mail, use the Readers' Comment Form.
- By fax:
- From outside the U.K., use your international access code + 441962870229
- From within the U.K., use 01962870229
- Electronically, use the appropriate network ID:
- IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink: HURSLEY(IDRCF)
- Internet: idrcł@hursley.ibm.com

Whichever you use, ensure that you include:
- The publication number and title
- The page number or topic to which your comment applies
- Your name and address/telephone number/fax number/network ID.

\section*{Readers' Comments}

\section*{GDDM-PGF Version 2 Release 1.3}

Programming Reference

\section*{SC33-0333-01}

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to express your opinion about it (such as organization, subject matter, appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer. This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name

Company or Organization

You can send your comments POST FREE on this form from any one of these countries:
\begin{tabular}{llllll} 
Australia & Finland & Iceland & Netherlands & Singapore & United States \\
Belgium & France & Israel & New Zealand & Spain & of America \\
Bermuda & Germany & Italy & Norway & Sweden & \\
Cyprus & Greece & Luxembourg & Portugal & Switzerland & \\
Denmark & Hong Kong & Monaco & Republic of Ireland & United Arab Emirates
\end{tabular}

If your country is not listed here, your local IBM representative will be pleased to forward your comments to us. Or you can pay the postage and send the form direct to IBM (this includes mailing in the U.K.).

2
Fold along this line

\section*{By air mail Par avion}

IBRS/CCRINUMBER: PHQ-D/1348/SO


\section*{REPONSE PAYEE GRANDE-BRETAGNE}

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO212ZZ United Kingdom
\(\qquad\)
Company or Organization
Address

Telephone

\section*{}
- Printed in the United States of America on recycled paper containing 10\% recovered post-consumer fiber.
```


[^0]: adm0502 e picture space and charea are incompatible
 ADM0504 E MARGINS EXCEED AVAILABLE CHART AREA
 ADM0510 W LEGEND FORMAT MAY BE INCORRECT
 ADM0511 W NOT ENOUGH ROOM TO DRAW ALL KEYS. ONE OR MORE WERE OMITTED
 ADM0512 W HEADING TEXT EXCEEDS AVAILABLE SPACE AND HAS BEEN TRUNCATED
 ADM0514 W LABEL(S) OMITTED ON X, Y, OR Z AXIS
 ADM0525 W CHARACTER SIZE IS TOO LARGE FOR THE CHART
 ADM0526 S LOGARITHMIC X OR Y AXIS RANGE CONTAINS A NON-POSItIVE VALUE

