
Virtualizing the CIC Floppy Disk
Project: An Experiment in

PreservaTion Using Emulation
Geoffrey Brown

Indiana University
Department of Computer Science

http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html
http://www.indiana.edu/~libgpd/mforms/floppy/floppy.html

Issues We are Trying To Solve

Documents in FDP (for example) require
obsolete applications and operating systems

Installing documents to access them requires
specialized expertise

These problems generalize to SUDOC
documents on CD-ROM

3

VirtualizatioN

Source: Virtualization Overview, Copyright VMware

4

Document

Repository

Software

Repository
Web

Server
Compute

Server

Document

Supporting Files

Software

OS Emulator

Model Architecture

8

Actions in Response To Patron
Request

9

A pre-configured emulator is allocated
Emulator is customized

Document file system mounted
Document specific installation executed
Shared file directories created for patron use

Link to emulator and web accessible file system
provided through patron browser
Emulator executes remotely under patron control

Preparation For
Virtualization

Analyze software requirements of document
collections

Build software images (OS, applications)

Build and test customization scripts

10

Example -- floppy Disk
Requirements

Library_2.zip: Zip archive data, at least v2.0 to extract
INSTALL.EXE: MS!DOS executable (EXE)
INSTALL.DAT: ASCII C program text, with CRLF line terminators
DISK.ID: ASCII text, with CRLF line terminators
DDB.001: data

Library_4.zip: Zip archive data, at least v2.0 to extract
UMINSTR.DOS: (Corel/WP)
UMINSTR.WIN: (Corel/WP)
UMWP51.DOS: (Corel/WP)
UMWP61.WIN: (Corel/WP)
VOCED.EXE: MS!DOS executable (EXE), PKLITE compressed
 vl_help.dbf: DBase 3 data file (209 records)
 vl.exe: MS!DOS executable (EXE)
 vl_descr.ndx: DBase 3 index file
 vl_keycd.ndx: DBase 3 data file (12 records)
 vl_keywd.dbf: DBase 3 data file with memo(s) (219 records)
 vl_keywd.dbt: data
 vl_keywd.ndx: data
 vl_opmen.dbf: DBase 3 data file (3 records)
 vl_projc.dbf: DBase 3 data file with memo(s) (22 records)
 vl_projc.dbt: data
 vl_rcstr.dbf: DBase 3 data file with memo(s) (no records)
 vl_rcstr.dbt: data
 vl_rwcol.dbf: DBase 3 data file with memo(s) (57 records)
 vl_rwcol.dbt: data
 vl_tdesc.dbf: DBase 3 data file with memo(s) (21 records)
 vl_tdesc.dbt: data
 p016n.dbf: DBase 3 data file (900 records)
 p016r.dbf: DBase 3 data file (115 records)
 p017c.dbf: DBase 3 data file (80 records)
 p017n.dbf: DBase 3 data file (270 records)
 p017r.dbf: DBase 3 data file (30 records)
 p018c.dbf: DBase 3 data file (34 records)
 p018n.dbf: DBase 3 data file (45 records)
 p018r.dbf: DBase 3 data file (43 records)
 p019c.dbf: DBase 3 data file (78 records)
 p019n.dbf: DBase 3 data file (232 records)
 p019r.dbf: DBase 3 data file (51 records)
 p001c.ndx: data
 p001n.ndx: PDP!11 overlaid pure executable
 p001r.ndx: data
 p002c.ndx: DBase 3 data file (13 records)
 p002n.ndx: data
 p011c.dbf: DBase 3 data file (10 records)
 p011n.dbf: DBase 3 data file (144 records)
 p011r.dbf: DBase 3 data file (44 records)
 p012c.dbf: DBase 3 data file (288 records)
 p012n.dbf: DBase 3 data file (637 records)
 p012r.dbf: DBase 3 data file (99 records)
 p013c.dbf: DBase 3 data file (92 records)
 p013n.dbf: DBase 3 data file (246 records)
 p013r.dbf: DBase 3 data file (92 records)
 p014c.dbf: DBase 3 data file (164 records)
 p014n.dbf: DBase 3 data file (685 records)
 p014r.dbf: DBase 3 data file (84 records)
 p015c.dbf: DBase 3 data file (182 records)
 p015n.dbf: DBase 3 data file (388 records)
 p015r.dbf: DBase 3 data file (107 records)
 p016c.dbf: DBase 3 data file (173 records)
 vl_descr.dbt: data
 vl_descr.dbf: DBase 3 data file with memo(s) (205 records)
 p001c.dbf: DBase 3 data file (648 records)
 p001n.dbf: DBase 3 data file (4000 records)
 p001r.dbf: DBase 3 data file (659 records)
 p002c.dbf: DBase 3 data file (144 records)
 p002n.dbf: DBase 3 data file (847 records)
 p002r.dbf: DBase 3 data file (96 records)
 p003c.dbf: DBase 3 data file (264 records)
 p003n.dbf: DBase 3 data file (1463 records)

Aug 21, 06 15:46 Page 1/130freport7
 p003r.dbf: DBase 3 data file (288 records)
 p004c.dbf: DBase 3 data file (180 records)
 p004n.dbf: DBase 3 data file (1050 records)
 p004r.dbf: DBase 3 data file (179 records)
 p005c.dbf: DBase 3 data file (295 records)
 p005n.dbf: DBase 3 data file (1883 records)
 p008c.ndx: data
 p008n.ndx: PDP!11 overlaid pure executable
 p008r.ndx: data
 p009c.ndx: DBase 3 data file (15 records)
 p009n.ndx: data
 p009r.ndx: DBase 3 data file (12 records)
 p010c.ndx: DBase 3 data file (10 records)
 p010n.ndx: data
 p010r.ndx: DBase 3 data file (6 records)
 p011c.ndx: data
 p011n.ndx: DBase 3 data file (15 records)
 p011r.ndx: DBase 3 data file (5 records)
 p012c.ndx: DBase 3 data file (24 records)
 p012n.ndx: data
 p012r.ndx: DBase 3 data file (9 records)
 p013c.ndx: DBase 3 data file (9 records)
 p013n.ndx: DBase 3 data file (24 records)
 p013r.ndx: DBase 3 data file (9 records)
 p014c.ndx: DBase 3 data file (14 records)
 p014n.ndx: data
 p014r.ndx: DBase 3 data file (8 records)
 p015c.ndx: GLS_BINARY_LSB_FIRST
 p015n.ndx: data
 p015r.ndx: DBase 3 data file (10 records)
 p016c.ndx: DBase 3 data file (15 records)
 p016n.ndx: data
 p016r.ndx: DBase 3 data file (10 records)
 p017c.ndx: DBase 3 data file (8 records)
 p017n.ndx: data
 p017r.ndx: DBase 3 data file (4 records)
 p018c.ndx: DBase 3 data file (4 records)
 p018n.ndx: DBase 3 data file (6 records)
 p022r.dbf: DBase 3 data file (8 records)
 p022c.dbf: DBase 3 data file (66 records)
 p022n.dbf: DBase 3 data file (60 records)
 p022r.ndx: data
 p022c.ndx: DBase 3 data file (7 records)
 p022n.ndx: DBase 3 data file (7 records)
 p005r.dbf: DBase 3 data file (223 records)
 p006c.dbf: DBase 3 data file (1040 records)
 p006n.dbf: DBase 3 data file (1912 records)
 p006r.dbf: DBase 3 data file (304 records)
 p007c.dbf: DBase 3 data file (324 records)
 p007n.dbf: DBase 3 data file (1547 records)
 p007r.dbf: DBase 3 data file (286 records)
 p008c.dbf: DBase 3 data file (648 records)
 p008n.dbf: DBase 3 data file (3135 records)
 p008r.dbf: DBase 3 data file (361 records)
 p009c.dbf: DBase 3 data file (180 records)
 p009n.dbf: DBase 3 data file (1012 records)
 p009r.dbf: DBase 3 data file (140 records)
 p010c.dbf: DBase 3 data file (105 records)
 p010n.dbf: DBase 3 data file (462 records)
 p010r.dbf: DBase 3 data file (56 records)
 p002r.ndx: DBase 3 data file (9 records)
 p003c.ndx: DBase 3 data file (22 records)
 p003n.ndx: data
 p003r.ndx: DBase 3 data file (24 records)
 p004c.ndx: DBase 3 data file (15 records)
 p004n.ndx: data
 p004r.ndx: DBase 3 data file (15 records)
 p005c.ndx: DBase 3 data file (24 records)
 p005n.ndx: data

Aug 21, 06 15:46 Page 2/130freport7

Printed by Geoffrey Brown

Monday August 21, 2006 1/65freport7

11

Unix File

FILE(1) FILE(1)

NAME
file ! determine file type

SYNOPSIS
file [!bciknsvzL] [!f namefile] [!m magicfiles] file

file -C [!m magicfile]

DESCRIPTION
This manual page documents version 3.39 of the file command.

File tests each argument in an attempt to classify it. There are three sets of tests, performed in this order:

filesystem tests, magic number tests, and language tests. The first test that succeeds causes the file type to

be printed.

The type printed will usually contain one of the words text (the file contains only printing characters and a

few common control characters and is probably safe to read on an ASCII terminal), executable (the file con-

tains the result of compiling a program in a form understandable to some UNIX kernel or another), or data

meaning anything else (data is usually ‘binary’ or non-printable). Exceptions are well-known file formats

(core files, tar archives) that are known to contain binary data. When modifying the file /usr/share/magic

or the program itself, preserve these keywords . People depend on knowing that all the readable files in a

directory have the word ‘‘text’’ printed. Don’t do as Berkeley did and change ‘‘shell commands text’’ to

‘‘shell script’’. Note that the file /usr/share/magic is built mechanically from a large number of small files

in the subdirectory Magdir in the source distribution of this program.

The filesystem tests are based on examining the return from a stat(2) system call. The program checks to

see if the file is empty, or if it’s some sort of special file. Any known file types appropriate to the system

you are running on (sockets, symbolic links, or named pipes (FIFOs) on those systems that implement

them) are intuited if they are defined in the system header file sys/stat.h.

The magic number tests are used to check for files with data in particular fixed formats. The canonical

example of this is a binary executable (compiled program) a.out file, whose format is defined in a.out.h and

possibly exec.h in the standard include directory. These files have a ‘magic number’ stored in a particular

place near the beginning of the file that tells the UNIX operating system that the file is a binary executable,

and which of several types thereof. The concept of ‘magic number’ has been applied by extension to data

files. Any file with some invariant identifier at a small fixed offset into the file can usually be described in

this way. The information identifying these files is read from the compiled magic file /usr/share/magic.mgc

, or /usr/share/magic if the compile file does not exist.

If a file does not match any of the entries in the magic file, it is examined to see if it seems to be a text file.

ASCII, ISO-8859-x, non-ISO 8-bit extended-ASCII character sets (such as those used on Macintosh and

IBM PC systems), UTF-8-encoded Unicode, UTF-16-encoded Unicode, and EBCDIC character sets can be

distinguished by the different ranges and sequences of bytes that constitute printable text in each set. If a

file passes any of these tests, its character set is reported. ASCII, ISO-8859-x, UTF-8, and extended-ASCII

files are identified as ‘‘text’’ because they will be mostly readable on nearly any terminal; UTF-16 and

EBCDIC are only ‘‘character data’’ because, while they contain text, it is text that will require translation

before it can be read. In addition, file will attempt to determine other characteristics of text-type files. If

the lines of a file are terminated by CR, CRLF, or NEL, instead of the Unix-standard LF, this will be

reported. Files that contain embedded escape sequences or overstriking will also be identified.

Once file has determined the character set used in a text-type file, it will attempt to determine in what lan-

guage the file is written. The language tests look for particular strings (cf names.h) that can appear any-

where in the first few blocks of a file. For example, the keyword .br indicates that the file is most likely a

troff(1) input file, just as the keyword struct indicates a C program. These tests are less reliable than the

previous two groups, so they are performed last. The language test routines also test for some miscellany

(such as tar(1) archives).

Any file that cannot be identified as having been written in any of the character sets listed above is simply

said to be ‘‘data’’.

Copyright but distributable 1

12

Unix File --example

-bash-2.05b$ file ddd.JPG Debug.pdf lab2.tex print.c

ddd.JPG: JPEG image data, JFIF standard 1.01,
resolution (DPI), 96 x 96
Debug.pdf: PDF document, version 1.2
lab2.tex: LaTeX 2e document text
print.c: ASCII C program text

13

Perl Script to Automate
sub fileinfo()
{
 my @allfiles;
 my $file;
 my $f = $_[0];
 my $d = cwd();
 my $tmpdir;

 printf "@tabs";
 open FH, "file \"$f\"|";
 my $info = <FH>;
 close FH;
 printf "$info";

 if (!d $f) # recurse
 {

$tmpdir = $f;
 }
 elsif ($info =~ m/Zip/)
 {

$tmpdir = tempdir(CLEANUP => 1);
system("unzip $f !d $tmpdir > /dev/null");

 }
 elsif ($info =~ m/ARC archive/)
 {

$tmpdir = tempdir(CLEANUP => 1);
pushdir($tmpdir);
system("arc x \"$d/$f\" > /dev/null");
popdir();

 }
 elsif ($f =~ m/_$/)
 {

$tmpdir = tempdir(CLEANUP => 1);
my $result = $f;

14

Interesting Rule

#!/usr/bin/perl

use File::Temp qw/ tempdir /;
use Cwd;
$DOSTMP = "/u/geobrown/dosemu/freedos/tmp";
$BATFILE = "LHA.BAT";

my @dirs;
@tabs;

fileinfo(shift);

sub fileinfo()
{
 my @allfiles;
 my $file;
 my $f = $_[0];
 my $d = cwd();
 my $tmpdir;

 printf "@tabs";
 open FH, "file \"$f\"|";
 my $info = <FH>;
 close FH;
 printf "$info";

 if (!d $f) # recurse
 {

$tmpdir = $f;
 }
 elsif ($info =~ m/Zip/)
 {

$tmpdir = tempdir(CLEANUP => 1);
system("unzip $f !d $tmpdir > /dev/null");

 }
 elsif ($info =~ m/ARC archive/)
 {

$tmpdir = tempdir(CLEANUP => 1);
pushdir($tmpdir);
system("arc x \"$d/$f\" > /dev/null");
popdir();

 }
 elsif ($f =~ m/_$/)
 {

$tmpdir = tempdir(CLEANUP => 1);
my $result = $f;
$result =~ s/_$//;
pushdir($tmpdir);
system("cat \"$d/$f\" | msexpand > $result");
popdir();

 }
 elsif ($info =~ m/ARC archive/)
 {

$tmpdir = tempdir(CLEANUP => 1);
pushdir($tmpdir);
system("arc x \"$d/$f\" > /dev/null");
popdir();

 }
 elsif ($info =~ m/SFX|PKLITE/)
 {

$tmpdir = tempdir(CLEANUP => 1);
pushdir($tmpdir);
system("cp \"$d/$f\" .");
system("dosemu !dumb $f >> /nfs/troy/home/digarchive/doserrs");
system("rm $f");
popdir();

 }
 elsif ($info =~ m/LHa.*archive/)

Aug 31, 06 13:56 Page 1/2stdin
 {

$tmpdir = tempdir(CLEANUP => 1);
pushdir($tmpdir);
system("lha x \"$d/$f\" > /dev/null");
popdir($tmpdir);

 }
 else
 {

return;
 }
 opendir CURDIR, $tmpdir or die "problem opening directory $f\n";
 @allfiles = readdir CURDIR;
 closedir CURDIR;
 shift @allfiles;
 shift @allfiles;

 push @tabs, "\t";
 pushdir($tmpdir);
 foreach $file (@allfiles)
 {

chomp $file;
fileinfo($file);

 }
 popdir();
 pop @tabs;
}

sub pushdir
{
 push @dirs, cwd();
 chdir($_[0]);
}

sub popdir
{
 chdir(pop @dirs);
}

Aug 31, 06 13:56 Page 2/2stdin

Printed by geobrown

Thursday August 31, 2006 1/1stdin

15

Top 20 File Types

16

files which must be uncompressed to recursively identify the types of their contents. Within the
FDP files we found ZIP, ARC, MSCompress, PKLite, LHa, and CAB archives each of which requires
a separate extraction tool or technique.

2323 data (ASCII)
858 Lotus 1-2-3 wk1 document data
851 ASCII text, with CRLF line terminators
551 data (binary)
532 ASCII English text, with CRLF line terminators
508 DBase 3 data file
361 Zip archive data, at least v2.0 to extract
228 binary Computer Graphics Metafile
206 MS-DOS executable, MZ for MS-DOS
166 Zip archive data, at least v1.0 to extract
166 MS Compress archive data
119 VMS Alpha executable
118 directory
101 MS-DOS executable, NE for MS Windows 3.x (driver)
86 Lotus 1-2-3 wk3 document data
82 MS-DOS executable, NE for MS Windows 3.x
78 ARC archive data, dynamic LZW
64 Lotus 1-2-3
57 (Corel/WP)
47 Non-ISO extended-ASCII English text, with CRLF line terminators

Figure 3: Top 20 file types from Magic Number Analysis

The top 20 (of 127) file types we found are listed in Figure 3. Of these top 20, only one type
seems to be a clear miss-identification. We were able to make reasonable guesses for about half the
551 “binary” files with a simple suffix analysis tool.

As described above, our approach involved recursively evaluating the files of the FDP project
– each time an archive file was encountered, we extracted the contents of that archive and then
evaluated those contents. This evaluation was performed with a short perl script in conjunction
with the “file” utility mentioned above, a set of open source utilities for extracting archives, and
DOS emulator (dosemu[9]) which we used to extract the executable archives. The core of the
evaluation process utilizes the “info” extracted using file and decides upon further processing.
Figure 4 illustrates three such rules for processing ZIP, ARC, and PKLITE or SFX executable
archives. The first two cases can be evaluated in the native Unix environment, while the third
utilizes dosemu. In each case, a temporary directory is created and the archive extracted within
that archive. Not presented is the recursive step which evaluates each of the newly extracted files.
The recursecnt variable is used purely to aid in formating the report. The described technique is
similar to that used at NIST to generate file hash sets for forensic computing [44].

In summary, while the techniques we used could use substantial fine tuning, we found them to
be extremely useful in practice. For the FDP project we identified the following major applications
required: MS Word reader, Wordperfect, Lotus 1-2-3, DBase 3 , and an unzip tool. In addition for
each of the following we found a single collection which required the tool: spss, arc/info, pascal,

10

Software required For FDP

17

Windows 98 (most disks were for msdos, win 3.1)
DBase III -- (dbfviewer2000)
WordPerfect
Lotus 1-2-3 (smartsuite, smartsuite viewer)
Microsoft Word (we use free msword viewer)
Various Archive Tools
Browser (we use Firefox)
Generic Postscript Printer Driver
Software we didn’t install -- pascal, fortran, sas, arcinfo

Practical Issues

Printing -- we print postscript to files

File transfer -- windows sharing from guest to
host

Security

18

What we Haven’t Done

Adequate Testing

Customization Scripts

Web Delivery

19

Philosophical Issues

Who Preserves the Emulator ?

Why Not Just Migration ?

20

 900

 800

 700

 600

 500

 400

 300

 200

 100

 0

D
e

b
ia

n
 L

in
u

x

W
in

d
o

w
s
 X

P

W
in

d
o

w
s
 9

8

W
in

d
o

w
s
 3

.1

K
D

E

W
in

e

O
p

e
n

 O
ff

ic
e

M
o

z
ill

a

K
o

ff
ic

e

X
p

d
f

B
o

c
h

s

D
o

s
e

m
u

X
e

n
 3

.0

Q
e

m
u

P
le

x
8

6

D
o

s
b

o
x

P
e

a
rp

c

X
e

n
 H

y
p

e
rv

is
o

r

T
h

o
u

s
a

n
d

 L
in

e
s
 o

f
C

o
d

e

 100
 90
 80 80
 70
 60
 50
 40
 30
 20
 10

 1

M
ill

io
n

 L
in

e
s
 o

f
C

o
d

e Emulators
 Office Applications

 User Interfaces
 Operating Systems

Why not just migration

Loss of information -- e.g. word edits

Loss of fidelity -- e.g. WordPerfect to Word isn’t very good

Loss of authenticity -- users of migrated document need
access to original to verify authenticity

Not always possible -- closed proprietary formats

Not always feasible -- costs may be too high

Emulation may necessary to enable migration

22

SUDOC Virtualization Project

Approximately 2500 SUDOC CD-ROMs in IU
Library

We’ve done preliminary analysis on 150 CD-
ROMs

We are currently creating electronic copies of
approximately 1000 CD-ROMs (skipping A,
C3.278/2, C3.278/3, C21/5/6, E, HE, N, T, X, Y)

25

Goals

Deliver key SUDOC collections through
virtualization

Develop web delivery techniques

Improve our software analysis tools

Develop image customization techniques (e.g.
perform software install on the fly)

26

How this Work Might be Used

27

Libraries share pool of software images and
licenses

Libraries share expertise in supporting various
document collections

Libraries collaborate to provide redundancy

Patrons access from anywhere without needing
to obtain or install special software

How you can Help

Statistics on SUDOC usage

Collaborate on building tools/infrastructure

28

 geobrown @ cs . indiana . edu
(812) 855-4207

mailto:geobrown@cs.indiana.edu
mailto:geobrown@cs.indiana.edu

acknowledgments

Lou Malcomb (IU Head GIMSS)

Julianne Bobay (IU Head SLIS Library)

29

 Search IUB Libraries

SERVICES FOR: Faculty Graduate Students Undergraduates Distance Learners Visitors IUCAT | Ask a Librarian

Find Information

IUCAT Library Catalog

Search All

Databases A-Z

Databases by Subject

Databases by Type

Online Full-Text Journals

OneSearch @IU

Libraries & Collections

Collections by Subject

Collection Managers

Libraries at IUB

Libraries at Other IU Campuses

New Resources

Scholarly Communication

IUScholarWorks

Library Services

Getting Started

Borrow, Renew & Request

E-Reserves

Class Reserves

Ask a Librarian

About IUB Libraries

A - Z

Welcome from the Dean

Hours & Locations

Alumni & Donors

Departments & Staff

Computing & More

Employment Plan now to attend welcome

tours and get-to-know-us

workshops.

......

Puzzling Exhibition Opens at

Lilly Library

......

Explore Places of the

Imagination

......

Know Your Library: Join Our

Welcome Activities

......

http://www.libraries.iub.edu/

Comments to libref@indiana.edu

Copyright 2001 - 2006, The Trustees of Indiana University

IUB Home | IUB Libraries Privacy Policy | Sitemap | Help

government

