
NASA Technical Memorandum 4543

NLEdit_A Generic Graphical User Interface

for Fortran Programs

Brian R Curlett

Lewis Research Center

Cleveland, Ohio

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical

Information Program

1994

(NASA-TM-4543) NLEdit: A GENERIC

GRAPHICAL USER INTERFACE FOR

FORTRAN PROGRAMS (NASA. Lewis

Research Center) 25 p

H1/61

N95-16Z06

Unclas

0030129

Summary

NLEdit is a generic graphical user interface for the preprocessing of Fortran namelist input

files. The interface consists of a menu system, a message window, a help system, and

data entry forms. A form is generated for each namelist. The form has an input field

for each namelist variable along with a one-line description of that variable. Detailed help

information, default values, and minimum and maximum allowable values can all be displayed

via menu picks. Inputs are processed through a scientific calculator program that allows

complex equations to be used instead of simple numeric inputs.

A custom user interface is generated simply by entering information about the namelist

input variables into an ASCII file. There is no need to learn a new graphics system or

programming language. NLEdit can be used as a stand-alone program or as part of a larger

graphical user interface. Although NLEdit is intended for files using namelist format, it can

be easily modified to handle other file formats.

1 Introduction

Many computer programs used by engineers are still batch oriented; that is, they read an

input file, perform computations, and produce an output file. Many of these programs are

written in Fortran and use a namelist format for input data. A namelist file consists of a list

of variable names, each followed by a value. When a namelist read command is executed,

the values of the variables in the computer code are set to the values of the variables in

the namelist input file. Although this is a convenient way of entering data into a program

(compared with fixed-format input), it can be difficult for users to memorize all the possible

inputs and permissible values.

Graphical user interfaces are now used to simplify the execution of programs. A large

program, with many input parameters, will benefit most from a graphical user interface

(or GUI). Unfortunately, a GUI for a large program requires a large development effort

by trained software engineers. Even interfaces for smaller programs can take a significant

programming effort. The code required for the interface could easily become larger and more

complex than the code required for the analysis! Worse, most engineers are not trained in

the programming of graphical user interfaces and, therefore, cannot maintain the interface

as changes to the analysis code are made. These problems make it difficult to justify the

development of a GUI for smaller or less frequently used programs. This results in a mixed

environment of graphical and text-based codes.

The program presented here is a compromise between developing custom interfaces and

using text-based input. The program is called NLEdit (for namelist edit). NLEdit is not

intended to be a programming language for user interfaces. It is intended is to give some

of the conveniences of a graphical user interface without the user having to generate and

maintain a large graphics program. It can be thought of as a fancy, highly customized text

editor. NLEdit was programmed in C using X-windows and the OSF/Motif widget set.

Although NLEdit does not provide graphical representation of data nor processing of

output data, it does provide facilities such as a list of all input variables, help information, a

list of permissible values, default inputs, and error checking. Having this information on-line

can save the engineer from time-consuming searches through manuals. Besides being difficult

to access,hard copymanuMsare often out of date. The on-line information in NLEdit can
be easily updated to reflect the latest changesto the correspondinganalysiscode.

NLEdit is customizedfor a particular application using a data definition file. The data

definition file is an ASCII file containing information about program inputs such as variable

name, type, dimensions, default, limits, and help information. NLEdit reads this information

into a database and then uses it to produce an appropriate interface. The user interface

changes only in appearance for a particular data definition file; no recompiling of code is

necessary.

The NLEdit program is composed of three main parts: the calculator, the data dictionary

(or database), and the graphics modules. The calculator module is used to convert an

equation, in the form of a character string, into a numerical value. The data dictionary

allows the other modules to store and retrieve information about specific items defined in

the data definition file. The graphics module is the Motif code for displaying windows and

processing input events.

This paper first gives a detailed description of what NLEdit does and how to use it.

Then, each of the three main program modules is discussed for the readers interested in the

internal workings of NLEdit.

2 User Interface Overview

Commonly, an engineer running a Fortran computer code will edit a namelist input file,

execute the Fortran code, and view the code's output. This process is repeated until the

engineer arrives at the desired results. As mentioned above, the NLEdit program can be

thought of as taking the place of the text editor. NLEdit can also provide menu picks for

executing the Fortran program and viewing files. Perhaps the best way to explain what

NLEdit does is by giving an example.

2.1 Sample Interface

One of the codes that NLEdit has been used with is a turbomachinery map-plotting code

called mapplot. A typical namelist input file for mapplot is shown in figure 1. Normally, the

engineer would have to read a reference manual, determine what inputs are required, and

type in the namelist file using a text editor. However, with NLEdit the engineer would just

invoke mapplot, an easy-to-use input screen (fig. 2). The programming to produce such an

interface requires only typing information from the reference manual into a data definition

file. A sample data definition file needed to produce the mapplot interface is given in the

appendix. This file contains only information that describes the input data; no graphics

programming information is required. Details of the format of this file are given in section 3.

In the following discussion, the namelist file (e.g., fig. 1) is referred to as the "input file."

The modified version of this file, produced by NLEdit, is referred to as the "output file."

2.2 Main Window

The main window (shown at the top of fig. 2) is composed of a menu system and a message

area. Menu picks are used for saving files, selecting the namelist to edit, setting options,

calling help, and executing the analysis code. Details on using all the menu picks are available

2

&INPUT

IOPT=2, AREA=.5, FDNT='6xI2', PSIZE=I, MAPFILE="test.maps",

FACFLO=I.O, FACEFF=I.O, MAPFLO=5112, MAPEFF=5113,

&END

&INPUT

IOPT=I, ANGLE=O, NDAT=8, DATSYM=I, DATLIN=I,

FDNT='Rom14.500', PSIZE=O, GRID=O, GKAY=O,

IRVAL=O, ICOLOR=I4, MAPFLO=IO04, MAPEFF=IOO5,MAPPR=IO06,

FACFLO=24.7547, FACEFF=0.890229, FACPR=O.769657,

FLOWDAT(1)=25.3715,25.321,25.3681,25.4933,25.3175,24.7832,23.6231,

PB.DAT(1)=6,5.97566,5.99843,6.05716,5.97477,5.72539,5.26105,4.913,

aEND

Figure 1: Namelist file for mapplot.

from the Help menu and are, therefore, not included in this report. The message area is

used to display system messages and warnings to the user.

2.3 Namelist Editor

A window, like the one shown on the bottom of figure 2, is generated when the user selects

a namelist name from the Edit menu. The form shown in this window consists of input

fields for each variable in the namelist and comment lines. Under the first comment line is

an input field for user comments. These comments will be included in NLEdit's namelist

output file preceding the corresponding namelist.

There are three types of input fields for namelist variables: toggle fields, multiple choice

fields, and text fields. In the example, the variable GRID uses a toggle field; the variable IOPT

uses a multiple choice field; and the variable MAPFILE uses a text field (see fig. 2). The type

of field used depends on the type of data represented. Toggle fields are used for variables

that can have one of two values (usually true or false). Multiple choice fields are used for

variables that can have one of several values. Text fields are used for all other inputs.

Each input field has a push button displaying the variable name and a label line describing

the variable. Clicking on (pressing the left mouse button while the mouse pointer is on) the

variable name invokes more detailed help information for that variable. Pressing the function

key F1 after selecting a field brings up display a window containing all information known

about that variable (see fig. 3).

Using toggle and multiple choice fields to choose the value of a variable is straightforward.

Screen highlighting is used to give the buttons a three-dimensional appearance; in is on or

true and out is off or false. Multiple choice buttons have a "radio box" behavior, that is,

only one button can be pressed in at a time.

The text fields can be used simply by typing values into the small text window provided.

If the type of the variable is an integer (like PAPFL0 in the example), then up and down

arrow buttons are provided to increment and decrement the value, respectively.

Figure 2: mapplot user interface created using NLEdit.

4

Variable name: G_
f

_ows---5,columns=l, total size--5
'Rampwei ght, I b'

Information:
Ramp weight,]b (Required. If IRW = i, a good

initiat guess must be input.)

i value default min
0 600000.0 0 0
1 0 0 0

2 Gw(z)/zo Gw(z)/zo
3 GW(I).LO GH(I)*ZO
4 GW(Z)^AUTSCL _W(1)^AUTSCL

max

2.4 Popup Menus

Figure 3: Variable dump window.

Many additional capabilities are provided for text field inputs. Most are accessed via a popup

menu, which displays when the right mouse button is pressed while the mouse pointer is in a

text field. Some of the following options may be available from the popup menu depending

on the data type of the variable:

Help -- Pops up a help window.

Edit -- Pops up a larger editing window.

Array Edit -- Pops up an array editor.

File Selection Box -- Pops up a file selection box.

Edit Contents -- Pops up a file editor.

Show Calc -- Displays a numerical value.

Show Default -- Displays the default value.

Show Min -- Displays the minimum allowable value.

Show Max -- Displays the maximum allowable value.

Refresh -- Displays the actual value.

The Edit option opens a larger editing window (fig. 4.) to ease the entering of long strings

of data. The Array Edit option opens a spreadsheet-like window containing a matrix of

text fields. Each text field holds the value of one array element. This allows the user to

easily find an array element without having to count commas between numbers. Figure 5

5

7_

g, 10,

 ST_ R Y

App]y

Figure 4: Editing window.

Figure 5: Matrix editor.

shows the array editor for a two-dimensional array. Arrays with more than two dimensions

are not supported. The options File Selection Box and Edit Contents apply to variables

that hold file names. The File Selection Box option opens a window containing a list of

file names to help in choosing a file name for the input field (see fig. 6). The Edit Contents

option opens a text editor displaying the contents of the file named in the input field (see

fig. 7). This editor is a full function editor with Cut, Paste, and Search functions.

Another feature of the text input fields is the calculator. Equations may be typed into

the input fields. The equations are converted to numerical values using a built-in scientific

calculator program before the namelist output file is written. The result can be computed

beforehand using the Show Calc option. The calculator (or calc) module is described in
detail in section 4.1.

The Show... options all behave similarly. If, for example, Show Default is selected,

the default value is displayed in the text field. The actuaJ value of the variable is not changed

to the default value unless the Enter key or the Apply button is pressed. This allows the

users to review the default value or to actually change the value to the default value. The

other options are all self-explanatory.

2.5 Error Checking

The user interface also provides built-in error checking. Errors are caused by a type mis-

match, a value outside the range, or an equation that calc cannot evaluate (due to an

undefined variable, for example). Normally, if aa error occurs, a warning is displayed in the

fit_x popup

F_lter

Directories Files

Enter file name for 'MAPFILE':

..

Figure 6: File selection box.

message window, and the text field is displayed in reverse video. (It is not possible to get an

error from a toggle or multiple choice field.) The reverse video is hard to overlook. The user

can ignore the message and proceed, or fix the error. An option is available to turn error

checking off. This option should be used with care. Inputs are checked for errors when the

contents of the text field are entered into the data dictionary, that is, when the Enter key

or the Apply button is pressed.

2.6 Saving Changes

The three buttons on the bottom of the namelist editing window, Apply, Cancel, and

Help, are for saving changes in the text input fields (changes to toggle fields and multiple

choice fields are automatic), closing the form (without saving changes), and invoking help

on using the form, respectively. The Apply button saves changes in the text input fields to

the data dictionary; it does not create a new namelist output file. In order to update the

namelist output file, you must select the Save or Execute option from the File menu.

2.7 Multiple Namelists

Some namelists may occur in a file more then once. The text field just above the Apply

button in figure 2 is for changing the occurrence number of the namelist. For example, if

the occurrence number is 2, then the values shown in the fields will be printed the second

time the namelist occurs in the output file. Buttons are provided just after the occurrence

number text field to allow the user to insert a new occurrence of the namelist, copy the

current values of the namelist to a new occurrence, delete an occurrence of the namelist, and

reset all values in the current occurrence of the namelist to their default values. How the

namelists are ordered in the output file is explained in section 3.3.

Figure 7: File editor.

2.8 Finding Variables

Some programs will have many namelists with a large number of parameters in each namelist.

NLEdit has some options to help the user cope with these many parameters.

The Show Only Used Variables option causes the namelist editing window to display

only the input fields that are currently being used (i.e., the value of the variable was found

in the input file, or the value has been set in the input window). This greatly reduces the

amount of extraneous material the engineer has to view.

Search va_iabie name f_e]:d

Sea_ch: label field

Seerch h_liip fiel:d:

Figure 8: Search window.

The data dictionary search function allows searches on variable names, label strings, a_d

help strings. The search window is shown in figure 8. The user inputs the search string into

the top of this form and selects the fields to search. When the Ok button is pressed, a window

like the one shown in figure 9 appears. This window lists all of the variables that match

the search string and their corresponding namelists. The user may either cancel the search

and edit the variables from the namelist windows or generate a new form containing just the

-_:I:::IT ::i/:/: ii:/:::/:/::i::i_::::::::i_:://iiiii :_ i/:/i:i: ¸_-.

i _INPUT- GRII)
1 _INPUT - ICOLOR

i:

Createinput form fo_ these variables?

)_i p
$

Figure 9: Search results.

variables found in the search. The new form is used exactly like the namelist editing window,

but it may contain variables from many different namelists. If a parameter is changed in the

new window, it is automatically changed in the namelist window and vice versa.

3 Using NLEdit

3.1 Data Definition File Format

The only programming necessary to create a user interface for a Fortran program using

namelist input is to type in a data definition file. The parsing routine uses a simple format.

All data types use the same format, although some of the fields may have a slightly different

meaning based on variable type. The format of each data item is as follows:

name type m n default min

one line label string.

all the help information

you want to type

on as many lines as you like.

max

The item definition starts with the variable name followed by its type, dimensions, default

value, minimum value, and maximum value. The variable name is a character string of

arbitrary length. The name may contain any printable characters other than the space

character and parentheses. The name may not start with a $, &, or period.

The type field can be one of the following (see section 3.2 for details):

i -- integer

f -- floating point

d -- double-precision floating point

s -- character string

F -- Filename

9

C -- Comment

B -- Boolean (true or false)

M -- Multiple choice

Since all data are stored in the form of strings and all computations are done using double-

precision, floating-point numbers, the type of the information is only important for selecting

appropriate data entry fields and output formats.

The variable can be defined as an array (or matrix) by entering the dimensions m and

n. If the variable holds only a single value, enter 1 for m and n. Arrays with more than

two dimensions are not explicitly supported but may be used by mapping to a one- or two-

dimensional representation. For example, a 2x3x3 array could be entered as a 2x9 array. All

variables are treated as one-dimensional arrays internally.

The default, re±n, and max fields can contain as many as m*n values. Each value is

followed by a comma; no spaces are permitted unless contained between single or double

quotes. These three fields may be mathematical equations containing other variable names.

If this first line becomes too long, it may be split into multiple lines by entering the \

character at the end of the line. The ! or ? character can be used as a place holder for an
undefined field.

The second input line is the label string placed after the input field for the variable.

After this line are as many lines of help information as you wish to insert. Help information

is displayed on screen in the same format as entered here. Note that the label string and

help information are indented in order to make the item definition more readable. This

indentation is not required but is recommended. The help information and an item definition

are ended by a line with a period in column one. The next variable follows in the same format.

There is no limit to the number of variables. Variables appear in the namelist editing window

in the same order that they occur in the data dictionary.

3.2 Data Types

There are four standard data types (i, f, d, and s). These data types all use text field

input format (see section 2.3). The m±n and max fields are used for bounds checking on

the numeric types (i, f, and d). The rain and max fields have no significance for the string

type (s); however, a programmer may take advantage of these undefined inputs for special

purposes.

There are also four special data types (F, C, B, and M). Variables of these types cannot

be arrays. The file type F specifies a character string that holds a name of a file. It uses

the text field input style but has some special menu picks for using a file selection box and

editing the file contents. The rain field, if defined, holds the starting directory to be displayed

in the file selection box, and the max field, if defined, holds the file filter for the file selection

box.

Comment lines, in the namelist editing window, can be added by inserting additional

variables in the namelist group. These variables are flagged as comments by entering C as

the variable type. The help information from these variables is used as the text. The label

string line is ignored but must be present.

10

Toggle-button input fields are used for variables of type B. This type is usually used for

the Fortran logical type .TRUE. or .FALSE. (It is recommended that T and F be used in

place of .TRUE. and .FALSE..), but type B can be used any time there is a choice between

two values for a variable. If the toggle button is depressed, then the value of the variable is

set to max; otherwise, it is set to m±n. And its initial value is set to default, which must be

identically equal to rain or max.

The last available data type is M or multiple choice. It is used for variables that can have

one of several values. The variable must be dimensioned to the number of choices possible.

The rain field holds the valid choices, and the max field holds label strings for each choice. If

these labels contain spaces, the labels should be placed in quotes. A value identically equal

to one of the values in the rain field must be placed in the default field. The multiple choice

field works as follows: if, for example, the third button is pressed by the user, the value of

the variable will be set to the third value in the rain array.

3.3 Ordering Namelists in Output File

When the & or $ character appears in column one of the data definition file, the parser

routine is flagged to start a new namelist. The namelist name follows the & or $. All items

following the namelist name are considered part of that namelist.

There are two ways to handle the printing of multiple occurrences of the same namelist.

If the letter s appears after the namelist name in the data definition file, all occurrences of

this namelist will be printed to the output file sequentially. If the letter c appears after the

namelist name, all occurrences of this namelist will be collated in the output file with all

other namelists marked as type c. If there is no indicator after the namelist name in the data

definition file, the namelist can occur at most once in the output file. Namelists are printed

to the output file in the order they appear in the data definition file and not necessarily in

the order they appear in the namelist input file.

3.4 Documentation Files

This report and other documentation are available on-line when running NLEdit. The on-line

documentation is read from a documentation file. The user running NLEdit as a stand-alone

program has the option of including one additional on-line document. The programmer using

NLEdit routines as part of a larger program may wish to include several additional on-line

documents (see section 4.3). A documentation file contains ASCII text, which should be

formatted to approximately 80 columns. Sections are divided by placing a period in column

one on the line containing the section title. Therefore, the only required formatting for a

documentation file is inserting the periods at section breaks. Figure 10 shows an on-line

documentation window generated by NLEdit. On the left is the table of contents, and on

the right is the text from the documentation file.

3.5 A Sample Data Definition File

A sample data definition file for a program with one namelist input is shown in fig-

ure 11. The first two variables, application_help and programmaxae, must be supplied

in every data definition file. General help information about the application is given in

11

is a multid:isc_p]inary
prel im_ nary :design

engine cyc|e
mtss_on

[...................... ,.'

iCa.ce]

Figure 10: Documentation window.

application.help. The file name of an on-line manual is set in the default field. Menu

items are added for accessing this information. The item program_name is used to create

a menu pick to execute a program which is set in the default field. (The example uses

/bin/myprog.) The min field is used to hold any additional parameters that need to be

specified when invoking the program. The label lines from these variables are displayed on

the menu picks. Additional items, for internal use by NLEdit, are read from a separate data

definition file.

The three variables 0utputFile, XX, and YY are part of namelist &INPUT. 0utputFile is

an example of a file name input; XX is an array of three integers; and YY is an array of three

floating-point numbers. The default and maximum values for YY are functions of the values

input for XX. The maximum for YY(3) is undefined and, therefore, not limited. Note that

the ! character is used as a placeholder for an undefined field but it is not needed when

leaving the trailing portion of an array undefined.

The variable input msgl is a message line. The help field from this variable will be

displayed in the namelist editing window for namelist &INPUT. The line Sample comment ..

shows how nondisplayed comments may be entered into the data definition file. Comments

may appear between any variables in the file; they may not start in column one and are

completely ignored by the NLEdit program. The appendix has a more complete example of

a data definition file.

3.6 Executing NLEdit

After completing the data definition file, the user interface is invoked by entering the com-

mand:

nledit <filename> <dictionary>

where <filename> is the file name containing the namelist inputs and <dictionary> is the

file containing the data dictionary.

12

application_help s i 1 /usr/local/myprog/myprog.doc !

Myprog Help...

Help information for program myprog.

more about myprog.

program_name s

Run Myprog
I

1 1 /bin/myprog '-b -x'

Sample comment: Namelist &INPUT starts here...

&INPUT

input_msgl C I 1 ' ' '

I

Namelist &INPUT for myprog.

OutputFile F 1 1 "myprog,output" /usr/local/myprog/data *.output

Output file name

Enter the file name for output data.

XXi 31

XX array

Help info for xx array.

1,2,3 0,0,0 '

YY f 3 1

0,0,0 6*XX(3),6*XX(3)

YY array

Help info for yy array.

XX(1),2.55*XX(2),4.5*XX(3)-2 \

Figure 11: Sample data definition file.

Itis usually convenientto write a script for executing a program with or without NLEdit.

For example, a Unix C-shellscriptfor the mapplot example mightlook like this:

Shell script for mapplot

if ($1 == 'i' && $2 '= '') then

nledit $2 /usr/local/mapplot/mapplot.hlp

else if ($I == 'b' &a $2 '= '') then

mapplot $2

else

echo 'SYNTAX: mapplot ilb <filename>'

echo 'Options:'

echo ' i => interactive, b => batch'

endif

Alternatively, the script could have been written with a default for the option if it is not

specified.

13

4 Program Architecture

NLEdit is composed of three main program parts: the calculator, the data dictionary, and the

graphics modules. This section describes each module in enough detail to allow a programmer

to appreciate how NLEdit works. With a basic understanding of how the program is set up

and the comments provided in the source code, it is relatively easy to use NLEdit routines

to develop larger graphical user interfaces.

4.1 The Calculator

The basic function of the calculator module, or calc, is to evaluate character strings and

return the appropriate values. This entails parsing the input string (based on mathematical

associativities and precedences), looking up the value of any constant or user-defined vari-

able, and doing any necessary computations. The calculator supports predefined constants,

logarithmic functions, trigonometric functions, and scientific notation. The syntax for these

functions and other up-to-date information on using calc is given in the on-line help.

Two Unix utilities, LEX and YACC, were used to implement the calculator program [1].

LEX is a lexical analyzer program generator that can be used for simple lexical analysis

of text. The user provides a set of regular expressions and actions to be executed, and

LEX generates a C program. YACC is a parsing program generator. The user supplies a

context-free grammar, which YACC converts into a set of tables used by an LR(1) parsing

algorithm [2]. In addition, the user may specify precedences and associativities to remove

any ambiguities inherent in the original grammar. YACC generates a C file, which may

be incorporated into a larger program. The utilities LEX and YACC greatly simplify the

programming of calc and make it easy to add new functionality.

The calculator program receives a string as its input. It passes this string to the lexical

analyzer module, which converts it into tokens. The token stream is then passed to the

parsing modules, which build the appropriate parse tree. The parse tree is stored as a linked

list (with the elements of the tree in prefix order). Each tree is then evaluated (by a third

module) using a stack.

Along with the traditional functions associated with a calculator, there is support for

creating variables and binding them to values. This is implemented by using the data

dictionary as a variable table. When a new variable is defined by the user, its name and

corresponding value are added to the data dictionary. Once a variable has been added to

the dictionary, it may also be redefined (i.e., have its value changed). Variable names must

be unique, and, in this respect, all variables are, in effect, global in their scope.

Since the data dictionary stores character strings and not numerical values, equations will

be automatically reevaluated each time the value of a variable is required. If, for example,

x'-y+l, the string "y+l" is stored for x. If the value of y changes, the string "y+l" will

evaluate to a different value the next time the program requests the numerical value for x.

Currently, processing speed is not a problem. However, if speed becomes a problem, the

data dictionary could be modified to store the parse tree, eliminating the need to parse the

equation each time it is evaluated.

14

4.2 The Data Dictionary

The data dictionary is used to simplify programming by eliminating the need for global

data and by hiding the structure of data storage from the rest of the program. Each item

in the data dictionary has a unique identifier. This identifier (or key) is called a variable

name because it usually refers to one of the namelist variables. The variable name is just a

character string of arbitrary length. Note that since each item must have a unique variable

name, the same variable name cannot be used in two different namelists.

Information from the data dictionary is accessed by calling the appropriate function

with the variable name as an argument. For example, DbGetHelp(' 'input_file' ') returns

a string containing help information about the variable input_file. This type of data

handling greatly simplifies programming because the programmer does not need to know

how the data are stored, how to search the data for a member, nor how to copy the desired

information. Additionally, data integrity is maintained because all functions return a copy

(usually a pointer to a copy) of the data and not a pointer to the actual data. This is much

like data hiding in an object-oriented language.

All data in the data dictionary are stored in the form of strings (i.e., character arrays).

This approach was chosen for three reasons: First, the data are read from files, edited, and

written back into files all in the form of characters, so conversion to numerical types may not

even be necessary. Second, all types of data can be represented in a character string. Finally,

strings can hold equations in addition to basic types, such as numbers and characters (An

equation is really just a combination of numbers, symbols, and letters). When a numerical

value is needed, calc is used to make the conversion.

There are over 50 functions for manipulating information in the data dictionary; however,

the programmer needs only to understand a couple of these to effectively use the data

dictionary. Although it is tempting to do, it is not recommended to programmatically add

variables to the data dictionary. Instead, the programmer should add new variables to the

data definition file. This leaves basically two functions the programmer needs to know how

to perform: getting information about a variable and setting the value of the variable.

The function DbGetYalue(name) returns the value of the variable name as a character

string (char *). The function DbCalcValue(name) returns the double-precision, floating-

point value of name. If it is necessary to refer to a specific field of an array, an array

subscript can be used. For example, the name "X(2)" refers to the second element of the

array X. This form of indexing was selected because it is (unfortunately) the form used in
Fortran namelist.

Arrays of data can be retrieved with the functions DbGetValues and DbCalcValues.

DbGetValues(name) returns an array of character strings (char **) for the variable name.

DbCalcValues (name) returns an array of numeric values. Since the conversion from double

to other types (int, float) is not as straightforward for arrays, DbCalcValues automatically

makes the conversion to the correct type. In both cases, if name is indexed, the array returned

starts at the index; otherwise, it starts with the first value. There is only one function to set

the value of a variable, it is DbSetValue(name ,data), where name is the variable name and

data is a character string. If the variable is an array, each element (except the last one) is

followed by a comma. The program parses the fields of data into an array of strings suitable
for evaluation in calc.

In addition to the value of a variable, its minimum, maximum, and default values are

15

stored in the data dictionary as, of course, strings. Arrays of these data are handled the

same as arrays of values. Functions are provided to return strings or numerical values for

all of these data. These functions are the same as those described above but operate on

different data. The names of these functions can be found in the source code header file.

There is some additional information that the data dictionary has to keep track of, such

as type and dimensions of the variable, a one-line description of the variable, and detailed

help information on the variable. These data cannot be arrays. Sufficient documentation for

functions that operate on these data can be found in the source code.

A generic search function is provided so the programmer can define new search functions

without having to understand the storage structure. The format of the function is

char ** DbSearch(int (*funct)(), void *data)

DbSearch loops through all the variables in the data dictionary and returns a list of variable

names that meet the criterion specified in the user-defined function funct. Funct receives

a variable name and data as its arguments and returns 1 (true) or 0 (false), depending on
whether the variable meets the search criterion.

So far, the data dictionary described here is a genera/-purpose piece of code that can be

used for a number of applications. The code is easily modified to store other types of data

without adversely affecting the current use.

4.3 The User Interface

The graphical user interface module was written such that many of the pieces could be

reused to make user interfaces for more complex programs. Some users may want to make

simple modifications, such as adding menu picks for plotting results. Other users may want

to develop much more elaborate interfaces but still use some of the functionality of NLEdit.

This section explains how this graphical user interface code can be reused.

The main window in NLEdit makes a good starting point for most applications. The

function make_main_window () can be easily modified to add new menu picks to the interface.

Before trying to add new items to the menu, it is helpful to understand how the Motif code

interacts with the data dictionary. (For more information on using OSF/Motif see [3] and

[4].) Let's consider adding a help button to the user interface. First a couple of definitions

are necessary. A callback is a function that is invoked when a specific event (such as a

mouse click) occurs in the user interface. Client data is a predefined piece of information

that is passed to a callback when it is invoked. It is recommended that a variable in the

data dictionary be used to store the help information. The callback for the help button is

defined with the variable name (actually a pointer to a character array holding the variable

name) as its client data. The help callback is then a simple function to write. It needs only

to call DbGetHelp (client_data) and to "pop up" a help window with the resulting string.

The help window could be created beforehand and have its widget identity (ID) retrieved

by calling DbGetWiget (''help_window''). The same help callback can be used in many

places by changing the variable name in its client data. Another advantage of using the data

dictionary is that the help information is easily changed just by editing the data definition

file. Of course, there is already a help callback that works like this in NLEdit; it is called

HelpCB ().

16

There are several other callbacks in NLEdit that can help extend the functionality of the

interface. The callback PostHelpCB() can be used to add documentation to the interface

as described in section 3.4. The name of the file containing the documentation is passed to

the callback as client data; everything else is automatic. The callback popup_editorlCB ()

is used to invoke the editor shown in figure 7. If a variable of type F (filename) is passed as

client data, the content of the file is displayed in the editor; otherwise, the current value of

the variable is displayed in the editor. A filename can be read into a variable name by calling

popup_fileSelectionBoxlCB(). The callback fileSelectionBoxl0kCB2() isused to add

more functionallyto the fileselectionbox. The callbackpopup_DbQuest ionCB () can be used

Figure 12: Question Dialog.

to pose a yes or no question to the user. An example of a question dialog box is shown in

figure 12. The label field of a variable in the data dictionary is used to hold the question.

The value of the variable is set to 1 if Ok is pressed and 0 if Cancel is pressed. The function

DbAddCallback() can be used to add a side effect when the question is answered. That is to

say, a function to be called when the value of the variable is changed can be specified using
DbAddCallback().

Many computer programs use formatted input data or a mixture of formatted and

namelist inputs. In this case it is necessary to write a new read routine for NLEdit. How-

ever, the namelist editing window may still be used to edit the formatted data. To do this,

one must add variables to the data dictionary for the formatted data the same way as for

the namelist data. A dummy namelist name can be used to group variables together. The

function DbSetValue() is called from the formatted read routine to store the data. The call-

back popup__a=elistCB () is used to open a namelist editing window for a namelist name

specified as its client data. The function popup..aames() can be used to edit an arbitrary

group of variables using a namelist editing form. Alternatively, the data editor shown in

figure 4 or the matrix editor shown in figure 5 may be used (usually without modification)

for editing formatted data.

In some cases it may be desirable to make special windows in the user interface. A

convenient way to build these windows is to use the same building blocks used in making

the namelist editing windows. The code for fully functional radio boxes, toggle buttons, text

fields, labels, and labeled text fields can be found in the file fields, c. All of these functions

work with variables in the data dictionary, so it is necessary to add a variable to the data
definition file for each field used.

An objective of this section was to provide just enough detail to allow one to start

programming with NLEdit. Additional information can be found in the source code. Several

large graphical user interfaces have been successfully developed based on NLEdit. Working

with the data dictionary and the higher level graphics routines in NLEdit greatly simplified

the programming of these interfaces.

17

5 Concluding Remarks

A fast, effective way to produce graphical user interfaces for Fortran programs was developed.

This was accomplished by creating a generic graphical user interface that is customized

through a data definition file. The programming effort to produce an interface by this

method is minimal. In many cases, no actual code modifications are necessary to either the

GUI or the analysis code.

The resulting interface provides a better user environment than the traditional approach

of using namelist input. In addition to providing extensive on-line help, it provides con-

siderable error checking and increased flexibility in input fields by means of the calculator

module.

The program was written in the C programming language using the OSF/Motif widget

set. This program was written using small, comprehensible, well-structured functions, greatly

improving its maintainability. Many of these functions could be (and have been) reused in

other programs.

One major limitation of this program, imposed by the data dictionary, is that every item

must have an unique identifier. This implies that the same variable name cannot occur in two

different namelist inputs. Plans to improve the program include removing this restriction

via reprogramming the data dictionary as a C++ class.

Although some extensions will be added when an application demands them, the basic

premise of NLEdit will remain that it be the fastest, easiest way to develop a graphical user

interface for Fortran programs and that it not become another difficult-to-use user interface

programming language.

Acknowledgements

I would like to thank Kathleen Ryall for her work on the calculator module. I would also like

to thank Thomas Lavelle and Louis Handler of Lewis for their help in testing this program

and for their suggested improvements.

References

[1] Kernigham, B.W.; and Pike, R.:
1984.

The UNIX Programming Environment. Prentice-Hall,

[2] Aho, A.V.; Sethi, R.; and Ullman, J.D.: Compilers: Principles, Techniques and Tools.

Addison-Wesley, 1986.

[3] Young, D.A.: The X Windows Programming and Applications with Xt -- OSF/Motif

Edition. Prentice-Hall, 1990.

[4] Open Software Foundation: OSF/MotifProgrammer's Reference. Prentice-Hall, 1991.

18

Appendix Sample Data Dictionary

The following is an example of a data dictionary used to create a graphical user interface

with the NLEdit program. The resulting interface is shown in figure 2.

data dictionary for mapplot

programmed by: brian curlett 12/5/92

application_help s i i /usr/local/mapplot/mapplot.doc ! i

Mapplot

The database for the mapplot code is now loaded.

Mapplot plots NEPP formatted compressor and turbine maps

using the Grafic plot library. See "Mapplot Manual..." for

more info on Grafic.

program_name s I 1

Run Mapplot
I

/usr/local/bin/mapplot ' '

&INPUTs

input_msgl C 1 1 , i i

msg

mapplot - NEPP compressor and turbine performance map plotting

program

MAPFILE F I I "test.maps" /home/aao/nepp/maps

file name for tabulated map data

enter the file name for tabulated map data

*.maps

IOPT M 3 I 1,2,3 "compressor map",\

"turbine map - separate plots" ,"turbine map - combined plots"

map type switch

Map Type Switch

1 compressor map (default)

2 turbine map separate plots

3 turbine map combined plot

input_msg2 C 1 1 ' ' '

msg

The next three inputs define the map.

Look in MAPFILE for the numbers.

MAPFLO i I I

flow map id number

flow map id number

1000 0 I

MAPEFF i I I I001 0 I

19

efficiency map id number

efficiency map id number

MAPPR i 1 1 1002 0 l

pressure ratio map id number

pressure ratio map id number

used only for compressor maps

input_msg3 C 11 ' ' '

msg

The next three inputs are optional scale factors.

FACFLO f I 0 1.0 J '

scale factor on flow

scale factor on flow (default=l.O)

FACEFF f I I 1.0 ! '

scale factor on efficiency

scale factor on efficiency (default=l.0)

FACPR f 1 1 1.0 ' J

scale factor on pressure ratio

scale factor on pressure ratio

used only for compressor maps (default=l.O)

input_msg4 C 1 1 ' ' '

msg

Input ANGLE for compressor or AREA for turbines.

ANGLE f I I 0.0 i ,

3rd dimensional argument on map

3rd dimensional argument on compressor maps (same as AREA)

(default=O.O)

AREA f 1 1 0.0 i ,

3rd dimensional argument on map

3rd dimensional argument on turbine maps (same as ANGLE)

(default=O.O)

input_msg5 C 11 ' ' '

msg

The following are graphics options.

PSIZE B 1 1

make 1/4 size plot

plot size

001

2O

FALSE (0) for a full size plot

TRUE (I) for a I/4 size plot

GRID B i 1 0 0 1

draw grid

grid switch

TRUE (1) draw grid lines on plot

FALSE (0) no grid lines are drawn

GRAY B i I 0 0 1

do gray scale plot

gray scale switch

TRUE (1) draw plot using gray scales

FALSE (0) draw plot in color (or monochrome)

IRVAL B I I I 0 1

plot R values on compressors maps

TRUE (I) plot R values on compressors maps

FALSE (0) do not plot R values on compressors maps

(default=TRUE)

FONT s 1 1

screen font

Screen font

Examples: "fixed"

t t I

"Rom14. 500" "*clean-bold-r*160*"

Note: this font is not used for postscript output.

input_msg6 C 11 , _ i

msg

The following inputs are for drawing an operating

line on the plot. All array must be the same size.

NDAT i I 1 0 0 I00

size of arrays FLOWDAT, PRDAT and EFFDAT

size of arrays FLOWDAT, PRDAT and EFFDAT

FLOWDAT f I00 1 f J I

array of corrected flow data

array of corrected flow data

max size 500

EFFDAT f I00 1 ' ' '

array of efficiency data

array of efficiency data

(not used for compressor maps)

21

max size 500

PRDATf 100 1 i , ,
array of pressure ratio data
array of pressure ratio data
max size 500

DATSYMi 1 1 1 0 15
plot symbol (see help)
plot symbol:
0 none, i square, 2 circle , 3 triangle,

4 + , 5 X , 6 diamond, 7 arrow ,

8 picnic table , 9 Z , I0 Y ,

11 square w/ X , 12 * , 13 hour-glass,

14 vertical bar , 15 star

This symbols are used only on the operating

line.

22

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Publicreportingburdenforthiscollectionof informationis estimatedtoaverage1 hourper response,includingthetimefor reviewinginstructions,searchingexistingdatasources,
gatheringandmaintainingthedataneeded,andcompletingandreviewingthe collectiono! information.Sendcommentsregardu'Kjthis burdenestimateor anyotheraspectofthis
collectionof information,includingsuggestionsforreducingthisburden,to WashingtonHeadquartersServices,DirectorateforInformationOperationsand Reports,1215Jefferson
DavisHighway,Suite1204,Arlington,VA 22202-4302,andtotheOfficeofManagementandBudget,PaperworkReductionProject(0704-0188),Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1994 Technical Memorandum

4. TITLE AND SUBTITLE

NLEdit--A Generic Graphical User Interface for Fortran Programs

6. AUTHOR(S)

Brian P. Curlett

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

5. FUNDING NUMBERS

WU-505--69-50

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8049

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-4543

11. SUPPLEMENTARY NOTES

Responsible person, Brian P. Curlett, organization code 2410, (216) 977-7041.

12a, DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum200 words)

NLEdit is a generic graphical user interface for the preprocessing of Fortran namelist input files. The interface consists of

a menu system, a message window, a help system, and data entry forms. A form is generated for each namelist. The form

has an input field for each namelist variable along with a one-line description of that variable. Detailed help information,

default values, and minimum and maximum allowable values can all be displayed via menu picks. Inputs are processed

through a scientific calculator program that allows complex equations to be used instead of simple numeric inputs. A

custom user interface is generated simply by entering information about the namelist input variables into an ASCII file.

There is no need to learn a new graphics system or programming language. NLEdit can be used as a stand-alone program

or as part of a larger graphical user interface. Although NLEdit is intended for files using namelist format, it can be easily

modified to handle other file formats.

14. SUBJECT TERMS

Interactive graphics; Fortran; Editing routines (computers); User manuals (computer

programs)

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
24

16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

