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S. Mitchell proved that a necessary and sufficient condition for the existence
of a topological hexahedral mesh constrained to a quadrilateral mesh on the
sphere is that the constraining quadrilateral mesh contains an even number of
elements. S. Mitchell’s proof depends on S. Smale’s theorem on the regularity
of curves on compact manifolds.

Although the question of the existence of constrained hexahedral meshes
has been solved, the known solution is not easily programmable; indeed, there
are cases, such as Schneider’s pyramid, that are not easily solved.

D. Eppstein later utilized portions of S. Mitchell’s existence proof to
demonstrate that hexahedral mesh generation has linear complexity. In this
paper, we demonstrate a constructive proof to the existence theorem for the
sphere, as well as assign an upper-bound to the constant of the linear term in
the asymptotic complexity measure provided by D. Eppstein.

Our construction generates 76*n hexahedra elements within the solid
where 7 is the number of quadrilaterals on the boundary. The construction
presented is used to solve some open problems posed by R. Schneiders and D.
Eppstein. We will also use the results provided in this paper, in conjunction
with S. Mitchell’s Geode-Template, to create an alternative way of creating a
constrained hexahedral mesh. The construction utilizing the Geode-Template
requires 130*n hexahedra, but will have fewer topological irregularities in the
final mesh.

1 Introduction

Hexahedral mesh generation has been subject to active research during the
past twenty years. And, while some progress has been made in the area of
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push-button hexahedral mesh generation for fairly specialized classes of com-
plex domains, a generalized hexahedral mesh generation algorithm does not
exist which will support all types of domains and applications.

The existence theorem for hexahedral meshes provided by S. Mitchell [6]
states that a solid homeomorphic to the sphere, whose boundary is tessel-
lated by an even number of quadrilaterals, can be partitioned into a hexahe-
dral mesh using interior surfaces whose boundaries are the dual cycles of the
quadrilateral mesh. The solid partition is referred to as a constrained hexa-
hedral mesh, and the partition of the boundary is known as the constraining
quadrilateral mesh.

The problem of constructing constrained hexahedral meshes has proven
very difficult to address. The techniques based on S. Mitchell’s proof to the
existence theorem are difficult to implement; in a few cases, seemingly simple
problems are difficult to solve.

D. Eppstein [5] presented a complexity analysis on the generation of hex-
ahedral meshes constrained to a bipartite quadrilateral mesh. Part of his con-
struction depends on adding a layer of cells that have sixteen and eighteen
faces; the problem of constructing the hexahedral solution to these cells of
quadrilaterals is left open to the reader, and, instead, S. Mitchell’s proof is
invoked to prove existence of a solution to those cells. In his paper, D. Epp-
stein focuses on the analysis of the complexity of the generation of constrained
hexahedral meshes.

In this paper, a constructive proof is given based on adding four basic tran-
sitional cells of hexahedral elements to a quadrilateral mesh: 1) a transition
of paired hexahedra, 2) a transition to four-split hexahedra, and 3) a tran-
sition from four-split hexahedra to a closed mesh. The rules of how to build
the transitional layers of hexahedra using these basic cells will be given. The
result presented in this paper is a constructive, easily-programmable, solution
that provides a precise, a priori, count on the number of hexahedral elements
that will be generated.

Additionally, S. Mitchell [7] introduced the Geode-Template to interface
a four-split quadrilateral mesh to a diced tetrahedral mesh. In his paper,
Mitchell relies on splitting a hexahedral mesh to create a four-split, or diced,
quadrilateral boundary. In this paper, we will show how to transition to a
four-split mesh without modifying the original boundary.

The remainder of this paper will outline the concepts, definitions, and
proofs which ultimately result in a constructive proof of S. Mitchell’s existence
theorem. The proof of the theorem presented in this paper can be summarized
as follows:

1. We introduce the notions of a Paired Partition and Transitions be-
tween quadrilateral meshes. It is shown that every quadrilateral mesh that
admits a Paired Partition has a transition to a quadrilateral mesh whose
dual has no self-intersecting loops.
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2. Given a quadrilateral mesh whose dual has no self-intersecting loops, we
introduce a method for transitioning the quadrilateral mesh to a Four-
Split Quadrilateral Mesh. The transition is created by inserting layers
of elements that divide a quadrilateral in two along the each of the two
dual cycles that compose the quadrilaterals.

3. It is shown that a Four-Split Quadrilateral Mesh on the sphere? is
the boundary of a hexahedral mesh.

4. We demonstrate a Four-Split Pyramid cell to close the hexahedral
mesh.

5. Finally, we show that any quadrilateral mesh on a sphere with an even
number of quadrilaterals is the constraining boundary of a hexahedral
mesh.

While topologically valid, the resulting quality of the hexahedral mesh cre-
ated by this construction will not provide solutions for practical applications
and is presented merely to provide a concrete measurable construction of a
solution to the problem of constrained mesh generation.

The solution presented for the sphere can be extended to the case of the
torus and compact 2-dimensional manifolds in general by using the Geode-
template coupled with a constrained tetrahedral mesh. (If every loop in a
quadrilateral mesh on a 2-dimensional compact manifold has an even number
of quadrilaterals, it is possible to apply all the results of this paper to transition
to a Four-Split Quadrilateral Mesh. This, then, will permit the use of the
Geode-template and reduce the problem to the existence of a constrained
tetrahedral mesh.)

Finally, a few solutions to open problems in mesh generation are presented
including: a new solution to Schneider’s open problem [11], the eight-sided
quadrilateral octahedron [5], and Eppstein’s cube [5]. Additionally, a question
by M. Bern, et al, [2] on the existence of a hexahedral decomposition with
linear edges for a convex polyhedron is solved by the construction provided
in this paper.

2 Basic Terminology

The terms quadrilateral and hexahedral mesh follow the definition given by
S. Mitchell in [6]. The dual of a quadrilateral mesh on a compact manifold
is a graph where every vertex is connected to four other vertices (i.e. a 4-
regular graph). A structure referred to as the Spatial Twist Continuum or
STC for short is associated with this graph [9]. In this definition, the notion
of chord is introduced. A chord is a chain of quadrilaterals that is constructed
by traversing the adjacent quadrilaterals through opposite edges. A loop is

4Technically, the construction requires a four-split quadrilateral mesh with a
‘star-shaped’ boundary (i.e. there must be a point which can be seen by all nodes
on the four-split boundary simultaneously.)
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a closed chord. In particular, for a quadrilateral mesh on a closed compact
manifold, every chord belongs to a loop.

Loops may self-intersect. T. Suzuki, et al [12] gave a detailed description
of how to untangle self-intersecting loops to create the interior surfaces nec-
essary to generate the hexahedral mesh. Their results are used to resolve R.
Schneider’s pyramid [11].

3 Element Representation

The quadrilateral and hexahedral elements to be referenced throughout the
paper will follow the conventions used in finite-element analysis. A quadrilat-
eral is represented by an ordered set of vertices {v1, v2, v3, v4}, and bounded
by the four edges {v1, v2}, {v2, v3}, {v3, v4}, and {v4, v1}. The edges in
the quadrilateral that do not share vertices are called opposite edges of the
quadrilateral. A hexahedron is represented by an ordered set of vertices {v1,
v2, v3, v4, v5, v6, v7, v8}, and bounded by the six faces {v1, v4, v3, v2}, {v5,
v6, v7, v8}, {v5, v6, v2, v1}, {v8, v7, v3, v4}, {v6, v2, v3, v7}, and {v1, v5,
v8, v4}.

Ve V7
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Fig. 1. Element configuration

Additional requirements of a valid quadrilateral mesh are that each edge
in the mesh must contain exactly two distinct vertices, and each interior edge
must be shared by exactly two quadrilaterals. Similarly, for a valid hexahedral
mesh the faces of a hexahedron must contain exactly four distinct vertices,
and each interior face of the hexahedral mesh must be shared by exactly two
hexahedra.

4 Hexahedral Transitions of Quadrilateral Meshes

Definition 1 Two distinct quadrilateral meshes are transitions of each
other if there is a hexahedral mesh whose boundary contains the union of
both meshes.

By solving the hexahedral mesh of the transition of a given quadrilateral
mesh, the original hexahedral problem is resolved, because the union of the



Constrained Hexahedral Mesh Generation 5

hexahedral mesh with the layer of transition elements gives the solution to
the original quadrilateral mesh.

4.1 Paired Partition Transition

Definition 2 A Paired Partition of a quadrilateral mesh, @Q, is a partition
PQ of Q such that each element in the partition is a pair of quadrilaterals that
share at least an edge.

In other words, a quadrilateral mesh ) admits a paired partition if there
exist a set

1. PQ = { {p, q}, such that p and q are quadrilaterals in Q},

2. Any two distinct elements in PQ {p, q} and {p’, ¢’} are disjoint,

3. Q is the union of PQ , and,

4. For each element {p, q} in PQ, p and q share an edge or, equivalently, p
and q are neighbors.

Since the dual of a quadrilateral mesh on a closed manifold is a 4-regular
graph, a Paired Partition also corresponds to the graph-theoretic problem
known as a perfect matching, or a 1-factor, of a 4-regular graph. We utilize
the following theorem (a proof is given in [3]):

Theorem 1. Every quadrilateral mesh on a 2-Dimensional manifold in B3
with an even number of quadrilaterals admits a Paired Partition.

Removal of Self-intersecting Loops

Theorem 2. Fvery quadrilateral mesh on the sphere with n elements that
admits o Paired Partition transitions to quadrilateral mesh with no self-
intersecting loops. The total number of hexahedral elements within the tran-
sition between the original quadrilateral mesh and the new quadrilateral mesh
with no self-intersecting loops is n.

Proof: Construct the Paired Partition of the quadrilateral mesh. Let
{p, a} be in PQ.

V1 V2 V3 V1 V2 V3
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Fig. 2. The Paired Partition Transition. The image on the right is the 'Cell of Six
Quadrilaterals’.
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The two quadrilaterals with vertices {{v1, v2, v5, v4}, {v2, v3, v6, v5}}
(see Figure 2) transition to the quadrilateral mesh with six quadrilaterals
{{v1, v2, v7, v8}, {v7, v2, v3, v8}, {vl, v8, v9, v4}, {v8, v3, v6, v9}, {v4, v9,
v10, v5}, {v9, v6, v5, v10}}. The boundary of the hexahedral mesh comprised
of the two hexahedra with vertices {v1, v2, v5, v4, v8, v7, v10, v9}, and {v2,
v3, v6, v5, v7, v8, v9, v10} mesh below is the exclusive union of the two sets
of quadrilaterals. For any two paired quadrilaterals, p and ¢, with vertices
{vl, v2, v3, v4}, and {v2, v5, v6, v3}, construct the two hexahedral elements
with vertices {v1, v2, v3, v4, v7, v8, v9, v10}, and {v2, v5, v6, v3, v8, v7,
v10, v9}.

This transition is applied to each set of paired quadrilaterals in the Paired
Partition. The boundary of the transition mesh minus the original quadri-
lateral mesh is composed of cells of six quadrilateral elements (see Figure 2).
Thus each paired element in the Paired Partition is mapped to a unique
set of quadrilaterals {pl, p2, p3, ql, q2, q3} in the transitioned mesh.

There is a natural partition induced by mapping each element {p, q} in
the Paired Partition to a unique subset of quadrilaterals {pl, p2, p3, ql,
q2, q3} of the transitioned mesh. We will call the newly introduced partition
of the mesh 'Cell of six quadrilaterals’. As a consequence of a peculiar
property of these new cells, it will be shown that all the loops in the new
quadrilateral mesh that result from the transition are non-self-intersecting.

Fig. 3. Dual chords on the Paired Partition Transition boundary

The fact that the new mesh will not contain any self-intersections can be
seen by taking any quadrilateral in the transitioned quadrilateral mesh, and
finding the Cell of six quadrilaterals that contains the quadrilateral. Notice
that there are two types of loops that go through a Cell of six quadrilater-
als: there is one loop that is fully contained inside a Cell of six quadrilat-
erals, and three others that are not (see Figure 3). Notice, also, that the only
intersections in the cell take place between the fully contained loop in the cell
and one of the loops that is not fully contained in the cell (see also Figure
4). Therefore, for any given quadrilateral, the intersection must take place
between two distinct loops. Hence, there cannot be any self-intersections.

A total of n hexahedral elements were used to transition to a quadrilateral
mesh with no self-intersecting loops. We should also note here, that it may be
possible that changing only a subset of the pairs may be required to remove



Constrained Hexahedral Mesh Generation 7

all self-intersections in the mesh. That is to say that n is an upper bound on
the minimum transition layer to obtain no self-intersections.

1'.: ¥ 1}, w3
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Fig. 4. Various arrangements of dual chords with adjacent Paired Partition tran-
sitions.

4.2 The Four-Split Transitions
The Four-Split Transition

In this section, we will describe a transition from a non-self-intersecting
quadrilateral mesh to a Four-Split Quadrilateral mesh. A Four-Split
Quadrilateral mesh is the collection of four cells that result from splitting
a single quadrilateral into four quadrilaterals; five points are added: four at
the mid-edges, and one at the center as shown in Figure 5. Any quadrilateral
mesh that results from a transition which splits one quadrilateral into four is
called a Four-Split Quadrilateral Mesh.

Fig. 5. Four-Split Transition

A Four-Split Quadrilateral Mesh has the following properties:

1. There are four vertices labeled as corner vertices.
2. There is a unique vertex labeled as interior.
3. There are four vertices labeled as mid-edges.
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4. Adjacent cells share corner vertices with corner vertices, and mid-edge
vertices with mid-edge vertices.

The fourth property is essential to the proof of the next theorem to ensure
that the faces of the Four-Split Pyramid given below will match appropri-
ately.

We now define Theorem 3 which provides a sufficient condition for the
existence of a transition to a Four-Split Quadrilateral Mesh.

Theorem 3. If each of the dual loops of the quadrilaterals on the sphere does
not self-intersect, there is a transition of the mesh to a four-split quadrilateral
mesh.

Proof: A given oriented loop in the dual of the quadrilateral mesh which
does not self-intersect splits the mesh into three disjoint sets of quadrilaterals:
1) the set of quadrilaterals that lie to the right of the loop, 2) the set of
quadrilaterals that compose the loop, and 3) the set of quadrilaterals that
lie to the left of the loop. The quadrilaterals that compose the loop are a
boundary between the quadrilaterals labeled left and right. This partition
of the mesh exists because there are no self-intersections that change the
orientation of the curve.

By utilizing these three sets of quadrilaterals, we can begin to add layers of
hexahedra onto the quadrilaterals which will result in a four-split quadrilateral
transition. There are three cases to consider when adding a layer of hexahedra
(shown in Figure 6): case 1 is used when a quadrilateral lays in the regions
labeled as right of the oriented loop, case 2 is utilized when a quadrilateral
belongs to the loop, and case 3 is used when a quadrilateral lies to the left of
the loop. We will discuss each of these cases separately.

e Case 1: If a quadrilateral lies to the right of an oriented loop, a single
hexahedron is added on top of the quadrilateral towards the center of the
sphere.

e Case 2: When a quadrilateral belongs to a loop, a cell of three quadrilat-
erals is placed as illustrated in Figure 6.

e Case 3: When a quadrilateral lies in the region labeled as left of the loop,
two hexahedra are added on top of the quadrilateral towards the center of
the sphere.

Case 1 Case 2 Case 3

Fig. 6. Transition cell for the Four-Split transition
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Thus, three types of transition cells placed at each quadrilateral of the
mesh: one is a single hexahedra, another is a pair of hexahedra one on top of
the other, and the third one is the one illustrated in Figure 6.

By placing the set of cells on top of each quadrilateral as described above
for each of the cases, we will now show that the cells will match appropriately
at the interface with each of the other sets of cells for each quadrilateral. For a
single loop, take any two quadrilaterals sharing an edge with the cells placed
on top of the quadrilateral as described above, and the result is one of six
possible scenarios:

e Scenario A -Both quadrilaterals are in the set of 'right” quadrilaterals: In
this case, two hexahedra are placed next to each other, and will match up
appropriately.

e Scenario B - Both quadrilaterals are in the set of ’left’ quadrilaterals: In this
case two pairs of hexahedral elements are palaced next to each other, and
the hexahedra will match up appropriately.

e Scenario C - One quadrilateral is labeled ’left’, and a neighbor is labeled ’right’:
This scenario is not possible, because the oriented loop with no self-
intersections is the boundary that divides the ’left’ quadrilaterals from
the ’right” quadrilaterals by definition.

e Scenario D - One quadrilateral is labeled 'right’ and the other belongs to the loop:

The quadrilateral labeled ’right” must lie in the region to the right of the
loop. In this case, there is one hexahedral element on the right side of the
loop that is matched with an appropriately aligned hexahedra from case
2 template.

e Scenario E - One quadrilateral is labeled ’left’ and the other belongs to the loop:
Using similar reasoning to case D, the ’left’ quadrilateral is to the left of the
quadrilateral in the loop, and there are two hexahedral elements matching
two hexahedral elements from the case 2 template, and the hexes match
up appropriately.

e Scenario F - Both quadrilaterals belong to the loop: Label the two quadri-
laterals p and p’ having vertices v1, v2, v3, v4, and v3, v2, vb, v6 respec-
tively. The quadrilaterals p and p’ share the edge v2, v3.

There are two possible cases: i) one quadrilateral is a successor of the other
quadrilateral with respect to the loop, or ii) the two quadrilaterals are not
successors of each other.

— Case i - The quadrilaterals are traversed successively in the loop: Sup-
pose the loop traverses quadrilateral p through edges v4, vl and v2,
v3. If the loop traverses quadrilateral p’ through v2, v5 and v3, v6 (see
Figure 7), the loop must also traverse quadrilateral p’ through two ad-
ditional edges v3, v2 and v5, v6. If the loop traverses quadrilateral p’
at four edges, the loop is self-intersecting at p’, which is contradictory
to the assumption of no self-intersections. Therefore, the loop will tra-
verse the adjacent quadrilateral p’ through edges v3, v2 and v5, v6,
and the hexes match up appropriately.
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Fig. 7. This configuration is will occur only if there is a self-intersecting loop in the
quadrilateral mesh.

Case 11 - The quadrilaterals are not successively traversed in the loop:

In this case, the case 2 templates must face in opposite directions with
respect to the loop; that is, the left edge of one template must be shar-
ing the left edge of the adjacent template, or the right edge of one
template is sharing the right edge of the adjacent template, as shown
in Figure 8).

If the loop is traversing p through edges v1, v2 and v3, v4, the loop
cannot traverse at p’ through the shared edge v3, v2. Otherwise, p
could be considered a successor or predecessor of p’; this would lead to
the loop being self-intersecting at p and contradicting our assumptions
on the loop. Hence, the loop must traverse p’ through the edges v2, vb
and v3, v6.. Therefore, we need to show that p cannot be to the ’left’
of p” while p’ is to the ’right’ of p. We can demonstrate that this is
impossible by using basic properties of simple Jordan curves.

We create an oriented, closed loop of segments by connecting the mid-
point of each edge traversed by the loop from all the quadrilaterals
in the loop. This oriented, closed loop of segments is a simple Jordan
curve because the loop that induced it is not self-intersecting.
Construct an oriented, open poly-segment with vertices v1, v2, v5. This
poly-segment must intersect the oriented, closed curve induced by the
loop at two different points. As a direct result of the property of simple
Jordan Curves,one intersection point the tangent of the oriented closed
loop must be pointing to left of the oriented poly-segment, and, at the
other intersection point, the tangent must be pointing to the right.
We are, therefore, left with two possibilities: the loops are either to
the right of each other, or to the left of each other. In either case, the
hexahedra from the case 2 template will match up appropriately as
illustrated in Figure 8.

We now return to the Paired Partition transition described earlier, and
we notice an interesting pattern which can be exploited to reduce the number
of elements in the four-split transition. Each Cell of Six Quadrilaterals
(as shown in Figure 3) contains two types of loops: the inner loops, and the
exterior loops (as described earlier). None of the inner loops intersect each
other; hence, it is possible to orient all loops so that their direction is con-
sistent. Similarly, none of the exterior loops intersect each other, and we can
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Fig. 8. Possible loop orientations in Scenario F, case ii

therefore orient these loops, as well. Thus, by adding only two layers of two
splits, it is possible to transition to a four-split quadrilateral mesh. Each of the
cells has two outer loops oriented to the left of each other, and the remaining
loop to the right of the center loop, and placing each element within the cell
distinctly into one of the scenarios described above.

As a result of this ability to distinctly orient each of the loops, we can
calculate the total number of transition elements needed to convert from a
Paired Partition to a Four-Split Quadrilateral Mesh as:

number of transition elements = number of quadrilaterals to the right of
the loop + 2*number of quadrilaterals to the left + 3*number of quadrilaterals
from the loop

The hexahedral elements transition the original quadrilateral elements to
one where the quadrilaterals to the left and right of the mesh remain identical
to the originals, but the ones along the loop are split into two quadrilaterals.
The set of originals chords is transferred to the transition quadrilateral mesh
as follows:

1. The loop just processed is discarded from the set of chords,

2. The remaining chords are mapped onto the faces of the transition quadri-
lateral mesh. In particular, when a loop is projected onto one of the pair of
quadrilaterals resulting from the split along the loop, it must be transverse
to the loop.

The operation of adding two split transition layers described above is re-
peated for another loop of the remaining loops projected onto the new quadri-
lateral mesh that results from the transition elements. Each time a loop is
processed the set of remaining loops diminishes by one. The process continues
iteratively until no more loops remain from the original set. Wherever two
loops intersect, a group of Four-Split Cell is created, because two quadri-
laterals resulted from the loop processed at an earlier stage in the process,
and the secondarily processed loop adds two more quadrilaterals along the
transversal direction. Since each loop is processed only once, and exactly two
loops cross each quadrilateral cell in traversal directions; hence, the result-
ing transition of quadrilaterals will be a Four-Split Quadrilateral Mesh.
Figure 9 illustrates the results of two layers from two different loops that
intersect.
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Fig. 9. Two layers result from two different loops intersecting.

An Alternative Four-Split Transition

Scott Mitchell suggested an alternative construction [10]. The alternative tran-
sition is accomplished by adding one layer of hexahedra on the elements that
are either on the loop or to the left of the loop. All other quadrilaterals are
left as they are. The proof of the theorem is very similar to the one above.
Using his approach, the number of transition elements added at each layer is
given by the formula:

number of transition elements = number of quadrilaterals to the left of the
loop + number of quadrilaterals on the loop

It is critical for both four-split transitions that the quadrilateral mesh is
on the sphere. A torus, for example, may have loops that do not split the
domain in two regions as required by the proof. In general, non-intersecting
loops could be processed simultaneously by the approach given above if the
chords are carefully oriented to reduce the number of layers.

4.3 Four-Split to Closure Transitions

Once a Four-Split Quadrilateral Mesh is in place it is possible to transition
to a constrained hexahedral mesh utilizing one of several other transitions. We
now demonstrate how the remainder of the sphere can be filled using a Four-
Split Pyramid, or the Geode-template to obtain an all-hexahedral mesh.

The Four-Split Pyramid Transition

Theorem 4. A Four-Split Quadrilateral Mesh is the boundary a hexahe-
dral mesh containing 16*n hexahedra, where n is the number of quadrilaterals
before four-split division.

Proof: This construction is done by utilizing a hexahedral decomposition
of a pyramid into sixteen hexahedra (a detailed construction of the pyramid is
given in [4].) This pyramid is characterized by having a Four-Split Quadri-
lateral Mesh at the base of the pyramid (the pyramid is illustrated in Figure
10). The Four-Split pyramids are placed inside the sphere with their bases
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aligned at each of the four-split cells with the apex of pyramids being con-
nected to the center of the sphere, and the midpoints to the corresponding
midpoints of the faces to the adjacent cells as illustrated in Figure 10. The
connectivity to adjacent Four-Split Pyramids is guaranteed by the funda-
mental property of the Four-Split Quadrilateral Mesh that ensures that
corner vertices meet with comer vertices, and mid-edge vertices meet with
mid-edge vertices.

Fig. 10. A cross-sectional view of the Four-Split Pyramid. The mid nodes and the
tips of each of the Four-Split pyramids are merged to ensure conformal meshes.

S. Mitchell’s Geode Template

The Four-Split Pyramid contains several hexahedra which share two faces
or edges with neighboring elements (also known as ”doublets” [8]). therefore,
a very attractive alternative to the Four-Split Pyramid is S. Mitchell’s
Geode-Template [7]. The Geode-template contains more elements than the
Four-Split Pyramid, but reduces the number of doublets in the resulting
mesh. In this section, we will show how the Geode-template can be utilized
in place of the Four-Split Pyramid.

Fig. 11. The Geode-template by S. Mitchell

The Geode-Template contains 26 hexahedral elements, and contains a
Four-Split Quadrilateral Mesh at the base. The template was designed to
match a four-split quadrilateral cell to a diced tetrahedral constrained mesh.
The interior of the mesh is filled by two four element hexahedral dicing of a
tetrahedral element where the apex is connected at the center of the sphere.
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If we cap the geode template with a pyramid split into two diced tetra-
hedra, the resulting hexahedral decomposition can be used in place of the
Four-Split Pyramid described earlier.

5 A Constructive Hexahedral Existence Theorem

5.1 Solutions using the Four-Split Pyramid

Theorem 5. A quadrilateral mesh on the sphere with an even number of
quadrilaterals is the boundary of a hexahedral mesh of the interior of the
sphere. The total number of hexahedra is 76*n where n is the number of quadri-
laterals on the boundary.

Proof: By Theorem 1, every even-parity quadrilateral mesh on a 2-
dimensional compact manifold admits a Paired Partition. By Theorem 2, a
transition to a quadrilateral mesh can be constructed with no self-intersecting
loops. By Theorem 3, the quadrilateral mesh transitions to a four-split, and,
by Theorem 4, the quadrilateral mesh is the boundary of a hexahedral mesh.

The total number of hexahedral elements is given by

number of hexahedra = number of elements to resolve self-intersecting
loops + number of elements to transition to a four-split + 16 * number of
four-split pyramids

1. The number of hexahedra added by applying the transition that removes
self-intersecting loops illustrated in Figure 3 is n.

2. For each of the six quadrilaterals of each cell, the total number of hexa-
hedra needed to transition to a four-split is 9; hence the total number of
hexahedra needed to transition the mesh to a four-split is 9 * 6 * n/2.

3. The total number of hexahedral elements per cell needed to solve the
four-split is 16 * 6 *n/2.

Hence, the total number of hexahedra to fill the interior is n + 48*n +
27*n which equals 76*n total elements.®

5.2 Solutions using the Geode-Template

Utilizing the Paired Partition transition and the Four-Split transition, but
replacing the Four-Split Pyramid with the modified geode-template results
in a solution with fewer ’doublet’ entities in the mesh. This solution requires:

1. n + 9%6*n/2 hexahedra needed to transition to the Four-Split Quadri-
lateral Mesh

®Using Mitchell’s alternative Four-Split transition in the section titled An Al-
ternative Four-Split Transition, the number of hexahedra required for the con-
strained solution is 54*n.
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Fig. 12. The various transition layers used in the constructive proof.

2. plus, 26%6*n/2 elements from the Geode-Template
3. plus, 4*2%6*n/2 elements for the diced tetrahedra with apex at the center
of the mesh.

This new solution of the constrained hexahedral mesh contains a total of
130*n elements,® but will contain significantly less doublets than a solution
produced by the Four-Split Pyramid.

5.3 Solutions Using a ’Pillowed’ Four-Split Pyramid

Another slightly different approach replaces the transitions from the paired
partition and the Four-Split Pyramid by transition cells but do not contain
the doublet elements identified earlier. The doublet elements can be removed
in the transition layers by applying the doublet-pillowing technique described
by S. Mitchell and T. Tautges [8]. The base of the new Four-Split Pyramid
will still be a four-split quadrilateral cell, and the resulting transition cells still
have no self-intersecting loops, and will not contain any doublets. However,
by removing the doublets the resulting solution to the constrained hexahedral
problem requires 5396*n hexahedral elements.

6 Applications

In this section we demonstrate constrained hexahedral solutions to the quadri-
lateral meshed boundaries described as Schneider’s Pyramid, the Quadrilat-
eral Octahedron, and Eppstein’s Cube. In all cases, the solution is a direct
result from Theorem 5. The solutions are presented by conveniently number-
ing the quadrilaterals such that the quadrilateral admits a Paired Partition
of the form PQ = {{ql1, q2},...,{q2k-1, q2k},...,{qn-1, qn}} where n is
the number of quadrilaterals for each case; the total number of hexahedra used
to solve the constrained hexahedral mesh will be 76 *n or 130*n depending
on which solution is used. The source code used in generating these solutions
is available at [1].

5Using Mitchell’s alternative Four-Split transition in the section titled An Al-
ternative Four-Split Transition, the number of hexahedra required for the con-
strained solution using the Geode-template is 112*n.
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6.1 Schneider’s Pyramid

Figure 13 contains an open view of Schneider’s pyramid with each of the
boundary quadrilaterals being numbered. There are 16 quadrilaterals on the
boundary of the pyramid resulting in a total of 1216 hexahedral elements being
generated using the Four-Split Pyramid, or 2080 hexahedral elements if the
Geode-template is utilized.

43 L 42

g4 A 412 qi3 ql4
96 > ql1

g3 : g7 . 910 416 gl5
g g

Fig. 13. Schneider’s pyramid

6.2 Quadrilateral Octahedron

Figure 14 contains an open view of the Quadrilateral Octahedron with each
of the boundary quadrilaterals being numbered. There are 8 quadrilaterals on
the boundary of the pyramid resulting in a total of 608 hexahedral elements
being generated using the Four-Split Pyramid, or 1040 hexahedral elements
if the Geode-template is utilized.

gl | q4 g8

92 |43 46

Fig. 14. Quadrilateral Octahedron

6.3 Eppstein’s cube

In Eppstein’s original construction, there are two sets of quadrilateral cubes
used to transition to the tetrahedral based mesh. One had sixteen elements,
and the other eighteen. These cubes contain quadrilateral doublets (i.e faces
that share two edges with an adjacent neighbor). There is another version
of Eppstein’s cubes with 22 and 20 quadrilateral non-degenerate elements
respectively. We focus on the 16-quadrilateral cube shown in Figure 15.
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Fig. 15. Eppstein’s Cube

The value of n for Eppstein’s cube shown in Figure 15 is 16. A total of
1216 hexahedral elements are needed to resolve the constrained mesh utilizing
the Four-Split Pyramid solution, or 2,080 hexahedra if the Geode-template
solution is utilized.

7 Conclusions

The construction presented in this paper demonstrates a solution of S.
Mitchell’s existence theorem. However, this construction is different from the
constructions utilized in S. Mitchell’s proof. Indeed, his solution cannot lead
to the construction given in this paper. In the approach outlined in the origi-
nal proof of S. Mitchell’s existence theorem, a mesh that contains a loop with
an odd number of intersections will have to be connected through an interior
surface to another loop with an odd number of intersections on the bound-
ary. The Paired Partition transition has the very interesting property of
locally connecting all of the loops defined by the initial quadrilateral bound-
ary mesh through interior surfaces, and simultaneously creating a transition
to a quadrilateral mesh which contains no self-intersecting loops.

We have given results for Schneider’s pyramid and Eppstein’s cube and
Quadrilateral Octahedron, with element counts needed to generate a hexa-
hedral topology in these solids using the construction outlined in this paper.
The solution presented for the sphere can be extended to the case of the torus
and compact 2-dimensional manifolds in general by using the Geode Tem-
plate coupled with a constrained tetrahedral mesh. From the construction, it
follows that it is possible to generate a hexahedral decomposition with linear
edges for a quadrilateral mesh of a convex region. The question of finding a
general construction with a minimal number of elements with linear edges is
open.
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