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1. Introduction

In this final report we summarize the work performed under NASA Grant NAG8-711

during the period March 14, 1988 through September 13, 1990, which includes a six-months no-

cost extension. The objectives of this work were:

1. Development of a technique for the expedient, semi-automated determination of protein

solubilities as a function of temperature. Application of this technique to proteins other than

lysozyme.

2. Development of a small solution cell with adjustable temperature gradients for the growth of

proteins at a predetermined location through temperature programming.

3. Development of a microscopy system with image storage and processing capability for high

resolution optical studies of temperature controlled protein growth and etching kinetics.

4. Conclusion of the growth experiments with lysozyme in a thermosyphon flow arrangement that

was begun under NASA Grant NAG8-098.

5. Development of a mathematical model for the evolution of evaporation/diffusion induced

concentration gradients in the hanging drop protein crystallization technique.

In the following we summarize these activities and discuss the results obtained. At the end of

the report we list the various presentations and publications that have resulted from this work.

2. Solubility Determinations

Current protein crystallization practices provide for little control of the actual nucleation and

growth processes [1]. In contrast to standard practice in inorganic crystal growth, nucleation and

growth stages of protein crystallization are typically not separated [ 1,2] and, hence, too many and

too small crystals are obtained in most attempts. Recently, however, the temperature dependence

of the solubility of some proteins has been studied in this group [3] and other groups [4,5]. Such

data provide, for the first time, the possibility to conduct protein crystallization experiments in a

controlled and kinetically advantageous way [1]. After a summary of the batch technique for

solubility measurements [3] in Sect. 2.1, we will describe in Sect. 2.2 a simple scintillation (light

scattering) technique for semi-automated solubility data determinations that we have developed in

continuation of our feasibility studies with large volumes of lysozyme solutions [2]. In Sects. 2.3

and 2.4 we report and discuss solubility data for lysozyme and canavalin, respectively, obtained by

these techniques.



2.1 Batch Technique

Parallel to the development of the scintillation technique (see Sect. 2.2), we have

continued to apply the batch technique for solubility determinations. In particular we

concentrated on lysozyme in the 20-30°C range, where our earlier measurements [3]

indicated more or less apparent maxima in solubility depending on the salt concentration. The

technique was described in detail in [3]. In essence, it consisted in the long-time storage (up

to 10 months) of carefully prepared solutions (1 ml) at various defined temperatures. The

equilibration process between solid and solution was periodically checked by UV absorption.

The structure of the crystals that formed in equilibrium with the solutions (tetragonal vs.

orthorhombic for lysozyme) were judged from their habit.

2.2 Scintillation Technique

Figure 1 gives a schematic presentation of the experimental setup for solubility

determinations using optical scintillation. The carefully purified protein solution (see Sects.

2.3.1 and 2.4.1) is placed in a jacketed fluorimeter cell that is connected to a constant

temperature bath. The temperature of the solution in the cell is monitored by a three-lead

thermistor inserted into an opening of the cell. A magnetic stirring motor continuously drives

a magnetic stir flea in the cell. A laser beam is directed through the solution. When the

solution is clear, the beam is only slightly scattered by the solution itself as well as by foreign

particulates. Upon nucleation and growth of crystallites, the intensity of the scattered light

increases markedly. The scattered light is collected by a lens and focused on a photodiode.

Amplified photodiode and thermistor outputs are connected via a MacADIOS Model 411

interface to a Macintosh Plus computer for data acquisition and generation of control outputs.

A solid state relay connected to the MacADIOS 411 controls a motor that drives the

temperature set point on the circulating water bath.

A "typical" experiment with a protein solution of approximately known behavior is

conducted as follows. The temperature of the cell is set to room temperature. After

centrifugation and concentration determination (as described later), the protein solution is

loaded into the cell. At this point the data acquisition program is operating. The temperature

of the bath, and thus of the cell, is then lowered (or raised for retrograde solubility)

appropriately to induce nucleation. Once nucleation occurs and the diode signal approaches

saturation (as observed on the computer screen and by the turbidity of the solution) the

temperature of the cell is increased to approximately 3-5°C below (or above, for retrograde

solubility) the expected solubility temperature. The computer program instigates further

incremental temperature changes at fixed time intervals by controlling the set point of the

water bath. As the solubility temperature is approached for a given protein concentration, the

number of scattering crystallites diminishes and hence, the diode signal decreases. Once the
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scattered light intensity has decreasedbelow the diode saturation value, each further
temperatureincrementcausesthe diode signal to first decreaserelatively rapidly and then to

level out at a new reduced intensity that correspondsto the equilibrium concentration of

crystallites at that new temperature. This "scalloping" of the signal associated with

temperaturechangesis illustrated by Fig. 2 obtainedwith lysozyme. This change in slope

reflects,of course,thedissolutionkineticsof the specificprotein. Upon dissolutionof the last

crystallites, the diode signal returns to the baselineand further temperaturechangesdo not

result in a changein thediode signal;seeFigs.2-4.

The scintillation technique for solubility determinationshas advantagesover other

methodsusedpreviously [3,5]. It allows for rapid dataacquisition since the nucleation and

dissolutiontimes areminimizedby thecontinuousstirring of the solution. Furthermore,with
the scintillation method one can readily determine a "working range" for temperature-

controlled crystal growth experiments. Also, this techniquedoes not require the packing of

microcolumnswith proteincrystalswith which the solution is to beequilibrated [5]. Though

the applicationof the scintillation techniqueto lysozyme(Figs. 2-5 and Sect. 2.2.2) proved

optimal, later experiments with canavalin (Sect. 2.3.2) and horse serum albumin (to be

reported under Grant NAG8-824) revealed somelimitations. Denaturedprotein can cause

erroneousreadings. Multiple crystalline forms can also confuse the results. Furthermore,

datacanbedifficult to obtain if thecrystallitesof a materialdo not scattera sufficient amount
of light, i.e. the crystallites' refractive index closely matchesthat of the solution. Also, this

technique is, of course, not able to determine temperature-independentsolubilities of
materials.

2.3 Lysozyme Solubilities

2.3.1 Solution preparation

Lysozyme chloride from chicken egg white, Grade VI (L2879, 90% protein, 5% NaCI)

was purchased from Sigma Chemical Company. The protein was dissolved in deionized

water at room temperature. The solution was filtered with a glass fiber filter using a Buchner

funnel and vacuum flask and then with a Nalgene sterile (0.4 I.tm) filter. To remove salts from

the protein solution, the filtrate was dialyzed against deionized water for a total of 30 hours.

In prior dialysis experiments with NaC1 solutions of known concentrations, employing a Na +

specific electrode, we had established that 25 hours of dialysis with two changes of diH20

are sufficient for complete salt removal.

The protein was then dialyzed against 0.05M acetate buffer, pH 4.5, 0.01% NaN3 for a

total of 60 hours. During this time the reservoir was periodically replaced with fresh buffer

solution. After the dialysis, the lysozyme solution was filtered using a Nalgene sterile (0.4

}.tm) filter and concentrated using an Amicon ultrafiltration apparatus. The pH of the protein
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solution was checked with an Orion SA 520 pH meter. The concentration of lysozyme was

calculated (using Beer's Law, A=e 1 C and assuming el%, 280 nm =26.4) upon measuring the

solution's absorbance at 280 nm with a Beckman DU-68 spectrophotometer. This lysozyme

stock solution was stored at 4°C.

For the "batch" lysozyme solubility studies, stock solutions of 0.05M acetate buffer,

pH 4.5, 0.01% NaN3 and of NaC1 in 0.05M acetate buffer, pH 4.5, 0.01% NaN3 were prepared.

Solutions with predetermined protein concentrations and salt concentrations were then

obtained by adding appropriate volumes of the stock solutions. These various protein

solutions were pipetted into sterile 5 ml test tubes. The tubes were sealed and placed in

temperature baths at 20 °, 22 °, 24 °, 25 °, 26 °, 28 °, and 30°C.

For each scintillation experiment with lysozyme, appropriate amounts of the stock

protein, buffer, and salt solutions were mixed. The resulting solution was centrifuged at

9,000-10,000 rpm in a Savant microcentrifuge to remove dust and/or particulate matter. The

lysozyme concentration was obtained using absorbance readings obtained with a Beckman

DU-68 spectrophotometer and using Beer's law. At the conclusion of each experiment, the

lysozyme concentration was again determined by measuring the absorbance.

2.3.2 Lysozyme solubility data

Figure 5 gives a comparison of lysozyme solubility data obtained by our scintillation

technique and those data recently obtained by Pusey [6] with the equally rapid packed micro-

column technique [5]. Agreement is obtained within the experimental errors. On the other

hand, rather poor agreement between scintillation and batch data was obtained. This is

evident from Fig. 6 in which the 3.0% NaC1 scintillation data from Fig. 5 and 2.1% NaCI

scintillation data are compared with a few corresponding solubility data obtained by the batch

method. For tetragonal lysozyme crystals the "batch solubility" at 2.5% and 3.0% NaC1

exceeds that obtained by scintillation significantly; although both techniques reflect a

decrease in solubility with increasing salt concentration. The batch data for orthorhombic

lysozyme will be discussed later.

There are several possibilities for the differences in solubility values obtained from the

two methods. One must remember that the batch experiments required up to 10 months

before the concentration of the unstirred solutions, as determined by UV absorption, acquired

some steady value. During such a long time it is difficult to maintain constant temperatures

(power failures?), avoid bacterial contaminations, and evaporation from the test tubes.

Conversely each solution placed in the scintillation cell was freshly prepared, the temperature

was monitored during the entire experiment with 0.1 °C resolution, and the absorbance

measurements were carried out with a spectrophotometer which is calibrated prior to each

measurement.
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However, the batchexperimentsshedconsiderablelight on the natureof the apparent

solubility maximum for lysozyme found earlier [3]. The data shown in Figs. 7-10 show

unambiguouslythat the solubility for orthorhombiclysozymecrystals,which aremore stable
than tetragonalcrystals at higher temperatures,is considerablyless than that for tetragonal

lysozyme solubility at all temperaturesand salt concentrationsinvestigated. Solutionswith
salt concentrations above 3.0% more often produced tetragonal crystals rather than

orthorhombic crystals. Very interestingly, in several of the solutions, tetragonal crystals

formed f'trst,but later the crystalsconvertedto theorthorhombic form. Solutions with both

forms presentdisplayedagain the "retrograde"solubility rangeabove24°C observedearlier

[3]. This can now be understoodin terms of a superpositionof the different solubilities,

where the specific (declining value) of the solubility found is subject to the equilibration
kineticsof thetwo forms.

The lysozyme solubility dataobtained for the tetragonalform with the scintillation

technique are summarized in Fig. 11. Since the technique requires a decrease in

temperaturesbetween0° to 10°C to induce lysozymenucleationwithin a short time (one to
threehours)the formationof tetragonalratherthanorthorhombiccrystalsis muchmore likely.

Solubility curveswereobtainedusingthe scintillation techniquefor lysozymeat 2.1%,2.5%,

and 3.0% NaCI. All lysozyme solubility curves resulting from the scintillation method
resembleeachother in shapeandslope,with the solubility clearly decreasingwith increasing

salt concentration.

In summary,we feel that the scintillation technique,which readily yields considerably
less scattereddata on much smaller volumes than the batch technique [3] and which is in

good agreementwith the microcolumntechnique[5], canbe consideredas a mature method
for determinations of temperature-dependent(protein) solubilities. Further efforts will
concentrateon aminiaturizationof the techniquein orderto facilitate its application to protein

solutionsthat, for economicreasons,permit only small solutionvolumes.

2.4 Canavalin solubilities

2.4.1 Solution preparation

Canavalin was isolated from Jack Bean meal (Sigma J-0125, Lot 37F-3720) using the

isolation procedure of Smith et al. [1]. Canavalin was also received from Prof. McPherson,

University of California at Riverside. Isoelectric focusing (IEF) polyacrylamide gel

electrophoresis (PAGE) was utilized to follow the isolation steps and to determine the

number of constituents in the final canavalin solutions. The gels illustrated the presence of

subsequently fewer components in the solutions after each successive isolation step. The

canavalin from McPherson was also subjected to IEF/PAGE and compared to the canavalin

isolated in our laboratory. Samples from both isolations migrated to the same relevant
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position on the gel. Clear bands were not obtained, however, as each sample demonstrated

"spreading." This spreading could be due to the conditions under which the gel was run or to

the presence of other proteins. All canavalin was stored at -20°C.

For our solubility studies with the batch technique, solutions were prepared as

follows. The frozen material was thawed at room temperature and centrifuged to remove

excess liquid. The crystalline material was then "washed" with filtered, deionized water

(canavalin is insoluble in water) and centrifuged again. To dissolve the canavalin pellet,

0.05M phosphate buffer, pH 8.0, 1.33% NaC1, 0.01% NaN3 was added. After centrifugation

the canavalin supernatant was removed and the pH was determined with pH paper to be 5.5

to 6.0. (These experiments were performed before acquisition of a pH micro-electrode). A

stock solution of NaC1 in 0.05M phosphate buffer, pH 6.1, 0.01% NaN3 was prepared.

Triplicate sets of canavalin solutions containing NaCI concentrations of 0.5%, 0.75%, 1.0%,

2.0%, 5.0%, 10.0%, 15.0%, and 20.0% were prepared in small, 2 ml glass vials with screw

tops. The initial pH of all solutions was 5.5-6.0.

2.4.2 Canavalin solubility data

We first attempted to use Pusey and Gernert's "two-column micro-solubility method"

[5] to study the solubility of canavalin. However, we encountered problems such as

pronounced bacterial contamination and crystal degradation. Since canavalin was initially

believed to have strong temperature-dependent solubility, we also tried to use the

scintillation technique to develop a solubility diagram. Again, this approach was continuously

plagued by problems. The nucleation/dissolution response was so slow that, even with

seeding, a typical canavalin experiment required from 3-5 days to complete. A typical, poor

response of a canavalin solution in the scintillation cell is shown in Fig. 12. Although

crystallites were present, the scattered light intensity was low, with the maximum

photodiode signal received being typically only 15% of the photodiode saturation limit. This

can be seen from Fig. 12 in comparison with the corresponding Figs. 2-4 for lysozyme.

Furthermore, upon microscopic observation of the crystallites, bacterial contamination was

observed. Due to these problems, the study of canavalin solubility using the scintillation

technique was aborted.

However, interesting results on the canavalin solubility were obtained with the batch

technique. A set of solutions was prepared as described above and stored at 4°C, 10°C, and

20°C. At two week intervals the canavalin concentration was determined using UV

absorption (el%, 280 nm=6.8), and the pH of all solutions was measured with an Orion SA 520

meter and a pH microelectrode. After eight weeks, the solutions seemed to have

equilibrated. At all temperatures crystals were present at 0.5%, 0.75%, and 1.0% NaC1; in

2.0% NaCI solutions crystals formed only at 4°C. The solutions with NaC1 concentrations
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greaterthan 2.0% contained no crystals. The crystals were flat and rectangular,unlike the
rhombohedralsthat we expectedbasedon reported crystallization conditions [4,7,8] We

found that, as observedearlier [7,8], in the solutions where crystals formed, the pH had

significantly increased(seeTable 1), althoughthe solutionswere buffered at an initial pH of

5.5. Though it hasbeen suggestedthat upon crystallization, hydrogen ions are incorporated

into the crystal [4], theexactmechanismfor this pH increaseis not understoodasyet.

Table 1: Final pH values of canavalin solutions that were initially buffered to pH=5.5-6

7

%NaC1 4°C 10 °C 20°C

0.5 6.60 6.57 6.50

0.75 6.52 6.50 6.43

1 6.49 6.45 6.39

2 6.39 6.34 6.29

5 6.16 6.14 6.12

10 5.95 5.92 5.92

15 5.79 5.76 5.74

20 5.66 5.64 5.63

Bold numbers indicate presence of crystals

Figures 13 and 14 summarize the data obtained in this first series of experiments for

the dependence of the canavalin equilibrium solubility on temperature and NaC1 concentration,

respectively. One sees that canavalin has a "normal" temperature dependence of its

solubility. The solubility values are somewhat higher than those reported by DeMattei and

Feigelson [4]. Three possible reasons may be: the solutions had not thoroughly equilibrated;

this crystal form of canavalin has higher solubility than the expected rhombohedral form;

contaminating proteins from the lengthy isolation procedure may have been present. Note

from Fig. 14 that the canavalin solubility increases with an increase in NaCI concentration.

This trend is opposite to that of lysozyme.

A second group of batch experiments was conducted with several parameters chosen

differently. A different batch of canavalin was used (obtained from McPherson), ammonium

hydroxide was used to initially dissolve the material, and the initial pH was adjusted with

acetic acid to 6.5. The NaC1 concentrations in these experiments were 0.5%, 0.75%, 1.0%,

2.0%, and 5.0%. Solutions were stored at 10°C and 20°C. Crystals formed in all solutions at



10°C within 24 hours. Also, in the 0.5% and0.75% NaC1solutionscrystals formed at 20°C

within 24 hours. The crystals at 10°C initially appearedto be the sameflat, rectangular

crystals as observed in the previous experiment; but at the end of the experiment, only
rhombohedralcrystalswereobservedin thesevials. The crystalsgrown at 20°C were clearly

rhombohedral. The solubility datafor the 10°C samplesaredisplayedin Fig. 15. The 20°C

experimentswere aborteddue to bath failure. Note that the solubilities obtained from this
batchwith higher pH valuesaremuch lower than found in the first set of experiments. This

might indicate a different crystal form of canavalin; however, confh'mation by x-ray diffraction

analysis is needed. After five weeks the pH of all solutions at 10°C in this second batch

experiment was measured. Again, we observed an increase from the initial pH in those

solutions that contained crystals to as high as 6.94 even though the solutions were buffered

at pH=6.5 !

In summary, our studies have corroborated the complexity of earlier, preliminary

canavalin solubility findings, which revealed some trends in temperature, pH and salt

concentration dependence [4]. Unfortunately, canavalin has proven to be a very difficult

protein with which to work. Each batch of canavalin seems to behave differently with respect

to the resulting crystal form grown, time required to grow crystals, etc.. Hence, it has been

difficult to obtain reproducible results. Also, it appears that the solubility depends much more

strongly on pH than on temperature (as observed in general crystallization experiments with

the protein and from the solubility studies). We therefore conclude, that canavalin seems to

be an inappropriate candidate for crystallization via temperature control.

Scintillation method results on the retrograde solubility of equine serum albumin will be

presented in the Final Report for NASA Grant NAG8-824.
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3. Thermostated Solution Cell with Growth Sting

3.1 Experimental setup

A small thermostated glass cell with growth sting was designed to utilize the

temperature dependence of protein solubility. As depicted in Fig. 16, the flow-through jacket

of the cell is formed by an outer wall and a concentric solution chamber. The common bottom

is attached to a thermostated (cold) finger or sting. After loading with around 0.7ml of

solution, the cell is sealed with silicon high vacuum grease and a cover glass. The interior of

the solution chamber and surface of the sting is observed with a long focal length microscope.

The temperatures of the jacket and the sting are controlled separately through liquid flows

from constant temperature baths. Thus a radial temperature gradient can be established on

the sting, and, consequently, the initial nucleation on sufficient supersaturation of the solution

can be restricted to the central region of the sting. Appropriate temperature programming
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permitsone to prevent further nucleationonce crystallites haveformed, and even to reduce
the numberof crystallitesin order to preventintergrowth.

3.2 Growth experiments

The growth cell has been tested with lysozyme, canavalin and equine serum albumin.

Canavalin was found to be not well suited for temperature control of nucleation and growth,

since its temperature dependence of the solubility is not that strong enough; see Section

2.4.2. For ESA it has been difficult to control the nucleation without solubility data, which

were not available at that point. We will perform further ESA sting growth experiments

whence a solubility diagram is developed (under Grant NAG8-824). With lysozyme we have

been able to demonstrate all expected benefits of this growth technique.

The lysozyme solutions used in the growth sting experiments were prepared as

outlined in Sect. 2.3.1. In the following we will describe a typical nucleation and growth

experiment. A 50 mg/ml lysozyme solution with 2.25% NaC1, 0.05M acetate buffer, pH 4.5,

0.01% NaN3 was placed into the growth chamber. Note that according to Fig. 11, such a

solution composition corresponds to an equilibrium (saturation) temperature of about 30°C.

After covering and sealing the cell, TS and Tj were lowered to about 15°C. Within 12 - 24

hours at this temperature, as shown in Fig. 17, numerous crystals formed in the growth

chamber. Then TS and Tj were slowly ramped to 35°C and 40°C, respectively, which caused

most crystals to dissolve except for a few on the central part of the sting; see Fig. 18. TS

and Tj were then decreased to 20°C and 25°C, respectively, where the remaining crystals

grew. Lysozyme crystals up to 1.3 mm size were thus grown in the sting cell. Note that in

most recent experiments with this arrangement, we have succeeded to nucleate and grow

only 1-3 crystals at one time; details will be given in the Final Report for Grant NAG8-824.

The growth rate of two crystals was monitored at 20°C. After 1.2 hours both crystals

were growing at a rate of 0.0094 × 0.018 mm/hour. After 5.5 hours the growth rate of both

crystals had decreased to 0.0074 × 0.0099 mm/hour. At this time the crystal sizes were

0.149 × 0.128 mm and 0.128 × 0.128 mm.

In addition to demonstrating the feasibility of nucleation and growth control we have

obtained interesting qualitative insight from lysozyme experiments in the growth chamber. It

was observed that, after repeated nucleation/dissolution during an experiment, "ghosts" of

dissolved lysozyme crystals were present on the surface of the sting. These "ghosts" were

believed to be denatured protein resulting from the temperature ramping. Furthermore,

depending on the degree of supersaturation at which nucleation occurred, the tetragonal

crystals that formed and grew had different aspect ratios. Figures 19 and 20 show crystals

that nucleated at 10°C and 18°C and grew at 20°C from lysozyme solutions of the same initial

concentration, salt, pH, and buffer conditions. Furthermore, we found, as expected, that fewer
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crystallites formed if nucleation was induced at lower supersaturation. Though these
considerationsarecommonplacein inorganic crystallization, it is comforting to seethe same

physiochemicalprinciplesunderlyingproteincrystal growth.

4. Microscopic Growth Kinetics Studies

4.1 Microscopic growth cell

After the construction and testing of a prototype microscopically accessible growth cell

for kinetics studies (described in earlier progress reports), it became clear that a novel design

was required to fully utilize the high resolution provided by state-of-the-art microscopy. The

preliminary microscopy studies showed that reflection microscopy will not reveal feature

sizes of the small dimensions desirable for definitive kinetics studies, probably due to a too

small difference in refractive index between lysozyme crystals and solutions. Hence, we

purchased from Alabama State funds a Leitz illumination condenser with Wollaston prism

and lenses for transmission interference microscopy. This technique, however, requires the

positioning of the (crystal-solution) interface to be observed to within 2 mm of the edge of the

condenser head. With the prototype design this distance could not be made shorter than

about 30mm.

Figure 21 presents a cross-sectional drawing of the novel microscopic growth cell

developed in our group. A liquid bridge of 25ktl of protein solution is suspended between two

0.19mm thick cover glasses which are held about 1.0mm apart by a brass cell holder.

Attached to the cell holder are 4 thermoelectric (Peltier) heat pumps connected in series to a

Marlow model 5010 temperature controller/power supply. A bead thermistor placed in a bore

of the cell- holder monitors the temperature. The outer sides of the Peltier units are in contact

with a water cooled tilt ring that acts, respectively, as heat sink or source in the cell cooling

or heating mode. With this arrangement, the temperature of the cell holder can be

programmed between 4°C and 50°C with a stability of :t0. I°C.

Note that besides providing a reasonably stable heat sink/source, the water cooled tilt

ring is suspended via a gimbal arrangement within the turntable ring. The tilt axis can be

chosen by rotating the ball spacer ring. This, in turn, repositions the two oppositely placed

ball bearings that are precisely fitted into the grooves of the turntable and the tilt ring.

Consequently, the cell holder can be rotated or tilted until a crystal face of interest is aligned

normal with respect to the optical axis of the microscope. These features are critical in finding

the crystal positioning which is necessary to produce interference fringes on a given crystal

surface.



4.2 Image storage and processing system

During an in-situ growth kinetics study, there are numerous morphological features

(growth steps, spatially varying shifts of interference fringes, etc.) to be observed

simultaneously. The rate with which such features change significantly often exceeds the

frequency with which films can be replaced, say, in a Polaroid film holder. In addition, during

interferometric observations (with the microscope on a vibration isolation table) such film

changes, or camera motor-induced vibrations would jeopardize the image quality. Hence, it

was decided to design and acquire a magnetic image storage system with continuous

recording capability, combined with an image processing system that allows for post-

experiment image enhancement required for full resolution utilization of the interferometric

studies. In preliminary tests it became clear that the limited resolution of about 400x400

pixels of commercial systems available at the beginning of this grant would be insufficient to

store images with a resolution comparable to that of our Leitz research microscope.

Therefore we have designed, with help from the TECON corporation, a new system from

components with 1024x1024 lines of resolution. This image storage and processing system

consists of:

Dage MTI Precision 81 high resolution TV camera with Pasecon video tube

Dage HR-2000 monitor

- Grundig BK224 high resolution video recorder

- Compaq Deskpro 286 personal computer with 640k RAM, 40 Mb hard drive, two

1.2 Mb 5 1/4" floppy drives, Compaq VGA high resolution monitor and high

resolution Logitech mouse

- Univision UDC 2600-12M display board

- TECON DVX 1024 frame grabber

- Image-Pro II software (IP2UDC)

- Customized software for freeze frame video to capture high resolution 10242 images.
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Figure 22 shows a flow chart of the image storage and processing system. In short,

the system allows for real time video recording of the microscopic images that can be recalled

in their analog form for the identification of crucial events and for rate determinations of

feature changes. Select images are then saved in digital form in the host computer for image

analysis and processing. Features of the Image-Pro software enable us to perform, among

other things, pixel-by-pixel intensity histogram analyses (256 grey scales), line distance and

angle measurements, spatial frequency filtering as well as contrast changes through

stretching and sliding of intensity distributions.



The power of this systembecameapparent, for instance, when featureswhich are

barely discernable through the microscopeeye pieces, becomeclearly visible when 'seen'

through the eye of the camera,even without significant image enhancement,often only

through contrast changeson the TV monitor. These featurescan, of course, be further
enhancedasindicatedabove.

In addition to the featuresof this system, newly acquired interferogram analysis
software (NASA Grant NAG8-790) is available for the analysis of interferograms. The

ZAPP-PC software digitizes the fringe pattern and performs analysesof interferograms,

including fitting to Zernike polynomials and removal of aberrationsfrom the data. This
advancedgraphicscapability allows interactivescreendisplaysof 3-D phaseplots, x-, y-, and

radial profiles, andcontourplots.

4.3 Preliminary results

Utilizing the lysozyme solubility information gained with the scintillation cell (Sect.

2.3.2), we have begun to investigate the growth and dissolution of lysozyme crystals in the

microscopic growth cell. The solutions studied thus far have all contained about 50 mg/ml

lysozyme, 2.5% NaCI and have been buffered to a pH of 4.5 via a 0.05 M sodium acetate

buffer; for preparation see Sect. 2.3.1. In several experiments we have been able to obtain

only one or two faceted lysozyme crystals at one time in the growth cell. The temperatures

and induction times for the nucleation of these crystals have been reproducible. Also, the

solubility curves were found quite reliable for the prediction of the temperatures at which

growth and dissolution will proceed on existing crystals. For example, a lysozyme crystal

that in agreement with Fig. 11 showed hardly any feature changes at 32°C, began clearly to

etch at 33°C and to regrow at 31°C. This nicely corroborates the solubility data obtained with

the scintillation technique.

We found that growth temperature changes of 2°C lead to pronounced ghost images

(outlines of the crystal surface prior to the temperature change) in the crystal. But our most

recent experiments seem to indicate that even significantly smaller temperature changes can

cause some "veiling" of lysozyme crystals. Such ghosts and veils, in analogy to observations

from inorganic solution crystal growth, possibly indicate some irregular incorporation of

solution. It should be noted that the finer veils cannot be detected with reflected light

microscopy and are only discernable in the differential interference transmission mode with

very careful focusing and viewing with the high resolution camera and monitor. Thus, we

suspect that such fine veiling remained unnoticed in most protein crystal growth experiments

to-date. The consequences for x-ray diffraction resolution of veiling, which will certainly lead

to a reduction of the lattice regularity, remains to be investigated.

12



5. Growth Experiments in Thermosyphon Flow

Pusey et al. [9] showed that forced convective flow over tetragonal lysozyme single

crystals caused a reduction in growth rate. These experiments were conducted with crystals

mounted on walls of flow-through chambers. We wanted to investigate the interaction of flow

with growth behavior in a configuration in which the crystal is more freely exposed to the

flow, than in the vicinity of a wall in which the flow is difficult to quantify on the small scale

involved. Consequently, under a small NASA Grant (NAS8-098) we began growth

experiments with lysozyme in which the crystals were freely suspended in a flow. These

experiments were completed under this grant and are summarized in the following two

Sections.

5.1 Thermosyphon technique

A schematic of the thermosyphon loop is shown in Fig. 23. A cooling jacket keeps the

right side of the loop at some lower temperature while the left side is heated. Solution

circulation is induced by bouancy that results from the density difference in this temperature

differential. The lower part of the loop is insulated so that the solution temperature at the

location of the suspended crystal is essentially the same as that at the bottom of the cooled

section. The temperature difference is chosen such that (i) the flow velocity is high enough to

compensate for the settling velocity of the crystal, which remains freely suspended and (ii)

sufficient supersaturation is obtained at the suspended crystal to drive its growth. Note that

the lower bend and the section entering the expansion chamber are made of smaller cross

section tubing. This causes a locally higher velocity to aid the suspension of crystals in the

expansion chamber. For details of the heat transfer to the solution, calculation of resulting

velocities and suspension forces, as well as the procedures leading to in-situ nucleation and

growth see [10,11, see attachments].

5.2 Results with iysozyme

A series of experiments were aimed at growing tetragonai lysozyme in the

thermosyphon flow. Nucleation occurred as expected and crystallites were trapped in the

expansion chamber [10]. Surprisingly, though, the crystal sizes did not exceed 0.1mm

irrespective of suspension time in the supersaturated solution, even under supersaturation

conditions high enough to cause continuous nucleation. Microscopic examination revealed

that the crystals lacked well defined facets. Also, seeds of 0.1mm and larger sizes,

introduced through the upper port showed no growth. However, tetragonal lysozyme crystals

that had reached their terminal size in the thermosyphon showed uninhibited growth upon

transfer to stagnant control solutions.

Similar experiments were performed under conditions favorable for the growth of

orthorhombie lysozyme; see Sect. 2.3.2. In contrast to the results obtained with the

13



14

tetragonalform therewas no cessationof growth and crystals (nucleatedin-situ as well as

seeded)grew to their suspensionlimit.

At this point there is no clear explanationof theseobservations. The cessationof
growth of the tetragonal form may be either due to some mechanical aspects of the

suspendingshearflow, althoughrecentmodelcalculationsby Grant and Saville [12] suggest

that the torquesexertedby such flows on protein moleculeson the crystal surfaceare small

ascomparedto bondstrength. On the otherhand,dueto thethermalcycling of the solution in

the thermosyphon,theremay be somekinetic reasonsfor thecessation[10].

In addition to these important results, these experimentsalso gave some insight

essentialfor the developmentof successfulseedingtechniques.We found, for instance,that

if a tetragonal lysozyme seedexperiencesa temperaturechangeof several degreesduring

transfer to a supersaturatedsolution, it will not grow thereafter. Furthermore, when the
solution a seedwas transferedto differed in salt concentrationby 0.003 gm/ml, no growth

occurred. Hence, before seed transfer, special measures had to be taken to assure

equilibrationof theseedto the saltconcentrationof thesolution to be seeded[10].

6. Mathematical Model for Concentration Distribution in Hanging Drop at Low Gravity

To estimate the concentration gradients that may arise in the vapor diffusion technique

at the surface of hanging drops in the absence of convective flows, we have performed model

calculations lysozyme-NaC1 and myosin-NaC1 solutions [13, see attachments]. To make the

model as realistic as possible, the influence of the salt concentration on water vapor pressure

and, thus, on evaporation was taken into account. Also, vapor diffusion across an air gap was

included. Dimensions were chosen that are typical of protein growth practice. We found, as

illustrated by Fig. 24, that in the case of m_,osin, due to its low diffusivity, significant

gradients can arise in the drop. The steepening concentration (density) profiles depicted in

Fig. 24 may have significant implications for the possible development of convective

instabilities in the drop at low, but finite, gravity levels.

7. Summary

In this work we have shown that the temperature dependence of protein solubilities can

expediently and accurately be determined with a scintillation (light scattering) technique.

Solubility data can be advantageously used for the control of nucleation and growth of protein

crystals through temperature. Forced convective flows can be detrimental to protein crystal

growth. Under purely diffusive transport conditions, severe protein concentration gradients

can develop in the hanging drop evaporation technique.
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9. Figure Captions and Figures

Figure 1. Schematic of system for temperature controlled protein crystallization and

dissolution with detection of crystallites by optical scintillation.

Figure 2. Lysozyme dissolution with increasing temperature monitored by scintillation

signal. Lysozyme concentration 14 mg/ml, 2.5% NaCI, pH=4.5.

Figure 3. Lysozyme dissolution with increasing temperature monitored by scintillation

signal. Lysozyme concentration 48.1 mg/ml, 2.1% NaC1, pH=4.5.

Figure 4. Lysozyme dissolution with increasing temperature monitored by scintillation

signal. Lysozyme concentration 12 mg/ml, 2.5% NaC1, pH=4.5.

Figure 5. Comparison of lysozyme solubility data obtained with scintillation method (this

work) and packed microcolumn method ([6], for method see [5]).

Figure 6. Comparison of lysozyme solubility data obtained with scintillation and batch

methods (this work).
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Figure 7. Solubility versus salt concentration for tetragonal and orthorhombic lysozyme,

obtained with batch method at 26°C.

Figure 8. Solubility versus salt concentration for tetragonal and orthorhombic lysozyme,

obtained with batch method at 28°C.

Figure 9. Solubility versus salt concentration for tetragonal and orthorhombic lysozyme,

obtained with batch method at 30°C.

Figure 10. Solubility versus temperature for tetragonal and orthorhombic lysozyme obtained

with the batch method. Note the lower solubility of the orthorhombic form at

both salt concentrations.

Figure 11. Solubility of tetragonal lysozyme versus temperature, scintillation method.
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Figure 12. Canavalin dissolution with increasing temperature monitored by scintillation signal.

Canavalin concentration 8.67 mg/ml, 0.77% NaC1, pH=7.2.

Figure 13. Canavalin solubility versus temperature at various salt concentrations; batch

method.

Figure 14. Canavalin solubility versus salt concentration at various temperatures; batch

method. Values indicate f'mal pH; initial pH 5.5 - 6.0.

Figure 15. Canavalin solubility versus salt concentration at 10°C, batch method. Values

indicate final pH; initial pH 6.5.

Figure 16. Schematic of thermostated cell with growth sting.

Figure 17. View of bottom of growth chamber of the thermostated cell. Lyzozyme crystaUites

nucleated over entire surface of the growth cell from a 50 mg/ml solution.

Nucleation and growth at 15°C. The inner circle outlines the boundary of the cold

sting.

Figure 18. Crystallites of Fig. 17 reduced by dissolution at sting temperature 35°C and jacket

temperature 40°C. For details see text.

Figure 19. Tetragonal lysozyme crystals, nucleated at 10°C, growth at 20°C.

Figure 20. Tetragonal lysozyme crystals, nucleated at 18°C, growth at 20°C.

Figure 21. Temperature controlled crystallization cell for in-situ microscopy with reflected and

transmitted light.

Figure 22. Flowchart of image processing system.

Figure 23. Thermosyphon crystal growth apparatus.

Figure 24. Calculated concentration profiles for lysozyme and myosin in hanging drop at three

times after beginning of water evaporation; for details see [ 13].
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Two diffusive solution c_stal growth models are considered in v, hich transport is governed b', small parameters. The first is a

simple model describing precipitant-driven solution crystal growth; the second describes a hanging drop evaporation configuration

used for protetn c_,stallization. Both cc, ntain components with widely diffenng diffustvittes, the ratio being ¢. I-he second _,stem also

has a small density ratto 0 between the two contacting.phases. Asymptotic scaling methods are used to show that in the first problem.

the precipitant concentration remains uniform to O{v'c ), while in the second, the drop concentrations remain uniform to O_'P/V'_-) if

p "*:v_- and the vapor concentrations remain uniform to O_v"_/p) if _/_ << p. The latter result implies that the drop will remain

effectively well rmxed when p << v¢, but that sharp gradients will develop in the drop when v'_ << O- An example ts _en to indicate

that for certain proteins, sharp concentration gradients may develop in the drop dunng evaporation, while under the same conditions,

the concentrations of other protetns remain uniform.

I. Introduction

Small parameters play important roles in many

physical systems, solution crystal growth processes

being no exception. Two such situations often

occurring in protein crystallization are considered
here. The first model describes precipitant-driven

solution crystal growth, and the second describes a

hanging drop evaporation problem. Both models

have several features in common: (1) two phases

separated by an interface (a free boundary), (2) no

convective mixing in either phase, and (3) diffu-

sion components with widely differing diffusivi-

ties. (The lack of convective mixing implies that
the models are formulated for low gravity condi-

tions.) In addition, in the second model the ratio

of the density of the contacting phases is small.
We will show that the ratio of the diffusivities and

that of the densities are the small parameters

which are critical in determining the concentration

profiles and the interface velocity.

The first model is a simple, one-dimensional

model of the growth of a pure crystal from a

liquid phase containing both the solute (protein)

and a salt (precipitant) in a solvent (see fig. la).

The interface separating the solid and liquid phases

is assumed to be planar, and the initial concentra-

tions in the liquid phase are assumed to be spa-
cially uniform. Although this model is very simple.

it does exhibit several interesting phenomena

which have implications for solute crystal growth

processes in general.

The second model describes a hemispherical

drop containing solute (protein) and solvent

(water) suspended over a hemispherical desiccant

well (see fig. lb). The initial concentration of

protein in the drop (again assumed uniform) is

such that water evaporates from the drop and is
absorbed by the well.

Let ¢ be the small ratio of the diffusivities in

each of these problems (protein to precipitant for

the first, protein in the drop to vapor in the gap

0022-0248/89/$03.50 _ Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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Fig. l, Defining sketches for problems treated: (a) precip=tant-

driven solution growth: (b) hanging drop cr_,stallizatic, n tech-

nique. Drop: '._ater and protein: _apor gap: water vapor in air.

convection, while for others a sharp gradient may

develop in the protein concentration of the drop if
no convection is assumed.

Mathematically, these two models are particu-
lar cases of a class of problems known as Stefan

problems [1,2]. (The mass conservation interface

conditions given below are often referred to as

Stefan conditions.) They are also related to allo'_

solidification problems (ref. [1], pp. 14-16) and to
models of solid diffusion where _ is the small solid

diffusivity (cf. refs. [3,4] and their references).

In sections 2 and 3, respectively, models for the

protein-precipitant problem and the hanging drop
problem are examined mathematically. In both

cases numerical examples are given to illustrate
the results.

2. A simple model for precipitant-driven, diffusion-

controlled cr3'stal growth

for the second). Let p be the ratio of the density
of the damp air in the gap to the density of the

drop. It will be shown that:

(a) there is a concentration boundary layer with
thickness O(¢_) at the interface in the concentra-

tion profile of the less diffusive component (this is
a well-known result):

(b) in the first model, the interface velocity is

O(v_); in the second, this velocity is either Oiv_-)

or O(p) depending on the relative size of the two

parameters;

(c) in the first model, the change in precipitant
concentration from its initial value is O(v_); in the

second, for ,/7 << p. the change in vapor con-

centration from its initial value is O(¢_/p), while
for v_->> p, the change in protein concentration

from its initial value is O(p/v_).

Result (c) has several important physical conse-

quences. For the first problem, it implies that the
precipitant concentration will remain uniform and

that the protein concentration will adjust to satisfy

the interface conditions. For the second problem,
since there are proteins for which v_< O and
others for which v_ > p, result (c) indicates that

for some proteins the hanging drop will remain

effectively well mixed, even in the absence of

_'(l -p) =_p,,

--L!t_ = tt,.,

F(n, p, T)=O,

Consider the following one-dimensional, semi-

infinite system of differential equations (p =

p(x, t), n=nlx, t). c =t,_(t), and subscripts de-
note partial derivatives):

0<x< _e, t>O, (la)

0<x< _c, t>0, (lb)

x=0, t>O, {lc)

x=0. t>0. (ld)

x=0, t>0, (le)

p(x.O)=p._, 0<x< _c, (If)

n(x, 0)= n.,=, 0<x< zc. (lg)

This system can be viewed as a simple model

for precipitant-driven protein c_stal growth from

a liquid phase (fig. la) for the initial time period
when the liquid can be considered semi-infinite.

Let p(x, t) be the concentration of protein and

let n(x, t) be the concentration of precipitant in
the liquid which at time t = 0 is placed in contact

with a solid protein. Both concentrations are mea-

sured in mole fractions. The solid-liquid interface

is assumed planar, and the reference frame moves
with the interface (i.e., the location of the interface
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is always at x -- 0). Recall that _ is the ratio of the

protein diffusivity to the precipitant diffusivity.
Typically for protein-precipitant problems 10 -3

< c < 10- _, Finally the temperature T is a known

constant or function of time, and v(t) is the

velocity of the moving interface.

The two equations, (la) and (lb), for the liquid

phase represent simple Fickian diffusion in the

moving reference frame. The first two interface
conditions, (Ic) and (Id), ensure mass conserva-

tion of protein and precipitant across the inter-
face, while the third condition, (le). relates the

protein and precipitant concentrations which are

in equilibrium in the solvent at the temperature T.

Finally p_ and n_: are constants giving the uni-

form initial concentrations of protein and pre-
cipitant in the liquid phase.

In this model, p(x, t), n(x. t) and t'{t) are the

a priori unknown functions to be determined by

the system (1). Though it is not possible to ex-

plicitly solve for these functions when temperature

varies with time, it is possible to analyze the

system to determine how they depend on the

parameter e. The main tool in the analysis of

system (1) is the method of dominant balance, As
its name implies, this method determines the

qualitative characteristics of the solution of a sys-

tem of differential equations by determining the
dominant (i.e.. largest, most important) terms in

the system, then balancing these terms while

ignoring the smaller, less important terms (cf. ref.

[5], p. 83ff). Here dominant balance will be used

to elirmnate the parameter _ from (1) and thereby
establish the conclusions mentioned in the intro-

ductory section.

Consider first the differential equation for the

protein in the liquid, and define a new spacial
variable X =x/_q One wishes to choose r to

balance the terms in this equation with respect to

their dependence on _. In finding this balance, one

is finding the natural length scale for this equa-
tion. In terms of X, (la) becomes

p, = (l- :rpv x + vc-'p_,, (2)

Near the interface the appropriate scaling will be

given by either r = 1/2 or r = 1 depending on

whether the motion of the interface is governed by

diffusion or by some other driving force. When
r = 1. eq. (2) becomes

1 v

P,= _P_x + 7Pv.

This value of r gives the finest scaling and ts

appropriate for rapid growth, i.e., provided the

velocity is O(_ °) (large compared to (). With

r = 1/2, however, eq. (2) becomes

U

P, =Pv_ + _-P _.

This is the appropriate scaling for diffusion con-
trolled growth where v = O(v:_ ). Here all terms are
O( d _).

To determine whether the growth is rapid or
diffusion controlled, one must anal',ze the inter-

face conditions, (lc), (ld) and (le). Consider first

the limit in which there is no protein diffusion.
i.e.. _ --, 0. The interface conditions are then

c(1-p)=0, -vn=n,, F(n, p, T)=O.

Direct substitution confirms that this s_stem has a

unique solution: c(t)=0, n(x. t)-n,=, and
p(0, t)chosen so that F(n_, p(O. t), T)=0. Note

that neglecting the protein diffusivity leads to a

discontinuity in the protein profile: p(0, t l is

determined by F while p(x, t)=p_ for x>0
from the initial condition (113.

The above solution implies that in the absence
of diffusion, the interface does not move: there

are no other forces driving the interface in this

model. Therefore the appropriate scaling for this
model near the interface is the coarser r-= l/2

scaling. Rewriting the original interface conditions

in terms of this scaling, one finds

c(1 -p) = vTp_,

_,(-n) =n,,

F(n, p, r)=O.

(3at

(3b)

(3c)

Since 1 -p is O(c °) (i.e.. large with respect to _),
eq. (3a) is consistent with c = 0(¢7). But consid-

ering (3b), v = O(v'_-) implies that n, = O(¢_-). That

is to say, the gradient in the precipitant profile is
shallow near the interface, Together with (lb) and

the initial condition n(x, 0)=n,, this shallow
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N(T2) N(T,)
PRECIPITANT CONCENTRATION

Fig. 2. LiRear equilibrium (solubility) relatio_ for two temper-

atures. P{ T _ a_l 3,'1T ) ace defined in the text.

lp'adicnt implies that In(x, t) - n_ I = 0(_ ) for

all (x, t).

This last point also has an interesting implica-

tion regarding how the interface concentrations

change with temperature. Since the interface con-

centrations are required to be in equilibrium (i.e.,

lie on the coexistence line of the phase diagram),
and since [n(x. t) - n_: [ = O(v'_-), the interface

protein concentration must adjust to changes in

temperature (see fig. 2).

We have generated numerical plots of protein

and precipitant concentrations for two proteins,

myosin and lysozyme. These particular proteins

were chosen because their diffusivities (D,,,, = 1.1
x 10 -7 cm:/s and Dr, = 10.4 × 10 -7 cm'-/s [6])

represent opposite extremes for proteins typically
used in crystal growth experiments [7]. The pre-

cipitant used here is NaC1 (D,_a--1.6× 10 -5

cm-'/s). Because of the general lack of detailed

knowledge of the phase diagrams of most pro-

teins, a generic, linear solubility relation is used
for (le) in these examples. Realistic solubility rela-

tions (where available, see, e.g., ref. [8] for lyso-

zyme) show qualitatively the same parameter de-

pendence.

For these illustrations, assume that temperature

is given by (see fig. 3):

T(t)= (TO, O<t <t°'
[ro-_(t-to). t,,<_t.

The temperature is assumed constant for small

times to avoid numerical stiffness problems (see

below). Also assume a linear solubility relation

(see fig. 2):

p + n 1.
P(T) N(T)

where P(T) and N(T) are defined as

P(T) = K(1 + tan-1(2T)).

N(T) = (0.1)(1 + tan-l(3T)).

The constant K depends on th_ protein. Though

this solubility relation was chosen mainly for com-

putational convenience, it does yield typical pro-

tein and precipitant mole fractions and qualita-

tively does reflect the temperature d_.pe_

the solubility relation.

Fi_. 4 and 5 were 8_l_r'ated with an analytical-

numerical _cheme due to Small and Ghez [3].
Since the system (1) assumes rapid surface kinet-

ics, the interface velocity and the concentration

gradients are initially infinite. Therefore the sys-

tem is numerically stiff during the initial period.

Since the temperature is constant during this

period, however, (1) can be reduced to an ordinary

differential system in the variable _ = x/2vCt-. The

solution to this system, called a similarity solution.

can be used until time t = to. After this time. (1)

can be solved numerically: in this case an explicit
finite difference scheme is sufficient.

Fig. 4 shows the protein and precipitant pro-

files in the solution for lysozyme and NaCI (( =

6.5 x 10-'-) at several times, three at T,, and two

during the temperature ramping. The initial con-

centrations (in mole fractionst are p_ =0.0008

I--

ill
n-

i-
<
rr

o.
:E
L_
I--

To

tp

TIME t

Fig. 3. Temperature _nction used.
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Fig. 4. Calculated concentration profiles for tysozyme-NaCl

system at various times, c = 6.5 × t0--'. Inset table shows m-

slant growth ,,elocities corresponding to growth times given,

and n_ = 0.02, _ = 0.001, and for the temperature

profile E_ = 0, t0 = 5 days and ,x =0.1 day -_.

Note that the plot is in mass fractions so that the

protein and salt concentrations can be compared
on a convenient scale. The interface concentra-

tions do not change while the temperature is con-
stant, but the protein interface concentration

changes noticeably during the ramp. The sequence

of plots shows the development of a protein con-

centration boundary, layer in contrast to the small

changes in the precipitant concentration from its

initial value. The corresponding instantaneous in-

terface (growth) velocities are also given on the

figure. Note that these velocities are ten to one

hundred times slower than experimentally mea-

sured values [9]. This difference is due mainly to
the model assumption that the crystal is pure

protein. Real protein crystals incorporate water

during growth, and some contain as much as fifty

percent salt water by volume. Consequently the

mole fraction of protein in the crystal may be as

low as 0.001. Using this protein mole fraction

value for the crystal in (1), particularly (lc), would

increase the growth rate by up to three orders of

magnitude. To a lesser extent, the growth rate is

also affected by the presence of convection in the

laboratory experiments.

Fig. 5 shows five similar plots for mvosin and

NaCI (_ = 6.9 × 10-_). For this plot, p_ = 0.0004,

n_: = 0.02, x = 0.0002 and the temperature profile

parameters are the same as before. Note the de-

crease in interface velocity, the narrowing of the

boundary layer, and the relatively smaller change

in the precipitant concentration. To the authors"

knowledge, growth rates for myosin have not been

measured, but these are again slower than what

one would expect.

By way of comparison it is interesting to con-

sider a case where ¢ is large, say _ = 0,2 Inote that

the numerical computations do not require that

101

,OO I I Myosin C0ncenlrahons
*-, day
O

- 3 c_ays

_ 0.8

I s

_¢) 7 3 _lays

z
0

I-
0,6

I-- Time ldays} Velocdy [ctwsec]
Z
,_ L

I 15 X 10 "I(_

Z 3 88 x 10_
0 i 5 6Bx 10_1

fJ 0.4# 62 12 x 10''0
I- !
Z [ 73 t 4 x tO_°

E
O

,-, L

_1_ _ NaCl Concentrations

0.0_
0 1 2 3 4 5 6

DISTANCE FROM INTERFACE [cm]

Fig. 5. Calculated concentration profiles for myostn-NaCI

s vstem at various times, e = 6.9× 10-[ Inset table shov, s m-

slant growth velocities corresponding to growth umes given.
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Fig. 6. Calculated concentration profiles for s',stem with com-

parable diffusivities of solute and precipitant after r = 5 da_s.

( _ 0.2.

be small). Keep in mind that this value does not

correspond to a protein-precipitant system, but it

may occur in other solution growth processes. Fig.
6 shows p and n profiles for _ = 0.2 with NaCI as

the precipitant at t = 5 days using the simple

solubility relation p + n = l/2: note that the tem-

perature is now constant. A curve showing what

solute concentration, Peqn, would be in equi-
librium with n is included to indicate the super-

saturation in the liquid phase. Note that the pres-

ence of the precipitant decreases the magnitude of
the supersaturation away from the interface, as

compared to a solely temperature driven growth

process where Peqn is constant throughout. This
decrease has implications for the morphological

stability of the phase interface, viz.. the decreased

interface supersaturation gradient may give stabil-

ity to a planar interface that would be unstable in

the absence of the precipitant,

3. The hanging drop

The hanging drop problem (fig. lb) is mathe-

matically quite similar to the problem considered

in the previous section. The system of differential

equations derived for this problem is

.+.'=1.
r-

1
.=0. w,=:lr:w_),,

r-

c(w_-w - )

= I[ ( _4"r ) -- P( "_"r ) "

F(w', w-. T)=0,

u(r. O) = uo, 0 < r < s(0),

w( r, O) = w _q, s(0)<r<l,

u_(O. t)=0, t>0,

w(l, t)=w ¢'_, t<0.

14a)

s(t) <r< 1, (4b)

r =s(t), (4c)

r=;(t), (4d)

r =x(t), (4e)

(4f)

(4g)

(4h)

(4i)

Here u = u( r, t ) is the protein concentration, w =

w(r, t) is the water concentration (again in mole

fractions), and s = s(tl is the position of the inter-

face. The superscripts + and - denote litmts

taken from the positive and the negative sides of

the interface respectively. The center of the drop is

at r = 0: the edge of the desiccant well is at r = l.

The factor p is the ratio of the density of damp air

to that of the drop. The parameter _ is the ratio of

the diffusivitv of protein in the drop to the diffu-
sivity of vapor in the gap between the drop and
the well. Here the function F is obtained from the

coexistence curve that relates the concentrations

of water vapor and liquid water which are in

equilibrium at temperature T.
The model is reduced to being effectively one-

dimensional b', assurrung that the problem re-

mains radially symmetric for all time. As in the

previous model, the differential equations (4a) and

(4b) represent Fickian diffusion, but now in a

radial coordinate. That u(r, t) + wlr. t)-= 1 for

r < s(t) simply says that the drop contains only

protein and water: that u(r, t)-O for r>s(t)
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implies that there is no protein in the gap. Eqs.
(4c) and (4d) represent mass conservation across

the surface of the drop (for a careful derivation of

this type of condition, cf. ref. [3], p. 5324). Eq.

(4h) states that no water radially crosses the upper

boundary, at the center of the drop. Physically, this

is the poorest assumption since the vertical deriva-
tive rather than the radial derivative should be

zero. The more physically realistic assumption.

however, would break the radial symmetry, of the

system, and hence shall not be assumed here. Eq.

(4i) implies that the vapor concentration at the

surface of the well is always in equilibrium with
the well. Since the well is a perfect reservoir, this

equilibrium concentration w ¢" is constant in time.
Finally note that density changes in the vapor

phase can be neglected since the interface motion
is very slow relative to diffusion across the gap.

It should be particularly noted that this model

assumes that there is no convection in the drop.

This assumption is appropriate only for micro-

gravity environments and in the absence of surface

tension driven flow. A model where the drop is

assumed perfectly (convectively) mixed has been

given by Baird et al. [10].

Using u = 1 - w inside the drop, system (4) can
be written entirely in terms of the water con-

centration. Also the system can be transformed
into a reference frame which moves with the inter-

face by replacing r by z- r-s(t). Making these

substitutions and performing several algebraic

manipulations, one finds

w, = _1(:"_:): + cw.. -s(t)<z<O. (Sa)

I (czw:) +_,w., 0<.:<l-s(t). (5b)

_,tl-w-)=c(w:)-, :=0, (5c)

c'(l-w_)=p(w:) _', :=0, (5d)

F(w ÷, w-, T)=0, :=0, (5e)

w(z,O)=w o, -s(t)<:<O, (5f)

w(z,0)=w _q, O<z<l-s(t), (5g)

w.(0, t)=0. t>O, (5h)

w(1, t)=_ ,_ t>0. (5i)

System (5) is now much like system (1), and the

method of dominant balance is again applicable.

As before, when diffusion in the drop is ignored,
the interface conditions can be solved, viz., t,(t) =

O, w-(0, t)-w _q, and w" given implicitly by
F(w', w _q, T)= 0. Therefore diffusion inside the

drop is the force driving the motion of the inter-

face, and the entire system can be written using

the scaling Z = :/_. Interface conditions (5c)

and (5d) then become

L,(I-w-)= ¢_-('_ z)- (6a)

t,(1 -w_-)=p(w:) ". (6b)

From (6) it follows that the parameter depen-

dence of the interface velocity and the concentra-

tion profiles is determined by the relative sizes of
_ and 0. Suppose first that v_-<< 0. Then (6a)

implies that c = O(V(-), and (6b) implies (_,':) -=

O(u/O) = O(v_-/O). So in the gap t_(r. t)- w*4 I

= O(_/(-/0) (i.e.. the change in the vapor con-

centration is small) and the protein concentration

in the drop must adjust to satisfy the equilibrium
condition (5e). Now on the other hand, suppose

that p << v_'. Then (6b) implies that c= O(p), and

(6a) implies that (Wz)--O(p/v_). So in this

case the vapor concentration in the gap must

adjust to satisfy (5e).
To illustrate this result, consider the numerical

plots for lysozyme and a hypothetical, myosin-like

protein show in fig. 7. This example was brought

to the authors' attention by A. Nadarajah of our
Center. A similar example has also been discussed

by Grant [11]. The plots were made for system (5t

for large times assurrung a steady state concentra-

tion profile in the gap, using an explicit finite

difference scheme in the drop, and using a three

point difference scheme to evaluate the drop

gradient at the interface. The hypothetical protein

is assumed to have the diffusivitv of myosin, but
in other regards to be like [ysozyme. Hence the

equilibrium coexistence curve (5e) for both pro-

teins is that of lysozyme. For the concentration

range considered here at T--25 ° C. this curve is

given by

1 = 9.304w-- 265.66w_.
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Fig. 7. Calculated concentration profiles m hanging drop sys-

tem at three times: 0, 2.75 and 302 days. The dashed connect-

ing lines represent the positrons of the drop-vapor interface.

For lysozyme the ratio Q = 056, and the protein concentratton

remains uniform. For the m_osin-like protein, Q = 1.72. and a

sharp protein concentration gradient develops in the drop.

The curve was derived assuming the protein solu-

tion is ideal and using Raoult's Law [12]. For

lysozyme c = 4.00 x 10-6 (D,,,por - 0.26 cmZ/s
(HzO : air), Dr, = 10.4 x 10- cm-/s): for myosin

= 4.23 x 10-; ( D,,,, = 1.1 x 10-"cmZ/s). The gap

radius is 1.2 cm and the initial drop radius is 0.23

cm (hence the normalized initial interface position

is st0)= 0.19). The other parameter values for

both proteins are w 0 = 0.999968, w Cq= 0.0311.

and p=l.12xl0 -3 (p,_p,,r = 1.14x 10 -3 g/cm 3,

Oa_op= 1.02 g/cm 3 [13]). All of these are typical

values for protein hanging drop evaporation ex-

periments [71.
For convenience, define the dimensionless ratio

Q - p/_[g. This ratio measures the relative contri-
butions of the diffusivities and densities in de-

ternuning the qualitative shape of the concentra-

¢
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o
o

ffl
n,,

9
i-

n-

tion profiles. For Q << 1. p << V'_-. and the drop
concentrations are flat. For Q >> 1. o >> v'_. and

the vapor concentrations are flat. For proteins,
however, the range of Q-values straddles unity

(Q1, = 0.56, Q,,,, = 1.72). Hence one might expect
qualitatively different profiles for proteins at the

opposite ends of this range. Fig. 7 shows this to be

the case. The myosin-like protein profiles steepen.

while the lysozyme profiles remain relatively flat.

The vapor concentrations are flat for both pro-

teins for all times. After roughly 3.6 days both

drops equilibrate, i.e., due to the increased protein

concentration the water vapor pressure at the drop
surface is reduced to w _'_ of the well. ,_'hence

evaporation ceases and the protein concentrations

again become uniform.

In actual experiments, salt is a precipitating

agent for the protein in the drop, and since the

mole fraction of protein is negligible compared to
that of salt, the evaporation rate is controlled by
the salt concentration. However. for a fixed salt

concentration (since Q,,,=0.15. the salt con-

centration will remain uniform), the Q-vahie for a

protein still measures the steepness of its con-

centration gradient.

The steepening profiles illustrated in fig. 7 have

significant implications for the possible develop-

ment of convective instabilities in the drop. It

should be kept in mind. though, that since protein

Q-values are close to unity, physical effects not

considered in this model could substantially effect

the qualitative character of protein profiles in

laboratory experiments. One would expect the

profiles to be very sensitive to how the experiment
is performed.
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GROWTH OF PROTEIN CRYSTALS SUSPENDED IN A
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ABSTRACT

The quality of protein crystals often suffers from their growth at a liquid or sohd surface. A

novel solution growth method was developed to alleviate this problem. A growing crystal is

suspended in a specially configured upflow of supersaturated nutrient, which is provided by the

effect of fluid buoyancy in a closed loop thermosyphon. The flow rate and supersaturation are

controlled by the temperature distribution in the thermosyphon, while contact of the crystal with the

wall during growth is practically eliminated. The method was applied to the growth of lysozyme

single crystals, with surprising results. While the orthorhombic form of lysozyme grew readily to

the suspension limit of this particular apparatus (1.5 mm), the tetragonal form grew only to a

maximum size less than 0.1 mm. Seed crystals of tetragonal lysozyme introduced into stagnant

batch controls did not experience the growth cessation that the suspended crystals did. A possible

cause of this growth cessation is the fluid shear forces on the suspended crystals.



1. Introduction

The goalof this researchwasto develop a new technology for solution crystal growth in

which crystals are freely suspended in the nutrient solution, eliminating container wall or seed

holder contacts and maximizing the uniformity in solute supply to the interface. In particular, the

applicability of this technology to the growth of protein crystals was to be explored. The basic idea

is to suspend a growing crystal in a specially configured upflow of supersaturated nutrient where

the upflow is provided by the effect of fluid buoyancy in a closed loop thermosyphon.

The physical size and temperature distribution of a thermosyphon needed to generate the

suspension velocities required to balance the settling velocities of desired crystal sizes were

estimated. A specially shaped expansion chamber was designed to keep the crystals suspended in

a stable position in the center of the flow. Additionally an operating procedure was developed

which included a startup sequence to trap and suspend nuclei or seeds in the expansion chamber

and allows for the later reduction of the number of crystals in the chamber.

2. Design of the apparatus

2.1 Particle Suspension Dynamics

The primary design quantity is the suspension velocity required to accommodate the crystals

as they grow. When this upward velocity is equal to the rate at which the crystal would settle in a

motionless fluid, the crystal will remain suspended. The evaluation of settling rates for

nonspherical particles such as facetted crystals of various shapes, however, is not well established.

Hence, the calculations for suspension velocities gave only general guidelines and actual

experimental trials were relied on heavily.

The interaction between a spherical particle of diameter D in a fluid of kinematic viscosity n

and relative velocity U is governed by the particle Reynolds number Rep = DU/n. If Rep < 0.03

Stoke's law can be used for the calculation of settling velocities [1]. For the settling of larger

spherical particles, i.e. in the "intermediate law" region, see [2]. Note that the drag experienced by

nonspherical particles depends sensitively on their specific shape and their orientation with respect

the the direction of motion. Guidelines for determining the orientation in free fall as a function of

the particle Reynolds number (based on the diameter of a sphere of equal surface area) are given by

Becker [3]. Since the shapes of crystals of a given material can vary widely depending on the

growth conditions, experiments must be relied on for the determination of the "falling" orientation

and the required suspension velocity.

It must be noted that the above correlations are for bodies settling in a free fluid with no

walls. If, however, a particle is settling in a tube, the presence of a wall increases the drag on the

particle [4] and thus reduces the upward velocity required to suspend it. For instance, if the
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particlediameteris 10%of thetubediameter,its settlingvelocity is 20%lessthan in an infinite

fluid andthepressuredistributionin theannularspacewill tendto centertheparticle.

2.2 Design of the Expansion Chamber

The design of the expansion chamber (fig. 1) itself is critical. The velocity in the smallest

part of the chamber must be large enough to suspend the largest crystal size desired and the

velocity in the largest part must be small enough to trap nuclei or seed crystals of a very small size.

To minimize the chance of the crystals hitting the wall, the flow in the chamber must be steady,

axisymmetrical, and without recirculation in the vicinity of the crystal. We have performed

experiments to determine flow rates, tube diameters, and angles of expansion necessary to suspend

the crystals. A variety of small expansion chambers were used in these tests, the upper, larger

diameters varied from 5 mm to 26 mm, the lower, smaller diameters from 2.5 mm to 4 ram, and

the angles of expansion varied from 5 to 30 °.

The onset of recirculation corresponds directly to a "bouncing" motion of the particle

resulting in repeated contact with the chamber wall. In all the chambers, recirculation occurred in

the flow rate range of 5-8 ml/min. These rates corresponded to the angle of expansion, larger

angles showing recirculation at lower velocities, independent of the entering tube diameter. The

optimal chamber dimensions resulting from these experimental studies are given in fig. 1. The

transition from 3 mm to 10 mm in diameter, with a maximum 7* angle of expansion produces a

more than 10-fold variation of velocity in the chamber and minimizes recirculation. With this

chamber, particles in the size range of most interest for protein crystallization (0.4-1 mm) were

suspended in the velocity range of 0.5-1.5 cm/s (based on the 3 mm part of the chamber). This

velocity was then used as part of the design criteria for the thermosyphon.

2.3 Circulation Rates and the Design of the Thermosyphon

The design of the thermosyphon entails many factors. The flow rate is of primary concern.

As discussed above, the narrowest part of the expansion chamber requires a flow velocity large

enough to suspend a crystal of the final desired size. The temperature distribution in the

thermosyphon must be such that nowhere the working limit of the solution is exceeded, the

appropriate temperature for growth in the expansion chamber is provided, and nucleation

elsewhere within the apparatus is reduced. The design must also minimize the total volume of

solution and, thus, the amount of protein used. In general, larger diameter tubes decrease the fluid

friction and increase the flow velocities at a given AT, but this increases the amount of fluid

required in the apparatus. Another impoi'tant consideration is to avoid the flow instabilities

associated with thermosyphons [5-10] which are generally more prevalent when using large tubes

at high heating rates.



Themajorityof theoreticalandexperimentalanalysesthatdealwith thermosyphonsusevery
simplified geometries.Thereis agreatdealof theoreticalandexperimentalwork on the "closed

loop toroidal thermosyphon"[7-10]which, althoughnotdirectly applicableto this morecomplex
geometry,gaveusefulinsightandguidance.RelationsfromCrevelinget al. [7] providedan initial

estimatethatatubediameterof 10mmwouldberequiredfor thedesiredflow velocityandthiswas

later refinedto 6 mm throughexperimentaltestswith thermosyphons.In light of theseresults,a

thermosyphoncrystalgrowthapparatuswasconstructedwith 6 mm ID tubingfor themajority of
its length.

Thecrystalgrowth apparatusis shownin fig. 2. A concentriccoolingjacket surroundsthe

right side of the loop, while the left side is heatedby windings of copper-constantanwire
connectedto acontrolledcurrentsupply. Theportat thetopis for filling theapparatus,insertinga
thermistor to measurethe maximum temperature,Th, andfor the addition of precipitants,pH

buffers,and seedcrystalsor nuclei. Theport at thebottom of theapparatusallows removalof

crystalsduringoperationandfacilitatesdraining.Thetotalvolumeof theapparatusis 20ml.

The apparatuswasdesignedfor crystallization of materialshavingnormal dependanceof
solubilityon temperature,with thegrowth(expansion)chamberat thebottomof theheatedsection.

Thelowerbendandthesectionenteringthegrowthchamberaremadefrom 3 mm ID tubing. This

createsa localizedhighervelocity to aid the suspensionof thecrystals. The lower part of the
apparatusis insulated so that the solution temperatureat the site of the suspendedcrystal is
essentiallythe sameas that leaving the bottom of the cooledsection,Tc. Hencethe highest

supersaturationin the loop occurs at the crystal. The velocity is increasedor decreased,
respectivelyby increasingor decreasingthetemperaturedifferencebetweenthetwo sidesof the

apparatus.Thetemperaturestabilityat apoint,measuredby theTh thermistorandby thestability
of thecoolingbathwasapproximately+ 0.1 °C

To operate this apparatus efficiently, one must understand how the temperature distribution in

this loop affects the velocity. This insight is also important for up- or down-scaling of the

apparatus without relying on trial and error. Due to the limited applicability of existing

thermosyphon models to predict the velocity as a function of temperature in our apparatus, a

mathematical model was developed to explore different geometries with higher suspension

velocities and smaller required solution volumes. The mathematical model is based on the

following considerations. The buoyancy force is integrated around the loop to obtain the flow-

driving pressure differential. For steady state flow this force must equal the overall frictional force

acting in the opposite direction. The input parameters are the geometry (the length, diameter and

positions of the four segments of the apparatus), the physical properties of the solution, and the

temperatures at the top of the heating section and at the crystal. The resistance heating section is

assumed to have a constant heat flux boundary condition over its entire length. The temperature
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distributionin thecoolingsectiondependson thevelocity aswell asthethermaldiffusivity of the
circulating solution. Sinceit is thetemperaturedistribution that determinesthe buoyancyforce

which, in turn, drives the velocity, an iterative solution of the heatand momentumtransport
equationswasrequired.Detailsof thismodelwill bepublishedelsewhere.

Velocities in the thermosyphoncrystalgrowth apparatusweremeasuredandcomparedto
thosepredictedby thismodel;seefig. 3. Notethatthevelocitiesareaveragevelocitiesbasedona

6 mm diametertube. Thevelocitiesin theexpansionchambervary from 4 timesthesevalues(in

thelower3 mmpart) to 0.36timesthisvalue(in theupper10mmpart). We seethatthemodelcan

beusedto predictthevelocity with reasonableaccuracy.Thedifferenceis mostlikely dueto heat

transferredto theexpansionchamberfrom theambient,which is neglectedin the model. Since
therearenoempirical"fitting" parametersin thismodel,we feelconfidentthat it canalsobeused

to predict velocitiesin apparatusesof differentgeometryandsize,aswell asfor solutionswith

differentphysicalproperties.Resultsfrom thismodelwereusedextensivelyfor guidanceduring
the crystal growth runsdiscussedbelow andfor designof a smallerversion of the apparatus
(containing6 ml) which is nowundertest.

For applicationsit is usefulto notethatthedecreasingslopein fig. 3 is dueto changesof the
temperaturedistribution in the cold leg of the loop asthe velocity is increased. The thermal

entrancelength in thecooledsectionincreaseswith increasingvelocity, thusreducingtheoverall
buoyancyforce. If thetubewerevery small in diameter,thethermaldiffusivity very high, or the

velocityvery low, thetemperatureof thesolutionenteringthecooledtube would quickly (i.e. after

a short distance) reach the temperature of the wall, Tw. Consequently, many previous

thermosyphon models are based on the assumption that the fluid in the entire cold section is at Tw.

In the present model, however, full account is made of the developing temperature in the cold

section, without assuming that Tw is reached at the sections end.

The effect of tube diameter on the solution velocity is complicated. Figure 4 shows the

velocity as a function of tube diameter for three different values of AT = Th-Tc, the temperature

difference between the hot and cold sides of the apparatus The maximum arises from a

combination of two opposing phenomena. For small tubes the viscous forces dominate and the

corresponding drag reduces the velocity. For large tubes the thermal entrance length is longer and

the effect discussed above becomes significant. Note that the curve for AT=30"C (a reasonable

value for protein solutions) has its maximum near 6 mm, the size used in most of the loop in our

crystal growth apparatus.
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3. Crystallization Results

3.1 Operating procedures

Two inorganic systems (NaC1 and A1K(SO4)2) were used to study the characteristics of the

apparatus and to develop an "operating procedure" for startup, initiation of growth, and continued

growth to the desired size. Several schemes were tried with the most successful one as follows.

In this description, Th, Tc, and AT are as defined above and T s is the temperature at which the

solution is saturated.

1) Set DT = 3°C with both T h and T c, exceeding T s. The flow in the loop recirculates at a

low velocity and any nuclei or crystallites are dissolved.

2) Keeping DT -_ 3°C, lower both temperatures until T h < T s. The solution is now

supersaturated but not enough to induce spontaneous nucleation.

3) Inject a small amount (<0.05ml) of saturated solution containing seed crystals. 1-10 mm

crystals were used, but the size is not critical. These crystals are so small that they travel

with the fluid around the loop while they are slowly growing.

4) When one or more crystals grow large enough to be trapped in the low velocity section

of the growth chamber (typical size is 0.03 mm), increase T c to the desired growth

temperature keeping DT = 3°C. Since T h is now larger than Ts, crystals which flow

through the growth chamber are dissolved in the heated section.

5) Increasing the AT speeds the flow and sweeps the smaller crystals up into the heated

section where they are dissolved. Decreasing the AT reduces the velocity to let the larger

crystals settle down to the lower port where they are removed. This method was used to

eliminate all but one crystal.

6) As the crystal in the chamber grows, it will gradually position itself lower in the

expansion section where the velocities are higher. As the crystal continues to grow, T h

is increased to increase the velocity. At these higher velocities, the temperature of the

solution reaching the crystal is not that of the cooling jacket. With results from the

mathematical model for guidance, the cooling jacket temperature is lowered to maintain

supersaturation at the crystal.

7) When the crystal has grown to the desired size, Th is lowered, reducing the velocity,

and the crystal sinks into the removal port. The crystal is then removed through a

closely space pinch clamp assembly. This removal requires the drainage of only 0.04 to

0.1 ml.

Crystals of NaC1 and A1K(SO4) 2 were grown to 0.2 mm and 0.4 mm respectively. In light

of the high relative density differences of these systems (rsolid/rsolution = 1.8 for NaC1 and 1.35



for A1K(SO4)2)comparedto that for protein systems (=1.17 for lysozyme), these results were

very promising. During these runs, it was discovered that a very small angle of inclination of the

expansion chamber can cause a "bobbing" of the crystal and contact with the wall.

A small modification of the operating procedure allows for in situ nucleation. At step 2, both

temperatures are lowered further to increase the supersaturation sufficiently for spontaneous

nucleation. These nuclei grow while they circulate throughout the loop and are then trapped as

before in step 4.
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3.2 Tetragonal Lysozyme

First, a series of experiments were performed to grow tetragonal lysozyme crystals from

nuclei formed in situ. The solution compositions ranged from 40 to 80 mg/ml lysozyme, 2 to 4

weight percent NaC1 and were held at pH 4.5 with a 0.05 M acetate buffer. The temperatures in

the apparatus ranged from 0 to 35"C, with the temperature for nucleation and or growth always

below 25"C. These conditions favor the growth of the tetragonal form of lysozyme [11]. The

supersaturation required for nucleation and growth was attained either via addition of NaC1 (acting

as a precipitating agent), or by temperature changes, or by combinations of both.

Nucleation occurred and cystallites were trapped in the expansion chamber. The crystallites

had a very narrow size distribution, so the methods discussed above for reducing the number of

crystals were not as successful as for the inorganic crystals. Each of the experiments took at least a

week, due to the slow growth rates of lysozyme. The largest crystals grown were less than 0.1

mm and did not continue to grow even under supersaturation conditions which produced continued

nucleation. Microscopic examination showed that the crystallites lacked well def'med facets.

During these experiments we found that it took 2-3 weeks for any noticeable denaturization

of the protein to occur in the form of a thin "haze" on the inner glass surfaces and some cloudiness

of the solution. It was suspected that this was not the cause for the growth cessation of the

crystallites. This was confirmed when solutions which had been circulating for more than three

weeks grew large crystals (on the walls) when the circulation was stopped and the apparatus held

at a constant temperature.

Next a series of experiments were done attempting continued growth of introduced tetragonal

lysozyme crystal seeds. The seeds (0.03 to 0.5 ram) were produced in standing or hanging drops

and were transferred to the thermosyphon via an Eppendorf pipet. The solutions used in these

experiments had compositions which produce growth of lysozyme crystals in batch systems

without causing spontaneous nucleation. During transfer of the seeds to the thermosyphon, the

apparatus was held at a uniform, ambient temperature with no circulation. The temperature in the

thermosyphon was then slowly changed to the desired operating conditions (over a period of

hours) to start the flow and suspend the crystal. There was no measurable growth of the



suspendedseedsduring thetimethatthestagnantcontrolsshowedsignificantgrowth(seebelow).

Experimentsvariedfrom 5 to 20days. Whenthe supersaturationwasincreasedby lowering the

temperatureor addition of NaC1,therestill wasno growth and the facetsof the seedsbecame

"frosted". Two possiblereasonsfor thisbehaviorare:
1)Kinetic; dueto therepeatedheatingandcooling thesolutionundergoesasit circulates. It

hasbeenspeculatedthatlysozymegrowthunitsarelargerthanmonomersand,hence,theremight

be some "preclustering" necessarybefore attachment. On the other hand, there may be a
conformationalchangein themoleculeitself asit passesthroughtheheatedsection.If thekinetics

of thispreclusteringand/orconformationalchangesareslow, thepropergrowthunitsmaynot be
availableatthecrystalbeyondacertainflow velocity,i.e.attoofrequenttemperaturecyclingof the
solution.

2) Mechanical;dueto thecrystalbeingsuspendedby thedragforcesof thefluid aroundit. It

is possiblethattheshearforceson the surfaceof thecrystalhinderthe attachmentof the growth
units.

Thesecondreasonwouldhavevery importantimplicationsfor thegrowthof proteincrystals

in spaceaswell ason earth. Oneof themain reasonscited for growing crystalsin spaceis the

reductionof bouyancyinducedconvection. Thesethermosyphongrowth experimentsappearto
indicatethatconvectionhasanadverseaffectandcancause"growth cessation."This observation

corroboratesearlierwork by Puseyet al. [12], which showedthat the growth rateof tetragonal

lysozymecrystalssubjectedto aforcedflow of solutiondecreasedsignificantlyafter 1/2to 2 hours

of growth.
A setof stagnantcontrol experimentswereperformedconcurrentlywith thethermosyphon

runs.Variousconstanttemperatureswereusedwith thesamesolutionandseededat thesametime
with seedsfrom the samesandwich(or hanging)drop. Thesecontrol experimentsproduced

importantresultsof theirown andwereessentialfor developingsuccesfulseedtransfertechniques.

It was found that if a seedcrystal undergoesa suddentemperaturechangeof more thana few

degreesduring thetransfer,it will not grow thereafter.Additionally, whenthe solution theseed
wastransferredto hadadifferent(by0.003grn/mlor more)saltconcentration,nogrowthoccured.

Hence,we developedthefollowing transfertechnique. 1) Nucleateandgrow seedcrystals in a

hangingdrop. 2) Move thecover slip with the hangingdrop to a new reservoirwhich has the
(lower)NaC1concentrationof thesolutionin thethermosyphon.3) Allow 2 daysfor equilibration

beforethe crystal is transferredwith a pipet. In contrastto the thermosyphonruns, tetragonal

lysozymeseedcrystalstransferredtotemperaturecontrolledbatchcellswith this techniqueshowed

uninhibitedgrowth.
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3.30rthorhombic Lysozyme

Similar tests were done under conditions favorable for the growth of orthorhombic

lysozyme. In contrast to the results obtained with the tetragonal form, there was no cessation of

growth. After in-situ nucleation, and without any change of conditions (temperature or

concentration) a single crystal became visible in the expansion chamber. As it grew, Th was raised

to increase the velocity and to keep the crystallite suspended. It grew to a size of 1.5 x 0.5 x 0.2

mm before it was removed. At this time a few other, smaller, crystals had appeared and were

growing. These were also removed successfully after growth to their suspension limit. Similar

results were achieved during experimental runs utilizing seed crystals.

9

4. Summary and Conclusions

A solution crystal growth apparatus was designed based on fluid dynamic considerations,

and applied to the growth of protein crystals to avoid contact with container walls, dialysis

membranes or liquid-vapor interfaces. The crystals are suspended during growth in an upflow of

supersaturated solution provided by natural convection in a closed loop thermosyphon. This

buoyancy-driven flow alleviates the possible damage of protein solutions due to the shear field of

mechanical pumps. While the crystal remains suspended in a fixed position within the expansion

chamber at a constant temperature (controlled to within 0.1°C), the solution is thermally cycled as it

recirculates throughout the apparatus. This leads to the dissolution of new nuclei, thus excluding

the mechanical interference of numerous crystals growing concurrently as in other protein growth

techniques.

Whereas orthorhombic lysozyme grew up to the suspension limit of this apparatus of 1.5

ram, tetragonal lysozyme growth ceased at about 0.1 mm even at supersaturations where

concurrent nucleation became pronounced. At this point it is not clear whether this growth

cessation is of thermal or mechanical origin. We speculate that the reason that the growth of

orthorhombic crystals is not inhibited is that the ratio of the growth unit's attachment force to its

size may be larger. These results are particularly interesting in terms of the recently found

significant improvement of the structural quality of various protein crystals grown under low

gravity conditions in the Spacelab [ 13]. One can speculate that the shear forces experienced by

crystals during growth on Earth, in the more traditional techniques due to solutal convection and in

our apparatus due to the suspension flow, can be detrimental to the proper attachment of "building

blocks", or growth units. This speculation becomes reasonable, considering the low bond

strengths involved in protein crystallization and the large dimensions of the growth units, in

particular if they consist of multimolecular clusters [ 14].

The applicability of our technique to other proteins is likely limited to mechanically and

configurationally relatively stable species. In addition, limitations arise from the relatively large



amountof solution required(= 6 mls). However,asa scalinganalysisindicates,the technique

maywell besuitedto thegrowthof centimetersizesof small-moleculematerials,which,however,

will requiremechanicalpumpingto obtainthehighsuspensionvelocitiesrequired. Thepumping

of suchshear-insensitivesolutions shouldcauseno damageto the solute. Optimal stirring

conditions (that minimize the inclusion of mother liquor) and the absenceof mechanicalseed

suspensiondevices areparticularly attractivefeaturesof the flow-suspensioncrystal growth

technique.
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CAPTIONS

Growth and expansion chamber.

Thermosyphon crystal growth apparatus

Velocity in the thermosyphon as a function of the temperature difference between the

heated section and the cooling jacket temperature. Comparison of experimental values

(circles) with model calculations (line).

Model calculations for the average solution velocity in the thermosyphon as a function

of tube diameter for various temperature differences.
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ABSTRACT

A relatively simple-to-use method is presented for the

calculation of velocities and heat transfer in closed loop natural

convection systems such as solar water heaters and nuclear reactor

cooling systems during shutdown. The method can accommodate

systems that consist of sections with different diameters, lengths,

friction factors and heat transfer boundary conditions. After a general

description of the method
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diameter of tube (m)

magnitude of gravity vector (m/s 2)

thermal conductivity of fluid (Vv'/m2°C)

total length of the loop (m)

pressure (N/m 2)

total heat input (W)

tube radius (m)

distance in flow direction (m/s)

temperature (°C)

wall temperature of cooled section (°C}

cross-sectional average velocity (m/s)

dimensionless distance

0_

K

_w

P

e

tilt angle of square loop (degrees)

coefficient of thermal expansion {°C -1)

mixed mean temperature

thermal diffusivity of fluid (m2/s}

dynamic viscosity (kg/m*s}

fluid shear stress at the wall (N/m 2)

fluid density (kg/m 3)

angle between flow direction and gravity vector (degrees)



I. Introduction

Natural convection loops encompass a broad range of applications, such

as in nuclear reactor cooling, geothermal energy utilization, and solar water

heaters. A recent review [1] discusses a number of representative works and

emphasizes the importance of this diverse area of research.

Most theoretical investigations of convection loops deal with a toroidal

thermosyphon. A primary goal has been to develop an understanding of the

flow and heat transfer in this relatively simple geometry which then could

be applied to the typically more complicated geometries and boundary

conditions of most practical applications. Yet, as the understanding of

toroidal thermosyphons progressed, it has become clear that the flow and

heat transfer in these systems is anything but simple. Unsteady and even

three-dimensional flows have been experimentally verified [2-4] while

mathematical models have become correspondingly complex and difficult to

solve. Furthermore, as the models became more specific to the toroidal

thermosyphon, the results increasingly lost their utility to the designer of

more useful thermosyphons.

The mathematical model presented here is a relatively simple-to-use

tool for predicting flow rates and heat transfer rates in natural convection

loops. In the derivation, the general features of the method are emphasized

so that it can be applied to a variety of geometries. The method is best

suited for natural convection loops which can be considered as a sequence of

individual "legs" or sections, each with different heat transfer boundary

conditions and with different friction factors. Each leg is then treated

individually, based on a separate equation for the energy balance. The

sections are then dealt with sequentially. For each section, there is an

inflow velocity and temperature which must correspond to those at the
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outflow of the upstream section. The physical (size and shape) and thermal

boundary conditions of the section are then used to calculate the outflow

velocity and temperature which are the input parameters for the next

section. The calculations can be analytical, numerical or be based on

empirical correlations. This process is continued around the loop. All that

needs to be known for each section to calculate steady flows and the heat

thus transferred are the average density of the fluid as a function of height

and the frictional forces as a function of velocity. The method is particularly

advantageous when certain assumptions are valid over some sections of the

loop but not others.

2. Mathematical Model

2. I The General Model

Let a natural convection loop of length L have n segments. The distance

s measured along the loop (from an arbitrarily chosen Junction of two

segments) to the end of the ith segment is si. The lengths of the n

segments are thus Sl, s2-sl ..... Sn-Sn-1. The steady state equations for

conservation of mass and momentum are

D(PU)-o, (I)
_s

a(pu ) a_p
as - - as - p g cos0 - 2 _w, (2)

where U is the average cross sectional velocity, 0 is the angle between the

flow direction and the gravity vector, and r is the inner radius of the tube. If

we assume steady state conditions, (1) indicates that the mass flux pU is
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constant along the loop.

around the length of the loop gives

f I-pol3gjo T coseds+9. _r ds=0.

Assuming p=p0(1-_{T-T0)) and integrating (2)

(3)

To allow for changing boundary conditions along the loop, the integrals are

carried out piecewise; the pieces corresponding to the sections of the

apparatus.

po g Z v coseds--2 s
i=o r

(4)

This equation represents a balance of the buoyancy forces (left side) and

the frictional forces (right side) required for steady state circulation. Both,

the temperature distribution in the fluid needed for the evaluation of the left

side of (4), and the distribution of frictional forces needed for solving the

right side of (4) require knowledge of the velocity distribution around the

loop. In the following example, this method is applied to natural convection

in a tilted square loop.

2. I Application to a Square Thermosyphon Loop with Tilt

In the absence of experimental results for a well characterized, more

complicated natural connection loop, we will test our method against data

obtained by Acosta et al. [5]. A schematic representation of their apparatus

is given in Figure 1. There are four legs to this loop, which we will label

sections 1-4 counterclockwise starting with the bottom leg. Section I is

heated electrically and section 3 is cooled with a coaxial cylindrical heat
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exchanger. The right vertical leg is an insulated PVC tube while the left side

is an uninsulated glass tube. The apparatus can be tilted by a degrees,

measured as rotation counterclockwise.

First, equations describing the temperature distribution are developed

for each of the sections. Second, equations relating the temperatures at the

junctions of the four sections are obtained. For section 1, we assume a

uniform heat flux. This means that, for 0 < s < s l, the average temperature

varies linearly with distance through the tube according to

T =Vo. IT - T

where TO and TI, respectively, are the temperature of the fluid entering and

leaving section 1. An energy balance over the entire section yields

TI -- Q +To, {6)
UOCpxr

where Q is the total heat input over section 1.

We assume that section 2 is adiabatic and the temperature is constant at

T1 and thus, the exiting temperature,

T2 - TI . (7)

For section 3, the cooled top section of the loop, the fluid's temperature

is a function of distance through the section, the temperature of the cooling

wall Tw, and the thermal diffusivity of the solution _ = k/pCp. The solution of

the energy equation for the thermal entry region of a tube with constant

surface temperature is given in [6]. This series solution can be represented

by

0m = 8 E % Xp(-_'2x+) '
kn

(8)



where the Gn and _.2 are given in [7], x +

defined as x+=2_(s-s2)/(UD2), and ¢_m is

defined in our case as

T - Tw

is the dimensionless distance

the mixed mean temperature

with T2 the temperature of the fluid entering section 3. Setting s=s3 in (8)

gives _ and thus T3 at the exit of section 3.

Section 4 is not insulated and there may be heat transfer to or from the

environment. This heat transfer is proportional to the convective heat

transfer coefficient and the difference between the fluid temperature and

the ambient. Acosta et al [5] report only the temperature difference across

the heated section. However, from their results it can be deduced that the

heat lost in this section is much less than the heat transferred in sections 1

and 3 and thus we will neglect it and assume an adiabatic condition as for

section 2. This means the temperature in section 4 is constant at T3 and

the exiting temperature,

To =T3. (9)

Now, the ]Tcos8 terms for equation (4) must be developed. For

section 1, (6) is used to give

T cos0 ds = T {-sina)ds = - (TI + To) sina. (10)

For section 2, the temperature is constant at TI, therefore

i fsT cos0 dS = Tl{-cosa) ds = - TlCOS_ (s2 - Sl). {1 11

1 I

For section 3, (9) is integrated and the definition of _ is used to give
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S3T cos0 ds =
2

_.n21<i
sina w(S3- s2)+ (T2 - Tw) E 4GnUD21 11 - ex - - ._sa s2) (12}

o _-n_

Section 4 has a constant temperature To, and thus

T cose ds = cosa ds = To cosa (L - s3). ( 1 3)

3 3

Next, the frictional forces must be calculated as a function of the average

If wevelocity U. In Acosta's apparatus the diameter of the tubes is constant.

assume fully developed laminar flow throughout the tubes we can

approximate the frictional forces in the loop by

L

I 32UgL2 _ds- _ + 4Felbow , (14)

where Felbo w is the pressure drop due to a 90 ° elbow and is a function of the

velocity U. We have calculated the elbow friction with relations given by

Kitteredge and Rowley [8].

Substituting TI=T2 into (12) and substituting (11-14) into (3) gives

+cos s, l]
32U_L

+4Felbow = 0 . ( 1 5)
D2

For convenience, we have represented the right hand side of (12) by

sinco f(U,T1). Note that the unknowns in (15) are U, TO, and T1, but TO and

TI can be solved for as functions of U. Substitution of these To(U) and TI(U)

back into (15) gives an equation in U alone. To do this (7) and (9) are
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substituted into (8) and, subsequently, (5) and (8) are

rearranged to give

combined and

Q ¢ +Tw

To = UpCpnr , ( 1 6)

i - {_S3

where _s3 is obtained from (8) with s=s3. TI(U) is then calculated from

equation (5). U cannot be solved for explicitly from the resulting (15), but

any of a variety of iteration methods (bisection, secant, Newton-Raphson

etc.) can be used to solve for it.

Recognizing that (15) is composed of two parts, the buoyancy forces

which drive the flow and the frictional forces which impede it, means that

an iteration method which is more closely tied to the physics of the problem

can be developed. Assuming a given volumetric flow rate around the loop,

the temperature distributions and, thus, the buoyancy forces can be

calculated. The velocity cannot be solved for explicitly from the relations for

elbow friction and thus this term is calculated with using Ui and grouped

with the buoyancy terms. A new velocity is then calculated by rearranging

(15) as

Ul+l= D2 [Po_g[slnct(f(Ui,Tl)-_--(Tl+To)} +
32_tL

+ COSa (T0(L-s3) - TI(S2-Sl))]+ 4Felbow] • (I 7)
J

This new velocity is then used as a "next guess" for the buoyancy force

calculation and the process is repeated until convergence is obtained. The

advantage of this type of iteration is that it can only converge to physical

solutions. This is important because there clearly are solutions to (15)

which are unstable to any perturbation and are thus physically unrealistic.
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An example is the zero velocity solution for zero tilt angle. For this example,

the buoyancy forces are zero because the temperature profile is symmetric

about the vertical center plane and the frictional forces are also zero,

satisfying (15). In the experimental situation a slight asymmetry in the

boundary conditions would lead to flow which would lead to further

asymmetry, driving an increasing flow rate until limited by the increasing

frictional forces. We should expect steady flows only in velocity ranges

where the buoyancy forces decrease with increasing flow rate and frictional

forces increase with increasing flow rate. Under these conditions, during

the above iteration process, if the calculated buoyancy forces are greater

than the frictional forces, an increase in the assumed velocity (via (17)) will

bring the two forces closer in balance. This mathematical process is similar

to the physical process of a natural convection loop dynamically approaching

a steady state velocity under a fuxed set of temperature boundary conditions.

3. Results

The physical parameters of the apparatus were obtained from [5]. The

square loop was 50 cm on a side with tubes of 2 cm diameter. Velocities

were calculated from (15) with the given heating rate of 0.83 Watt and via

the "physical" iteration scheme described above. In Figure 2 we compare

the results of the calculation with the experimental results of [5]. The

agreement is quite good considering that the calculation uses no

"experimentally derived" parameters. No steady state solutions could be

obtained for tilt angles less than -116 ° or greater than 116 °.

The largest differences between model results and experimental data

are at high flow rates. For these conditions, probably the worst model

assumptions are in the calculation of the frictional forces. The friction
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depends on the kind of elbow used (which wasn't specified in [5]) and

becomes a larger percentage of the total friction as the velocity increases.

To illustrate this, we have also plotted in Fig. 2 the velocities obtained

without the elbow friction terms in (15). Futhermore, the friction in the

straight tubes was calculated based on fully developed flow, which certainly

does not apply throughout the loop. Improved agreement at high heating

rates, and thus higher flow rates, could possibly be obtained by using the

friction of a hydrodynamically developing flow and empirical friction factors

for the specific type of elbow used.

4. Summary and Conclusions

We have presented a general method for the calculation of flow

velocities in natural convection loops that may consist of sections with

largely differing geometrical and thermal boundary conditions. The sections

are treated individually, requiring only relations for the pressure drop and

temperature change as a function of flow rate, and, for non-horizontal

sections, the average cross-sectional temperature as a function of height.

Hence, variable tube diameters, sudden expansions or valves, and even non-

cylindrical duct cross sections, such as corrugated, plate-type heat

exchangers, can readily be incorporated into the model without detailed

knowledge of the flow field in a specific section. Such cases cannot be

described with a regular discretization approach. As an additional benefit,

the friction and buoyancy contributions for each section can be retained in

the model. This "intermediate" information gives insight into the physics of

an apparatus and, thus, allows for better design optimization.



I0

[11

[2]

[31

[41

[5]

[6]

[7]

[81

6. References

R. Greff, Natural circulation loops, J. of Heat Transfer II0, 1243-1258

(1988).

H. F. Creveling, J. F. DePaz, J. Y. Baladi, and R. J. Schoenhals, Stability

characteristics of a single-phase free convection loop. J. Fluid Meclz

67, 65-84 (1975).

P. S. Damerell and R. J. Schoenhals, Flow in a toroidal thermosyphon

with angular displacement of heated and cooled sections. J. Heat

Transfer I01, 672-676 (1979),

C. H. Stem, R. Greif, and J. A. C. Humphrey, An experimental study of

natural convection in a toroidal loop. J. Heat Transfer I I0, 877-884

(1988).

R. Acosta, M. Sen, and E. Ramos, Single-phase natural circulation in a

tilted square loop. W_trme- und Stoffftbertragung 21, 269-275 (1987).

W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer,

McGraw Hill, New York, (1980).

J. R. Sellars, M. Trlbus, and J. S. Klein, Heat transfer to laminar flow in

a round tube or fiat conduit - the Graetz problem extended. Trans.

ASME, 78, 441-448 (1956).

Kitteredge and Rowley, Resistance coefficients for laminar and

turbulent flow through one-half-inch valves and fittings. Trans. ASME

79, 1759-1766 (1957).



FIGURE CAPTIONS

Figure i. Schematic of tilted square thermosyphon loop.

Figure 2. Velocity as a function of tilt angle in a tilted square

thermosyphon loop. Model predictions with (solid line) and without

(dashed line) friction in elbows. Experimental data (o) from Acosta et

al. [51.
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