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Abstract

Although grid computing can increase the number of re-
sources available to a user, not all resources on the grid
may have a software environment suitable for running a
given application. To provide users with the necessary as-
sistance for selecting resources with compatible software
environments and/or for automatically establishing such en-
vironments, an accurate source of information about the
software installed across the grid is needed. Existing soft-
ware information services and general-purpose informa-
tion frameworks are inadequate for this task. This paper
presents a new OGSI-compliant software information ser-
vice that has been implemented as part of NASA’s Infor-
mation Power Grid project. This service is built on top of
a general framework for reconciling information from pe-
riodic, on-demand, and user-specified sources. Informa-
tion is retrieved using standard XPath queries over a single
unified namespace independent of the information’s source.
Two consumers of the provided software information, the
IPG Resource Broker and the IPG Naturalization Service,
are briefly described.

1. Introduction

Although grid computing can increase the number of re-
sources available to a user, not all resources on the grid may
have a software environment suitable for running a given
application. To provide users with the necessary assistance
for selecting resources with compatible software environ-
ments and/or for automatically establishing such environ-
ments, an accurate source of information about the software
installed across the grid is needed. Existing solutions re-
quire manual entry of software information imposing a sig-
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nificant administrative burden, do not allow for inclusion of
user-specific software installations, and only support a very
limited number of software attributes.

In general, the information frameworks currently in ex-
istence tend to focus on either information about compu-
tational resources or information about data resources. In
the former case, this includes automatic collection of at-
tributes common across all such resources such as avail-
able CPUs, available memory, CPU load, etc., which are
relatively small in number but highly dynamic, thus require
frequent updates to maintain accuracy. In the latter case,
this includes metadata with widely varying characteristics,
which may be large in size and be defined and updated by
individual users relatively infrequently as data is generated.
These characteristics lead to designs centered around their
respective goals and notions of scalability.

Software information occupies a middle ground. Like
computer information, different pieces of software share
many common attributes that can be automatically col-
lected. Like data information, the volume of information
stored in each update may be very large as a single com-
puter may have tens of thousands of software executables,
libraries, etc. installed, but these updates can be performed
relatively infrequently. In addition, users may wish to pub-
lish information about their personal software installations.
Unlike either, software may have many attributes that can
be derived automatically, but may be deemed too expen-
sive to compute for every software instance. This middle
ground requires a new information framework as computer-
oriented frameworks are not built to handle large volumes
of information nor allow user-specified information while
data-oriented frameworks have no support for automatic
collection and leave users completely on their own when
publishing information.

The contributions of this paper are twofold. First, we
present Pour, a new general-purpose information service
framework forPeriodic, On-Demand, andUser-Specified
Information Reconciliation. Pour is designed to accom-
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modate “middle ground” information with support for high
volume, low frequency periodic updates, user-specified up-
dates, and automatic updates collected on-demand when
needed. Information is retrieved using standard XPath [3]
queries over a single unified namespace independent of the
information’s source. Periodic information can be pub-
lished using secure, lightweight information updates suit-
able for inclusion in cron jobs, subscriptions to grid service
data published by existing services, or embedded Java ob-
jects. Information deemed too expensive to gather periodi-
cally or specific to individual users is collected on-demand
when necessary based on a novel XPath parsing strategy.
This information is collected under the requesting user’s
grid identity, thus using their permissions and their alloca-
tions, but is cached for their own and the common good.
Users may publish information using specifically tailored
on-demand queries or manually created XML documents.

Second, we present Swim, theSoftware Information
Metacatalog, which is a software information service for
the grid built on top of Pour. Swim provides true software
resource discovery integrated with the tools used by admin-
istrators to install software. In particular, software informa-
tion is periodically gathered from native package managers
on FreeBSD, Solaris, and IRIX as well as the RPM, Perl,
and Python package managers on multiple platforms. Swim
has additional facilities for collecting on-demand informa-
tion about arbitrary software on any grid-enabled resource
including software dependencies and Unix “stat” informa-
tion as well as locating Perl distributions from the Compre-
hensive Perl Archive Network (CPAN)1.

Pour and Swim are part of NASA’s Information Power
Grid (IPG) project [13]. The goal of the IPG is to develop
new technologies to facilitate the use of the grid and en-
able scientific discovery. Several prototype services have
been implemented including the Execution Service [18] for
submitting and managing jobs, the Naturalization Service
[14] for automatically establishing the execution environ-
ment for user applications, the Surfer framework [15] for
selecting and ranking resources, and Pour and Swim, which
are the subjects of this paper.

This paper is organized as follows. Section 2 describes
related work. Sections 3 and 4 present Pour and Swim, re-
spectively. Section 5 describes two Swim applications. Fi-
nally, section 6 presents conclusions and future work.

2. Related Work

Several projects address subsets of the issues addressed
in this work. The Monitoring and Discovery Service (MDS)
[5] of the Globus Toolkit [8] provides grid resource infor-
mation using a pluggable architecture that allows new in-
formation providers to added and allows information to be

1http://www.cpan.org

cached in a back-end XML database. MDS was mainly de-
signed to support small amounts of frequently updated com-
puter information. It does not have direct support for user-
specified information nor does it support true on-demand
information retrieval in which the same provider may be
executed with different arguments based on the contents of
the query itself. The MDS also cannot handle the large (>1
MB) XML documents needed for software information due
to its use of Document Object Model (DOM) objects, which
utilize memory inefficiently.

A very basic MDS provider for software information is
described in [16], where all installed software of interest
on a system can be manually entered into a configuration
file, which is then queried through standard MDS mecha-
nisms. A similar approach is taken by the Uniform Interface
to Computing Resources (UNICORE) [6], where platform-
independent abstract job operations can be translated into
concrete operations for a specific system by replacing ab-
stract software names with concrete paths from the static
configuration file for that system. These approaches require
significant administrative overhead as the list of installed
software must be updated whenever software is installed,
removed, or upgraded on a system.

The Relational Grid Monitoring Architecture (R-GMA)
[4] is an extensible information service framework that al-
lows information to be produced from many sources includ-
ing databases and streams and then integrated using queries
based on a subset of SQL. R-GMA has many of the same
goals and capabilities as Pour, but has a much different ar-
chitecture based on registries that store the producers asso-
ciated with different subsets of information, which can then
be queried individually by consumers. It is also based on
a relational database model and SQL instead of an XML
database model and XPath.

Several data-oriented projects are relevant to this work.
The Mobius Project [12] is a general-purpose metadata cat-
alog based on XML supporting XPath queries across multi-
ple databases and XML schema validation of user-specified
data. Full replica management systems such as Reptor [11]
provide high-level mechanisms for managing the replica-
tion, selection, consistency, and security of data to provide
users with transparent access to geographically distributed
data sets. The Repository in a Box (RIB) [1] is a toolkit for
building software metadata catalogs. Software information
is structured according to the built-in Basic Interoperability
Data Model or a custom model defined by the administra-
tor and is accessible through automatically generated web
pages. None of these approaches provide mechanisms for
automatically collecting information on-demand.

Installers, package managers, and application manage-
ment systems [2] are used to manage the software installed
on standalone systems and systems on the same network.
While the software information they maintain is vital for
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automatic software discovery, none of them have the re-
quired flexibility. Namely, resources on the grid may be
administered by different organizations, each of which may
use its favorite non-interoperable administration tools. Even
within the same organization, software may be installed by
different tools, may be compiled directly from source, or
may be installed individually by users. Information about
such installations is not maintained by these tools.

3. Pour Framework

Pour is a new framework forPeriodic,On-Demand, and
User-Specified InformationReconciliation that accepts pe-
riodic information updates, collects information on-demand
as needed, and accepts user-specified information while
presenting a single unified view to the user. Information
is processed exclusively in XML and is stored in an XML
database for later retrieval. XML databases offer signifi-
cant advantages over traditional relational databases in such
dynamic, heterogeneous information streams since new
sources and types of information can be easily integrated
into the system without requiring a new schema and/or a
complete restructuring of existing data. Any database con-
forming to the XML:DB API2 may be used.

Like other information services such as MDS, Pour
supports a hierarchical caching architecture for scalability.
Namely, Pour repositories may be arranged hierarchically
with higher level repositories querying lower level reposito-
ries when data is not cached in the local database.

The primary functionality of Pour is exposed to the user
through its query interface. A query consists of any num-
ber of XPaths, where each XPath returns a list of the XML
strings that satisfy it. Queries are batched together when
appropriate to optimize performance. Depending on the
XPaths specified and the contents of the Pour database,
query processing may be as simple as a database lookup or
as complex as a series of queries down a Pour hierarchy to a
set of Pour repositories that compute the requested informa-
tion on-the-fly before the appropriate results are returned.
This complexity is invisible to users, who may utilize any
valid XPath to retrieve results integrated from across the rel-
evant periodic, on-demand, and user-specified sources.

Pour is implemented in Java as an Open Grid Services
Infrastructure (OGSI) compliant service within the Open
Grid Services Architecture (OGSA) framework [10]. In
the OGSA model, all grid functionality is provided by
namedgrid servicesthat are created dynamically upon
request. The reference implementation of OGSI is the
Globus Toolkit [8], which provides grid security through
the Grid Security Infrastructure (GSI), low-level job man-
agement through the Globus Resource Allocation Manager

2http://www.xmldb.org

(GRAM), data transfer through the Grid File Transfer Pro-
tocol (GridFTP), and resource/service information through
the Monitoring and Discovery Service (MDS). Individual
components of Pour are described in the following sections.

3.1. Spouts

Pour is a framework for building high-level information
services, but does not define any specific types of informa-
tion itself. New types of information and the methods used
to collect them are described byspouts. Each spout defines
the XML namespace for information it supplies, which in-
cludes the XML namespace URI, the XML prefix used for
all attribute and element names, and the name of the root
element for all XML documents produced.

In addition to the XML namespace, a spout must define
how it produces its periodic, on-demand, and user-specified
information throughpumpsanddrains that are hooked into
the system. A pump represents pull-based information that
is actively collected from external sources by Pour itself.
A drain represents push-based information that is produced
elsewhere before flowing into the system. An XML config-
uration file describes all of the spouts, drains, and pumps to
be incorporated into the system.

As long as all three types of information in a given
spout use the same basic XML structure, information about
the same elements can be produced and stored indepen-
dently. Information is eventually integrated through the use
of XPath queries. Namely, queries search across the doc-
uments of all three sources and produce a list of unified
elements, which to the user, appears as though they were
produced from a single source.

3.2. Drains

3.2.1. Periodic Drains

In Pour, periodic information is defined to be informa-
tion that comes from a trusted source at an unknown fre-
quency such that any previous information from the same
source can be completely overwritten. This model allows
periodic sources to be configured entirely independent of
Pour itself, while allowing the database to maintain a fairly
stable size. Pour supports three periodic update mecha-
nisms based on OGSA notifications, keyed hashes, and em-
bedded Java objects.

In the OGSA framework, grid services maintain infor-
mation about themselves in the form ofgrid service data.
This data can be directly queried at any time or can be
pushed as an XML document to other services that sub-
scribe to this information when any or all of the data
changes. AnOGSA notification drainobtains its informa-
tion by subscribing to relevant service data in specific grid
services. Each drain specifies the URI of a grid service for
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which periodic information should be collected. Since a
service may collect information for other purposes than just
the drain, the drain only subscribes to the data in its spout’s
XML namespace. Using this drain, Pour can act as a higher
level information service built on top of other already exist-
ing grid information services.

In many cases, it is inefficient to keep a grid service
or other process continuously running on a system for the
purpose of gathering information. This is especially ineffi-
cient for high volume, low frequency updates, which may
use significant memory resources that are not released be-
tween updates. For these cases, it is desirable to period-
ically publish information using a lightweight mechanism
such as cron jobs that completely release all resources be-
tween updates. Since periodic information is defined to be
trusted, however, a suitable authentication mechanism must
be utilized to guarantee integrity. Standard grid credentials
are not appropriate since a cron job may not be owned by a
user that has a grid identity (e.g. the root user) or may not be
able to create a grid proxy without user interaction. Akeyed
drain provides a secure, lightweight periodic update mech-
anism based on cryptographic hashes. Each drain defines a
secret key and a keyed hash algorithm (e.g. HMAC-MD5).
To publish periodic information, the caller must provide an
XML document and a source id as well as the combined
hash of those items. If the hash is valid for the key and
algorithm of some keyed drain within the spout associated
with the document’s XML namespace, it is accepted as a
periodic update and processed accordingly.

The two drain types above assume that information is
produced outside of Pour and then is published into the
framework. The third drain type, anembedded drain, al-
lows periodic information to be produced within Pour itself
by an arbitrary Java class. This class is instantiated by Pour
and granted direct access to the internal update mechanisms
of the framework. The Java class can obtain its informa-
tion from any source and/or by any means and add it to the
database with the lowest overhead possible. Using embed-
ded drains, Pour can serve as a completely self-contained
information service, if desired.

3.2.2. User Drains

While it may be desirable to allow user-specified infor-
mation, in most cases it is also desirable to limit this infor-
mation in scope and form to maintain database consistency.
A spout can allow specific types of information to be added
by plugging in any number ofuser drains, each of which
specifies an XML schema definition (XSD) [7] and a length
of time the information is valid. Any information added by
the user must conform to the XSD of some user drain in the
system or else it is rejected. After the given amount of time
has elapsed, the information is purged from the database.
Thus, users can add information to the system, but are lim-

ited to adding only the information that has been deemed
relevant to the spout and in the appropriate form.

Before inserting a document into the database, it is
tagged with the grid identity of the submitting user (e.g.
/O=Grid/O=National Aeronautics and Space Administra-
tion/OU=Ames Research Center/CN=Paul Kolano). This
tag is used by other Pour operations. Specifically, users can
only remove information they have previously added and
can optionally restrict query results to exclude information
submitted by other users.

3.3. Pumps

Information that can be automatically collected, but that
is too expensive to periodically collect or that is related to
individual users can be collected on-demand. On-demand
processing, which can be disabled on a per query basis if
desired, is triggered according to thepumpsdefined in each
spout. A pump defines a set of XPath prefixes for which
it has information and a set of XPath restrictions that the
query XPath must satisfy. These restrictions can include
specific attributes or elements that must be defined and/or
specific values they must take. For example, consider a
simple self-populating information service that can deter-
mine the operating system and architecture of any computer
system on the grid given its host name. Suppose the XML
structure for this information consists of a top-level “com-
puter” element with an attribute “name” and subelements
“os” and “arch”. In this case, the relevant pump prefixes
would be “/computer/os” and “/computer/arch” and the one
pump restriction would be “/computer[@name]”, meaning
that the query XPath given by the user must have a value for
the attribute “name”.

When an XPath query is performed by the user for which
there is no information in the database, the given XPath is
parsed and stripped of all but the absolute paths requested.
In addition, the attribute/element values required of each
subpath are stored in a argument map. For example, the
query “/computer[@name=’host1.nas.nasa.gov’]/os” has a
single absolute path “/computer/os” and a single argument
mapping “/computer[@name] => host1.nas.nasa.gov”. In
this case, since the path requested begins with a collected
prefix and the name restriction has been met, the given
pump can be triggered. Information is gathered from all
pumps that are relevant to the query and is valid for a con-
figurable amount of time.

On-demand information provides a secondary benefit of
allowing users to publish information without requiring de-
tailed knowledge of XML. If a suitable pump is available,
the user only needs to supply an appropriate query to trigger
on-demand collection, which will create the relevant XML
document automatically and add it to the database.

Pour currently provides two types of built-in pumps. The
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Pour pumpsupports hierarchical caching, which is one form
of on-demand information. Each pump of this type must
specify a Pour grid service URI at the next lower level in
the hierarchy. When invoked, this pump simply passes the
query on to this URI for processing. Note that by using the
XPath prefixes and restrictions defined in a pump, sophis-
ticated hierarchies can be built that use different URIs for
different subsets of information.

The GRAM pumpsupports collection using the Globus
GRAM. A pump of this type must specify an executable
(typically a shell or Perl script) to run and a host to run it
on based on the given argument map. This executable is
then run using GRAM on the given host with the appro-
priate arguments derived from the argument map. A lo-
cal Globus Access to Secondary Storage (GASS) server is
used to transfer the executable and retrieve the XML output.
The executable may gather a superset of the information re-
quested, thus its output is filtered against the original XPath
before being returned to the user. GRAM pumps benefit
significantly from the query batching performed by Pour.
In particular, if a batch of queries contains separate queries
resulting in GRAM jobs to the same host, those jobs are
combined into a single GRAM invocation to minimize over-
head.

A benefit of using the GRAM service is that the col-
lection occurs under the user’s grid identity, thus the exe-
cutable runs with the user’s permissions and the time spent
computing the information is charged against the user’s al-
locations. In this way, the grid infrastructure can pay for
general-purpose information applicable to all users through
the periodic mechanism, while specialized information that
may only be of value to a specific user is paid for by the
user who requires it. On-demand information is donated for
the common good after it is collected, so other users may
benefit from each other’s cached results.

When information is retrieved on-demand, the collected
information is tagged with the grid identity of the submit-
ting user and cached in the database, thus users that run the
same query several times will only pay the price of collec-
tion once. Users do not need to be aware that this process-
ing is occurring and do not need to change their queries in
any way as it is completely based on the contents of their
original XPath queries.

4. Swim

Swim is aSoftware InformationMetacatalog built on
top of the Pour framework. Swim consists of a spout with
a set of drains and pumps that provide information about
the software packages and the software files installed across
the grid. Figure 1 shows sample instances and the flow
of information through the periodic, on-demand, and user-
specified aspects of Swim. The software package informa-

tion describes which packages of which types have been
installed on each system along with supporting informa-
tion such as a short text comment and each package’s de-
pendencies. The software file information describes which
executables and supporting libraries have been installed on
each system. File information is currently reported for Ex-
ecutable and Linking Format (ELF) executables and shared
libraries, Java classes, shell scripts, and Perl and Python
modules. Swim incorporates a user drain allowing users
to specify their own software installations. The top right of
figure 1 shows a sample instance of user-specified informa-
tion, which is validated against the XSD of the user drain
and, if valid, is added to the database.

4.1. Periodic Information

Swim uses a keyed drain for periodic information. Sys-
tem administrators can choose how often to gather software
information based on their own detailed knowledge of sys-
tem operations. The Swim script invoked by the keyed drain
utilizes a set of Perl modules that have been developed to
collect software information from different platform types.
The main source of information is from the package man-
agers used on each system. Swim collects information from
native package managers on FreeBSD, Solaris, and IRIX,
as well as the RPM, Perl, and Python package managers
on multiple platforms. It is advantageous to use package
managers since in most cases they are the tools used by ad-
ministrators to install the software in the first place. Since
not all software is available or installed in package form,
however, Swim also crawls the set of relevant paths from
the Filesystem Hierarchy Standard [17], which defines the
standard filesystem structure used by all major Unix distri-
butions. Using these two techniques, the vast majority of
software installed on a system will be located.

As mentioned above, Swim only gathers information on
the specific file types that encompass executable software
and supporting libraries. To distinguish between these types
and the other types that comprise the majority of files on a
system, the Swim scripts use a custom pure Perl implemen-
tation of the Unix “file” command that has a subset of its
functionality, but is smaller, faster, and more portable. Files
with an appropriate type are further analyzed to gather addi-
tional information, which is then formatted in XML and re-
turned with the other results through the keyed drain mecha-
nism. The bottom right of figure 1 shows a sample instance
of the periodic information generated by Swim, which is
validated against the secret key of the keyed drain using the
supplied hash and, if valid, is added to the database.

New package managers can be integrated into the sys-
tem in a modular fashion with relatively little work using
the existing modules as templates. The key elements are the
commands for retrieving the names of all installed pack-
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<swim:file swim:host="host1.nas.nasa.gov"
    swim:path="/usr/X11R6/lib/libMesaGL.so">
  <swim:comment>I love this library!</swim:comment>
</swim:file>

<swim:file swim:host="host1.nas.nasa.gov"
    swim:path="/usr/X11R6/lib/libMesaGL.so">
  <swim:name>libMesaGL.so</swim:name>
  <swim:type>elf_shared</swim:type>
  <swim:os>freebsd</swim:os>
  <swim:arch>i386</swim:arch>
  <swim:size>467028</swim:size>
  <swim:mode>755</swim:mode>
  <swim:owner>root</swim:owner>
  <swim:group>wheel</swim:group>
</swim:file>

/swim:swim/swim:file[@swim:host=’host1.nas.nasa.gov’]
  [@swim:path=’/usr/X11R6/lib/libMesaGL.so’]/swim:dependencies

<swim:file swim:host="host1.nas.nasa.gov"
    swim:path="/usr/X11R6/lib/libMesaGL.so">
  <swim:dependencies>
    <swim:file swim:name="libXThrStub.so.6"
        swim:type="elf_shared" swim:version="unknown"/>
  </swim:dependencies>
</swim:file>

job

query
xml

query xpath

query xml

Pour

 

periodic xml

user xml

<swim:dependencies>

on−demand xml

  <swim:file swim:name="libXThrStub.so.6"
      swim:type="elf_shared" swim:version="unknown"/>
</swim:dependencies>

Figure 1. Swim information flow

ages and for listing the detailed information about a specific
package. A parser must be written to gather relevant fields
after which the common routines for retrieving file informa-
tion and outputting the appropriate XML can be called.

4.2. On-Demand Information

Swim currently provides several forms of on-demand
information through a set of GRAM pumps. The
first pump gathers dependency information (prefix
“/swim/file/dependency”) for a specific file (restric-
tion “/swim/file[@path]”) on a specific host (restriction
“/swim/file[@host]”). This analyzer is based on the
dependency analyzer developed in previous IPG Natural-
ization Service work [14] and gathers the software that
is required for the correct execution of ELF executables
and libraries, Java classes, and Perl and Python mod-
ules. In the worst case, this analysis can take several
minutes, thus is not suitable for incorporating into the
periodic routines, which examine potentially tens of
thousands of files. Section 5.2 describes one of the uses
of this pump in more detail. The top left of figure 1
shows a sample query used to request the dependencies
of the library “/usr/X11R6/lib/libMesaGL.so” on host
“host1.nas.nasa.gov”. If the XML database cannot sat-
isfy the query, it is routed to the GRAM service on the
appropriate host by the GRAM pump, which runs a script
to generate the information. The raw information, which
may be a superset of what was requested, is added to the
database before being filtered and passed back to the user.

The second pump gathers the same information gathered
by the periodic routines (prefix “/swim/file”) about a spe-
cific file (restriction “/swim/file[@path]”) on a specific host
(restriction “/swim/file[@host]”). This pump allows users
to add personal software installations, which are not gath-
ered during periodic collection, into Swim without the need
to manually write XML documents.

The third pump is an experimental pump for locating a

given Perl module using the Comprehensive Perl Archive
Network (CPAN). The idea of this pump is that even if a
specific module cannot be located anywhere on the grid, it
can still potentially be located in an external internet repos-
itory. This pump runs a Perl script based on Perl’s CPAN
module to locate sources (prefix “/swim/file”) for a Perl
module (restriction “/swim/file[type=’perl’]”) with a given
name (restriction “/swim/file[name]”), from which a set of
source URIs is constructed, formatted in XML, and returned
to Swim. The eventual goal is to develop a comprehen-
sive set of pumps for all of the supported file types using
repositories such as RpmFind3 and Solaris Freeware4 for
executables and shared libraries, the Vaults of Parnassus5

for Python modules, etc., which will be extremely valuable
in automatically establishing execution environments as de-
scribed in section 5.2.

4.3. Performance

Table 1 shows Swim periodic information results ob-
tained over a small grid testbed consisting of 12 systems.
The results include the average per system of the number of
packages, the number of files, the XML document size, the
collection time, and the database insertion time using the
eXist6 XML database. As can be seen, a significant number
of software files were located, which was only a fraction of
the files inspected. Manually configured software informa-
tion services simply could not support this volume of infor-
mation. Collection time was reasonable enough to run every
day if desired. Documents were inserted in acceptable time
given their fairly large size.

Table 2 shows a breakdown of the time taken by the
OGSI layer, the Pour framework, the back-end database,
and the Globus GRAM to satisfy different types of queries

3http://www.rpmfind.net
4http://www.sunfreeware.com
5http://www.vex.net/parnassus
6http://www.exist-db.org
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Measure \\ Platform FreeBSD IRIX Linux Solaris

Systems 1 4 6 1

Avg. Packages 365 715 592 603

Avg. Files 7412 4722 9780 7634

Avg. XML Size 3.42 MB 2.35 MB 4.67 MB 3.68 MB

Avg. Collection 196 sec 534 sec 686 sec 1209 sec

Avg. Insertion 14.4 sec 9.3 sec 21.7 sec 17.5 sec

Table 1. Swim periodic results

when Pour was hosted on a 2.4 GHz Pentium 4 running
Linux with 512 MB of memory. An eXist XML database
was used for the back-end, which was already filled with the
periodic information collected in table 1. The table shows
results in seconds for three types of queries covering both
single and batch cases. The queries were chosen such that
they resulted in either (1) data cached in the local database,
(2) data collected by a GRAM pump, or (3) data collected
by a Pour pump. As can be seen, single queries are very
fast when the information is cached locally and also fairly
fast when collected using a Pour pump. The GRAM pump,
however, introduces more than an order of magnitude slow-
down. In the batch case, 10 different queries were chosen
such that they would be processed on the same GRAM host
or by the same Pour URI if not cached in the database. All
three query types benefit from batching with GRAM pump
queries benefiting the most since all of the queries could be
processed with just a single GRAM invocation.

Query \\ Component OGSI Pour DB GRAM Total

Cached 0.27 0.02 0.57 - 0.86

GRAM Pump 0.29 0.11 0.60 11.7 12.7

Pour Pump 0.47 0.25 1.21 - 1.93

(10) Cached 0.58 0.06 6.19 - 6.83

(10) GRAM Pump 0.60 0.22 6.38 11.7 18.9

(10) Pour Pump 0.64 0.26 12.2 - 13.1

Table 2. Swim query breakdown (secs)

5. Swim Applications

Two applications have already been developed to take
advantage of the information provided by Swim: the IPG
Resource Broker and the IPG Naturalization Service.

5.1. IPG Resource Broker

The IPG Resource Broker is a grid service for selecting
and ranking resources based on user-specified constraints

and preferences. The Resource Broker is built using Surfer
[15], which is an extensible brokering framework that can
be customized to any grid environment by adding informa-
tion providers knowledgeable about that environment. A
Surfer provider has been written for Swim to select soft-
ware resources. This allows users to both find the compute
resources that have a particular piece of software installed
as well as finding the exact path to that software. Figure 2
shows an example Resource Broker request to find a com-
pute resource running Linux with at least 128 free CPUs and
a version 1.3.1 ELF executable named “java” on the same
host that is both world readable and world executable.

Resource:
Id: c1
Type: ComputeResource
Constraint:

freeCpus >= 128
&& operatingSystem == “Linux”

Ranking:

freeCpus

Resource:
Id: s1
Type: SoftwareResource
Constraint:

name == “java”
&& type == “elf”
&& version == “1.3.1”
&& mode % 10 == 5

&& host == $c1.host

Figure 2. Resource Broker request

Figure 3 shows the Swim query that is automatically
constructed by the Surfer provider to support this request.
The restriction on the host names between resources is han-
dled by the framework itself as it involves information from
two separate providers.

/swim:swim/swim:file[swim:name = ’java’ and swim:type = ’elf’ and

swim:version = ’1.3.1’ and swim:mode mod 10 = 5]

Figure 3. Resource Broker Swim query

5.2. IPG Naturalization Service

The IPG Naturalization Service [14] is a grid service for
automatically establishing the execution environment for
user applications. In order to establish an execution envi-
ronment, the Naturalization Service (1) determines the soft-
ware that the user application requires, (2) provides a loca-
tion for that software on the execution host either by finding
already existing software on that host or by finding a source
for the software elsewhere on the grid and copying it to the
execution host, and (3) sets environment variables based on
the provided software locations.

Figure 4 shows the Swim queries used to extract the de-
pendency and location information required by the Natural-
ization Service. Note that the first query will trigger the de-
pendency GRAM pump if the information has not already
been cached in the database. Since many files share the
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same dependencies (e.g. libc) and users utilize many of
the same applications and libraries, much of the informa-
tion collected by one user can immediately benefit many
other users without paying any additional GRAM overhead.
Since Swim allows user-specified information, users can
add information about their own personal software instal-
lations, which will be utilized by the Naturalization Service
whenever possible.

1. Find dependencies of a file with a given path on a specific host:

/swim:software/swim:file[@swim:host=’host1’]

[@swim:path=’/path1’]/swim:dependencies

2. Find locations of a file with a given name, type, and version:

/swim:software/swim:file[swim:name=’name2’]

[swim:type=’type2’][swim:version=’version2’]

Figure 4. Naturalization Service Swim queries

Once all of the external repository pumps of section 4.2
have been implemented, the Naturalization Service will be
able to offer more advanced functionality. Specifically, re-
quired software not found on the local grid will be located
in an appropriate external internet repository. Once found,
the software can be temporarily installed on-the-fly as nec-
essary using the appropriate installation mechanisms (e.g.
using a package manager, compiled from source, etc.).

6. Conclusions and Future Work

This paper has described a new information service
framework called Pour forPeriodic,On-Demand, andUser-
Specified InformationReconciliation, and a new software
information service for grid computing called Swim, the
Software InformationMetacatalog. Pour has been specif-
ically designed to accommodate high volume, low fre-
quency information updates with a novel mechanism for
automatically gathering information on-demand when nec-
essary based on the contents of XPath queries posed by
users. Information types can be added usingspouts, each of
which may have its own set of push and pull-based informa-
tion sources represented bydrainsandpumps, respectively.
Drains support both periodic updates based on grid service
data, keyed hashes, and/or embedded Java objects as well
as user updates validated against XML schemas. Pumps
support on-demand updates via Pour hierarchies for scala-
bility as well as based on the Globus GRAM, which can be
used to construct self-populating information services with-
out the need for additional continuously running processes.
This flexibility allows Pour to be used in a variety of config-
urations including a general-purpose grid-enabled database,
a metadata catalog, a single resource information service, a
multiple resource aggregating information service, as well

as its full form with information unified across periodic, on-
demand, and user-specified sources.

Swim provides a new set of information for the grid that
its currently lacks. Namely, it provides extensive informa-
tion about the software installed on all grid resources, which
is a critical component of seamless computing across mul-
tiple systems and organizations. Swim supports true auto-
matic software discovery based on the tools used by sys-
tems administrators to install software. Two applications
have already been developed that take advantage of this in-
formation. The IPG Resource Broker allows users to select
computational resources with specific software installed as
well as determining the specific location of that software on
the resource. The IPG Naturalization Service automatically
establishes the execution environment for a user application
by locating all of the dependencies of that application and
installing them if necessary.

There are several directions for future research. XQuery
syntax will be investigated to determine the feasibility of
adding another alternative on-demand capability. Addi-
tional package managers such as the Globus Packaging
Toolkit will be incorporated into the periodic collection
scripts. Additional on-demand pumps such as computing
the MD5 hash of a given file to verify integrity will be
added. Finally, A GSI-SSH pump with functionality sim-
ilar to the GRAM pump will be investigated to determine if
a lower overhead can be achieved for on-demand queries.
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