
Using IOR to Analyze
the I/O Performance

Hongzhang Shan, John Shalf

NERSC

Motivation

• HPC community has started to build the
petaflop platforms.
– System:

• Programming Interface
– How to make programming of increasingly complex file

system easily accessible to users
• I/O scalability:

– Handling exponentially increasing concurrency
– scale proportionally to flops ?

– Application:
• Workload survey/characterization (what applications

dominate our workload)
• Understanding I/O requirements of key applications
• Develop or adopt microbenchmarks that reflect those

requirements
• Set performance expectations (now) and targets (future)

Identify Application
Requirements

• Identify users with demanding I/O
requirements
– Study NERSC allocations (ERCAP)
– Study NERSC user surveys

• Approached sampling of top I/O
users
– Astrophysics (Cactus, FLASH,

CMB/MadCAP)
– Materials
– AMR framework (Chombo), etc.

Survey Results

• Access Pattern:
– Sequential I/O patterns dominate
– Writes dominate (exception: out-of-core CMB)

• Size of I/O Transaction
– Broad Range: 1KB - tens of MB

• Typical Strategies for I/O
– Run all I/O through one processor (serial)
– One file per processor (multi-file parallel I/O)
– MPI-IO to single file (single-file parallel I/O)
– pHDF5 and parallelNetCDF (advanced self-

describing, platform-neutral file formats)

Potential Problems

• Run all I/O through one processor
– Potential performance bottleneck
– Does not fit distributed memory

• One file per Processor
– High overhead for metadata management

• A recent FLASH run on BG/L generates 75 million
files

– Bad for archival storage (lots of small files)
– Bad for metadata servers (lots of file creates)
– Bad for data analysis

• Need to use shared files or new interface

Migration to Parallel I/O

• Parallel I/O to single file is slowly emerging
– Used to imply MPI-IO for correctness, but

concurrent Posix also works (now)
– Motivated by need for fewer files
– Simplifies data analysis, visualization
– Simplifies archival storage

• Modest migration to high-level file formats
pHDF5, parallelNetCDF
– Motivated by portability & provenance concerns
– Concerns about overhead of advanced file

formats

Benchmark Requirements

• Need to develop or adopt benchmark
that reflects application requirements
– Access Pattern
– File Type
– Programming Interface
– File Size
– Transaction Size
– Concurrency

Synthetic Benchmarks

• Most synthetic benchmarks cannot
be related to observed application IO
patterns
– Iozone, Bonnie, Self-Scaling

benchmark, SDSC I/O benchmark,
Effective I/O Bandwidth, IOR, etc

• Deficiencies
– Access pattern not realistic for HPC
– Limited programming interface
– Serial only

LLNL IOR Benchmark

• Developed by LLNL, used for purple
procurement

• Focuses on parallel/sequential read/write
operations that are typical in scientific
applications

• Can exercise one file per processor or
shared file accesses for common set of
testing parameters (differential study)

• Exercises array of modern file APIs such
as MPI-IO, POSIX (shared or unshared),
pHDF5, parallelNetCDF

• Parameterized parallel file access patterns
to mimic different application situations

IOR Design
(shared file)

transferSize
…

transferSize
…

transferSize
…

transferSize
…

Segment

Segment

blockSize
(data for P1)

blockSize
(data for Pn)

blockSize
(data for P1)

blockSize
(data for Pn)

File Structure: Distributed Memory:

time step,
dataset

transferSize

transferSize

P1

Pn

…

• Important
Parameters
– blockSize
– transferSize
– API
– Concurrency
– fileType

Datasets
in HDF5

and NetCDF
nomenclature

IOR Design
(One file per processor)

blockSize

blockSize

File Structure: Distributed Memory:File for P0

transferSize P0transferSize
…

transferSize
…

Segment

Segment

transferSize
…

transferSize
…Segment

Segment

File for Pn

transferSize Pn

Outline

• Why IOR ?
• Using IOR to study system

performance
• Using IOR to predict I/O performance

for application

Platforms

4.0GB/s
(1.6GB/s)

3.2GB/s
(1.2GB/s)

Max
Node BW

to IO

6*1GB/s =
~6.0GB/s

FederationPower5GPFSBassi

Peak IO
BW

Inter-
connect

Proc
Arch

Parallel
File

System

Machine
Name

18*2.3GB/s
= 42GB

SeaStarOpteronLustreJaguar

• 18 DDN 9550 couplets on Jaguar, each
couplet delivers 2.3 - 3 GB/s

• Bassi has 6 VSDs with 8 non-redundant
FC2 channels per VSD to achieve
~1GB/s per VSD. (2x redundancy of FC)

Effective
unidirectional
bandwidth in
parenthesis

Caching Effects

4GB832GBBassi

4GB28GBJaguar

Mem/
Proc

Node
Size

Mem Per
Node

Machine
NameCaching

Effect

• On Bassi, file Size should
be at least 256MB/ proc to
avoid caching effect

• On Jaguar, we have not
observed caching effect,
2GB/s for stable output

Transfer Size (P = 8)

• Large transfer size is critical on Jaguar to
achieve performance

• The effect on Bassi is not as significant

DSL Speed

HPC Speed

Scaling (No. of Processors)

• The I/O performance peaks at:
– P = 256 on Jaguar (lstripe=144),
– Close to peaks at P = 64 on Bassi

• The peak of I/O performance can often be
achieved at relatively low concurrency

Shared vs. One file Per Proc

• The performance of using a shared file is
very close to using one file per processor

• Using a shared file performs even better
on Jaguar due to less metadata overhead

Programming Interface

• MPI-IO is close to POSIX performance
• Concurrent POSIX access to single-file works correctly

– MPI-IO used to be required for correctness, but no longer
• HDF5 (v1.6.5) falls a little behind, but tracks MPI-IO performance
• parallelNETCDF (v1.0.2pre) performs worst, and still has 4GB dataset size

limitation (due to limits on per-dimension sizes on latest version)

Programming Interface

• POSIX, MPI-IO, HDF5 (v1.6.5) offer very
similar scalable performance

• parallelNetCDF (v1.0.2.pre): flat performance

Outline

• Why IOR ?
• Using IOR to study system

performance
• Using IOR to predict I/O performance

for application

Madbench

• Astrophysics application, used to analyze
the massive Cosmic Microwave
Background datasets

• Important parameters related with IO:
– Pixels: matrix size = pixels * pixels
– Bins: number of matrices

• IO Behavior
– Out-of-core app.
– Matrix Write/Read

• Weak scaling problem
– Pixels/Proc = 25K/16

I/O Performance Prediction for
Madbench

• IOR parameters: TransferSize=16MB,
blockSize=64MB, segmentCount=1,
P=64

Underprediction

Overprediction

Summary

• Surveyed the I/O requirements of NERSC
applications and selected IOR as the
synthetic benchmark to study the I/O
performance

• I/O Performance
– Highly affected by file size, I/O transaction size,

concurrency
– Peaks at relatively low concurrency
– The overhead of using HDF5 and MPI-IO is low,

but pNETCDF is high
• IOR could be used effectively for I/O

performance prediction for some
applications

