Using IOR to Analyze
the I/0 Performance

Hongzhang Shan, John Shalf

NERSC

-~

frreeeee ﬂ

« HPC community has started to build the
petaflop platforms.

— System:

 Programming Interface

— How to make programming of increasingly complex file
system easily accessible to users

 1/O scalability:

— Handling exponentially increasing concurrency
— scale proportionally to flops ?

— Application:

 Workload survey/characterization (what applications
dominate our workload)

« Understanding I/O requirements of key applications

* Develop or adopt microbenchmarks that reflect those
requirements

« Set performance expectations (now) and targets (future)

* ldentify users with demanding I/O
requirements

— Study NERSC allocations (ERCAP)
— Study NERSC user surveys

 Approached sampling of top I/O
users

— Astrophysics (Cactus, FLASH,
CMB/MadCAP)

— Materials
— AMR framework (Chombo), etc.

 Access Pattern:
— Sequential I/O patterns dominate
— Writes dominate (exception: out-of-core CMB)

* Size of I/O Transaction
— Broad Range: 1KB - tens of MB

« Typical Strategies for I/O
— Run all I/0 through one processor (serial)
— One file per processor (multi-file parallel 1/0)
— MPI-IO to single file (single-file parallel 1/O)

— pHDF5 and paralleINetCDF (advanced self-
describing, platform-neutral file formats)

* Run all I/O through one processor
— Potential performance bottleneck
— Does not fit distributed memory

* One file per Processor

— High overhead for metadata management

 Arecent FLASH run on BG/L generates 75 million
files

— Bad for archival storage (lots of small files)
— Bad for metadata servers (lots of file creates)
— Bad for data analysis

e Need to use shared files or new interface

-~

/\l /\
f’l’&flll

« Parallel I/O to single file is slowly emerging

— Used to imply MPI-IO for correctness, but
concurrent Posix also works (now)

— Motivated by need for fewer files
— Simplifies data analysis, visualization
— Simplifies archival storage

 Modest migration to high-level file formats
pHDF5, paralleINetCDF
— Motivated by portability & provenance concerns

— Concerns about overhead of advanced file
formats

* Need to develop or adopt benchmark
that reflects application requirements

— Access Pattern

— File Type

— Programming Interface
— File Size

— Transaction Size

— Concurrency

 Most synthetic benchmarks cannot
be related to observed application 10
patterns

— lozone, Bonnie, Self-Scaling
benchmark, SDSC I/0 benchmark,
Effective 1/0 Bandwidth, IOR, etc

 Deficiencies

— Access pattern not realistic for HPC
— Limited programming interface
— Serial only

Developed by LLNL, used for purple
procurement

Focuses on parallel/sequential read/write
operations that are typical in scientific
applications

Can exercise one file per processor or
shared file accesses for common set of
testing parameters (differential study)

Exercises array of modern file APls such
as MPI-IO, POSIX (shared or unshared),
pHDF5, paralleINetCDF

Parameterized parallel file access patterns
to mimic different application situations

-~

f(reeeee w

File Structure: Distributed Memory:
P1
1Z2¢
(data for P1) :
Segment =
T . transferSize | Pn
. (data for Pn)
time step,
dataset
 Important
_ blocksi Parameters
0CKDI1ZC .
(data for P1) - b'°°ks'ze_
Segment — transferSize
— API
Datasets >~ blockSize — Concurrency
in HDF5 (data for Pn) — fileType
and NetCDF

nomenclature

-~

f(reeeee ﬂ

File Structure: File for PO Distributed Memory:

Segment < —_—— transferSize PO

Segment < > blockSize
File for Pn
Pn
Seqment < ——— transferSize |
blockSize
Segment < >

* Using IOR to study system
performance

-~

ecere]] |

Machine | Parallel Proc Inter- Peak IO Max
Name File Arch connect BW Node BW
System to 10
Jaguar Lustre Opteron SeaStar |18*2.3GB/s| 3.2GB/s
= 42GB (1.2GB/s)
Bassi GPFS Power5 | Federation | 6*1GB/s = 4.0GB/s
~6.0GB/s | (1.6GB/s)
A

« 18 DDN 9550 couplets on Jaguar, each

couplet delivers 2.3 - 3 GB/s

Bassi has 6 VSDs with 8 non-redundant

FC2 channels per VSD to achieve
~1GB/s per VSD. (2x redundancy of FC)

/

Effective
unidirectional
bandwidth in
parenthesis

-~

/\l A
r’r&rmI

File Size Effect on Bassi

100000 Cachin Machine | Mem Per | Node | Mem/
9 o wrie Name Node | Size | Proc

10000 - == Read
Jaguar 8GB 2 4GB
Bassi 32GB 8 4GB

% Q % %
bﬁ\ ﬁ\ NG b‘

File Size / Processor ° On BaSSi, file Size ShOUId

File Size Effect on Jaguar

A\ be at least 256MB/ proc to
200 /”"M avoid caching effect
200 / e On Jaguar, we have not

o0 M77 o= Write observed caching effect,

8- Read 2GB/s for stable output

50
0

Q
A\
RS

MB/s

Q Q
SN
'\,b ’1, .\’)(/b

MB/s

Q \Z Y 0 Y N
‘oé\ \:lg\ ,\,(9 ,1,(9 b<<’ Q)(9
Vv 1)

File Size / Processor

Q
2

P ®
% X

©

-~

frreeoeere ||||

4000 HPC Speed
3500 /i

—0— Bassi, Write Hk!Z
3000 |

== Jaguar , Write
2500 +—— =>&= Bassi, Read

("]
> 2000 | == Jaguar, Read
=

1500 |

DSL Speed
1000 |
500 ﬁ I : >
0 || T T T T
1 10 100 1000 10000 100000 1000000

TransferSize (KB)

« Large transfer size is critical on Jaguar to
achieve performance

 The effect on Bassi is not as significant

-~

frreeoeere ||||

7000
6000
5000
Q 4000
= 3000
2000

1000

I/0 Scaling on Bassi

== Write
-~ Read
Peak
32 64 128 256

No. of Processors

MB/s

45000

I/0 Scaling on Jaguar

40000
35000 -
30000 -
25000 H
20000

== Write SA—n

== Read
Peak

15000

10000

5000 -

8

32 64 128 256 1024
No. of Processors

 The I/O performance peaks at:
— P =256 on Jaguar (Istripe=144),
— Close to peaks at P = 64 on Bassi

 The peak of I/O performance can often be
achieved at relatively low concurrency

S

/\l /\
r’r&rmI

Bassi Jaguar
7000 45000
6000 40000 | =—o—Individual, Write /
c000 - 35000 | =#=Shared, Write
W 30000 +— Individual, Read
J 4000 @ 25000 | =>=Shared, Read L
@ —o— Indivi :)
S 3000 y Individual, Write @ S 20000

== Shared, Write 15000 -
2000 ivi)

/ Individual, Read 10000
1000 Shared, Read — 5000 -

O T T 0 T T T T
8 32 64 128 256 8 32 64 128 256 1024

No. of Processors No. of Processors

 The performance of using a shared file is
very close to using one file per processor

* Using a shared file performs even better
on Jaguar due to less metadata overhead

-~

frreeoeere ﬂ

Bassi

6000

5000 el

4000

3000 === POSiX
== MPI-IO
HDF5

=>é= NETCDF

MB/s

2000

1000 -

0] 50 100 150 200 250 300
No. of Processors

MPI-IO is close to POSIX performance

Concurrent POSIX access to single-file works correctly
— MPI-IO used to be required for correctness, but no longer
HDF5 (v1.6.5) falls a little behind, but tracks MPI-IO performance

paralleINETCDF (v1.0.2pre) performs worst, and still has 4GB dataset size
limitation (due to limits on per-dimension sizes on latest version)

-~

frreeeee ||||

30000

25000 - === Posix d
== MPI-IO

20000 +—— HDF5 / = -
—>é= NETCDF

15000

10000 / T

5000 M

8 32 64 128 256 1024
No. of Processors

« POSIX, MPI-IO, HDF5 (v1.6.5) offer very
similar scalable performance

« paralleINetCDF (v1.0.2.pre): flat performance

MB/s

* Using IOR to predict I/O performance
for application

-~

rreeeer

ceece)

Astrophysics application, used to analyze
the massive Cosmic Microwave
Background datasets

Important parameters related with 10:
— Pixels: matrix size = pixels * pixels

— Bins: number of matrices "
IO Behavior

— Out-of-core app.

— Matrix Write/Read
Weak scaling problem
— Pixels/Proc = 25K/16

Ar (uUK)

10 100 1000
[(multipole)

S

/\l /\
f’f&flll

Madbench vs. IOR

100%
80% +—
60% +——
40%
20%

0%
-20% —4%!

_40% Individual

Shared

ndividlflal

% Prediction Error

-60%
-80%
-100%

* |OR parameters: TransferSize=16MB,
blockSize=64MB, segmentCount=1,
P=64

« Surveyed the I/O requirements of NERSC
applications and selected IOR as the
synthetic benchmark to study the I/O
performance

 |/O Performance

— Highly affected by file size, I/O transaction size,
concurrency

— Peaks at relatively low concurrency

— The overhead of using HDF5 and MPI-IO is low,
but pNETCDF is high

* |IOR could be used effectively for I/O
performance prediction for some
applications

